1
|
Gupta P, Andankar I, Gunasekaran B, Easwaran N, Kodiveri Muthukaliannan G. Genetically modified potato and rice based edible vaccines – An overview. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
2
|
Virus-Like Particles-Based Mucosal Nanovaccines. NANOVACCINES 2019. [PMCID: PMC7120988 DOI: 10.1007/978-3-030-31668-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Virus-like particles (VLPs) are protein complexes that resemble a virus and constitute highly immunogenic entities as they mimic the pathogen at an important degree. Among nanovaccines, those based on VLPs are the most successful thus far with some formulations already commercialized (e.g., those against hepatitis B and E viruses and human papillomavirus). This chapter highlights the advantages of VLPs-based vaccines, describing approaches for their design and transmittance of the state of the art for mucosal VLPs-based vaccines development. Several candidates have been produced in insect cells, plants, and E. coli and mammalian cells; they have been mainly evaluated in i.n. and oral immunization schemes. i.n. vaccines against the influenza virus and the Norwalk virus are the most advanced applications. For the latter, i.n. formulations are under clinical evaluation. Perspectives for the field comprise the expansion of the use of low-cost platforms such as plants and bacteria, the development of multiepitopic/multivalent vaccines, and computationally designed VLPs. Mucosal VLPs-based vaccines stand as a major promising approach in vaccinology and the initiation of more clinical trials is envisaged in a short time.
Collapse
|
3
|
Abstract
Perhaps the best-studied mucosal adjuvants are the bacterially derived ADP-ribosylating enterotoxins. This adjuvant family includes heat-labile enterotoxin of Escherichia coli (LT), cholera toxin (CT), and mutants or subunits of LT and CT. These proteins promote a multifaceted antigen-specific response, including inflammatory Th1, Th2, Th17, cytotoxic T lymphocytes (CTLs), and antibodies. However, more uniquely among adjuvant classes, they induce antigen-specific IgA antibodies and long-lasting memory to coadministered antigens when delivered mucosally or even parenterally. The purpose of this minireview is to describe the general properties, history and creation, preclinical studies, clinical studies, mechanisms of action, and considerations for use of the most promising enterotoxin-based adjuvant to date, LT(R192G/L211A) or dmLT. This review is timely due to completed, ongoing, and planned clinical investigations of dmLT in multiple vaccine formulations by government, nonprofit, and industry groups in the United States and abroad.
Collapse
Affiliation(s)
- John D Clements
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Elizabeth B Norton
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| |
Collapse
|
4
|
Donaldson B, Al-Barwani F, Pelham SJ, Young K, Ward VK, Young SL. Multi-target chimaeric VLP as a therapeutic vaccine in a model of colorectal cancer. J Immunother Cancer 2017; 5:69. [PMID: 28806910 PMCID: PMC5556368 DOI: 10.1186/s40425-017-0270-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 07/21/2017] [Indexed: 02/08/2023] Open
Abstract
Background Colorectal cancer is responsible for almost 700,000 deaths annually worldwide. Therapeutic vaccination is a promising alternative to conventional treatment for colorectal cancer, using vaccines to induce targeted immune responses against tumour-associated antigens. In this study, we have developed chimaeric virus-like particles (VLP), a form of non-infectious non-replicative subunit vaccine consisting of rabbit haemorrhagic disease virus (RHDV) VP60 capsid proteins containing recombinantly inserted epitopes from murine topoisomerase IIα and survivin. These vaccines were developed in mono- (T.VP60, S.VP60) and multi-target (TS.VP60) forms, aiming to elucidate the potential benefits from multi-target vaccination. Methods Chimaeric RHDV VLP were developed by recombinantly inserting immune epitopes at the N-terminus of VP60. Vaccines were tested against a murine model of colorectal cancer by establishing MC38-OVA tumours subcutaneously. Unmethylated CpG DNA oligonucleotides (CpGs) were used as a vaccine adjuvant. Statistical tests employed included the Mantel-Cox log-rank test, ANOVA and unpaired t-tests depending on the data analysed, with a post hoc Bonferroni adjustment for multiple measures. Results Chimaeric RHDV VLP were found to form a composite particle in the presence of CpGs. Overall survival was significantly improved amongst mice bearing MC38-OVA tumours following vaccination with T.VP60 (60%, 9/15), S.VP60 (60%, 9/15) or TS.VP60 (73%, 11/15). TS.VP60 significantly prolonged the vaccine-induced remission period in comparison to each mono-therapy. Conclusions Chimaeric VLP containing multiple epitopes were found to confer an advantage for therapeutic vaccination in a model of colorectal cancer based on the prolongation of remission prior to tumour escape. Electronic supplementary material The online version of this article (doi:10.1186/s40425-017-0270-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Braeden Donaldson
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Farah Al-Barwani
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Simon J Pelham
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Katie Young
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Vernon K Ward
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sarah L Young
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin, 9054, New Zealand.
| |
Collapse
|
5
|
Devaraj K, Gillison ML, Wu TC. Development of HPV Vaccines for HPV-associated Head and Neck Squamous Cell Carcinoma. ACTA ACUST UNITED AC 2016; 14:345-62. [PMID: 14530303 DOI: 10.1177/154411130301400505] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
High-risk genotypes of the human papillomavirus (HPV), particularly HPV type 16, are found in a distinct subset of head and neck squamous cell carcinomas (HNSCC). Thus, these HPV-associated HNSCC may be prevented or treated by vaccines designed to induce appropriate HPV virus-specific immune responses. Infection by HPV may be prevented by neutralizing antibodies specific for the viral capsid proteins. In clinical trials, vaccines comprised of HPV virus-like particles (VLPs) have shown great promise as prophylactic HPV vaccines. However, given that capsid proteins are not expressed at detectable levels by infected basal keratinocytes, vaccines with therapeutic potential must target other non-structural viral antigens. Two HPV oncogenic proteins, E6 and E7, are important in the induction and maintenance of cellular transformation and are co-expressed in the majority of HPV-containing carcinomas. Therefore, therapeutic vaccines targeting these proteins may have potential to control HPV-associated malignancies. Various candidate therapeutic HPV vaccines are currently being tested whereby E6 and/or E7 is administered in live vectors, in peptides or protein, in nucleic acid form, as components of chimeric VLPs, or in cell-based vaccines. Encouraging results from experimental vaccination systems in animal models have led to several prophylactic and therapeutic vaccine clinical trials. Should they fulfill their promise, these vaccines may prevent HPV infection or control its potentially life-threatening consequences in humans.
Collapse
Affiliation(s)
- Kalpana Devaraj
- Department of Pathology, The Johns Hopkins Medical Institutions, 720 Rutland Avenue, Ross Building 512, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
6
|
Lalsiamthara J, Kamble NM, Lee JH. A live attenuated Salmonella Enteritidis secreting detoxified heat labile toxin enhances mucosal immunity and confers protection against wild-type challenge in chickens. Vet Res 2016; 47:60. [PMID: 27262338 PMCID: PMC4893257 DOI: 10.1186/s13567-016-0348-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 05/22/2016] [Indexed: 01/08/2023] Open
Abstract
A live attenuated Salmonella Enteritidis (SE) capable of constitutively secreting detoxified double mutant Escherichia coli heat labile toxin (dmLT) was developed. The biologically adjuvanted strain was generated via transformation of a highly immunogenic SE JOL1087 with a plasmid encoding dmLT gene cassette; the resultant strain was designated JOL1641. A balanced-lethal host-vector system stably maintained the plasmid via auxotrophic host complementation with a plasmid encoded aspartate semialdehyde dehydrogenase (asd) gene. Characterization by western blot assay revealed the dmLT subunit proteins in culture supernatants of JOL1641. For the investigation of adjuvanticity and protective efficacy, chickens were immunized via oral or intramuscular routes with PBS, JOL1087 and JOL1641. Birds immunized with JOL1641 showed significant (P ≤ 0.05) increases in intestinal SIgA production at the 1st and 2nd weeks post-immunization via oral and intramuscular routes, respectively. Interestingly, while both strains showed significant splenic protection via intramuscular immunization, JOL1641 outperformed JOL1087 upon oral immunization. Oral immunization of birds with JOL1641 significantly reduced splenic bacterial counts. The reduction in bacterial counts may be correlated with an adjuvant effect of dmLT that increases SIgA secretion in the intestines of immunized birds. The inclusion of detoxified dmLT in the strain did not cause adverse reactions to birds, nor did it extend the period of bacterial fecal shedding. In conclusion, we report here that dmLT could be biologically incorporated in the secretion system of a live attenuated Salmonella-based vaccine, and that this construction is safe and could enhance mucosal immunity, and protect immunized birds against wild-type challenge.
