1
|
Zimmer K, Chmielewska AM, Jackowiak P, Figlerowicz M, Bienkowska-Szewczyk K. Alterations in N-glycosylation of HCV E2 Protein in Children Patients with IFN-RBV Therapy Failure. Pathogens 2024; 13:256. [PMID: 38535599 PMCID: PMC10974529 DOI: 10.3390/pathogens13030256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/08/2024] [Accepted: 03/09/2024] [Indexed: 02/11/2025] Open
Abstract
The glycosylation of viral envelope proteins plays an important role in virus biology and the immune response of the host to infection. Hepatitis C virus (HCV) envelope proteins E1 and E2, key players in virus entry and spread, are highly N-glycosylated and possess 4 (5 in certain genotypes) to 11 conserved glycosylation sites, respectively. Many published results based on recombinant proteins indicate that the glycan shield can mask the epitopes targeted by neutralizing antibodies. Glycan shifting within the conserved linear E2 region (412-423) could be one of the escape strategies used by HCV. In the present report, we isolated E2 genes from samples (collected before the IFN-RBV therapy) originating from pediatric patients infected with HCV gt 1a. We analyzed the biochemical properties of cloned E2 glycoprotein variants and investigated their glycosylation status. The sequencing of E2 genes isolated from patients who did not respond to therapy revealed mutations at N-glycosylation sites, thus leading to a lower molecular weight and a low affinity to both linear and conformational neutralizing antibodies. The loss of the glycosylation site within the conserved epitope (amino acid 417) impaired the binding with AP33, an antibody that potently neutralizes all genotypes of HCV. Our findings, based on clinical samples, confirm the influence of N-glycosylation aberrations on the antigenic and conformational properties of HCV E1/E2, which may possibly correlate with the outcome of therapy in patients.
Collapse
Affiliation(s)
- Karolina Zimmer
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology of UG and MUG, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland; (K.Z.); (A.M.C.)
- Department of Biochemistry and Molecular Biology, Faculty of Health Sciences, University of Bielsko-Biala, 43-309 Bielsko-Biala, Poland
| | - Alicja M. Chmielewska
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology of UG and MUG, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland; (K.Z.); (A.M.C.)
| | - Paulina Jackowiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznań, Poland (M.F.)
| | - Marek Figlerowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznań, Poland (M.F.)
| | - Krystyna Bienkowska-Szewczyk
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology of UG and MUG, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland; (K.Z.); (A.M.C.)
| |
Collapse
|
2
|
Chumbe A, Grobben M, Capella-Pujol J, Koekkoek SM, Zon I, Slamanig S, Merat SJ, Beaumont T, Sliepen K, Schinkel J, van Gils MJ. A panel of hepatitis C virus glycoproteins for the characterization of antibody responses using antibodies with diverse recognition and neutralization patterns. Virus Res 2024; 341:199308. [PMID: 38171391 PMCID: PMC10821612 DOI: 10.1016/j.virusres.2024.199308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/28/2023] [Accepted: 01/01/2024] [Indexed: 01/05/2024]
Abstract
A vaccine against Hepatitis C virus (HCV) is urgently needed to limit the spread of HCV. The large antigenic diversity of the HCV glycoprotein E1E2 makes it difficult to design a vaccine but also to fully understand the antibody response after infection or vaccination. Here we designed a panel of HCV pseudoparticles (HCVpps) that cover a wide range of genetically and antigenically diverse E1E2s. We validate our panel using neutralization and a binding antibody multiplex assay (BAMA). The panel of HCVpps includes E1E2 glycoproteins from acute and chronically infected cases in the Netherlands, as well as E1E2 glycoproteins from previously reported HCVs. Using eight monoclonal antibodies targeting multiple antigenic regions on E1E2, we could categorize four groups of neutralization sensitive viruses with viruses showing neutralization titers over a 100-fold range. One HCVpp (AMS0230) was extremely neutralization resistant and only neutralized by AR4-targeting antibodies. In addition, using binding antibody multiplex competition assay, we delineated mAb epitopes and their interactions. The binding and neutralization sensitivity of the HCVpps were confirmed using patient sera. At the end, eleven HCVpps with unique antibody binding and neutralization profiles were selected as the final panel for standardized HCV antibody assessments. In conclusion, this HCVpp panel can be used to evaluate antibody binding and neutralization breadth and potency as well as delineate the epitopes targeted in sera from patients or candidate vaccine trials. The HCVpp panel in combination with the established antibody competition assay present highly valuable tools for HCV vaccine development and evaluation.
Collapse
Affiliation(s)
- Ana Chumbe
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Marloes Grobben
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Joan Capella-Pujol
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Sylvie M Koekkoek
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Ian Zon
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Stefan Slamanig
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | | | - Tim Beaumont
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands; AIMM Therapeutics, Amsterdam, the Netherlands
| | - Kwinten Sliepen
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Janke Schinkel
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands.
| | - Marit J van Gils
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands.
| |
Collapse
|
3
|
Adhikari A, Abayasingam A, Brasher NA, Kim HN, Lord M, Agapiou D, Maher L, Rodrigo C, Lloyd AR, Bull RA, Tedla N. Characterization of antibody-dependent cellular phagocytosis in patients infected with hepatitis C virus with different clinical outcomes. J Med Virol 2024; 96:e29381. [PMID: 38235622 PMCID: PMC10953302 DOI: 10.1002/jmv.29381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/10/2023] [Accepted: 12/28/2023] [Indexed: 01/19/2024]
Abstract
Early neutralizing antibodies against hepatitis C virus (HCV) and CD8 + T cell effector responses can lead to viral clearance. However, these functions alone are not sufficient to protect patients against HCV infection, thus undefined additional antiviral immune mechanisms are required. In recent years, Fc-receptor-dependent antibody effector functions, particularly, antibody-dependent cellular phagocytosis (ADCP) were shown to offer immune protection against several RNA viruses. However, its development and clinical role in patients with HCV infection remain unknown. In this study, we found that patients with chronic GT1a or GT3a HCV infection had significantly higher concentrations of anti-envelope 2 (E2) antibodies, predominantly IgG1 subclass, than patients that cleared the viruses while the latter had antibodies with higher affinities. 97% of the patients with HCV had measurable ADCP of whom patients with chronic disease showed significantly higher ADCP than those who naturally cleared the virus. Epitope mapping studies showed that patients with antibodies that target antigenic domains on the HCV E2 protein that are known to associate with neutralization function are also strongly associated with ADCP, suggesting antibodies with overlapping/dual functions. Correlation studies showed that ADCP significantly correlated with plasma anti-E2 antibody levels and neutralization function regardless of clinical outcome and genotype of infecting virus, while a significant correlation between ADCP and affinity was only evident in patients that cleared the virus. These results suggest ADCP was mostly driven by antibody titer in patients with chronic disease while maintained in clearers due to the quality (affinity) of their anti-E2 antibodies despite having lower antibody titers.
