1
|
Tada T, Dcosta BM, Zhou H, Landau NR. Prophylaxis and treatment of SARS-CoV-2 infection by an ACE2 receptor decoy in a preclinical animal model. iScience 2023; 26:106092. [PMID: 36741912 PMCID: PMC9886562 DOI: 10.1016/j.isci.2023.106092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/09/2022] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
The emergence of SARS-CoV-2 variants with highly mutated spike proteins has presented an obstacle to the use of monoclonal antibodies for the prevention and treatment of SARS-CoV-2 infection. We show that a high-affinity receptor decoy protein in which a modified ACE2 ectodomain is fused to a single domain of an immunoglobulin heavy chain Fc region dramatically suppressed virus loads in mice upon challenge with a high dose of parental SARS-CoV-2 or Omicron variants. The decoy also potently suppressed virus replication when administered shortly post-infection. The decoy approach offers protection against the current viral variants and, potentially, against SARS-CoV-2 variants that may emerge with the continued evolution of the spike protein or novel viruses that use ACE2 for virus entry.
Collapse
Affiliation(s)
- Takuya Tada
- Department of Microbiology, NYU Grossman School of Medicine, 430 East 29th Street, Alexandria West Building, Rm 509, New York, NY 10016, USA
| | - Belinda M. Dcosta
- Department of Microbiology, NYU Grossman School of Medicine, 430 East 29th Street, Alexandria West Building, Rm 509, New York, NY 10016, USA
| | - Hao Zhou
- Department of Microbiology, NYU Grossman School of Medicine, 430 East 29th Street, Alexandria West Building, Rm 509, New York, NY 10016, USA
| | - Nathaniel R. Landau
- Department of Microbiology, NYU Grossman School of Medicine, 430 East 29th Street, Alexandria West Building, Rm 509, New York, NY 10016, USA
| |
Collapse
|
2
|
Prophylaxis and Treatment of SARS-CoV-2 infection by an ACE2 Receptor Decoy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2022.12.31.522401. [PMID: 36656772 PMCID: PMC9844012 DOI: 10.1101/2022.12.31.522401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The emergence of SARS-CoV-2 variants with highly mutated spike proteins has presented an obstacle to the use of monoclonal antibodies for the prevention and treatment of SARS-CoV-2 infection. We show that a high affinity receptor decoy protein in which a modified ACE2 ectodomain is fused to a single domain of an immunoglobulin heavy chain Fc region dramatically suppressed virus loads in mice upon challenge with a high dose of parental SARS-CoV-2 or Omicron variants. The decoy also potently suppressed virus replication when administered shortly post-infection. The decoy approach offers protection against the current viral variants and, potentially, against SARS-CoV-2 variants that may emerge with the continued evolution of the spike protein or novel viruses that use ACE2 for virus entry.
Collapse
|
3
|
Anang S, Richard J, Bourassa C, Goyette G, Chiu TJ, Chen HC, Smith AB, Madani N, Finzi A, Sodroski J. Characterization of Human Immunodeficiency Virus (HIV-1) Envelope Glycoprotein Variants Selected for Resistance to a CD4-Mimetic Compound. J Virol 2022; 96:e0063622. [PMID: 35980207 PMCID: PMC9472635 DOI: 10.1128/jvi.00636-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/30/2022] [Indexed: 11/20/2022] Open
Abstract
Binding to the host cell receptors CD4 and CCR5/CXCR4 triggers conformational changes in the human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimer that promote virus entry. CD4 binding allows the gp120 exterior Env to bind CCR5/CXCR4 and induces a short-lived prehairpin intermediate conformation in the gp41 transmembrane Env. Small-molecule CD4-mimetic compounds (CD4mcs) bind within the conserved Phe-43 cavity of gp120, near the binding site for CD4. CD4mcs like BNM-III-170 inhibit HIV-1 infection by competing with CD4 and by prematurely activating Env, leading to irreversible inactivation. In cell culture, we selected and analyzed variants of the primary HIV-1AD8 strain resistant to BNM-III-170. Two changes (S375N and I424T) in gp120 residues that flank the Phe-43 cavity each conferred an ~5-fold resistance to BNM-III-170 with minimal fitness cost. A third change (E64G) in layer 1 of the gp120 inner domain resulted in ~100-fold resistance to BNM-III-170, ~2- to 3-fold resistance to soluble CD4-Ig, and a moderate decrease in viral fitness. The gp120 changes additively or synergistically contributed to BNM-III-170 resistance. The sensitivity of the Env variants to BNM-III-170 inhibition of virus entry correlated with their sensitivity to BNM-III-170-induced Env activation and shedding of gp120. Together, the S375N and I424T changes, but not the E64G change, conferred >100-fold and 33-fold resistance to BMS-806 and BMS-529 (temsavir), respectively, potent HIV-1 entry inhibitors that block Env conformational transitions. These studies identify pathways whereby HIV-1 can develop resistance to CD4mcs and conformational blockers, two classes of entry inhibitors that target the conserved gp120 Phe-43 cavity. IMPORTANCE CD4-mimetic compounds (CD4mcs) and conformational blockers like BMS-806 and BMS-529 (temsavir) are small-molecule inhibitors of human immunodeficiency virus (HIV-1) entry into host cells. Although CD4mcs and conformational blockers inhibit HIV-1 entry by different mechanisms, they both target a pocket on the viral envelope glycoprotein (Env) spike that is used for binding to the receptor CD4 and is highly conserved among HIV-1 strains. Our study identifies changes near this pocket that can confer various levels of resistance to the antiviral effects of a CD4mc and conformational blockers. We relate the antiviral potency of a CD4mc against this panel of HIV-1 variants to the ability of the CD4mc to activate changes in Env conformation and to induce the shedding of the gp120 exterior Env from the spike. These findings will guide efforts to improve the potency and breadth of small-molecule HIV-1 entry inhibitors.
Collapse
Affiliation(s)
- Saumya Anang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Catherine Bourassa
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Guillaume Goyette
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Ta-Jung Chiu
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hung-Ching Chen
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Amos B. Smith
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Navid Madani
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Joseph Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Slow Receptor Binding of the Noncytopathic HIV-2 UC1 Envs Is Balanced by Long-Lived Activation State and Efficient Fusion Activity. Cell Rep 2021; 31:107749. [PMID: 32521274 DOI: 10.1016/j.celrep.2020.107749] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/20/2020] [Accepted: 05/18/2020] [Indexed: 01/08/2023] Open
Abstract
Many HIV strains downregulate the levels of CD4 receptor on the surface of infected cells to prevent superinfection. In contrast, the rare HIV-2UC1 strain is noncytopathic and has no effect on CD4 expression in infected cells but still replicates as efficiently as more cytopathic strains in peripheral blood mononuclear cells (PBMCs). Here, we show that HIV-2UC1 Env interactions with the CD4 receptor exhibit slow association kinetics, whereas the dissociation kinetics is within the range of cytopathic strains. Despite the resulting 10- to 100-fold decrease in binding affinity, HIV-2UC1 Envs exhibit long-lived activation state and efficient fusion activity. These observations suggest that HIV-2UC1 Envs evolved to balance low affinity with an improved and readily triggerable molecular machinery to mediate entry. Resistance to cold exposure, similar to many primary HIV-1 isolates, and to sCD4 neutralization suggests that HIV-2UC1 Envs preferentially sample a closed Env conformation. Our data provide insights into the mechanism of HIV entry.
Collapse
|
5
|
Tada T, Fan C, Chen JS, Kaur R, Stapleford KA, Gristick H, Dcosta BM, Wilen CB, Nimigean CM, Landau NR. An ACE2 Microbody Containing a Single Immunoglobulin Fc Domain Is a Potent Inhibitor of SARS-CoV-2. Cell Rep 2020; 33:108528. [PMID: 33326798 PMCID: PMC7705358 DOI: 10.1016/j.celrep.2020.108528] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/26/2020] [Accepted: 11/24/2020] [Indexed: 12/20/2022] Open
Abstract
Soluble forms of angiotensin-converting enzyme 2 (ACE2) have recently been shown to inhibit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We report on an improved soluble ACE2, termed a "microbody," in which the ACE2 ectodomain is fused to Fc domain 3 of the immunoglobulin (Ig) heavy chain. The protein is smaller than previously described ACE2-Ig Fc fusion proteins and contains an H345A mutation in the ACE2 catalytic active site that inactivates the enzyme without reducing its affinity for the SARS-CoV-2 spike. The disulfide-bonded ACE2 microbody protein inhibits entry of SARS-CoV-2 spike protein pseudotyped virus and replication of live SARS-CoV-2 in vitro and in a mouse model. Its potency is 10-fold higher than soluble ACE2, and it can act after virus bound to the cell. The microbody inhibits the entry of β coronaviruses and virus with the variant D614G spike. The ACE2 microbody may be a valuable therapeutic for coronavirus disease 2019 (COVID-19) that is active against viral variants and future coronaviruses.
Collapse
Affiliation(s)
- Takuya Tada
- Department of Microbiology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Chen Fan
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Jennifer S Chen
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Ramanjit Kaur
- Department of Microbiology, NYU Langone Medical Center, New York, NY 10016, USA
| | | | - Harry Gristick
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Belinda M Dcosta
- Department of Microbiology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Craig B Wilen
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Crina M Nimigean
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Nathaniel R Landau
- Department of Microbiology, NYU Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
6
|
Welch JL, Xiang J, Okeoma CM, Schlievert PM, Stapleton JT. Glycerol Monolaurate, an Analogue to a Factor Secreted by Lactobacillus, Is Virucidal against Enveloped Viruses, Including HIV-1. mBio 2020; 11:e00686-20. [PMID: 32371599 PMCID: PMC7201201 DOI: 10.1128/mbio.00686-20] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 04/10/2020] [Indexed: 12/15/2022] Open
Abstract
The vaginal microbiota influences sexual transmission of human immunodeficiency virus type 1 (HIV-1). Colonization of the vaginal tract is normally dominated by Lactobacillus species. Both Lactobacillus and Enterococcus faecalis may secrete reutericyclin, which inhibits the growth of a variety of pathogenic bacteria. Increasing evidence suggests a potential therapeutic role for an analogue of reutericyclin, glycerol monolaurate (GML), against microbial pathogens. Previous studies using a macaque vaginal simian immunodeficiency virus (SIV) transmission model demonstrated that GML reduces transmission and alters immune responses to infection in vitro Previous studies showed that structural analogues of GML negatively impact other enveloped viruses. We sought to expand understanding of how GML inhibits HIV-1 and other enveloped viruses and show that GML restricts HIV-1 entry post-CD4 engagement at the step of coreceptor binding. Further, HIV-1 and yellow fever virus (YFV) particles were more sensitive to GML interference than particles "matured" by proteolytic processing. We show that high-pressure-liquid-chromatography (HPLC)-purified reutericyclin and reutericyclin secreted by Lactobacillus inhibit HIV-1. These data emphasize the importance and protective nature of the normal vaginal flora during viral infections and provide insights into the antiviral mechanism of GML during HIV-1 infection and, more broadly, to other enveloped viruses.IMPORTANCE A total of 340 million sexually transmitted infections (STIs) are acquired each year. Antimicrobial agents that target multiple infectious pathogens are ideal candidates to reduce the number of newly acquired STIs. The antimicrobial and immunoregulatory properties of GML make it an excellent candidate to fit this critical need. Previous studies established the safety profile and antibacterial activity of GML against both Gram-positive and Gram-negative bacteria. GML protected against high-dose SIV infection and reduced inflammation, which can exacerbate disease, during infection. We found that GML inhibits HIV-1 and other human-pathogenic viruses (yellow fever virus, mumps virus, and Zika virus), broadening its antimicrobial range. Because GML targets diverse infectious pathogens, GML may be an effective agent against the broad range of sexually transmitted pathogens. Further, our data show that reutericyclin, a GML analog expressed by some lactobacillus species, also inhibits HIV-1 replication and thus may contribute to the protective effect of Lactobacillus in HIV-1 transmission.
