1
|
Thieulent CJ, Carossino M, Reis JKPD, Vissani MA, Barrandeguy ME, Valle-Casuso JC, Balasuriya UBR. Equine infectious anemia virus worldwide prevalence: A 24-year retrospective review of a global equine health concern with far-reaching implications. Vet Microbiol 2025; 306:110548. [PMID: 40359782 DOI: 10.1016/j.vetmic.2025.110548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 05/01/2025] [Accepted: 05/06/2025] [Indexed: 05/15/2025]
Abstract
Equine Infectious Anemia Virus (EIAV), the causative agent of Equine Infectious Anemia (EIA), presents a significant threat to equine populations worldwide. While local EIAV prevalence has been estimated in several studies, no global prevalence has been determined. Thus, this study aimed to review the literature on EIAV prevalence in the 21st century. A comprehensive electronic search was conducted in PubMed, Web of Science, Scopus, Google Scholar, SciELO.org, African Journals Online, and NZresearch.org, yielding 105 articles published between January 1st, 2000, and December 31st, 2024 (spanning 24 years). EIAV prevalence was estimated in 42 countries and is particularly high in Mexico (North America; 27.14 % [95 % CI, 25.11 - 29.17]) and Guatemala (Central America; 15.9 % [95 % CI, 9.66 - 22.14]). While EIAV prevalence in the United States of America (USA) remains low and stable over time, the relatively elevated prevalence in the Southern states, along with their extensive border with Mexico, places these areas at a higher risk. EIAV prevalence estimated per province/state in the USA, Argentina, and Brazil, indicated higher rates in humid and warmer regions. EIAV has a low presence in the Middle East, while the scarcity of epidemiological studies in Africa and Oceania complicates the estimation of EIAV prevalence in these regions. These findings highlight the need for continued intensive surveillance in both high-risk regions and areas lacking data. Given that insect vectors are the primary natural transmission route, global warming may lead to increased vector movement into temperate areas, potentially contributing to a surge in EIAV infections.
Collapse
Affiliation(s)
- Côme J Thieulent
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA.
| | - Mariano Carossino
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA; Louisiana Animal Disease Diagnostic Laboratory (LSU Diagnostics), School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA.
| | - Jenner K P D Reis
- Laboratório de Retroviroses, Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil.
| | - Maria A Vissani
- Instituto de Virología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Escuela de Veterinaria, Facultad de Ciencias Agrarias y Veterinarias, Universidad del Salvador, Pilar, Buenos Aires, Argentina.
| | - Maria E Barrandeguy
- Instituto Nacional de Investigación Agropecuaria (INIA), Plataforma de Investigación en Salud Animal, Estación Experimental La Estanzuela, Colonia, Uruguay.
| | | | - Udeni B R Balasuriya
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
2
|
Schimmich C, Vabret A, Zientara S, Valle-Casuso JC. Equine Infectious Anemia Virus Cellular Partners Along the Viral Cycle. Viruses 2024; 17:5. [PMID: 39861793 PMCID: PMC11769393 DOI: 10.3390/v17010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/21/2024] [Accepted: 12/21/2024] [Indexed: 01/27/2025] Open
Abstract
Equine infectious anemia virus (EIAV) is the simplest described lentivirus within the Retroviridae family, related to the human immunodeficiency viruses (HIV-1 and HIV-2). There is an important interplay between host cells and viruses. Viruses need to hijack cellular proteins for their viral cycle completion and some cellular proteins are antiviral agents interfering with viral replication. HIV cellular partners have been extensively studied and described, with a special attention to host proteins able to inhibit specific steps of the viral cycle, called restriction factors. Viruses develop countermeasures against these restriction factors. Here, we aim to describe host cellular protein partners of EIAV viral replication, being proviral or antiviral. A comprehensive vision of the interactions between the virus and specific host's proteins can help with the discovery of new targets for the design of therapeutics. Studies performed on HIV-1 can provide insights into the functioning of EIAV, as well as differences, as both types of virus research can benefit from each other.
Collapse
Affiliation(s)
- Cécile Schimmich
- ANSES Animal Health Laboratory, PhEED Unit, 14430 Goustranville, France;
| | - Astrid Vabret
- Department of Virology, University of Caen Normandy, Dynamicure INSERM UMR 1311, Centre Hospitalo Universitaire (CHU) Caen, 14000 Caen, France;
| | - Stéphan Zientara
- UMR VIROLOGIE, INRAE, École Nationale Vétérinaire d’Alfort, ANSES Laboratoire de Santé Animale, Université Paris-Est, 94700 Maisons-Alfort, France;
| | - José Carlos Valle-Casuso
- ANSES Animal Health Laboratory, PhEED Unit, 14430 Goustranville, France;
- Mixed Technological Unit “Equine Health and Welfare—Organisation and Traceability of the Equine Industry” (UMT SABOT), 14430 Goustranville, France
| |
Collapse
|
3
|
Zhang Z, Guo K, Chu X, Liu M, Du C, Hu Z, Wang X. Development and evaluation of a test strip for the rapid detection of antibody against equine infectious anemia virus. Appl Microbiol Biotechnol 2024; 108:85. [PMID: 38189948 PMCID: PMC10774152 DOI: 10.1007/s00253-023-12980-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/06/2023] [Accepted: 12/20/2023] [Indexed: 01/09/2024]
Abstract
Equine infectious anemia (EIA) is a contagious disease of horses caused by the equine infectious anemia virus (EIAV). The clinical signs at the acute phase include intermittent high fever, thrombocytopenia, hemorrhage, edema, and anemia. The clinical signs at chronic and relapsing subclinical levels include emaciation and progressive weakness. Surviving horses become lifelong carriers because of the integration of the viral genome into that of the host, and these horses can produce and transmit the virus to other animals. This increases the difficulty of imposing practical control measures to prevent epidemics of this disease. Serological tests measuring the antibodies in equine sera are considered to be a reliable tool for the long-term monitoring of EIA. However, the standard serological tests for EIV either have low sensitivity (e.g., agar gel immunodiffusion test, AGID) or are time consuming to perform (e.g., ELISA and western blotting). The development of a rapid and simple method for detecting the disease is therefore critical to control the spread of EIA. In this study, we designed and developed a colloidal gold immunochromatographic (GICG) test strip to detect antibodies against EIAV based on the double-antigen sandwich. Both the p26 and gp45 proteins were used as the capture antigens, which may help to improve the positive detection rate of the strip. We found that the sensitivity of the test strip was 8 to 16 times higher than those of two commercially available ELISA tests and 128 to 256 times higher than AGID, but 8 to 16 times lower than that of western blotting. The strip has good specificity and stability. When serum samples from experimental horses immunized with the attenuated EIAV vaccine (n = 31) were tested, the results of the test strip showed 100% coincidence with those from NECVB-cELISA and 70.97% with AGID. When testing clinical serum samples (n = 1014), the test strip surprisingly provided greater sensitivity and a higher number of "true positive" results than other techniques. Therefore, we believe that the GICG test strip has demonstrated great potential in the field trials as a simple and effective tool for the detection of antibodies against EIAV. KEY POINTS: • A colloidal gold immunochromatographic (GICG) fast test strip was developed with good specificity, sensitivity, stability, and repeatability • The test strip can be used in point-of-care testing for the primary screening of EIAV antibodies • Both the p26 and gp45 proteins were used as the capture antigens, giving a high positive detection rate in the testing of experimentally infected animal and field samples.
Collapse
Affiliation(s)
- Zenan Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Kui Guo
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaoyu Chu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- Institute of Western Agriculture, the Chinese Academy of Agricultural Sciences, Changji, China
- WOAH Reference Laboratory for Equine Infectious Anemia, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Mingru Liu
- Shenzhen Lvshiyuan Biotechnology Co., Shenzhen, China
| | - Cheng Du
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China.
- WOAH Reference Laboratory for Equine Infectious Anemia, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Zhe Hu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China.
- WOAH Reference Laboratory for Equine Infectious Anemia, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Xiaojun Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China.
- Institute of Western Agriculture, the Chinese Academy of Agricultural Sciences, Changji, China.
- WOAH Reference Laboratory for Equine Infectious Anemia, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China.
| |
Collapse
|
4
|
Wang XF, Zhang X, Ma W, Li J, Wang X. Host cell restriction factors of equine infectious anemia virus. Virol Sin 2023; 38:485-496. [PMID: 37419416 PMCID: PMC10436108 DOI: 10.1016/j.virs.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023] Open
Abstract
Equine infectious anemia virus (EIAV) is a member of the lentivirus genus in the Retroviridae family and is considered an animal model for HIV/AIDS research. An attenuated EIAV vaccine, which was successfully developed in the 1970s by classical serial passage techniques, is the first and only lentivirus vaccine that has been widely used to date. Restriction factors are cellular proteins that provide an early line of defense against viral replication and spread by interfering with various critical steps in the viral replication cycle. However, viruses have evolved specific mechanisms to overcome these host barriers through adaptation. The battle between the viruses and restriction factors is actually a natural part of the viral replication process, which has been well studied in human immunodeficiency virus type 1 (HIV-1). EIAV has the simplest genome composition of all lentiviruses, making it an intriguing subject for understanding how the virus employs its limited viral proteins to overcome restriction factors. In this review, we summarize the current literature on the interactions between equine restriction factors and EIAV. The features of equine restriction factors and the mechanisms by which the EIAV counteract the restriction suggest that lentiviruses employ diverse strategies to counteract innate immune restrictions. In addition, we present our insights on whether restriction factors induce alterations in the phenotype of the attenuated EIAV vaccine.
Collapse
Affiliation(s)
- Xue-Feng Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xiangmin Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Weiwei Ma
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Jiwei Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xiaojun Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| |
Collapse
|
5
|
Hull-Nye D, Meadows T, Smith? SR, Schwartz EJ. Key Factors and Parameter Ranges for Immune Control of Equine Infectious Anemia Virus Infection. Viruses 2023; 15:v15030691. [PMID: 36992401 PMCID: PMC10058099 DOI: 10.3390/v15030691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Equine Infectious Anemia Virus (EIAV) is an important infection in equids, and its similarity to HIV creates hope for a potential vaccine. We analyze a within-host model of EIAV infection with antibody and cytotoxic T lymphocyte (CTL) responses. In this model, the stability of the biologically relevant endemic equilibrium, characterized by the coexistence of long-term antibody and CTL levels, relies upon a balance between CTL and antibody growth rates, which is needed to ensure persistent CTL levels. We determine the model parameter ranges at which CTL and antibody proliferation rates are simultaneously most influential in leading the system towards coexistence and can be used to derive a mathematical relationship between CTL and antibody production rates to explore the bifurcation curve that leads to coexistence. We employ Latin hypercube sampling and least squares to find the parameter ranges that equally divide the endemic and boundary equilibria. We then examine this relationship numerically via a local sensitivity analysis of the parameters. Our analysis is consistent with previous results showing that an intervention (such as a vaccine) intended to control a persistent viral infection with both immune responses should moderate the antibody response to allow for stimulation of the CTL response. Finally, we show that the CTL production rate can entirely determine the long-term outcome, regardless of the effect of other parameters, and we provide the conditions for this result in terms of the identified ranges for all model parameters.
Collapse
Affiliation(s)
- Dylan Hull-Nye
- Department of Mathematics, Washington State University, Pullman, WA 99164, USA
| | - Tyler Meadows
- Department of Mathematics and Statistics, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Stacey R. Smith?