Collapse
Affiliation(s)
- Anurag Adhikari
- School of Biomedical Sciences, Faculty of MedicineUNSW AustraliaSydneyNew South WalesAustralia
- Department of Infection and ImmunologyKathmandu Research Institute for Biological SciencesLalitpurNepal
| | - Arunasingam Abayasingam
- School of Biomedical Sciences, Faculty of MedicineUNSW AustraliaSydneyNew South WalesAustralia
| | - Nicholas A. Brasher
- School of Biomedical Sciences, Faculty of MedicineUNSW AustraliaSydneyNew South WalesAustralia
| | - Ha Na Kim
- Molecular Surface Interaction Laboratory, Mark Wainwright Analytical CentreUNSW SydneySydneyNew South WalesAustralia
| | - Megan Lord
- Molecular Surface Interaction Laboratory, Mark Wainwright Analytical CentreUNSW SydneySydneyNew South WalesAustralia
- Graduate School of Biomedical Engineering, Faculty of EngineeringUNSW SydneySydneyNew South WalesAustralia
| | - David Agapiou
- The Kirby InstituteUNSW AustraliaSydneyNew South WalesAustralia
| | - Lisa Maher
- The Kirby InstituteUNSW AustraliaSydneyNew South WalesAustralia
| | - Chaturaka Rodrigo
- School of Biomedical Sciences, Faculty of MedicineUNSW AustraliaSydneyNew South WalesAustralia
| | - Andrew R. Lloyd
- School of Biomedical Sciences, Faculty of MedicineUNSW AustraliaSydneyNew South WalesAustralia
- The Kirby InstituteUNSW AustraliaSydneyNew South WalesAustralia
| | - Rowena A. Bull
- School of Biomedical Sciences, Faculty of MedicineUNSW AustraliaSydneyNew South WalesAustralia
- The Kirby InstituteUNSW AustraliaSydneyNew South WalesAustralia
| | - Nicodemus Tedla
- School of Biomedical Sciences, Faculty of MedicineUNSW AustraliaSydneyNew South WalesAustralia
| |
Collapse
|
4
|
Brasher NA, Adhikari A, Lloyd AR, Tedla N, Bull RA. Hepatitis C Virus Epitope Immunodominance and B Cell Repertoire Diversity. Viruses 2021; 13:v13060983. [PMID: 34070572 PMCID: PMC8229270 DOI: 10.3390/v13060983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/02/2022] Open
Abstract
Despite the advent of effective, curative treatments for hepatitis C virus (HCV), a preventative vaccine remains essential for the global elimination of HCV. It is now clear that the induction of broadly neutralising antibodies (bNAbs) is essential for the rational design of such a vaccine. This review details the current understanding of epitopes on the HCV envelope, characterising the potency, breadth and immunodominance of antibodies induced against these epitopes, as well as describing the interactions between B-cell receptors and HCV infection, with a particular focus on bNAb heavy and light chain variable gene usage. Additionally, we consider the importance of a public repertoire for antibodies against HCV, compiling current knowledge and suggesting that further research in this area may be critical to the rational design of an effective HCV vaccine.
Collapse
Affiliation(s)
- Nicholas A. Brasher
- Faculty of Medicine, School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia; (N.A.B.); (A.A.); (N.T.)
- The Kirby Institute, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2052, Australia;
| | - Anurag Adhikari
- Faculty of Medicine, School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia; (N.A.B.); (A.A.); (N.T.)
- The Kirby Institute, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2052, Australia;
- Department of Infection and Immunology, Kathmandu Research Institute for Biological Sciences, Lalitpur 44700, Nepal
| | - Andrew R. Lloyd
- The Kirby Institute, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2052, Australia;
| | - Nicodemus Tedla
- Faculty of Medicine, School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia; (N.A.B.); (A.A.); (N.T.)
| | - Rowena A. Bull
- Faculty of Medicine, School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia; (N.A.B.); (A.A.); (N.T.)
- The Kirby Institute, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2052, Australia;
- Correspondence:
| |
Collapse
|
5
|
Kalemera MD, Capella-Pujol J, Chumbe A, Underwood A, Bull RA, Schinkel J, Sliepen K, Grove J. Optimized cell systems for the investigation of hepatitis C virus E1E2 glycoproteins. J Gen Virol 2021; 102. [PMID: 33147126 PMCID: PMC8116788 DOI: 10.1099/jgv.0.001512] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Great strides have been made in understanding and treating hepatitis C virus (HCV) thanks to the development of various experimental systems including cell-culture-proficient HCV, the HCV pseudoparticle system and soluble envelope glycoproteins. The HCV pseudoparticle (HCVpp) system is a platform used extensively in studies of cell entry, screening of novel entry inhibitors, assessing the phenotypes of clinically observed E1 and E2 glycoproteins and, most pertinently, in characterizing neutralizing antibody breadth induced upon vaccination and natural infection in patients. Nonetheless, some patient-derived clones produce pseudoparticles that are either non-infectious or exhibit infectivity too low for meaningful phenotyping. The mechanisms governing whether any particular clone produces infectious pseudoparticles are poorly understood. Here we show that endogenous expression of CD81, an HCV receptor and a cognate-binding partner of E2, in producer HEK 293T cells is detrimental to the infectivity of recovered HCVpp for most strains. Many HCVpp clones exhibited increased infectivity or had their infectivity rescued when they were produced in 293T cells CRISPR/Cas9 engineered to ablate CD81 expression (293TCD81KO). Clones made in 293TCD81KO cells were antigenically very similar to their matched counterparts made parental cells and appear to honour the accepted HCV entry pathway. Deletion of CD81 did not appreciably increase the recovered titres of soluble E2 (sE2). However, we did, unexpectedly, find that monomeric sE2 made in 293T cells and Freestyle 293-F (293-F) cells exhibit important differences. We found that 293-F-produced sE2 harbours mostly complex-type glycans whilst 293T-produced sE2 displays a heterogeneous mixture of both complex-type glycans and high-mannose or hybrid-type glycans. Moreover, sE2 produced in 293T cells is antigenically superior; exhibiting increased binding to conformational antibodies and the large extracellular loop of CD81. In summary, this work describes an optimal cell line for the production of HCVpp and reveals that sE2 made in 293T and 293-F cells are not antigenic equals. Our findings have implications for functional studies of E1E2 and the production of candidate immunogens.
