1
|
Anurogo D, Chen CY, Lin CC, Pawitan JA, Qiu DW, Qiu JT. Codon optimized influenza H1 HA sequence but not CTLA-4 targeting of HA antigen to enhance the efficacy of DNA vaccines in an animal model. J Immunotoxicol 2024; 21:2400624. [PMID: 39319829 DOI: 10.1080/1547691x.2024.2400624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 06/05/2024] [Accepted: 08/30/2024] [Indexed: 09/26/2024] Open
Abstract
Infections caused by the influenza virus lead to both epidemic and pandemic outbreaks in humans and animals. Owing to their rapid production, safety, and stability, DNA vaccines represent a promising avenue for eliciting immunity and thwarting viral infections. While DNA vaccines have demonstrated substantial efficacy in murine models, their effectiveness in larger animals remains subdued. This limitation may be addressed by augmenting the immunogenicity of DNA-based vaccines. In the investigation here, protein expression was enhanced via codon optimization and then mouse cytotoxic T-lymphocyte antigen 4 (CTLA-4) was harnessed as a modulatory adjunct to bind directly to antigen-presenting cells. Further, the study evaluated the immunogenicity of two variants of the hemagglutinin (HA) antigen, i.e. the full-length and the C-terminal deletion versions. The study findings revealed that the codon-optimized HA gene (pcHA) led to increased protein synthesis, as evidenced by elevated mRNA levels. Codon optimization also significantly bolstered both cellular and humoral immune responses. In cytokine assays, all plasmid constructs, particularly pCTLA4-cHA, induced robust interferon (IFN)-γ production, while interleukin (IL)-4 levels remained uniformly non-significant. Mice immunized with pcHA displayed an augmented presence of IFNγ+ T-cells, underscoring the enhanced potency of the codon-optimized HA vaccine. Contrarily, CTLA-4-fused DNA vaccines did not significantly amplify the immune response.
Collapse
MESH Headings
- Animals
- Vaccines, DNA/immunology
- Vaccines, DNA/genetics
- Mice
- CTLA-4 Antigen/genetics
- CTLA-4 Antigen/immunology
- Influenza Vaccines/immunology
- Influenza Vaccines/administration & dosage
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Codon/genetics
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/prevention & control
- Humans
- Female
- Mice, Inbred BALB C
- Disease Models, Animal
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza A Virus, H1N1 Subtype/immunology
Collapse
Affiliation(s)
- Dito Anurogo
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
- Faculty of Medicine and Health Sciences, Universitas Muhammadiyah Makassar, Makassar City, Indonesia
| | - Chia-Yuan Chen
- Department of Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan City, Taiwan, ROC
| | - Chu-Chi Lin
- Department of Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan City, Taiwan, ROC
| | - Jeanne Adiwinata Pawitan
- Department of Histology, Universitas Indonesia, Jakarta, Indonesia
- Stem Cell Medical Technology Integrated Service Unit, Cipto Mangunkusumo Central Hospital, Universitas Indonesia, Jakarta, Indonesia
- Stem Cell and Tissue Engineering Research Center, Indonesia Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Daniel W Qiu
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - J Timothy Qiu
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
2
|
Galili U. Amplifying immunogenicity of prospective Covid-19 vaccines by glycoengineering the coronavirus glycan-shield to present α-gal epitopes. Vaccine 2020; 38:6487-6499. [PMID: 32907757 PMCID: PMC7437500 DOI: 10.1016/j.vaccine.2020.08.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/22/2020] [Accepted: 08/12/2020] [Indexed: 12/16/2022]
Abstract
The many carbohydrate chains on Covid-19 coronavirus SARS-CoV-2 and its S-protein form a glycan-shield that masks antigenic peptides and decreases uptake of inactivated virus or S-protein vaccines by APC. Studies on inactivated influenza virus and recombinant gp120 of HIV vaccines indicate that glycoengineering of glycan-shields to present α-gal epitopes (Galα1-3Galβ1-4GlcNAc-R) enables harnessing of the natural anti-Gal antibody for amplifying vaccine efficacy, as evaluated in mice producing anti-Gal. The α-gal epitope is the ligand for the natural anti-Gal antibody which constitutes ~1% of immunoglobulins in humans. Upon administration of vaccines presenting α-gal epitopes, anti-Gal binds to these epitopes at the vaccination site and forms immune complexes with the vaccines. These immune complexes are targeted for extensive uptake by APC as a result of binding of the Fc portion of immunocomplexed anti-Gal to Fc receptors on APC. This anti-Gal mediated effective uptake of vaccines by APC results in 10-200-fold higher anti-viral immune response and in 8-fold higher survival rate following challenge with a lethal dose of live influenza virus, than same vaccines lacking α-gal epitopes. It is suggested that glycoengineering of carbohydrate chains on the glycan-shield of inactivated SARS-CoV-2 or on S-protein vaccines, for presenting α-gal epitopes, will have similar amplifying effects on vaccine efficacy. α-Gal epitope synthesis on coronavirus vaccines can be achieved with recombinant α1,3galactosyltransferase, replication of the virus in cells with high α1,3galactosyltransferase activity as a result of stable transfection of cells with several copies of the α1,3galactosyltransferase gene (GGTA1), or by transduction of host cells with replication defective adenovirus containing this gene. In addition, recombinant S-protein presenting multiple α-gal epitopes on the glycan-shield may be produced in glycoengineered yeast or bacteria expression systems containing the corresponding glycosyltransferases. Prospective Covid-19 vaccines presenting α-gal epitopes may provide better protection than vaccines lacking this epitope because of increased uptake by APC.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/biosynthesis
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Antigens, Viral/metabolism
- Betacoronavirus/drug effects
- Betacoronavirus/immunology
- Betacoronavirus/pathogenicity
- COVID-19
- COVID-19 Vaccines
- Coronavirus Infections/genetics
- Coronavirus Infections/immunology
- Coronavirus Infections/prevention & control
- Coronavirus Infections/virology
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Dendritic Cells/virology
- Genetic Engineering
- HIV Core Protein p24/chemistry
- HIV Core Protein p24/genetics
- HIV Core Protein p24/immunology
- HIV Envelope Protein gp120/chemistry
- HIV Envelope Protein gp120/genetics
- HIV Envelope Protein gp120/immunology
- Humans
- Immunogenicity, Vaccine
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/virology
- Mice
- Pandemics/prevention & control
- Pneumonia, Viral/immunology
- Pneumonia, Viral/prevention & control
- Pneumonia, Viral/virology
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- SARS-CoV-2
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
- Trisaccharides/chemistry
- Trisaccharides/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/biosynthesis
- Viral Vaccines/genetics
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Uri Galili
- Department of Medicine, Rush Medical School, Chicago, IL, USA.
| |
Collapse
|
3
|
The efficacy of a novel vaccine approach using tumor cells that ectopically express a codon-optimized murine GM-CSF in a murine tumor model. Vaccine 2016; 34:134-41. [DOI: 10.1016/j.vaccine.2015.10.106] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 10/18/2015] [Accepted: 10/26/2015] [Indexed: 01/25/2023]
|
4
|
Godinho RMDC, Matassoli FL, Lucas CGDO, Rigato PO, Gonçalves JLS, Sato MN, Maciel M, Peçanha LMT, August JT, Marques ETDA, de Arruda LB. Regulation of HIV-Gag expression and targeting to the endolysosomal/secretory pathway by the luminal domain of lysosomal-associated membrane protein (LAMP-1) enhance Gag-specific immune response. PLoS One 2014; 9:e99887. [PMID: 24932692 PMCID: PMC4059647 DOI: 10.1371/journal.pone.0099887] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 05/19/2014] [Indexed: 12/17/2022] Open
Abstract
We have previously demonstrated that a DNA vaccine encoding HIV-p55gag in association with the lysosomal associated membrane protein-1 (LAMP-1) elicited a greater Gag-specific immune response, in comparison to a DNA encoding the native gag. In vitro studies have also demonstrated that LAMP/Gag was highly expressed and was present in MHCII containing compartments in transfected cells. In this study, the mechanisms involved in these processes and the relative contributions of the increased expression and altered traffic for the enhanced immune response were addressed. Cells transfected with plasmid DNA constructs containing p55gag attached to truncated sequences of LAMP-1 showed that the increased expression of gag mRNA required p55gag in frame with at least 741 bp of the LAMP-1 luminal domain. LAMP luminal domain also showed to be essential for Gag traffic through lysosomes and, in this case, the whole sequence was required. Further analysis of the trafficking pathway of the intact LAMP/Gag chimera demonstrated that it was secreted, at least in part, associated with exosome-like vesicles. Immunization of mice with LAMP/gag chimeric plasmids demonstrated that high expression level alone can induce a substantial transient antibody response, but targeting of the antigen to the endolysosomal/secretory pathways was required for establishment of cellular and memory response. The intact LAMP/gag construct induced polyfunctional CD4+ T cell response, which presence at the time of immunization was required for CD8+ T cell priming. LAMP-mediated targeting to endolysosomal/secretory pathway is an important new mechanistic element in LAMP-mediated enhanced immunity with applications to the development of novel anti-HIV vaccines and to general vaccinology field.
Collapse
Affiliation(s)
- Rodrigo Maciel da Costa Godinho
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flavio Lemos Matassoli
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Paula Ordonhez Rigato
- Laboratorio de Dermatologia e Imunodeficiencias, LIM-56, Departamento de Dermatologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Jorge Luiz Santos Gonçalves
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Notomi Sato
- Laboratorio de Dermatologia e Imunodeficiencias, LIM-56, Departamento de Dermatologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Milton Maciel
- Enteric Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, Maryland, United States of America; Department of Pharmacology and Molecular Sciences, The Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Ligia Maria Torres Peçanha
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - J Thomas August
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Ernesto Torres de Azevedo Marques
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America; Department of Infectious Diseases and Microbiology, Center for Vaccine Research, Pittsburgh, Pennsylvania, United States of America; Departamento de Virologia, Fiocruz - Pernambuco, Recife, Brazil
| | - Luciana Barros de Arruda
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Henke A, Jarasch N, Wutzler P. Coxsackievirus B3 vaccines: use as an expression vector for prevention of myocarditis. Expert Rev Vaccines 2014; 7:1557-67. [DOI: 10.1586/14760584.7.10.1557] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Vaccination with a fusion protein that introduces HIV-1 gag antigen into a multitrimer CD40L construct results in enhanced CD8+ T cell responses and protection from viral challenge by vaccinia-gag. J Virol 2013; 88:1492-501. [PMID: 24227853 DOI: 10.1128/jvi.02229-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CD40 ligand (CD40L, CD154) is a membrane protein that is important for the activation of dendritic cells (DCs) and DC-induced CD8(+) T cell responses. To be active, CD40L must cluster CD40 receptors on responding cells. To produce a soluble form of CD40L that clusters CD40 receptors necessitates the use of a multitrimer construct. With this in mind, a tripartite fusion protein was made from surfactant protein D (SPD), HIV-1 Gag as a test antigen, and CD40L, where SPD serves as a scaffold for the multitrimer protein complex. This SPD-Gag-CD40L protein activated CD40-bearing cells and bone marrow-derived DCs in vitro. Compared to a plasmid for Gag antigen alone (pGag), DNA vaccination of mice with pSPD-Gag-CD40L induced an increased number of Gag-specific CD8(+) T cells with increased avidity for major histocompatibility complex class I-restricted Gag peptide and improved vaccine-induced protection from challenge by vaccinia-Gag virus. The importance of the multitrimeric nature of the complex was shown using a plasmid lacking the N terminus of SPD that produced a single trimer fusion protein. This plasmid, pTrimer-Gag-CD40L, was only weakly active on CD40-bearing cells and did not elicit strong CD8(+) T cell responses or improve protection from vaccinia-Gag challenge. An adenovirus 5 (Ad5) vaccine incorporating SPD-Gag-CD40L was much stronger than Ad5 expressing Gag alone (Ad5-Gag) and induced complete protection (i.e., sterilizing immunity) from vaccinia-Gag challenge. Overall, these results show the potential of a new vaccine design in which antigen is introduced into a construct that expresses a multitrimer soluble form of CD40L, leading to strongly protective CD8(+) T cell responses.