Collapse
Affiliation(s)
- Jennifer L Welch
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Medical Service, Iowa City Veterans Affairs Medical Center, Iowa City, Iowa, USA
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Jinhua Xiang
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Medical Service, Iowa City Veterans Affairs Medical Center, Iowa City, Iowa, USA
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Chioma M Okeoma
- Department of Pharmacology, Stony Brook University School of Medicine, Stony Brook, New York, USA
| | - Patrick M Schlievert
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Jack T Stapleton
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Medical Service, Iowa City Veterans Affairs Medical Center, Iowa City, Iowa, USA
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
7
|
Fellinger CH, Gardner MR, Weber JA, Alfant B, Zhou AS, Farzan M. eCD4-Ig Limits HIV-1 Escape More Effectively than CD4-Ig or a Broadly Neutralizing Antibody. J Virol 2019; 93:e00443-19. [PMID: 31068428 PMCID: PMC6600210 DOI: 10.1128/jvi.00443-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/23/2019] [Indexed: 01/30/2023] Open
Abstract
The engineered antibody-like entry inhibitor eCD4-Ig neutralizes every human immunodeficiency virus type 1 (HIV-1), HIV-2, and simian immunodeficiency virus isolate it has been tested against. The exceptional breadth of eCD4-Ig derives from its ability to closely and simultaneously emulate the HIV-1 receptor CD4 and coreceptors, either CCR5 or CXCR4. Here we investigated whether viral escape from eCD4-Ig is more difficult than that from CD4-Ig or the CD4-binding site antibody NIH45-46. We observed that a viral swarm selected with high concentrations of eCD4-Ig was increasingly resistant to but did not fully escape from eCD4-Ig. In contrast, viruses selected under the same conditions with CD4-Ig or NIH45-46 fully escaped from those inhibitors. eCD4-Ig-resistant viruses acquired unique changes in the V2 apex, V3, V4, and CD4-binding regions of the HIV-1 envelope glycoprotein (Env). Most of the alterations did not directly affect neutralization by eCD4-Ig or neutralizing antibodies. However, alteration of Q428 to an arginine or lysine resulted in markedly greater resistance to eCD4-Ig and CD4-Ig, with correspondingly dramatic losses in infectivity and greater sensitivity to a V3 antibody and to serum from an infected individual. Compensatory mutations in the V3 loop (N301D) and in the V2 apex (K171E) partially restored viral fitness without affecting serum or eCD4-Ig sensitivity. Collectively, these data suggest that multiple mutations will be necessary to fully escape eCD4-Ig without loss of viral fitness.IMPORTANCE HIV-1 broadly neutralizing antibodies (bNAbs) and engineered antibody-like inhibitors have been compared for their breadths, potencies, and in vivo half-lives. However, a key limitation in the use of antibodies to treat an established HIV-1 infection is the rapid emergence of fully resistant viruses. Entry inhibitors of similar breadths and potencies can differ in the ease with which viral escape variants arise. Here we show that HIV-1 escape from the potent and exceptionally broad entry inhibitor eCD4-Ig is more difficult than that from CD4-Ig or the bNAb NIH45-46. Indeed, full escape was not observed under conditions under which escape from CD4-Ig or NIH45-46 was readily detected. Moreover, viruses that were partially resistant to eCD4-Ig were markedly less infective and more sensitive to antibodies in the serum of an infected person. These data suggest that eCD4-Ig will be more difficult to escape and that even partial escape will likely extract a high fitness cost.
Collapse
Affiliation(s)
- Christoph H Fellinger
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida, USA
| | - Matthew R Gardner
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida, USA
| | - Jesse A Weber
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida, USA
| | - Barnett Alfant
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida, USA
| | - Amber S Zhou
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida, USA
| | - Michael Farzan
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida, USA
| |
Collapse
|
8
|
Zhang Y, Guo J, Huang L, Tian J, Yao X, Liu H. The molecular mechanism of two coreceptor binding site antibodies X5 and 17b neutralizing HIV-1: Insights from molecular dynamics simulation. Chem Biol Drug Des 2018; 92:1357-1365. [PMID: 29624884 DOI: 10.1111/cbdd.13201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 03/04/2018] [Accepted: 03/07/2018] [Indexed: 11/28/2022]
Abstract
The coreceptor binding site of gp120 plays an important role in HIV entry into host cell. X5 and 17b are typical coreceptor binding site antibodies with the ability to broadly neutralize HIV. Thus, here, to study the neutralizing mechanism of two antibodies and identify the source of two antibodies with different neutralizing ability, we performed molecular dynamics simulations for the complexes of X5 and 17b with gp120 and CD4. The simulation results indicate X5 and 17b mainly affects CD4 and coreceptor binding sites. Specifically, for CD4 binding site (CD4bs), the binding of antibodies has different effects on CD4bs with and without CD4. However, for coreceptor binding sites, the binding of the antibodies has consistent influence on the region adjacent to loop V3 despite of the simulated systems with or without CD4. The binding of the antibodies enhances the interactions of gp120 region adjacent to loop V3 with other region of gp120, which are unfavorable for conformational rearrangements of the region adjacent to loop V3 and further binding the coreceptor. Additionally, the interactions of loop V3 and bridging sheet with X5 lead to the close motion of loop V3 in X5 bound form, which further influences the rearrangements in gp120.
Collapse
Affiliation(s)
- Yan Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, China.,Guiyang College of Traditional Chinese Medicine, Guiyang, China.,State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, China
| | - Jingjing Guo
- Henan Engineering Research Center of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, China
| | - Le Huang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Jiaqi Tian
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Xiaojun Yao
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, China
| | - Huanxiang Liu
- School of Pharmacy, Lanzhou University, Lanzhou, China.,State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, China
| |
Collapse
|
9
|
Lineage-Specific Differences between the gp120 Inner Domain Layer 3 of Human Immunodeficiency Virus and That of Simian Immunodeficiency Virus. J Virol 2016; 90:10065-10073. [PMID: 27535053 DOI: 10.1128/jvi.01215-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/11/2016] [Indexed: 01/16/2023] Open
Abstract
Binding of human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) gp120 exterior envelope glycoprotein to CD4 triggers conformational changes in gp120 that promote its interaction with one of the chemokine receptors, usually CCR5, ultimately leading to gp41-mediated virus-cell membrane fusion and entry. We previously described that topological layers (layer 1, layer 2, and layer 3) in the gp120 inner domain contribute to gp120-trimer association in the unliganded state but also help secure CD4 binding. Relative to layer 1 of HIV-1 gp120, the SIVmac239 gp120 layer 1 plays a more prominent role in maintaining gp120-trimer association but is minimally involved in promoting CD4 binding, which could be explained by the existence of a well-conserved tryptophan at position 375 (Trp 375) in HIV-2/SIVsmm. In this study, we investigated the role of SIV layer 3 in viral entry, cell-to-cell fusion, and CD4 binding. We observed that a network of interactions involving some residues of the β8-α5 region in SIVmac239 layer 3 may contribute to CD4 binding by helping shape the nearby Phe 43 cavity, which directly contacts CD4. In summary, our results suggest that layer 3 in SIV has a greater impact on CD4 binding than in HIV-1. This work defines lineage-specific differences in layer 3 from HIV-1 and that from SIV. IMPORTANCE CD4-induced conformational changes in the gp120 inner domain involve rearrangements between three topological layers. While the role of layers 1 to 3 for HIV-1 and layers 1 and 2 for SIV on gp120 transition to the CD4-bound conformation has been reported, the role of SIV layer 3 remains unknown. Here we report that SIV layer 3 has a greater impact on CD4 binding than does layer 3 in HIV-1 gp120. This work defines lineage-specific differences in layer 3 from HIV-1 and SIV.
Collapse
|
10
|
Characterization and Implementation of a Diverse Simian Immunodeficiency Virus SIVsm Envelope Panel in the Assessment of Neutralizing Antibody Breadth Elicited in Rhesus Macaques by Multimodal Vaccines Expressing the SIVmac239 Envelope. J Virol 2015; 89:8130-51. [PMID: 26018167 DOI: 10.1128/jvi.01221-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 09/03/2014] [Indexed: 02/02/2023] Open
Abstract
UNLABELLED Antibodies that can neutralize diverse viral strains are likely to be an important component of a protective human immunodeficiency virus type 1 (HIV-1) vaccine. To this end, preclinical simian immunodeficiency virus (SIV)-based nonhuman primate immunization regimens have been designed to evaluate and enhance antibody-mediated protection. However, these trials often rely on a limited selection of SIV strains with extreme neutralization phenotypes to assess vaccine-elicited antibody activity. To mirror the viral panels used to assess HIV-1 antibody breadth, we created and characterized a novel panel of 14 genetically and phenotypically diverse SIVsm envelope (Env) glycoproteins. To assess the utility of this panel, we characterized the neutralizing activity elicited by four SIVmac239 envelope-expressing DNA/modified vaccinia virus Ankara vector- and protein-based vaccination regimens that included the immunomodulatory adjuvants granulocyte-macrophage colony-stimulating factor, Toll-like receptor (TLR) ligands, and CD40 ligand. The SIVsm Env panel exhibited a spectrum of neutralization sensitivity to SIV-infected plasma pools and monoclonal antibodies, allowing categorization into three tiers. Pooled sera from 91 rhesus macaques immunized in the four trials consistently neutralized only the highly sensitive tier 1a SIVsm Envs, regardless of the immunization regimen. The inability of vaccine-mediated antibodies to neutralize the moderately resistant tier 1b and tier 2 SIVsm Envs defined here suggests that those antibodies were directed toward epitopes that are not accessible on most SIVsm Envs. To achieve a broader and more effective neutralization profile in preclinical vaccine studies that is relevant to known features of HIV-1 neutralization, more emphasis should be placed on optimizing the Env immunogen, as the neutralization profile achieved by the addition of adjuvants does not appear to supersede the neutralizing antibody profile determined by the immunogen. IMPORTANCE Many in the HIV/AIDS vaccine field believe that the ability to elicit broadly neutralizing antibodies capable of blocking genetically diverse HIV-1 variants is a critical component of a protective vaccine. Various SIV-based nonhuman primate vaccine studies have investigated ways to improve antibody-mediated protection against a heterologous SIV challenge, including administering adjuvants that might stimulate a greater neutralization breadth. Using a novel SIV neutralization panel and samples from four rhesus macaque vaccine trials designed for cross comparison, we show that different regimens expressing the same SIV envelope immunogen consistently elicit antibodies that neutralize only the very sensitive tier 1a SIV variants. The results argue that the neutralizing antibody profile elicited by a vaccine is primarily determined by the envelope immunogen and is not substantially broadened by including adjuvants, resulting in the conclusion that the envelope immunogen itself should be the primary consideration in efforts to elicit antibodies with greater neutralization breadth.
Collapse
|
11
|
Receptor binding domain based HIV vaccines. BIOMED RESEARCH INTERNATIONAL 2015; 2015:594109. [PMID: 25667925 PMCID: PMC4312573 DOI: 10.1155/2015/594109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 10/16/2014] [Indexed: 11/17/2022]
Abstract
This paper analyzes the main trend of the development of acquired immunodeficiency syndrome (AIDS) vaccines in recent years. Designing an HIV-1 vaccine that provides robust protection from HIV-1 infection remains a challenge despite many years of effort. Therefore, we describe the receptor binding domain of gp120 as a target for developing AIDS vaccines. And we recommend some measures that could induce efficiently and produce cross-reactive neutralizing antibodies with high binding affinity. Those measures may offer a new way of the research and development of the potent and broad AIDS vaccines.
Collapse
|
12
|
Francella N, Elliott STC, Yi Y, Gwyn SE, Ortiz AM, Li B, Silvestri G, Paiardini M, Derdeyn CA, Collman RG. Decreased plasticity of coreceptor use by CD4-independent SIV Envs that emerge in vivo. Retrovirology 2013; 10:133. [PMID: 24219995 PMCID: PMC3833851 DOI: 10.1186/1742-4690-10-133] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 10/31/2013] [Indexed: 12/02/2022] Open
Abstract
Background HIV and SIV generally require CD4 binding prior to coreceptor engagement, but Env can acquire the ability to use CCR5 independently of CD4 under various circumstances. The ability to use CCR5 coupled with low-to-absent CD4 levels is associated with enhanced macrophage infection and increased neutralization sensitivity, but the additional features of these Envs that may affect cell targeting is not known. Results Here we report that CD4-independent SIV variants that emerged in vivo in a CD4+ T cell-depleted rhesus macaque model display markedly decreased plasticity of co-receptor use. While CD4-dependent Envs can use low levels of macaque CCR5 for efficient entry, CD4-independent variants required high levels of CCR5 even in the presence of CD4. CD4-independent Envs were also more sensitive to the CCR5 antagonist Maraviroc. CD4-dependent variants mediated efficient entry using human CCR5, whereas CD4-independent variants had impaired use of human CCR5. Similarly, CD4-independent Envs used the alternative coreceptors GPR15 and CXCR6 less efficiently than CD4-dependent variants. Env amino acids D470N and E84K that confer the CD4-independent phenotype also regulated entry through low CCR5 levels and GPR15, indicating a common structural basis. Treatment of CD4-dependent Envs with soluble CD4 enhanced entry through CCR5 but reduced entry through GPR15, suggesting that induction of CD4-induced conformational changes by non-cell surface-associated CD4 impairs use of this alternative co-receptor. Conclusions CD4 independence is associated with more restricted coreceptor interactions. While the ability to enter target cells through CCR5 independently of CD4 may enable infection of CD4 low-to-negative cells such as macrophages, this phenotype may conversely reduce the potential range of targets such as cells expressing low levels of CCR5, conformational variants of CCR5, or possibly even alternative coreceptors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ronald G Collman
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, 522 Johnson Pavilion, 36th & Hamilton Walk, Philadelphia, PA, USA.