Collapse
Affiliation(s)
- Mphatso D Kalemera
- Institute of Immunity and Transplantation, Division of Infection and Immunity, The Royal Free Hospital, University College London, London, UK
| | - Joan Capella-Pujol
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Ana Chumbe
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Alexander Underwood
- Viral Immunology Systems Program, The Kirby Institute, School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Rowena A Bull
- Viral Immunology Systems Program, The Kirby Institute, School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Janke Schinkel
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Kwinten Sliepen
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Joe Grove
- Institute of Immunity and Transplantation, Division of Infection and Immunity, The Royal Free Hospital, University College London, London, UK
| |
Collapse
|
6
|
To Include or Occlude: Rational Engineering of HCV Vaccines for Humoral Immunity. Viruses 2021; 13:v13050805. [PMID: 33946211 PMCID: PMC8146105 DOI: 10.3390/v13050805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/16/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023] Open
Abstract
Direct-acting antiviral agents have proven highly effective at treating existing hepatitis C infections but despite their availability most countries will not reach the World Health Organization targets for elimination of HCV by 2030. A prophylactic vaccine remains a high priority. Whilst early vaccines focused largely on generating T cell immunity, attention is now aimed at vaccines that generate humoral immunity, either alone or in combination with T cell-based vaccines. High-resolution structures of hepatitis C viral glycoproteins and their interaction with monoclonal antibodies isolated from both cleared and chronically infected people, together with advances in vaccine technologies, provide new avenues for vaccine development.
Collapse
|
7
|
Velázquez-Moctezuma R, Augestad EH, Castelli M, Holmboe Olesen C, Clementi N, Clementi M, Mancini N, Prentoe J. Mechanisms of Hepatitis C Virus Escape from Vaccine-Relevant Neutralizing Antibodies. Vaccines (Basel) 2021; 9:291. [PMID: 33804732 PMCID: PMC8004074 DOI: 10.3390/vaccines9030291] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/15/2022] Open
Abstract
Hepatitis C virus (HCV) is a major causative agent of acute and chronic hepatitis. It is estimated that 400,000 people die every year from chronic HCV infection, mostly from severe liver-related diseases such as cirrhosis and liver cancer. Although HCV was discovered more than 30 years ago, an efficient prophylactic vaccine is still missing. The HCV glycoprotein complex, E1/E2, is the principal target of neutralizing antibodies (NAbs) and, thus, is an attractive antigen for B-cell vaccine design. However, the high genetic variability of the virus necessitates the identification of conserved epitopes. Moreover, the high intrinsic mutational capacity of HCV allows the virus to continually escape broadly NAbs (bNAbs), which is likely to cause issues with vaccine-resistant variants. Several studies have assessed the barrier-to-resistance of vaccine-relevant bNAbs in vivo and in vitro. Interestingly, recent studies have suggested that escape substitutions can confer antibody resistance not only by direct modification of the epitope but indirectly through allosteric effects, which can be grouped based on the breadth of these effects on antibody susceptibility. In this review, we summarize the current understanding of HCV-specific NAbs, with a special focus on vaccine-relevant bNAbs and their targets. We highlight antibody escape studies pointing out the different methodologies and the escape mutations identified thus far. Finally, we analyze the antibody escape mechanisms of envelope protein escape substitutions and polymorphisms according to the most recent evidence in the HCV field. The accumulated knowledge in identifying bNAb epitopes as well as assessing barriers to resistance and elucidating relevant escape mechanisms may prove critical in the successful development of an HCV B-cell vaccine.
Collapse
Affiliation(s)
- Rodrigo Velázquez-Moctezuma
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (R.V.-M.); (E.H.A.); (C.H.O.)
- Department of Infectious Diseases, Hvidovre Hospital, 2650 Hvidovre, Denmark
| | - Elias H. Augestad
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (R.V.-M.); (E.H.A.); (C.H.O.)
- Department of Infectious Diseases, Hvidovre Hospital, 2650 Hvidovre, Denmark
| | - Matteo Castelli
- Laboratory of Microbiology and Virology, Università “Vita-Salute” San Raffaele, 20132 Milano, Italy; (M.C.); (N.C.); (M.C.); (N.M.)
| | - Christina Holmboe Olesen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (R.V.-M.); (E.H.A.); (C.H.O.)
- Department of Infectious Diseases, Hvidovre Hospital, 2650 Hvidovre, Denmark
| | - Nicola Clementi
- Laboratory of Microbiology and Virology, Università “Vita-Salute” San Raffaele, 20132 Milano, Italy; (M.C.); (N.C.); (M.C.); (N.M.)
| | - Massimo Clementi
- Laboratory of Microbiology and Virology, Università “Vita-Salute” San Raffaele, 20132 Milano, Italy; (M.C.); (N.C.); (M.C.); (N.M.)
| | - Nicasio Mancini
- Laboratory of Microbiology and Virology, Università “Vita-Salute” San Raffaele, 20132 Milano, Italy; (M.C.); (N.C.); (M.C.); (N.M.)
| | - Jannick Prentoe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (R.V.-M.); (E.H.A.); (C.H.O.)
