1
|
The role of transduced bone marrow cells overexpressing BMP-2 in healing critical-sized defects in a mouse femur. Gene Ther 2015; 22:467-75. [DOI: 10.1038/gt.2015.14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 01/14/2015] [Accepted: 02/10/2015] [Indexed: 01/12/2023]
|
2
|
Dielschneider RF, Xiao W, Yoon JY, Noh E, Banerji V, Li H, Marshall AJ, Johnston JB, Gibson SB. Gefitinib targets ZAP-70-expressing chronic lymphocytic leukemia cells and inhibits B-cell receptor signaling. Cell Death Dis 2014; 5:e1439. [PMID: 25275600 PMCID: PMC4649506 DOI: 10.1038/cddis.2014.391] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 07/04/2014] [Accepted: 08/06/2014] [Indexed: 01/03/2023]
Abstract
Chronic lymphocytic leukemia (CLL) can be divided into groups based on biomarkers of poor prognosis. The expression of the tyrosine kinase ZAP-70 (member of the Syk tyrosine kinase family) in CLL cells is associated with shorter overall survival in CLL patients. Currently, there is a lack of targeted therapies for patients with ZAP-70 expression in CLL cells. The tyrosine kinase inhibitor gefitinib has been shown to be effective at induce apoptosis in acute myeloid leukemia through inhibition of Syk. In this study, we sought to test the efficacy of gefitinib in primary human ZAP-70+ CLL cells. We demonstrate that gefitinib preferentially induces cell death in ZAP-70-expressing CLL cells with a median IC50 of 4.5 μM. In addition, gefitinib decreases the viability of ZAP-70+ Jurkat T leukemia cells but fails to affect T cells from CLL patients. Western blot analysis shows gefitinib reduces both basal and B-cell receptor (BCR)-stimulated phosphorylation of Syk/ZAP-70, ERK, and Akt in ZAP-70+ CLL cells. Moreover, gefitinib inhibits the pro-survival response from BCR stimulation and decreases pro-survival proteins such as Mcl-1. Finally, ZAP-70 expression sensitizes Raji cells to gefitinib treatment. These results demonstrate that gefitinib specifically targets ZAP-70+ CLL cells and inhibits the BCR cell survival pathway leading to apoptosis. This represents the likelihood of tyrosine kinase inhibitors being effective targeted treatments for ZAP-70+ CLL cells.
Collapse
Affiliation(s)
- R F Dielschneider
- 1] Department of Immunology, University of Manitoba, Winnipeg, MB, Canada [2] Manitoba Institute of Cell Biology, Winnipeg, MB, Canada
| | - W Xiao
- Manitoba Institute of Cell Biology, Winnipeg, MB, Canada
| | - J-Y Yoon
- 1] Manitoba Institute of Cell Biology, Winnipeg, MB, Canada [2] Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - E Noh
- Manitoba Institute of Cell Biology, Winnipeg, MB, Canada
| | - V Banerji
- 1] Manitoba Institute of Cell Biology, Winnipeg, MB, Canada [2] Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada [3] Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| | - H Li
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - A J Marshall
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - J B Johnston
- 1] Manitoba Institute of Cell Biology, Winnipeg, MB, Canada [2] Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - S B Gibson
- 1] Department of Immunology, University of Manitoba, Winnipeg, MB, Canada [2] Manitoba Institute of Cell Biology, Winnipeg, MB, Canada [3] Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada [4] Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
3
|
Alaee F, Sugiyama O, Virk MS, Tang H, Drissi H, Lichtler AC, Lieberman JR. Suicide gene approach using a dual-expression lentiviral vector to enhance the safety of ex vivo gene therapy for bone repair. Gene Ther 2013; 21:139-47. [PMID: 24285218 DOI: 10.1038/gt.2013.66] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 08/14/2013] [Accepted: 10/11/2013] [Indexed: 11/09/2022]
Abstract
'Ex vivo' gene therapy using viral vectors to overexpress BMP-2 is shown to heal critical-sized bone defects in experimental animals. To increase its safety, we constructed a dual-expression lentiviral vector to overexpress BMP-2 or luciferase and an HSV1-tk analog, Δtk (LV-Δtk-T2A-BMP-2/Luc). We hypothesized that administering ganciclovir (GCV) will eliminate the transduced cells at the site of implantation. The vector-induced expression of BMP-2 and luciferase in a mouse stromal cell line (W-20-17 cells) and mouse bone marrow cells (MBMCs) was reduced by 50% compared with the single-gene vector. W-20-17 cells were more sensitive to GCV compared with MBMCs (90-95% cell death at 12 days with GCV at 1 μg ml(-1) in MBMCs vs 90-95% cell death at 5 days by 0.1 μg ml(-1) of GCV in W-20-17 cells). Implantation of LV-Δtk-T2A-BMP-2 transduced MBMCs healed a 2 mm femoral defect at 4 weeks. Early GCV treatment (days 0-14) postoperatively blocked bone formation confirming a biologic response. Delayed GCV treatment starting at day 14 for 2 or 4 weeks reduced the luciferase signal from LV-Δtk-T2A-Luc-transduced MBMCs, but the signal was not completely eliminated. These data suggest that this suicide gene strategy has potential for clinical use in the future, but will need to be optimized for increased efficiency.
Collapse
Affiliation(s)
- F Alaee
- Department of Orthopaedic Surgery, New England Musculoskeletal Institute, University of Connecticut Health Center, Farmington, CT, USA
| | - O Sugiyama
- Department of Orthopaedic Surgery, Keck School of Medicine at USC, Los Angeles, CA, USA
| | - M S Virk
- Department of Orthopaedic Surgery, New England Musculoskeletal Institute, University of Connecticut Health Center, Farmington, CT, USA
| | - H Tang
- Department of Orthopaedic Surgery, Keck School of Medicine at USC, Los Angeles, CA, USA
| | - H Drissi
- Department of Orthopaedic Surgery, New England Musculoskeletal Institute, University of Connecticut Health Center, Farmington, CT, USA
| | - A C Lichtler
- Department of Genetics and Developmental Biology, School of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - J R Lieberman
- Department of Orthopaedic Surgery, Keck School of Medicine at USC, Los Angeles, CA, USA
| |
Collapse
|
4
|
Mahmood S, Kanwar N, Tran J, Zhang ML, Kung SKP. SHP-1 phosphatase is a critical regulator in preventing natural killer cell self-killing. PLoS One 2012; 7:e44244. [PMID: 22952938 PMCID: PMC3432062 DOI: 10.1371/journal.pone.0044244] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 07/31/2012] [Indexed: 12/31/2022] Open
Abstract
Balance of signals generated from the engaged activating and inhibitory surface receptors regulates mature NK cell activities. The inhibitory receptors signal through immunoreceptor tyrosine based inhibitory motifs (ITIM), and recruit phosphatases such as SHP-1 to inhibit NK cell activation. To directly examine the importance of SHP-1 in regulating activities and cell fate of mature NK cells, we used our established lentiviral-based engineering protocol to knock down the SHP-1 protein expression in primary C57BL/6NCrl cells. Gene silencing of the SHP-1 in primary NK cells abrogated the ability of ITIM-containing NK inhibitory receptors to suppress the activation signals induced by NK1.1 activating receptors. We followed the fates of stably transduced SHP-1 silenced primary NK cells over a longer period of time in IL-2 containing cultures. We observed an impaired IL-2 induced proliferation in the SHP-1 knockdown NK cells. More interestingly, these "de-regulated" SHP-1 knockdown NK cells mediated specific self-killing in a real-time live cell microscopic imaging system we developed to study NK cell cytotoxicity in vitro. Selective target recognition of the SHP-1 knockdown NK cells revealed also possible involvement of the SHP-1 phosphatase in regulating other NK functions in mature NK cells.
Collapse
MESH Headings
- Animals
- Cell Degranulation/drug effects
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Cells, Cultured
- Computer Systems
- Cytotoxicity, Immunologic/drug effects
- Cytotoxicity, Immunologic/immunology
- Gene Knockdown Techniques
- Gene Silencing/drug effects
- Imaging, Three-Dimensional
- Immunoassay
- Interleukin-2/pharmacology
- Killer Cells, Natural/cytology
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/enzymology
- Killer Cells, Natural/physiology
- Lymphocyte Activation/drug effects
- Mice
- Mice, Inbred C57BL
- Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism
Collapse
Affiliation(s)
- Sajid Mahmood
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Namita Kanwar
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, John Buhler Research Centre, Winnipeg, Manitoba, Canada
| | - Jimmy Tran
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Man-li Zhang
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sam K. P. Kung
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
5
|
Redhu NS, Saleh A, Lee HC, Halayko AJ, Ziegler SF, Gounni AS. IgE induces transcriptional regulation of thymic stromal lymphopoietin in human airway smooth muscle cells. J Allergy Clin Immunol 2011; 128:892-896.e2. [PMID: 21835441 DOI: 10.1016/j.jaci.2011.06.045] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Revised: 06/22/2011] [Accepted: 06/27/2011] [Indexed: 02/07/2023]
|
6
|
Pegram HJ, Kershaw MH, Darcy PK. Genetic modification of natural killer cells for adoptive cellular immunotherapy. Immunotherapy 2011; 1:623-30. [PMID: 20635990 DOI: 10.2217/imt.09.36] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Immunotherapy of cancer is a rapidly developing field; one such development is the manipulation and use of natural killer (NK) cells. These cells with 'killer instincts' are an attractive cell to utilize, as they are directly reactive toward tumor and could potentially activate the endogenous adaptive immune system. Their employment in adoptive cell transfer treatments has yielded important results and discoveries, although effective antitumor responses are limited. To address these limitations, NK cells are the target of a new generation of immunotherapy involving gene transfer. The gene modification of immune cells is a relatively recent technique and some groups have targeted NK cells for gene modification to improve their antitumor efficacy. This review will investigate studies describing the gene modification of NK cells and their encouraging antitumor effects.