Collapse
|
7
|
Kulkarni V, Rosati M, Valentin A, Ganneru B, Singh AK, Yan J, Rolland M, Alicea C, Beach RK, Zhang GM, Le Gall S, Broderick KE, Sardesai NY, Heckerman D, Mothe B, Brander C, Weiner DB, Mullins JI, Pavlakis GN, Felber BK. HIV-1 p24(gag) derived conserved element DNA vaccine increases the breadth of immune response in mice. PLoS One 2013; 8:e60245. [PMID: 23555935 PMCID: PMC3610668 DOI: 10.1371/journal.pone.0060245] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 02/24/2013] [Indexed: 11/18/2022] Open
Abstract
Viral diversity is considered a major impediment to the development of an effective HIV-1 vaccine. Despite this diversity, certain protein segments are nearly invariant across the known HIV-1 Group M sequences. We developed immunogens based on the highly conserved elements from the p24gag region according to two principles: the immunogen must (i) include strictly conserved elements of the virus that cannot mutate readily, and (ii) exclude both HIV regions capable of mutating without limiting virus viability, and also immunodominant epitopes located in variable regions. We engineered two HIV-1 p24gag DNA immunogens that express 7 highly Conserved Elements (CE) of 12–24 amino acids in length and differ by only 1 amino acid in each CE (‘toggle site’), together covering >99% of the HIV-1 Group M sequences. Altering intracellular trafficking of the immunogens changed protein localization, stability, and also the nature of elicited immune responses. Immunization of C57BL/6 mice with p55gag DNA induced poor, CD4+ mediated cellular responses, to only 2 of the 7 CE; in contrast, vaccination with p24CE DNA induced cross-clade reactive, robust T cell responses to 4 of the 7 CE. The responses were multifunctional and composed of both CD4+ and CD8+ T cells with mature cytotoxic phenotype. These findings provide a method to increase immune response to universally conserved Gag epitopes, using the p24CE immunogen. p24CE DNA vaccination induced humoral immune responses similar in magnitude to those induced by p55gag, which recognize the virus encoded p24gag protein. The inclusion of DNA immunogens composed of conserved elements is a promising vaccine strategy to induce broader immunity by CD4+ and CD8+ T cells to additional regions of Gag compared to vaccination with p55gag DNA, achieving maximal cross-clade reactive cellular and humoral responses.
Collapse
Affiliation(s)
- Viraj Kulkarni
- Human Retrovirus Pathogenesis Section, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Margherita Rosati
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Antonio Valentin
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Brunda Ganneru
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Ashish K. Singh
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Jian Yan
- University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Morgane Rolland
- Departments of Microbiology Medicine and Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - Candido Alicea
- Human Retrovirus Pathogenesis Section, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Rachel Kelly Beach
- Human Retrovirus Pathogenesis Section, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Gen-Mu Zhang
- Human Retrovirus Pathogenesis Section, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Sylvie Le Gall
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, United States of America
| | - Kate E. Broderick
- Inovio Pharmaceuticals, Inc., Blue Bell, Pennsylvania, United States of America
| | | | - David Heckerman
- Microsoft Research, Redmond, Washington, United States of America
| | - Beatriz Mothe
- IrsiCaixa AIDS Research Institute-HIVACAT, Autonomous University of Barcelona, Barcelona, Spain
| | - Christian Brander
- IrsiCaixa AIDS Research Institute-HIVACAT, Autonomous University of Barcelona, Barcelona, Spain
- Institucio Catalana de Recerca i Estudis Avancats (ICREA), Barcelona, Spain
| | - David B. Weiner
- University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - James I. Mullins
- Departments of Microbiology Medicine and Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - George N. Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
- * E-mail: (BKF); (GNP)
| | - Barbara K. Felber
- Human Retrovirus Pathogenesis Section, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
- * E-mail: (BKF); (GNP)
| |
Collapse
|
8
|
Kanagavelu SK, Snarsky V, Termini JM, Gupta S, Barzee S, Wright JA, Khan WN, Kornbluth RS, Stone GW. Soluble multi-trimeric TNF superfamily ligand adjuvants enhance immune responses to a HIV-1 Gag DNA vaccine. Vaccine 2012; 30:691-702. [PMID: 22146759 PMCID: PMC3253891 DOI: 10.1016/j.vaccine.2011.11.088] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 11/21/2011] [Accepted: 11/22/2011] [Indexed: 12/24/2022]
Abstract
BACKGROUND DNA vaccines remain an important component of HIV vaccination strategies, typically as part of a prime/boost vaccination strategy with viral vector or protein boost. A number of DNA prime/viral vector boost vaccines are currently being evaluated for both preclinical studies and in Phase I and Phase II clinical trials. These vaccines would benefit from molecular adjuvants that increase correlates of immunity during the DNA prime. While HIV vaccine immune correlates are still not well defined, there are a number of immune assays that have been shown to correlate with protection from viral challenge including CD8+ T cell avidity, antigen-specific proliferation, and polyfunctional cytokine secretion. METHODOLOGY AND PRINCIPAL FINDINGS Recombinant DNA vaccine adjuvants composed of a fusion between Surfactant Protein D (SP-D) and either CD40 Ligand (CD40L) or GITR Ligand (GITRL) were previously shown to enhance HIV-1 Gag DNA vaccines. Here we show that similar fusion constructs composed of the TNF superfamily ligands (TNFSFL) 4-1BBL, OX40L, RANKL, LIGHT, CD70, and BAFF can also enhanced immune responses to a HIV-1 Gag DNA vaccine. BALB/c mice were vaccinated intramuscularly with plasmids expressing secreted Gag and SP-D-TNFSFL fusions. Initially, mice were analyzed 2 weeks or 7 weeks following vaccination to evaluate the relative efficacy of each SP-D-TNFSFL construct. All SP-D-TNFSFL constructs enhanced at least one Gag-specific immune response compared to the parent vaccine. Importantly, the constructs SP-D-4-1BBL, SP-D-OX40L, and SP-D-LIGHT enhanced CD8+ T cell avidity and CD8+/CD4+ T cell proliferation 7 weeks post vaccination. These avidity and proliferation data suggest that 4-1BBL, OX40L, and LIGHT fusion constructs may be particularly effective as vaccine adjuvants. Constructs SP-D-OX40L, SP-D-LIGHT, and SP-D-BAFF enhanced Gag-specific IL-2 secretion in memory T cells, suggesting these adjuvants can increase the number of self-renewing Gag-specific CD8+ and/or CD4+ T cells. Finally adjuvants SP-D-OX40L and SP-D-CD70 increased T(H)1 (IgG2a) but not T(H)2 (IgG1) antibody responses in the vaccinated animals. Surprisingly, the B cell-activating protein BAFF did not enhance anti-Gag antibody responses when given as an SP-D fusion adjuvant, but nonetheless enhanced CD4+ and CD8+ T cell responses. CONCLUSIONS We present evidence that various SP-D-TNFSFL fusion constructs can enhance immune responses following DNA vaccination with HIV-1 Gag expression plasmid. These data support the continued evaluation of SP-D-TNFSFL fusion proteins as molecular adjuvants for DNA and/or viral vector vaccines. Constructs of particular interest included SP-D-OX40L, SP-D-4-1BBL, SP-D-LIGHT, and SP-D-CD70. SP-D-BAFF was surprisingly effective at enhancing T cell responses, despite its inability to enhance anti-Gag antibody secretion.
Collapse
Affiliation(s)
- Saravana K. Kanagavelu
- Department of Microbiology & Immunology, Miller School of Medicine, University of Miami, Miami, FL
| | - Victoria Snarsky
- Department of Medicine, University of California San Diego, La Jolla, CA; VA San Diego Healthcare System, San Diego, CA
| | - James M. Termini
- Department of Microbiology & Immunology, Miller School of Medicine, University of Miami, Miami, FL
| | - Sachin Gupta
- Department of Microbiology & Immunology, Miller School of Medicine, University of Miami, Miami, FL
| | - Suzanne Barzee
- Department of Medicine, University of California San Diego, La Jolla, CA; VA San Diego Healthcare System, San Diego, CA
| | - Jacqueline A. Wright
- Department of Microbiology & Immunology, Miller School of Medicine, University of Miami, Miami, FL
| | - Wasif N. Khan
- Department of Microbiology & Immunology, Miller School of Medicine, University of Miami, Miami, FL
| | - Richard S. Kornbluth
- Department of Medicine, University of California San Diego, La Jolla, CA; VA San Diego Healthcare System, San Diego, CA
| | - Geoffrey W. Stone
- Department of Microbiology & Immunology, Miller School of Medicine, University of Miami, Miami, FL
| |
Collapse
|
9
|
Zhao KN, Chen J. Codon usage roles in human papillomavirus. Rev Med Virol 2011; 21:397-411. [PMID: 22025363 DOI: 10.1002/rmv.707] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 07/07/2011] [Accepted: 07/11/2011] [Indexed: 12/14/2022]
Abstract
Human papillomavirus (HPV) genomes, similar to other virus genomes, frequently have a G + C content significantly different from their host species. The HPV genomes show a strong codon usage bias to 18 codons, with 14 showing T at the third position amongst degenerately encoded amino acids. The codon usage pattern in HPV genome plays an important role, which regulates low or non-translational expression of the viral capsid genes and results in very weak protein expression of oncogenes in a wide range of mammalian cells. Codon modification has been proved to be a powerful technology to overcome the translational blockage and weak expression of both HPV capsid genes and oncogenes in different expression systems. Furthermore, keratinocytes are the host cells of HPV infection; the codon usage in HPV capsid genes matches available aminoacyl-tRNAs in differentiated keratinocytes to modulate their protein expression. HPV DNA vaccines with codon optimization have been shown to have higher immunogenicity and induce both strong cellular and humoral responses in animal models, which may be a promising form of therapeutic HPV vaccines.
Collapse
Affiliation(s)
- Kong-Nan Zhao
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia.
| | | |
Collapse
|
10
|
Improved expression of secretory and trimeric proteins in mammalian cells via the introduction of a new trimer motif and a mutant of the tPA signal sequence. Appl Microbiol Biotechnol 2011; 91:731-40. [DOI: 10.1007/s00253-011-3297-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Revised: 03/24/2011] [Accepted: 03/29/2011] [Indexed: 11/27/2022]
|
11
|
Abdel-Motal UM, Wang S, Awad A, Lu S, Wigglesworth K, Galili U. Increased immunogenicity of HIV-1 p24 and gp120 following immunization with gp120/p24 fusion protein vaccine expressing alpha-gal epitopes. Vaccine 2009; 28:1758-65. [PMID: 20034607 DOI: 10.1016/j.vaccine.2009.12.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 11/23/2009] [Accepted: 12/09/2009] [Indexed: 01/18/2023]
Abstract
Developing an effective HIV-1 vaccine will require strategies to enhance antigen presentation to the immune system. In a previous study we demonstrated a marked increase in immunogenicity of the highly glycosylated HIV-1 gp120 protein following enzymatic addition of alpha-gal epitopes to the carbohydrate chains. In the present study we determined whether gp120(alphagal) can also serve as an effective platform for targeting other HIV-1 proteins to APC and thus increase immunogenicity of both proteins. For this purpose we produced a recombinant fusion protein between gp120 and the HIV-1 matrix p24 protein (gp120/p24). Multiple alpha-gal epitopes were synthesized enzymatically on the gp120 portion of the fusion protein to generate a gp120(alphagal)/p24 vaccine. Immune responses to gp120(alphagal)/p24 compared to gp120/p24 vaccine lacking alpha-gal epitopes were evaluated in alpha1,3galactosyltransferase knockout (KO) mice. These mice lack alpha-gal epitopes and, therefore, are capable of producing the anti-Gal antibody. T cell responses to p24, as assessed by ELISPOT and by CD8+ T cells intracellular staining assays for IFNgamma, was on average 12- and 10-fold higher, respectively, in gp120(alphagal)/p24 immunized mice than in mice immunized with gp120/p24. In addition, cellular and humoral immune responses against gp120 were higher by 10-30-fold in mice immunized with gp120(alphagal)/p24 than in gp120/p24 immunized mice. Our data suggest that the alpha-gal epitopes on the gp120 portion of the fusion protein can significantly augment the immunogenicity of gp120, as well as that of the fused viral protein which lacks alpha-gal epitopes. This strategy of anti-Gal mediated targeting to APC may be used for production of effective HIV-1 vaccines comprised of various viral proteins fused to gp120.