- Department of Infectious Diseases, Hvidovre Hospital, 2650 Hvidovre, Denmark
| |
Collapse
|
8
|
Abstract
Antibody responses in hepatitis C virus (HCV) have been a rather mysterious research topic for many investigators working in the field. Chronic HCV infection is often associated with dysregulation of immune functions particularly in B cells, leading to abnormal lymphoproliferation or the production of autoantibodies that exacerbate inflammation and extrahepatic diseases. When considering the antiviral function of antibody, it was difficult to endorse its role in HCV protection, whereas T-cell response has been shown unequivocally critical for natural recovery. Recent breakthroughs in the study of HCV and antigen-specific antibody responses provide important insights into viral vulnerability to antibodies and the immunogenetic and structural properties of the neutralizing antibodies. The new knowledge reinvigorates HCV vaccine research by illuminating a new path for the rational design of vaccine antigens to elicit broadly neutralizing antibodies for protection.
Collapse
Affiliation(s)
- Mansun Law
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California 92109, USA
| |
Collapse
|
9
|
Andrianov AK, Marini A, Wang R, Chowdhury A, Agnihotri P, Yunus AS, Pierce BG, Mariuzza RA, Fuerst TR. In Vivo and In Vitro Potency of Polyphosphazene Immunoadjuvants with Hepatitis C Virus Antigen and the Role of Their Supramolecular Assembly. Mol Pharm 2021; 18:726-734. [PMID: 32530637 PMCID: PMC7755742 DOI: 10.1021/acs.molpharmaceut.0c00487] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Two well-defined synthetic polyphosphazene immunoadjuvants, PCPP and PCEP, were studied for their ability to potentiate the immune response to the hepatitis C virus (HCV) E2 glycoprotein antigen in vivo. We report that PCEP induced significantly higher serum neutralization and HCV-specific IgG titers in mice compared to other adjuvants used in the study: PCPP, Alum, and Addavax. PCEP also shifted the response toward the desirable balanced Th1/Th2 immunity, as evaluated by the antibody isotype ratio (IgG2a/IgG1). The in vivo results were analyzed in the context of antigen-adjuvant molecular interactions in the system and in vitro immunostimulatory activity of formulations. Asymmetric flow field flow fractionation (AF4) and dynamic light scattering (DLS) analysis showed that both PCPP and PCEP spontaneously self-assemble with the E2 glycoprotein with the formation of multimeric water-soluble complexes, which demonstrates the role of polyphosphazene macromolecules as vaccine delivery vehicles. Intrinsic in vitro immunostimulatory activity of polyphosphazene adjuvants, which was assessed using a mouse macrophage cell line, revealed comparable activities of both polymers and did not provide an explanation of their in vivo performance. However, PCEP complexes with E2 displayed greater stability against agglomeration and improved in vitro immunostimulatory activity compared to those of PCPP, which is in line with superior in vivo performance of PCEP. The results emphasize the importance of often neglected antigen-polyphosphazene self-assembly mechanisms in formulations, which can provide important insights on their in vivo behavior and facilitate the establishment of a structure-activity relationship for this important class of immunoadjuvants.
Collapse
Affiliation(s)
- Alexander K. Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, 20850, USA
| | - Alexander Marini
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, 20850, USA
| | - Ruixue Wang
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, 20850, USA
| | - Ananda Chowdhury
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, 20850, USA
| | - Pragati Agnihotri
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, 20742, USA
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850
| | - Abdul S. Yunus
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, 20850, USA
| | - Brian G. Pierce
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, 20742, USA
| | - Roy A. Mariuzza
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, 20742, USA
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850
| | - Thomas R. Fuerst
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, 20742, USA
| |
Collapse
|
10
|
Guest JD, Wang R, Elkholy KH, Chagas A, Chao KL, Cleveland TE, Kim YC, Keck ZY, Marin A, Yunus AS, Mariuzza RA, Andrianov AK, Toth EA, Foung SKH, Pierce BG, Fuerst TR. Design of a native-like secreted form of the hepatitis C virus E1E2 heterodimer. Proc Natl Acad Sci U S A 2021; 118:e2015149118. [PMID: 33431677 PMCID: PMC7826332 DOI: 10.1073/pnas.2015149118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Hepatitis C virus (HCV) is a major worldwide health burden, and a preventive vaccine is needed for global control or eradication of this virus. A substantial hurdle to an effective HCV vaccine is the high variability of the virus, leading to immune escape. The E1E2 glycoprotein complex contains conserved epitopes and elicits neutralizing antibody responses, making it a primary target for HCV vaccine development. However, the E1E2 transmembrane domains that are critical for native assembly make it challenging to produce this complex in a homogenous soluble form that is reflective of its state on the viral envelope. To enable rational design of an E1E2 vaccine, as well as structural characterization efforts, we have designed a soluble, secreted form of E1E2 (sE1E2). As with soluble glycoprotein designs for other viruses, it incorporates a scaffold to enforce assembly in the absence of the transmembrane domains, along with a furin cleavage site to permit native-like heterodimerization. This sE1E2 was found to assemble into a form closer to its expected size than full-length E1E2. Preservation of native structural elements was confirmed by high-affinity binding to a panel of conformationally specific monoclonal antibodies, including two neutralizing antibodies specific to native E1E2 and to its primary receptor, CD81. Finally, sE1E2 was found to elicit robust neutralizing antibodies in vivo. This designed sE1E2 can both provide insights into the determinants of native E1E2 assembly and serve as a platform for production of E1E2 for future structural and vaccine studies, enabling rational optimization of an E1E2-based antigen.
Collapse
Affiliation(s)
- Johnathan D Guest
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Ruixue Wang
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
| | - Khadija H Elkholy
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
- Molecular Biology Department, Genetic Engineering and Biotechnology Division, National Research Centre, Cairo 12622, Egypt
| | - Andrezza Chagas
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
| | - Kinlin L Chao
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Thomas E Cleveland
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD 20899
| | - Young Chang Kim
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
| | - Zhen-Yong Keck
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
| | - Alexander Marin
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
| | - Abdul S Yunus
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
| | - Roy A Mariuzza
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Alexander K Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
| | - Eric A Toth
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
| | - Steven K H Foung
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
| | - Brian G Pierce
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850;
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Thomas R Fuerst
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850;
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| |
Collapse
|
11
|
Abstract
Hepatocellular carcinoma (HCC) is the fifth most prevalent cancer and the second leading cause of cancer-related death worldwide.