Collapse
Affiliation(s)
- Hollie J Pegram
- Cancer Immunology Research, Peter MacCallum Cancer Centre, Melbourne, VIC 8006, Australia
| | | | | |
Collapse
|
7
|
Kamata M, Liu S, Liang M, Nagaoka Y, Chen ISY. Generation of human induced pluripotent stem cells bearing an anti-HIV transgene by a lentiviral vector carrying an internal murine leukemia virus promoter. Hum Gene Ther 2010; 21:1555-67. [PMID: 20524893 DOI: 10.1089/hum.2010.050] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The recent development of induced pluripotent stem cells (iPSCs) by ectopic expression of defined reprogramming factors offers enormous therapeutic opportunity. To deliver these factors, murine leukemia virus (MLV)-based vectors have been broadly used in the setting of hematopoietic stem cell transplantation. However, MLV vectors have been implicated in malignancy induced by insertional mutagenesis, whereas lentiviral vectors have not. Furthermore, the infectivity of MLV vectors is limited to dividing cells, whereas lentiviral vectors can also transduce nondividing cells. One important characteristic of MLV vectors is a self-silencing property of the promoter element in pluripotent stem cells, allowing temporal transgene expression in a nonpluripotent state before iPSC derivation. Here we test iPSC generation using a novel chimeric vector carrying a mutant MLV promoter internal to a lentiviral vector backbone, thereby containing the useful properties of both types of vectors. Transgene expression of this chimeric vector was highly efficient compared with that of MLV vectors and was silenced specifically in human embryonic stem cells. Human fetal fibroblasts transduced with the vector encoding each factor were efficiently reprogrammed into a pluripotent state, and these iPSCs had potential to differentiate into a variety of cell types. To explore the possibility of iPSCs for gene therapy, we established iPSC clones expressing a short hairpin RNA (shRNA) targeting chemokine receptor 5 (CCR5), the main coreceptor for HIV-1. Using a reporter construct for CCR5 expression, we confirmed that CCR5 shRNA was expressed and specifically knocked down the reporter expression in iPSCs. These data indicate that our chimeric lentiviral vector is a valuable tool for generation of iPSCs and the combination with vectors encoding transgenes allows for rapid establishment of desired genetically engineered iPSC lines.
Collapse
Affiliation(s)
- Masakazu Kamata
- Department of Microbiology, Immunology and Molecular Genetics, University of California at Los Angeles, David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
8
|
Wang H, Zhang L, Kung SKP. Emerging applications of lentiviral vectors in dendritic cell-based immunotherapy. Immunotherapy 2010; 2:685-95. [DOI: 10.2217/imt.10.44] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dendritic cells are professional antigen-presenting cells that initiate, regulate and shape the induction of specific immune responses. The ability to use dendritic cells in the induction of antigen-specific tolerance, antigen-specific immunity or specific differentiation of T-helper subsets holds great promise in dendritic cell-based immunotherapy of various diseases such as cancer, viral infections, allergy, as well as autoimmunity. Replication-incompetent HIV-1-based lentiviral vector is now emerging as a promising delivery system to genetically modify dendritic cells through antigen recognition, costimulatory molecules and/or polarization signals for the manipulation of antigen-specific immunity in vivo. This article discusses some of the recent advances in the uses of lentiviral vectors in dendritic cell-based immunotherapy.
Collapse
Affiliation(s)
- Huiming Wang
- University of Manitoba, Department of Immunology, Room 417 Apotex Center, 750 McDermot Avenue, Winnipeg, Manitoba, R3E 0T5, Canada
| | - Liang Zhang
- University of Manitoba, Department of Immunology, Room 417 Apotex Center, 750 McDermot Avenue, Winnipeg, Manitoba, R3E 0T5, Canada
| | | |
Collapse
|
9
|
Sharma P, Ghavami S, Stelmack GL, McNeill KD, Mutawe MM, Klonisch T, Unruh H, Halayko AJ. beta-Dystroglycan binds caveolin-1 in smooth muscle: a functional role in caveolae distribution and Ca2+ release. J Cell Sci 2010; 123:3061-70. [PMID: 20736308 DOI: 10.1242/jcs.066712] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The dystrophin-glycoprotein complex (DGC) links the extracellular matrix and actin cytoskeleton. Caveolae form membrane arrays on smooth muscle cells; we investigated the mechanism for this organization. Caveolin-1 and beta-dystroglycan, the core transmembrane DGC subunit, colocalize in airway smooth muscle. Immunoprecipitation revealed the association of caveolin-1 with beta-dystroglycan. Disruption of actin filaments disordered caveolae arrays, reduced association of beta-dystroglycan and caveolin-1 to lipid rafts, and suppressed the sensitivity and responsiveness of methacholine-induced intracellular Ca2+ release. We generated novel human airway smooth muscle cell lines expressing shRNA to stably silence beta-dystroglycan expression. In these myocytes, caveolae arrays were disorganized, caveolae structural proteins caveolin-1 and PTRF/cavin were displaced, the signaling proteins PLCbeta1 and G(alphaq), which are required for receptor-mediated Ca2+ release, were absent from caveolae, and the sensitivity and responsiveness of methacholine-induced intracellular Ca2+ release, was diminished. These data reveal an interaction between caveolin-1 and beta-dystroglycan and demonstrate that this association, in concert with anchorage to the actin cytoskeleton, underpins the spatial organization and functional role of caveolae in receptor-mediated Ca2+ release, which is an essential initiator step in smooth muscle contraction.
Collapse
Affiliation(s)
- Pawan Sharma
- Department of Physiology, University of Manitoba, Winnipeg, MB R3A1R8, Canada
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Kamata M, Liang M, Liu S, Nagaoka Y, Chen ISY. Live cell monitoring of hiPSC generation and differentiation using differential expression of endogenous microRNAs. PLoS One 2010; 5:e11834. [PMID: 20676373 PMCID: PMC2911382 DOI: 10.1371/journal.pone.0011834] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 06/29/2010] [Indexed: 12/24/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) provide new possibilities for regenerative therapies. In order for this potential to be achieved, it is critical to efficiently monitor the differentiation of these hiPSCs into specific lineages. Here, we describe a lentiviral reporter vector sensitive to specific microRNAs (miRNA) to show that a single vector bearing multiple miRNA target sequences conjugated to different reporters can be used to monitor hiPSC formation and subsequent differentiation from human fetal fibroblasts (HFFs). The reporter vector encodes EGFP conjugated to the targets of human embryonic stem cell (hESC) specific miRNAs (miR-302a and miR-302d) and mCherry conjugated to the targets of differentiated cells specific miRNAs (miR-142-3p, miR-155, and miR-223). The vector was used to track reprogramming of HFF to iPSC. HFFs co-transduced with this reporter vector and vectors encoding 4 reprogramming factors (OCT4, SOX2, KLF4 and cMYC) were mostly positive for EGFP (67%) at an early stage of hiPSC formation. EGFP expression gradually disappeared and mCherry expression increased indicating less miRNAs specific to differentiated cells and expression of miRNAs specific to hESCs. Upon differentiation of the hiPSC into embryoid bodies, a large fraction of these hiPSCs regained EGFP expression and some of those cells became single positive for EGFP. Further differentiation into neural lineages showed distinct structures demarcated by either EGFP or mCherry expression. These findings demonstrate that a miRNA dependent reporter vector can be a useful tool to monitor living cells during reprogramming of hiPSC and subsequent differentiation to lineage specific cells.
Collapse
Affiliation(s)
- Masakazu Kamata
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Min Liang
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Shirley Liu
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Yoshiko Nagaoka
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Irvin S. Y. Chen
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
11
|
Tran J, Mahmood S, Carlyle JR, Kung SK. Altering the specificity of NK:target cell interactions by genetic manipulation of NK receptor expression on primary mouse NK cells. Vaccine 2010; 28:3767-72. [DOI: 10.1016/j.vaccine.2010.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 03/03/2010] [Accepted: 03/09/2010] [Indexed: 10/19/2022]
|
12
|
Abstract
Natural killer (NK) cells are lymphocytes that provide an important line of defense against viruses and tumors. Technical hurdles in genetic modifications of primary NK cell ex vivo had limited our studies of protein function(s) in NK cell differentiation, acquisition of self-tolerance, and induction of anti-tumor responses. We used VSV-G-pseudotyped, EGFP-expressing lentiviral vectors to develop an efficient gene transfer system to modify gene expression in primary murine NK cells with or without prior IL-2 activation. Lentiviral vector transduction did not impair NK cellular viability, phenotype, or functions. We also demonstrated the use of this system in modifying differentiating NK cells derived from lentiviral-transduced murine hematopoietic progenitor cells. Furthermore, the same transduction protocol is amendable to delivery of short-hairpin RNA (shRNA) for specific gene silencing. Collectively, our approach in genetic engineering of primary murine NK cells will prove useful in studying basic NK cell biology and in exploring therapeutic potentials of NK cells in inbred and transgenic mouse models.
Collapse
Affiliation(s)
- Sam K P Kung
- Laboratory of Innate Immunobiology, Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
13
|
Yamasaki A, Saleh A, Koussih L, Muro S, Halayko AJ, Gounni AS. IL-9 induces CCL11 expression via STAT3 signalling in human airway smooth muscle cells. PLoS One 2010; 5:e9178. [PMID: 20169197 PMCID: PMC2820544 DOI: 10.1371/journal.pone.0009178] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 01/22/2010] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Previous findings support the concept that IL-9 may play a significant role in mediating both pro-inflammatory and changes in airway responsiveness that characterizes the atopic asthmatic state. We previously demonstrated that human airway smooth muscle (ASM) cells express a functional IL-9R that mediate CCL11 expression. However, the signaling pathway governing this effect is not well understood. METHODOLOGY/PRINCIPAL FINDINGS In this study, we showed that IL-9 mediated CCL11 expression in ASM cells does not rely on STAT6 or STAT5 but on STAT3 pathway. IL-9 induced rapid STAT3 activation in primary ASM cells that was not observed in case of STAT6 or STAT5. STAT3 binding to CCL11 promoter was also observed in vivo upon IL-9 stimulation of ASM cells. Disruption of STAT3 activity with SH2 domain binding inhibitory peptide results in significant reduction of IL-9 mediated CCL11 promoter activity. DN STAT3beta over-expression in ASM cells, but not Ser 727 STAT3 or STAT6 DN, abolishes IL-9 mediated CCL11 promoter activity. Finally, STAT3 but not STAT6 silenced ASM cells showed significant reduction in IL-9 mediated CCL11 promoter activity and mRNA expression. CONCLUSION/SIGNIFICANCE Taken together, our results indicate that IL-9 mediated CCL11 via STAT3 signalling pathway may play a crucial role in airway inflammatory responses.