| |
Collapse
|
13
|
Lu L, Pan C, Li Y, Lu H, He W, Jiang S. A bivalent recombinant protein inactivates HIV-1 by targeting the gp41 prehairpin fusion intermediate induced by CD4 D1D2 domains. Retrovirology 2012; 9:104. [PMID: 23217195 PMCID: PMC3531269 DOI: 10.1186/1742-4690-9-104] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 11/11/2012] [Indexed: 02/03/2023] Open
Abstract
Background Most currently approved anti-HIV drugs (e.g., reverse transcriptase inhibitors, protease inhibitors and fusion/entry inhibitors) must act inside or on surface of the target cell to inhibit HIV infection, but none can directly inactivate virions away from cells. Although soluble CD4 (sCD4) can inactivate laboratory-adapted HIV-1 strains, it fails to reduce the viral loads in clinical trials because of its low potency against primary isolates and tendency to enhance HIV-1 infection at low concentration. Thus, it is essential to design a better HIV inactivator with improved potency for developing new anti-HIV therapeutics that can actively attack the virus in the circulation before it attaches to and enter into the target cell. Results We engineered a bivalent HIV-1 inactivator, designated 2DLT, by linking the D1D2 domain of CD4 to T1144, the next generation HIV fusion inhibitor, with a 35-mer linker. The D1D2 domain in this soluble 2DLT protein could bind to the CD4-binding site and induce the formation of the gp41 prehairpin fusion-intermediate (PFI), but showed no sCD4-mediated enhancement of HIV-1 infection. The T1144 domain in 2DLT then bound to the exposed PFI, resulting in rapid inactivation of HIV-1 virions in the absence of the target cell. Beside, 2DLT could also inhibit fusion of the virus with the target cell if the virion escapes the first attack of 2DLT. Conclusion This bivalent molecule can serve as a dual barrier against HIV infection by first inactivating HIV-1 virions away from cells and then blocking HIV-1 entry on the target cell surface, indicating its potential for development as a new class of anti-HIV drug.
Collapse
Affiliation(s)
- Lu Lu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College, Institute of Medical Microbiology, Fudan University, Shanghai 200032, China
| | | | | | | | | | | |
Collapse
|
14
|
Lineage-specific differences between human and simian immunodeficiency virus regulation of gp120 trimer association and CD4 binding. J Virol 2012; 86:8974-86. [PMID: 22696649 DOI: 10.1128/jvi.01076-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Metastable conformations of the gp120 and gp41 envelope glycoproteins of human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) must be maintained in the unliganded state of the envelope glycoprotein trimer. Binding of gp120 to the primary receptor, CD4, triggers the transition to an open conformation of the trimer, promoting interaction with the CCR5 chemokine receptor and ultimately leading to gp41-mediated virus-cell membrane fusion and entry. Topological layers in the gp120 inner domain contribute to gp120-trimer association in the unliganded state and to CD4 binding. Here we describe similarities and differences between HIV-1 and SIVmac gp120. In both viruses, the gp120 N/C termini and the inner domain β-sandwich and layer 2 support the noncovalent association of gp120 with the envelope glycoprotein trimer. Layer 1 of the SIVmac gp120 inner domain contributes more to trimer association than the corresponding region of HIV-1 gp120. On the other hand, layer 1 plays an important role in stabilizing the CD4-bound conformation of HIV-1 but not SIVmac gp120 and thus contributes to HIV-1 binding to CD4. In SIVmac, CD4 binding is instead enhanced by tryptophan 375, which fills the Phe 43 cavity of gp120. Activation of SIVmac by soluble CD4 is dependent on tryptophan 375 and on layer 1 residues that determine a tight association of gp120 with the trimer. Distinct biological requirements for CD4 usage have resulted in lineage-specific differences in the HIV-1 and SIV gp120 structures that modulate trimer association and CD4 binding.
Collapse
|
15
|
White TA, Bartesaghi A, Borgnia MJ, de la Cruz MJV, Nandwani R, Hoxie JA, Bess JW, Lifson JD, Milne JLS, Subramaniam S. Three-dimensional structures of soluble CD4-bound states of trimeric simian immunodeficiency virus envelope glycoproteins determined by using cryo-electron tomography. J Virol 2011; 85:12114-23. [PMID: 21937655 PMCID: PMC3209358 DOI: 10.1128/jvi.05297-11] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 09/08/2011] [Indexed: 12/19/2022] Open
Abstract
The trimeric envelope glycoprotein (Env) spikes displayed on the surfaces of simian immunodeficiency virus (SIV) and human immunodeficiency virus type 1 (HIV-1) virions are composed of three heterodimers of the viral glycoproteins gp120 and gp41. Although binding of gp120 to cell surface CD4 and a chemokine receptor is known to elicit conformational changes in gp120 and gp41, changes in quaternary structure of the trimer have only recently been elucidated. For the HIV-1 BaL isolate, CD4 attachment results in a striking rearrangement of the trimer from a "closed" to an "open" conformation. The effect of CD4 on SIV trimers, however, has not been described. Using cryo-electron tomography, we have now determined molecular architectures of the soluble CD4 (sCD4)-bound states of SIV Env trimers for three different strains (SIVmneE11S, SIVmac239, and SIV CP-MAC). In marked contrast to HIV-1 BaL, SIVmneE11S and SIVmac239 Env showed only minor conformational changes following sCD4 binding. In SIV CP-MAC, where trimeric Env displays a constitutively "open" conformation similar to that seen for HIV-1 BaL Env in the sCD4-complexed state, we show that there are no significant further changes in conformation upon the binding of either sCD4 or 7D3 antibody. The density maps also show that 7D3 and 17b antibodies target epitopes on gp120 that are on opposites sides of the coreceptor binding site. These results provide new insights into the structural diversity of SIV Env and show that there are strain-dependent variations in the orientation of sCD4 bound to trimeric SIV Env.
Collapse
Affiliation(s)
- Tommi A. White
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Alberto Bartesaghi
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Mario J. Borgnia
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - M. Jason V. de la Cruz
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Rachna Nandwani
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - James A. Hoxie
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Julian W. Bess
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick, Maryland
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick, Maryland
| | - Jacqueline L. S. Milne
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Sriram Subramaniam
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| |
Collapse
|
16
|
Haim H, Strack B, Kassa A, Madani N, Wang L, Courter JR, Princiotto A, McGee K, Pacheco B, Seaman MS, Smith AB, Sodroski J. Contribution of intrinsic reactivity of the HIV-1 envelope glycoproteins to CD4-independent infection and global inhibitor sensitivity. PLoS Pathog 2011; 7:e1002101. [PMID: 21731494 PMCID: PMC3121797 DOI: 10.1371/journal.ppat.1002101] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 04/18/2011] [Indexed: 12/23/2022] Open
Abstract
Human immunodeficiency virus (HIV-1) enters cells following sequential activation of the high-potential-energy viral envelope glycoprotein trimer by target cell CD4 and coreceptor. HIV-1 variants differ in their requirements for CD4; viruses that can infect coreceptor-expressing cells that lack CD4 have been generated in the laboratory. These CD4-independent HIV-1 variants are sensitive to neutralization by multiple antibodies that recognize different envelope glycoprotein epitopes. The mechanisms underlying CD4 independence, global sensitivity to neutralization and the association between them are still unclear. By studying HIV-1 variants that differ in requirements for CD4, we investigated the contribution of CD4 binding to virus entry. CD4 engagement exposes the coreceptor-binding site and increases the "intrinsic reactivity" of the envelope glycoproteins; intrinsic reactivity describes the propensity of the envelope glycoproteins to negotiate transitions to lower-energy states upon stimulation. Coreceptor-binding site exposure and increased intrinsic reactivity promote formation/exposure of the HR1 coiled coil on the gp41 transmembrane glycoprotein and allow virus entry upon coreceptor binding. Intrinsic reactivity also dictates the global sensitivity of HIV-1 to perturbations such as exposure to cold and the binding of antibodies and small molecules. Accordingly, CD4 independence of HIV-1 was accompanied by increased susceptibility to inactivation by these factors. We investigated the role of intrinsic reactivity in determining the sensitivity of primary HIV-1 isolates to inhibition. Relative to the more common neutralization-resistant ("Tier 2-like") viruses, globally sensitive ("Tier 1") viruses exhibited increased intrinsic reactivity, i.e., were inactivated more efficiently by cold exposure or by a given level of antibody binding to the envelope glycoprotein trimer. Virus sensitivity to neutralization was dictated both by the efficiency of inhibitor/antibody binding to the envelope glycoprotein trimer and by envelope glycoprotein reactivity to the inhibitor/antibody binding event. Quantitative differences in intrinsic reactivity contribute to HIV-1 strain variability in global susceptibility to neutralization and explain the long-observed relationship between increased inhibitor sensitivity and decreased entry requirements for target cell CD4.
Collapse
Affiliation(s)
- Hillel Haim
- Department of Cancer Immunology and AIDS, Dana–Farber Cancer Institute, Division of AIDS, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Bettina Strack
- Department of Cancer Immunology and AIDS, Dana–Farber Cancer Institute, Division of AIDS, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Aemro Kassa
- Department of Cancer Immunology and AIDS, Dana–Farber Cancer Institute, Division of AIDS, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Navid Madani
- Department of Cancer Immunology and AIDS, Dana–Farber Cancer Institute, Division of AIDS, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Liping Wang
- Department of Cancer Immunology and AIDS, Dana–Farber Cancer Institute, Division of AIDS, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Joel R. Courter
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Amy Princiotto
- Department of Cancer Immunology and AIDS, Dana–Farber Cancer Institute, Division of AIDS, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kathleen McGee
- Department of Cancer Immunology and AIDS, Dana–Farber Cancer Institute, Division of AIDS, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Beatriz Pacheco
- Department of Cancer Immunology and AIDS, Dana–Farber Cancer Institute, Division of AIDS, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michael S. Seaman
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Amos B. Smith
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Joseph Sodroski
- Department of Cancer Immunology and AIDS, Dana–Farber Cancer Institute, Division of AIDS, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, Unites States of America
- * E-mail:
| |
Collapse
|
17
|
Finzi A, Xiang SH, Pacheco B, Wang L, Haight J, Kassa A, Danek B, Pancera M, Kwong PD, Sodroski J. Topological layers in the HIV-1 gp120 inner domain regulate gp41 interaction and CD4-triggered conformational transitions. Mol Cell 2010; 37:656-67. [PMID: 20227370 PMCID: PMC2854584 DOI: 10.1016/j.molcel.2010.02.012] [Citation(s) in RCA: 183] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 01/14/2010] [Accepted: 02/13/2010] [Indexed: 11/18/2022]
Abstract
The entry of human immunodeficiency virus (HIV-1) into cells is initiated by binding of the gp120 exterior envelope glycoprotein to the receptor, CD4. How does CD4 binding trigger conformational changes in gp120 that allow the gp41 transmembrane envelope glycoprotein to mediate viral-cell membrane fusion? The transition from the unliganded to the CD4-bound state is regulated by two potentially flexible topological layers (layers 1 and 2) in the gp120 inner domain. Both layers apparently contribute to the noncovalent association of unliganded gp120 with gp41. After CD4 makes initial contact with the gp120 outer domain, layer 1-layer 2 interactions strengthen gp120-CD4 binding by reducing the off rate. Layer 1-layer 2 interactions also destabilize the activated state induced on HIV-1 by treatment with soluble CD4. Thus, despite lack of contact with CD4, the gp120 inner-domain layers govern CD4 triggering by participating in conformational transitions within gp120 and regulating the interaction with gp41.