Collapse
|
12
|
Pierce BG, Keck ZY, Wang R, Lau P, Garagusi K, Elkholy K, Toth EA, Urbanowicz RA, Guest JD, Agnihotri P, Kerzic MC, Marin A, Andrianov AK, Ball JK, Mariuzza RA, Fuerst TR, Foung SKH. Structure-Based Design of Hepatitis C Virus E2 Glycoprotein Improves Serum Binding and Cross-Neutralization. J Virol 2020; 94:e00704-20. [PMID: 32878891 PMCID: PMC7592221 DOI: 10.1128/jvi.00704-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/20/2020] [Indexed: 12/22/2022] Open
Abstract
An effective vaccine for hepatitis C virus (HCV) is a major unmet need, and it requires an antigen that elicits immune responses to key conserved epitopes. Based on structures of antibodies targeting HCV envelope glycoprotein E2, we designed immunogens to modulate the structure and dynamics of E2 and favor induction of broadly neutralizing antibodies (bNAbs) in the context of a vaccine. These designs include a point mutation in a key conserved antigenic site to stabilize its conformation, as well as redesigns of an immunogenic region to add a new N-glycosylation site and mask it from antibody binding. Designs were experimentally characterized for binding to a panel of human monoclonal antibodies (HMAbs) and the coreceptor CD81 to confirm preservation of epitope structure and preferred antigenicity profile. Selected E2 designs were tested for immunogenicity in mice, with and without hypervariable region 1, which is an immunogenic region associated with viral escape. One of these designs showed improvement in polyclonal immune serum binding to HCV pseudoparticles and neutralization of isolates associated with antibody resistance. These results indicate that antigen optimization through structure-based design of the envelope glycoproteins is a promising route to an effective vaccine for HCV.IMPORTANCE Hepatitis C virus infects approximately 1% of the world's population, and no vaccine is currently available. Due to the high variability of HCV and its ability to actively escape the immune response, a goal of HCV vaccine design is to induce neutralizing antibodies that target conserved epitopes. Here, we performed structure-based design of several epitopes of the HCV E2 envelope glycoprotein to engineer its antigenic properties. Designs were tested in vitro and in vivo, demonstrating alteration of the E2 antigenic profile in several cases, and one design led to improvement of cross-neutralization of heterologous viruses. This represents a proof of concept that rational engineering of HCV envelope glycoproteins can be used to modulate E2 antigenicity and optimize a vaccine for this challenging viral target.
Collapse
Affiliation(s)
- Brian G Pierce
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Zhen-Yong Keck
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Ruixue Wang
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
| | - Patrick Lau
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Kyle Garagusi
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
| | - Khadija Elkholy
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
| | - Eric A Toth
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
| | - Richard A Urbanowicz
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, United Kingdom
| | - Johnathan D Guest
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Pragati Agnihotri
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Melissa C Kerzic
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Alexander Marin
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
| | - Alexander K Andrianov
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
| | - Jonathan K Ball
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, United Kingdom
| | - Roy A Mariuzza
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Thomas R Fuerst
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Steven K H Foung
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
13
|
Center RJ, Boo I, Phu L, McGregor J, Poumbourios P, Drummer HE. Enhancing the antigenicity and immunogenicity of monomeric forms of hepatitis C virus E2 for use as a preventive vaccine. J Biol Chem 2020; 295:7179-7192. [PMID: 32299914 PMCID: PMC7247312 DOI: 10.1074/jbc.ra120.013015] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/13/2020] [Indexed: 12/13/2022] Open
Abstract
The E2 glycoprotein of hepatitis C virus (HCV) is the major target of broadly neutralizing antibodies (bNAbs) that are critical for the efficacy of a prophylactic HCV vaccine. We previously showed that a cell culture-derived, disulfide-linked high-molecular-weight (HMW) form of the E2 receptor-binding domain lacking three variable regions, Δ123-HMW, elicits broad neutralizing activity against the seven major genotypes of HCV. A limitation to the use of this antigen is that it is produced only at low yields and does not have a homogeneous composition. Here, we employed a sequential reduction and oxidation strategy to efficiently refold two high-yielding monomeric E2 species, D123 and a disulfide-minimized version (D123A7), into disulfide-linked HMW-like species (Δ123r and Δ123A7r). These proteins exhibited normal reactivity to bNAbs with continuous epitopes on the neutralizing face of E2, but reduced reactivity to conformation-dependent bNAbs and nonneutralizing antibodies (non-NAbs) compared with the corresponding monomeric species. Δ123r and Δ123A7r recapitulated the immunogenic properties of cell culture-derived D123-HMW in guinea pigs. The refolded antigens elicited antibodies that neutralized homologous and heterologous HCV genotypes, blocked the interaction between E2 and its cellular receptor CD81, and targeted the AS412, AS434, and AR3 domains. Of note, antibodies directed to epitopes overlapping with those of non-NAbs were absent. The approach to E2 antigen engineering outlined here provides an avenue for the development of preventive HCV vaccine candidates that induce bNAbs at higher yield and lower cost.
Collapse
Affiliation(s)
- Rob J Center
- Burnet Institute, 85 Commercial Road, Melbourne 3004, Australia; Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne 3000, Australia
| | - Irene Boo
- Burnet Institute, 85 Commercial Road, Melbourne 3004, Australia
| | - Lilian Phu
- Burnet Institute, 85 Commercial Road, Melbourne 3004, Australia; Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne 3000, Australia
| | - Joey McGregor
- Burnet Institute, 85 Commercial Road, Melbourne 3004, Australia; Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne 3000, Australia
| | - Pantelis Poumbourios
- Burnet Institute, 85 Commercial Road, Melbourne 3004, Australia; Department of Microbiology, Monash University, Clayton 3056, Australia
| | - Heidi E Drummer
- Burnet Institute, 85 Commercial Road, Melbourne 3004, Australia; Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne 3000, Australia; Department of Microbiology, Monash University, Clayton 3056, Australia.