- Department of Mathematics, Faculty of Medicine, The University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Elissa J. Schwartz
- Department of Mathematics and Statistics, School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
- Correspondence:
| |
Collapse
|
6
|
A Novel, Fully Spliced, Accessory Gene in Equine Lentivirus with Distinct Rev-Responsive Element. J Virol 2022; 96:e0098622. [PMID: 36069548 PMCID: PMC9517694 DOI: 10.1128/jvi.00986-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
All lentiviruses encode the accessory protein Rev, whose main biological function is to mediate the nuclear export of unspliced and incompletely spliced viral transcripts by binding to a viral cis-acting element (termed the Rev-responsive element, RRE) within the env-encoding region. Equine infectious anemia virus (EIAV) is a member of the lentivirus genus in the Retroviridae family and is considered an important model for the study of lentivirus pathogenesis. Here, we identified a novel transcript from the EIAV genome that encoded a viral protein, named Mat, with an unknown function. The transcript mat was fully spliced and comprised parts of the coding regions of MA and TM. Interestingly, the expression of Mat depended on Rev and the chromosome region maintenance 1 (CRM1) pathway. Rev could specifically bind to Mat mRNA to promote its nuclear export. We further identified that the first exon of Mat mRNA, which was located within the Gag-encoding region, acted as an unreported RRE. Altogether, we identified a novel fully spliced transcript mat with an unusual RRE, which interacted with Rev for nuclear export through the CRM1 pathway. These findings updated the EIAV genome structure, highlighted the diversification of posttranscriptional regulation patterns in EIAV, and may help to expand the understanding of gene transcription and expression of lentivirus. IMPORTANCE In lentiviruses, the nuclear export of viral transcripts is an important step in controlling viral gene expression. Generally, the unspliced and incompletely spliced transcripts are exported via the CRM1-dependent export pathway in a process mediated by the viral Rev protein by binding to the Rev-responsive element (RRE) located within the Env-coding region. However, the completely spliced transcripts are exported via an endogenous cellular pathway, which was Rev independent. Here, we identified a novel fully spliced transcript from EIAV and demonstrated that it encoded a viral protein, termed Mat. Interestingly, we determined that the expression of Mat depended on Rev and identified that the first exon of Mat mRNA could specifically bind to Rev and be exported to the cytoplasm, which suggested that the first exon of Mat mRNA was a second RRE of EIAV. These findings provided important insights into the Rev-dependent nuclear export of completely spliced transcripts in lentiviruses.
Collapse
|
7
|
Deshiere A, Berthet N, Lecouturier F, Gaudaire D, Hans A. Molecular characterization of Equine Infectious Anemia Viruses using targeted sequence enrichment and next generation sequencing. Virology 2019; 537:121-129. [PMID: 31493650 DOI: 10.1016/j.virol.2019.08.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/13/2019] [Accepted: 08/16/2019] [Indexed: 12/19/2022]
Abstract
Equine infectious anemia virus (EIAV) is responsible of acute disease episodes characterized by fever, anemia, thrombocytopenia and anorexia in equids. The high mutation rate in EIAV genome limited the number of full genome sequences availability. In the present study, we used the SureSelect target enrichment system with Illumina Next Generation Sequencing to characterize the proviral DNA of Equine Infectious Anemia Virus (EIAV) from asymptomatic horses. This approach allows a direct sequencing of the EIAV whole genome without cloning or amplification steps and we could obtain for the first time the complete genomic DNA sequences of French EIAV strains. We analyzed their phylogenetic relationship and genetic variability by comparison with 17 whole EIAV genome sequences from different parts of the world. The results obtained provide new insights into the molecular detection of EIAV and genetic diversity of European viral strains.
Collapse
Affiliation(s)
- Alexandre Deshiere
- ANSES- Laboratory for Animal Health in Normandy, Physiopathology and Epidemiology of Equine Diseases Unit, Goustranville, France
| | - Nicolas Berthet
- Institut Pasteur, Unité Environnement et Risques Infectieux, Cellule d'Intervention Biologique d'Urgence, Paris, France; Centre National de Recherche Scientifique (CNRS) UMR3569, Paris, France
| | - Fanny Lecouturier
- ANSES- Laboratory for Animal Health in Normandy, Physiopathology and Epidemiology of Equine Diseases Unit, Goustranville, France
| | - Delphine Gaudaire
- ANSES- Laboratory for Animal Health in Normandy, Physiopathology and Epidemiology of Equine Diseases Unit, Goustranville, France
| | - Aymeric Hans
- ANSES- Laboratory for Animal Health in Normandy, Physiopathology and Epidemiology of Equine Diseases Unit, Goustranville, France.
| |
Collapse
|
8
|
Validation of an immunoblot assay employing an objective reading system and used as a confirmatory test in equine infectious anaemia surveillance programs. J Virol Methods 2019; 266:77-88. [PMID: 30684508 DOI: 10.1016/j.jviromet.2019.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 11/20/2022]
Abstract
Equine infectious anaemia (EIA) is a blood borne disease that is listed among the notifiable diseases of the World Organisation for Animal Health (OIE). EIA is also regulated by the OIE for the international trading provisions and is generally subject to control programmes. Since 2011, Italy has been conducting a surveillance plan based on a three-tier diagnostic system, using a serological ELISA as screening test, an agar gel immunodiffusion test (AGIDT) as a confirmatory method, and an immunoblot (IB) as an alternative confirmatory assay for discordant results between the first two tests. As for the in-house competitive ELISA (c-ELISA) and the AGIDT, the Italian National Reference Laboratory for EIA (NRL) validated the IB according to the OIE guidelines, employing eight panels containing positive sera, including those from EIA virus (EIAV) proven infected horses, and negative horse, mule and donkey sera collected from different geographical areas. In addition, two international reference image panels were employed for the optimization and the validation of the digital image reading system adopted that allows an impartial measurement of the serum reactivity in the IB assay. The immunological reactivity to EIAV antigens, p26, gp45 and gp90 adsorbed on the IB membrane, determines the serological status of the animal and for EIA, a p26 positive band together with at least one of the other antigen defines a subject as serologically positive for EIAV. For validation, the parameters assessed were threshold values, analytical and diagnostic sensitivity and specificity, repeatability and reproducibility. These parameters were evaluated for each antigen as well as in combination, according to the diagnostic algorithm established above. The validation data defined the IB as having a satisfactory sensitivity, specificity, repeatability and reproducibility for all antigens and species tested. An instrumental recording of the results improves the confidence in using IB as a confirmatory test for EIAV, differently from the AGIDT that is read by an operator. The advantages of using the IB are its higher sensitivity, to that of the AGIDT, which allows an earlier detection of infection that reduces the risk of transmission and therefore the incidence of the EIA, and its higher specificity to that of the ELISA which is based on the discrimination of subjects reacting only against the p26, the antigen used by all ELISAs available, which are not considered as infected by EIAV. In particular, when this assay is used in outbreaks it can detect new cases earlier than the AGIDT, and therefore reduce the restriction period with an economic benefit for the animal owners and the public veterinary sanitary system.
Collapse
|
9
|
Gaudaire D, Lecouturier F, Ponçon N, Morilland E, Laugier C, Zientara S, Hans A. Molecular characterization of equine infectious anaemia virus from a major outbreak in southeastern France. Transbound Emerg Dis 2017; 65:e7-e13. [PMID: 28503813 DOI: 10.1111/tbed.12657] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Indexed: 12/25/2022]
Abstract
In 2009, a major outbreak of equine infectious anaemia (EIA) was reported in the south-east of France. This outbreak affected three premises located in the Var region where the index case, a 10-year-old mare that exhibited clinical signs consistent with EIA, occurred at a riding school. Overall, more than 250 horses were tested for EIAV (equine infectious anaemia virus) antibodies, using agar gel immunodiffusion test, and 16 horses were positive in three different holdings. Epidemiological survey confirmed that the three premises were related through the purchase/sale of horses and the use of shared or nearby pastures. Molecular characterization of viruses was performed by sequencing the full gag gene sequence (1,400 bp) of the proviral DNAs retrieved from the spleen of infected animals collected post-mortem. Phylogenetic analysis confirmed epidemiological data from the field, as viruses isolated from the three premises were clustering together suggesting a common origin whereas some premises were 50 km apart. Moreover, viruses characterized during this outbreak are different from European strains described so far, underlying the high genetic diversity of EIAV in Europe.
Collapse
Affiliation(s)
- D Gaudaire
- Virology Unit, ANSES-Dozulé Laboratory for Equine Diseases, Goustranville, France
| | - F Lecouturier
- Virology Unit, ANSES-Dozulé Laboratory for Equine Diseases, Goustranville, France
| | - N Ponçon
- Direction Générale de l'Alimentation, Ministère de l'Agriculture, Paris, France
| | - E Morilland
- Virology Unit, ANSES-Dozulé Laboratory for Equine Diseases, Goustranville, France
| | - C Laugier
- Virology Unit, ANSES-Dozulé Laboratory for Equine Diseases, Goustranville, France
| | - S Zientara
- Anses Maisons-Alfort Laboratory for Animal Health, UMR1161 Virologie, Université Paris-Est, Maisons-Alfort, France
| | - A Hans
- Virology Unit, ANSES-Dozulé Laboratory for Equine Diseases, Goustranville, France
| |
Collapse
|
10
|
Amino acid mutations in the env gp90 protein that modify N-linked glycosylation of the Chinese EIAV vaccine strain enhance resistance to neutralizing antibodies. Virus Genes 2016; 52:814-822. [PMID: 27572122 DOI: 10.1007/s11262-016-1382-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/12/2016] [Indexed: 02/05/2023]
Abstract
The Chinese EIAV vaccine is an attenuated live virus vaccine obtained by serial passage of a virulent horse isolate (EIAVL) in donkeys (EIAVD) and, subsequently, in donkey cells in vitro. In this study, we compare the env gene of the original horse virulent virus (EIAVL) with attenuated strains serially passaged in donkey MDM (EIAVDLV) and donkey dermal cells (EIAVFDDV). Genetic comparisons among parental and attenuated strains found that vaccine strains contained amino acid substitutions/deletions in gp90 that resulted in a loss of three potential N-linked glycosylation sites, designated g5, g9, and g10. To investigate the biological significance of these changes, reverse-mutated viruses were constructed in the backbone of the EIAVFDDV infectious molecular clone (pLGFD3). The resulting virus stocks were characterized for replication efficiency in donkey dermal cells and donkey MDM, and were tested for sensitivity to neutralization using sera from two ponies experimentally infected with EIAVFDDV. Results clearly show that these mutations generated by site-directed mutagenesis resulted in cloned viruses with enhanced resistance to serum neutralizing antibodies that were also able to recognize parental viruses. This study indicates that these mutations played an important role in the attenuation of the EIAV vaccine strains.