Collapse
Affiliation(s)
- Akira Yamasaki
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ali Saleh
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Latifa Koussih
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Shigeo Muro
- Department of Respiratory Medicine, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
| | - Andrew J. Halayko
- Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada
- Respiratory Section, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Abdelilah S. Gounni
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
14
|
Drobic B, Pérez-Cadahía B, Yu J, Kung SKP, Davie JR. Promoter chromatin remodeling of immediate-early genes is mediated through H3 phosphorylation at either serine 28 or 10 by the MSK1 multi-protein complex. Nucleic Acids Res 2010; 38:3196-208. [PMID: 20129940 PMCID: PMC2879512 DOI: 10.1093/nar/gkq030] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Upon activation of the ERK and p38 MAPK pathways, the MSK1/2-mediated nucleosomal response, including H3 phosphorylation at serine 28 or 10, is coupled with the induction of immediate-early (IE) gene transcription. The outcome of this response, varying with the stimuli and cellular contexts, ranges from neoplastic transformation to neuronal synaptic plasticity. Here, we used sequential co-immunoprecipitation assays and sequential chromatin immunoprecipitation (ChIP) assays on mouse fibroblast 10T1/2 and MSK1 knockdown 10T1/2 cells to show that H3 serine 28 and 10 phosphorylation leads to promoter remodeling. MSK1, in complexes with phospho-serine adaptor 14-3-3 proteins and BRG1 the ATPase subunit of the SWI/SNF remodeler, is recruited to the promoter of target genes by transcription factors such as Elk-1 or NF-kappaB. Following MSK1-mediated H3 phosphorylation, BRG1 associates with the promoter of target genes via 14-3-3 proteins, which act as scaffolds. The recruited SWI/SNF remodels nucleosomes at the promoter of IE genes enabling the binding of transcription factors like JUN and the onset of transcription.
Collapse
Affiliation(s)
- Bojan Drobic
- Department of Immunology, University of Manitoba, Manitoba Institute of Cell Biology, Winnipeg, Manitoba R3E 0V9, Canada
| | | | | | | | | |
Collapse
|
15
|
Flaujac C, Boukour S, Cramer-Bordé E. Platelets and viruses: an ambivalent relationship. Cell Mol Life Sci 2010; 67:545-56. [PMID: 20012669 PMCID: PMC11115580 DOI: 10.1007/s00018-009-0209-x] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 11/05/2009] [Indexed: 01/12/2023]
Abstract
Thrombocytopenia is a frequent complication of viral infections providing evidence that interaction of platelets with viruses is an important pathophysiological phenomenon. Multiple mechanisms are involved depending on the nature of the viruses involved. These include immunological platelet destruction, inappropriate platelet activation and consumption, and impaired megakaryopoiesis. Viruses bind platelets through specific receptors and identified ligands, which lead to mutual alterations of both the platelet host and the viral aggressor. We have shown that HIV-1 viruses are internalized specifically in platelets and megakaryocytes, where they can be either sheltered, unaltered (with potential transfer of the viruses into target organs), or come in contact with platelet secretory products leading to virus destruction and facilitated platelet clearance. In this issue, we have reviewed the various pathways that platelets use in order to interact with viruses, HIV and others. This review also shows that more work is still needed to precisely identify platelet roles in viral infections, and to answer the challenge of viral safety in platelet transfusion.
Collapse
Affiliation(s)
- Claire Flaujac
- Service d'Hématologie et d'Immunologie, Hôpital Ambroise Paré, Boulogne-Billancourt, 92100 Paris, France.
| | | | | |
Collapse
|
16
|
TAPP2 links phosphoinositide 3-kinase signaling to B-cell adhesion through interaction with the cytoskeletal protein utrophin: expression of a novel cell adhesion-promoting complex in B-cell leukemia. Blood 2009; 114:4703-12. [PMID: 19786618 DOI: 10.1182/blood-2009-03-213058] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tandem pleckstrin homology domain proteins (TAPPs) are recruited to the plasma membrane via binding to phosphoinositides produced by phosphoinositide 3-kinases (PI3Ks). Whereas PI3Ks are critical for B-cell activation, the functions of TAPP proteins in B cells are unknown. We have identified 40 potential interaction partners of TAPP2 in B cells, including proteins involved in cytoskeletal rearrangement, signal transduction and endocytic trafficking. The association of TAPP2 with the cytoskeletal proteins utrophin and syntrophin was confirmed by Western blotting. We found that TAPP2, syntrophin, and utrophin are coexpressed in normal human B cells and B-chronic lymphocytic leukemia (B-CLL) cells. TAPP2 and syntrophin expression in B-CLL was variable from patient to patient, with significantly higher expression in the more aggressive disease subset identified by zeta-chain-associated protein kinase of 70 kDa (ZAP70) expression and unmutated immunoglobulin heavy chain (IgH) genes. We examined whether TAPP can regulate cell adhesion, a known function of utrophin/syntrophin in other cell types. Expression of membrane-targeted TAPP2 enhanced B-cell adhesion to fibronectin and laminin, whereas PH domain-mutant TAPP2 inhibited adhesion. siRNA knockdown of TAPP2 or utrophin, or treatment with PI3K inhibitors, significantly inhibited adhesion. These findings identify TAPP2 as a novel link between PI3K signaling and the cytoskeleton with potential relevance for leukemia progression.
Collapse
|
17
|
Proinflammatory and Th2 cytokines regulate the high affinity IgE receptor (FcepsilonRI) and IgE-dependant activation of human airway smooth muscle cells. PLoS One 2009; 4:e6153. [PMID: 19582151 PMCID: PMC2701636 DOI: 10.1371/journal.pone.0006153] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 06/15/2009] [Indexed: 01/13/2023] Open
Abstract
Background The high affinity IgE receptor (FcεRI) is a crucial structure for IgE-mediated allergic reactions. We have previously demonstrated that human airway smooth muscle (ASM) cells express the tetrameric (αβγ2) FcεRI, and its activation leads to marked transient increases in intracellular Ca2+ concentration, release of Th-2 cytokines and eotaxin-1/CCL11. Therefore, it was of utmost importance to delineate the factors regulating the expression of FcεRI in human (ASM) cells. Methodology/Principal Findings Incubation of human bronchial and tracheal smooth muscle (B/TSM) cells with TNF-α, IL-1β or IL-4 resulted in a significant increase in FcεRI-α chain mRNA expression (p<0.05); and TNF-α, IL-4 enhanced the FcεRI-α protein expression compared to the unstimulated control at 24, 72 hrs after stimulation. Interestingly, among all other cytokines, only TNF-α upregulated the FcεRI-γ mRNA expression. FcεRI-γ protein expression remained unchanged despite the nature of stimulation. Of note, as a functional consequence of FcεRI upregulation, TNF-α pre-sensitization of B/TSM potentially augmented the CC (eotaxin-1/CCL11 and RANTES/CCL5, but not TARC/CCL17) and CXC (IL-8/CXCL8, IP-10/CXCL10) chemokines release following IgE stimulation (p<0.05, n = 3). Furthermore, IgE sensitization of B/TSM cells significantly enhanced the transcription of selective CC and CXC chemokines at promoter level compared to control, which was abolished by Lentivirus-mediated silencing of Syk expression. Conclusions/Significance Our data depict a critical role of B/TSM in allergic airway inflammation via potentially novel mechanisms involving proinflammatory, Th2 cytokines and IgE/FcεRI complex.
Collapse
|
18
|
Saleh A, Shan L, Halayko AJ, Kung S, Gounni AS. Critical role for STAT3 in IL-17A-mediated CCL11 expression in human airway smooth muscle cells. THE JOURNAL OF IMMUNOLOGY 2009; 182:3357-65. [PMID: 19265112 DOI: 10.4049/jimmunol.0801882] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
IL-17A has been shown to be expressed at higher levels in respiratory secretions from asthmatics and to correlate with airway hyperresponsiveness. Although these studies raise the possibility that IL-17A may influence allergic disease, the mechanism remains unknown. We previously demonstrated that IL-17A mediates CC chemokine (CCL11) production from human airway smooth muscle (ASM) cells. In this study, we demonstrate that STAT3 activation is critical in IL-17A-mediated CCL11 expression in ASM cells. IL-17A mediated a rapid phosphorylation of STAT3 but not STAT6 or STAT5 in ASM cells. Interestingly, transient transfection with wild-type or mutated CCL11 promoter constructs showed that IL-17A-mediated CCL11 expression relies on the STAT6 binding site. However, STAT3 but not STAT6 in vivo binding to the CCL11 promoter was detected following IL-17A stimulation of ASM cells. Overexpression of DN STAT3 (STAT3beta) abolishes IL-17A-induced CCL11 promoter activity. This effect was not observed with STAT6 DN or the STAT3 mutant at Ser(727). Interestingly, disruption of STAT3 activity with the SH2 domain binding peptide, but not with control peptide, results in a significant reduction of IL-17A-mediated STAT3 phosphorylation and CCL11 promoter activity. IL-17A-mediated CCL11 promoter activity and mRNA were significantly diminished in STAT3- but not STAT6-silenced ASM cells. Finally, IL-17A-induced STAT3 phosphorylation was sensitive to pharmacological inhibitors of JAK2 and ERK1/2. Taken together, our data provide the first evidence of IL-17A-mediated gene expression via STAT3 in ASM cells. Collectively, our results raise the possibility that the IL-17A/STAT3 signaling pathway may play a crucial role in airway inflammatory responses.