Collapse
Affiliation(s)
- Ussama M Abdel-Motal
- Department of Surgery, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Mölder T, Adojaan M, Kaldma K, Ustav M, Sikut R. Elicitation of broad CTL response against HIV-1 by the DNA vaccine encoding artificial multi-component fusion protein MultiHIV--study in domestic pigs. Vaccine 2009; 28:293-8. [PMID: 19879232 DOI: 10.1016/j.vaccine.2009.10.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 10/08/2009] [Accepted: 10/12/2009] [Indexed: 10/20/2022]
Abstract
Broad CTL response against HIV-1 is one factor that helps to control the viral replication. We have constructed a DNA vaccine that encodes a large artificial fusion protein (MultiHIV) and shown it to be immunogenic in mice, swine and macaques. Inbred mice revealed CTL response only against two epitopes due to limited MHC class I variability. To assess the quality of the CTL response we addressed this question in domestic swine. Number of presented epitopes varied between 7 and 14 among the five selected animals. Epitopes detected in swine are localised in the same antigenic regions recognised in humans. This can be explained by the fact that swine MHC-I (SLA-I) complex is remarkably similar to human HLA-I. These results also indicate that immunogenicity profile of vaccines in domestic swine may predict the outcome of human immunisation.
Collapse
|
13
|
Laddy DJ, Weiner DB. From Plasmids to Protection: A Review of DNA Vaccines Against Infectious Diseases. Int Rev Immunol 2009; 25:99-123. [PMID: 16818367 DOI: 10.1080/08830180600785827] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The field of DNA vaccine development began over 16 years ago with the observation that plasmid DNA could be injected into and expressed in vivo and drive adaptive immune responses. Since then, there has been great interest in developing this technology to create a new generation of vaccines with the ability to elicit both humoral and cellular immune responses from an inherently innocuous injection. However, DNA vaccines have yet to proceed past phase I/II clinical trials in humans--primarily due to a desire to induce more potent immune responses. This review will examine how DNA vaccines function to induce an immune response and how this information might be useful in future vaccine design.
Collapse
Affiliation(s)
- Dominick J Laddy
- Department of Pathology & Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|
14
|
Japanese encephalitis virus-based replicon RNAs/particles as an expression system for HIV-1 Pr55 Gag that is capable of producing virus-like particles. Virus Res 2009; 144:298-305. [PMID: 19406175 DOI: 10.1016/j.virusres.2009.04.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2008] [Revised: 04/16/2009] [Accepted: 04/20/2009] [Indexed: 11/23/2022]
Abstract
Ectopic expression of the structural protein Pr55(Gag) of HIV-1 has been limited by the presence of inhibitory sequences in the gag coding region that must normally be counteracted by HIV-1 Rev and RRE. Here, we describe a cytoplasmic RNA replicon based on the RNA genome of Japanese encephalitis virus (JEV) that is capable of expressing HIV-1 gag without requiring Rev/RRE. This replicon system was constructed by deleting all three JEV structural protein-coding regions (C, prM, and E) from the 5'-proximal region of the genome and simultaneously inserting an HIV-1 gag expression cassette driven by the internal ribosome entry site of encephalomyocarditis virus into the 3'-proximal noncoding region of the genome. Transfection of this JEV replicon RNA led to expression of Pr55(Gag) in the absence of Rev/RRE in the cytoplasm of hamster BHK-21, human HeLa, and mouse NIH/3T3 cells. Production of the Pr55(Gag) derived from this JEV replicon RNA appeared to be increased by approximately 3-fold when compared to that based on an alphavirus replicon RNA. Biochemical and morphological analyses demonstrated that the Pr55(Gag) proteins were released into the culture medium in the form of virus-like particles. We also observed that the JEV replicon RNAs expressing the Pr55(Gag) could be encapsidated into single-round infectious JEV replicon particles when transfected into a stable packaging cell line that provided the three JEV structural proteins in trans. This ectopic expression of the HIV-1 Pr55(Gag) by JEV-based replicon RNAs/particles in diverse cell types may represent a useful molecular platform for various biological applications in medicine and industry.
Collapse
|
15
|
Xu J, Kelly M, Denning W, Hel Z. A model for testing the immunogenicity of simian immunodeficiency virus and simian-human immunodeficiency virus vaccine candidates in mice. J Virol Methods 2009; 158:70-6. [PMID: 19428572 DOI: 10.1016/j.jviromet.2009.01.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 01/16/2009] [Accepted: 01/21/2009] [Indexed: 11/26/2022]
Abstract
HIV-1 Gag protein represents a promising target of cellular immunity-based vaccines due to its immunogenicity and high conservation among diverse viral subtypes. Development of novel and effective Gag-targeted vaccine candidates inducing CD8(+) and CD4(+) T cell responses requires large scale pre-clinical testing in a small animal model. In this report, the MHC class I and II-restricted epitopes in the simian immunodeficiency virus (SIV) Gag protein recognized in C57Bl/6 and Balb/c mice were determined and characterized. In addition, using the newly defined epitopes, the relationship is described between the amount of plasmid DNA, volume of inoculate, and the extent of ensuing immune responses following intramuscular DNA immunization.
Collapse
Affiliation(s)
- Jun Xu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294-2170, USA
| | | | | | | |
Collapse
|
16
|
Bråve A, Hallengärd D, Malm M, Blazevic V, Rollman E, Stanescu I, Krohn K. Combining DNA technologies and different modes of immunization for induction of humoral and cellular anti-HIV-1 immune responses. Vaccine 2008; 27:184-6. [PMID: 18992294 DOI: 10.1016/j.vaccine.2008.10.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 10/02/2008] [Accepted: 10/14/2008] [Indexed: 11/29/2022]
Abstract
We show here that it is possible to combine two different genetic immunogens, one designed to induce HIV-1 specific humoral immune responses (pKCMVgp160B) and one designed to induce cellular anti-HIV-1 immune responses (Auxo-GTU-MultiHIV), and still retain the major properties of both vaccine constructs. The two different constructs were delivered using two different methods; the gene-gun and the Biojector, which both are needle-free devices. In BALB/c mice we were able to induce high levels of HIV-1-specific T cell responses as well as high levels of anti-gp160 antibodies by co-administrating the vaccine constructs. The cellular immune responses, but not antibody responses, were moderately compromised from the combination. This study shows that it is a feasible strategy to combine different vaccines and modes of delivery, but that interference as to magnitude may occur to certain gene products.
Collapse
Affiliation(s)
- Andreas Bråve
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet and Swedish Institute for Infectious Disease Control, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
17
|
Wang T, Zhang W, Tian C, Liu B, Yu Y, Ding L, Spearman P, Yu XF. Distinct viral determinants for the packaging of human cytidine deaminases APOBEC3G and APOBEC3C. Virology 2008; 377:71-9. [PMID: 18495196 DOI: 10.1016/j.virol.2008.04.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 02/04/2008] [Accepted: 04/15/2008] [Indexed: 01/27/2023]
Abstract
Human APOBEC3G and other APOBEC3 cytidine deaminases inhibit a variety of retroviruses, including Vif-deficient HIV-1. These host proteins are packaged into viral particles and inhibit the replication of virus in new target cells. A3G and A3F are known to be efficiently packaged into HIV-1 virions by binding to 7SL RNA through the Gag NC domain; however, the packaging mechanisms of other APOBEC3 proteins are poorly defined. We have now demonstrated that APOBEC3C (A3C) can be efficiently packaged into HIV-1 virions that are deficient for viral genomic RNA. Inhibition of the encapsidation of 7SL RNA into HIV-1 virions blocked the packaging of A3G, but not A3C. While the NC domain is required for efficient packaging of A3G, deletion of this domain had little effect on A3C packaging into HIV-1 Gag particles. A3C interacted with HIV-1 Gag which was MA domain-dependent and RNA-dependent. Deletion of the MA domain of HIV-1 Gag inhibited A3C but not A3G packaging into HIV-1 Gag particles. Thus, A3G and A3C have evolved to use distinct mechanisms for targeting retroviruses.
Collapse
Affiliation(s)
- Tao Wang
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Extreme dependence of gH and gL expression on ORF57 and association with highly unusual codon usage in rhesus monkey rhadinovirus. J Virol 2008; 82:7231-7. [PMID: 18480451 DOI: 10.1128/jvi.00564-08] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Standard vectors for high-level expression elicited undetectable levels of the gH and gL glycoproteins of rhesus monkey rhadinovirus (RRV) following transient-transfection assays under a variety of conditions. These same vectors and conditions yielded high levels of RRV gB expression. Unlike other genes of RRV, both the gH and gL genes were noted to have a highly aberrant, suboptimal codon usage. High levels of RRV gH and gL expression were achieved by two alternative means: codon optimization or coexpression of RRV ORF57. The failure of gH and gL to be expressed in the absence of ORF57 and in the absence of codon optimization could not be explained by the failure of RNA to egress from the nucleus. Rather, the defect in gH and gL expression appeared to be cytoplasmic in nature. It is not clear at the present time whether the aberrant codon usage for gH and gL of RRV is an intentional regulatory strategy used by the virus or whether it is driven by some external force, such as intrinsic immunity. In any event, our results indicate that the need of ORF57 for gH and gL expression can be circumvented by codon optimization, that RRV ORF57 acts principally to allow translation of gH and gL RNA in the cytoplasm, and that this activity of ORF57 is related in some way to the aberrant codon usage of the gH and gL RNAs.
Collapse
|
19
|
Xing Y, Huang Z, Lin Y, Li J, Chou TH, Lu S, Wang S. The ability of Hepatitis B surface antigen DNA vaccine to elicit cell-mediated immune responses, but not antibody responses, was affected by the deglysosylation of S antigen. Vaccine 2008; 26:5145-52. [PMID: 18462847 DOI: 10.1016/j.vaccine.2008.03.072] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Hepatitis B Virus (HBV) infection remains a major worldwide infectious disease with serious long-term morbidity and mortality. The limited selections of drug treatment are not able to control the progress of disease in people with active and persistent HBV infection. Immunotherapy to control the degree of viral infection is one possible alternative solution to this challenge. HBV DNA vaccines, with their strong ability to induce cell-mediated immune responses, offer an attractive option. HBV surface protein is important in viral immunity. Re-establishing anti-S immunity in chronic HBV infected patients will bring significant benefit to the patients. Previous studies have shown that HBV S DNA vaccines are immunogenic in a number of animal studies. In the current study, we further investigated the effect of glycosylation to the expression and immunogenicity of S DNA vaccines. Our results demonstrate that deglycosylation at the two potential N-linked glycosylation sites in S protein resulted in a significant decrease of S-specific cell-mediated immune responses, but did not affect anti-S antibody responses. This finding provides important direction to the development of S DNA vaccines to elicit the optimal and balanced antibody and cell-mediated immune responses to treat people with HBV chronic infections.
Collapse
Affiliation(s)
- Yiping Xing
- Department of Infectious Diseases, Nanjing Medical University, and China-US Vaccine Research Center, Jiangsu Province Hospital, Nanjing 210029, China
| | | | | | | | | | | | | |
Collapse
|
20
|
Lin SW, Hensley SE, Tatsis N, Lasaro MO, Ertl HCJ. Recombinant adeno-associated virus vectors induce functionally impaired transgene product-specific CD8+ T cells in mice. J Clin Invest 2008; 117:3958-70. [PMID: 18008010 DOI: 10.1172/jci33138] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Accepted: 09/24/2007] [Indexed: 11/17/2022] Open
Abstract
Recombinant adeno-associated virus (rAAV) vectors were used in human trials as carriers of vaccines for HIV-1 after encouraging preclinical results. However, the clinical trials yielded disappointing results. Here we demonstrated that in mice, rAAV vectors expressing the gene encoding HIV-1 gag stimulated gag-specific CD8(+) T cells, but these T cells failed to expand after a booster immunization with a replication-defective adenoviral (Ad) vector also expressing gag. We tested rAAV vectors of different serotypes expressing HIV-1 gag for induction of transgene product-specific CD8(+) T cells and found that the immunoinhibitory effect of rAAV priming observed with different AAV serotypes was transgene product specific, was independent of the interval between prime and boost, and extended to boosts with vaccine modalities other than Ad vectors. rAAV vector-induced CD8(+) T cells proliferated poorly, produced low levels of IFN-gamma in response to gag stimulation, and upregulated immunoinhibitory molecules. These T cells did not protect efficiently against challenge with a surrogate pathogen. Finally, we showed that the impaired proliferative capacity of the T cells was caused by persistence of the antigen-encoding rAAV vectors and could be reversed by placing the CD8(+) T cells in an antigen-free environment. Our data suggest that rAAV vectors induce functionally impaired T cells and could dampen the immune response to a natural infection.