Collapse
Affiliation(s)
- Andrés Finzi
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Department of Pathology, Division of AIDS, Harvard Medical School, Boston, MA 02115, U.S.A
| | - Shi-Hua Xiang
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Department of Pathology, Division of AIDS, Harvard Medical School, Boston, MA 02115, U.S.A
| | - Beatriz Pacheco
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Department of Pathology, Division of AIDS, Harvard Medical School, Boston, MA 02115, U.S.A
| | - Liping Wang
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Department of Pathology, Division of AIDS, Harvard Medical School, Boston, MA 02115, U.S.A
| | - Jessica Haight
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Department of Pathology, Division of AIDS, Harvard Medical School, Boston, MA 02115, U.S.A
| | - Aemro Kassa
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Department of Pathology, Division of AIDS, Harvard Medical School, Boston, MA 02115, U.S.A
| | - Brenda Danek
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Department of Pathology, Division of AIDS, Harvard Medical School, Boston, MA 02115, U.S.A
| | - Marie Pancera
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, U.S.A
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, U.S.A
| | - Joseph Sodroski
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Department of Pathology, Division of AIDS, Harvard Medical School, Boston, MA 02115, U.S.A
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, U.S.A
| |
Collapse
|
18
|
Del Prete GQ, Haggarty B, Leslie GJ, Jordan APO, Romano J, Wang N, Wang J, Holmes MC, Montefiori DC, Hoxie JA. Derivation and characterization of a simian immunodeficiency virus SIVmac239 variant with tropism for CXCR4. J Virol 2009; 83:9911-22. [PMID: 19605489 PMCID: PMC2748001 DOI: 10.1128/jvi.00533-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2009] [Accepted: 07/06/2009] [Indexed: 11/20/2022] Open
Abstract
Like human immunodeficiency virus type 1 (HIV-1), most simian immunodeficiency virus (SIV) strains use CCR5 to establish infection. However, while HIV-1 can acquire the ability to use CXCR4, SIVs that utilize CXCR4 have rarely been reported. To explore possible barriers against SIV coreceptor switching, we derived an R5X4 variant, termed 239-ST1, from the R5 clone SIVmac239 by serially passaging virus in CD4(+) CXCR4(+) CCR5(-) SupT1 cells. A 239-ST1 env clone, designated 239-ST1.2-32, used CXCR4 and CCR5 in cell-cell fusion and reporter virus infection assays and conferred the ability for rapid, cytopathic infection of SupT1 cells to SIVmac239. Viral replication was inhibitable by the CXCR4-specific antagonist AMD3100, and replication was abrogated in a novel CXCR4(-) SupT1 line. Surprisingly, parental SIVmac239 exhibited low-level replication in SupT1 cells that was not observed in CXCR4(-) SupT1 cells. Only two mutations in the 239-ST1.2-32 Env, K47E in the C1 domain and L328W in the V3 loop, were required for CXCR4 use in cell-cell fusion assays, although two other V3 changes, N316K and I324M, improved CXCR4 use in infection assays. An Env cytoplasmic tail truncation, acquired during propagation of 239-ST1 in SupT1 cells, was not required. Compared with SIVmac239, 239-ST1.2-32 was more sensitive to neutralization by five of seven serum and plasma samples from SIVmac239-infected rhesus macaques and was approximately 50-fold more sensitive to soluble CD4. Thus, SIVmac239 can acquire the ability to use CXCR4 with high efficiency, but the changes required for this phenotype may be distinct from those for HIV-1 CXCR4 use. This finding, along with the increased neutralization sensitivity of this CXCR4-using SIV, suggests a mechanism that could select strongly against this phenotype in vivo.
Collapse
Affiliation(s)
- Gregory Q Del Prete
- Department of Medicine, Hematology-Oncology Division, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Transitions to and from the CD4-bound conformation are modulated by a single-residue change in the human immunodeficiency virus type 1 gp120 inner domain. J Virol 2009; 83:8364-78. [PMID: 19535453 DOI: 10.1128/jvi.00594-09] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Binding to the primary receptor CD4 induces conformational changes in the human immunodeficiency virus type 1 (HIV-1) gp120 envelope glycoprotein that allow binding to the coreceptor (CCR5 or CXCR4) and ultimately trigger viral membrane-cell membrane fusion mediated by the gp41 transmembrane envelope glycoprotein. Here we report the derivation of an HIV-1 gp120 variant, H66N, that confers envelope glycoprotein resistance to temperature extremes. The H66N change decreases the spontaneous sampling of the CD4-bound conformation by the HIV-1 envelope glycoproteins, thus diminishing CD4-independent infection. The H66N change also stabilizes the HIV-1 envelope glycoprotein complex once the CD4-bound state is achieved, decreasing the probability of CD4-induced inactivation and revealing the enhancing effects of soluble CD4 binding on HIV-1 infection. In the CD4-bound conformation, the highly conserved histidine 66 is located between the receptor-binding and gp41-interactive surfaces of gp120. Thus, a single amino acid change in this strategically positioned gp120 inner domain residue influences the propensity of the HIV-1 envelope glycoproteins to negotiate conformational transitions to and from the CD4-bound state.
Collapse
|
20
|
Haim H, Si Z, Madani N, Wang L, Courter JR, Princiotto A, Kassa A, DeGrace M, McGee-Estrada K, Mefford M, Gabuzda D, Smith AB, Sodroski J. Soluble CD4 and CD4-mimetic compounds inhibit HIV-1 infection by induction of a short-lived activated state. PLoS Pathog 2009; 5:e1000360. [PMID: 19343205 PMCID: PMC2655723 DOI: 10.1371/journal.ppat.1000360] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Accepted: 03/02/2009] [Indexed: 11/19/2022] Open
Abstract
Binding to the CD4 receptor induces conformational changes in the human immunodeficiency virus (HIV-1) gp120 exterior envelope glycoprotein. These changes allow gp120 to bind the coreceptor, either CCR5 or CXCR4, and prime the gp41 transmembrane envelope glycoprotein to mediate virus-cell membrane fusion and virus entry. Soluble forms of CD4 (sCD4) and small-molecule CD4 mimics (here exemplified by JRC-II-191) also induce these conformational changes in the HIV-1 envelope glycoproteins, but typically inhibit HIV-1 entry into CD4-expressing cells. To investigate the mechanism of inhibition, we monitored at high temporal resolution inhibitor-induced changes in the conformation and functional competence of the HIV-1 envelope glycoproteins that immediately follow engagement of the soluble CD4 mimics. Both sCD4 and JRC-II-191 efficiently activated the envelope glycoproteins to mediate infection of cells lacking CD4, in a manner dependent on coreceptor affinity and density. This activated state, however, was transient and was followed by spontaneous and apparently irreversible changes of conformation and by loss of functional competence. The longevity of the activated intermediate depended on temperature and the particular HIV-1 strain, but was indistinguishable for sCD4 and JRC-II-191; by contrast, the activated intermediate induced by cell-surface CD4 was relatively long-lived. The inactivating effects of these activation-based inhibitors predominantly affected cell-free virus, whereas virus that was prebound to the target cell surface was mainly activated, infecting the cells even at high concentrations of the CD4 analogue. These results demonstrate the ability of soluble CD4 mimics to inactivate HIV-1 by prematurely triggering active but transient intermediate states of the envelope glycoproteins. This novel strategy for inhibition may be generally applicable to high-potential-energy viral entry machines that are normally activated by receptor binding.
Collapse
Affiliation(s)
- Hillel Haim
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Division of AIDS, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Zhihai Si
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Division of AIDS, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Navid Madani
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Division of AIDS, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Liping Wang
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Division of AIDS, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Joel R. Courter
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Amy Princiotto
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Division of AIDS, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Aemro Kassa
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Division of AIDS, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Marciella DeGrace
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Division of AIDS, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kathleen McGee-Estrada
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Division of AIDS, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Megan Mefford
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Division of AIDS, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Dana Gabuzda
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Division of AIDS, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Amos B. Smith
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Joseph Sodroski
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Division of AIDS, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| |
Collapse
|
21
|
Abstract
The importance of the HIV gp120 conserved domain 5 (gp120-C5) to envelope function has been examined by alanine scanning mutagenesis and subsequent characterization of the mutagenic effects on viral entry and envelope expression, processing, and incorporation, as well as gp120 association with gp41. With respect to the wild-type gp120, mutational effects on viral entry fall into three classes: (1) functional (V489A, E492A, P493A, T499A, K500A, K502A, R503A, R504A, V505A, and V506A; (2) nonfunctional (I491A, L494A, V496A, and P498A); (3) enhanced (K490A, G495A, and Q507A). The nonfunctionality of the mutants is attributed to a combination of deleterious effects on processing, gp120-gp41 association, and membrane fusion. In the case of the nonfunctional mutant P498A, the introduction of the SOS mutation (A501C/T601C) results in substantially increased envelope processing and a gain of function. The effects of the mutants are interpreted with respect to the structures of gp41 and gp120. The extent of sensitivity of gp120-C5 to alanine substitutions underscores the importance of this domain to envelope function and suggests that gp120-C5 is an attractive and novel target for future drug discovery efforts.
Collapse
|
22
|
Kubo Y, Yokoyama M, Yoshii H, Mitani C, Tominaga C, Tanaka Y, Sato H, Yamamoto N. Inhibitory role of CXCR4 glycan in CD4-independent X4-tropic human immunodeficiency virus type 1 infection and its abrogation in CD4-dependent infection. J Gen Virol 2007; 88:3139-3144. [PMID: 17947541 DOI: 10.1099/vir.0.83202-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
CXCR4 functions as an infection receptor of X4 human immunodeficiency virus type 1 (HIV-1) . CXCR4 is glycosylated at the N-terminal extracellular region, which is important for viral envelope (Env) protein binding. We compared the effects of CXCR4 glycan on the CD4-dependent and -independent infections in human cells by X4 viruses. We found that transduction mediated by Env proteins of CD4-independent HIV-1 strains increased up to 5.5-fold in cells expressing unglycosylated CXCR4, suggesting that the CXCR4 glycan inhibits CD4-independent X4 virus infection. Co-expression of CD4 on the target cell surface or pre-incubation of virus particles with soluble CD4 abrogates the glycan-mediated inhibition of X4 virus infection, suggesting that interaction of Env protein with CD4 counteracts the inhibition. These findings indicate that it will be advantageous for X4 HIV-1 to remain CD4-dependent. A structural model that explains the glycan-mediated inhibition is discussed.
Collapse
Affiliation(s)
- Yoshinao Kubo
- Department of AIDS Research, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Masaru Yokoyama
- Laboratory of Viral Genomics, Center for Pathogen Genomics, National Institute of Infectious Diseases, Tokyo, Japan.,Department of AIDS Research, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Hiroaki Yoshii
- Department of AIDS Research, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Chiho Mitani
- Department of AIDS Research, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Chika Tominaga
- Department of AIDS Research, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Yuetsu Tanaka
- Department of Immunology, Graduate School and Faculty of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Hironori Sato
- Laboratory of Viral Genomics, Center for Pathogen Genomics, National Institute of Infectious Diseases, Tokyo, Japan.,Department of AIDS Research, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Naoki Yamamoto
- Department of Molecular Virology, Tokyo Medical and Dental University, Tokyo, Japan.,AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan.,Department of AIDS Research, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
23
|
Sen J, Jacobs A, Jiang H, Rong L, Caffrey M. The disulfide loop of gp41 is critical to the furin recognition site of HIV gp160. Protein Sci 2007; 16:1236-41. [PMID: 17525470 PMCID: PMC2206660 DOI: 10.1110/ps.072771407] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The importance of the HIV gp41 conserved disulfide loop to envelope function has been examined by mutational and functional analyses. Based on a luciferase-reporter entry assay, mutants gp41-CC/AA (C598A/C604A) and gp41-Delta (deletion of residues 596-606) result in a nonfunctional envelope protein. Western blot analysis shows both mutants to be properly expressed but not processed to form gp120 and gp41, which explains their nonfunctionality. The presence of mutant gp160 on the cell surface, as well as their ability to bind to sCD4, suggests that the mutations have disrupted processing at the furin recognition site encoded within the gp120 conserved domain 5, without resulting in an overall misfolding of the protein. With respect to the furin recognition site, the mutations are sequentially distant, which implies that the gp41 disulfide loop is interacting with gp120 C5 in gp160. In addition, we have modeled the gp120-gp41 interaction in unprocessed precursor gp160 using structural data available for gp120 and gp41 domains in isolation, supplemented by mutagenesis data. We suggest that the mutations have altered the interaction between gp120 C5 and the gp41 disulfide loop, resulting in decreased accessibility of the furin recognition site and implying that the interaction between the gp120 C5 and gp41 loop is a conformational requirement for gp160 processing. The sensitivity of this interaction could be exploited in future antivirals designed to disrupt HIV pathogenesis by disrupting gp160 processing.
Collapse
Affiliation(s)
- Jayita Sen
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | | | | | | | | |
Collapse
|
24
|
Li BX, Ge JW, Li YJ. Porcine aminopeptidase N is a functional receptor for the PEDV coronavirus. Virology 2007; 365:166-72. [PMID: 17467767 PMCID: PMC7103304 DOI: 10.1016/j.virol.2007.03.031] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Revised: 01/18/2007] [Accepted: 03/07/2007] [Indexed: 11/23/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV) causes lethal diarrhea in piglets that leads to great economic losses in East Asia. It was reported that aminopeptidase N (APN) is the receptor for transmissible gastroenteritis virus (TGEV), human coronavirus 229E (HCoV-229E) and feline coronavirus (FeCoV) which all belong to group I coronavirus including as well as PEDV. It was also confirmed previously that porcine aminopeptidase N (pAPN) can bind to PEDV, and anti-pAPN antibodies may inhibit the combination. To investigate whether pAPN is a receptor for PEDV, we transfected MDCK cells with porcine aminopeptidase (pAPN) cDNA and this enabled non-susceptible cells to support PEDV replication and serial viral propagation. Moreover, the infection was blocked by antibodies against pAPN, implies the critical role of pAPN during virus entry. In addition, immunofluorescence assays for detection of pAPN and PEDV antigens, together with neutralization assays using antibodies against pAPN, further confirmed the correlation between pAPN expression and viral replication in pAPN-transfected MDCK cells. These results indicate that pAPN is a functional receptor for PEDV.