Collapse
Affiliation(s)
- Ali Saleh
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | |
Collapse
|
19
|
Mesenchymal stem/progenitor cells promote the reconstitution of exogenous hematopoietic stem cells in Fancg-/- mice in vivo. Blood 2009; 113:2342-51. [PMID: 19129541 DOI: 10.1182/blood-2008-07-168138] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fanconi anemia (FA) is a heterogeneous genetic disorder characterized by bone marrow failure and complex congenital anomalies. Although mutations in FA genes result in a characteristic phenotype in the hematopoietic stem/progenitor cells (HSPCs), little is known about the consequences of a nonfunctional FA pathway in other stem/progenitor cell compartments. Given the intense functional interactions between HSPCs and the mesenchymal microenvironment, we investigated the FA pathway on the cellular functions of murine mesenchymal stem/progenitor cells (MSPCs) and their interactions with HSPCs in vitro and in vivo. Here, we show that loss of the murine homologue of FANCG (Fancg) results in a defect in MSPC proliferation and in their ability to support the adhesion and engraftment of murine syngeneic HSPCs in vitro or in vivo. Transplantation of wild-type (WT) but not Fancg(-/-) MSPCs into the tibiae of Fancg(-/-) recipient mice enhances the HSPC engraftment kinetics, the BM cellularity, and the number of progenitors per tibia of WT HSPCs injected into lethally irradiated Fancg(-/-) recipients. Collectively, these data show that FA proteins are required in the BM microenvironment to maintain normal hematopoiesis and provide genetic and quantitative evidence that adoptive transfer of WT MSPCs enhances hematopoietic stem cell engraftment.
Collapse
|
20
|
An DS, Donahue RE, Kamata M, Poon B, Metzger M, Mao SH, Bonifacino A, Krouse AE, Darlix JL, Baltimore D, Qin FXF, Chen ISY. Stable reduction of CCR5 by RNAi through hematopoietic stem cell transplant in non-human primates. Proc Natl Acad Sci U S A 2007; 104:13110-5. [PMID: 17670939 PMCID: PMC1941789 DOI: 10.1073/pnas.0705474104] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2007] [Indexed: 02/07/2023] Open
Abstract
RNAi is a powerful method for suppressing gene expression that has tremendous potential for therapeutic applications. However, because endogenous RNAi plays a role in normal cellular functions, delivery and expression of siRNAs must be balanced with safety. Here we report successful stable expression in primates of siRNAs directed to chemokine (c-c motif) receptor 5 (CCR5) introduced through CD34+ hematopoietic stem/progenitor cell transplant. After hematopoietic reconstitution, to date 14 months after transplant, we observe stably marked lymphocytes expressing siRNAs and consistent down-regulation of chemokine (c-c motif) receptor 5 expression. The marked cells are less susceptible to simian immunodeficiency virus infection ex vivo. These studies provide a successful demonstration that siRNAs can be used together with hematopoietic stem cell transplant to stably modulate gene expression in primates and potentially treat blood diseases such as HIV-1.
Collapse
Affiliation(s)
- Dong Sung An
- Departments of *Hematology and Oncology and Microbiology, Immunology, and
| | - Robert E. Donahue
- Hematology Branch, National Heart, Lung, and Blood Institute, 5 Research Court, Rockville, MD 20850
| | - Masakazu Kamata
- Molecular Genetics and Medicine, AIDS Institute, David Geffen School of Medicine, University of California, 10833 Le Conte Avenue, Los Angeles, CA 90095
| | - Betty Poon
- Molecular Genetics and Medicine, AIDS Institute, David Geffen School of Medicine, University of California, 10833 Le Conte Avenue, Los Angeles, CA 90095
| | - Mark Metzger
- Hematology Branch, National Heart, Lung, and Blood Institute, 5 Research Court, Rockville, MD 20850
| | - Si-Hua Mao
- Molecular Genetics and Medicine, AIDS Institute, David Geffen School of Medicine, University of California, 10833 Le Conte Avenue, Los Angeles, CA 90095
| | - Aylin Bonifacino
- Hematology Branch, National Heart, Lung, and Blood Institute, 5 Research Court, Rockville, MD 20850
| | - Allen E. Krouse
- Hematology Branch, National Heart, Lung, and Blood Institute, 5 Research Court, Rockville, MD 20850
| | - Jean-Luc Darlix
- LaboRetro, Unité de Virologie Humaine, Institut National de la Santé et de la Recherche Médicale, no. 412, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon, France; and
| | - David Baltimore
- Division of Biology, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125
| | - F. Xiao-Feng Qin
- **Department of Immunology, M. D. Anderson Cancer Center, University of Texas, Unit 901, 7455 Fannin Street, Houston, TX 77030
| | - Irvin S. Y. Chen
- Molecular Genetics and Medicine, AIDS Institute, David Geffen School of Medicine, University of California, 10833 Le Conte Avenue, Los Angeles, CA 90095
| |
Collapse
|
21
|
Tran J, Kung SKP. Lentiviral Vectors Mediate Stable and Efficient Gene Delivery into Primary Murine Natural Killer Cells. Mol Ther 2007; 15:1331-9. [PMID: 17505478 DOI: 10.1038/sj.mt.6300184] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Natural killer (NK) cells are lymphocytes that provide an important line of defense against many types of microorganisms, viruses and tumors. The development of an efficient gene transfer system for genetically modifying primary murine NK cells will facilitate the studies of NK cell differentiation, acquisition of self-tolerance, and induction of anti-tumor responses. In this study we used an enhanced green fluorescent protein (EGFP)-expressing vector to carry out a systematic evaluation of the efficiency of lentiviral transduction of primary murine NK cells with or without prior interleukin-2 (IL-2) activation. In a single-step transduction protocol, we demonstrated that human immunodeficiency virus type 1-based lentiviral vectors support an average of 40% transduction efficiency on primary NK cells. These genetically modified NK cells are found to maintain stable EGFP transgene expression in vitro, and can be further expanded in IL-2 supplemented culture medium. Lentiviral transduction does not affect NK surface phenotypes or functions (apoptosis, cytokine production and cytotoxicity). We further demonstrated efficient gene transfer into differentiating NK cells derived from the lentiviral-transduced murine hematopoietic progenitor cells in vitro. This study therefore establishes a simple and efficient approach to the genetic engineering of primary murine NK cells, and will prove useful in studying basic NK cell biology and in exploring the therapeutic potential of NK cells in inbred and transgenic mouse models.
Collapse
Affiliation(s)
- Jimmy Tran
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | |
Collapse
|
22
|
Yin C, Dang HN, Gazor F, Huang GTJ. Mouse salivary glands and human beta-defensin-2 as a study model for antimicrobial gene therapy: technical considerations. Int J Antimicrob Agents 2006; 28:352-60. [PMID: 16963233 PMCID: PMC3285981 DOI: 10.1016/j.ijantimicag.2006.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2006] [Revised: 05/28/2006] [Accepted: 05/31/2006] [Indexed: 01/05/2023]
Abstract
Transduction of salivary glands with antimicrobial peptide genes has great potential for oral infection control. Our ultimate goal is to introduce antimicrobial peptide genes into salivary glands that secrete these peptides into saliva to control bacterial/fungal infection in the oral cavity. However, an animal study model to test this potential has not been established. Therefore, we determined to test (i) whether the potent antimicrobial peptide human beta-defensin-2 (hBD-2) can be overexpressed in saliva after transduction of salivary glands and (ii) whether oral fungal infection can be developed in a NOD/SCID murine model. Lentiviral vector SIN18cPPTRhMLV bearing hBD-2 cDNA was introduced into SCID mouse submandibular glands via cannulation. Reverse transcription polymerase chain reaction (RT-PCR), immunohistochemistry or enzyme-linked immunosorbent assay (ELISA) were performed to detect hBD-2 expression in glands or in saliva. Candida albicans 613p was inoculated orally into SCID mice to establish oral candidiasis. Whilst expression of hBD-2 was detected in mouse salivary glands by RT-PCR and immunohistochemistry 1 day or 1 week following delivery of lentivirus, hBD-2 was not detected in saliva. There was recoverable C. albicans from the oral cavity and gastrointestinal tract 4 days to 4 weeks after infection, but there was no establishment of observable oral candidiasis in SCID mice under a stereomicroscope. Our data indicate that lentiviral vectors transduce mouse salivary glands, but not at a sufficient level to allow hBD-2 detection in saliva. Other vectors for gene transduction and additional treatment of SCID mice to establish oral candidiasis are needed in order to utilise mouse salivary glands to test antimicrobial gene therapy.
Collapse
Affiliation(s)
- Chunyi Yin
- Division of Associated Clinical Specialties, Section of Endodontics, UCLA School of Dentistry, Los Angeles, CA, USA
- Division of Oral Biology and Medicine, and Orofacial Pain, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Hoa N. Dang
- Division of Associated Clinical Specialties, Section of Endodontics, UCLA School of Dentistry, Los Angeles, CA, USA
- UCLA David Geffen School of Medicine, Department of Medicine, Los Angeles, CA, USA
| | - Farzad Gazor
- Division of Associated Clinical Specialties, Section of Endodontics, UCLA School of Dentistry, Los Angeles, CA, USA
| | - George T.-J. Huang
- Division of Associated Clinical Specialties, Section of Endodontics, UCLA School of Dentistry, Los Angeles, CA, USA
- Division of Oral Biology and Medicine, and Orofacial Pain, UCLA School of Dentistry, Los Angeles, CA, USA
- Dental and Craniofacial Research Institute, UCLA School of Dentistry, Los Angeles, CA, USA
- Corresponding author. Present address: University of Maryland, College of Dental Surgery, Dental School, Department of Endodontics, Prosthodontics and Operative Dentistry, 666 West Baltimore St., Baltimore, MD 21201, USA. Tel.: +1 410 706 7285; fax: +1 410 706 3028. (G.T.-J. Huang)
| |
Collapse
|
23
|
Zhong L, Li W, Li Y, Zhao W, Wu J, Li B, Maina N, Bischof D, Qing K, Weigel-Kelley KA, Zolotukhin I, Warrington KH, Li X, Slayton WB, Yoder MC, Srivastava A. Evaluation of primitive murine hematopoietic stem and progenitor cell transduction in vitro and in vivo by recombinant adeno-associated virus vector serotypes 1 through 5. Hum Gene Ther 2006; 17:321-33. [PMID: 16544981 DOI: 10.1089/hum.2006.17.321] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Conflicting data exist on hematopoietic cell transduction by AAV serotype 2 (AAV2) vectors, and additional AAV serotype vectors have not been evaluated for their efficacy in hematopoietic stem/progenitor cell transduction. We evaluated the efficacy of conventional, single-stranded AAV serotype vectors 1 through 5 in primitive murine hematopoietic stem/progenitor cells in vitro as well as in vivo. In progenitor cell assays using Sca1+ c-kit+ Lin- hematopoietic cells, 9% of the colonies in cultures infected with AAV1 expressed the transgene. Coinfection of AAV1 with self-complementary AAV vectors carrying the gene for T cell protein tyrosine phosphatase (scAAV-TC-PTP) increased the transduction efficiency to 24%, indicating that viral secondstrand DNA synthesis is a rate-limiting step. This was further corroborated by the use of scAAV vectors, which bypass this requirement. In bone marrow transplantation studies involving lethally irradiated syngeneic mice, Sca1+ c-kit+ Lin- cells coinfected with AAV1 +/- scAAV-TC-PTP vectors led to transgene expression in 2 and 7.5% of peripheral blood (PB) cells, respectively, 6 months posttransplantation. In secondary transplantation experiments, 7% of PB cells and 3% of bone marrow (BM) cells expressed the transgene 6 months posttransplantation. Approximately 21% of BM-derived colonies harbored the proviral DNA sequences in integrated forms. These results document that AAV1 is thus far the most efficient vector in transducing primitive murine hematopoietic stem/progenitor cells. Further studies involving scAAV genomes and hematopoietic cell-specific promoters should further augment the transduction efficiency of AAV1 vectors, which should have implications in the optimal use of these vectors in hematopoietic stem cell gene therapy.