| |
Collapse
|
14
|
Merat SJ, Bru C, van de Berg D, Molenkamp R, Tarr AW, Koekkoek S, Kootstra NA, Prins M, Ball JK, Bakker AQ, de Jong MD, Spits H, Beaumont T, Schinkel J. Cross-genotype AR3-specific neutralizing antibodies confer long-term protection in injecting drug users after HCV clearance. J Hepatol 2019; 71:14-24. [PMID: 30797052 DOI: 10.1016/j.jhep.2019.02.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 01/29/2019] [Accepted: 02/12/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND & AIMS In order to design an effective vaccine against hepatitis C virus (HCV) infection, it is necessary to understand immune protection. A number of broadly reactive neutralizing antibodies have been isolated from B cells of HCV-infected patients. However, it remains unclear whether B cells producing such antibodies contribute to HCV clearance and long-term immune protection against HCV. METHODS We analysed the B cell repertoire of 13 injecting drug users from the Amsterdam Cohort Study, who were followed up for a median of 17.5 years after primary infection. Individuals were classified into 2 groups based on the outcome of HCV infection: 5 who became chronically infected either after primary infection or after reinfection, and 8 who were HCV RNA negative following spontaneous clearance of ≥1 HCV infection(s). From each individual, 10,000 CD27+IgG+B cells, collected 0.75 year after HCV infection, were cultured to characterize the antibody repertoire. RESULTS Using a multiplex flow cytometry-based assay to study the antibody binding to E1E2 from genotype 1 to 6, we found that a high frequency of cross-genotype antibodies was associated with spontaneous clearance of 1 or multiple infections (p = 0.03). Epitope specificity of these cross-genotype antibodies was determined by alanine mutant scanning in 4 individuals who were HCV RNA negative following spontaneous clearance of 1 or multiple infections. Interestingly, the cross-genotype antibodies were mainly antigenic region 3 (AR3)-specific and showed cross-neutralizing activity against HCV. In addition to AR3 antibodies, 3 individuals developed antibodies recognizing antigenic region 4, of which 1 monoclonal antibody showed cross-neutralizing capacity. CONCLUSIONS Together, these data suggest that a strong B cell response producing cross-genotype and neutralizing antibodies, especially targeting AR3, contributes to HCV clearance and long-term immune protection against HCV. LAY SUMMARY Although effective treatments against hepatitis C virus (HCV) are available, 500,000 people die from liver disease caused by HCV each year and approximately 1.75 million people are newly infected. This could be prevented by a vaccine. To design a vaccine against HCV, more insight into the role of antibodies in the protection against HCV infection is needed. In a cohort of injecting drug users, we found that antibodies interfering with virus cell entry, and recognizing multiple HCV genotypes, conferred long-term protection against chronic HCV infection.
Collapse
Affiliation(s)
| | - Camille Bru
- AIMM Therapeutics, Amsterdam, the Netherlands
| | | | - Richard Molenkamp
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Alexander W Tarr
- School of Life Sciences, The University of Nottingham, Nottingham, UK; NIHR Nottingham BRC, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - Sylvie Koekkoek
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Neeltje A Kootstra
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Maria Prins
- Public Health Service of Amsterdam, Amsterdam, the Netherlands; Department of Infectious Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Jonathan K Ball
- School of Life Sciences, The University of Nottingham, Nottingham, UK; NIHR Nottingham BRC, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | | | - Menno D de Jong
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | | | | | - Janke Schinkel
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
15
|
Pre-clinical evaluation of a quadrivalent HCV VLP vaccine in pigs following microneedle delivery. Sci Rep 2019; 9:9251. [PMID: 31239471 PMCID: PMC6592879 DOI: 10.1038/s41598-019-45461-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 05/29/2019] [Indexed: 02/07/2023] Open
Abstract
The introduction of directly acting antiviral agents (DAAs) has produced significant improvements in the ability to cure chronic hepatitis C infection. However, with over 2% of the world’s population infected with HCV, complications arising from the development of cirrhosis of the liver, chronic hepatitis C infection remains the leading indication for liver transplantation. Several modelling studies have indicated that DAAs alone will not be sufficient to eliminate HCV, but if combined with an effective vaccine this regimen would provide a significant advance towards achieving this critical World Health Organisation goal. We have previously generated a genotype 1a, 1b, 2a, 3a HCV virus like particle (VLP) quadrivalent vaccine. The HCV VLPs contain the core and envelope proteins (E1 and E2) of HCV and the vaccine has been shown to produce broad humoral and T cell immune responses following vaccination of mice. In this report we further advanced this work by investigating vaccine responses in a large animal model. We demonstrate that intradermal microneedle vaccination of pigs with our quadrivalent HCV VLP based vaccine produces long-lived multi-genotype specific and neutralizing antibody (NAb) responses together with strong T cell and granzyme B responses and normal Th1 and Th2 cytokine responses. These responses were achieved without the addition of adjuvant. Our study demonstrates that our vaccine is able to produce broad immune responses in a large animal that, next to primates, is the closest animal model to humans. Our results are important as they show that the vaccine can produce robust immune responses in a large animal model before progressing the vaccine to human trials.
Collapse
|
16
|
Keck ZY, Pierce BG, Lau P, Lu J, Wang Y, Underwood A, Bull RA, Prentoe J, Velázquez-Moctezuma R, Walker MR, Luciani F, Guest JD, Fauvelle C, Baumert TF, Bukh J, Lloyd AR, Foung SKH. Broadly neutralizing antibodies from an individual that naturally cleared multiple hepatitis C virus infections uncover molecular determinants for E2 targeting and vaccine design. PLoS Pathog 2019; 15:e1007772. [PMID: 31100098 PMCID: PMC6542541 DOI: 10.1371/journal.ppat.1007772] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 05/30/2019] [Accepted: 04/20/2019] [Indexed: 12/17/2022] Open
Abstract
Cumulative evidence supports a role for neutralizing antibodies contributing to spontaneous viral clearance during acute hepatitis C virus (HCV) infection. Information on the timing and specificity of the B cell response associated with clearance is crucial to inform vaccine design. From an individual who cleared three sequential HCV infections with genotypes 1b, 1a and 3a strains, respectively, we employed peripheral B cells to isolate and characterize neutralizing human monoclonal antibodies (HMAbs) to HCV after the genotype 1 infections. The majority of isolated antibodies, designated as HMAbs 212, target conformational epitopes on the envelope glycoprotein E2 and bound broadly to genotype 1–6 E1E2 proteins. Further, some of these antibodies showed neutralization potential against cultured genotype 1–6 viruses. Competition studies with defined broadly neutralizing HCV HMAbs to epitopes in distinct clusters, designated antigenic domains B, C, D and E, revealed that the selected HMAbs compete with B, C and D HMAbs, previously isolated from subjects with chronic HCV infections. Epitope mapping studies revealed domain B and C specificity of these HMAbs 212. Sequential serum samples from the studied subject inhibited the binding of HMAbs 212 to autologous E2 and blocked a representative domain D HMAb. The specificity of this antibody response appears similar to that observed during chronic infection, suggesting that the timing and affinity maturation of the antibody response are the critical determinants in successful and repeated viral clearance. While additional studies should be performed for individuals with clearance or persistence of HCV, our results define epitope determinants for antibody E2 targeting with important implications for the development of a B cell vaccine. Studies of hepatitis C virus (HCV) infected individuals spontaneously clearing acute infections provide an opportunity to characterize the specificities of associated protective antibody responses. In an individual who resolved three separate HCV infections with different HCV genotypes, the antibodies induced during these acute infection episodes were similar to those induced during chronic infection. Surprisingly, the earliest detected antibodies were directed against conformational HCV epitopes on the envelope glycoprotein E2 (including polyprotein residues 434–446) known to be targeted by broadly neutralizing antibodies. Taken together, the key B-cell determinants in spontaneous clearance are the timing and affinity maturation of broadly neutralizing antibody responses.