Collapse
Affiliation(s)
- Jonathan Lalsiamthara
- Department of Bioactive Material Sciences and Department of Veterinary Public Health, College of Veterinary Medicine, Chonbuk National University, Iksan Campus, Iksan, 570-752, Republic of Korea
| | - Nitin Machindra Kamble
- Department of Bioactive Material Sciences and Department of Veterinary Public Health, College of Veterinary Medicine, Chonbuk National University, Iksan Campus, Iksan, 570-752, Republic of Korea
| | - John Hwa Lee
- Department of Bioactive Material Sciences and Department of Veterinary Public Health, College of Veterinary Medicine, Chonbuk National University, Iksan Campus, Iksan, 570-752, Republic of Korea.
| |
Collapse
|
7
|
Jiang RT, Schellenbacher C, Chackerian B, Roden RBS. Progress and prospects for L2-based human papillomavirus vaccines. Expert Rev Vaccines 2016; 15:853-62. [PMID: 26901354 DOI: 10.1586/14760584.2016.1157479] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human papillomavirus (HPV) is a worldwide public health problem, particularly in resource-limited countries. Fifteen high-risk genital HPV types are sexually transmitted and cause 5% of all cancers worldwide, primarily cervical, anogenital and oropharyngeal carcinomas. Skin HPV types are generally associated with benign disease, but a subset is linked to non-melanoma skin cancer. Licensed HPV vaccines based on virus-like particles (VLPs) derived from L1 major capsid antigen of key high risk HPVs are effective at preventing these infections but do not cover cutaneous types and are not therapeutic. Vaccines targeting L2 minor capsid antigen, some using capsid display, adjuvant and fusions with early HPV antigens or Toll-like receptor agonists, are in development to fill these gaps. Progress and challenges with L2-based vaccines are summarized.
Collapse
Affiliation(s)
- Rosie T Jiang
- a Department of Pathology , The Johns Hopkins University , Baltimore , MD , USA
| | - Christina Schellenbacher
- b Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology , Medical University Vienna (MUW) , Vienna , Austria
| | - Bryce Chackerian
- c Department of Molecular Genetics and Microbiology , University of New Mexico School of Medicine , Albuquerque , NM , USA
| | - Richard B S Roden
- a Department of Pathology , The Johns Hopkins University , Baltimore , MD , USA.,d Department of Oncology , The Johns Hopkins University , Baltimore , MD , USA.,e Department of Gynecology & Obstetrics , The Johns Hopkins University , Baltimore , MD , USA
| |
Collapse
|
8
|
|
9
|
Russell MW, Whittum-Hudson J, Fidel PL, Hook EW, Mestecky J. Immunity to Sexually Transmitted Infections. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00112-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Kraan H, Vrieling H, Czerkinsky C, Jiskoot W, Kersten G, Amorij JP. Buccal and sublingual vaccine delivery. J Control Release 2014; 190:580-92. [PMID: 24911355 PMCID: PMC7114675 DOI: 10.1016/j.jconrel.2014.05.060] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/28/2014] [Accepted: 05/29/2014] [Indexed: 11/25/2022]
Abstract
Because of their large surface area and immunological competence, mucosal tissues are attractive administration and target sites for vaccination. An important characteristic of mucosal vaccination is its ability to elicit local immune responses, which act against infection at the site of pathogen entry. However, mucosal surfaces are endowed with potent and sophisticated tolerance mechanisms to prevent the immune system from overreacting to the many environmental antigens. Hence, mucosal vaccination may suppress the immune system instead of induce a protective immune response. Therefore, mucosal adjuvants and/or special antigen delivery systems as well as appropriate dosage forms are required in order to develop potent mucosal vaccines. Whereas oral, nasal and pulmonary vaccine delivery strategies have been described extensively, the sublingual and buccal routes have received considerably less attention. In this review, the characteristics of and approaches for sublingual and buccal vaccine delivery are described and compared with other mucosal vaccine delivery sites. We discuss recent progress and highlight promising developments in the search for vaccine formulations, including adjuvants and suitable dosage forms, which are likely critical for designing a successful sublingual or buccal vaccine. Finally, we outline the challenges, hurdles to overcome and formulation issues relevant for sublingual or buccal vaccine delivery.
Collapse
Affiliation(s)
- Heleen Kraan
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands.
| | - Hilde Vrieling
- Division of Drug Delivery Technology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - Cecil Czerkinsky
- Institut de Pharmacologie Moleculaire et Cellulaire, UMR 7275 CNRS-INSERM-UNSA, Valbonne, France
| | - Wim Jiskoot
- Division of Drug Delivery Technology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - Gideon Kersten
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands; Division of Drug Delivery Technology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - Jean-Pierre Amorij
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands.
| |
Collapse
|
11
|
Maclean J, Rybicki EP, Williamson AL. Vaccination strategies for the prevention of cervical cancer. Expert Rev Anticancer Ther 2014; 5:97-107. [PMID: 15757442 DOI: 10.1586/14737140.5.1.97] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Infection with high-risk human papillomaviruses (HPVs) is an essential step in the multistep process leading to cervical cancer. There are approximately 120 different types of HPV identified: of these, 18 are high-risk types associated with cervical cancer, with HPV-16 being the dominant type in most parts of the world. The major capsid protein of papillomavirus, produced in a number of expression systems, self assembles to form virus-like particles. Virus-like particles are the basis of the first generation of HPV vaccines presently being tested in clinical trials. Virus-like particles are highly immunogenic and afford protection from infection both in animal models and in Phase IIb clinical trials. A number of Phase III trials are in progress to determine if the vaccine will protect against cervical disease and, in some cases, genital warts. However, it is predicted that these vaccines will be too expensive for the developing world, where they are desperately needed. Another problem is that they will be type specific. Novel approaches to the production of virus-like particles in plants, second-generation vaccine approaches including viral and bacterial vaccine vectors and DNA vaccines, as well as different routes of immunization, are also reviewed.
Collapse
Affiliation(s)
- James Maclean
- University of Cape Town, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, Observatory Cape Town 7925, South Africa.
| | | | | |
Collapse
|
12
|
Giorgi C, Franconi R, Rybicki EP. Human papillomavirus vaccines in plants. Expert Rev Vaccines 2014; 9:913-24. [DOI: 10.1586/erv.10.84] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
13
|
Vacher G, Kaeser MD, Moser C, Gurny R, Borchard G. Recent Advances in Mucosal Immunization Using Virus-like Particles. Mol Pharm 2013; 10:1596-609. [DOI: 10.1021/mp300597g] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Gaëlle Vacher
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, 1211 Geneva, Switzerland
| | | | | | - Robert Gurny
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, 1211 Geneva, Switzerland
| | - Gerrit Borchard
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, 1211 Geneva, Switzerland
| |
Collapse
|
14
|
Characterization of a mutant Escherichia coli heat-labile toxin, LT(R192G/L211A), as a safe and effective oral adjuvant. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:546-51. [PMID: 21288994 DOI: 10.1128/cvi.00538-10] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite the fact that the adjuvant properties of the heat-labile enterotoxins of Escherichia coli (LT) and Vibrio cholerae (CT) have been known for more than 20 years, there are no available oral vaccines containing these molecules as adjuvants, primarily because they are both very potent enterotoxins. A number of attempts with various degrees of success have been made to reduce or eliminate the enterotoxicity of LT and CT so they can safely be used as oral adjuvants or immunogens. In this report we characterize the structural, enzymatic, enterotoxic, and adjuvant properties of a novel mutant of LT, designated LT(R192G/L211A), or dmLT. dmLT was not sensitive to trypsin activation, had reduced enzymatic activity for induction of cyclic AMP in Caco-2 cells, and exhibited no enterotoxicity in the patent mouse assay. Importantly, dmLT retained the ability to function as an oral adjuvant for a coadministered antigen (tetanus toxoid) and to elicit anti-LT antibodies. In vitro and in vivo data suggest that the reduced enterotoxicity of this molecule compared to native LT or the single mutant, LT(R192G), is a consequence of increased sensitivity to proteolysis and rapid intracellular degradation in mammalian cells. In conclusion, dmLT is a safe and powerful detoxified enterotoxin with the potential to function as a mucosal adjuvant for coadministered antigens and to elicit anti-LT antibodies without undesirable side effects.
Collapse
|
15
|
An RNA element at the 5'-end of the poliovirus genome functions as a general promoter for RNA synthesis. PLoS Pathog 2010; 6:e1000936. [PMID: 20532207 PMCID: PMC2880563 DOI: 10.1371/journal.ppat.1000936] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 05/03/2010] [Indexed: 12/28/2022] Open
Abstract
RNA structures present throughout RNA virus genomes serve as scaffolds to organize multiple factors involved in the initiation of RNA synthesis. Several of these RNA elements play multiple roles in the RNA replication pathway. An RNA structure formed around the 5′- end of the poliovirus genomic RNA has been implicated in the initiation of both negative- and positive-strand RNA synthesis. Dissecting the roles of these multifunctional elements is usually hindered by the interdependent nature of the viral replication processes and often pleiotropic effects of mutations. Here, we describe a novel approach to examine RNA elements with multiple roles. Our approach relies on the duplication of the RNA structure so that one copy is dedicated to the initiation of negative-strand RNA synthesis, while the other mediates positive-strand synthesis. This allows us to study the function of the element in promoting positive-strand RNA synthesis, independently of its function in negative-strand initiation. Using this approach, we demonstrate that the entire 5′-end RNA structure that forms on the positive-strand is required for initiation of new positive-strand RNAs. Also required to initiate positive-strand RNA synthesis are the binding sites for the viral polymerase precursor, 3CD, and the host factor, PCBP. Furthermore, we identify specific nucleotide sequences within “stem a” that are essential for the initiation of positive-strand RNA synthesis. These findings provide direct evidence for a trans-initiation model, in which binding of proteins to internal sequences of a pre-existing positive-strand RNA affects the synthesis of subsequent copies of that RNA, most likely by organizing replication factors around the initiation site. Enteroviruses are a subfamily of small, pathogenic, icosahedral viruses called picornaviruses. Poliovirus, the etiologic agent of paralytic poliomyelitis, is one of the most extensively studied members of this family. Poliovirus RNA replication utilizes a mechanism, common to all positive, single-stranded, lytic RNA viruses, which permits the amplification of a single initial molecule of RNA into thousands of RNA progeny in only a few hours. After entry, the viral genomic RNA is transcribed to generate a complementary RNA (negative-strand), which, in turn, is used as a template to synthesize new strands of genomic RNA (positive-strand). The specificity of the viral RNA template, and the relationship between translation and replication, are controlled by RNA elements present throughout the genome. Individual elements often carry out multiple, interdependent tasks, complicating the dissection of their precise roles in specific steps of replication. We employed a novel approach to overcome this roadblock. Our strategy demonstrated that an RNA element present at the 5′ end of the virus genome is the master regulator of the initiation of RNA synthesis.