Collapse
Affiliation(s)
- Shih-Wen Lin
- University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
21
|
Jiang W, Ren L, Jin N. HIV-1 DNA vaccine efficacy is enhanced by coadministration with plasmid encoding IFN-α. J Virol Methods 2007; 146:266-73. [PMID: 17868910 DOI: 10.1016/j.jviromet.2007.07.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 06/12/2007] [Accepted: 07/10/2007] [Indexed: 10/22/2022]
Abstract
Numerous strategies have been employed in an attempt to improve the immunogenicity and efficacy of nucleic acid vaccines. In the present study, the immunogenicity in the induction of humoral and cellular immune responses to HIV-1 DNA vaccine expressing a chimeric gene of gag and gp120 and the adjuvant effect of IFN-alpha on HIV-1 DNA vaccine were studied in a murine model. The DNA vaccine plasmid pVAX1-gag-gp120 and eukaryotic expression plasmid pVAX1-IFN were constructed by inserting the chimeric gene of gag and gp120 of HIV-1 and IFN-alpha into the downstream of CMV promoter of eukaryotic expression vector pVAX1, respectively. In vitro expression detected by RT-PCR and Western blotting showed that the genes of interest could be expressed in transfected HeLa cells. After BALB/c mice were immunized by three intramuscular inoculations of the HIV-1 DNA vaccine plasmids alone or in combination with IFN-alpha expression plasmids, the different levels of anti-HIV-1 humoral and cellular responses were measured comparable to the control groups immunized with pVAX1-IFN, parent plasmid pVAX1 or PBS. The percentage of CD3+CD4+ and CD3+CD8+ subgroups of spleen T lymphocytes and the specific cytotoxicity activities of splenic CTLs in the coinoculation group were significantly higher than those in the separate inoculation group, and an enhancement of antibody response was also observed in the coinoculation group compared with the separate inoculation group. Take together, coadministration of HIV-1 DNA vaccine plasmids and IFN-alpha expression plasmids can elicit stronger humoral and cellular immune responses in mice than HIV-1 DNA vaccine plasmids alone, and IFN-alpha can be an effective immunological adjuvant in DNA vaccination against HIV-1.
Collapse
Affiliation(s)
- Wenzheng Jiang
- Genetic Engineering Key Laboratory of PLA, The Eleventh Institute of Academy of Military Medical Sciences of PLA, Changchun 130062, People's Republic of China
| | | | | |
Collapse
|
22
|
Wang T, Tian C, Zhang W, Sarkis PTN, Yu XF. Interaction with 7SL RNA but not with HIV-1 genomic RNA or P bodies is required for APOBEC3F virion packaging. J Mol Biol 2007; 375:1098-112. [PMID: 18067920 DOI: 10.1016/j.jmb.2007.11.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 11/03/2007] [Accepted: 11/06/2007] [Indexed: 11/29/2022]
Abstract
Human cytidine deaminase apolipoprotein B mRNA-editing catalytic polypeptide-like 3F (APOBEC3F, or A3F), like APOBEC3G, has broad antiviral activity against diverse retroelements, including Vif-deficient human immunodeficiency virus (HIV)-1. Its antiviral functions are known to rely on its virion encapsidation and be suppressed by HIV-1 Vif, which recruits Cullin5-based E3 ubiquitin ligases. However, the factors that mediate A3F virion packaging have not yet been identified. In this study, we demonstrate that A3F specifically interacts with cellular signal recognition particle (SRP) RNA (7SL RNA), which is selectively packaged into HIV-1 virions. Efficient packaging of 7SL RNA as well as A3F was mediated by the RNA-binding nucleocapsid domain of HIV-1 Gag. Reducing 7SL RNA packaging by overexpression of SRP19 protein inhibited A3F virion packaging. Although A3F has been shown to interact with P bodies and viral genomic RNA, our data indicated that P bodies and HIV-1 genomic RNA were not required for A3F packaging. Thus, in addition to its well-known function in SRPs, 7SL RNA, which is encapsidated into diverse retroviruses, also participates in the innate antiviral function of host cytidine deaminases.
Collapse
Affiliation(s)
- Tao Wang
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
23
|
Henriques AM, Fevereiro M, Prazeres DMF, Monteiro GA. Development of a candidate DNA vaccine against Maedi-Visna virus. Vet Immunol Immunopathol 2007; 119:222-32. [PMID: 17624445 DOI: 10.1016/j.vetimm.2007.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 05/18/2007] [Accepted: 05/29/2007] [Indexed: 10/23/2022]
Abstract
DNA vaccine candidates against Maedi-Visna virus (MVV) infection in ovines were developed as an alternative to conventional vaccines. Candidates were constructed by cloning genes encoding the MVV gag polyprotein and gag proteins p16 and p25 fused to a beta-galactosidase reporter in a plasmid backbone. Transfection of different ovine cells showed a higher protein expression with plasmid lacZp16, which was hence further optimised by (i) removing a putative inhibitory sequence via reduction of the AU-content in the p16 gene or by (ii) introducing a secretory signal (Sc) to promote antigen secretion and increase its presentation to APCs. Unexpectedly, plasmids constructed on the basis of the first strategy by mutagenesis of lacZp16 (lacZp16mut(24)), led to a reduction in the expression of the antigen/reporter fusion in cultured ovine cells. This indicates that the high AU content in MVV does not inhibit protein expression. However, mice primed with lacZp16mut(24) and boosted with MVV protein displayed higher humoral response when compared with control lacZp16. The addition of the Sc signal (Sc-p16) led to lower amounts of intracellular antigen/reporter fusion in transfected ovine cells, thus confirming secretion. These findings correlate with in vivo experiments, which showed that mice primed with Sc-p16 and boosted with MVV exhibited stronger antibody responses when compared with control mice primed with lacZp16 and boosted with MVV. Stronger humoral responses were recorded by immunising mice with (i) Sc-p16 and lacZp16mut(24) plasmids together or with (ii) one plasmid containing both the mutations and the Sc signal.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/blood
- Antigens, Viral/genetics
- Antigens, Viral/metabolism
- Cells, Cultured
- Female
- Genes, Viral
- Mice
- Mice, Inbred BALB C
- Pneumonia, Progressive Interstitial, of Sheep/immunology
- Pneumonia, Progressive Interstitial, of Sheep/prevention & control
- Sheep/immunology
- Sheep/virology
- Time Factors
- Vaccines, DNA/immunology
- Viral Vaccines/immunology
- Visna-maedi virus/immunology
Collapse
Affiliation(s)
- Ana M Henriques
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Lisboa, Portugal
| | | | | | | |
Collapse
|
24
|
Parker SD, Rottinghaus ST, Zajac AJ, Yue L, Hunter E, Whitley RJ, Parker JN. HIV-1(89.6) Gag expressed from a replication competent HSV-1 vector elicits persistent cellular immune responses in mice. Vaccine 2007; 25:6764-73. [PMID: 17706843 PMCID: PMC2084203 DOI: 10.1016/j.vaccine.2007.06.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2006] [Revised: 06/19/2007] [Accepted: 06/26/2007] [Indexed: 01/11/2023]
Abstract
We have constructed a replication competent, gamma(1)34.5-deleted herpes simplex virus type-1 (HSV-1) vector (J200) that expresses the gag gene from human immunodeficiency virus type-1, primary isolate 89.6 (HIV-1(89.6)), as a candidate vaccine for HIV-1. J200 replicates in vitro, resulting in abundant Gag protein production and accumulation in the extracellular media. Immunization of Balb/c mice with a single intraperitoneal injection of J200 elicited strong Gag-specific CD8 responses, as measured by intracellular IFN-gamma staining and flow cytometry analysis. Responses were highest between 6 weeks and 4 months, but persisted at 9 months post-immunization, the last time-point evaluated. These data highlight the potential utility of neuroattenuated, replication competent HSV-1 vectors for delivery of HIV-1 immunogens.
Collapse
Affiliation(s)
- Scott D. Parker
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294
| | - Scott T. Rottinghaus
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294
| | - Allan J. Zajac
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL 35294
| | - Ling Yue
- Emory Vaccine Center, Emory University, Atlanta, Georgia, 30329
| | - Eric Hunter
- Emory Vaccine Center, Emory University, Atlanta, Georgia, 30329
| | - Richard J. Whitley
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL 35294
| | - Jacqueline N. Parker
- Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL 35294
- Corresponding author: Jacqueline N. Parker, Ph.D., Department of Pediatrics, Division of Infectious Diseases, University of Alabama at Birmingham, CHB 118B, 1600 6 Avenue South, Birmingham, AL 35233, Phone: 205-996-7881, FAX: 205-975-6549, E-mail:
| |
Collapse
|
25
|
Kamrud KI, Custer M, Dudek JM, Owens G, Alterson KD, Lee JS, Groebner JL, Smith JF. Alphavirus replicon approach to promoterless analysis of IRES elements. Virology 2007; 360:376-87. [PMID: 17156813 PMCID: PMC1885372 DOI: 10.1016/j.virol.2006.10.049] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2006] [Revised: 08/30/2006] [Accepted: 10/30/2006] [Indexed: 02/05/2023]
Abstract
Here we describe a system for promoterless analysis of putative internal ribosome entry site (IRES) elements using an alphavirus (family Togaviridae) replicon vector. The system uses the alphavirus subgenomic promoter to produce transcripts that, when modified to contain a spacer region upstream of an IRES element, allow analysis of cap-independent translation of genes of interest (GOI). If the IRES element is removed, translation of the subgenomic transcript can be reduced >95% compared to the same transcript containing a functional IRES element. Alphavirus replicons, used in this manner, offer an alternative to standard dicistronic DNA vectors or in vitro translation systems currently used to analyze putative IRES elements. In addition, protein expression levels varied depending on the spacer element located upstream of each IRES. The ability to modulate the level of expression from alphavirus vectors should extend the utility of these vectors in vaccine development.
Collapse
Affiliation(s)
- K I Kamrud
- AlphaVax, Inc., 2 Triangle Drive, Research Triangle Park, NC 27709-0307, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Malm M, Sikut R, Krohn K, Blazevic V. GTU®-MultiHIV DNA vaccine results in protection in a novel P815 tumor challenge model. Vaccine 2007; 25:3293-301. [PMID: 17289222 DOI: 10.1016/j.vaccine.2007.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 12/18/2006] [Accepted: 01/04/2007] [Indexed: 10/23/2022]
Abstract
A novel animal model for testing the immunogenicity and protective immune response induced by HIV-1 DNA vaccines was developed. DBA/2 mice were immunized with GTU-MultiHIV DNA encoding multigene for Rev, Nef, Tat, optp17/24 and a stretch of Pol/Env epitopes. A single GTU-MultiHIV B-clade specific plasmid or Auxo-GTU-MultiHIV(mix) (mixture of four plasmids with A, B, C and FGH clade specific MultiHIV antigens) were administered via gene gun and cell-mediated and humoral immune responses were analysed. The protective efficacy of the immune response was evaluated by challenging the mice with syngeneic tumor cells (P815) stably transfected with the MultiHIV fusion gene. Our results show that the strong MultiHIV-specific immune response generated by the GTU-MultiHIV vaccines in DBA/2 mice was able to delay the tumor growth substantially, indicating that the CTL response detected in vitro confers protection in vivo. The model described here is a safe and feasible in vivo assay for assessment of the vaccine potency to induce protective cell-mediated immune responses.