Collapse
|
11
|
Evolution of equine infectious anaemia in naturally infected mules with different serological reactivity patterns prior and after immune suppression. Vet Microbiol 2016; 189:15-23. [PMID: 27259822 DOI: 10.1016/j.vetmic.2016.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 03/25/2016] [Accepted: 04/04/2016] [Indexed: 11/21/2022]
Abstract
Information on equine infectious anaemia (EIA) in mules, including those with an equivocal reaction in agar gel immunodiffusion test (AGIDT), is scarce. For this, a study was conducted to evaluate the clinical, viral loads and pathological findings of two groups of naturally infected asymptomatic mules, respectively with a negative/equivocal and positive AGIDT reactivity, which were subjected to pharmacological immune suppression (IS). A non-infected control was included in the study that remained negative during the observation period. Throughout the whole study, even repeated episodes of recrudescence of EIA were observed in 9 infected mules, independently from their AGIDT reactivity. These events were generally characterised by mild, transient alterations, typical of the EIA acute form represented by hyperthermia and thrombocytopenia, in concomitance with viral RNA (vRNA) peaks that were higher in the Post-IS period, reaching values similar to those of horses during the clinical acute phase of EIA. Total tissue viral nucleic acid loads were greatest in animals with the major vRNA activity and in particular in those with negative/equivocal AGIDT reactivity. vRNA replication levels were around 10-1000 times lower than those reported in horses, with the animals still presenting typical alterations of EIA reactivation. Macroscopic lesions were absent in all the infected animals while histological alterations were characterised by lymphomonocyte infiltrates and moderate hemosiderosis in the cytoplasm of macrophages. On the basis of the above results, even mules with an equivocal/negative AGIDT reaction may act as EIAV reservoirs. Moreover, such animals could escape detection due to the low AGIDT sensitivity and therefore contribute to the maintenance and spread of the infection.
Collapse
|
12
|
Craigo JK, Ezzelarab C, Cook SJ, Liu C, Horohov D, Issel CJ, Montelaro RC. Protective efficacy of centralized and polyvalent envelope immunogens in an attenuated equine lentivirus vaccine. PLoS Pathog 2015; 11:e1004610. [PMID: 25569288 PMCID: PMC4287611 DOI: 10.1371/journal.ppat.1004610] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 12/07/2014] [Indexed: 11/18/2022] Open
Abstract
Lentiviral Envelope (Env) antigenic variation and related immune evasion present major hurdles to effective vaccine development. Centralized Env immunogens that minimize the genetic distance between vaccine proteins and circulating viral isolates are an area of increasing study in HIV vaccinology. To date, the efficacy of centralized immunogens has not been evaluated in the context of an animal model that could provide both immunogenicity and protective efficacy data. We previously reported on a live-attenuated (attenuated) equine infectious anemia (EIAV) virus vaccine, which provides 100% protection from disease after virulent, homologous, virus challenge. Further, protective efficacy demonstrated a significant, inverse, linear relationship between EIAV Env divergence and protection from disease when vaccinates were challenged with viral strains of increasing Env divergence from the vaccine strain Env. Here, we sought to comprehensively examine the protective efficacy of centralized immunogens in our attenuated vaccine platform. We developed, constructed, and extensively tested a consensus Env, which in a virulent proviral backbone generated a fully replication-competent pathogenic virus, and compared this consensus Env to an ancestral Env in our attenuated proviral backbone. A polyvalent attenuated vaccine was established for comparison to the centralized vaccines. Additionally, an engineered quasispecies challenge model was created for rigorous assessment of protective efficacy. Twenty-four EIAV-naïve animals were vaccinated and challenged along with six-control animals six months post-second inoculation. Pre-challenge data indicated the consensus Env was more broadly immunogenic than the Env of the other attenuated vaccines. However, challenge data demonstrated a significant increase in protective efficacy of the polyvalent vaccine. These findings reveal, for the first time, a consensus Env immunogen that generated a fully-functional, replication-competent lentivirus, which when experimentally evaluated, demonstrated broader immunogenicity that does not equate to higher protective efficacy.
Collapse
Affiliation(s)
- Jodi K. Craigo
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| | - Corin Ezzelarab
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Sheila J. Cook
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky, United States of America
| | - Chong Liu
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky, United States of America
| | - David Horohov
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky, United States of America
| | - Charles J. Issel
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky, United States of America
| | - Ronald C. Montelaro
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
13
|
Liu C, Cook SJ, Craigo JK, Cook FR, Issel CJ, Montelaro RC, Horohov DW. Epitope shifting of gp90-specific cellular immune responses in EIAV-infected ponies. Vet Immunol Immunopathol 2014; 161:161-9. [PMID: 25176006 DOI: 10.1016/j.vetimm.2014.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 07/02/2014] [Accepted: 08/04/2014] [Indexed: 11/16/2022]
Abstract
Unlike other lentiviruses, EIAV replication can be controlled in most infected horses leading to an inapparent carrier state free of overt clinical signs which lasts for many years. While the resolution of the initial infection is correlated with the appearance of virus specific cellular immune responses, the precise immune mechanisms responsible for control of the infection are not yet identified. Since the virus undergoes rapid mutation following infection, the immune response must also adapt to meet this challenge. We hypothesize that this adaptation involves peptide-specific recognition shifting from immunodominant variable determinants to conserved immunorecessive determinants following EIAV infection. Forty-four peptides, spanning the entire surface unit protein (gp90) of EIAV, were used to monitor peptide-specific T cell responses in vivo over a six-month period following infection. Peptides were injected intradermally and punch biopsies were collected for real-time PCR analysis to monitor the cellular peptide-specific immune responses in vivo. Similar to the CMI response to HIV infection, peptide-specific T cell recognition patterns changed over time. Early post infection (1 month), immune responses were directed to the peptides in the carboxyl-terminus variable region. By six months post infection, the peptide recognition spanned the entire gp90 sequence. These results indicate that peptide recognition broadens during EIAV infection.
Collapse
Affiliation(s)
- Chong Liu
- Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Sheila J Cook
- Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Jodi K Craigo
- Center for Vaccine Research and Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Frank R Cook
- Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Charles J Issel
- Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Ronald C Montelaro
- Center for Vaccine Research and Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - David W Horohov
- Department of Veterinary Science, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
14
|
Ciupe SM, Schwartz EJ. Understanding virus-host dynamics following EIAV infection in SCID horses. J Theor Biol 2014; 343:1-8. [PMID: 24252283 DOI: 10.1016/j.jtbi.2013.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 11/07/2013] [Accepted: 11/08/2013] [Indexed: 11/18/2022]
Abstract
We develop a mathematical model for the interaction between two competing equine infectious anemia virus strains and neutralizing antibodies. We predict that elimination of one or both virus strains depends on the initial antibody levels, the strength of antibody mediated neutralization, and the persistence of antibody over time. We further show that the ability of a subdominant, neutralization resistant virus to dominate the infection transiently or permanently is dependent on the antibody-mediated neutralization effect. Finally, we determine conditions for persistence of both virus strains. We fit our models to virus titers from horses (foals) with severe combined immunodeficiency to estimate virus-host parameters and to validate analytical results.
Collapse
Affiliation(s)
- Stanca M Ciupe
- Department of Mathematics, Virginia Tech, Blacksburg, VA 24060, United States.
| | - Elissa J Schwartz
- School of Biological Sciences and Department of Mathematics, Washington State University, Pullman, WA 99164, United States
| |
Collapse
|
15
|
Craigo JK, Montelaro RC. Lessons in AIDS vaccine development learned from studies of equine infectious, anemia virus infection and immunity. Viruses 2013; 5:2963-76. [PMID: 24316675 PMCID: PMC3967156 DOI: 10.3390/v5122963] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 11/20/2013] [Accepted: 11/25/2013] [Indexed: 11/16/2022] Open
Abstract
Equine infectious anemia (EIA), identified in 1843 [1] as an infectious disease of horses and as a viral infection in 1904, remains a concern in veterinary medicine today. Equine infectious anemia virus (EIAV) has served as an animal model of HIV-1/AIDS research since the original identification of HIV. Similar to other lentiviruses, EIAV has a high propensity for genomic sequence and antigenic variation, principally in its envelope (Env) proteins. However, EIAV possesses a unique and dynamic disease presentation that has facilitated comprehensive analyses of the interactions between the evolving virus population, progressive host immune responses, and the definition of viral and host correlates of immune control and vaccine efficacy. Summarized here are key findings in EIAV that have provided important lessons toward understanding long term immune control of lentivirus infections and the parameters for development of an enduring broadly protective AIDS vaccine.
Collapse
Affiliation(s)
- Jodi K Craigo
- Center for Vaccine Research, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | |
Collapse
|
16
|
Development, evaluation, and laboratory validation of immunoassays for the diagnosis of equine infectious anemia (EIA) using recombinant protein produced from a synthetic p26 gene of EIA virus. INDIAN JOURNAL OF VIROLOGY : AN OFFICIAL ORGAN OF INDIAN VIROLOGICAL SOCIETY 2013; 24:349-56. [PMID: 24426297 DOI: 10.1007/s13337-013-0149-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 07/24/2013] [Indexed: 10/26/2022]
Abstract
Equine infectious anemia (EIA)-a retroviral disease caused by equine infectious anemia virus (EIAV)-is a chronic, debilitating disease of horses, mules, and donkeys. EIAV infection has been reported worldwide and is recognized as pathogen of significant economic importance to the horse industry. This disease falls under regulatory control program in many countries including India. Control of EIA is based on identification of inapparent carriers by detection of antibodies to EIAV in serologic tests and "Stamping Out" policy. The current internationally accepted test for diagnosis of EIA is the agar gel immune-diffusion test (AGID), which detects antibodies to the major gag gene (p26) product. The objective of this study was to develop recombinant p26 based in-house immunoassays [enzyme linked immunosorbent assays (ELISA), and AGID] for EIA diagnosis. The synthetic p26 gene of EIAV was expressed in Escherichia coli and diagnostic potential of recombinant p26 protein were evaluated in ELISA and AGID on 7,150 and 1,200 equine serum samples, respectively, and compared with commercial standard AGID kit. The relative sensitivity and specificity of the newly developed ELISA were 100 and 98.6 %, respectively. Whereas, relative sensitivity and specificity of the newly developed AGID were in complete agreement in respect to commercial AGID kit. Here, we have reported the validation of an ELISA and AGID on large number of equine serum samples using recombinant p26 protein produced from synthetic gene which does not require handling of pathogenic EIAV. Since the indigenously developed reagents would be economical than commercial diagnostic kit, the rp26 based-immunoassays could be adopted for the sero-diagnosis and control of EIA in India.
Collapse
|
17
|
Sero-surveillance of equine infectious anemia virus in equines in India during more than a decade (1999-2012). INDIAN JOURNAL OF VIROLOGY : AN OFFICIAL ORGAN OF INDIAN VIROLOGICAL SOCIETY 2013; 24:386-90. [PMID: 24426302 DOI: 10.1007/s13337-013-0142-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 06/20/2013] [Indexed: 10/26/2022]
Abstract
Equine infectious anemia (EIA) is a retroviral infection of horses. Horses infected by EIA virus (EIAV) become inapparent carriers that remain asymptomatic for the remainder of their life span and serve as infection source to other horses. In this study, agar gel immunodiffusion test and ELISA were used to investigate the presence of antibodies to EIAV in equines. A total of 67,042 equine serum samples from 19 states and two union territories were tested during April 1999 to September 2012. The results revealed that none of the animals were positive for antibodies to EIAV from 1999 to December 2009. However, two EIAV sero-positive cases one each from indigenous and thoroughbred equines were detected in 2010 and 2012, respectively. Occurrence of EIA after a long gap of 11 years is indicative of reemergence of EIA in India which warrants concerted efforts in nationwide surveillance and monitoring for detection and elimination of EIAV carrier animals to prevent EIA outbreak.