Collapse
|
16
|
Rybicki EP. Plant-made vaccines for humans and animals. PLANT BIOTECHNOLOGY JOURNAL 2010; 8:620-37. [PMID: 20233333 PMCID: PMC7167690 DOI: 10.1111/j.1467-7652.2010.00507.x] [Citation(s) in RCA: 187] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 11/30/2009] [Accepted: 12/02/2009] [Indexed: 05/17/2023]
Abstract
The concept of using plants to produce high-value pharmaceuticals such as vaccines is 20 years old this year and is only now on the brink of realisation as an established technology. The original reliance on transgenic plants has largely given way to transient expression; proofs of concept for human and animal vaccines and of efficacy for animal vaccines have been established; several plant-produced vaccines have been through Phase I clinical trials in humans and more are scheduled; regulatory requirements are more clear than ever, and more facilities exist for manufacture of clinic-grade materials. The original concept of cheap edible vaccines has given way to a realisation that formulated products are required, which may well be injectable. The technology has proven its worth as a means of cheap, easily scalable production of materials: it now needs to find its niche in competition with established technologies. The realised achievements in the field as well as promising new developments will be reviewed, such as rapid-response vaccines for emerging viruses with pandemic potential and bioterror agents.
Collapse
Affiliation(s)
- Edward P Rybicki
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, South Africa. ed.rybicki@ uct.ac.za
| |
Collapse
|
17
|
Abstract
Unmethylated CpG motifs are prevalent in bacterial but not vertebrate genomic DNAs and activate immune cells that express the TLR9 receptor. This triggers the production of reactive oxygen species and the secretion of proinflammatory cytokines and chemokines. Under some conditions these effects can result in the systemic inflammatory response syndrome. Under other conditions, the immune stimulatory effects of CpG motifs can protect against pathogen challenge and initiate prophylactic and therapeutic innate and adaptive immune responses.
Collapse
Affiliation(s)
- Arthur M Krieg
- Coley Pharmaceutical Group, Wellesley, Massachusetts 02481, USA.
| |
Collapse
|
18
|
Mustafa W, Maciag PC, Pan ZK, Weaver JR, Xiao Y, Isaacs SN, Paterson Y. Listeria monocytogenes delivery of HPV-16 major capsid protein L1 induces systemic and mucosal cell-mediated CD4+ and CD8+ T-cell responses after oral immunization. Viral Immunol 2009; 22:195-204. [PMID: 19435416 DOI: 10.1089/vim.2008.0071] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neutralizing antibodies are thought to be required at mucosal surfaces to prevent human papillomavirus (HPV) transmission. However, the potential for cell-mediated immunity in mediating protection against HPV infection has not been well explored. We generated recombinant Listeria monocytogenes (Lm) constructs that secrete listeriolysin O (LLO) fused with overlapping N-terminal (LLO-L1(1-258)) or C-terminal (LLO-L1(238-474)) fragments of HPV type 16 major capsid protein L1 (HPV-16-L1). Oral immunization of mice with either construct induced IFN-gamma-producing CD8+ and CD4+ T cells in the spleen and in the Peyer's patches with the C-terminal construct. Oral immunization with both constructs resulted in diminished viral titers in the cervix and uterus of mice after intravaginal challenge with vaccinia virus expressing HPV-16-L1.
Collapse
Affiliation(s)
- Waleed Mustafa
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Fraillery D, Zosso N, Nardelli-Haefliger D. Rectal and vaginal immunization of mice with human papillomavirus L1 virus-like particles. Vaccine 2009; 27:2326-34. [PMID: 19428847 DOI: 10.1016/j.vaccine.2009.02.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 02/06/2009] [Accepted: 02/09/2009] [Indexed: 11/29/2022]
Abstract
Human papillomavirus (HPV) vaccines based on L1 virus-like particle (VLP) can prevent genital HPV infection and associated lesions after three intramuscular injections. Needle-free administration might facilitate vaccine implementation, especially in developing countries. Here we have investigated rectal and vaginal administration of HPV16 L1 VLPs in mice and their ability to induce anti-VLP and HPV16-neutralizing antibodies in serum and in genital, rectal and oral secretions. Rectal and vaginal immunizations were not effective in the absence of adjuvant. Cholera toxin was able to enhance systemic and mucosal anti-VLPs responses after rectal immunization, but not after vaginal immunization. Rectal immunization with Resiquimod and to a lesser extent Imiquimod, but not monophosphoryl lipid A, induced anti-HPV16 VLP antibodies in serum and secretions. Vaginal immunization was immunogenic only if administered in mice treated with nonoxynol-9, a disrupter of the cervico-vaginal epithelium. Our findings show that rectal and vaginal administration of VLPs can induce significant HPV16-neutralizing antibody levels in secretions, despite the fact that low titers are induced in serum. Imidazoquinolines, largely used to treat genital and anal warts, and nonoxonol-9, used as genital microbicide/spermicide were identified as adjuvants that could be safely used by the rectal or vaginal route, respectively.
Collapse
Affiliation(s)
- Dominique Fraillery
- Institute of Microbiology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Bugnon 48, CH-1011 Lausanne, Switzerland
| | | | | |
Collapse
|
20
|
Plant-produced vaccines: promise and reality. Drug Discov Today 2008; 14:16-24. [PMID: 18983932 DOI: 10.1016/j.drudis.2008.10.002] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 09/30/2008] [Accepted: 10/06/2008] [Indexed: 11/21/2022]
Abstract
Plant-produced vaccines are a much-hyped development of the past two decades, whose time to embrace reality may have finally come. Vaccines have been developed against viral, bacterial, parasite and allergenic antigens, for humans and for animals; a wide variety of plants have been used for stable transgenic expression as well as for transient expression via Agrobacterium tumefaciens and plant viral vectors. A great many products have shown significant immunogenicity; several have shown efficacy in target animals or in animal models. The realised potential of plant-produced vaccines is discussed, together with future prospects for production and registration.
Collapse
|
21
|
Xu Y, Zhang H, Xu X. Enhancement of vaccine potency by fusing modified LTK63 into human papillomavirus type 16 chimeric virus-like particles. ACTA ACUST UNITED AC 2008; 52:99-109. [DOI: 10.1111/j.1574-695x.2007.00339.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
In vivo oral administration effects of various oligodeoxynucleotides containing synthetic immunostimulatory motifs in the immune response to pseudorabies attenuated virus vaccine in newborn piglets. Vaccine 2007; 26:224-33. [PMID: 18063448 DOI: 10.1016/j.vaccine.2007.10.058] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2007] [Revised: 10/10/2007] [Accepted: 10/28/2007] [Indexed: 10/22/2022]
Abstract
Numerous studies have demonstrated that oligonucleotides containing CpG motifs (CpG ODN) are efficient immunoadjuvants to various antigens administered by parenteral routes to mice. Recently, it has been found that CpG ODNs also is a promising mucosal adjuvant in mice. To date, there have been no studies to screen the optimal CpG sequence and modified ODN backbone to piglets in vivo, when delivered by oral route. We have previously demonstrated that human-specific CpG ODN is a potent adjuvant to pseudorabies live attenuated virus (PRV) vaccine when administered subcutaneously (SC) or ocularly in piglets. In this study, we screened and evaluated the optimal CpG sequences (porcine-specific, human-specific, mouse-specific ODN) and optimal backbone (SOS-backbone consisting of a nuclease-resistant phosphorothioate guanosines at the 5' and the 3'-end and with a phosphodiester (O) in the center and phosphorothioate (S) backbone (S-backbone)) to PRV vaccine delivered orally in piglets. The proliferation of peripheral blood mononuclear cells (PBMCs), IFN-gamma and IL-4 in serum, and the titre of IgG, IgG2/IgG1 isotype in serum and IgA in intestinal washings and feces to PRV vaccine were tested at different time-points. The results suggested that, CpG ODNs augmented systemic (IgG in serum, T-cell proliferation) and mucosal (IgA in intestinal washings and feces) immune responses against antigen. CpG ODNs stimulated both T-helper type1 (Th1) (IgG2) and Th2 (IgA) responses when delivered orally. With the same backbone, the porcine-specific ODN-induced responses were comparable with human-specific ODNs, but stronger than mouse-specific CpG ODNs. SOS-backbone induced a stronger IFN-gamma and proliferative responses than S-backbone, while antibody responses induced by SOS-backbones were slightly less or similar with S-backbone. The in vivo data demonstrate for the first time that porcine-specific and human-specific ODNs both are optimal sequences for mucosal system in piglets.