Collapse
Affiliation(s)
- Maria Malm
- FIT Biotech Oyj Plc., Biokatu 8, 33520 Tampere, Finland.
| | | | | | | |
Collapse
|
27
|
Song R, Liu S, Leong KW. Effects of MIP-1 alpha, MIP-3 alpha, and MIP-3 beta on the induction of HIV Gag-specific immune response with DNA vaccines. Mol Ther 2007; 15:1007-1015. [PMID: 17356539 PMCID: PMC2365720 DOI: 10.1038/mt.sj.6300129] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Accepted: 01/25/2007] [Indexed: 11/09/2022] Open
Abstract
Transfection of DNA vaccines with chemokines may recruit dendritic cells (DCs) locally to capture the antigenic genes and their gene products to generate enhanced CD8(+) cytotoxic T lymphocytes (CTLs). In this study, we investigated the effects of macrophage inflammatory protein (MIP)-1 alpha, MIP-3 alpha, and MIP-3beta on human immunodeficiency virus (HIV) Gag DNA vaccination. The chemokine plasmids markedly enhanced the local infiltration of inflammatory cells and increased the presence of CD11c(+) B7.2(+)-activated DCs. MIP-1 alpha and MIP-3 alpha were potent adjuvants in augmenting CTLs and afforded strong protection to immunized animals against challenge with vaccinia virus expressing Gag (vv-Gag). However, decreased humoral response was observed. MIP-3beta plasmid did not dramatically alter immunity. The chemokine inoculation time with respect to DNA vaccine priming was also investigated. The injection of pMIP-3 alpha three days before Gag plasmid (pGag) vaccination markedly increased specific CTLs compared with simultaneous injection and led to higher protection against vv-Gag. Immunity was also shifted toward a T-helper type-1 (Th1) response. In contrast, inoculation with pMIP-3 alpha three days after pGag vaccination shifted immunity toward a Th2 response. Our data suggest that administration of a chemokine with DNA vaccines offers a valuable strategy to modulate the efficacy and polarization of specific immunity and that chemokine-antigen timing is critical in determining overall biological effects.
Collapse
Affiliation(s)
- Ruijiang Song
- Department of Pharmacology and Molecular Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | |
Collapse
|
28
|
Qiu JT, Chang TC, Lin CT, Chen YM, Li FQ, Soong YK, Lai CH. Novel codon-optimized GM-CSF gene as an adjuvant to enhance the immunity of a DNA vaccine against HIV-1 Gag. Vaccine 2007; 25:253-63. [PMID: 16971027 DOI: 10.1016/j.vaccine.2006.07.034] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Revised: 07/17/2006] [Accepted: 07/21/2006] [Indexed: 11/23/2022]
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a potent immunomodulatory cytokine. Here we generated a novel codon-optimized murine GM-CSF gene as an adjuvant. The codon-optimized GM-CSF gene significantly increased protein expression levels in all cells tested. Although injection of the wild-type GM-CSF plasmids adjuvanted HIV-1 Gag DNA vaccine induced detectable immune responses, co-administration of plasmids encoding the codon-optimized GM-CSF sequence with the DNA vaccine resulted in a strong antibody and CTL responses and a protective immune response against infection with recombinant vaccinia virus expressing HIV-1 Gag. This novel codon-optimized GM-CSF gene offers a practical molecular strategy for potentiating immune responses to vaccines as well as other immunotherapeutic strategies.
Collapse
Affiliation(s)
- Jian-Tai Qiu
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, and Department of Life Science, Chang Gung University College of Medicine, Taoyuan 333, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
29
|
Viner KM, Girgis N, Kwak H, Isaacs SN. B5-deficient vaccinia virus as a vaccine vector for the expression of a foreign antigen in vaccinia immune animals. Virology 2006; 361:356-63. [PMID: 17188733 PMCID: PMC2048764 DOI: 10.1016/j.virol.2006.11.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 09/20/2006] [Accepted: 11/13/2006] [Indexed: 11/19/2022]
Abstract
Recombinant vaccinia viruses have shown promise as vaccine vectors. However, their effectiveness is markedly reduced by pre-existing anti-vaccinia immunity. The possibility of new vaccinia immunizations in the event of a bioterror-related smallpox release poses an additional negative impact on the utility of vaccinia-based vectors. Thus, we aimed to design a vaccinia vector that would enhance the immune response to an expressed foreign protein in a pre-immune animal model. To do this, we made use of the finding that most neutralizing antibodies against the extracellular form of vaccinia virus are directed against the B5 protein. We found that mice immunized with vaccinia, primed with Gag plasmid DNA, and boosted with a recombinant vaccinia virus lacking the majority of the B5 ectodomain expressing a test antigen, HIV Gag, had stronger anti-Gag immune responses than mice that were boosted with a wild-type virus-expressing Gag. These findings are particularly striking given the more attenuated phenotype of this virus, as compared to its wild-type counterpart. Importantly, we found that vaccination with a B5R deletion virus, followed by boosting with the Gag-expressing virus lacking the majority of the B5 ectodomain, resulted in poorer anti-Gag immune responses. Thus, recombinant vaccinia viruses lacking the B5 ectodomain may serve as vaccine vectors in DNA prime-vaccinia boost vaccinations of individuals with pre-existing immunity against vaccinia. These data open the possibility of extending the potential benefit of replication competent recombinant vaccinia virus vectors to a larger population.
Collapse
MESH Headings
- AIDS Vaccines/administration & dosage
- AIDS Vaccines/genetics
- AIDS Vaccines/immunology
- Administration, Cutaneous
- Animals
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Female
- Gene Deletion
- Gene Products, gag/genetics
- Gene Products, gag/immunology
- Genetic Vectors/administration & dosage
- Genetic Vectors/genetics
- Genetic Vectors/immunology
- HIV-1/immunology
- Immunization, Secondary
- Membrane Glycoproteins/deficiency
- Membrane Glycoproteins/genetics
- Mice
- Protein Structure, Tertiary/genetics
- Reassortant Viruses/genetics
- Reassortant Viruses/immunology
- Vaccination
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Vaccinia/immunology
- Vaccinia virus/genetics
- Vaccinia virus/immunology
- Viral Envelope Proteins/deficiency
- Viral Envelope Proteins/genetics
Collapse
Affiliation(s)
| | | | | | - Stuart N. Isaacs
- *Corresponding author: Stuart N. Isaacs, University of Pennsylvania School of Medicine, Division of Infectious Diseases 502 Johnson Pavilion, Philadelphia, PA 19104-6073. Phone: 215-662-2150; Fax: 214-349-5111;
| |
Collapse
|
30
|
Song R, Liu S, Adams RJ, Leong KW. Enhancing efficacy of HIV gag DNA vaccine by local delivery of GM-CSF in murine and macaque models. J Interferon Cytokine Res 2006; 26:380-9. [PMID: 16734558 PMCID: PMC2376816 DOI: 10.1089/jir.2006.26.380] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Controlled release of granulocyte-macrophage colony-stimulating factor (GM-CSF) protein by albumin-heparin microparticles administered via intramuscular vaccination in conjunction with HIV DNA vaccines stimulated HIV Gag-specific immune responses. In the murine model, Gag-specific cytotoxic T lymphocyte (CTL) and T helper (Th) responses were significantly enhanced by administration of murine GM-CSF microparticles. This effect was comparable to a GM-CSF encoded plasmid. In three of four rhesus monkeys, enhancement of Gag-specific antibody (Ab), Th, and CTL responses was observed 1 month after the first immunization with coadministration of human GM-CSF microparticles and HIV Gag plasmid. The second, third, and fourth booster immunizations, however, did not increase the Gag-specific immune responses. Subsequent application of Gag protein in complete Freund's adjuvant (CFA) significantly enhanced Ab and Th, but not CTL. However, Gag-specific CTL response was triggered by cytokine and Gag p55-encapsulated microparticles in all animals. The strategy of priming immune responses by coadministration of cytokine microparticles and DNA vaccines, followed by boosting with cytokine and antigen protein-encapsulated microparticles, may prove effective in improving an HIV DNA vaccine design.
Collapse
MESH Headings
- Albumins/pharmacokinetics
- Albumins/ultrastructure
- Animals
- Cytotoxicity Tests, Immunologic
- Female
- Gene Products, gag/immunology
- Granulocyte-Macrophage Colony-Stimulating Factor/administration & dosage
- Granulocyte-Macrophage Colony-Stimulating Factor/biosynthesis
- Granulocyte-Macrophage Colony-Stimulating Factor/immunology
- Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology
- HIV
- Heparin/pharmacokinetics
- Heparin/ultrastructure
- Humans
- Injections, Intramuscular
- Macaca mulatta
- Mice
- Mice, Inbred BALB C
- Microspheres
- Models, Animal
- Muscle, Skeletal/immunology
- Plasmids
- Recombinant Proteins
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Helper-Inducer/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
Collapse
Affiliation(s)
- Ruijiang Song
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Shuqin Liu
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Robert J. Adams
- Department of Comparative Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Kam W. Leong
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
31
|
Blazevic V, Männik A, Malm M, Sikut R, Valtavaara M, Toots U, Ustav M, Krohn K. Induction of human immunodeficiency virus type-1-specific immunity with a novel gene transport unit (GTU)-MultiHIV DNA vaccine. AIDS Res Hum Retroviruses 2006; 22:667-77. [PMID: 16831091 DOI: 10.1089/aid.2006.22.667] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A multiHIV fusion gene expressing an antigenic fusion protein composed of regulatory HIV-1 proteins Rev, Nef, and Tat, as well as Gag p17/p24 and a stretch of 11 cytotoxic T lymphocyte (CTL) epitope clusters from Pol and Env, was cloned into a novel DNA vector named the Gene Transport Unit (GTU). A mouse H-2(d)-restricted HIV-1 gp120 epitope (RGPGRAFVTI) was cloned into the fusion gene as well. In addition to the HIV- 1 genes the GTU codes for a nuclear anchoring protein (bovine papilloma virus E2), ensuring the long maintenance of the vector and a high expression level of the selected immunogens. BALB/c mice were immunized with the GTU-MultiHIV DNA construct by different routes and regimens of immunization to assess the immunogenicity of the DNA vaccine in vivo. Mice developed strong CD8(+) CTL responses to HIV-1 Env and Gag measured by an ELISPOT-IFN-gamma assay and chromium release assay. In addition, T cell responses to regulatory proteins Rev, Nef, and Tat were induced. Antibody responses were detected to each of the HIV antigens encoded by the DNA construct. Minimal doses of the GTU-MultiHIV DNA delivered by gene gun were potent in inducing significant HIV-specific CTL responses. The equivalent doses of the conventional plasmid expressing MultiHIV DNA delivered by gene gun failed to do so. An ideal DNA vaccine should yield high expression of the viral antigens for a prolonged period of time, and expression of the multiple viral antigens is probably required for the induction of a broad and protective immune response. The GTU-MultiHIV DNA vaccine described is a good vaccine candidate that meets the above criteria.
Collapse
MESH Headings
- AIDS Vaccines/genetics
- AIDS Vaccines/immunology
- Animals
- Antibodies, Antinuclear/immunology
- COS Cells
- Chlorocebus aethiops
- DNA-Binding Proteins/immunology
- Female
- Gene Products, gag/immunology
- Gene Products, nef/immunology
- Gene Products, rev/immunology
- Gene Products, tat/immunology
- HIV-1/immunology
- Humans
- Injections, Intramuscular
- Jurkat Cells
- Mice
- Mice, Inbred BALB C
- Plasmids/genetics
- Plasmids/immunology
- T-Lymphocytes/immunology
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Viral Proteins/immunology
- nef Gene Products, Human Immunodeficiency Virus
- rev Gene Products, Human Immunodeficiency Virus
- tat Gene Products, Human Immunodeficiency Virus
Collapse
|
32
|
Malm M, Rollman E, Ustav M, Hinkula J, Krohn K, Wahren B, Blazevic V. Cross-clade protection induced by human immunodeficiency virus-1 DNA immunogens expressing consensus sequences of multiple genes and epitopes from subtypes A, B, C, and FGH. Viral Immunol 2006; 18:678-88. [PMID: 16359234 DOI: 10.1089/vim.2005.18.678] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The correlate of protection in human immunodeficiency virus (HIV) infection is not known, but preclinical and clinical studies support the involvement of both antibodies and cellular immunity. In addition, the existence of multiple HIV clades makes HIV vaccine design especially challenging. We have constructed a vaccine platform with an HIV-1 subtype B DNA immunogen expressing full length consensus sequences from HIV-1 rev, nef, tat, and gag with additional cellular epitope clusters from the env and pol regions. Furthermore, this platform has been extended to three additional plasmids expressing the same immunogens but originating from subtypes A or C consensus or FGH ancestral sequences. Immunogenicity in BALB/c mice, by gene gun or intramuscular delivery, revealed strong IFN-gamma production in response to in vitro re-stimulation with a H-2d restricted gag peptide (AMQMLKETI) or even stronger toward an env epitope (RGPGRAFVTI). Weak humoral immunity was detected. Gene gun immunization with a cocktail of all four plasmids induced pre-challenge cellular immunity in C57Bl6/A2.01 mice and subsequently a robust frequency of protection (11/12 animals) after experimental challenge with subtype A or B HIV-1/Murine Leukemia Virus (HIV-1/MuLV). The cross-clade protection observed in this challenge experiment demonstrates that these multigene/multiepitope HIV DNA immunogens are likely to be potent immunogens also against the HIV-infection of human beings.