Collapse
|
18
|
Craigo JK, Ezzelarab C, Cook SJ, Chong L, Horohov D, Issel CJ, Montelaro RC. Envelope determinants of equine lentiviral vaccine protection. PLoS One 2013; 8:e66093. [PMID: 23785473 PMCID: PMC3682429 DOI: 10.1371/journal.pone.0066093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 05/02/2013] [Indexed: 11/18/2022] Open
Abstract
Lentiviral envelope (Env) antigenic variation and associated immune evasion present major obstacles to vaccine development. The concept that Env is a critical determinant for vaccine efficacy is well accepted, however defined correlates of protection associated with Env variation have yet to be determined. We reported an attenuated equine infectious anemia virus (EIAV) vaccine study that directly examined the effect of lentiviral Env sequence variation on vaccine efficacy. The study identified a significant, inverse, linear correlation between vaccine efficacy and increasing divergence of the challenge virus Env gp90 protein compared to the vaccine virus gp90. The report demonstrated approximately 100% protection of immunized ponies from disease after challenge by virus with a homologous gp90 (EV0), and roughly 40% protection against challenge by virus (EV13) with a gp90 13% divergent from the vaccine strain. In the current study we examine whether the protection observed when challenging with the EV0 strain could be conferred to animals via chimeric challenge viruses between the EV0 and EV13 strains, allowing for mapping of protection to specific Env sequences. Viruses containing the EV13 proviral backbone and selected domains of the EV0 gp90 were constructed and in vitro and in vivo infectivity examined. Vaccine efficacy studies indicated that homology between the vaccine strain gp90 and the N-terminus of the challenge strain gp90 was capable of inducing immunity that resulted in significantly lower levels of post-challenge virus and significantly delayed the onset of disease. However, a homologous N-terminal region alone inserted in the EV13 backbone could not impart the 100% protection observed with the EV0 strain. Data presented here denote the complicated and potentially contradictory relationship between in vitro virulence and in vivo pathogenicity. The study highlights the importance of structural conformation for immunogens and emphasizes the need for antibody binding, not neutralizing, assays that correlate with vaccine protection.
Collapse
Affiliation(s)
- Jodi K Craigo
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.
| | | | | | | | | | | | | |
Collapse
|
19
|
Amplification of complete gag gene sequences from geographically distinct equine infectious anemia virus isolates. J Virol Methods 2013; 189:41-6. [DOI: 10.1016/j.jviromet.2012.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 09/22/2012] [Accepted: 12/17/2012] [Indexed: 11/17/2022]
|
20
|
Quinlivan M, Cook F, Kenna R, Callinan JJ, Cullinane A. Genetic characterization by composite sequence analysis of a new pathogenic field strain of equine infectious anemia virus from the 2006 outbreak in Ireland. J Gen Virol 2013; 94:612-622. [DOI: 10.1099/vir.0.047191-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Equine infectious anemia virus (EIAV), the causative agent of equine infectious anaemia (EIA), possesses the least-complex genomic organization of any known extant lentivirus. Despite this relative genetic simplicity, all of the complete genomic sequences published to date are derived from just two viruses, namely the North American EIAVWYOMING (EIAVWY) and Chinese EIAVLIAONING (EIAVLIA) strains. In 2006, an outbreak of EIA occurred in Ireland, apparently as a result of the importation of contaminated horse plasma from Italy and subsequent iatrogenic transmission to foals. This EIA outbreak was characterized by cases of severe, sometimes fatal, disease. To begin to understand the molecular mechanisms underlying this pathogenic phenotype, complete proviral genomic sequences in the form of 12 overlapping PCR-generated fragments were obtained from four of the EIAV-infected animals, including two of the index cases. Sequence analysis of multiple molecular clones produced from each fragment demonstrated the extent of diversity within individual viral genes and permitted construction of consensus whole-genome sequences for each of the four viral isolates. In addition, complete env gene sequences were obtained from 11 animals with differing clinical profiles, despite exposure to a common EIAV source. Although the overall genomic organization of the Irish EIAV isolates was typical of that seen in all other strains, the European viruses possessed ≤80 % nucleotide sequence identity with either EIAVWY or EIAVLIA. Furthermore, phylogenetic analysis suggested that the Irish EIAV isolates developed independently of the North American and Chinese viruses and that they constitute a separate monophyletic group.
Collapse
Affiliation(s)
- Michelle Quinlivan
- Virology Unit, Irish Equine Centre, Johnstown, Naas, Co. Kildare, Ireland
| | - Frank Cook
- Gluck Equine Research Centre, Department of Veterinary Science, University of Kentucky, Lexington, KY 40545, USA
| | - Rachel Kenna
- Virology Unit, Irish Equine Centre, Johnstown, Naas, Co. Kildare, Ireland
| | - John J. Callinan
- Veterinary Science Centre, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ann Cullinane
- Virology Unit, Irish Equine Centre, Johnstown, Naas, Co. Kildare, Ireland
| |
Collapse
|
21
|
Dong JB, Zhu W, Cook FR, Goto Y, Horii Y, Haga T. Identification of a novel equine infectious anemia virus field strain isolated from feral horses in southern Japan. J Gen Virol 2013; 94:360-365. [DOI: 10.1099/vir.0.047498-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although equine infectious anemia (EIA) was described more than 150 years ago, complete genomic sequences have only been obtained from two field strains of EIA virus (EIAV), EIAVWyoming and EIAVLiaoning. In 2011, EIA was detected within the distinctive feral Misaki horse population that inhabits the Toi-Cape area of southern Japan. Complete proviral sequences comprising a novel field strain were amplified directly from peripheral blood of one of these EIAV-infected horses and characterized by nucleotide sequencing. The complete provirus of Miyazaki2011-A strain is 8208 bp in length with an overall genomic organization typical of EIAV. However, this field isolate possesses just 77.2 and 78.7 % nucleotide sequence identity with the EIAVWyoming and EIAVLiaoning strains, respectively, while similarity plot analysis suggested all three strains arose independently. Furthermore, phylogenetic studies using sequences obtained from all EIAV-infected Misaki horses against known viral strains strongly suggests these Japanese isolates comprise a separate monophyletic group.
Collapse
Affiliation(s)
- Jian-Bao Dong
- The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi 753-8511, Japan
- Research Fellow DC of the Japan Society for the Promotion of Science, Tokyo 102-8472, Japan
- Departments of Veterinary Microbiology, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Wei Zhu
- Research Fellow DC of the Japan Society for the Promotion of Science, Tokyo 102-8472, Japan
- Departments of Veterinary Microbiology, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Frank R. Cook
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40506, USA
| | - Yoshitaka Goto
- Departments of Veterinary Microbiology, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Yoichiro Horii
- Veterinary Parasitic Diseases, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Takeshi Haga
- Division of Infection Control and Disease Prevention, Department of Veterinary Medical Science, University of Tokyo, Tokyo 113-8654, Japan
| |
Collapse
|
22
|
Caij AB, Tignon M. Epidemiology and Genetic Characterization of Equine Infectious Anaemia Virus Strains Isolated in Belgium in 2010. Transbound Emerg Dis 2012; 61:464-8. [DOI: 10.1111/tbed.12031] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Indexed: 11/26/2022]
Affiliation(s)
- A. B. Caij
- Unit Enzootic and (Re-) Emerging Viral Disease; Operational Direction of Viral Diseases; Veterinary and Agrochemical Research Centre; Brussels Belgium
| | - M. Tignon
- Unit Enzootic and (Re-) Emerging Viral Disease; Operational Direction of Viral Diseases; Veterinary and Agrochemical Research Centre; Brussels Belgium
| |
Collapse
|
23
|
Craigo JK, Ezzelarab C, Montelaro RC. Development of a high throughput, semi-automated, infectious center cell-based ELISA for equine infectious anemia virus. J Virol Methods 2012; 185:221-7. [PMID: 22820072 DOI: 10.1016/j.jviromet.2012.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 06/28/2012] [Accepted: 07/04/2012] [Indexed: 11/26/2022]
Abstract
A faster semi-automated 96-well microtiter plate assay to determine viral infectivity titers, or viral focal units (vfu), of equine infectious anemia virus (EIAV) stocks is described. Optimization of the existing method modernizes a classic virological technique for viral titer determination by quantitating EIAV in experimentally infected cells via a cell-based ELISA. To allow for automation, multiple parameters of the current assay procedures were modified resulting in an assay that required only one quarter the original amount of virus and/or serum for infectivity or neutralization assays, respectively. Equivalent reductions in the required volumes of tissue culture, cell processing, and protein detection reagents were also achieved. Additionally, the new assay decreased the time required from start to finish from 10 days to 6 days (viral titer) or 7 days (viral neutralization), while increasing the number of samples that can be processed concurrently by transition to a 96-well microtiter plate format and by automated counting.
Collapse
Affiliation(s)
- Jodi K Craigo
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | | | |
Collapse
|
24
|
Sponseller BA, Clark SK, Friedrich RA. Mechanisms of equine infectious anemia virus escape from neutralizing antibody responses define epitope specificity. Viral Immunol 2012; 25:324-8. [PMID: 22746986 DOI: 10.1089/vim.2012.0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Determining mechanisms of viral escape to particular epitopes recognized by virus-neutralizing antibody can facilitate characterization of host-neutralizing antibody responses as type- versus group-specific, and provides necessary information for vaccine development. Our study reveals that a single N-glycan located in the 5' region of the Wyoming wild-type equine infectious anemia virus (EIAV) principal neutralizing domain (PND) accounts for the differences in neutralization phenotype observed between PND variants, while variations in charged amino acids within the PND do not appear to play a key role in viral escape. Site-directed mutagenesis and peptide mapping of a conserved epitope to neutralizing antibody in the 3' region of the PND showed rapid selective pressure for acquisition of a 5' PND N-glycan responsible for defining the specificity of the neutralizing-antibody response.
Collapse
Affiliation(s)
- Brett A Sponseller
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa 50011, USA.
| | | | | |
Collapse
|
25
|
Lin YZ, Shen RX, Zhu ZY, Deng XL, Cao XZ, Wang XF, Ma J, Jiang CG, Zhao LP, Lv XL, Shao YM, Zhou JH. An attenuated EIAV vaccine strain induces significantly different immune responses from its pathogenic parental strain although with similar in vivo replication pattern. Antiviral Res 2011; 92:292-304. [PMID: 21893100 DOI: 10.1016/j.antiviral.2011.08.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 07/25/2011] [Accepted: 08/18/2011] [Indexed: 01/06/2023]
Abstract
The EIAV (equine infectious anemia virus) multi-species attenuated vaccine EIAV(DLV121) successfully prevented the spread of equine infectious anemia (EIA) in China in the 1970s and provided an excellent model for the study of protective immunity to lentiviruses. In this study, we compared immune responses induced by EIAV(DLV121) to immunity elicited by the virulent EIAV(LN40) strain and correlated immune responses to protection from infection. Horses were randomly grouped and inoculated with either EIAV(DLV121) (Vaccinees, Vac) or a sublethal dose of EIAV(LN40) (asymptomatic carriers, Car). Car horses became EIAV(LN40) carriers without disease symptoms. Two of the four Vac horses were protected against infection and the other two had delayed onset or reduced severity of EIA with a lethal EIAV(LN40) challenge 5.5 months post initial inoculation. In contrast, all three Car animals developed acute EIA and two succumbed to death. Specific humoral and cellular immune responses in both Vac and Car groups were evaluated for potential correlations with protection. These analyses revealed that although plasma viral loads remained between 10(3) and 10(5)copies/ml for both groups before EIAV(LN40) challenge, Vac-treated animals developed significantly higher levels of conformational dependent, Env-specific antibody, neutralizing antibody as well as significantly elevated CD4(+) T cell proliferation and IFN-γ-secreting CD8(+) T cells than those observed in EIAV(LN40) asymptomatic carriers. Further analysis of protected and unprotected cases in vaccinated horses identified that cellular response parameters and the reciprocal anti-p26-specific antibody titers closely correlated with protection against infection with the pathogenic EIAV(LN40). These data provide a better understanding of protective immunity to lentiviruses.