Collapse
|
23
|
Thönes N, Müller M. Oral immunization with different assembly forms of the HPV 16 major capsid protein L1 induces neutralizing antibodies and cytotoxic T-lymphocytes. Virology 2007; 369:375-88. [PMID: 17822733 DOI: 10.1016/j.virol.2007.08.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 07/03/2007] [Accepted: 08/01/2007] [Indexed: 11/17/2022]
Abstract
Human papillomaviruses have been recognized as the causative agent of anogenital cancer. In 2006, a commercial vaccine based on virus-like particles composed of the L1 major capsid protein of the papillomaviruses has been available. This vaccine induces virus-neutralizing antibody responses upon parenteral injection. Here we investigated the oral immunogenicity of different assembly forms of HPV 16 L1, that is: T7-VLPs, T1 particles and capsomeres. Our results show that all three assembly forms induce humoral and cellular immune responses after oral vaccination of mice. The anti-L1 antibodies were conformation-specific and showed neutralizing activity in a pseudovirion-based assay. We also investigated if adjuvants have an influence on the oral immunogenicity of the different L1 forms. For saponins we observed a significant toxicity if applied orally. Co-administration of either CpG DNA or Escherichia coli heat-labile enterotoxin LT(R192G) had no apparent enhancing effect on the production of anti-L1 antibodies. More pronounced was the effect of CpG administration on the long-term immunity as we observed a significantly stronger recall response 244 days after the first vaccination. Compared to capsomeres, VLPs induced stronger humoral immune responses while the CTL responses were induced at comparable levels. Finally, we were also able to induce neutralizing antibodies and L1-specific cytotoxic T-lymphocytes after oral administration of crude extracts of L1-expressing insect cells. In conclusion, all three assembly forms of the L1 protein are immunogenic when administered orally.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Antibodies, Viral/biosynthesis
- Antibody Specificity
- Antigens, Viral/administration & dosage
- Antigens, Viral/isolation & purification
- Capsid Proteins/administration & dosage
- Capsid Proteins/chemistry
- Capsid Proteins/immunology
- Female
- Human papillomavirus 16/immunology
- Human papillomavirus 16/pathogenicity
- Human papillomavirus 16/physiology
- Human papillomavirus 16/ultrastructure
- Humans
- Immunization
- Immunoglobulin A/biosynthesis
- Immunoglobulin G/biosynthesis
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Microscopy, Electron, Transmission
- Neutralization Tests
- Oncogene Proteins, Viral/administration & dosage
- Oncogene Proteins, Viral/chemistry
- Oncogene Proteins, Viral/immunology
- Papillomavirus Vaccines/administration & dosage
- Recombinant Proteins/administration & dosage
- Recombinant Proteins/immunology
- Recombinant Proteins/isolation & purification
- T-Lymphocytes, Cytotoxic/immunology
- Virion/immunology
- Virus Assembly
Collapse
Affiliation(s)
- Nadja Thönes
- Deutsches Krebsforschungszentrum, Forschungsschwerpunkt Angewandte Tumorvirologie, DKFZ-ATV F035, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | | |
Collapse
|
24
|
Zhang Y, Song S, Liu C, Wang Y, Xian X, He Y, Wang J, Liu F, Sun S. Generation of chimeric HBc proteins with epitopes in E.coli: formation of virus-like particles and a potent inducer of antigen-specific cytotoxic immune response and anti-tumor effect in vivo. Cell Immunol 2007; 247:18-27. [PMID: 17707782 DOI: 10.1016/j.cellimm.2007.07.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 06/29/2007] [Accepted: 07/03/2007] [Indexed: 12/18/2022]
Abstract
The major aim of the project was to develop the virus-like particles (VLPs) displaying single or multi-epitope of hepatocellular carcinomas (HCC) in Escherichia coli and to evaluate the effect on inducing Ag-specific CD8(+) T cell response and antitumor efficacy as candidate vaccines. To this end, hepatitis B virus core (HBc) particles were used as a carrier of HCC epitopes. Four HCC epitopes MAGE-1(278-286aa), MAGE-3(271-279aa), AFP1 (158-166aa) or AFP2 (542-550aa) were fused to the 3' terminus of the truncated HBV core gene, respectively, or conjunctively. Not all recombinant plasmids led to expression of chimeric proteins in expression strain E. coli BL21 (DE3), but chimeric proteins which are expressed in inclusion bodies resulted in the formation of complete "mature" VLPs. E. coli-derived truncated HBc(1-144) chimeric protein self-assembled into VLPs that both morphologically and physically are similar to the wild-type ones and they still remained activity after purification and refolding from 6M urea solution. We also showed that they could be internalized and presented by DCs in vitro. Additionally, DCs pulsed with the chimeric HBc-VLPs could induce stronger CTL activity and greater IFN-gamma secretion by responding T cells compared with peptid-pulsed DCs. In the B16-pIR-HH tumor therapy model, the growth of established tumors was significantly inhibited by immunization using VLP-pulsed DCs, resulting in significantly higher survival rate of immunized animals. Thus, the results of the current study have demonstrated the principal possibility of using VLP on the basis of HBcAg for creation of a new type of HCC-specific immunogen.
Collapse
MESH Headings
- Animals
- Antibody Specificity/immunology
- Antigens, Neoplasm/chemistry
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/therapy
- Dendritic Cells/immunology
- Dendritic Cells/virology
- Epitopes/chemistry
- Epitopes/genetics
- Epitopes/immunology
- Escherichia coli/genetics
- Hepatitis B Antibodies/biosynthesis
- Hepatitis B Core Antigens/chemistry
- Hepatitis B Core Antigens/genetics
- Hepatitis B Core Antigens/immunology
- Hepatitis B Vaccines/biosynthesis
- Hepatitis B Vaccines/immunology
- Hepatitis B virus/chemistry
- Hepatitis B virus/immunology
- Humans
- Immunotherapy
- Interferon-gamma/metabolism
- Liver Neoplasms/immunology
- Liver Neoplasms/therapy
- Male
- Melanoma-Specific Antigens
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Neoplasm Proteins/chemistry
- Neoplasm Proteins/genetics
- Neoplasm Proteins/immunology
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- T-Lymphocytes, Cytotoxic/immunology
- Treatment Outcome
- Tumor Cells, Cultured
- Vaccines, Synthetic/chemistry
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Yan Zhang
- Department of Molecular Biology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Mucosal immunization of piglets with purified F18 fimbriae does not protect against F18+ Escherichia coli infection. Vet Immunol Immunopathol 2007; 120:69-79. [PMID: 17686530 DOI: 10.1016/j.vetimm.2007.06.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Revised: 06/01/2007] [Accepted: 06/13/2007] [Indexed: 10/23/2022]
Abstract
Post-weaning diarrhoea and oedema disease in weaned piglets are caused by infection with F4+ or F18+ Escherichia coli strains. There is no commercial vaccine available, but it is shown that oral immunization of weaned piglets with purified F4 fimbriae induces a protective mucosal immune response. In the present study, piglets were orally and nasally immunized with purified F18 fimbriae in the presence of the mucosal adjuvant LT(R192G) or CTA1-DD, respectively. This immunization could not lead to protection against F18+ E. coli infection. The induced F18-specific immune response was directed towards the major subunit FedA and weakly towards the adhesive subunit FedF. The results of these experiments demonstrate that it is difficult to induce protective immunity against F18+ E. coli using the whole fimbriae due to the low response against the adhesin.