Collapse
Affiliation(s)
- B X Li
- Department of Preventive Veterinary, College of Veterinary, Northeast Agricultural University, 59 Mucai Street, 150030, Harbin, China
| | | | | |
Collapse
|
25
|
Jones G, Power C. Regulation of neural cell survival by HIV-1 infection. Neurobiol Dis 2005; 21:1-17. [PMID: 16298136 DOI: 10.1016/j.nbd.2005.07.018] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Revised: 06/29/2005] [Accepted: 07/06/2005] [Indexed: 02/03/2023] Open
Abstract
Infection by the lentivirus, human immunodeficiency virus type 1 (HIV-1), results in a variety of syndromes involving both the central (CNS) and the peripheral (PNS) nervous systems. Productive HIV-1 infection of the CNS is chiefly detectable in perivascular macrophages and microglia. HIV-1 encoded transcripts and proteins have also been detected in the PNS; however, productive viral replication appears to be sparse and restricted to the macrophage cell population. Despite the absence of productive infection of neurons, HIV-1 infection has been associated with neuronal loss in distinct regions of the brain. Neuronal cell loss may occur through both necrosis and apoptosis, although neuronal apoptosis appears to be a feature of AIDS, as only rare apoptotic neurons have been demonstrated in a few pre-AIDS cases. Although there is no clear consensus as to the underlying mechanism of HIV-induced neuropathogenesis, two complementary concepts predominate. Firstly, HIV-1 encoded proteins injure neurons directly without requiring the intermediary functions of nonneuronal cells. Alternatively, neuronal apoptosis may result indirectly from the secretion of neurotoxic host molecules by resident brain macrophages or microglia in response to HIV-1 infection, stimulation by viral proteins or immune activation. Herein, we review the neurological disorders and their underlying mechanisms associated with HIV infection, focusing on HIV-associated dementia (HAD) and HIV sensory neuropathy (HIV-SN). The evidence that neuronal loss in HIV-1-infected individuals may be due to neuronal apoptosis is then discussed. This review also summarizes the current data supporting both the direct and indirect mechanisms by which neuronal death may occur during infection with HIV-1 or the closely related lentiviruses SIV and FIV. Lastly, strategies are examined for treating or preventing HAD by targeting specific neurotoxic mechanisms.
Collapse
Affiliation(s)
- Gareth Jones
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
26
|
Bonavia A, Bullock B, Gisselman K, Margulies B, Clements J. A single amino acid change and truncated TM are sufficient for simian immunodeficiency virus to enter cells using CCR5 in a CD4-independent pathway. Virology 2005; 341:12-23. [PMID: 16061266 PMCID: PMC2676328 DOI: 10.1016/j.virol.2005.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Revised: 06/01/2005] [Accepted: 07/01/2005] [Indexed: 10/25/2022]
Abstract
Entry of HIV and SIV into susceptible cells is mediated by CD4 and chemokine receptors, which act as coreceptors. To study cell entry of SIV, we constructed a cell line, xKLuSIV, derived from non-susceptible human K562 cells, that express the firefly luciferase reporter gene under control of a minimal SIV long terminal repeat (LTR). Using these susceptible cells, we studied the entry of a well-characterized molecularly cloned macrophage-tropic SIV. xKLuSIV cells that express rhesus macaque CD4 and/or the rhesus chemokine receptor CCR5 are susceptible to infection with the macrophage-tropic, neurovirulent strain SIV/17E-Fr, but only xKLuSIV cells expressing both CCR5 and CD4 were susceptible to infection by the macrophage-tropic, non-neurovirulent strain SIV/17E-Cl. CCR5-dependent, CD4-independent infection by SIV/17E-Fr was abrogated by pre-incubation of the cells with AOP-RANTES, a ligand for CCR5. In addition to viral entry occurring by a CD4-independent mechanism, neutralization of SIV/17E-Fr with rhesus mAbs from 3 different neutralization groups blocked entry into x KLuSIV cells by both CD4-dependent and -independent mechanisms. Triggering the env glycoprotein of SIV-17 EFr with soluble CD4 had no significant effect in infectivity, but triggering of the same glycoprotein of SIV/17E-Cl allowed it to enter cells in a CD4-independent fashion. Using mutant molecular clones, we studied the determinants for CD4 independence, all of which are confined to the env gene. We report here that truncation of the TM at amino acid 764 and changing a single amino acid (R751G) in the SIV envelope transmembrane protein (TM) conferred the observed CD4-independent phenotype. Our data suggest that the envelope from the neurovirulent SIV/17E-Fr interacts with CCR5 in a CD4-independent manner, and changes in the TM protein of this virus are important components that contribute to neurovirulence in SIV.
Collapse
Affiliation(s)
| | | | | | | | - J.E. Clements
- Corresponding author. Fax: +1 410 955 9823., E-mail address: (J.E. Clements)
| |
Collapse
|
27
|
Yuste E, Johnson W, Pavlakis GN, Desrosiers RC. Virion envelope content, infectivity, and neutralization sensitivity of simian immunodeficiency virus. J Virol 2005; 79:12455-63. [PMID: 16160173 PMCID: PMC1211544 DOI: 10.1128/jvi.79.19.12455-12463.2005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A truncating E767stop mutation was introduced into the envelope glycoprotein of simian immunodeficiency virus (SIV) strain SIV239-M5 (moderately sensitive to antibody-mediated neutralization and lacking five sites for N-linked carbohydrate attachment) and strain SIV316 (very sensitive to neutralization, with eight amino acid changes from the neutralization-resistant parental molecular clone, SIV239). The truncating mutation increased Env content in virions, increased infectivity, and decreased sensitivity to antibody-mediated neutralization in both strains. However, the magnitude of the effect on infectivity and neutralization sensitivity differed considerably between the two strains. In the context of strain SIV239-M5, truncation increased Env content in virions approximately 10-fold and infectivity in a reporter cell assay 24-fold. The truncated SIV239-M5 was only slightly more resistant to neutralization by polyclonal monkey sera and by monoclonal antibodies than SIV239-M5 with a full-length envelope glycoprotein. In the context of strain SIV316, truncation increased infectivity a dramatic 480-fold, while envelope content in virions was increased only about 14-fold. This dramatic increase in infectivity cannot be simply explained by the increase in envelope content and is likely due to an increase in inherent infectivity, i.e., infectivity per spike, that results from truncation. The truncated SIV316 was extremely resistant to antibody-mediated neutralization. In fact, it was not neutralized by any of the antibodies tested. When increasing amounts of SIV316 envelope glycoprotein (full length) were provided in trans to SIV316, infectivity was increased and sensitivity to neutralization was decreased, but to nowhere near the degree that was obtained when truncated SIV316 envelope glycoprotein was used. Truncated forms of SIV239 and SIV239-M5 required higher levels of soluble CD4 for inhibition of infection than their nontruncated forms; truncated SIV316 did not. Our results suggest that envelope content in SIV virions, infectivity, and resistance to antibody-mediated neutralization can be increased not only by truncation of the cytoplasmic domain but also by provision of excess envelope in trans. The striking increase in infectivity that results from truncation in the context of SIV316 appears to be due principally to an increase in inherent infectivity per spike.
Collapse
Affiliation(s)
- Eloísa Yuste
- New England Primate Research Center, Department of Microbiology and Molecular Genetics, Harvard Medical School, Southborough, MA 01772-9102, USA
| | | | | | | |
Collapse
|
28
|
Yang QE, Stephen AG, Adelsberger JW, Roberts PE, Zhu W, Currens MJ, Feng Y, Crise BJ, Gorelick RJ, Rein AR, Fisher RJ, Shoemaker RH, Sei S. Discovery of small-molecule human immunodeficiency virus type 1 entry inhibitors that target the gp120-binding domain of CD4. J Virol 2005; 79:6122-33. [PMID: 15857997 PMCID: PMC1091715 DOI: 10.1128/jvi.79.10.6122-6133.2005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The interaction between human immunodeficiency virus type 1 (HIV-1) gp120 and the CD4 receptor is highly specific and involves relatively small contact surfaces on both proteins according to crystal structure analysis. This molecularly conserved interaction presents an excellent opportunity for antiviral targeting. Here we report a group of pentavalent antimony-containing small molecule compounds, NSC 13778 (molecular weight, 319) and its analogs, which exert a potent anti-HIV activity. These compounds block the entry of X4-, R5-, and X4/R5-tropic HIV-1 strains into CD4(+) cells but show little or no activity in CD4-negative cells or against vesicular stomatitis virus-G pseudotyped virions. The compounds compete with gp120 for binding to CD4: either immobilized on a solid phase (soluble CD4) or on the T-cell surface (native CD4 receptor) as determined by a competitive gp120 capture enzyme-linked immunosorbent assay or flow cytometry. NSC 13778 binds to an N-terminal two-domain CD4 protein, D1/D2 CD4, immobilized on a surface plasmon resonance sensor chip, and dose dependently reduces the emission intensity of intrinsic tryptophan fluorescence of D1/D2 CD4, which contains two of the three tryptophan residues in the gp120-binding domain. Furthermore, T cells incubated with the compounds alone show decreased reactivity to anti-CD4 monoclonal antibodies known to recognize the gp120-binding site. In contrast to gp120-binders that inhibit gp120-CD4 interaction by binding to gp120, these compounds appear to disrupt gp120-CD4 contact by targeting the specific gp120-binding domain of CD4. NSC 13778 may represent a prototype of a new class of HIV-1 entry inhibitors that can break into the gp120-CD4 interface and mask the gp120-binding site on the CD4 molecules, effectively repelling incoming virions.
Collapse
Affiliation(s)
- Quan-En Yang
- Laboratory of Antiviral Drug Mechanisms, Screening Technologies Branch, Developmental Therapeutics Program, SAIC-Frederick, NCI-Frederick, Bldg. 439, P.O. Box B, Frederick, MD 21702, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Overholser ED, Babas T, Zink MC, Barber SA, Clements JE. CD4-independent entry and replication of simian immunodeficiency virus in primary rhesus macaque astrocytes are regulated by the transmembrane protein. J Virol 2005; 79:4944-51. [PMID: 15795280 PMCID: PMC1069519 DOI: 10.1128/jvi.79.8.4944-4951.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2004] [Accepted: 12/01/2004] [Indexed: 11/20/2022] Open
Abstract
Previous studies have demonstrated that the genetic determinants of simian immunodeficiency virus (SIV) neurovirulence map to the env and nef genes. Recent studies from our laboratory demonstrated that SIV replication in primary rhesus macaque astrocyte cultures is dependent upon the nef gene. Here, we demonstrate that macrophage tropism is not sufficient for replication in astrocytes and that specific amino acids in the transmembrane (TM) portion of Env are also important for optimal SIV replication in astrocytes. Specifically, a Gly at amino acid position 751 and truncation of the cytoplasmic tail of TM are required for efficient replication in these cells. Studies using soluble CD4 demonstrated that these changes within the TM protein regulate CD4-independent, CCR5-dependent entry of virus into astrocytes. In addition, we observed that two distinct CD4-independent, neuroinvasive strains of SIV/DeltaB670 also replicated efficiently in astrocytes, further supporting the role of CD4 independence as an important determinant of SIV infection of astrocytes in vitro and in vivo.
Collapse
Affiliation(s)
- Emily D Overholser
- The Reterovirus Laboratory, Department of Comparitive Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, 819 BRB, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
30
|
Borda JT, Alvarez X, Kondova I, Aye P, Simon MA, Desrosiers RC, Lackner AA. Cell tropism of simian immunodeficiency virus in culture is not predictive of in vivo tropism or pathogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 165:2111-22. [PMID: 15579453 PMCID: PMC1618703 DOI: 10.1016/s0002-9440(10)63261-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
SIVmac239/316 is a molecular clone derived from SIVmac239 that differs from the parental virus by nine amino acids in env. This virus, unlike the parental SIVmac239, is able to replicate well in alveolar macrophages in culture. We have not however, observed macrophage-associated inflammatory disease in any animal infected with SIVmac239/316. Therefore, we sought to examine the cell tropism of this virus in vivo in multiple tissues using in situ hybridization combined with immunohistochemistry and multilabel confocal microscopy for viral nucleic acid and multiple cell-type-specific markers for macrophages and T lymphocytes. Tissues examined included brain, heart, lung, lymph nodes, spleen, thymus, and small and large intestine. Matched tissues from macaques infected with the parental SIVmac239 and uninfected macaques were also examined. Many infected cells were detected in the tissues of animals infected with SIVmac239 and SIVmac239/316 although there appeared to be fewer positive cells in animals infected with SIVmac239/316. Surprisingly, in light of the cell culture observations, nearly every simian immunodeficiency virus-infected cell in animals inoculated with SIVmac239/316 was a T lymphocyte rather than a macrophage. This was true both during early infection (first 2 months) and in terminal disease. In contrast, as previously described, SIVmac239 was found in both T cells and macrophages in tissues as early as 21 days after infection. These studies indicate that during both acute and chronic SIVmac239/316 infection T lymphocytes rather than macrophages are the principal targets in vivo. These data combined with the absence of macrophage-associated lesions in SIVmac239/316-infected animals indicate that in vitro cell tropism is not predictive of in vivo tropism or disease pathogenesis.