Collapse
Affiliation(s)
- Li Zhong
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Zhong L, Li W, Li Y, Zhao W, Wu J, Li B, Maina N, Bischof D, Qing K, Weigel-Kelley KA, Zolotukhin I, Warrington KH, Li X, Slayton WB, Yoder MC, Srivastava A. Evaluation of Primitive Murine Hematopoietic Stem and Progenitor Cell Transduction In Vitro and In Vivo by Recombinant Adeno-Associated Virus Vector Serotypes 1 Through 5. Hum Gene Ther 2006. [DOI: 10.1089/hum.2006.17.ft-193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
25
|
Boukour S, Massé JM, Bénit L, Dubart-Kupperschmitt A, Cramer EM. Lentivirus degradation and DC-SIGN expression by human platelets and megakaryocytes. J Thromb Haemost 2006; 4:426-35. [PMID: 16420576 DOI: 10.1111/j.1538-7836.2006.01749.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND AIM As platelets are able to endocytose human immunodeficiency virus (HIV), we have investigated the fate of lentiviruses when endocytosed by human platelets and megakaryocytes (MK), and have characterized a specific receptor directly involved in this function. METHODS Genetically modified (non-replicative) lentiviruses with an HIV envelope (HIV-e) or with a vesicular stomatitis virus protein G envelope (VSV-e) were alternatively used and their interaction with platelets and MK analyzed by electron microscopy (EM) and immunoEM. RESULTS When incubated with platelets, HIV-e and VSV-e lentiviruses were internalized in specific endocytic vesicles and trafficked to the surface connected canalicular system (SCCS). Double immunolabeling for the viral P24 core protein and alpha-granule markers showed that lentiviruses were degraded in the SCCS after contact with alpha-granule proteins. In culture MK, lentiviruses were found in endocytic vesicles and accumulated in acid phosphatase-containing multivesicular bodies (MVB). The expression of the pathogen receptor dendritic cell-specific ICAM-grabbing non-integrin (DC-SIGN) was then demonstrated in platelets by flow cytometry, immunoEM and Western blot. Anti-DC-SIGN antibodies decreased HIV-e lentivirus internalization by platelets, showing that the receptor is functional. Specific signals for DC-SIGN protein and mRNA were also found in MK. CONCLUSION This study indicates that platelets and MK can internalize lentiviruses in a pathway, which either provide a shelter to lentiviral particles or alternatively disrupts viral integrity. The receptor DC-SIGN is involved in this function.
Collapse
MESH Headings
- Antibodies, Monoclonal
- Base Sequence
- Blood Platelets/metabolism
- Blood Platelets/ultrastructure
- Blood Platelets/virology
- Cell Adhesion Molecules/antagonists & inhibitors
- Cell Adhesion Molecules/blood
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/immunology
- DNA, Complementary/genetics
- Endocytosis
- Gene Expression
- Genes, env
- Genetic Vectors
- HIV-1/genetics
- HeLa Cells
- Humans
- In Vitro Techniques
- Lectins, C-Type/antagonists & inhibitors
- Lectins, C-Type/blood
- Lectins, C-Type/genetics
- Lectins, C-Type/immunology
- Lentivirus/genetics
- Lentivirus/pathogenicity
- Megakaryocytes/metabolism
- Megakaryocytes/ultrastructure
- Megakaryocytes/virology
- Microscopy, Electron
- RNA, Messenger/blood
- RNA, Messenger/genetics
- Receptors, Cell Surface/antagonists & inhibitors
- Receptors, Cell Surface/blood
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/immunology
- Receptors, Virus/blood
- Receptors, Virus/genetics
- Vesicular stomatitis Indiana virus/genetics
Collapse
Affiliation(s)
- S Boukour
- Département d'Hématologie, Institut Cochin, INSERM U567, Paris and Faculté de médecine, Paris-Ile de France-Ouest, France
| | | | | | | | | |
Collapse
|
26
|
Zhong L, Li W, Li Y, Zhao W, Wu J, Li B, Maina N, Bischof D, Qing K, Weigel-Kelley KA, Zolotukhin I, Warrington KH, Li X, Slayton WB, Yoder MC, Srivastava A. Evaluation of Primitive Murine Hematopoietic Stem and Progenitor Cell Transduction In Vitro and In Vivo by Recombinant Adeno-Associated Virus Vector Serotypes 1 Through 5. Hum Gene Ther 2006. [DOI: 10.1089/hum.2006.17.ft-179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
27
|
Yin C, Dang HN, Zhang HB, Gazor F, Kim D, Sorensen OE, Huang GTJ. Capacity of human beta-defensin expression in gene-transduced and cytokine-induced cells. Biochem Biophys Res Commun 2006; 339:344-54. [PMID: 16298338 PMCID: PMC3282591 DOI: 10.1016/j.bbrc.2005.11.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Accepted: 11/02/2005] [Indexed: 11/16/2022]
Abstract
The purpose of this study was to determine the capacity of cells transduced with human beta-defensins (HBDs) to express antimicrobial peptides, since sufficient expression level is required for effective antimicrobial activity. Retroviral vector pBabeNeo and lentiviral vector SIN18cPPTRhMLV (SIN18) carrying HBDs were utilized to transduce non-HBD-expressing cells such as fibroblasts or HBD-producing oral epithelial cells. We found that HBD-3 gene transfer to fibroblasts was possible not via retrovirus but by direct vector transfection. SIN18 had high transduction efficiencies (80.9-99.9%) and transduced cells expressed higher amounts of HBD-2 than those by pBabeNeo. Primary human gingival epithelial cells (HGECs) expressed greater amounts of HBD-2 than primary fibroblasts after lentiviral transduction. Additionally, HBD-2 secretion from transduced HGECs cells was further increased when stimulated with IL-1 or TNFalpha. Our data indicate that while HBD-2 expression is limited in primary fibroblasts, its expression in HGECs may be maximized by gene transduction plus cytokine induction.
Collapse
Affiliation(s)
- Chunyi Yin
- Division of Associated Clinical Specialties, Section of Endodontics, UCLA School of Dentistry, Los Angeles, CA, USA
- Division of Oral Biology and Medicine, and Orofacial Pain, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Hoa N. Dang
- Division of Associated Clinical Specialties, Section of Endodontics, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Hai-Bo Zhang
- Division of Associated Clinical Specialties, Section of Endodontics, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Farzad Gazor
- Division of Associated Clinical Specialties, Section of Endodontics, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Daniel Kim
- Division of Associated Clinical Specialties, Section of Endodontics, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Ole E. Sorensen
- UCLA David Geffen School of Medicine, Host Defense Laboratory, Dept. of Medicine, Los Angeles, CA, USA
| | - George T.-J. Huang
- Division of Associated Clinical Specialties, Section of Endodontics, UCLA School of Dentistry, Los Angeles, CA, USA
- Division of Oral Biology and Medicine, and Orofacial Pain, UCLA School of Dentistry, Los Angeles, CA, USA
- Dental and Craniofacial Research Institute, UCLA School of Dentistry, Los Angeles, CA, USA
| |
Collapse
|
28
|
Chang M, Brown HJ, Collado-Hidalgo A, Arevalo JM, Galic Z, Symensma TL, Tanaka L, Deng H, Zack JA, Sun R, Cole SW. beta-Adrenoreceptors reactivate Kaposi's sarcoma-associated herpesvirus lytic replication via PKA-dependent control of viral RTA. J Virol 2005; 79:13538-47. [PMID: 16227274 PMCID: PMC1262578 DOI: 10.1128/jvi.79.21.13538-13547.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reactivation of Kaposi's sarcoma-associated herpesvirus (KSHV) lytic replication is mediated by the viral RTA transcription factor, but little is known about the physiological processes controlling its expression or activity. Links between autonomic nervous system activity and AIDS-associated Kaposi's sarcoma led us to examine the potential influence of catecholamine neurotransmitters. Physiological concentrations of epinephrine and norepinephrine efficiently reactivated lytic replication of KSHV in latently infected primary effusion lymphoma cells via beta-adrenergic activation of the cellular cyclic AMP/protein kinase A (PKA) signaling pathway. Effects were blocked by PKA antagonists and mimicked by pharmacological and physiological PKA activators (prostaglandin E2 and histamine) or overexpression of the PKA catalytic subunit. PKA up-regulated RTA gene expression, enhanced activity of the RTA promoter, and posttranslationally enhanced RTA's trans-activating capacity for its own promoter and heterologous lytic promoters (e.g., the viral PAN gene). Mutation of predicted phosphorylation targets at RTA serines 525 and 526 inhibited PKA-mediated enhancement of RTA trans-activating capacity. Given the high catecholamine levels at sites of KSHV latency such as the vasculature and lymphoid organs, these data suggest that beta-adrenergic control of RTA might constitute a significant physiological regulator of KSHV lytic replication. These findings also suggest novel therapeutic strategies for controlling the activity of this oncogenic gammaherpesvirus in vivo.