Collapse
|
26
|
DuBois AB, Freytag LC, Clements JD. Evaluation of combinatorial vaccines against anthrax and plague in a murine model. Vaccine 2007; 25:4747-54. [PMID: 17482725 PMCID: PMC1929014 DOI: 10.1016/j.vaccine.2007.03.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 03/23/2007] [Accepted: 03/30/2007] [Indexed: 10/23/2022]
Abstract
In this study, we examine the potential of a combinatorial vaccine consisting of the lead-candidate antigens for the next generations of vaccines against anthrax (rPA) and plague (F1-V) with the specific objective of determining synergy or interference between the vaccine components when they are administered separately or together by both traditional parenteral immunization (SC) and mucosal immunization (IN) in the presence of appropriate adjuvants. The most significant findings of the study reported here are that (1) a combinatorial vaccine consisting of equal amounts of F1-V and rPA administered SC is effective at eliciting a robust serum and bronchoalveolar lavage (BAL) antigen-specific IgG and IgG1 response against both antigens in immunized animals, and when administered IN, a robust antigen-specific IgG2a response in the serum and BAL is also induced; (2) there were few instances where either synergy or interference was observed in the combined vaccine administered by either route and those differences occurred soon after the final immunization and were not sustained over time; (3) IN immunization was as effective as SC immunization for induction of antigen-specific serum and BAL antibody responses using the same amount of antigen; (4) the IgG1/IgG2a ratios suggest a strongly biased Type 2 response following SC immunization, while IN immunization produced a more balanced Type 1/Type 2 response; (5) the IgG1/IgG2a ratio was influenced by the route of immunization, the adjuvant employed, and the nature of the antigen. As with previously published studies, there were still detectable levels of circulating anti-F1-V and anti-rPA even 6 months post-primary immunization. These studies provide important insights into the development of new generation biodefense vaccines.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Administration, Intranasal
- Animals
- Anthrax Vaccines/administration & dosage
- Anthrax Vaccines/genetics
- Anthrax Vaccines/immunology
- Antibodies, Bacterial/analysis
- Antibodies, Bacterial/blood
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Bacterial Proteins/immunology
- Bacterial Toxins/genetics
- Bacterial Toxins/immunology
- Bronchoalveolar Lavage Fluid/immunology
- Disease Models, Animal
- Female
- Immunoglobulin G/analysis
- Immunoglobulin G/blood
- Injections, Subcutaneous
- Mice
- Mice, Inbred BALB C
- Plague Vaccine/administration & dosage
- Plague Vaccine/genetics
- Plague Vaccine/immunology
- Pore Forming Cytotoxic Proteins/immunology
- Recombinant Proteins/administration & dosage
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Vaccines, Combined/administration & dosage
- Vaccines, Combined/immunology
Collapse
Affiliation(s)
- Amanda B DuBois
- Department of Microbiology and Immunology, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | | | | |
Collapse
|
27
|
Manuri PR, Nehete B, Nehete PN, Reisenauer R, Wardell S, Courtney AN, Gambhira R, Lomada D, Chopra AK, Sastry KJ. Intranasal immunization with synthetic peptides corresponding to the E6 and E7 oncoproteins of human papillomavirus type 16 induces systemic and mucosal cellular immune responses and tumor protection. Vaccine 2007; 25:3302-10. [PMID: 17291642 PMCID: PMC2043498 DOI: 10.1016/j.vaccine.2007.01.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 12/20/2006] [Accepted: 01/04/2007] [Indexed: 11/20/2022]
Abstract
The E6 and E7 oncoproteins of the high-risk HPV type16 represent ideal targets for HPV vaccine development, they being consistently expressed in cervical cancer lesions. Since HPV-16 is primarily transmitted through genital mucosal route, mucosal immune responses constitute an essential feature for vaccination strategies against HPV-associated lesions. We present here evidence showing that mucosal immunization of mice by the intranasal route with a mixture of peptides E7(44-62) and E6(43-57) from the E7 and E6 oncoproteins of HPV-16, respectively, using a mutant cholera toxin adjuvant (CT-2*), primed strong antigen-specific cellular immune responses in systemic and mucosal tissues. Significant levels of IFN-gamma production by both CD4 and CD8 cells were observed along with CTL responses that were effective against both peptide-pulsed targets as well as syngeneic tumor cells (TC-1) expressing the cognate E6 and E7 proteins. Furthermore, mice immunized with the peptide mixture and CT-2* effectively resisted TC-1 tumor challenge. These results together with our earlier observations that T cell responses to these peptides correlate with recurrence-free survival in women after ablative treatment for HPV-associated cervical intraepithelial neoplasia, support the potential of these E6 and E7 peptides for inclusion in vaccine formulations.
Collapse
Affiliation(s)
- Pallavi R. Manuri
- Department of Immunology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, Bastrop, TX 77030
| | - Bharti Nehete
- Department of Veterinary Sciences, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, Bastrop, TX 77030
| | - Pramod N. Nehete
- Department of Veterinary Sciences, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, Bastrop, TX 77030
| | - Rose Reisenauer
- Department of Immunology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, Bastrop, TX 77030
| | - Seth Wardell
- Department of Immunology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, Bastrop, TX 77030
| | - Amy N. Courtney
- Department of Immunology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, Bastrop, TX 77030
| | - Ratish Gambhira
- Department of Veterinary Sciences, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, Bastrop, TX 77030
| | - Dakshyani Lomada
- Department of Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, Bastrop, TX 77030
| | - Ashok K. Chopra
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555
| | - K. Jagannadha Sastry
- Department of Immunology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, Bastrop, TX 77030
- Department of Veterinary Sciences, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, Bastrop, TX 77030
| |
Collapse
|
28
|
Santi L, Huang Z, Mason H. Virus-like particles production in green plants. Methods 2007; 40:66-76. [PMID: 16997715 PMCID: PMC2677071 DOI: 10.1016/j.ymeth.2006.05.020] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Accepted: 05/03/2006] [Indexed: 12/13/2022] Open
Abstract
Viruses-like particles (VLPs), assembled from capsid structural subunits of several different viruses, have found a number of biomedical applications such as vaccines and novel delivery systems for nucleic acids and small molecules. Production of recombinant proteins in different plant systems has been intensely investigated and improved upon in the last two decades. Plant-derived antibodies, vaccines, and microbicides have received great attention and shown immense promise. In the case of mucosal vaccines, orally delivered plant-produced VLPs require minimal processing of the plant tissue, thus offering an inexpensive and safe alternative to more conventional live attenuated and killed virus vaccines. For other applications which require higher level of purification, recent progress in expression levels using plant viral vectors have shown that plants can compete with traditional fermentation systems. In this review, the different methods used in the production of VLPs in green plants are described. Specific examples of expression, assembly, and immunogenicity of several plant-derived VLPs are presented.
Collapse
Affiliation(s)
- Luca Santi
- Biodesign Institute at Arizona State University, Tempe, 852878-5401, USA
| | | | | |
Collapse
|
29
|
Schiller JT, Nardelli-Haefliger D. Chapter 17: Second generation HPV vaccines to prevent cervical cancer. Vaccine 2006; 24 Suppl 3:S3/147-53. [PMID: 16950002 DOI: 10.1016/j.vaccine.2006.05.123] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Accepted: 05/19/2006] [Indexed: 11/26/2022]
Abstract
Prophylactic human papillomavirus (HPV) vaccines based on intramuscular injection of non-infectious L1 virus-like particles (VLPs) are undergoing intense clinical evaluation. As documented in preceding chapters of this monograph, clinical trials of these vaccines have demonstrated their safety and high efficacy at preventing type-specific persistent cervical HPV infection and the development of type-specific cervical intraepithelial neoplasia (CIN) cervical neoplasia. There is widespread optimism that VLP vaccines will become commercially available within the next few years. The prospects for development of alternative HPV vaccines must be considered in light of the likelihood that a safe and effective prophylactic HPV vaccine will soon be available. Three questions need to be addressed: (1) Is there sufficient need for a second generation vaccine? (2) Are there sufficiently attractive candidates for clinical trials? (3) Is there a realistic development/commercialization path?
Collapse
Affiliation(s)
- John T Schiller
- Laboratory of Cellular Oncology, National Cancer Institute, Bethesda, MD 20892, USA.
| | | |
Collapse
|
30
|
Cox E, Verdonck F, Vanrompay D, Goddeeris B. Adjuvants modulating mucosal immune responses or directing systemic responses towards the mucosa. Vet Res 2006; 37:511-39. [PMID: 16611561 DOI: 10.1051/vetres:2006014] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Accepted: 01/10/2006] [Indexed: 12/21/2022] Open
Abstract
In developing veterinary mucosal vaccines and vaccination strategies, mucosal adjuvants are one of the key players for inducing protective immune responses. Most of the mucosal adjuvants seem to exert their effect via binding to a receptor/or target cells and these properties were used to classify the mucosal adjuvants reviewed in the present paper: (1) ganglioside receptor-binding toxins (cholera toxin, LT enterotoxin, their B subunits and mutants); (2) surface immunoglobulin binding complex CTA1-DD; (3) TLR4 binding lipopolysaccharide; (4) TLR2-binding muramyl dipeptide; (5) Mannose receptor-binding mannan; (6) Dectin-1-binding ss 1,3/1,6 glucans; (7) TLR9-binding CpG-oligodeoxynucleotides; (8) Cytokines and chemokines; (9) Antigen-presenting cell targeting ISCOMATRIX and ISCOM. In addition, attention is given to two adjuvants able to prime the mucosal immune system following a systemic immunization, namely 1alpha, 25(OH)2D3 and cholera toxin.
Collapse
Affiliation(s)
- Eric Cox
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | | | | | | |
Collapse
|
31
|
Marshall JD, Heeke DS, Abbate C, Yee P, Van Nest G. Induction of interferon-gamma from natural killer cells by immunostimulatory CpG DNA is mediated through plasmacytoid-dendritic-cell-produced interferon-alpha and tumour necrosis factor-alpha. Immunology 2006; 117:38-46. [PMID: 16423039 PMCID: PMC1782206 DOI: 10.1111/j.1365-2567.2005.02261.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Immunostimulatory sequences (ISS) that contain CpG motifs have been demonstrated to exert antipathogen and antitumour immunity in animal models through several mechanisms, including the activation of natural killer (NK) cells to secrete interferon-gamma (IFN-gamma) and to exert lytic activity. Since NK cells lack the ISS receptor TLR9, the exact pathway by which NK cells are activated by ISS is unclear. We determined that ISS-induced IFN-gamma from NK cells is primarily dependent upon IFN-alpha release from plasmacytoid dendritic cells (PDCs), which directly activates the NK cell. However, further analysis indicated that other PDC-released soluble factor(s) may contribute to IFN-gamma induction. Indeed, tumour necrosis factor-alpha (TNF-alpha) was identified as a significant contributor to ISS-mediated activation of NK cells and was observed to act in an additive fashion with IFN-alpha in the induction of IFN-gamma from NK cells and to up-regulate CD69 expression on NK cells. This activity of TNF-alpha, however, was dependent upon the presence of PDC-derived factors such as type I interferon. These results illustrate an important function for type I interferon in innate immunity, which is not only to activate effectors like NK cells directly, but also to prime them for enhanced activation by other factors such as TNF-alpha.