Collapse
Affiliation(s)
- Juan T Borda
- Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
de Parseval A, Chatterji U, Morris G, Sun P, Olson AJ, Elder JH. Structural mapping of CD134 residues critical for interaction with feline immunodeficiency virus. Nat Struct Mol Biol 2004; 12:60-6. [PMID: 15592478 DOI: 10.1038/nsmb872] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2004] [Accepted: 11/09/2004] [Indexed: 01/02/2023]
Abstract
CD134 is a primary binding receptor for feline immunodeficiency virus (FIV), and with CXCR4 facilitates infection of CD4(+) T cells. Human CD134 fails to support FIV infection. To delineate the regions important for defining virus specificity of CD134, we exchanged domains between human and feline CD134. The binding site for FIV surface glycoprotein (SU) is located in domain 1, in a region distinct from the natural ligand (CD134L)-binding site. Mutagenesis showed that Asp60 and Asp62 are required for interaction with FIV, and modeling studies localized these two residues to the outer edge of domain 1. Substitutions S60D and N62D, in conjunction with H45S, R59G and V64K, imparted both FIV SU binding and receptor function to human CD134. Finally, we demonstrated that soluble CD134 facilitates infection of CD134(-) CXCR4(+) target cells in a manner analogous to CD4 augmentation of HIV infection.
Collapse
Affiliation(s)
- Aymeric de Parseval
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
32
|
Puffer BA, Altamura LA, Pierson TC, Doms RW. Determinants within gp120 and gp41 contribute to CD4 independence of SIV Envs. Virology 2004; 327:16-25. [PMID: 15327894 DOI: 10.1016/j.virol.2004.03.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2003] [Revised: 01/07/2004] [Accepted: 03/16/2004] [Indexed: 10/26/2022]
Abstract
Entry of simian immunodeficiency virus (SIV) into cells is mediated by binding of the viral envelope (Env) glycoprotein to cellular CD4 and chemokine receptor molecules. Interaction of the Env gp120 subunit with CD4 induces conformational changes that result in exposure of a conserved coreceptor binding site. The chemokine receptor CCR5 is the major coreceptor used for SIV entry. Many SIV Envs have the ability to bind directly to CCR5 in the absence of CD4, and CD4-independent SIVs have been shown to exhibit macrophage tropism, enhanced neutralization sensitivity, and reduced pathogenicity in nonhuman primates. SIVmac239 is a pathogenic, T-tropic, neutralization-resistant virus which encodes a CD4-dependent Env. By contrast, the SIVmac316 virus, which differs from 239 in Env by only eight amino acid substitutions and a gp41 cytoplasmic domain truncation, exhibits macrophage tropism in vitro, attenuated pathogenesis, neutralization sensitivity, and CD4-independent entry. We mapped the residues contributing to CD4-independent entry to substitutions at position 165 in the V1/V2 region of gp120 and position 573 of gp41. We find that substitution of both residues in replication-competent SIVmac239 virus results in gain of CD4 independence and enhanced neutralization sensitivity. By contrast, the converse substitutions placed in the background of SIVmac316 resulted in loss of CD4 independence and decreased neutralization sensitivity. Thus, as few as two amino acid changes can have dramatic effects on SIV Env phenotype.
Collapse
Affiliation(s)
- Bridget A Puffer
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | | | | |
Collapse
|
33
|
Vödrös D, Thorstensson R, Doms RW, Fenyö EM, Reeves JD. Evolution of coreceptor use and CD4-independence in envelope clones derived from SIVsm-infected macaques. Virology 2003; 316:17-28. [PMID: 14599787 DOI: 10.1016/s0042-6822(03)00579-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Coreceptor use of HIV can evolve during infection. We previously examined coreceptor use of related SIVsm inoculum viruses and sequential reisolates from cynomolgus macaques. These viruses exhibited broad coreceptor specificities and, generally, CCR5 use remained efficient and stable, while alternative coreceptor use decreased longitudinally. Here we demonstrate that individual envelopes (Envs) from inoculum and reisolate viruses fuse via a range of coreceptors, including CCR5, CCR8, CXCR6, GPR15, GPR1, and APJ. On the whole, coreceptor use of Envs from sequential reisolates recapitulated that of reisolate viruses, thus CCR5 use remained stable while alternative coreceptor use tended to decrease over time. Rhesus CCR5, GPR15, and CXCR6 supported fusion to a similar extent as their human counterparts. Additionally, a number of Envs mediated CD4-independent fusion via CCR5 and GPR15. Envs from different inoculum viruses exhibited distinct dependencies on CD4 for fusion via CCR5, ranging from strictly CD4-dependent to efficiently CD4-independent. Early reisolates from macaques infected with CD4-independent inoculums maintained or evolved Envs with a broad range of CD4-independence. CD4-independence became less variable/efficient in late reisolates from macaques that developed neutralizing antibodies. Infection with a CD4-dependent virus resulted in evolution of CD4-independent Envs in late reisolates. While CD4 independence can potentially broaden tropism in vivo, CD4-independent viruses are particularly sensitive to neutralizing antibodies. Therefore, interplay between receptor tropism and neutralization may shape viral evolution and SIV pathogenesis.
Collapse
Affiliation(s)
- Dalma Vödrös
- Department of Medical Microbiology, Dermatology and Infection, Lund University, Lund, Sweden
| | | | | | | | | |
Collapse
|
34
|
Vermeire K, Schols D. Specific CD4 down-modulating compounds with potent anti-HIV activity. J Leukoc Biol 2003; 74:667-75. [PMID: 12960237 DOI: 10.1189/jlb.0403177] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Despite the availability of the current clinically approved anti-HIV drugs, new classes of effective antiviral agents are still urgently needed to combat AIDS. A promising approach for drug development and vaccine design involves targeting research on HIV-1 entry, a multistep process that comprises viral attachment, coreceptor interactions, and fusion. Determination of the viral entry process in detail has enabled the design of specific agents that can inhibit each step in the HIV entry process. Therapeutic agents that interfere with the binding of the HIV envelope glycoprotein gp120 to the CD4 receptor (e.g., PRO 542, PRO 2000, and CV-N) or the coreceptors CCR5 and CXCR4 (e.g., SCH-C and AMD3100) are briefly outlined in this review. The anti-HIV activity of cyclotriazadisulfonamides, a novel class of compounds with a unique mode of action by down-modulating the CD4 receptor in lymphocytic and monocytic cells, is especially highlighted. On the basis of the successful results of T-20, the first approved entry inhibitor, the development of effective antiretrovirals that block HIV entry will certainly be further encouraged.
Collapse
Affiliation(s)
- Kurt Vermeire
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium
| | | |
Collapse
|
35
|
Johnson WE, Sanford H, Schwall L, Burton DR, Parren PWHI, Robinson JE, Desrosiers RC. Assorted mutations in the envelope gene of simian immunodeficiency virus lead to loss of neutralization resistance against antibodies representing a broad spectrum of specificities. J Virol 2003; 77:9993-10003. [PMID: 12941910 PMCID: PMC224602 DOI: 10.1128/jvi.77.18.9993-10003.2003] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Simian immunodeficiency virus (SIV) of macaques isolate SIVmac239 is highly resistant to neutralization by polyclonal antisera or monoclonal antibodies, a property that it shares with most primary isolates of human immunodeficiency virus type 1 (HIV-1). This resistance is important for the ability of the virus to persist at high levels in vivo. To explore the physical features of the viral envelope complex that contribute to the neutralization-resistant phenotype, we examined a panel of SIVmac239 derivatives for sensitivity to neutralization by a large collection of monoclonal antibodies (MAbs). These MAbs recognize both linear and conformational epitopes throughout the viral envelope proteins. The variant viruses included three derivatives of SIVmac239 with substitutions in specific N-linked glycosylation sites of gp120 and a fourth variant that lacked the 100 amino acids that encompass the V1 and V2 loops. Also included in this study was SIVmac316, a variant of SIVmac239 with distributed mutations in env that confer significantly increased replicative capacity in tissue macrophages. These viruses were chosen to represent a broad range of neutralization sensitivities based on susceptibility to pooled, SIV-positive plasma. All three of these very different kinds of mutations (amino acid substitutions, elimination of N-glycan attachment sites, and a 100-amino-acid deletion spanning variable loops V1 and V2) dramatically increased sensitivity to neutralization by MAbs from multiple competition groups. Thus, the mutations did not simply expose localized epitopes but rather conferred global increases in neutralization sensitivity. The removal of specific N-glycan attachment sites from V1 and V2 led to increased sensitivity to neutralization by antibodies recognizing epitopes from both within and outside of the V1-V2 sequence. Surprisingly, while most of the mutations that gave rise to increased sensitivity were located in the N-terminal half of gp120 (surface subunit [SU]), the greatest increases in sensitivity were to MAbs recognizing the C-terminal half of gp120 or the ectodomain of gp41 (transmembrane subunit [TM]). This reagent set and information should now be useful for defining the physical, structural, thermodynamic, and kinetic factors that influence relative sensitivity to antibody-mediated neutralization.
Collapse
Affiliation(s)
- Welkin E Johnson
- New England Regional Primate Research Center, Department of Microbiology and Molecular Genetics, Harvard Medical School, One Pine Hill Drive, Box 9102, Southborough, MA 01772-9102, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Dey B, Del Castillo CS, Berger EA. Neutralization of human immunodeficiency virus type 1 by sCD4-17b, a single-chain chimeric protein, based on sequential interaction of gp120 with CD4 and coreceptor. J Virol 2003; 77:2859-65. [PMID: 12584309 PMCID: PMC149752 DOI: 10.1128/jvi.77.5.2859-2865.2003] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We designed a novel single-chain chimeric protein, designated sCD4-17b, for neutralization of human immunodeficiency virus type 1 (HIV-1). The recombinant protein contains domains 1 and 2 of soluble CD4 (sCD4), connected via a flexible polypeptide linker to a single-chain variable region construct of 17b, a human monoclonal antibody that targets a conserved CD4-induced epitope on gp120 overlapping the coreceptor binding region. We hypothesized that the sCD4 moiety would bind gp120 and expose the 17b epitope; the 17b moiety would then bind, thereby blocking coreceptor interaction and neutralizing infection. The sCD4-17b protein, expressed by a recombinant vaccinia virus, potently neutralized a prototypic R5 clade B primary isolate, with a 50% inhibitory concentration of 3.2 nM (0.16 microg/ml) and >95% neutralization at 32 nM (1.6 microg/ml). The individual components (sCD4 and 17b, singly or in combination) had minimal effects at these concentrations, demonstrating that the activity of sCD4-17b reflected the ability of a single chimeric molecule to bind gp120 simultaneously via two independent moieties. sCD4-17b was highly potent compared to the previously characterized broadly cross-reactive neutralizing monoclonal antibodies IgGb12, 2G12, and 2F5. Multiple primary isolates were neutralized, including two previously described as antibody resistant. Neutralization occurred for both R5 and X4 strains and was not restricted to clade B. However, several primary isolates were insensitive over the concentration range tested, despite the known presence of binding sites for both CD4 and 17b. sCD4-17b has potential utility for passive immunization against HIV-1 in several contexts, including maternal transmission, postexposure prophylaxis, and sexual transmission (topical microbicide).
Collapse
Affiliation(s)
- Barna Dey
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
37
|
Ryzhova E, Whitbeck JC, Canziani G, Westmoreland SV, Cohen GH, Eisenberg RJ, Lackner A, González-Scarano F. Rapid progression to simian AIDS can be accompanied by selection of CD4-independent gp120 variants with impaired ability to bind CD4. J Virol 2002; 76:7903-9. [PMID: 12097605 PMCID: PMC136356 DOI: 10.1128/jvi.76.15.7903-7909.2002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2002] [Accepted: 05/04/2002] [Indexed: 11/20/2022] Open
Abstract
Aspartate 368 on human immunodeficiency virus type 1 (HIV-1) gp120 forms multiple contacts with CD4; in mutagenesis studies, its replacement by asparagine and corresponding changes in simian immunodeficiency virus SIVmac (D385N) reduced binding with CD4. Nevertheless, simian immunodeficiency virus envelopes with D385N were prevalent in several studies. Extending these observations, we also found D385N to be dominant among env clones from two rhesus macaques that progressed rapidly to simian AIDS. These envelopes showed a CD4-independent phenotype as well as reduced affinity to CD4. Moreover, an adjacent change, G383R, which was frequently coselected with D385N, further decreased binding. An optical biosensor study demonstrated that the SIVmac239 gp120 bound to CD4 with kinetics similar to those of HIV-1. However, the gp120s with D385N and G383R showed a 40-fold reduction in affinity, with a drastic increase in dissociation rate, indicating an inherently unstable complex. This finding showed that rapid progression to simian AIDS may be accompanied by the selection of CD4-independent gp120 variants with impaired CD4 binding ability.