Collapse
MESH Headings
- AIDS Vaccines/administration & dosage
- AIDS Vaccines/genetics
- AIDS Vaccines/immunology
- Animals
- Consensus Sequence
- Disease Models, Animal
- Epitopes/genetics
- Epitopes/immunology
- Female
- Gene Products, gag/genetics
- Gene Products, gag/immunology
- Gene Products, nef/genetics
- Gene Products, nef/immunology
- Gene Products, pol/genetics
- Gene Products, pol/immunology
- Gene Products, rev/genetics
- Gene Products, rev/immunology
- Gene Products, tat/genetics
- Gene Products, tat/immunology
- HIV Antibodies/blood
- HIV Envelope Protein gp160/genetics
- HIV Envelope Protein gp160/immunology
- HIV Infections/immunology
- HIV Infections/prevention & control
- HIV Infections/virology
- HIV-1/genetics
- HIV-1/immunology
- Interferon-gamma/biosynthesis
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- nef Gene Products, Human Immunodeficiency Virus
- pol Gene Products, Human Immunodeficiency Virus
- rev Gene Products, Human Immunodeficiency Virus
- tat Gene Products, Human Immunodeficiency Virus
Collapse
|
33
|
Kanekiyo M, Matsuo K, Hamatake M, Hamano T, Ohsu T, Matsumoto S, Yamada T, Yamazaki S, Hasegawa A, Yamamoto N, Honda M. Mycobacterial codon optimization enhances antigen expression and virus-specific immune responses in recombinant Mycobacterium bovis bacille Calmette-Guérin expressing human immunodeficiency virus type 1 Gag. J Virol 2005; 79:8716-23. [PMID: 15994765 PMCID: PMC1168777 DOI: 10.1128/jvi.79.14.8716-8723.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although its potential for vaccine development is already known, the introduction of recombinant human immunodeficiency virus (HIV) genes to Mycobacterium bovis bacille Calmette-Guérin (BCG) has thus far elicited only limited responses. In order to improve the expression levels, we optimized the codon usage of the HIV type 1 (HIV-1) p24 antigen gene of gag (p24 gag) and established a codon-optimized recombinant BCG (rBCG)-p24 Gag which expressed a 40-fold-higher level of p24 Gag than did that of nonoptimized rBCG-p24 Gag. Inoculation of mice with the codon-optimized rBCG-p24 Gag elicited effective immunity, as evidenced by virus-specific lymphocyte proliferation, gamma interferon ELISPOT cell induction, and antibody production. In contrast, inoculation of animals with the nonoptimized rBCG-p24 Gag induced only low levels of immune responses. Furthermore, a dose as small as 0.01 mg of the codon-optimized rBCG per animal proved capable of eliciting immune responses, suggesting that even low doses of a codon-optimized rBCG-based vaccine could effectively elicit HIV-1-specific immune responses.
Collapse
Affiliation(s)
- Masaru Kanekiyo
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Rosati M, von Gegerfelt A, Roth P, Alicea C, Valentin A, Robert-Guroff M, Venzon D, Montefiori DC, Markham P, Felber BK, Pavlakis GN. DNA vaccines expressing different forms of simian immunodeficiency virus antigens decrease viremia upon SIVmac251 challenge. J Virol 2005; 79:8480-92. [PMID: 15956591 PMCID: PMC1143718 DOI: 10.1128/jvi.79.13.8480-8492.2005] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Accepted: 03/07/2005] [Indexed: 01/16/2023] Open
Abstract
We have tested the efficacy of DNA immunization as a single vaccination modality for rhesus macaques followed by highly pathogenic SIVmac251 challenge. To further improve immunogenicity of the native proteins, we generated expression vectors producing fusion of the proteins Gag and Env to the secreted chemokine MCP3, targeting the viral proteins to the secretory pathway and to a beta-catenin (CATE) peptide, targeting the viral proteins to the intracellular degradation pathway. Macaques immunized with vectors expressing the MCP3-tagged fusion proteins developed stronger antibody responses. Following mucosal challenge with pathogenic SIVmac251, the vaccinated animals showed a statistically significant decrease in viral load (P = 0.010). Interestingly, macaques immunized with a combination of vectors expressing three forms of antigens (native protein and MCP3 and CATE fusion proteins) showed the strongest decrease in viral load (P = 0.0059). Postchallenge enzyme-linked immunospot values for Gag and Env as well as gag-specific T-helper responses correlated with control of viremia. Our data show that the combinations of DNA vaccines producing native and modified forms of antigens elicit more balanced immune responses able to significantly reduce viremia for a long period (8 months) following pathogenic challenge with SIVmac251.
Collapse
Affiliation(s)
- Margherita Rosati
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, Bldg. 535, Rm. 210, National Cancer Institute at Frederick, Frederick, Maryland 21702, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
This article gives an overview of DNA vaccines with specific emphasis on the development of DNA vaccines for clinical trials and an overview of those trials. It describes the preclinical research that demonstrated the efficacy of DNA vaccines as well as an explication of the immunologic mechanisms of action. These include the induction of cognate immune responses, such as the generation of cytolytic T lymphocytes (CTL) as well as the effect of the plasmid DNA upon the innate immune system. Specific issues related to the development of DNA as a product candidate are then discussed, including the manufacture of plasmid, the qualification of the plasmid DNA product, and the safety testing necessary for initiating clinical trials. Various human clinical trials for infectious diseases and cancer have been initiated or completed, and an overview of these trials is given. Finally, because the early clinical trials have shown less than optimal immunogenicity, methods to increase the potency of the vaccines are described.
Collapse
Affiliation(s)
- Margaret A Liu
- Transgene S.A., 11 rue de Molsheim, 67082 Strasbourg Cedex, France
| | | |
Collapse
|
36
|
Smith JM, Amara RR, Campbell D, Xu Y, Patel M, Sharma S, Butera ST, Ellenberger DL, Yi H, Chennareddi L, Herndon JG, Wyatt LS, Montefiori D, Moss B, McClure HM, Robinson HL. DNA/MVA vaccine for HIV type 1: effects of codon-optimization and the expression of aggregates or virus-like particles on the immunogenicity of the DNA prime. AIDS Res Hum Retroviruses 2004; 20:1335-47. [PMID: 15650426 DOI: 10.1089/aid.2004.20.1335] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recently, a vaccine consisting of DNA priming followed by boosting with modified vaccinia Ankara (MVA) has provided long-term protection of rhesus macaques against a virulent challenge with a chimera of simian and human immunodeficiency viruses. Here, we report studies on the development of the DNA component for a DNA/MVA HIV vaccine for humans. Specifically, we assess the ability of a codon-optimized Gag-expressing DNA and two noncodon-optimized Gag-Pol-Env-expressing DNAs to prime the MVA booster dose. The codon-optimized DNA expressed virus-like particles (VLPs), whereas one of the noncodon-optimized DNAs expressed VLPs and the other expressed aggregates of HIV proteins. The MVA boost expressed Gag-Pol and Env and produced VLPs. Immunogenicity studies in macaques used one intramuscular prime with 600 microg of DNA and two intramuscular boosts with 1 x 10(8) pfu of MVA at weeks 8 and 30. The codon-optimized and noncodon-optimized DNAs proved similar in their ability to prime anti-Gag T cell responses. The aggregate and VLP-expressing Gag-Pol-Env DNAs also showed no significant differences in their ability to prime anti-Env Ab responses. The second MVA booster dose did not increase the peak CD4 and CD8 T cell responses, but increased anti-Env Ab titers by 40- to 90-fold. MVA-only immunizations elicited 10-100 times lower frequencies of T cells and 2-4 lower titers of anti-Env Ab than the Gag-Pol-Env DNA/MVA immunizations. Based on the breadth of the T cell response and a trend toward higher titers of anti-Env Ab, we are moving forward with human trials of the noncodon-optimized VLP-expressing DNA.
Collapse
Affiliation(s)
- James M Smith
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia 30329, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Luo K, Liu B, Xiao Z, Yu Y, Yu X, Gorelick R, Yu XF. Amino-terminal region of the human immunodeficiency virus type 1 nucleocapsid is required for human APOBEC3G packaging. J Virol 2004; 78:11841-52. [PMID: 15479826 PMCID: PMC523292 DOI: 10.1128/jvi.78.21.11841-11852.2004] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
APOBEC3G exerts its antiviral activity by targeting to retroviral particles and inducing viral DNA hypermutations in the absence of Vif. However, the mechanism by which APOBEC3G is packaged into virions remains unclear. We now report that viral genomic RNA enhances but is not essential for human APOBEC3G packaging into human immunodeficiency virus type 1 (HIV-1) virions. Packaging of APOBEC3G was also detected in HIV-1 Gag virus-like particles (VLP) that lacked all the viral genomic RNA packaging signals. Human APOBEC3G could be packaged efficiently into a divergent subtype HIV-1, as well as simian immunodeficiency virus, strain mac, and murine leukemia virus Gag VLP. Cosedimentation of human APOBEC3G and intracellular Gag complexes was detected by equilibrium density and velocity sucrose gradient analysis. Interaction between human APOBEC3G and HIV-1 Gag was also detected by coimmunoprecipitation experiments. This interaction did not require p6, p1, or the C-terminal region of NCp7. However, the N-terminal region, especially the first 11 amino acids, of HIV-1 NCp7 was critical for HIV-1 Gag and APOBEC3G interaction and virion packaging. The linker region flanked by the two active sites of human APOBEC3G was also important for efficient packaging into HIV-1 Gag VLP. Association of human APOBEC3G with RNA-containing intracellular complexes was observed. These results suggest that the N-terminal region of HIV-1 NC, which is critical for binding to RNA and mediating Gag-Gag oligomerization, plays an important role in APOBEC3G binding and virion packaging.
Collapse
Affiliation(s)
- Kun Luo
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD 21205, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Cen S, Niu M, Kleiman L. The connection domain in reverse transcriptase facilitates the in vivo annealing of tRNALys3 to HIV-1 genomic RNA. Retrovirology 2004; 1:33. [PMID: 15494076 PMCID: PMC524520 DOI: 10.1186/1742-4690-1-33] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Accepted: 10/19/2004] [Indexed: 11/19/2022] Open
Abstract
The primer tRNA for reverse transcription in HIV-1, tRNALys3, is selectively packaged into the virus during its assembly, and annealed to the viral genomic RNA. The ribonucleoprotein complex that is involved in the packaging and annealing of tRNALys into HIV-1 consists of Gag, GagPol, tRNALys, lysyl-tRNA synthetase (LysRS), and viral genomic RNA. Gag targets tRNALys for viral packaging through Gag's interaction with LysRS, a tRNALys-binding protein, while reverse transcriptase (RT) sequences within GagPol (the thumb domain) bind to tRNALys. The further annealing of tRNALys3 to viral RNA requires nucleocapsid (NC) sequences in Gag, but not the NC sequences GagPol. In this report, we further show that while the RT connection domain in GagPol is not required for tRNALys3 packaging into the virus, it is required for tRNALys3 annealing to the viral RNA genome.