Collapse
|
32
|
Abstract
The review focuses on current and future prevention of invasive cervical cancer (ICC), the second most common cancer among women worldwide. Implementation of population-based cytological screening programmes, using the 'Pap' smear to detect pre-cancerous lesions in the cervix, has resulted in substantial declines in mortality and morbidity from ICC in North America and some European countries. However, cases of, and deaths from, ICC continue to occur. Primary prevention of infection with high-risk human papillomavirus (HPV) types, the central causal factor of ICC, could further reduce incidence of and mortality from ICC. This is particularly the case in developing countries, which bear 80% of the burden of ICC, and where effective Pap screening programmes are extremely difficult to implement. Very promising results from several trials of synthetic HPV type-specific monovalent (HPV 16) and bivalent (HPV 16 and 18) vaccines have recently been published, showing high efficacy against type-specific persistent HPV infection and development of type-specific pre-cancerous lesions. Large-scale phase III trials of a number of such vaccine candidates are currently underway, and there is real hope that an effective vaccine capable of protecting against infection with HPV types 16 and 18 (which together account for approximately 70% of cervical cancer cases worldwide), and thereby of preventing development of a very significant proportion of cases of ICC, could be available within the next 2 years.
Collapse
Affiliation(s)
- C. M. LOWNDES
- Health Protection Agency Centre for Infections, London, UK
| |
Collapse
|
33
|
Poo H, Pyo HM, Lee TY, Yoon SW, Lee JS, Kim CJ, Sung MH, Lee SH. Oral administration of human papillomavirus type 16 E7 displayed onLactobacillus casei induces E7-specific antitumor effects in C57/BL6 mice. Int J Cancer 2006; 119:1702-9. [PMID: 16646080 DOI: 10.1002/ijc.22035] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The mounting of a specific immune response against the human papillomavirus type 16 E7 protein (HPV16 E7) is important for eradication of HPV16 E7-expressing cancer cells from the cervical mucosa. To induce a mucosal immune response by oral delivery of the E7 antigen, we expressed the HPV16 E7 antigen on the surface of Lactobacillus casei by employing a novel display system in which the poly-gamma-glutamic acid (gamma-PGA) synthetase complex A (PgsA) from Bacillus subtilis (chungkookjang) was used as an anchoring motif. After surface expression of the HPV16 E7 protein was confirmed by Western blot, flow cytometry and immunofluorescence microscopy, mice were orally inoculated with L. casei-PgsA-E7. E7-specific serum IgG and mucosal IgA productions were enhanced after oral administration and significantly enhanced after boosting. Systemic and local cellular immunities were significantly increased after boosting, as shown by increased counts of lymphocytes (SI = 9.7 +/- 1.8) and IFN-gamma secreting cells [510 +/- 86 spot-forming cells/10(6)cells] among splenocytes and increased IFN-gamma in supernatants of vaginal lymphocytes. Furthermore, in an E7-based mouse tumor model, animals receiving orally administered L. casei-PgsA-E7 showed reduced tumor size and increased survival rate versus mice receiving control (L. casei-PgsA) immunization. These results collectively indicate that the oral administration of E7 displayed on lactobacillus induces cellular immunity and antitumor effects in mice.
Collapse
Affiliation(s)
- Haryoung Poo
- Proteome Research Lab, Korea Research Institute of Bioscience and Biotechnology, Daejon, Korea.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
The ability to generate human papillomavirus virus (HPV)-like particles by the synthesis and self-assembly in vitro of the major virus capsid protein L1 has transformed our prospects for preventing cervical carcinoma in women. These particles provide vaccines that are immunogenic and safe, and data from proof-of-principle efficacy trials strongly suggest that they will protect against persistent HPV infection and cervical intraepithelial neoplasia. However, the duration of protection provided by these vaccines is not known, the antibody responses induced are HPV-type-specific and immunisation must occur pre-exposure to the virus. Second-generation vaccines could include an early antigen for protection post exposure and alternative delivery systems might be needed for the developing world. Therapeutic vaccines for low-grade intraepithelial disease are realistic but high-grade disease presents major hurdles for immunotherapies.
Collapse
Affiliation(s)
- Margaret Stanley
- Department of Pathology, Tennis Court Road, Cambridge CB2 1QP, UK.
| |
Collapse
|
35
|
|
36
|
Glynn A, Roy CJ, Powell BS, Adamovicz JJ, Freytag LC, Clements JD. Protection against aerosolized Yersinia pestis challenge following homologous and heterologous prime-boost with recombinant plague antigens. Infect Immun 2005; 73:5256-61. [PMID: 16041052 PMCID: PMC1201190 DOI: 10.1128/iai.73.8.5256-5261.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A Yersinia pestis-derived fusion protein (F1-V) has shown great promise as a protective antigen against aerosol challenge with Y. pestis in murine studies. In the current study, we examined different prime-boost regimens with F1-V and demonstrate that (i) boosting by a route other than the route used for the priming dose (heterologous boosting) protects mice as well as homologous boosting against aerosol challenge with Y. pestis, (ii) parenteral immunization is not required to protect mice against aerosolized plague challenge, (iii) the route of immunization and choice of adjuvant influence the magnitude of the antibody response as well as the immunoglobulin G1 (IgG1)/IgG2a ratio, and (iv) inclusion of an appropriate adjuvant is critical for nonparenteral immunization.
Collapse
Affiliation(s)
- Audrey Glynn
- Department of Microbiology and Immunology, Program in Molecular Pathogenesis and Immunity, 1430 Tulane Avenue, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | | | | | | | | | | |
Collapse
|
37
|
Williamson AL, Passmore JA, Rybicki EP. Strategies for the prevention of cervical cancer by human papillomavirus vaccination. Best Pract Res Clin Obstet Gynaecol 2005; 19:531-44. [PMID: 16150392 DOI: 10.1016/j.bpobgyn.2005.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
As cervical cancer is causally associated with 14 high-risk types of human papillomavirus (HPV), a successful HPV vaccine will have a major impact on this disease. Although some persistent HPV infections progress to cervical cancer, host immunity is generally able to clear most HPV infections. Both cell-mediated and antibody responses have been implicated in influencing the susceptibility, persistence or clearance of genital HPV infection. There have been two clinical trials that show that vaccines based on virus-like particles (VLPs) made from the major capsid protein, L1, are able to type specifically protect against cervical intra-epithelial neoplasia and infection. However, there is no evidence that even a mixed VLP vaccine will protect against types not included in the vaccine, and a major challenge that remains is how to engineer protection across a broader spectrum of viruses. Strategies for production of HPV vaccines using different vaccine vectors and different production systems are also reviewed.
Collapse
Affiliation(s)
- A-L Williamson
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, and National Health Laboratory Service, Groote Schuur Hospital, Cape Town, South Africa.
| | | | | |
Collapse
|
38
|
Wang D, Kandimalla ER, Yu D, Tang JX, Agrawal S. Oral administration of second-generation immunomodulatory oligonucleotides induces mucosal Th1 immune responses and adjuvant activity. Vaccine 2005; 23:2614-22. [PMID: 15780444 DOI: 10.1016/j.vaccine.2004.11.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Revised: 11/02/2004] [Accepted: 11/03/2004] [Indexed: 11/29/2022]
Abstract
CpG DNA induces potent Th1 immune responses through Toll-like receptor 9. In the present study, we used oligonucleotides consisting of a novel 3'-3'-linked structure and synthetic stimulatory motifs, referred as second-generation immunomodulatory oligonucleotides (IMOs). The stimulatory motifs included: CpR, YpG, or R'pG (R = 2'-deoxy-7-deazaguanosine, Y = 2'-deoxy-5-hydroxy-cytidine, and R' = 1-[2'-deoxy-beta-d-ribofuranosyl]-2-oxo-7-deaza-8-methyl-purine). We evaluated the stability of orally administered IMOs in the gastrointestinal (GI) environment and their ability to induce mucosal immune responses in mice, and compared these characteristics with those of a conventional CpG DNA. The IMOs were significantly more stable than CpG DNA following oral administration, and IMOs induced stronger local and systemic immune responses as determined by MIP-1beta, MCP-1, IP-10, and IL-12 production. Mice orally immunized with ovalbumin (OVA) and IMO had higher levels of IgG2a antibodies in serum and IgA antibodies in intestinal mucosa than did mice immunized with OVA and CpG DNA. These studies demonstrate that IMOs are more stable than CpG DNA in the GI tract and can induce more potent mucosal Th1 adjuvant responses. IMOs may prove to be effective oral adjuvants, able to promote strong systemic and mucosal immune responses to oral vaccines and antigens for therapeutic and prophylactic applications.