Collapse
Affiliation(s)
- Margaret Chang
- Department of Microbiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1678,USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Farmen SL, Karp PH, Ng P, Palmer DJ, Koehler DR, Hu J, Beaudet AL, Zabner J, Welsh MJ. Gene transfer of CFTR to airway epithelia: low levels of expression are sufficient to correct Cl- transport and overexpression can generate basolateral CFTR. Am J Physiol Lung Cell Mol Physiol 2005; 289:L1123-30. [PMID: 16085675 DOI: 10.1152/ajplung.00049.2005] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Gene transfer of CFTR cDNA to airway epithelia is a promising approach to treat cystic fibrosis (CF). Most gene transfer vectors use strong viral promoters even though the endogenous CFTR promoter is very weak. To learn whether expressing CFTR at a low level in a fraction of cells would correct Cl(-) transport, we mixed freshly isolated wild-type and CF airway epithelial cells in varying proportions and generated differentiated epithelia. Epithelia with approximately 20% wild-type cells generated approximately 70% the transepithelial Cl(-) current of epithelia containing 100% wild-type cells. These data were nearly identical to those previously obtained with CFTR expressed under control of a strong promoter in a CF epithelial cell line. We also tested high level CFTR expression using the very strong cytomegalovirus (CMV) promoter as well as the cytokeratin-18 (K18) promoter. In differentiated airway epithelia, the CMV promoter generated 50-fold more transgene expression than the K18 promoter, but the K18 promoter generated more transepithelial Cl(-) current at high vector doses. Using functional studies, we found that with marked overexpression, some CFTR channels were present in the basolateral membrane where they shunted Cl(-) flow, thereby reducing net transepithelial Cl(-) transport. These results suggest that very little CFTR is required in a fraction of CF epithelial cells to complement Cl(-) transport because transepithelial Cl(-) flow is limited at the basolateral membrane. Thus they suggest a broad leeway in promoter strength for correcting the CF gene transfer, although at very high expression levels CFTR may be mislocalized to the basolateral membrane.
Collapse
Affiliation(s)
- Sara L Farmen
- Howard Hughes Medical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 500 EMRB, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Sugiyama O, An DS, Kung SPK, Feeley BT, Gamradt S, Liu NQ, Chen ISY, Lieberman JR. Lentivirus-mediated gene transfer induces long-term transgene expression of BMP-2 in vitro and new bone formation in vivo. Mol Ther 2005; 11:390-8. [PMID: 15727935 DOI: 10.1016/j.ymthe.2004.10.019] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2004] [Accepted: 10/28/2004] [Indexed: 12/23/2022] Open
Abstract
We examined the potential of ex vivo gene therapy to enhance bone repair using lentiviral vectors encoding either enhanced green fluorescent protein (EGFP) as a reporter gene or bone morphogenetic protein-2 (BMP-2) downstream of either the cytomegalovirus immediate early (CMV) promoter or the murine leukemia virus long terminal repeat (RhMLV) promoter derived from a murine retrovirus adapted to replicate in a rhesus macaque. In vitro, rat bone marrow stromal cells (BMSCs) transduced with Lenti-CMV-EGFP or Lenti-RhMLV-EGFP demonstrated over 90% transduction efficiency at 1 week and continued to demonstrate stable expression for 8 weeks. ELISA results demonstrated that lentivirus-mediated gene transfer into BMSCs induced stable BMP-2 production in vitro for 8 weeks. Increased EGFP and BMP-2 production was noted with the RhMLV promoter. In addition, we implanted BMSCs transduced with Lenti-RhMLV-BMP-2 into a muscle pouch in the hind limbs of severe combined immune deficient mice. Robust bone formation was noted in animals that received Lenti-RhMLV-BMP-2 cells at 3 weeks. These results demonstrate that lentiviral vectors expressing BMP-2 can induce long-term gene expression in vitro and new bone formation in vivo under the control of the RhMLV promoter. Prolonged gene expression may be advantageous when developing tissue engineering strategies to repair large bone defects.
Collapse
Affiliation(s)
- Osamu Sugiyama
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Kung SKP, Bonifacino A, Metzger ME, Ringpis GE, Donahue RE, Chen ISY. Lentiviral Vector-Transduced Dendritic Cells Induce Specific T Cell Response in a Nonhuman Primate Model. Hum Gene Ther 2005; 16:527-32. [PMID: 15871684 DOI: 10.1089/hum.2005.16.527] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Dendritic cells (DCs) are effective in stimulating and controlling the outcome of T cell responses. Human immunodeficiency virus type 1-based lentiviral vectors can achieve sustained transduction of genes/antigens in dividing and nondividing cells, thus representing a candidate vector for stable expression of antigens in DCs. We previously established conditions for transduction of purified cytokine mobilized rhesus CD34(+) cells in vitro, and transplantation of the autologous transduced cells in a nonhuman primate model in vivo. In the present study, we transplanted DCs derived from EGFP-transduced CD34(+) cells into nonmyeloablated rhesus macaques. Transplantation of DCs stably expressing EGFP into autologous animals induces persistent, long-lived (up to 100 weeks) EGFP-specific T cell responses. Of note, no humoral responses against EGFP are detected in the transplanted animals. These studies provide, to our knowledge, the first demonstration that lentiviral transduction of CD34(+) progenitor cells subsequently differentiated to DCs is capable of priming a specific T cell response in a nonhuman primate in vivo. Taken together, our data provide formal in vivo evidence that lentivirus-transduced dendritic cells represent a potential approach in eliciting cellular immune responses in primates.
Collapse
Affiliation(s)
- Sam K P Kung
- Department of Microbiology and Immunology and Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
32
|
Kung SKP, An DS, Bonifacino A, Metzger ME, Ringpis GE, Mao SH, Chen ISY, Donahue RE. Induction of transgene-specific immunological tolerance in myeloablated nonhuman primates using lentivirally transduced CD34+ progenitor cells. Mol Ther 2004; 8:981-91. [PMID: 14664801 DOI: 10.1016/j.ymthe.2003.08.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Modeling human hematopoietic progenitor cell gene therapy in nonhuman primates allows long-term evaluation of safety, maintenance of gene expression, and potential immune response against transgene products. We transplanted autologous G-CSF/SCF-mobilized CD34+ cells transduced with lentiviral vectors expressing EGFP into myeloablated rhesus macaques. To date, more than 4 years posttransplantation, 0.5-8% EGFP expression is maintained in multiple cell lineages. The animals remain healthy with no evidence of hematopoietic abnormalities or malignancies. To assess immune functions, we actively immunized two of our transplanted animals with purified rEGFP proteins and CpG adjuvant and demonstrated stable levels of EGFP+ cell populations maintained for over 29 months despite four active immunizations. We did not detect a persistent anti-EGFP antibody response or anti-EGFP T cell response in these immunized animals. Immune response to an irrelevant antigen was normal. Taken together, our data provide formal support that transplantation of lentivirally transduced CD34+ progenitor cells in myeloablated rhesus macaques induces specific immunological tolerance toward a foreign transgene.
Collapse
Affiliation(s)
- Sam K P Kung
- Department of Microbiology, Immunology & Molecular Genetics, and Medicine, UCLA AIDS Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
De Ugarte DA, Morizono K, Elbarbary A, Alfonso Z, Zuk PA, Zhu M, Dragoo JL, Ashjian P, Thomas B, Benhaim P, Chen I, Fraser J, Hedrick MH. Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 2004; 174:101-9. [PMID: 12835573 DOI: 10.1159/000071150] [Citation(s) in RCA: 847] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2003] [Indexed: 12/13/2022] Open
Abstract
Our laboratory has recently characterized a population of cells from adipose tissue, termed processed lipoaspirate (PLA) cells, which have multi-lineage potential similar to bone-marrow-derived mesenchymal stem cells (MSCs). This study is the first comparison of PLA cells and MSCs isolated from the same patient. No significant differences were observed for yield of adherent stromal cells, growth kinetics, cell senescence, multi-lineage differentiation capacity, and gene transduction efficiency. Adipose tissue is an abundant and easily procured source of PLA cells, which have a potential like MSCs for use in tissue-engineering applications and as gene delivery vehicles.
Collapse
Affiliation(s)
- Daniel A De Ugarte
- Departments of Surgery and Orthopaedics, UCLA School of Medicine, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Poon B, Chen ISY. Human immunodeficiency virus type 1 (HIV-1) Vpr enhances expression from unintegrated HIV-1 DNA. J Virol 2003; 77:3962-72. [PMID: 12634356 PMCID: PMC150668 DOI: 10.1128/jvi.77.7.3962-3972.2003] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Retroviral DNA synthesized prior to integration, termed unintegrated viral DNA, is classically believed to be transcriptionally inert and to serve only as a precursor to the transcriptionally active integrated proviral DNA form. However, it has recently been found to be expressed under some circumstances during human immunodeficiency virus type 1 (HIV-1) replication and may play a significant role in HIV-1 pathogenesis. HIV-1 Vpr is a virion-associated accessory protein that is critical for HIV-1 replication in nondividing cells and induces cell cycle arrest and apoptosis. We find that Vpr, either expressed de novo or released from virions following viral entry, is essential for unintegrated viral DNA expression. HIV-1 mutants defective for integration in either the integrase catalytic domain or the cis-acting att sites can express unintegrated viral DNA at levels similar to that of wild-type HIV-1, but only in the presence of Vpr. In the absence of Vpr, the expression of unintegrated viral DNA decreases 10- to 20-fold. Vpr does not affect the efficiency of integration from integrase-defective HIV-1. Vpr-mediated enhancement of expression from integrase-defective HIV-1 requires that the viral DNA be generated in cells through infection and is mediated via a template that declines over time. Vpr activation of expression does not require exclusive nuclear localization of Vpr nor does it correlate with Vpr-mediated cell cycle arrest. These results attribute a new function to HIV-1 Vpr and implicate Vpr as a critical component in expression from unintegrated HIV-1 DNA.