Collapse
Affiliation(s)
- Shan Cen
- Lady Davis Institute for Medical Research and McGill AIDS Centre, Jewish General Hospital, Montreal, Quebec, Canada H3T 1E2
- Department of Medicine, McGill University, Montreal, Quebec, Canada H3T 1E2
| | - Meijuan Niu
- Department of Medicine, McGill University, Montreal, Quebec, Canada H3T 1E2
| | - Lawrence Kleiman
- Lady Davis Institute for Medical Research and McGill AIDS Centre, Jewish General Hospital, Montreal, Quebec, Canada H3T 1E2
- Department of Medicine, McGill University, Montreal, Quebec, Canada H3T 1E2
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada H3T 1E2
| |
Collapse
|
39
|
Halwani R, Cen S, Javanbakht H, Saadatmand J, Kim S, Shiba K, Kleiman L. Cellular distribution of Lysyl-tRNA synthetase and its interaction with Gag during human immunodeficiency virus type 1 assembly. J Virol 2004; 78:7553-64. [PMID: 15220430 PMCID: PMC434110 DOI: 10.1128/jvi.78.14.7553-7564.2004] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Lysyl-tRNA synthetase (LysRS) is packaged into human immunodeficiency virus type 1 (HIV-1) via its interaction with Gag, and this enzyme facilitates the selective packaging of tRNA(3)(Lys), the primer for initiating reverse transcription, into HIV-1. The Gag/LysRS interaction is detected at detergent-resistant membrane but not in membrane-free cell compartments that contain Gag and LysRS. LysRS is found (i). in the nucleus, (ii). in a cytoplasmic high-molecular-weight aminoacyl-tRNA synthetase complex (HMW aaRS complex), (iii). in mitochondria, and (iv). associated with plasma membrane. The cytoplasmic form of LysRS lacking the mitochondrial import signal was previously shown to be efficiently packaged into virions, and in this report we also show that LysRS compartments in nuclei, in the HMW aaRS complex, and at the membrane are also not required as a primary source for viral LysRS. Exogenous mutant LysRS species unable to either enter the nucleus or bind to the cell membrane are still incorporated into virions. Many HMW aaRS components are not packaged into the virion along with LysRS, and the interaction of LysRS with p38, a protein that binds tightly to LysRS in the HMW aaRS complex, is not required for the incorporation of LysRS into virions. These data indicate that newly synthesized LysRS may interact rapidly with Gag before the enzyme has the opportunity to move to the above-mentioned cellular compartments. In confirmation of this idea, we found that newly synthesized LysRS is associated with Gag after a 10-min pulse with [(35)S]cysteine/methionine. This observation is also supported by previous work indicating that the incorporation of LysRS into HIV-1 is very sensitive to the inhibition of new synthesis of LysRS.
Collapse
Affiliation(s)
- Rabih Halwani
- Lady Davis Institute for Medical Research, Jewish General Hospital, Quebec, Canada H3T 1E2
| | | | | | | | | | | | | |
Collapse
|
40
|
Otero M, Calarota SA, Felber B, Laddy D, Pavlakis G, Boyer JD, Weiner DB. Resiquimod is a modest adjuvant for HIV-1 gag-based genetic immunization in a mouse model. Vaccine 2004; 22:1782-90. [PMID: 15068862 DOI: 10.1016/j.vaccine.2004.01.037] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA vaccines have been effective at generating useful immune responses in many animal species. However, it is clearly desirable to increase their potency. The identification of adjuvants that increase their cell-mediated immune (CMI) response is therefore an important goal. Resiquimod is an imiquimod analog proven to activate dendritic cells through TLR-7. The adjuvant capacity of resiquimod has not, to our knowledge, been studied in the context of genetic immunization. Here, we studied resiquimod as an adjuvant for plasmid vaccine therapy by intra-muscular immunization of BALB/c mice with HIV-1 gag DNA vaccine without and with several concentrations of resiquimod (ranging from 5-100nM). We observed that resiquimod moderately enhanced IFN-gamma production as measured by a peptide-based ELISPOT assay compared to that obtained in mice immunized with DNA gag only. Antigen-specific T-cell proliferation studies showed a several-fold increase in the stimulation index in mice immunized with DNA gag +50 nM of resiquimod as compared to mice receiving DNA gag alone. Antibody titer also increased, while the antibody isotyping data showed a strong Th1 biased type response. Analysis of cytokine production in serum samples demonstrated a stronger Th1 cytokine bias in the presence of resiquimod. Furthermore, relevant increase in IL-4 production, as measured by ELISPOT assay, was not observed. Our results show that resiquimod can have modest adjuvant activity, in a DNA formulation, driving the immune system towards a cell-mediated immune response. Additional studies involving this adjuvant for DNA vaccines are underway.
Collapse
Affiliation(s)
- Miguel Otero
- Department of Pathology, School of Medicine, University of Pennsylvania, 422 Curie Blvd., 505 Stellar-Chance Bldg., Philadelphia, PA 19104-6100, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Calarota SA, Weiner DB. Enhancement of human immunodeficiency virus type 1-DNA vaccine potency through incorporation of T-helper 1 molecular adjuvants. Immunol Rev 2004; 199:84-99. [PMID: 15233728 DOI: 10.1111/j.0105-2896.2004.00150.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It is clear that the development of a safe and effective vaccine for human immunodeficiency virus type 1 (HIV-1) remains a crucial goal for controlling the acquired immunodeficiency syndrome epidemic. At present, it is not clear what arm of the immune response correlates with protection from HIV-1 infection or disease. Therefore, a strong cellular and humoral immune response will likely be needed to control this infection. Among different vaccine alternatives, DNA vaccines appeared more than a decade ago, demonstrating important qualities of inducing both humoral and cellular immune responses in animal models. However, after several years and various clinical studies in humans, supporting the safety of the HIV-DNA vaccine strategies, it has become clear that their potency should be improved. One way to modulate and enhance the immune responses induced by a DNA vaccine is by including genetic adjuvants such as cytokines, chemokines, or T-cell costimulatory molecules as part of the vaccine itself. Particularly, vaccine immunogenicity can be modulated by factors that attract professional antigen-presenting cells, provide additional costimulation, or enhance the uptake of plasmid DNA. This review focuses on developments in the coadministration of molecular adjuvants for the enhancement of HIV-1 DNA-vaccine potency.
Collapse
Affiliation(s)
- Sandra A Calarota
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6100, USA
| | | |
Collapse
|
42
|
Chikhlikar P, Barros de Arruda L, Agrawal S, Byrne B, Guggino W, August JT, Marques ETA. Inverted terminal repeat sequences of adeno-associated virus enhance the antibody and CD8(+) responses to a HIV-1 p55Gag/LAMP DNA vaccine chimera. Virology 2004; 323:220-32. [PMID: 15193918 DOI: 10.1016/j.virol.2004.02.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Revised: 01/13/2004] [Accepted: 02/23/2004] [Indexed: 11/17/2022]
Abstract
The immune responses to an HIV-1 p55Gag vaccine encoded as a DNA chimera with the lysosomal associated membrane protein-1 (LAMP) have been examined for the effect of the addition of the inverted terminal repeat (ITR) sequences of the adeno-associated virus (AAV) to the DNA plasmid construct, and of packaging the LAMP/gag gene as a recombinant AAV vector (rAAV). DNA plasmids encoding Gag and the LAMP/Gag protein chimera were constructed in two vectors, the pcDNA3.1 and a corresponding plasmid containing the ITR sequences (pITR) flanking the expression elements of the plasmid, and the pITR LAMP/gag DNA plasmid was encapsidated in the rAAV vector. Human 293 cells transfected in vitro with LAMP/gag plasmids either in pcDNA3.1 or pITR produced much Gag protein in cell extracts (1.6 and 2.2 ng of Gag/mg of protein, respectively). The immune responses of mice to immunization with these constructs were examined under three protocols: DNA prime/DNA boost, DNA prime/rAAV boost, and a single rAAV immunization. The results demonstrated that under DNA prime/DNA boost protocol, the "naked" DNA vaccines encoding the LAMP/gag chimera, either as pcDNA3.1 or pITR DNA plasmid constructs, elicited strong CD4(+) T cell responses. In contrast, significantly higher levels of CD8(+) and antibody responses were observed with the pITR-DNA constructs. Immunization with the rAAV vector under the DNA prime/rAAV boost protocol resulted in sustained T cell responses and a markedly increased antibody response, predominantly of the IgG(1) isotype resulting from the activation of the Th2 subset of CD4(+) T cells, that was sustained for at least 5 months after immunization.
Collapse
|
43
|
Cen S, Niu M, Saadatmand J, Guo F, Huang Y, Nabel GJ, Kleiman L. Incorporation of pol into human immunodeficiency virus type 1 Gag virus-like particles occurs independently of the upstream Gag domain in Gag-pol. J Virol 2004; 78:1042-9. [PMID: 14694138 PMCID: PMC368740 DOI: 10.1128/jvi.78.2.1042-1049.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
By using particle-associated reverse transcriptase (RT) activity as an assay for Pol incorporation into human immunodeficiency virus type 1 (HIV-1) Gag virus-like particles (VLPs), it has been found that truncated, protease-negative, Gag-Pol missing cis Gag sequences is still incorporated into Gag VLPs, albeit at significantly reduced levels (10 to 20% of the level of wild-type Gag-Pol). In this work, we have directly measured the incorporation of truncated Gag-Pol species into Gag VLPs and have found that truncated Gag-Pol that is missing all sequences upstream of RT is still incorporated into Gag VLPs at levels approximating 70% of that achieved by wild-type Gag-Pol. Neither protease nor integrase regions in Pol are required for its incorporation, implying an interaction between Gag and RT sequences in the Pol protein. While the incorporation of Gag-Pol into Gag VLPs is reduced 12-fold by the replacement of the nucleocapsid within Gag with a leucine zipper motif, this mutation does not affect Pol incorporation. However, the deletion of p6 in Gag reduces Pol incorporation into Gag VLPs four- to fivefold. Pol shows the same ability as Gag-Pol to selectively package tRNA(Lys) into Gag VLPs, and primer tRNA(3)(Lys) is found annealed to the viral genomic RNA. These data suggest that after the initial separation of Gag from Pol during cleavage of Gag-Pol by viral protease, the Pol species still retains the capacity to bind to both Gag and tRNA(3)(Lys), which may be required for Pol and tRNA(3)(Lys) to be retained in the assembling virion until budding is completed.
Collapse
Affiliation(s)
- Shan Cen
- Lady Davis Institute for Medical Research and McGill AIDS Centre, Jewish General Hospital, McGill University, Montreal, Quebec, Canada H3T 1E2
| | | | | | | | | | | | | |
Collapse
|
44
|
Pinto AR, Fitzgerald JC, Giles-Davis W, Gao GP, Wilson JM, Ertl HCJ. Induction of CD8+T Cells to an HIV-1 Antigen through a Prime Boost Regimen with Heterologous E1-Deleted Adenoviral Vaccine Carriers. THE JOURNAL OF IMMUNOLOGY 2003; 171:6774-9. [PMID: 14662882 DOI: 10.4049/jimmunol.171.12.6774] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
E1-deleted adenoviral recombinants most commonly based on the human serotype 5 (AdHu5) have been shown thus far to induce unsurpassed transgene product-specific CD8(+) T cell responses. A large percentage of the adult human population carries neutralizing Abs due to natural exposures to AdHu5 virus. To circumvent reduction of the efficacy of adenovirus (Ad) vector-based vaccines by neutralizing Abs to the vaccine carrier, we developed E1-deleted adenoviral vaccine carriers based on simian serotypes. One of these carriers, termed AdC68, expressing a codon-optimized truncated form of gag of HIV-1 was shown previously to induce a potent transgene product-specific CD8(+) T cell response in mice. We constructed a second chimpanzee adenovirus vaccine vector, termed AdC6, also expressing the truncated gag of HIV-1. This vector, which belongs to a different serotype than the AdC68 virus, induces high frequencies of gag-specific CD8(+) T cells in mice including those pre-exposed to AdHu5 virus. Generation of an additional E1-deleted adenoviral vector of chimpanzee origin allows for sequential booster immunizations with heterologous vaccine carriers. In this study, we show that such heterologous prime boost regimens based on E1-deleted adenoviral vectors of different serotypes expressing the same transgene product are highly efficient in increasing the transgene product-specific CD8(+) T cell response. They are equivalent to sequential vaccinations with an E1-deleted Ad vector followed by booster immunization with a poxvirus vector and they surpass regimens based on DNA vaccine prime followed by a recombinant adenoviral vector boost.