Collapse
Affiliation(s)
- Daqing Wang
- Hybridon, Inc., 345 Vassar Street, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
39
|
Sasagawa T, Tani M, Basha W, Rose RC, Tohda H, Giga-Hama Y, Azar KK, Yasuda H, Sakai A, Inoue M. A human papillomavirus type 16 vaccine by oral delivery of L1 protein. Virus Res 2005; 110:81-90. [PMID: 15845258 DOI: 10.1016/j.virusres.2005.02.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Accepted: 02/02/2005] [Indexed: 11/22/2022]
Abstract
To establish an edible HPV16 vaccine, we constructed a recombinant HPV16 L1-expressing Schizosaccharomyces pombe yeast strain (HPV16L1 yeast). A preliminary study revealed that freeze-dried yeast cells could be delivered safely, and were digested in the mouse intestine. The freeze-dried HPV16 L1 yeast was administered orally as an edible vaccine, with or without the mucosal adjuvant heat-labile toxin LT (R192G), to 18 female BALB/c mice. After the third immunization, none of the mice that received the edible HPV16 vaccine showed specific antibody responses, whereas all of the positive controls that were administered intranasally with 5 microg of HPV16-virus-like particles (VLP) had serum IgG, and genital IgA and IgG that reacted with HPV16-VLP in enzyme-linked immunosorbent assays (ELISAs). When a suboptimal dose (1 microg) of HPV16-VLP was administered to all the mice, including the negative control mice, 50% of the mice that were pre-immunized with the edible HPV16 vaccine showed positive serum IgG responses, while none of the negative controls showed any response. Vaginal IgG and IgA antibodies were also elicited in 33 and 39%, respectively, of the mice that were given with the edible HPV16 vaccine and the intranasal boost. All of the antibodies reacted more strongly to intact HPV16-VLP than to denatured HPV16-L1 protein suggesting that the edible vaccine primes for antibody responses against conformation-dependent epitopes. The inclusion of adjuvant in the vaccine formulation marginally increased the genital IgA response (P=0.06). HPV16-L1 protein in the yeast might induce tolerance in the vaccinated animals that could be recovered by intranasal boosting with a suboptimal dose of HPV-VLP. This freeze-dried yeast system may be useful as an oral delivery of HPV 16 L1 protein.
Collapse
Affiliation(s)
- Toshiyuki Sasagawa
- Health Science, School of Medicine, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Induction of immune responses following oral immunization is frequently dependent upon the co-administration of appropriate adjuvants that can initiate and support the transition from innate to adaptive immunity. The three bacterial products with the greatest potential to function as mucosal adjuvants are the ADP-ribosylating enterotoxins (cholera toxin and the heat-labile enterotoxin of Escherichia coli), synthetic oligodeoxynucleotides containing unmethylated CpG dinucleotides (CpG ODN), and monophosphoryl lipid A (MPL). The mechanism of adjuvanticity of the ADP-ribosylating enterotoxins is the subject of considerable debate. Our own view is that adjuvanticity is an outcome and not an event. It is likely that these molecules exert their adjuvant function by interacting with a variety of cell types, including epithelial cells, dendritic cells, macrophages, and possibly B- and T-lymphocytes. The adjuvant activities of CpG and MPL are due to several different effects they have on innate and adaptive immune responses and both MPL and CpG act through MyD88-dependent and -independent pathways. This presentation will summarize the probable mechanisms of action of these diverse mucosal adjuvants and discuss potential synergy between these molecules for use in conjunction with plant-derived vaccines.
Collapse
Affiliation(s)
- L C Freytag
- Department of Microbiology and Immunology, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | | |
Collapse
|
41
|
Glynn A, Freytag LC, Clements JD. Effect of homologous and heterologous prime–boost on the immune response to recombinant plague antigens. Vaccine 2005; 23:1957-65. [PMID: 15734068 DOI: 10.1016/j.vaccine.2004.10.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Revised: 10/07/2004] [Accepted: 10/12/2004] [Indexed: 11/17/2022]
Abstract
Among the pathogens that have been identified as potential agents of biological warfare or bioterrorism, Yersinia pestis is one of the main concerns due to the severity and potential transmissibility of the pneumonic form of the disease in humans. There are no approved vaccines for protection against pneumonic plague, but a Y. pestis-derived fusion protein (F1-V) has shown great promise as a protective antigen in murine studies. In the current study, we examine different prime-boost regimens, including parenteral, mucosal, and transcutaneous delivery, in order to explore the effect of changing the route of prime and boost on the ability of recombinant F1-V to promote the development of long-lasting, high-titer antibodies. The most significant findings of the study reported here are that (1) intranasal and subcutaneous immunizations are both effective and essentially equivalent for induction of serum and bronchioalveolar anti-F1-V IgG1 responses when a single booster dose is administered by the same (homologous) route, (2) heterologous boosting can be as or more effective than homologous boosting for induction of either serum or bronchioalveolar anti-F1-V IgG1 responses, and (3) anti-F1 and anti-V total IgG responses were highest in animals primed intranasally and boosted by any route when compared to animals primed transcutaneously or subcutaneously. As with previously published studies, there were still significant levels of circulating anti-F1-V antibodies 1 year post-primary immunization. These studies provide important insights into the development of new-generation biodefense vaccines.
Collapse
Affiliation(s)
- Audrey Glynn
- Department of Microbiology and Immunology, Program in Molecular Pathogenesis and Immunity, 1430 Tulane Avenue, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | | | | |
Collapse
|
42
|
Krieg AM. CpG Oligodeoxynucleotides for Mucosal Vaccines. Mucosal Immunol 2005. [DOI: 10.1016/b978-012491543-5/50057-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
43
|
|
44
|
Rollman E, Arnheim L, Collier B, Oberg D, Hall H, Klingström J, Dillner J, Pastrana DV, Buck CB, Hinkula J, Wahren B, Schwartz S. HPV-16 L1 genes with inactivated negative RNA elements induce potent immune responses. Virology 2004; 322:182-9. [PMID: 15063127 DOI: 10.1016/j.virol.2004.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2003] [Revised: 01/26/2004] [Accepted: 02/03/2004] [Indexed: 10/26/2022]
Abstract
Introduction of point mutations in the 5' end of the human papillomavirus type 16 (HPV-16) L1 gene specifically inactivates negative regulatory RNA processing elements. DNA vaccination of C57Bl/6 mice with the mutated L1 gene resulted in improved immunogenicity for both neutralizing antibodies as well as for broad cellular immune responses. Previous reports on the activation of L1 by codon optimization may be explained by inactivation of the regulatory RNA elements. The modified HPV-16 L1 DNA that induced anti-HPV-16 immunity may be seen as a complementary approach to protein subunit immunization against papillomavirus.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Capsid Proteins
- Cells, Cultured
- Disease Models, Animal
- Genes, Regulator
- Genes, Viral
- Lymphocyte Activation
- Mice
- Mice, Inbred C57BL
- Neutralization Tests
- Oncogene Proteins, Viral/genetics
- Oncogene Proteins, Viral/immunology
- Papillomaviridae/genetics
- Papillomaviridae/immunology
- Papillomavirus Infections/blood
- Papillomavirus Infections/immunology
- Papillomavirus Infections/prevention & control
- Point Mutation
- Spleen/immunology
- Vaccination
- Vaccines, DNA/administration & dosage
Collapse
Affiliation(s)
- Erik Rollman
- Department of Virology, Swedish Institute for Infectious Disease Control, Solna, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Caparrós-Wanderley W, Clark B, Griffin BE. Effect of dose and long-term storage on the immunogenicity of murine polyomavirus VP1 virus-like particles. Vaccine 2004; 22:352-61. [PMID: 14670316 DOI: 10.1016/j.vaccine.2003.08.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We have analysed the stability and immunogenicity of murine polyomavirus virus-like particles (VLPs) following intranasal administration without adjuvant. No morphological or immunological changes were observed in a preparation of these VLPs stored for 9 weeks at room temperature. Strong humoral and cellular (Th1) responses were obtained after a single 5.55 microg dose immunisation, which are efficiently boosted after a second dose. However, at dose concentrations above 0.22 microg/microl, these VLPs appear to aggregate and, when used for immunisations, they fail to induce a strong cellular response, even though the humoral response is unaffected. These results may reflect the differential processing of VLP aggregates by the immune system or, alternatively, VLP neutralisation by antibodies induced after a primary immunisation.
Collapse
|
46
|
Wang X, Jiang P, Deen S, Wu J, Liu X, Xu J. Efficacy of DNA vaccines against infectious bursal disease virus in chickens enhanced by coadministration with CpG oligodeoxynucleotide. Avian Dis 2004; 47:1305-12. [PMID: 14708976 DOI: 10.1637/6045] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The objective of the present study was to investigate the feasibility of a DNA vaccine and CpG oligodeoxynucleotide (ODN) to protect chickens against infectious bursal disease virus (IBDV) infection. Two plasmids DNA carrying VP2 genes of the very virulent (vv) strain of IBDV were constructed with reverse transcription-polymerase chain reaction and designated as pcDNA3.1-VP2 and pCI-VP2. The VP2 protein expressed in COS-7 cells transfected with the plasmid was confirmed by indirect immunofluorescence assay. Seven-day-old chickens were intramuscularly injected with the plasmids alone or plus commercial attenuated infectious bursal disease (IBD) vaccine or synthetic CpG ODN twice at weekly intervals. Chickens at 5 wk old were orally inoculated with vvIBDV strain 99J1 and observed for 7 days after challenge. Immunization with plasmid plus commercial attenuated IBD vaccine or CpG ODN conferred protection for 70%-80% of chickens, as evidenced by the absence of dinical signs, mortality, and atrophy in the cloacal bursa. About 25%-45% of chickens vaccinated with commercial attenuated IBD vaccine or pcDNA3.1-VP2 or pCI-VP2 plasmid alone had dinical signs and died after challenge. Furthermore, there were significantly different histopathologic lesion scores in the clocal bursae between the pcDNA3.1-VP2 or pCI-VP2 plus CpG or live vaccine and pcDNA3.1-VP2, pCI-VP2, or live vaccine vaccinated group. Enzyme-linked immunosorbent assay antibody titers in chickens vaccinated the constructs DNA plus live vaccine or CpG ODN were significantly higher than in those inoculated with the constructs or the live vaccine alone. These results suggest that coadministration of the constructed plasmid pcDNA3.1-VP2 or pCI-VP2 with CpG ODN or commercial attenuated IBD vaccine could protect chickens efficiently from direct vvIBDV challenge.