Collapse
Affiliation(s)
- Zhen-Yong Keck
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Brian G. Pierce
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, United States of America
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Patrick Lau
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Janine Lu
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Yong Wang
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Alexander Underwood
- Viral Immunology Systems Program, The Kirby Institute and School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Rowena A. Bull
- Viral Immunology Systems Program, The Kirby Institute and School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Jannick Prentoe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rodrigo Velázquez-Moctezuma
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Melanie R. Walker
- Viral Immunology Systems Program, The Kirby Institute and School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Fabio Luciani
- Viral Immunology Systems Program, The Kirby Institute and School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Johnathan D. Guest
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, United States of America
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Catherine Fauvelle
- Inserm U1110, Institut de Recherche sur les Maladies et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Thomas F. Baumert
- Inserm U1110, Institut de Recherche sur les Maladies et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Pole Hépato-digestif, Institut Hospitalo-Universitaire, Hopitaux Universitaires de Strasbourg, Strasbourg, France
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andrew R. Lloyd
- Viral Immunology Systems Program, The Kirby Institute and School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Steven K. H. Foung
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
17
|
Eliyahu S, Sharabi O, Elmedvi S, Timor R, Davidovich A, Vigneault F, Clouser C, Hope R, Nimer A, Braun M, Weiss YY, Polak P, Yaari G, Gal-Tanamy M. Antibody Repertoire Analysis of Hepatitis C Virus Infections Identifies Immune Signatures Associated With Spontaneous Clearance. Front Immunol 2018; 9:3004. [PMID: 30622532 PMCID: PMC6308210 DOI: 10.3389/fimmu.2018.03004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/05/2018] [Indexed: 12/13/2022] Open
Abstract
Hepatitis C virus (HCV) is a major public health concern, with over 70 million people infected worldwide, who are at risk for developing life-threatening liver disease. No vaccine is available, and immunity against the virus is not well-understood. Following the acute stage, HCV usually causes chronic infections. However, ~30% of infected individuals spontaneously clear the virus. Therefore, using HCV as a model for comparing immune responses between spontaneous clearer (SC) and chronically infected (CI) individuals may empower the identification of mechanisms governing viral infection outcomes. Here, we provide the first in-depth analysis of adaptive immune receptor repertoires in individuals with current or past HCV infection. We demonstrate that SC individuals, in contrast to CI patients, develop clusters of antibodies with distinct properties. These antibodies' characteristics were used in a machine learning framework to accurately predict infection outcome. Using combinatorial antibody phage display library technology, we identified HCV-specific antibody sequences. By integrating these data with the repertoire analysis, we constructed two antibodies characterized by high neutralization breadth, which are associated with clearance. This study provides insight into the nature of effective immune response against HCV and demonstrates an innovative approach for constructing antibodies correlating with successful infection clearance. It may have clinical implications for prognosis of the future status of infection, and the design of effective immunotherapies and a vaccine for HCV.
Collapse
Affiliation(s)
- Sivan Eliyahu
- Molecular Virology Lab, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Oz Sharabi
- Bioengineering, Faculty of Engineering, Bar-Ilan University, Ramat-Gan, Israel
| | - Shiri Elmedvi
- Molecular Virology Lab, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Reut Timor
- Bioengineering, Faculty of Engineering, Bar-Ilan University, Ramat-Gan, Israel
| | - Ateret Davidovich
- Molecular Virology Lab, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | | | | | - Ronen Hope
- Bioengineering, Faculty of Engineering, Bar-Ilan University, Ramat-Gan, Israel
| | - Assy Nimer
- Internal Medicine Department A, Western Galilee Medical Center, Naharyia and Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Marius Braun
- Liver Institute, Rabin Medical Center, Sackler School of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - Yaacov Y Weiss
- Bioengineering, Faculty of Engineering, Bar-Ilan University, Ramat-Gan, Israel
| | - Pazit Polak
- Bioengineering, Faculty of Engineering, Bar-Ilan University, Ramat-Gan, Israel
| | - Gur Yaari
- Bioengineering, Faculty of Engineering, Bar-Ilan University, Ramat-Gan, Israel
| | - Meital Gal-Tanamy
- Molecular Virology Lab, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|
18
|
Prentoe J, Bukh J. Hypervariable Region 1 in Envelope Protein 2 of Hepatitis C Virus: A Linchpin in Neutralizing Antibody Evasion and Viral Entry. Front Immunol 2018; 9:2146. [PMID: 30319614 PMCID: PMC6170631 DOI: 10.3389/fimmu.2018.02146] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 08/30/2018] [Indexed: 12/15/2022] Open
Abstract
Chronic hepatitis C virus (HCV) infection is the cause of about 400,000 annual liver disease-related deaths. The global spread of this important human pathogen can potentially be prevented through the development of a vaccine, but this challenge has proven difficult, and much remains unknown about the multitude of mechanisms by which this heterogeneous RNA virus evades inactivation by neutralizing antibodies (NAbs). The N-terminal motif of envelope protein 2 (E2), termed hypervariable region 1 (HVR1), changes rapidly in immunoglobulin-competent patients due to antibody-driven antigenic drift. HVR1 contains NAb epitopes and is directly involved in protecting diverse antibody-specific epitopes on E1, E2, and E1/E2 through incompletely understood mechanisms. The ability of HVR1 to protect HCV from NAbs appears linked with modulation of HCV entry co-receptor interactions. Thus, removal of HVR1 increases interaction with CD81, while altering interaction with scavenger receptor class B, type I (SR-BI) in a complex fashion, and decreasing interaction with low-density lipoprotein receptor. Despite intensive efforts this modulation of receptor interactions by HVR1 remains incompletely understood. SR-BI has received the most attention and it appears that HVR1 is involved in a multimodal HCV/SR-BI interaction involving high-density-lipoprotein associated ApoCI, which may prime the virus for later entry events by exposing conserved NAb epitopes, like those in the CD81 binding site. To fully elucidate the multifunctional role of HVR1 in HCV entry and NAb evasion, improved E1/E2 models and comparative studies with other NAb evasion strategies are needed. Derived knowledge may be instrumental in the development of a prophylactic HCV vaccine.