Collapse
MESH Headings
- AIDS Vaccines/administration & dosage
- AIDS Vaccines/genetics
- AIDS Vaccines/immunology
- Adenovirus E1 Proteins/genetics
- Adenovirus E1 Proteins/immunology
- Adenoviruses, Human/genetics
- Adenoviruses, Human/immunology
- Animals
- CD8-Positive T-Lymphocytes/immunology
- Cell Line
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Female
- Gene Products, gag/administration & dosage
- Gene Products, gag/biosynthesis
- Gene Products, gag/genetics
- Gene Products, gag/immunology
- Genetic Vectors
- HIV Antigens/administration & dosage
- HIV Antigens/genetics
- HIV Antigens/immunology
- HeLa Cells
- Humans
- Immunization Schedule
- Immunization, Secondary/methods
- Injections, Intramuscular
- Lymphocyte Activation/genetics
- Lymphocyte Activation/immunology
- Mice
- Pan troglodytes
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccinia virus/genetics
- Vaccinia virus/immunology
Collapse
Affiliation(s)
- Arguinaldo R Pinto
- The Wistar Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
45
|
Ye L, Bu Z, Skeen MJ, Ziegler HK, Compans RW, Yang C. Enhanced immunogenicity of SIV Gag DNA vaccines encoding chimeric proteins containing a C-terminal segment of Listeriolysin O. Virus Res 2003; 97:7-16. [PMID: 14550583 DOI: 10.1016/s0168-1702(03)00216-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We investigated the potential of the C-terminal 59-amino acid segment of Listeriolysin O (LLO) in enhancing immune responses against the SIV Gag antigen in the context of DNA immunization. Genes with codons optimized for mammalian expression were synthesized for the SIVmac239 Gag, a secreted SIV Gag protein with the tissue plasminogen antigen (tPA) signal fused to its N-terminus (tPA/Gag), as well as their corresponding chimeric proteins Gag/LLO and tPA/Gag/LLO containing the C-terminal 59 amino acids of LLO. Analysis of immune responses to these DNA constructs in a Balb/c mouse model showed that the Gag/LLO construct induced higher levels of both CD4 and CD8 T cell responses against SIV Gag, whereas the tPA/Gag construct induced higher levels of CD4 T cell responses. Moreover, immunization with the tPA/Gag/LLO construct further enhanced both CD4 and CD8 T cell responses. DNA constructs encoding secreted Gag proteins (tPA/Gag and tPA/Gag/LLO) were also more effective in eliciting antibody responses against SIV Gag. Our results demonstrate that the C-terminal segment of LLO can be effectively employed to enhance both cellular and humoral immune responses in the context of a DNA vaccine.
Collapse
Affiliation(s)
- Ling Ye
- Department of Microbiology & Immunology, Rollins Research Center, Emory University School of Medicine, Room 3086, 1510 Clifton Road, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
46
|
Marques ETA, Chikhlikar P, de Arruda LB, Leao IC, Lu Y, Wong J, Chen JS, Byrne B, August JT. HIV-1 p55Gag encoded in the lysosome-associated membrane protein-1 as a DNA plasmid vaccine chimera is highly expressed, traffics to the major histocompatibility class II compartment, and elicits enhanced immune responses. J Biol Chem 2003; 278:37926-36. [PMID: 12824194 DOI: 10.1074/jbc.m303336200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Several genetic vaccines encoding antigen chimeras containing the lysosome-associated membrane protein (LAMP) translocon, transmembrane, and cytoplasmic domain sequences have elicited strong mouse antigen-specific immune responses. The increased immune response is attributed to trafficking of the antigen chimera to the major histocompatibility class II (MHC II) compartment where LAMP is colocalized with MHC II. In this report, we describe a new form of an HIV-1 p55gag DNA vaccine, with the gag sequence incorporated into the complete LAMP cDNA sequence. Gag encoded with the translocon, transmembrane and cytoplasmic lysosomal membrane targeting sequences of LAMP, without the luminal domain, was poorly expressed, did not traffic to lysosomes or MHC II compartments of transfected cells, and elicited a limited immune response from DNA immunized mice. In contrast, addition of the LAMP luminal domain sequence to the construct resulted in a high level of expression of the LAMP/Gag protein chimera in transfected cells that was further increased by including the inverted terminal repeat sequences of the adeno-associated virus to the plasmid vector. This LAMP/Gag chimera with the complete LAMP protein colocalized with endogenous MHC II of transfected cells and elicited strong cellular and humoral immune responses of immunized mice as compared with the response to DNA-encoding native Gag, with a 10-fold increase in CD4+ responses, a 4- to 5-fold increase in CD8+ T-cell responses, and antibody titers of >100,000. These results reveal novel roles of the LAMP luminal domain as a determinant of Gag protein expression, lysosomal trafficking, and possibly of the immune response to Gag.
Collapse
Affiliation(s)
- Ernesto T A Marques
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Lemiale F, Kong WP, Akyürek LM, Ling X, Huang Y, Chakrabarti BK, Eckhaus M, Nabel GJ. Enhanced mucosal immunoglobulin A response of intranasal adenoviral vector human immunodeficiency virus vaccine and localization in the central nervous system. J Virol 2003; 77:10078-87. [PMID: 12941918 PMCID: PMC224584 DOI: 10.1128/jvi.77.18.10078-10087.2003] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Replication-defective adenovirus (ADV) vectors represent a promising potential platform for the development of a vaccine for AIDS. Although this vector is typically administered intramuscularly, it would be desirable to induce mucosal immunity by delivery through alternative routes. In this study, the immune response and biodistribution of ADV vectors delivered by different routes were evaluated. ADV vectors expressing human immunodeficiency virus type 1 (HIV-1) Gag, Pol, and Env were delivered intramuscularly or intranasally into mice. Intranasal immunization induced greater HIV-specific immunoglobulin A (IgA) responses in mucosal secretions and sera than in animals with intramuscular injection, which showed stronger systemic cellular and IgG responses. Administration of the vaccine through an intranasal route failed to overcome prior ADV immunity. Animals exposed to ADV prior to vaccination displayed substantially reduced cellular and humoral immune responses to HIV antigens in both groups, though the reduction was greater in animals immunized intranasally. This inhibition was partially overcome by priming with a DNA expression vector expressing HIV-1 Gag, Pol, and Env before boosting with the viral vector. Biodistribution of recombinant adenovirus (rADV) vectors administered intranasally revealed infection of the central nervous system, specifically in the olfactory bulb, possibly via retrograde transport by olfactory neurons in the nasal epithelium, which may limit the utility of this route of delivery of ADV vector-based vaccines.
Collapse
Affiliation(s)
- Franck Lemiale
- Vaccine Research Center, NIAID/National Institutes of Health, MSC 3005, 40 Convent Drive, Bethesda, MD 20892-3005, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Gao F, Li Y, Decker JM, Peyerl FW, Bibollet-Ruche F, Rodenburg CM, Chen Y, Shaw DR, Allen S, Musonda R, Shaw GM, Zajac AJ, Letvin N, Hahn BH. Codon usage optimization of HIV type 1 subtype C gag, pol, env, and nef genes: in vitro expression and immune responses in DNA-vaccinated mice. AIDS Res Hum Retroviruses 2003; 19:817-23. [PMID: 14585212 DOI: 10.1089/088922203769232610] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Codon usage optimization of human immunodeficiency virus type 1 (HIV-1) structural genes has been shown to increase protein expression in vitro as well as in the context of DNA vaccines in vivo; however, all optimized genes reported thus far are derived from HIV-1 (group M) subtype B viruses. Here, we report the generation and biological characterization of codon usage-optimized gag, pol, env (gp160, gp140, gp120), and nef genes from a primary (nonrecombinant) HIV-1 subtype C isolate. After transfection into 293T cells, optimized subtype C genes expressed one to two orders of magnitude more protein (as determined by immunoblot densitometry) than the corresponding wild-type constructs. This effect was most pronounced for gp160, gp140, Gag, and Pol (>250-fold), but was also observed for gp120 and Nef (45- and 20-fold, respectively). Optimized gp160- and gp140-derived glycoproteins were processed, incorporated into virus particles, and mediated virus entry when expressed in trans to complement an env-minus HIV-1 provirus. Mice immunized with optimized gp140 DNA developed antibody as well as CD4+ and CD8+ T cell immune responses that were orders of magnitude greater than those of mice immunized with wild-type gp140 DNA. These data confirm and extend previous studies of codon usage optimization of HIV-1 genes to the most prevalent group M subtype. Our panel of matched optimized and wild-type subtype C genes should prove valuable for studies of protein expression and function, the generation of subtype-specific immunological reagents, and the production of DNA-based sub-unit vaccines directed against a broader spectrum of viruses.
Collapse
Affiliation(s)
- Feng Gao
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Harvey TJ, Anraku I, Linedale R, Harrich D, Mackenzie J, Suhrbier A, Khromykh AA. Kunjin virus replicon vectors for human immunodeficiency virus vaccine development. J Virol 2003; 77:7796-803. [PMID: 12829819 PMCID: PMC161953 DOI: 10.1128/jvi.77.14.7796-7803.2003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously demonstrated the ability of the vaccine vectors based on replicon RNA of the Australian flavivirus Kunjin (KUN) to induce protective antiviral and anticancer CD8+ T-cell responses using murine polyepitope as a model immunogen (I. Anraku, T. J. Harvey, R. Linedale, J. Gardner, D. Harrich, A. Suhrbier, and A. A. Khromykh, J. Virol. 76:3791-3799, 2002). Here we showed that immunization of BALB/c mice with KUN replicons encoding HIV-1 Gag antigen resulted in induction of both Gag-specific antibody and protective Gag-specific CD8+ T-cell responses. Two immunizations with KUNgag replicons in the form of virus-like particles (VLPs) induced anti-Gag antibodies with titers of > or =1:10,000. Immunization with KUNgag replicons delivered as plasmid DNA, naked RNA, or VLPs induced potent Gag-specific CD8+ T-cell responses, with one immunization of KUNgag VLPs inducing 4.5-fold-more CD8+ T cells than the number induced after immunization with recombinant vaccinia virus carrying the gag gene (rVVgag). Two immunizations with KUNgag VLPs also provided significant protection against challenge with rVVgag. Importantly, KUN replicon VLP vaccinations induced long-lasting immune responses with CD8+ T cells able to secrete gamma interferon and to mediate protection 6 to 10 months after immunization. These results illustrate the potential value of the KUN replicon vectors for human immunodeficiency virus vaccine design.
Collapse
Affiliation(s)
- Tracey J Harvey
- Sir Albert Sakzewski Virus Research Centre, Royal Children's Hospital, University of Queensland, Brisbane, Queensland, 4029 Australia
| | | | | | | | | | | | | |
Collapse
|
50
|
Jounai N, Okuda K, Kojima Y, Toda Y, Hamajima K, Ohba K, Klinman D, Xin KQ. Contribution of the rev gene to the immunogenicity of DNA vaccines targeting the envelope glycoprotein of HIV. J Gene Med 2003; 5:609-17. [PMID: 12825200 DOI: 10.1002/jgm.391] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND The Rev protein of HIV plays a critical role in the export of viral mRNA from the nucleus to the cytoplasm of infected cells. This work examines the effect of introducing rev into a DNA vaccine encoding the Env protein of HIV, and compares the activity of env genes regulated by CMV versus CAG promoters. METHODS The HIV Env gp160 encoding gene with or without the rev gene was subcloned into a CMV promoter or a CAG promoter-driven expression plasmid. The Env protein expression of the plasmids was examined in vitro and the HIV-specific immunity was explored in BALB/c mice by an intramuscular route. The immune mice were intraperitoneally challenged with an HIV Env-expression vaccinia virus. RESULTS Results indicate that the CAG promoter induces significantly higher levels of Env expression, and better immune responses, than the CMV promoter. Incorporating the rev gene into these plasmids further boosts antigen expression and immunogenicity. Indeed, vaccination with the pCAGrev/env or pCMVrev/env plasmid resulted in 1000-fold lower viral load than that with pCMVenv when the mice were challenged with an Env-expressing vaccinia virus. CONCLUSIONS Incorporating rev into a DNA vaccine significantly increases the level of expression and immunogenicity of a co-expressed env gene, and that protective efficacy is further improved by utilizing a pCAG promoter.
Collapse
Affiliation(s)
- Nao Jounai
- Department of Bacteriology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | | | | | | | | | | | | | | |
Collapse
|