Collapse
Affiliation(s)
- Betty Poon
- Department of Microbiology, David Geffen School of Medicine at UCLA, UCLA AIDS Institute and Jonsson Comprehensive Cancer Center, Los Angeles, California 90095, USA
| | | |
Collapse
|
35
|
Morizono K, De Ugarte DA, Zhu M, Zuk P, Elbarbary A, Ashjian P, Benhaim P, Chen ISY, Hedrick MH. Multilineage cells from adipose tissue as gene delivery vehicles. Hum Gene Ther 2003; 14:59-66. [PMID: 12573059 DOI: 10.1089/10430340360464714] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We have characterized a population of mesenchymal progenitor cells from adipose tissue, termed processed lipoaspirate (PLA) cells, which have multilineage potential similar to bone marrow-derived mesenchymal stem cells and are also easily expanded in culture. The primary benefit of using adipose tissue as a source of multilineage progenitor cells is its relative abundance and ease of procurement. We examined the infection of PLA cells with adenoviral, oncoretroviral, and lentiviral vectors. We demonstrate that PLA cells can be transduced with lentiviral vectors at high efficiency. PLA cells maintain transgene expression after differentiation into adipogenic and osteogenic lineages after lentiviral transduction. Therefore, PLA cells and lentiviral vectors may be an efficient combination for use as a therapeutic gene delivery vehicle.
Collapse
Affiliation(s)
- Kouki Morizono
- Microbiology, Immunology, and Molecular Genetics and Medicine, Department of Hematology-Oncology, UCLA AIDS Institute, UCLA School of Medicine, Los Angeles, CA 90024, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Logan AC, Lutzko C, Kohn DB. Advances in lentiviral vector design for gene-modification of hematopoietic stem cells. Curr Opin Biotechnol 2002; 13:429-36. [PMID: 12459333 DOI: 10.1016/s0958-1669(02)00346-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Lentiviral vectors are more efficient at transducing quiescent hematopoietic stem cells than murine retroviral vectors. This characteristic is due to multiple karyophilic components of the lentiviral vector pre-integration complex. Lentiviral vectors are also able to carry more complex payloads than murine retroviral vectors, making it possible to deliver expression cassettes that direct either constitutive or targeted expression in various hematopoietic stem cell progeny.
Collapse
Affiliation(s)
- Aaron C Logan
- Division of Research Immunology/Bone Marrow Transplantation, Children's Hospital Los Angeles, 4650 Sunset Blvd, MS 62, Los Angeles, CA 90027, USA
| | | | | |
Collapse
|
37
|
De Palma M, Naldini L. Transduction of a gene expression cassette using advanced generation lentiviral vectors. Methods Enzymol 2002; 346:514-29. [PMID: 11883088 DOI: 10.1016/s0076-6879(02)46074-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Michele De Palma
- Institute for Cancer Research and Treatment, Laboratory for Gene Transfer and Therapy, University of Torino Medical School, 10060 Candiolo, Torino, Italy
| | | |
Collapse
|
38
|
Morizono K, Bristol G, Xie YM, Kung SK, Chen IS. Antibody-directed targeting of retroviral vectors via cell surface antigens. J Virol 2001; 75:8016-20. [PMID: 11483746 PMCID: PMC115045 DOI: 10.1128/jvi.75.17.8016-8020.2001] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Targeted stable transduction of specific cells is a highly desirable goal for gene therapy applications. We report an efficient and broadly applicable approach for targeting retroviral vectors to specific cells. We find that the envelope of the alphavirus Sindbis virus can pseudotype human immunodeficiency virus type 1- and murine leukemia virus-based retroviral vectors. When modified to contain the Fc-binding domain of protein A, this envelope gives a significant enhancement in specificity in combination with antibodies specific for HLA and CD4 relative to that without antibody. Unlike previous targeting strategies for retroviral transduction, the virus titers are relatively high and stable and can be further increased by ultracentrifugation. This study provides proof of principle for a targeting strategy that would be generally useful for many gene therapy applications.
Collapse
Affiliation(s)
- K Morizono
- Department of Microbiology, Immunology and Molecular Genetics, UCLA School of Medicine, Los Angeles, California 90095, USA
| | | | | | | | | |
Collapse
|
39
|
Choi JK, Hoang N, Vilardi AM, Conrad P, Emerson SG, Gewirtz AM. Hybrid HIV/MSCV LTR enhances transgene expression of lentiviral vectors in human CD34(+) hematopoietic cells. Stem Cells 2001; 19:236-46. [PMID: 11359949 DOI: 10.1634/stemcells.19-3-236] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
HIV-based lentiviral vectors can transduce nondividing cells, an important advantage over murine leukemia virus (MLV)-based vectors when transducing slowly dividing hematopoietic stem cells. However, we find that in human CD34(+) hematopoietic cells, the HIV-based vectors with an internal cytomegalovirus (CMV) promoter express transgenes 100- to 1,000-fold less than the MLV-based retroviral vector murine stem cell virus (MSCV). To increase the expression of the integrated lentivirus, we replaced CMV promoter with that of the Rous sarcoma virus or MSCV and obtained a modest augmentation in expression. A more dramatic effect was seen when the CMV enhancer/promoter was removed and the HIV long-terminal repeat (LTR) was replaced by a novel HIV/MSCV hybrid LTR. This vector retains the ability to transduce nondividing cells but now expresses its transgene (enhanced green fluorescent protein) 10- to 100-fold greater than the original HIV-based vector. When compared under identical conditions, the HIV vector with the hybrid LTR transduced a higher percentage of CD34(+) cells than the MSCV-based retroviral vector (19.4% versus 2.4%). The number of transduced cells and level of transgene expression remain constant over 5-8 weeks as determined by long-term culture-initiating cells, fluoresence-activated cell sorting, and nonobese diabetic/severe combined immunodeficiency repopulation assay.
Collapse
Affiliation(s)
- J K Choi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia 19104, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Gao Z, Golob J, Tanavde VM, Civin CI, Hawley RG, Cheng L. High Levels of Transgene Expression Following Transduction of Long-Term NOD/SCID-Repopulating Human Cells with a Modified Lentiviral Vector. Stem Cells 2001; 19:247-59. [PMID: 11359950 DOI: 10.1634/stemcells.19-3-247] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Both oncoretroviral and lentiviral vectors have been shown to transduce CD34(+) human hematopoietic stem cells (HSC) capable of establishing human hematopoiesis in nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice that support partially human hematopoiesis. We and others have reported that murine stem cell virus (MSCV)-based oncoretroviral vectors efficiently transduced HSC that had been cultured ex vivo for 4-7 days with cytokines, resulting in transgene expression in lymphoid and myeloid progenies of SCID-engrafting cells 4-8 weeks post-transplantation. Although lentiviral vectors have been demonstrated to transduce HSC under minimal ex vivo culture conditions, concerns exist regarding the level of transgene expression mediated by these vectors. We therefore evaluated a novel hybrid lentiviral vector (GIN-MU3), in which the U3 region of the HIV-1 long terminal repeat was replaced by the MSCV U3 region (MU3). Human cord blood CD34(+) cells were transduced with vesicular stomatitis virus G envelope protein-pseudotyped lentiviruses during a 48-hour culture period. After a total of 4 days in culture, transduced cells were transplanted into NOD/SCID mice to examine gene transfer and expression in engrafting human cells. Fifteen weeks post-transplantation, 37% +/- 12% of engrafted human cells expressed the green fluorescence protein (GFP) gene introduced by the lentiviral vector. High levels of GFP expression were observed in lymphoid, myeloid and erythroid progenies, and in engrafted human cells that retained the CD34(+) phenotype 15 weeks post-transplantation. This study provides evidence that lentiviral vectors transduced both short-term and long-term engrafting human cells, and mediated persistent transgene expression at high levels in multiple lineages of hematopoietic cells.
Collapse
Affiliation(s)
- Z Gao
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | | | | | | | | | | |
Collapse
|
41
|
An DS, Chen IS. Envelope gene of the human endogenous retrovirus HERV-W encodes a functional retrovirus envelope. J Virol 2001; 75:3488-9. [PMID: 11238877 PMCID: PMC114144 DOI: 10.1128/jvi.75.7.3488-3489.2001] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A member of the human endogenous retrovirus (HERV) family termed HERV-W encodes a highly fusogenic membrane glycoprotein that appears to be expressed specifically in the placenta. It is unclear whether the glycoproteins of the HERVs can serve as functional retrovirus envelope proteins to confer infectivity on retrovirus particles. We found that the HERV-W envelope glycoprotein can form pseudotypes with human immunodeficiency virus type 1 virions and confers tropism for CD4-negative cells. Thus, the HERV-W env gene represents the first HERV env gene demonstrated to encode the functional properties of a retrovirus envelope glycoprotein.
Collapse
Affiliation(s)
- D S An
- Department of Microbiology, Immunology, Molecular Genetics, and Medicine, UCLA AIDS Institute, University of California-Los Angeles, Los Angeles, California 90095, USA
| | | |
Collapse
|
42
|
Sirven A, Ravet E, Charneau P, Zennou V, Coulombel L, Guétard D, Pflumio F, Dubart-Kupperschmitt A. Enhanced transgene expression in cord blood CD34(+)-derived hematopoietic cells, including developing T cells and NOD/SCID mouse repopulating cells, following transduction with modified trip lentiviral vectors. Mol Ther 2001; 3:438-48. [PMID: 11319904 DOI: 10.1006/mthe.2001.0282] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The recent development of lentivirus-derived vectors is an important breakthrough in gene transfer technology because these vectors allow transduction of nondividing cells such as hematopoietic stem cells (HSC), due to an active nuclear import of reverse-transcribed vector DNA. We recently demonstrated that addition of the central DNA flap of HIV-1 to an HIV-derived lentiviral vector strikingly increases transduction of CD34(+) cells. We now describe improvements of the transduction protocol designed to preserve HSC properties and two modifications of the previously described TRIP-CMV vector. First, deletion of the enhancer/promoter of the 3' LTR in the TRIP-CMV vector resulted in a safer vector (TRIPDeltaU3-CMV) with conserved transduction efficiency and increased EGFP transgene expression. Second, the original internal CMV promoter was replaced with the promoter for the ubiquitously expressed elongation factor 1alpha (EF1alpha). This promoter substitution resulted in a significantly more homogeneous expression of the EGFP transgene in all hematopoietic cell types, including CD34(+)-derived T lymphocytes, in which the CMV promoter was inactive, and NOD/SCID mouse repopulating cells. We thus present here an HIV-derived lentiviral vector, TRIPDeltaU3-EF1alpha, which can very efficiently transduce human cord blood HSC and results in high long-term transgene expression in CD34(+)-derived T, B, NK, and myeloid hematopoietic cells.