Collapse
Affiliation(s)
- Yue-Zhi Lin
- State Key Laboratory of Veterinary Biotechnology, Division of Livestock Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Protective effects of broadly neutralizing immunoglobulin against homologous and heterologous equine infectious anemia virus infection in horses with severe combined immunodeficiency. J Virol 2011; 85:6814-8. [PMID: 21543497 DOI: 10.1128/jvi.00077-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using the equine infectious anemia virus (EIAV) lentivirus model system, we previously demonstrated protective effects of broadly neutralizing immune plasma in young horses (foals) with severe combined immunodeficiency (SCID). However, in vivo selection of a neutralization-resistant envelope variant occurred. Here, we determined the protective effects of purified immunoglobulin with more potent broadly neutralizing activity. Overall, protection correlated with the breadth and potency of neutralizing activity in vitro. Four of five SCID foals were completely protected against homologous challenge, while partial protection occurred following heterologous challenge. These results support the inclusion of broadly neutralizing antibodies in lentivirus control strategies.
Collapse
|
27
|
Craigo JK, Barnes S, Cook SJ, Issel CJ, Montelaro RC. Divergence, not diversity of an attenuated equine lentivirus vaccine strain correlates with protection from disease. Vaccine 2010; 28:8095-104. [PMID: 20955830 DOI: 10.1016/j.vaccine.2010.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 08/17/2010] [Accepted: 10/01/2010] [Indexed: 10/18/2022]
Abstract
We recently reported an attenuated EIAV vaccine study that directly examined the effect of lentiviral envelope sequence variation on vaccine efficacy. The study [1] demonstrated for the first time the failure of an ancestral vaccine to protect and revealed a significant, inverse, linear relationship between envelope divergence and protection from disease. In the current study we examine in detail the evolution of the attenuated vaccine strain utilized in this previous study. We demonstrate here that the attenuated strain progressively evolved during the six-month pre-challenge period and that the observed protection from disease was significantly associated with divergence from the original vaccine strain.
Collapse
Affiliation(s)
- Jodi K Craigo
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
28
|
Han X, Zou J, Wang X, Guo W, Huo G, Shen R, Xiang W. Amino acid mutations in the env gp90 protein that modify N-linked glycosylation of the Chinese EIAV vaccine strain enhance resistance to neutralizing antibodies. Viral Immunol 2010; 23:531-9. [PMID: 20883167 DOI: 10.1089/vim.2009.0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Chinese EIAV vaccine is an attenuated live-virus vaccine obtained by serial passage of a virulent horse isolate (EIAV(L)) in donkeys (EIAV(D)), and subsequently in donkey cells in vitro. In this study, we compare the env gene of the original horse virulent virus (EIAV(L)) with attenuated strains serially passaged in donkey MDM (EIAV(DLV)), and donkey dermal cells (EIAV(FDDV)). Genetic comparisons among parental and attenuated strains found that vaccine strains contained amino acid substitutions/deletions in gp90 that resulted in a loss of three potential N-linked glycosylation sites, designated g5, g9, and g10. To investigate the biological significance of these changes, reverse-mutated viruses were constructed in the backbone of the EIAV(FDDV) infectious molecular clone (pLGFD3). The resulting virus stocks were characterized for replication efficiency in donkey dermal cells and donkey MDM, and were tested for sensitivity to neutralization using sera from two ponies experimentally infected with EIAV(FDDV). The results clearly show that these mutations generated by site-directed mutagenesis resulted in cloned viruses with enhanced resistance to serum-neutralizing antibodies that were also able to recognize parental viruses. The results of this study indicate that these mutations play an important role in the attenuation of the EIAV vaccine strains.
Collapse
Affiliation(s)
- Xiue Han
- Heilongjiang Dairy Industry Technical Development Center, Northeast Agricultural University, Harbin, China.
| | | | | | | | | | | | | |
Collapse
|
29
|
Covaleda L, Fuller FJ, Payne SL. EIAV S2 enhances pro-inflammatory cytokine and chemokine response in infected macrophages. Virology 2009; 397:217-23. [PMID: 19945727 DOI: 10.1016/j.virol.2009.11.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 10/06/2009] [Accepted: 11/04/2009] [Indexed: 10/20/2022]
Abstract
Equine infectious anemia virus (EIAV) infection is distinctive in that it causes a rapid onset of clinical disease relative to other retroviruses. In order to understand the interaction dynamics between EIAV and the host immune response, we explored the effects of EIAV and its S2 protein in the regulation of the cytokine and chemokine response in macrophages. EIAV infection markedly altered the expression pattern of a variety of pro-inflammatory cytokines and chemokines monitored in the study. Comparative studies in the cytokine response between EIAV(17) and EIAV(17DeltaS2) infection revealed that S2 enhances the expression of IL-1alpha, IL-1beta, IL-8, MCP-2, MIP-1beta and IP-10. Moreover, S2 specifically induced the expression of the newly discovered cytokine, IL-34. Taken together, these results may help explain the effect of cytokine and chemokine dysregulation in EIAV pathogenesis and suggest a role of S2 in optimizing the host cell environment to promote viral dissemination and replication.
Collapse
Affiliation(s)
- Lina Covaleda
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, MS4467, College Station, TX 77843-4467, USA
| | | | | |
Collapse
|
30
|
Craigo JK, Barnes S, Zhang B, Cook SJ, Howe L, Issel CJ, Montelaro RC. An EIAV field isolate reveals much higher levels of subtype variability than currently reported for the equine lentivirus family. Retrovirology 2009; 6:95. [PMID: 19843328 PMCID: PMC2770520 DOI: 10.1186/1742-4690-6-95] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 10/20/2009] [Indexed: 11/16/2022] Open
Abstract
Background Equine infectious anemia virus (EIAV), a lentivirus that infects horses, has been utilized as an animal model for the study of HIV. Furthermore, the disease associated with the equine lentivirus poses a significant challenge to veterinary medicine around the world. As with all lentiviruses, EIAV has been shown to have a high propensity for genomic sequence and antigenic variation, especially in its envelope (Env) proteins. Recent studies have demonstrated Env variation to be a major determinant of vaccine efficacy, emphasizing the importance of defining natural variation among field isolates of EIAV. To date, however, published EIAV sequences have been reported only for cell-adapted strains of virus, predominantly derived from a single primary virus isolate, EIAVWyoming (EIAVWY). Results We present here the first characterization of the Env protein of a natural primary isolate from Pennsylvania (EIAVPA) since the widely utilized and referenced EIAVWY strain. The data demonstrated that the level of EIAVPA Env amino acid sequence variation, approximately 40% as compared to EIAVWY, is much greater than current perceptions or published reports of natural EIAV variation between field isolates. This variation did not appear to give rise to changes in the predicted secondary structure of the proteins. While the EIAVPA Env was serologically cross reactive with the Env proteins of the cell-adapted reference strain, EIAVPV (derivative of EIAVWY), the two variant Envs were shown to lack any cross neutralization by immune serum from horses infected with the respective virus strains. Conclusion Taking into account the significance of serum neutralization to universal vaccine efficacy, these findings are crucial considerations towards successful EIAV vaccine development and the potential inclusion of field isolate Envs in vaccine candidates.
Collapse
Affiliation(s)
- Jodi K Craigo
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Development and characterization of an equine infectious anemia virus Env-pseudotyped reporter virus. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 15:1138-40. [PMID: 18448619 DOI: 10.1128/cvi.00088-08] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We developed a replication-defective reporter virus pseudotyped with the envelope glycoprotein of equine infectious anemia virus (EIAV). The in vitro host range and neutralization phenotype of EIAV Env-pseudotyped virus were similar to those of replication-competent virus. An EIAV Env pseudovirus will improve antigenic characterization of viral variants and evaluation of lentivirus vaccines.
Collapse
|
32
|
Craigo JK, Zhang B, Barnes S, Tagmyer TL, Cook SJ, Issel CJ, Montelaro RC. Envelope variation as a primary determinant of lentiviral vaccine efficacy. Proc Natl Acad Sci U S A 2007; 104:15105-10. [PMID: 17846425 PMCID: PMC1986620 DOI: 10.1073/pnas.0706449104] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lentiviral envelope antigenic variation and associated immune evasion are believed to present major obstacles to effective vaccine development. Although this perception is widely assumed by the scientific community, there is, to date, no rigorous experimental data assessing the effect of increasing levels of lentiviral Env variation on vaccine efficacy. It is our working hypothesis that Env is, in fact, a primary determinant of vaccine effectiveness. We previously reported that a successful experimental attenuated equine infectious anemia virus vaccine, derived by mutation of the viral S2 accessory gene, provided 100% protection from disease after virulent virus challenge. Here, we sought to comprehensively test our hypothesis by challenging vaccinated animals with proviral strains of defined, increasing Env variation, using variant envelope SU genes that arose naturally during experimental infection of ponies with equine infectious anemia virus. The reference attenuated vaccine combined with these variant Env challenge strains facilitated evaluation of the protection conferred by ancestral immunogens, because the Env of the attenuated vaccine is a direct ancestor to the variant proviral strain Envs. The results demonstrated that ancestral Env proteins did not impart broad levels of protection against challenge. Furthermore, the results displayed a significant inverse linear correlation of Env divergence and protection from disease. This study demonstrates potential obstacles to the use of single isolate ancestral Env immunogens. Finally, these findings reveal that relatively minor Env variation can pose a substantial challenge to lentiviral vaccine immunity, even when attenuated vaccines are used that, to date, achieve the highest levels of vaccine protection.