Collapse
Affiliation(s)
- Elena Ryzhova
- Department of Neurology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Affiliation(s)
- Jacqueline D Reeves
- Department of Microbiology, University of Pennsylvania, 301 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA1
| | - Robert W Doms
- Department of Microbiology, University of Pennsylvania, 301 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA1
| |
Collapse
|
39
|
Puffer BA, Pöhlmann S, Edinger AL, Carlin D, Sanchez MD, Reitter J, Watry DD, Fox HS, Desrosiers RC, Doms RW. CD4 independence of simian immunodeficiency virus Envs is associated with macrophage tropism, neutralization sensitivity, and attenuated pathogenicity. J Virol 2002; 76:2595-605. [PMID: 11861825 PMCID: PMC135960 DOI: 10.1128/jvi.76.6.2595-2605.2002] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To investigate the basis for envelope (Env) determinants influencing simian immunodeficiency virus (SIV) tropism, we studied a number of Envs that are closely related to that of SIVmac239, a pathogenic, T-tropic virus that is neutralization resistant. The Envs from macrophage-tropic (M-tropic) virus strains SIVmac316, 1A11, 17E-Fr, and 1100 facilitated infection of CCR5-positive, CD4-negative cells. In contrast, the SIVmac239 Env was strictly dependent upon the presence of CD4 for membrane fusion. We also found that the Envs from M-tropic virus strains, which are less pathogenic in vivo, were very sensitive to antibody-mediated neutralization. Antibodies to the V3-loop, as well as antibodies that block SIV gp120 binding to CCR5, efficiently neutralized CD4-independent, M-tropic Envs but not the 239 Env. However, triggering the 239 Env with soluble CD4, presumably resulting in exposure of the CCR5 binding site, made it as neutralization sensitive as the M-tropic Envs. In addition, mutations of N-linked glycosylation sites in the V1/V2 region, previously shown to enhance antigenicity and immunogenicity, made the 239 Env partially CD4 independent. These findings indicate that Env-based determinants of M tropism of these strains are generally associated with decreased dependence on CD4 for entry into cells. Furthermore, CD4 independence and M tropism are also associated with neutralization sensitivity and reduced pathogenicity, suggesting that the humoral immune response may exert strong selective pressure against CD4-independent M-tropic SIVmac strains. Finally, genetic modification of viral Envs to enhance CD4 independence may also result in improved humoral immune responses.
Collapse
Affiliation(s)
- Bridget A Puffer
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kolchinsky P, Kiprilov E, Bartley P, Rubinstein R, Sodroski J. Loss of a single N-linked glycan allows CD4-independent human immunodeficiency virus type 1 infection by altering the position of the gp120 V1/V2 variable loops. J Virol 2001; 75:3435-43. [PMID: 11238869 PMCID: PMC114136 DOI: 10.1128/jvi.75.7.3435-3443.2001] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gp120 envelope glycoprotein of primary human immunodeficiency virus type 1 (HIV-1) promotes virus entry by sequentially binding CD4 and the CCR5 chemokine receptor on the target cell. Previously, we adapted a primary HIV-1 isolate, ADA, to replicate in CD4-negative canine cells expressing human CCR5. The gp120 changes responsible for CD4-independent replication were limited to the V2 loop-V1/V2 stem. Here we show that elimination of a single glycosylation site at asparagine 197 in the V1/V2 stem is sufficient for CD4-independent gp120 binding to CCR5 and for HIV-1 entry into CD4-negative cells expressing CCR5. Deletion of the V1/V2 loops also allowed CD4-independent viral entry and gp120 binding to CCR5. The binding of the wild-type ADA gp120 to CCR5 was less dependent upon CD4 at 4 degrees C than at 37 degrees C. In the absence of the V1/V2 loops, neither removal of the N-linked carbohydrate at asparagine 197 nor lowering of the temperature increased the CD4-independent phenotypes. A CCR5-binding conformation of gp120, achieved by CD4 interaction or by modification of temperature, glycosylation, or variable loops, was preferentially recognized by the monoclonal antibody 48d. These results suggest that the CCR5-binding region of gp120 is occluded by the V1/V2 variable loops, the position of which can be modulated by temperature, CD4 binding, or an N-linked glycan in the V1/V2 stem.
Collapse
Affiliation(s)
- P Kolchinsky
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, and Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
41
|
Kolchinsky P, Kiprilov E, Sodroski J. Increased neutralization sensitivity of CD4-independent human immunodeficiency virus variants. J Virol 2001; 75:2041-50. [PMID: 11160708 PMCID: PMC114788 DOI: 10.1128/jvi.75.5.2041-2050.2001] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Naturally occurring human immunodeficiency virus (HIV-1) variants require the presence of CD4 and specific chemokine receptors to enter a cell. In the laboratory, HIV-1 variants that are capable of bypassing CD4 and utilizing only the CCR5 chemokine receptor for virus entry have been generated. Here we report that these CD4-independent viruses are significantly more sensitive to neutralization by soluble CD4 and a variety of antibodies. The same amino acid changes in the HIV-1 gp120 envelope glycoprotein determined CD4 independence and neutralization sensitivity. The CD4-independent envelope glycoproteins exhibited higher affinity for antibodies against CD4-induced gp120 epitopes but not other neutralizing ligands. The CD4-independent envelope glycoproteins did not exhibit increased lability relative to the wild-type envelope glycoproteins. The utilization of two receptors apparently allows HIV-1 to maintain a more neutralization-resistant state prior to engaging CD4 on the target cell, explaining the rarity of CD4 independence in wild-type HIV-1.
Collapse
Affiliation(s)
- P Kolchinsky
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
42
|
Holmen SL, Melder DC, Federspiel MJ. Identification of key residues in subgroup A avian leukosis virus envelope determining receptor binding affinity and infectivity of cells expressing chicken or quail Tva receptor. J Virol 2001; 75:726-37. [PMID: 11134286 PMCID: PMC113969 DOI: 10.1128/jvi.75.2.726-737.2001] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2000] [Accepted: 10/13/2000] [Indexed: 11/20/2022] Open
Abstract
To better understand retroviral entry, we have characterized the interactions between subgroup A avian leukosis virus [ALV(A)] envelope glycoproteins and Tva, the receptor for ALV(A), that result in receptor interference. We have recently shown that soluble forms of the chicken and quail Tva receptor (sTva), expressed from genes delivered by retroviral vectors, block ALV(A) infection of cultured chicken cells ( approximately 200-fold antiviral effect) and chickens (>98% of the birds were not infected). We hypothesized that inhibition of viral replication by sTva would select virus variants with mutations in the surface glycoprotein (SU) that altered the binding affinity of the subgroup A SU for the sTva protein and/or altered the normal receptor usage of the virus. Virus propagation in the presence of quail sTva-mIgG, the quail Tva extracellular region fused to the constant region of the mouse immunoglobulin G (IgG) protein, identified viruses with three mutations in the subgroup A hr1 region of SU, E149K, Y142N, and Y142N/E149K. These mutations reduced the binding affinity of the subgroup A envelope glycoproteins for quail sTva-mIgG (32-, 324-, and 4,739-fold, respectively) but did not alter their binding affinity for chicken sTva-mIgG. The ALV(A) mutants efficiently infected cells expressing the chicken Tva receptor but were 2-fold (E149K), 10-fold (Y142N), and 600-fold (Y142N/E149K) less efficient at infecting cells expressing the quail Tva receptor. These mutations identify key determinants of the interaction between the ALV(A) glycoproteins and the Tva receptor. We also conclude from these results that, at least for the wild-type and variant ALV(A)s tested, the receptor binding affinity was directly related to infection efficiency.
Collapse
Affiliation(s)
- S L Holmen
- Molecular Medicine Program, Mayo Clinic and Mayo Foundation, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
43
|
Sanhadji K, Grave L, Touraine JL, Leissner P, Rouzioux C, Firouzi R, Kehrli L, Tardy JC, Mehtali M. Gene transfer of anti-gp41 antibody and CD4 immunoadhesin strongly reduces the HIV-1 load in humanized severe combined immunodeficient mice. AIDS 2000; 14:2813-22. [PMID: 11153662 DOI: 10.1097/00002030-200012220-00002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To study the anti-HIV-1 effects of the delivery of anti-gp41 monoclonal antibody (mAb) and soluble CD4 (sCD4) immunoadhesin by genetically modified cells in HIV-1-infected, humanized severe combined immunodeficient (SCID) mice. DESIGN The complementary DNA of mAb 2F5, an anti-HIV-1 gp41 antibody, and of sCD4-IgG chimeric immunoadhesin were transferred into 3T3 cells using Moloney murine leukaemia virus vectors. The cells were then incorporated into a collagen structure called the neo-organ, which allowed the continuous production of the therapeutic molecules. METHODS The antiviral effects in vivo of 2F5 or sCD4-IgG or both compounds were evaluated in neo-organ-implanted SCID mice that were grafted with human CD4 CEM T cells and challenged with HIV-1 Lai or MN. RESULTS In SCID mice implanted with 2F5 neo-organs, antibody plasma levels reached 500-2000 ng/ml. Viral loads after HIV-1 challenge were significantly reduced in neo-organ-implanted HIV-infected mice. Although 29 x 10(7) and 13 x 10(8) HIV-1-RNA copies/ml were detected at 12 days in the controls (mice injected with Lai and MN, respectively) less than 16.5 x 10(3) HIV-1-RNA copies/ml were observed in all implanted mice injected with either Lai or MN. The intracellular viral load was also reduced in CD4 cells recovered from the implanted mice. Comparable antiviral effects were obtained with CD4-IgG neo-organs. CONCLUSION Our results confirm the anti-HIV properties of 2F5 and sCD4-IgG continuously produced in vivo after ex-vivo gene therapy in SCID mice.
Collapse
Affiliation(s)
- K Sanhadji
- Laboratoires des Déficits Immunitaires et de Rétrovirologie, Faculté de Médecine RTH Laënnec, Lyon, France
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Bannert N, Schenten D, Craig S, Sodroski J. The level of CD4 expression limits infection of primary rhesus monkey macrophages by a T-tropic simian immunodeficiency virus and macrophagetropic human immunodeficiency viruses. J Virol 2000; 74:10984-93. [PMID: 11069993 PMCID: PMC113178 DOI: 10.1128/jvi.74.23.10984-10993.2000] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The entry of primate immunodeficiency viruses into cells is dependent on the interaction of the viral envelope glycoproteins with receptors, CD4, and specific members of the chemokine receptor family. Although in many cases the tropism of these viruses is explained by the qualitative pattern of coreceptor expression, several instances have been observed where the expression of a coreceptor on the cell surface is not sufficient to allow infection by a virus that successfully utilizes the coreceptor in a different context. For example, both the T-tropic simian immunodeficiency virus (SIV) SIVmac239 and the macrophagetropic (M-tropic) SIVmac316 can utilize CD4 and CCR5 as coreceptors, and both viruses can infect primary T lymphocytes, yet only SIVmac316 can efficiently infect CCR5-expressing primary macrophages from rhesus monkeys. Likewise, M-tropic strains of human immunodeficiency virus type 1 (HIV-1) do not infect primary rhesus monkey macrophages efficiently. Here we show that the basis of this restriction is the low level of CD4 on the surface of these cells. Overexpression of human or rhesus monkey CD4 in primary rhesus monkey macrophages allowed infection by both T-tropic and M-tropic SIV and by primary M-tropic HIV-1. By contrast, CCR5 overexpression did not specifically compensate for the inefficient infection of primary monkey macrophages by T-tropic SIV or M-tropic HIV-1. Apparently, the limited ability of these viruses to utilize a low density of CD4 for target cell entry accounts for the restriction of these viruses in primary rhesus monkey macrophages.