Collapse
Affiliation(s)
- A Sirven
- INSERM U362, Institut Gustave Roussy, 39 Rue C. Desmoulins, Villejuif Cedex, 94805, France
| | | | | | | | | | | | | | | |
Collapse
|
43
|
An DS, Kung SK, Bonifacino A, Wersto RP, Metzger ME, Agricola BA, Mao SH, Chen IS, Donahue RE. Lentivirus vector-mediated hematopoietic stem cell gene transfer of common gamma-chain cytokine receptor in rhesus macaques. J Virol 2001; 75:3547-55. [PMID: 11264344 PMCID: PMC114846 DOI: 10.1128/jvi.75.8.3547-3555.2001] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nonhuman primate model systems of autologous CD34+ cell transplant are the most effective means to assess the safety and capabilities of lentivirus vectors. Toward this end, we tested the efficiency of marking, gene expression, and transplant of bone marrow and peripheral blood CD34+ cells using a self-inactivating lentivirus vector (CS-Rh-MLV-E) bearing an internal murine leukemia virus long terminal repeat derived from a murine retrovirus adapted to replicate in rhesus macaques. In vitro cytokine stimulation was not required to achieve efficient transduction of CD34+ cells resulting in marking and gene expression of the reporter gene encoding enhanced green fluorescent protein (EGFP) following transplant of the CD34+ cells. Monkeys transplanted with mobilized peripheral blood CD34+ cells resulted in EGFP expression in 1 to 10% of multilineage peripheral blood cells, including red blood cells and platelets, stable for 15 months to date. The relative level of gene expression utilizing this vector is 2- to 10-fold greater than that utilizing a non-self-inactivating lentivirus vector bearing the cytomegalovirus immediate-early promoter. In contrast, in animals transplanted with autologous bone marrow CD34+ cells, multilineage EGFP expression was evident initially but diminished over time. We further tested our lentivirus vector system by demonstrating gene transfer of the human common gamma-chain cytokine receptor gene (gamma(c)), deficient in X-linked SCID patients and recently successfully used to treat disease. Marking was 0.42 and.001 HIV-1 vector DNA copy per 100 cells in two animals. To date, all EGFP- and gamma(c)-transplanted animals are healthy. This system may prove useful for expression of therapeutic genes in human hematopoietic cells.
Collapse
Affiliation(s)
- D S An
- UCLA AIDS Institute and Department of Microbiology and Immunology and Molecular Genetics and Department of Medicine, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Gene transfer into hematopoietic cells using viral vectors has focused mostly on lymphocytes and hematopoietic stem cells (HSCs). HSCs have been considered particularly important as target cells because of their pluripotency and ability to reconstitute hematopoiesis after myeloablation and transplantation. HSCs are believed to have the ability to live a long time, perhaps a lifetime, in the recipient following bone marrow transplantation. Genetic correction of HSCs can therefore potentially last a lifetime and permanently cure hematologic disorders in which genetic deficiencies cause the pathology. Oncoretroviral vectors have been the main vectors used for HSCs because of their ability to integrate into the chromosomes of their target cells. Gene-transfer efficiency of murine HSCs is high using oncoretroviral vectors. In contrast, gene-transfer efficiency using the same viral vectors to transduce human HSCs or HSCs from large animals has been much lower. Although these difficulties may have several causes, the main reason for the low efficiency of human HSC transduction with oncoretroviral vectors is probably because of the nondividing nature of HSCs. Murine HSCs can be easily stimulated to divide in culture, whereas it is more problematic to stimulate human HSCs to divide rapidly in vitro. Because oncoretroviral vectors require dividing target cells for successful nuclear import of the preintegration complex and subsequent integration of the provirus, only the dividing fraction of the target cells can be transduced. This review focuses on gene transfer into human hematopoietic cells, particularly human HSCs. We review the clinical studies that have been reported, including the recent successful gene therapy for X-linked severe combined immunodeficiency. We discuss how the gene-transfer efficiency of human HSCs can be improved using oncoretroviral and lentiviral vectors.
Collapse
Affiliation(s)
- J Richter
- Molecular Medicine and Gene Therapy, Institute for Laboratory Medicine and Department of Medicine, Lund University Hospital, Sweden
| | | |
Collapse
|
45
|
Dardalhon V, Herpers B, Noraz N, Pflumio F, Guetard D, Leveau C, Dubart-Kupperschmitt A, Charneau P, Taylor N. Lentivirus-mediated gene transfer in primary T cells is enhanced by a central DNA flap. Gene Ther 2001; 8:190-8. [PMID: 11313790 DOI: 10.1038/sj.gt.3301378] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2000] [Accepted: 10/25/2000] [Indexed: 11/09/2022]
Abstract
Retroviral vectors have become the primary tool for gene delivery into hematopoietic cells, including T lymphocytes. Lentiviral vectors offer an advantage over Moloney murine leukemia virus (MuLV) vectors because of their ability to translocate across an intact nuclear membrane and integrate into the genome of nonproliferating cells. We have recently demonstrated that a central strand displacement event, controlled by the central polypurine tract (cPPT) and the central termination sequence (CTS), results in the formation of a central DNA flap which acts as a cis-determinant of HIV-1 genome nuclear import. Here, we show that insertion of this DNA determinant in a classical lentiviral vector resulted in a significantly higher level of transduction in activated T cells (51 +/- 12.7% versus 15 +/- 1.4%). CD4(+) and CD8(+) T cells were transduced at equivalent levels. Importantly, freshly isolated T cells stimulated only during the 12-h transduction period could be efficiently transduced with this new flap-containing lentiviral vector, but not with the parental lentiviral vector nor an MuLV vector. Transgene expression in the flap-containing lentiviral vector, under the control of either an internal cytomegalovirus or the elongation factor-1 alpha (EF1 alpha) promoter, was significant and expression remained elevated in resting T cells. Thus, this system allows stable expression of transgenes in T lymphocytes following a short ex vivo transduction protocol.
Collapse
Affiliation(s)
- V Dardalhon
- Institut de Génétique Moléculaire de Montpellier, UMR 5535/IFR 22, France
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ramezani A, Hawley TS, Hawley RG. Lentiviral vectors for enhanced gene expression in human hematopoietic cells. Mol Ther 2000; 2:458-69. [PMID: 11082319 DOI: 10.1006/mthe.2000.0190] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Accumulated data indicate that current generation lentiviral vectors, which generally utilize an internal human cytomegalovirus (CMV) immediate early region enhancer-promoter to transcribe the gene of interest, are not yet optimized for efficient expression in human hematopoietic stem/progenitor cells (HSPCs). As a first step toward this goal, we constructed self-inactivating derivatives of the HIV-1-based transfer vector pHR' containing the enhanced green fluorescent protein (GFP) gene as reporter and the Woodchuck hepatitis virus posttranscriptional regulatory element (WPRE). GFP expression was driven by a variety of strong viral and cellular promoters, including the murine stem cell virus (MSCV) long terminal repeat (LTR), a Gibbon ape leukemia virus (GALV) LTR, the human elongation factor 1alpha (EF1alpha) promoter, the composite CAG promoter (consisting of the CMV immediate early enhancer and the chicken beta-actin promoter), and the human phosphoglycerate kinase 1 (PGK) promoter. In contrast to results obtained in human embryonic kidney 293T cells and fibrosarcoma HT1080 cells, in which the CMV promoter expressed GFP at the highest levels, significantly higher levels of GFP expression (3- to 5-fold) were achieved with the MSCV LTR, the EF1alpha promoter, and the CAG promoter in the human HSPC line KG1a. Removal of the WPRE indicated that it stimulated GFP expression from all of the vectors in KG1a cells (up to 3-fold), although it only marginally improved the performance of the intron-containing EF1alpha and CAG promoters (<1.5-fold stimulation). The vectors using the MSCV LTR, the GALV LTR, and the PGK promoter were the most efficient at transducing primary human CD34+ cord blood progenitors under the conditions employed. High-level GFP expression in the NOD/SCID xenograft model was demonstrated with the pHR' derivative bearing the MSCV LTR. These new lentiviral vector backbones provide a basis for the rational design of improved delivery vehicles for human HSPC gene transfer applications.
Collapse
Affiliation(s)
- A Ramezani
- Hematopoiesis Department, American Red Cross, Rockville, Maryland 20855, USA
| | | | | |
Collapse
|
47
|
Hanazono Y, Brown KE, Dunbar CE. Primary T lymphocytes as targets for gene therapy. JOURNAL OF HEMATOTHERAPY & STEM CELL RESEARCH 2000; 9:611-20. [PMID: 11091484 DOI: 10.1089/15258160050196641] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Peripheral blood T lymphocytes have been considered an attractive target for gene therapy applications. They can be easily harvested and readily expanded ex vivo. The transduction efficiency of primary human lymphocytes with standard retroviral vectors approaches 50% or more using optimized methods of gene transfer. Other methods of gene transfer, including adenoviral, adeno-associated viral, and lentiviral vectors, or nonviral techniques, have also been used for gene transfer into primary lymphocytes. Despite encouraging results in vitro, human clinical trials using retroviral vectors to transduce primary lymphocytes have been hindered by low expression levels of transgenes and immune responses against transgene products. Strategies to overcome these problems need to be developed.
Collapse
Affiliation(s)
- Y Hanazono
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical School, Tochigi, Japan
| | | | | |
Collapse
|
48
|
Abstract
Lentiviral vectors are tools for gene transfer derived from lentiviruses. From their first application to now they have been strongly developed in design, in biosafety and in their ability of transgene expression into target cells. Primate and non-primate derived lentiviral vectors are now available and with both types of systems a lot of studies tuned to improve their performances in a large number of tissues are ongoing. Here we review the state of the art of lentiviral vector systems discussing their potential for gene therapy.
Collapse
Affiliation(s)
- E Vigna
- Laboratory for Gene Transfer and Therapy, IRCC, Institute for Cancer Research and Treatment, University of Torino Medical School, Candiolo, Italy
| | | |
Collapse
|