Collapse
Affiliation(s)
- Xiaoquan Wang
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing 210095, China
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
Candidate prophylactic vaccines based on papillomavirus L1 virus-like particles (VLPs) are currently in human clinical trials. The main long-term goal of the vaccine is to reduce the incidence of cervical cancer and its precursors. In animal papillomavirus models, systemic immunization with L1 VLPs can induce high titers of neutralizing antibodies that confer protection against high-dose experimental papillomavirus challenge. In humans, systemic vaccination with L1 VLPs has been well tolerated and induced high serum antibody titers (at least 40 times higher than titers seen following natural infection). A recent proof of principle HPV16 L1 VLP efficacy trial has shown excellent protection against persistent HPV16 infection and associated cytological abnormalities. Large scale efficacy trials of L1 VLPs from HPV16 and 18 (the HPV types found most frequently in cervical cancer), with or without HPV6 and 11 (the HPV types responsible for most genital warts), are planned. If the results of these large trials support the encouraging results of the early trials, they should lead to a commercial prophylactic HPV vaccine. Implementation issues may include how to make the vaccine available in the developing world, where the majority of cervical cancer cases occur, the appropriate age of vaccination, and the role of male vaccination. Because a VLP vaccine is likely to provide type-specific protection, increasing the number of cancer-associated HPV types in the vaccine is a likely approach to broadening the protection to additional types. There will probably also be efforts to develop alternative vaccine formulations better suited to implementation in developing countries as well as attempts to develop vaccines with a therapeutic activity against established HPV infection because a combined prophylactic/therapeutic vaccine may be expected to have an even greater impact than a purely prophylactic vaccine on HPV induced disease.
Collapse
Affiliation(s)
- Douglas R Lowy
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health/DHHS, Building 37, Room 4106, MSC 4263, Bethesda, MD 20892, USA.
| | | |
Collapse
|
48
|
Biemelt S, Sonnewald U, Galmbacher P, Willmitzer L, Müller M. Production of human papillomavirus type 16 virus-like particles in transgenic plants. J Virol 2003; 77:9211-20. [PMID: 12915537 PMCID: PMC187377 DOI: 10.1128/jvi.77.17.9211-9220.2003] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2003] [Accepted: 05/19/2003] [Indexed: 01/10/2023] Open
Abstract
Cervical cancer is linked to infection with human papillomaviruses (HPV) and is the third most common cancer among women worldwide. There is a strong demand for the development of an HPV preventive vaccine. Transgenic plants expressing the HPV major capsid protein L1 could be a system to produce virus-like particles for prophylactic vaccination or could even be used as edible vaccines to induce an L1-specific prophylactic immune response. Here, we describe the generation of transgenic tobacco and potato plants carrying the HPV type 16 major structural gene L1 under the control of the cauliflower mosaic virus 35S promoter. All attempts to express either the original, unmodified L1 gene or an L1 gene with a codon usage optimized for expression in plants failed. Surprisingly, small amounts of the protein were detected using an L1 gene optimized for expression in human cells. However, Northern blot analysis revealed that most of the L1 transcripts were degraded. Introduction of the translational enhancer Omega derived from the tobacco mosaic virus strongly increased transcript stability and resulted in accumulation of L1 protein to approximately 0.5 to 0.2% of total soluble protein in transgenic tobacco and potato plants, respectively. The plant-derived L1 protein displayed conformation-specific epitopes and assembled into virus-like particles. Furthermore, we did not find any indications of protein modification of the L1 protein produced in plants. Plant-derived L1 was as immunogenic as L1 expressed in baculovirus-infected insect cells. Feeding of tubers from transgenic potatoes to mice induced an anti-L1 antibody response in 3 out of 24 mice, although this response was only transient in two of the mice. Our data, however, indicate that an anti-L1 response was primed in about half of the 24 animals.
Collapse
MESH Headings
- Animals
- Capsid Proteins
- Enhancer Elements, Genetic
- Female
- Gene Expression
- Genes, Viral
- Humans
- Mice
- Mice, Inbred BALB C
- Oncogene Proteins, Viral/biosynthesis
- Oncogene Proteins, Viral/genetics
- Oncogene Proteins, Viral/immunology
- Papillomaviridae/genetics
- Papillomaviridae/immunology
- Papillomaviridae/pathogenicity
- Papillomaviridae/physiology
- Papillomavirus Infections/immunology
- Papillomavirus Infections/prevention & control
- Plants, Genetically Modified
- Solanum tuberosum/genetics
- Nicotiana/genetics
- Tobacco Mosaic Virus/genetics
- Tumor Virus Infections/immunology
- Tumor Virus Infections/prevention & control
- Vaccines, Edible/genetics
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/isolation & purification
- Viral Vaccines/genetics
- Viral Vaccines/isolation & purification
Collapse
Affiliation(s)
- Sophia Biemelt
- Institut für Pflanzengenetik und Kulturpflanzenforschung, 06466 Gatersleben, Germany
| | | | | | | | | |
Collapse
|
49
|
Park JS, Oh YK, Kang MJ, Kim CK. Enhanced mucosal and systemic immune responses following intravaginal immunization with human papillomavirus 16 L1 virus-like particle vaccine in thermosensitive mucoadhesive delivery systems. J Med Virol 2003; 70:633-41. [PMID: 12794729 DOI: 10.1002/jmv.10442] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
To develop more potent and convenient mucosal human papillomavirus (HPV) vaccines, we tested the effect of thermosensitive mucoadhesive vaginal vaccine delivery systems on the local and systemic antibody responses to HPV 16 L1 virus-like particles (VLP). HPV 16 L1 VLP expressed from recombinant baculovirus-infected Sf21 insect cells were delivered in phosphate-buffered saline (PBS) or thermosensitive mucoadhesive delivery systems, composed of poloxamers (Pol) and varying amounts of polyethylene oxide (PEO). Pol/PEO-based vaginal vaccine delivery systems existed in liquid form at room temperature, but gelled at 37 degrees C. The mucoadhesiveness of Pol/PEO-based delivery systems increased with PEO, but the formulations with PEO higher than 1.0% were too viscous to be administered into the vagina. Vaccine vehicles affected the vaginal and salivary immune responses to HPV 16 L1 VLP intravaginally administered into mice. At 42 days after the first intravaginal immunization of HPV 16 L1 VLP with cholera toxin, vaginal and salivary IgA titers were the highest in the group given in Pol/PEO 1.0% vehicle followed by Pol/PEO 0.4% and PBS vehicles. Intravaginal coadministration of HPV 16 L1 VLP and cholera toxin in Pol/PEO 1.0% showed 31- and 39-fold higher titers compared to the PBS-based HPV 16 L1 VLP groups administered by intravaginal and intramuscular routes, respectively. Following intravaginal administration, Pol/PEO 1.0%, but not Pol/PEO 0.4%, showed significantly higher HPV 16 L1 VLP-specific serum IgG titers as compared to the PBS vehicle. Our results indicate that the use of in situ-gelling vaginal vaccine delivery systems with increased mucoadhesiveness would be beneficial for more effective induction of mucosal and systemic immune responses to intravaginally administered HPV 16 L1 VLP vaccines.
Collapse
Affiliation(s)
- Jeong-Sook Park
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | | | | | | |
Collapse
|
50
|
Warzecha H, Mason HS, Lane C, Tryggvesson A, Rybicki E, Williamson AL, Clements JD, Rose RC. Oral immunogenicity of human papillomavirus-like particles expressed in potato. J Virol 2003; 77:8702-11. [PMID: 12885889 PMCID: PMC167207 DOI: 10.1128/jvi.77.16.8702-8711.2003] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human papillomavirus-like particles (HPV VLPs) have shown considerable promise as a parenteral vaccine for the prevention of cervical cancer and its precursor lesions. Parenteral vaccines are expensive to produce and deliver, however, and therefore are not optimal for use in resource-poor settings, where most cervical HPV disease occurs. Transgenic plants expressing recombinant vaccine immunogens offer an attractive and potentially inexpensive alternative to vaccination by injection. For example, edible plants can be grown locally and can be distributed easily without special training or equipment. To assess the feasibility of an HPV VLP-based edible vaccine, in this study we synthesized a plant codon-optimized version of the HPV type 11 (HPV11) L1 major capsid protein coding sequence and introduced it into tobacco and potato. We show that full-length L1 protein is expressed and localized in plant cell nuclei and that expression of L1 in plants is enhanced by removal of the carboxy-terminal nuclear localization signal sequence. We also show that plant-expressed L1 self-assembles into VLPs with immunological properties comparable to those of native HPV virions. Importantly, ingestion of transgenic L1 potato was associated with activation of an anti-VLP immune response in mice that was qualitatively similar to that induced by VLP parenteral administration, and this response was enhanced significantly by subsequent oral boosting with purified insect cell-derived VLPs. Thus, papillomavirus L1 protein can be expressed in transgenic plants to form immunologically functional VLPs, and ingestion of such material can activate potentially protective humoral immune responses.
Collapse
Affiliation(s)
- Heribert Warzecha
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14850, USA
| | | | | | | | | | | | | | | |
Collapse
|