Collapse
Affiliation(s)
- N Bannert
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, and Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
45
|
Mori K, Rosenzweig M, Desrosiers RC. Mechanisms for adaptation of simian immunodeficiency virus to replication in alveolar macrophages. J Virol 2000; 74:10852-9. [PMID: 11044136 PMCID: PMC110966 DOI: 10.1128/jvi.74.22.10852-10859.2000] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In contrast to the simian immunodeficiency virus SIVmac239, which replicates poorly in rhesus monkey alveolar macrophages, a variant with nine amino acid changes in envelope (SIVmac239/316E) replicates efficiently and to high titer in these same cells. We examined levels of viral DNA, RNA, antigen, and infectious virus to identify the nature of the block to SIVmac239 replication in these cells. Low levels of viral antigen (0.1 to 1.0 ng of p27 per ml) and infectious virus (100 to 1,000 infectious units per ml) were produced in the supernatant 1 to 4 days after SIVmac239 infection, but these levels did not increase subsequently. SIVmac239 DNA was synthesized in these macrophage cultures during the initial 24 h after infection, but the levels did not increase subsequently. Quantitation of the numbers of infectious cells in cultures over time and the results of experiments in which cells were reexposed to SIVmac239 after the initial exposure indicated that only a small proportion of cells were susceptible to SIVmac239 infection in these alveolar macrophage cultures and that the vast majority (>95%) of cells were refractory to SIVmac239 infection. In contrast to the results with SIVmac239, the levels of viral antigen, infectious virus, and viral DNA increased exponentially 2 to 7 days after infection by SIVmac239/316E, reaching levels greater than 100 ng of p27 per ml and 100,000 infectious units per ml. Since SIVmac239/316E has previously been described as a virus capable of infecting cells in a relatively CD4-independent fashion, we examined the levels of CD4 expression on the surface of fresh and cultured alveolar macrophages from rhesus monkeys. The levels of CD4 expression were extremely low, below the limit of detection by flow cytometry, on greater than 99% of the macrophages. CCR5(+) cells were profoundly depleted only from alveolar macrophage cultures infected with SIVmac239/316E. High concentrations of an antibody to CD4 delayed but did not block replication of SIVmac239/316E. The results suggest that the adaptation of SIVmac316 to efficient replication in alveolar macrophages results from its ability to infect these cells in a CD4-independent fashion or in a CD4-dependent fashion even at extremely low levels of surface CD4 expression. Since resident macrophages in brains and lungs of humans also express little or no CD4, our findings predict the presence of human immunodeficiency virus type 1 that is relatively CD4 independent in the lung and brain compartments of infected people.
Collapse
Affiliation(s)
- K Mori
- AIDS Research Center, Tsukuba Primate Center, National Institute of Infectious Diseases, Tsukuba, Ibaraki 305, Japan
| | | | | |
Collapse
|
46
|
Puffer BA, Sharron M, Coughlan CM, Baribaud F, McManus CM, Lee B, David J, Price K, Horuk R, Tsang M, Doms RW. Expression and coreceptor function of APJ for primate immunodeficiency viruses. Virology 2000; 276:435-44. [PMID: 11040134 DOI: 10.1006/viro.2000.0557] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
APJ is a seven transmembrane domain G-protein-coupled receptor that functions as a coreceptor for some primate immunodeficiency virus strains. The in vivo significance of APJ coreceptor function remains to be elucidated, however, due to the lack of an antibody that can be used to assess APJ expression, and because of the absence of an antibody or ligand that can block APJ coreceptor activity. Therefore, we produced a specific monoclonal antibody (MAb 856) to APJ and found that it detected this receptor in FACS, immunofluorescence, and immunohistochemistry studies. MAb 856 also recognized APJ by Western blot, enabling us to determine that APJ is N-glycosylated. Using this antibody, we correlated APJ expression with coreceptor activity and found that APJ had coreceptor function even at low levels of expression. However, we found that APJ could not be detected by FACS analysis on cell lines commonly used to propagate primate lentiviruses, nor was it expressed on human PBMC cultured under a variety of conditions. We also found that some viral envelope proteins could mediate fusion with APJ-positive, CD4-negative cells, provided that CD4 was added in trans. These findings indicate that in some situations APJ use could render primary cell types susceptible to virus infection, although we have not found any evidence that this occurs. Finally, the peptide ligand for APJ, apelin-13, efficiently blocked APJ coreceptor activity.
Collapse
MESH Headings
- Adipokines
- Animals
- Antibodies, Monoclonal/immunology
- Apelin
- Apelin Receptors
- Carrier Proteins/metabolism
- Cell Line
- Dopamine D2 Receptor Antagonists
- HIV-1/metabolism
- Humans
- Intercellular Signaling Peptides and Proteins
- Leukocytes, Mononuclear
- Mice
- Mice, Inbred BALB C
- Primates
- Receptors, Dopamine D2/biosynthesis
- Receptors, Dopamine D2/immunology
- Receptors, Dopamine D2/physiology
- Receptors, G-Protein-Coupled
- Receptors, HIV/biosynthesis
- Receptors, HIV/immunology
- Receptors, HIV/physiology
- Receptors, Virus/biosynthesis
- Receptors, Virus/immunology
- Receptors, Virus/physiology
- Simian Immunodeficiency Virus/metabolism
- T-Lymphocytes/immunology
- Transfection
Collapse
Affiliation(s)
- B A Puffer
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Zhang Y, Lou B, Lal RB, Gettie A, Marx PA, Moore JP. Use of inhibitors to evaluate coreceptor usage by simian and simian/human immunodeficiency viruses and human immunodeficiency virus type 2 in primary cells. J Virol 2000; 74:6893-910. [PMID: 10888629 PMCID: PMC112207 DOI: 10.1128/jvi.74.15.6893-6910.2000] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have used coreceptor-targeted inhibitors to investigate which coreceptors are used by human immunodeficiency virus type 1 (HIV-1), simian immunodeficiency viruses (SIV), and human immunodeficiency virus type 2 (HIV-2) to enter peripheral blood mononuclear cells (PBMC). The inhibitors are TAK-779, which is specific for CCR5 and CCR2, aminooxypentane-RANTES, which blocks entry via CCR5 and CCR3, and AMD3100, which targets CXCR4. We found that for all the HIV-1 isolates and all but one of the HIV-2 isolates tested, the only relevant coreceptors were CCR5 and CXCR4. However, one HIV-2 isolate replicated in human PBMC even in the presence of TAK-779 and AMD3100, suggesting that it might use an undefined, alternative coreceptor that is expressed in the cells of some individuals. SIV(mac)239 and SIV(mac)251 (from macaques) were also able to use an alternative coreceptor to enter PBMC from some, but not all, human and macaque donors. The replication in human PBMC of SIV(rcm) (from a red-capped mangabey), a virus which uses CCR2 but not CCR5 for entry, was blocked by TAK-779, suggesting that CCR2 is indeed the paramount coreceptor for this virus in primary cells.
Collapse
MESH Headings
- Amides/pharmacology
- Animals
- Anti-HIV Agents/pharmacology
- Benzylamines
- CD4 Antigens/metabolism
- Cell Line
- Chemokine CCL5/analogs & derivatives
- Chemokine CCL5/pharmacology
- Cyclams
- HIV-1/drug effects
- HIV-1/pathogenicity
- HIV-1/physiology
- HIV-2/drug effects
- HIV-2/pathogenicity
- HIV-2/physiology
- Heterocyclic Compounds/pharmacology
- Humans
- Leukocytes, Mononuclear/virology
- Lymphocytes
- Macaca
- Quaternary Ammonium Compounds/pharmacology
- Receptors, CCR2
- Receptors, CCR3
- Receptors, CCR5/metabolism
- Receptors, Chemokine/metabolism
- Receptors, HIV/antagonists & inhibitors
- Receptors, HIV/metabolism
- Receptors, Virus/antagonists & inhibitors
- Receptors, Virus/metabolism
- Simian Immunodeficiency Virus/drug effects
- Simian Immunodeficiency Virus/pathogenicity
- Simian Immunodeficiency Virus/physiology
- Transfection
- Tumor Cells, Cultured
- Virus Replication/drug effects
Collapse
Affiliation(s)
- Y Zhang
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, New York 10016, USA
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
CCR5 and CXCR4 are the major coreceptors that mediate human immunodeficiency virus 1 (HIV-1) infection, while most simian immunodeficiency virus (SIV) isolates use CCR5. A number of alternative coreceptors can also mediate infection of some virus strains in vitro, although little is known about their in vivo relevance. Therefore, we characterized the expression pattern and coreceptor activity of one of these alternative coreceptors, STRL33/Bonzo, using a newly developed monoclonal antibody. In addition to being highly expressed (approximately 1000-7000 STRL33 ABS [antibody binding sites]) on specific subsets of natural killer cells (CD3−/CD16−/low/CD56+ and CD3−/CD16low/CD56−) and CD19+ B lymphocytes (approximately 300-5000 STRL33 ABS), STRL33 was expressed at levels sufficient to support virus infection on freshly isolated, truly naive CD4+/CD45RA+/CD62L+cells (6000-11 000 ABS). STRL33 expression on peripheral blood mononuclear cells (PBMCs) was increased by mitogenic stimulation (OKT3/IL-2 [interleukin-2] had a greater effect than phytohemaglutinin (PHA)/IL-2), but it was dramatically decreased upon Ficoll purification. Infection of CCR5− human peripheral blood lymphocytes (PBLs) showed that 2 different SIV envelope (Env) proteins mediated entry into STRL33+cells. More importantly, the preferential infection of STRL33+ cells in CCR5− PBLs by an R5/X4/STRL33 HIV-1 maternal isolate in the presence of a potent CXCR4 antagonist (AMD3100) suggests that STRL33 can be used as a coreceptor by HIV-1 on primary cells. Rhesus macaque (rh) STRL33 was used less efficiently than human STRL33 by the majority of SIV Env proteins tested despite similar levels of expression, thereby making it less likely that STRL33 is a relevant coreceptor in the rhesus macaque system. In summary, the expression pattern and coreceptor activity of STRL33 suggest its involvement in trafficking of tumor-infiltrating lymphocytes and indicate that STRL33 may be a relevant coreceptor in vivo.
Collapse
|
49
|
Abstract
Abstract
CCR5 and CXCR4 are the major coreceptors that mediate human immunodeficiency virus 1 (HIV-1) infection, while most simian immunodeficiency virus (SIV) isolates use CCR5. A number of alternative coreceptors can also mediate infection of some virus strains in vitro, although little is known about their in vivo relevance. Therefore, we characterized the expression pattern and coreceptor activity of one of these alternative coreceptors, STRL33/Bonzo, using a newly developed monoclonal antibody. In addition to being highly expressed (approximately 1000-7000 STRL33 ABS [antibody binding sites]) on specific subsets of natural killer cells (CD3−/CD16−/low/CD56+ and CD3−/CD16low/CD56−) and CD19+ B lymphocytes (approximately 300-5000 STRL33 ABS), STRL33 was expressed at levels sufficient to support virus infection on freshly isolated, truly naive CD4+/CD45RA+/CD62L+cells (6000-11 000 ABS). STRL33 expression on peripheral blood mononuclear cells (PBMCs) was increased by mitogenic stimulation (OKT3/IL-2 [interleukin-2] had a greater effect than phytohemaglutinin (PHA)/IL-2), but it was dramatically decreased upon Ficoll purification. Infection of CCR5− human peripheral blood lymphocytes (PBLs) showed that 2 different SIV envelope (Env) proteins mediated entry into STRL33+cells. More importantly, the preferential infection of STRL33+ cells in CCR5− PBLs by an R5/X4/STRL33 HIV-1 maternal isolate in the presence of a potent CXCR4 antagonist (AMD3100) suggests that STRL33 can be used as a coreceptor by HIV-1 on primary cells. Rhesus macaque (rh) STRL33 was used less efficiently than human STRL33 by the majority of SIV Env proteins tested despite similar levels of expression, thereby making it less likely that STRL33 is a relevant coreceptor in the rhesus macaque system. In summary, the expression pattern and coreceptor activity of STRL33 suggest its involvement in trafficking of tumor-infiltrating lymphocytes and indicate that STRL33 may be a relevant coreceptor in vivo.
Collapse
|
50
|
Borsetti A, Parolin C, Ridolfi B, Sernicola L, Geraci A, Ensoli B, Titti F. CD4-independent infection of two CD4(-)/CCR5(-)/CXCR4(+) pre-T-cell lines by human and simian immunodeficiency viruses. J Virol 2000; 74:6689-94. [PMID: 10864687 PMCID: PMC112183 DOI: 10.1128/jvi.74.14.6689-6694.2000] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The infection of CD4-negative cells by variants of tissue culture-adapted human immunodeficiency virus type 1 (HIV-1) or HIV-2 strains has been shown to be mediated by the CXCR4 coreceptor. Here we show that two in vitro-established CD4(-)/CCR5(-)/CXCR4(+) human pre-T-cell lines (A3 and A5) can be productively infected by wild-type laboratory-adapted T-cell-tropic HIV-1 and HIV-2 strains in a CD4-independent, CXCR4-dependent fashion. Despite the absence of CCR5 expression, A3 and A5 cells were susceptible to infection by the simian immunodeficiency viruses SIVmac239 and SIVmac316. Thus, at least in A3 and A5 cells, one or more of the chemokine receptors can efficiently support the entry of HIV and SIV isolates in the absence of CD4. These findings suggest that to infect cells of different compartments, HIV and SIV could have evolved in vivo to bypass CD4 and to interact directly with an alternative receptor.
Collapse
Affiliation(s)
- A Borsetti
- Laboratory of Virology, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|