Collapse
Affiliation(s)
- Jodi K. Craigo
- *Center for Vaccine Research
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh, Pittsburgh, PA 15261; and
| | - Baoshan Zhang
- *Center for Vaccine Research
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh, Pittsburgh, PA 15261; and
| | - Shannon Barnes
- *Center for Vaccine Research
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh, Pittsburgh, PA 15261; and
| | - Tara L. Tagmyer
- *Center for Vaccine Research
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh, Pittsburgh, PA 15261; and
| | - Sheila J. Cook
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, KY 40516
| | - Charles J. Issel
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, KY 40516
| | - Ronald C. Montelaro
- *Center for Vaccine Research
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh, Pittsburgh, PA 15261; and
- To whom correspondence should be addressed at:
Department of Molecular Genetics and Biochemistry, W1144 Biomedical Science Tower, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261. E-mail:
| |
Collapse
|
33
|
McGuire TC, Fraser DG, Mealey RH. Cytotoxic T lymphocytes in protection against equine infectious anemia virus. Anim Health Res Rev 2007; 5:271-6. [PMID: 15984338 DOI: 10.1079/ahr200482] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
AbstractCytotoxic T lymphocytes (CTL) are associated with virus control in horses infected with equine infectious anemia virus (EIAV). Early in infection, control of the initial viremia coincides with the appearance of CTL and occurs before the appearance of neutralizing antibody. In carrier horses, treatment with immunosuppressive drugs results in viremia before a change in serum neutralizing antibody occurs. Clearance of initial viremia caused by other lentiviruses, including human immunodeficiency virus-1 and simian immunodeficiency virus, is also associated with CTL and not neutralizing antibody. In addition, depletion of CD8+cells prior to infection of rhesus monkeys with simian immunodeficiency prevents clearance of virus and the same treatment of persistently infected monkeys results in viremia. Cats given adoptive transfers of lymphocytes from vaccinated cats were protected and the protection was MHC-restricted, occurred in the absence of antiviral humoral immunity, and correlated with the transfer of cells with feline immunodeficiency virus-specific CTL and T-helper lymphocyte activities. Therefore, a lentiviral vaccine, including one for EIAV, needs to induce CTL. Based on initial failures to induce CTL to EIAV proteins by any means other than infection, we attempted to define an experimental system for the evaluation of methods for CTL induction. CTL epitopes restricted by the ELA-A1 haplotype were identified and the MHC class I molecule presenting these peptides was identified. This was done by expressing individual MHC class I molecules from cDNA clones in target cells. The target cells were then pulsed with peptides and used with effector CTL stimulated with the same peptides. In a preliminary experiment, immunization of three ELA-A1 haplotype horses with an Env peptide restricted by this haplotype resulted in CTL in peripheral blood mononuclear cells (PBMC) which recognized the Env peptide and virus-infected cells, but the CTL response was transient. Nevertheless there was significant protection against clinical disease following EIAV challenge of these immunized horses when compared with three control horses given the same virus challenge. These data indicated that responses to peptides in immunized horses needed to be enhanced. Optimal CTL responses require help from CD4+T lymphocytes, and experiments were done to identify EIAV peptides which stimulated CD4+T lymphocytes in PBMC from infected horses with different MHC class II types. Two broadly cross-reactive Gag peptides were identified which stimulated only an interferon γ response by CD4+T lymphocytes, which indicated a T helper 1 response is needed for CTL stimulation. Such peptides should facilitate CTL responses; however, other problems in inducing protection against lentiviruses remain, the most significant of them being EIAV variants that can escape both CTL and neutralizing antibody. A possible solution to CTL escape variants is the induction of high-avidity CTL to multiple EIAV epitopes.
Collapse
Affiliation(s)
- Travis C McGuire
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7040, USA.
| | | | | |
Collapse
|
34
|
Sponseller BA, Sparks WO, Wannemuehler Y, Li Y, Antons AK, Oaks JL, Carpenter S. Immune selection of equine infectious anemia virus env variants during the long-term inapparent stage of disease. Virology 2007; 363:156-65. [PMID: 17328936 DOI: 10.1016/j.virol.2007.01.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 12/11/2006] [Accepted: 01/31/2007] [Indexed: 11/25/2022]
Abstract
The principal neutralizing domain (PND) of equine infectious anemia virus (EIAV) is located in the V3 region of SU. Genetic variation in the PND is considered to play an important role in immune escape and EIAV persistence; however, few studies have characterized genetic variation in SU during the inapparent stage of disease. To better understand the mechanisms of virus persistence, we undertook a longitudinal study of SU variation in a pony experimentally inoculated with the virulent EIAV(Wyo). Viral RNA isolated from the inoculum and from sequential sera samples was amplified by RT-PCR, cloned, and individual clones were sequenced. Of the 147 SU clones obtained, we identified 71 distinct V3 variants that partitioned into five major non-overlapping groups, designated PND-1 to PND-5, which segregated with specific stages of clinical disease. Genotypes representative of each group were inserted into an infectious molecular clone, and chimeric viruses were tested for susceptibility to neutralization by autologous sera from successive times post-infection. Overall, there was a trend for increasing resistance to neutralizing antibody during disease progression. The PND genotype associated with recrudescence late in infection was resistant to both type-specific and broadly neutralizing antibody, and displayed a reduced replication phenotype in vitro. These findings indicate that neutralizing antibody exerts selective pressure throughout infection and suggest that viral strategies of immune evasion and persistence change in the face of an evolving and maturing host immune response.
Collapse
Affiliation(s)
- Brett A Sponseller
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Bicout DJ, Carvalho R, Chalvet-Monfray K, Sabatier P. Distribution of equine infectious anemia in horses in the north of Minas Gerais State, Brazil. J Vet Diagn Invest 2006; 18:479-82. [PMID: 17037619 DOI: 10.1177/104063870601800511] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The paper examines the prevalence of equine infectious anemia (EIA) in horse populations in the northern part (comprising 89 cities) of Minas Gerais State, Brazil, from January 2002 to December 2004. Data on 8,981 agar gel immunodiffusion test results from the region were used as input for a statistical and autoregressive analysis model to construct a city-level map of the distribution of EIA prevalence. The following EIA prevalence (P) levels were found: 49 cities with 0 < P < or = 0.5%, 26 with 0.5% < P < or = 1.5%, 10 with 1.5% < P < or = 5%, and 4 with 5% < P < or = 25%.
Collapse
Affiliation(s)
- Dominique J Bicout
- Biomathematics and Epidemiology Unit - TIMC, National Veterinary School of Lyon, 1 avenue Bourgelat, B.P. 83, 69280 Marcy l'Etoile, France.
| | | | | | | |
Collapse
|
36
|
Craigo JK, Durkin S, Sturgeon TJ, Tagmyer T, Cook SJ, Issel CJ, Montelaro RC. Immune suppression of challenged vaccinates as a rigorous assessment of sterile protection by lentiviral vaccines. Vaccine 2006; 25:834-45. [PMID: 17023099 PMCID: PMC1855206 DOI: 10.1016/j.vaccine.2006.09.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Revised: 08/21/2006] [Accepted: 09/07/2006] [Indexed: 01/19/2023]
Abstract
We previously reported that an experimental live-attenuated equine infectious anemia virus (EIAV) vaccine, containing a mutated S2 accessory gene, provided protection from disease and detectable infection after virulent virus (EIAV(PV)) challenge [Li F, Craigo JK, Howe L, Steckbeck JD, Cook S, Issel C, et al. A live-attenuated equine infectious anemia virus proviral vaccine with a modified S2 gene provides protection from detectable infection by intravenous virulent virus challenge of experimentally inoculated horses. J Virol 2003;77(13):7244-53; Craigo JK, Li F, Steckbeck JD, Durkin S, Howe L, Cook SJ, et al. Discerning an effective balance between equine infectious anemia virus attenuation and vaccine efficacy. J Virol 2005;79(5):2666-77]. To determine if attenuated EIAV vaccines actually prevent persistent infection by challenge virus, we employed a 14-day dexamethasone treatment of vaccinated horses post-challenge to suppress host immunity and amplify replication levels of any infecting EIAV. At 2 months post-challenge the horses were all protected from virulent-virus challenge, evidenced by a lack of EIA signs and detectable challenge plasma viral RNA. Upon immune suppression, 6/12 horses displayed clinical EIA. Post-immune suppression characterizations demonstrated that the attenuated vaccine evidently prevented detectable challenge virus infection in 50% of horses. These data highlight the utility of post-challenge immune suppression for evaluating persistent viral vaccine protective efficacy.
Collapse
Affiliation(s)
- Jodi K. Craigo
- Department of Molecular Genetics and Biochemistry, University of Kentucky, Lexington, KY 40516
| | - Shannon Durkin
- Department of Molecular Genetics and Biochemistry, University of Kentucky, Lexington, KY 40516
| | - Timothy J. Sturgeon
- Department of Molecular Genetics and Biochemistry, University of Kentucky, Lexington, KY 40516
| | - Tara Tagmyer
- Department of Molecular Genetics and Biochemistry, University of Kentucky, Lexington, KY 40516
| | - Sheila J. Cook
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, KY 40516
| | - Charles J. Issel
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, KY 40516
| | - Ronald C. Montelaro
- Department of Molecular Genetics and Biochemistry, University of Kentucky, Lexington, KY 40516
- *Corresponding Author: Department of Molecular Genetics and Biochemistry, W1144 Biomedical Science Tower, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, Phone: 412-648-8869, Fax: 412-383-8859,
| |
Collapse
|
37
|
Liang H, He X, Shen RX, Shen T, Tong X, Ma Y, Xiang WH, Zhang XY, Shao YM. Combined amino acid mutations occurring in the envelope closely correlate with pathogenicity of EIAV. Arch Virol 2006; 151:1387-403. [PMID: 16502285 DOI: 10.1007/s00705-005-0718-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Accepted: 11/29/2005] [Indexed: 11/26/2022]
Abstract
The Chinese equine infectious anemia virus (EIAV) donkey-leukocyte attenuated vaccine (DLV) provides a unique natural model system to study the attenuation mechanism and immunological control of lentivirus replication. Critical consensus mutations were identified between virulent Chinese EIAV strains and vaccine strains. Based on a full-length infectious clone of EIAV vaccine strain pLGFD3, two molecular clones, mFD5-4-7 and mFD7-2-11, were successfully constructed, in which 4 and 6 critical consensus mutations in the env gene of the vaccine strain were point-mutated to the wild-type sequence, respectively by an overlap PCR mutagenesis strategy. The infectivity, virulence, and pathogenesis of the constructed clones were investigated in vitro using a reverse transcriptase assay, an indirect immunofluorescence assay, observation of cytopathogenic effect, and virion observation as well as in vivo by inoculation of animals with the resulting infectious clones. The pathogenic symptoms in horses inoculated with mFD7-2-11 were more severe than those inoculated with mFD5-4-7, whereas no pathogenic symptoms were detected in animals inoculated with their parental clone pLGFD3 strain. The results indicate that the consensus mutation residues of the env region involved in this study play significant roles in the virulence and pathogenicity of EIAV. This will contribute to the elucidation of the attenuating and protective mechanisms of the Chinese EIAV vaccine.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Substitution
- Animals
- Body Temperature
- Cell Line
- Cytopathogenic Effect, Viral
- Disease Models, Animal
- Equidae
- Equine Infectious Anemia/physiopathology
- Equine Infectious Anemia/virology
- Fluorescent Antibody Technique, Direct
- Gene Products, env/chemistry
- Gene Products, env/genetics
- Genes, env
- Horses
- Infectious Anemia Virus, Equine/genetics
- Infectious Anemia Virus, Equine/pathogenicity
- Microscopy, Electron, Transmission
- Molecular Sequence Data
- Platelet Count
- Point Mutation
- Sequence Alignment
- Vaccines, Attenuated/genetics
- Viral Vaccines/genetics
- Virulence/genetics
Collapse
Affiliation(s)
- H Liang
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Craigo JK, Sturgeon TJ, Cook SJ, Issel CJ, Leroux C, Montelaro RC. Apparent elimination of EIAV ancestral species in a long-term inapparent carrier. Virology 2005; 344:340-53. [PMID: 16226288 DOI: 10.1016/j.virol.2005.09.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Revised: 08/10/2005] [Accepted: 09/07/2005] [Indexed: 11/18/2022]
Abstract
Equine infectious anemia virus (EIAV) envelope variation produces newly dominant quasispecies with each sequential disease cycle; new populations arise, and previous plasma quasispecies, including the original inoculum, become undetectable. The question remains whether these ancestral variants exist in tissue reservoirs or if the immune system eliminates quasispecies from persistent infections. To examine this, an EIAV long-term inapparent carrier was immune suppressed with dexamethasone. Immune suppression resulted in increased plasma viral loads by approximately 10(4) fold. Characterization of pre- and post-immune suppression populations demonstrated continual envelope evolution and revealed novel quasispecies distinct from defined populations from previous disease stages. Analysis of the tissue and plasma populations post-immune suppression indicated the original infectious inoculum and early populations were undetectable. Therefore, the host immune system apparently eliminated a diverse array of antigenic variants, but viral persistence was maintained by relentless evolution of new envelope populations from tissue reservoirs in response to ongoing immune pressures.
Collapse
Affiliation(s)
- Jodi K Craigo
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | | | |
Collapse
|
39
|
Mealey RH, Sharif A, Ellis SA, Littke MH, Leib SR, McGuire TC. Early detection of dominant Env-specific and subdominant Gag-specific CD8+ lymphocytes in equine infectious anemia virus-infected horses using major histocompatibility complex class I/peptide tetrameric complexes. Virology 2005; 339:110-26. [PMID: 15979679 PMCID: PMC3342685 DOI: 10.1016/j.virol.2005.05.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Revised: 04/27/2005] [Accepted: 05/23/2005] [Indexed: 11/16/2022]
Abstract
Cytotoxic T lymphocytes (CTL) are critical for control of lentiviruses, including equine infectious anemia virus (EIAV). Measurement of equine CTL responses has relied on chromium-release assays, which do not allow accurate quantitation. Recently, the equine MHC class I molecule 7-6, associated with the ELA-A1 haplotype, was shown to present both the Gag-GW12 and Env-RW12 EIAV CTL epitopes. In this study, 7-6/Gag-GW12 and 7-6/Env-RW12 MHC class I/peptide tetrameric complexes were constructed and used to analyze Gag-GW12- and Env-RW12-specific CTL responses in two EIAV-infected horses (A2164 and A2171). Gag-GW12 and Env-RW12 tetramer-positive CD8+ cells were identified in nonstimulated peripheral blood mononuclear cells as early as 14 days post-EIAV inoculation, and frequencies of tetramer-positive cells ranged from 0.4% to 6.7% of nonstimulated peripheral blood CD8+ cells during the 127-day study period. Although both horses terminated the initial viremic peak, only horse A2171 effectively controlled viral load. Neutralizing antibody was present during the initial control of viral load in both horses, but the ability to maintain control correlated with Gag-GW12-specific CD8+ cells in A2171. Despite Env-RW12 dominance, Env-RW12 escape viral variants were identified in both horses and there was no correlation between Env-RW12-specific CD8+ cells and control of viral load. Although Gag-GW12 CTL escape did not occur, a Gag-GW12 epitope variant arose in A2164 that was recognized less efficiently than the original epitope. These data indicate that tetramers are useful for identification and quantitation of CTL responses in horses, and suggest that the observed control of EIAV replication and clinical disease was associated with sustained CTL recognition of Gag-specific epitopes.
Collapse
Affiliation(s)
- Robert H Mealey
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Shen T, Liang H, Tong X, Fan X, He X, Ma Y, Xiang W, Shen R, Zhang X, Shao Y. Amino acid mutations of the infectious clone from Chinese EIAV attenuated vaccine resulted in reversion of virulence. Vaccine 2005; 24:738-49. [PMID: 16202485 DOI: 10.1016/j.vaccine.2005.08.084] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2005] [Accepted: 08/16/2005] [Indexed: 11/21/2022]
Abstract
The Chinese equine infectious anemia virus (EIAV) donkey-leukocyte attenuated vaccine (DLV) provides a unique natural model system by which attenuated mechanism and immunological control of lentivirus replication may be studied. We analyzed the critical consensus mutations that occurred during the viral passages in vitro and in vivo for vaccine's preparation. Based on the full-length infectious clone pLGFD3 (EIAV vaccine background) and according to mutations displayed during viral attenuation, we successfully constructed an infectious clones pLG5-3-l in which gag and env genes were point-mutated by overlap PCR mutagenesis strategy. pLG5-3-l was proved to have the ability of effective replication in vitro cells culture systems by Reverse Transcriptase Assay and virion observation under electron microscopy. Results of the in vivo experiments indicated that marked differences occurred between the mutated virus and their parental virus in clinical manifestation and plasma viral replication during 6-month observation period. In contrast to asymptom of animals infected with pLGFD3-V, the mutated virus (pLG5-3-l-V) developed typical clinical progression in the corresponding experimentally infected animals. The results of the distinct differences in clinical profiles and viral dynamics before and after mutation of EIAV infectious clone will help to understand the protective mechanism of Chinese EIAV vaccine and shed light on novel HIV vaccine design.
Collapse
Affiliation(s)
- Tao Shen
- National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Chung C, Mealey RH, McGuire TC. Evaluation of high functional avidity CTL to Gag epitope clusters in EIAV carrier horses. Virology 2005; 342:228-39. [PMID: 16139857 PMCID: PMC3348724 DOI: 10.1016/j.virol.2005.07.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Revised: 05/25/2005] [Accepted: 07/29/2005] [Indexed: 11/24/2022]
Abstract
Cytotoxic T lymphocytes (CTL) are critical for lentivirus control including EIAV. Since CTL from most EIAV carrier horses recognize Gag epitope clusters (EC), the hypothesis that carrier horses would have high functional avidity CTL to optimal epitopes in Gag EC was tested. Twenty-two optimal EC epitopes were identified; two in EC1, six in EC2, and seven each in EC3 and 4. However, only five of nine horses had high functional avidity CTL (<or=11 nM) recognizing six epitopes in EC; four in relatively conserved EC3; and one each in EC1 and 2. Horses with high functional avidity CTL had significantly more days since the last clinical episode than horses with low avidity CTL, and this was not explained by analyzing duration of infection. Furthermore, there was a significant inverse correlation between the CTL functional avidity of the nine horses and the days since the last clinical episode. Gag CTL epitope escape variants were found in three horses, but only one of these was recognized by high functional avidity CTL. Thus, not all carrier horses had high functional avidity CTL to Gag EC, but those that did had longer periods without disease episodes.
Collapse
|
42
|
Rivera JA, McGuire TC. Equine infectious anemia virus-infected dendritic cells retain antigen presentation capability. Virology 2005; 335:145-54. [PMID: 15840514 DOI: 10.1016/j.virol.2005.02.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Revised: 12/21/2004] [Accepted: 02/16/2005] [Indexed: 12/01/2022]
Abstract
To determine if equine monocyte-derived dendritic cells (DC) were susceptible to equine infectious anemia virus (EIAV) infection, ex vivo-generated DC were infected with virus in vitro. EIAV antigen was detected by immunofluorescence 3 days post-infection with maximum antigen being detected on day 4, whereas there was no antigen detected in DC incubated with the same amount of heat-inactivated EIAV. No cytolytic activity was observed after EIAV(WSU5) infection of DC. These monocyte-derived DC were more effective than macrophages and B cells in stimulating allogenic T lymphocytes. Both infected macrophages and DC stimulated similar levels of memory CTL responses in mixtures of CD8+ and CD4+ cells as detected with (51)Cr-release assays indicating that EIAV infection of DC did not alter antigen presentation. However, EIAV-infected DC were more effective than infected macrophages when used to stimulate memory CTL in isolated CD8+ cells. The maintenance of antigen processing and presenting function by EIAV-infected DC in vitro suggests that this function is maintained during in vivo infection.
Collapse
Affiliation(s)
- Julie A Rivera
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA
| | | |
Collapse
|
43
|
Cook RF, Cook SJ, Bolin PS, Howe LJ, Zhou W, Montelaro RC, Issel CJ. Genetic immunization with codon-optimized equine infectious anemia virus (EIAV) surface unit (SU) envelope protein gene sequences stimulates immune responses in ponies. Vet Microbiol 2005; 108:23-37. [PMID: 15885929 DOI: 10.1016/j.vetmic.2005.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Revised: 04/05/2005] [Accepted: 04/07/2005] [Indexed: 10/25/2022]
Abstract
In the context of DNA vaccines the native equine infectious anemia virus (EIAV)-envelope gene has proven to be an extremely weak immunogen in horses probably because the RNA transcripts are poorly expressed owing to an unusual codon-usage bias, the possession of multiple RNA splice sites and potential adenosine-rich RNA instability elements. To overcome these problems a synthetic version of sequences encoding the EIAV surface unit (SU) envelope glycoprotein was produced (SYNSU) in which the codon-usage bias was modified to conform to that of highly expressed horse and human genes. In transfected COS-1 cell cultures, the steady state expression levels of SYNSU were at least 30-fold greater than equivalent native SU sequences. More importantly, EIAV-specific humoral and lymphocyte proliferation responses were induced in ponies immunized with a mammalian expression vector encoding SYNSU. However, these immunological responses were unable to confer protection against infection with a virulent EIAV strain.
Collapse
Affiliation(s)
- R Frank Cook
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Jin S, Issel CJ, Montelaro RC. Serological method using recombinant S2 protein to differentiate equine infectious anemia virus (EIAV)-infected and EIAV-vaccinated horses. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2005; 11:1120-9. [PMID: 15539516 PMCID: PMC524783 DOI: 10.1128/cdli.11.6.1120-1129.2004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We recently reported a highly protective attenuated live virus vaccine for equine infectious anemia virus (EIAV) based on a proviral construct (EIAVUKDeltaS2) with a genetically engineered mutation in the viral S2 gene that eliminates expression of this accessory protein. While the EIAVUKDeltaS2 vaccine provides protection from detectable infection by experimental challenge with highly virulent virus, the potential for commercial application of this vaccine is complicated by the fact that horses inoculated with the EIAVUKDeltaS2 vaccine strain become seropositive in various reference diagnostic assays based on detection of antibodies to virion core or envelope proteins. To address this issue, we describe here the development and optimization of a new serologic EIAV diagnostic enzyme-linked immunosorbent assay (ELISA) to detect serum antibodies to the EIAV S2 protein that are produced in infected horses but not in horses inoculated with the EIAVUKDeltaS2 vaccine virus. The test S2 protein antigen was developed using the S2 gene sequence from the EIAVUK strain of virus and a series of modifications to facilitate production and purification of the diagnostic antigen, designated HS2G. Using this HS2G as antigen, we describe the development of an affinity ELISA that provides a sensitive and specific detection of S2-specific serum antibodies in experimentally and field-infected horses (22 of 24), without detectable reactivity with immune serum from uninfected (12 of 12) or vaccinated (29 of 29) horses. These data indicate that the S2-based diagnostic ELISA has the potential to accurately differentiate horses infected with EIAV from horses inoculated with an attenuated EIAV vaccine strain with a mutant S2 gene.
Collapse
Affiliation(s)
- Sha Jin
- Department of Molecular Genetics and Biochemistry, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
45
|
Craigo JK, Li F, Steckbeck JD, Durkin S, Howe L, Cook SJ, Issel C, Montelaro RC. Discerning an effective balance between equine infectious anemia virus attenuation and vaccine efficacy. J Virol 2005; 79:2666-77. [PMID: 15708986 PMCID: PMC548432 DOI: 10.1128/jvi.79.5.2666-2677.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Among the diverse experimental vaccines evaluated in various animal lentivirus models, live attenuated vaccines have proven to be the most effective, thus providing an important model for examining critical immune correlates of protective vaccine immunity. We previously reported that an experimental live attenuated vaccine for equine infectious anemia virus (EIAV), based on mutation of the viral S2 accessory gene, elicited protection from detectable infection by virulent virus challenge (F. Li et al., J. Virol. 77:7244-7253, 2003). To better understand the critical components of EIAV vaccine efficacy, we examine here the relationship between the extent of virus attenuation, the maturation of host immune responses, and vaccine efficacy in a comparative study of three related attenuated EIAV proviral vaccine strains: the previously described EIAV(UK)DeltaS2 derived from a virulent proviral clone, EIAV(UK)DeltaS2/DU containing a second gene mutation in the virulent proviral clone, and EIAV(PR)DeltaS2 derived from a reference avirulent proviral clone. Inoculations of parallel groups of eight horses resulted in relatively low levels of viral replication (average of 10(2) to 10(3) RNA copies/ml) and a similar maturation of EIAV envelope-specific antibody responses as determined in quantitative and qualitative serological assays. However, experimental challenge of the experimentally immunized horses by our standard virulent EIAV(PV) strain by using a low-dose multiple exposure protocol (three inoculations with 10 median horse infective doses, administered intravenously) revealed a marked difference in the protective efficacy of the various attenuated proviral vaccine strains that was evidently associated with the extent of vaccine virus attenuation, time of viral challenge, and the apparent maturation of virus-specific immunity.
Collapse
Affiliation(s)
- Jodi K Craigo
- Department of Molecular Genetics and Biochemistry, W1144 Biomedical Science Tower, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Howe L, Craigo JK, Issel CJ, Montelaro RC. Specificity of serum neutralizing antibodies induced by transient immune suppression of inapparent carrier ponies infected with a neutralization-resistant equine infectious anemia virus envelope strain. J Gen Virol 2005; 86:139-149. [PMID: 15604441 DOI: 10.1099/vir.0.80374-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
It has been previously reported that transient corticosteroid immune suppression of ponies experimentally infected with a highly neutralization resistant envelope variant of equine infectious anemia virus (EIAV), designated EIAVΔPND, resulted in the appearance of type-specific serum antibodies to the infecting EIAVΔPNDvirus. The current study was designed to determine if this induction of serum neutralizing antibodies was associated with changes in the specificity of envelope determinants targeted by serum antibodies or caused by changes in the nature of the antibodies targeted to previously defined surface envelope gp90 V3 and V4 neutralization determinants. To address this question, the envelope determinants of neutralization by post-immune suppression serum were mapped. The results demonstrated that the neutralization sensitivity to post-immune suppression serum antibodies mapped specifically to the surface envelope gp90 V3 and V4 domains, individually or in combination. Thus, these data indicate that the development of serum neutralizing antibodies to the resistant EIAVΔPNDwas due to an enhancement of host antibody responses caused by transient immune suppression and the associated increase in virus replication.
Collapse
Affiliation(s)
- Laryssa Howe
- Department of Infectious Disease and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jodi K Craigo
- Department of Molecular Genetics and Biochemistry, School of Medicine, University of Pittsburgh, W1144 Biomedical Science Tower, Pittsburgh, PA 15261, USA
| | - Charles J Issel
- Department of Veterinary Sciences, Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA
| | - Ronald C Montelaro
- Department of Molecular Genetics and Biochemistry, School of Medicine, University of Pittsburgh, W1144 Biomedical Science Tower, Pittsburgh, PA 15261, USA
- Department of Infectious Disease and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
47
|
Chung C, Mealey RH, McGuire TC. CTL from EIAV carrier horses with diverse MHC class I alleles recognize epitope clusters in Gag matrix and capsid proteins. Virology 2004; 327:144-54. [PMID: 15327905 PMCID: PMC3342308 DOI: 10.1016/j.virol.2004.06.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Revised: 06/11/2004] [Accepted: 06/23/2004] [Indexed: 11/29/2022]
Abstract
Cytotoxic T lymphocytes (CTL) are important for controlling equine infectious anemia virus (EIAV). Because Gag matrix (MA) and capsid (CA) are the most frequently recognized proteins, the hypothesis that CTL from EIAV-infected horses with diverse MHC class I alleles recognize epitope clusters (EC) in these proteins was tested. Four EC were identified by CTL from 15 horses and 8 of these horses had diverse MHC class I alleles. Two of the eight had CTL to EC1, six to EC2, five to EC3, and four to EC4. Because EC2-4 were recognized by CTL from >50% of horses with diverse alleles, the hypothesis was accepted. EC1 and EC3 were the most conserved EC and these more conserved broadly recognized EC may be most useful for CTL induction, helping overcome MHC class I polymorphism and antigenic variation.
Collapse
Affiliation(s)
| | | | - Travis C. McGuire
- Corresponding author. Department of Veterinary Microbiology and Pathology, Washington State University, PO Box 647040, Pullman, WA 99165-7040. Fax: +1 509 335 8529. (T.C. McGuire)
| |
Collapse
|
48
|
Payne SL, Pei XF, Jia B, Fagerness A, Fuller FJ. Influence of long terminal repeat and env on the virulence phenotype of equine infectious anemia virus. J Virol 2004; 78:2478-85. [PMID: 14963146 PMCID: PMC369206 DOI: 10.1128/jvi.78.5.2478-2485.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The molecular clones pSPeiav19 and p19/wenv17 of equine infectious anemia virus (EIAV) differ in env and long terminal repeats (LTRs) and produce viruses (EIAV(19) and EIAV(17), respectively) of dramatically different virulence phenotypes. These constructs were used to generate a series of chimeric clones to test the individual contributions of LTR, surface (SU), and transmembrane (TM)/Rev regions to the disease potential of the highly virulent EIAV(17). The LTRs of EIAV(19) and EIAV(17) differ by 16 nucleotides in the transcriptional enhancer region. The two viruses differ by 30 amino acids in SU, by 17 amino acids in TM, and by 8 amino acids in Rev. Results from in vivo infections with chimeric clones indicate that both LTR and env of EIAV(17) are required for the development of severe acute disease. In the context of the EIAV(17) LTR, SU appears to have a greater impact on virulence than does TM. EIAV(17SU), containing only the TM/Rev region from the avirulent parent, induced acute disease in two animals, while a similar infectious dose of EIAV(17TM) (which derives SU from the avirulent parent) did not. Neither EIAV(17SU) nor EIAV(17TM) produced lethal disease when administered at infectious doses that were 6- to 30-fold higher than a lethal dose of the parental EIAV(17). All chimeric clones replicated in primary equine monocyte-derived macrophages, and there was no apparent correlation between macrophage tropism and virulence phenotype.
Collapse
Affiliation(s)
- Susan L Payne
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas 77843-4467, USA.
| | | | | | | | | |
Collapse
|
49
|
Baccam P, Thompson RJ, Li Y, Sparks WO, Belshan M, Dorman KS, Wannemuehler Y, Oaks JL, Cornette JL, Carpenter S. Subpopulations of equine infectious anemia virus Rev coexist in vivo and differ in phenotype. J Virol 2003; 77:12122-31. [PMID: 14581549 PMCID: PMC254257 DOI: 10.1128/jvi.77.22.12122-12131.2003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lentiviruses exist in vivo as a population of related, nonidentical genotypes, commonly referred to as quasispecies. The quasispecies structure is characteristic of complex adaptive systems and contributes to the high rate of evolution in lentiviruses that confounds efforts to develop effective vaccines and antiviral therapies. Here, we describe analyses of genetic data from longitudinal studies of genetic variation in a lentivirus regulatory protein, Rev, over the course of disease in ponies experimentally infected with equine infectious anemia virus. As observed with other lentivirus data, the Rev variants exhibited a quasispecies character. Phylogenetic and partition analyses suggested that the Rev quasispecies comprised two distinct subpopulations that coexisted during infection. One subpopulation appeared to accumulate changes in a linear, time-dependent manner, while the other evolved radially from a common variant. Over time, the two subpopulations cycled in predominance coincident with changes in the disease state, suggesting that the two groups differed in selective advantage. Transient expression assays indicated the two populations differed significantly in Rev nuclear export activity. Chimeric proviral clones containing Rev genotypes representative of each population differed in rate and overall level of virus replication in vitro. The coexistence of genetically distinct viral subpopulations that differ in phenotype provides great adaptability to environmental changes within the infected host. A quasispecies model with multiple subpopulations may provide additional insight into the nature of lentivirus reservoirs and the evolution of antigenic and drug-resistant variants.
Collapse
Affiliation(s)
- Prasith Baccam
- Department of Mathematics, Iowa State University, Ames, Iowa, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
McGuire TC, Leib SR, Mealey RH, Fraser DG, Prieur DJ. Presentation and binding affinity of equine infectious anemia virus CTL envelope and matrix protein epitopes by an expressed equine classical MHC class I molecule. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:1984-93. [PMID: 12902502 DOI: 10.4049/jimmunol.171.4.1984] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Control of a naturally occurring lentivirus, equine infectious anemia virus (EIAV), occurs in most infected horses and involves MHC class I-restricted, virus-specific CTL. Two minimal 12-aa epitopes, Env-RW12 and Gag-GW12, were evaluated for presentation by target cells from horses with an equine lymphocyte Ag-A1 (ELA-A1) haplotype. Fifteen of 15 presented Env-RW12 to CTL, whereas 11 of 15 presented Gag-GW12. To determine whether these epitopes were presented by different molecules, MHC class I genes were identified in cDNA clones from Arabian horse A2152, which presented both epitopes. This horse was selected because it is heterozygous for the SCID trait and is used to breed heterozygous females. Offspring with SCID are used as recipients for CTL adoptive transfer, and normal offspring are used for CTL induction. Four classical and three putative nonclassical full-length MHC class I genes were found. Human 721.221 cells transduced with retroviral vectors expressing each gene had equine MHC class I on their surface. Following peptide pulsing, only cells expressing classical MHC class I molecule 7-6 presented Env-RW12 and Gag-GW12 to CTL. Unlabeled peptide inhibition of (125)I-labeled Env-RW12 binding to 7-6-transduced cells demonstrated that Env-RW12 affinity was 15-fold higher than Gag-GW12 affinity. Inhibition with truncated Env-RW12 demonstrated that amino acid positions 1 and 12 were necessary for binding, and single substitutions identified positions 2 and 3 as possible primary anchor residues. Since MHC class I 7-6 presented both epitopes, outbred horses with this allele can be immunized with these epitopes to optimize CTL responses and evaluate their effectiveness against lentiviral challenge.
Collapse
MESH Headings
- Amino Acid Substitution/genetics
- Amino Acid Substitution/immunology
- Animals
- Antigen Presentation/genetics
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Cell Line, Transformed
- Cloning, Molecular
- Cytotoxicity, Immunologic/genetics
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Gene Expression Regulation/immunology
- Gene Library
- Gene Products, env/genetics
- Gene Products, env/immunology
- Gene Products, env/metabolism
- Gene Products, gag/genetics
- Gene Products, gag/immunology
- Gene Products, gag/metabolism
- Genes, MHC Class I
- Histocompatibility Antigens Class I/biosynthesis
- Histocompatibility Antigens Class I/genetics
- Histocompatibility Antigens Class I/immunology
- Histocompatibility Antigens Class I/metabolism
- Horses
- Humans
- Infectious Anemia Virus, Equine/immunology
- Male
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Protein Binding/genetics
- Protein Binding/immunology
- RNA, Messenger/genetics
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- Viral Matrix Proteins/genetics
- Viral Matrix Proteins/immunology
- Viral Matrix Proteins/metabolism
Collapse
Affiliation(s)
- Travis C McGuire
- Department of Veterinary Microbiology and Pathology, Washington State University College of Veterinary Medicine, Pullman, WA 99164, USA.
| | | | | | | | | |
Collapse
|