Collapse
Affiliation(s)
- Jannick Prentoe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, Copenhagen, Denmark.,Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, Copenhagen, Denmark.,Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
19
|
Immunological responses following administration of a genotype 1a/1b/2/3a quadrivalent HCV VLP vaccine. Sci Rep 2018; 8:6483. [PMID: 29691437 PMCID: PMC5915487 DOI: 10.1038/s41598-018-24762-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/12/2018] [Indexed: 12/16/2022] Open
Abstract
The significant public health problem of Hepatitis C virus (HCV) has been partially addressed with the advent of directly acting antiviral agents (DAAs). However, the development of an effective preventative vaccine would have a significant impact on HCV incidence and would represent a major advance towards controlling and possibly eradicating HCV globally. We previously reported a genotype 1a HCV viral-like particle (VLP) vaccine that produced neutralizing antibodies (NAb) and T cell responses to HCV. To advance this approach, we produced a quadrivalent genotype 1a/1b/2a/3a HCV VLP vaccine to produce broader immune responses. We show that this quadrivalent vaccine produces antibody and NAb responses together with strong T and B cell responses in vaccinated mice. Moreover, selective neutralizing human monoclonal antibodies (HuMAbs) targeting conserved antigenic domain B and D epitopes of the E2 protein bound strongly to the HCV VLPs, suggesting that these critical epitopes are expressed on the surface of the particles. Our findings demonstrate that a quadrivalent HCV VLP based vaccine induces broad humoral and cellular immune responses that will be necessary for protection against HCV. Such a vaccine could provide a substantial addition to highly active antiviral drugs in eliminating HCV.
Collapse
|
20
|
Krapchev VB, Rychłowska M, Chmielewska A, Zimmer K, Patel AH, Bieńkowska-Szewczyk K. Recombinant Flag-tagged E1E2 glycoproteins from three hepatitis C virus genotypes are biologically functional and elicit cross-reactive neutralizing antibodies in mice. Virology 2018; 519:33-41. [PMID: 29631174 PMCID: PMC5998380 DOI: 10.1016/j.virol.2018.03.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 01/13/2023]
Abstract
Hepatitis C virus (HCV) is a globally disseminated human pathogen for which no vaccine is currently available. HCV is highly diverse genetically and can be classified into 7 genotypes and multiple sub-types. Due to this antigenic variation, the induction of cross-reactive and at the same time neutralizing antibodies is a challenge in vaccine production. Here we report the analysis of immunogenicity of recombinant HCV envelope glycoproteins from genotypes 1a, 1b and 2a, with a Flag tag inserted in the hypervariable region 1 of E2. This modification did not affect protein expression or conformation or its capacity to bind the crucial virus entry factor, CD81. Importantly, in immunogenicity studies on mice, the purified E2-Flag mutants elicited high-titer, cross-reactive antibodies that were able to neutralize HCV infectious particles from two genotypes tested (1a and 2a). These findings indicate that E1E2-Flag envelope glycoproteins could be important immunogen candidates for vaccine aiming to induce broad HCV-neutralizing responses.
Collapse
Affiliation(s)
- Vasil B Krapchev
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology of UG and MUG, University of Gdansk, 58 Abrahama str., 80-307 Gdansk, Poland
| | - Malgorzata Rychłowska
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology of UG and MUG, University of Gdansk, 58 Abrahama str., 80-307 Gdansk, Poland
| | - Alicja Chmielewska
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology of UG and MUG, University of Gdansk, 58 Abrahama str., 80-307 Gdansk, Poland
| | - Karolina Zimmer
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology of UG and MUG, University of Gdansk, 58 Abrahama str., 80-307 Gdansk, Poland
| | - Arvind H Patel
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, 464 Bearsden Road, Glasgow G61 1QH, Scotland (UK)
| | - Krystyna Bieńkowska-Szewczyk
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology of UG and MUG, University of Gdansk, 58 Abrahama str., 80-307 Gdansk, Poland.
| |
Collapse
|
21
|
Christiansen D, Earnest-Silveira L, Chua B, Boo I, Drummer HE, Grubor-Bauk B, Gowans EJ, Jackson DC, Torresi J. Antibody Responses to a Quadrivalent Hepatitis C Viral-Like Particle Vaccine Adjuvanted with Toll-Like Receptor 2 Agonists. Viral Immunol 2018; 31:338-343. [PMID: 29489437 DOI: 10.1089/vim.2017.0182] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The development of an effective preventative hepatitis C virus (HCV) vaccine will reside, in part, in its ability to elicit neutralizing antibodies (NAbs). We previously reported a genotype 1a HCV virus like particle (VLP) vaccine that produced HCV specific NAb and T cell responses that were substantially enhanced by Toll-like receptor 2 (TLR2) agonists. We have now produced a quadrivalent genotype 1a/1b/2a/3a HCV VLP vaccine and tested the ability of two TLR2 agonists, R4Pam2Cys and E8Pam2Cys, to stimulate the production of NAb. We now show that our vaccine with R4Pam2Cys or E8Pam2Cys produces strong antibody and NAb responses in vaccinated mice after just two doses. Total antibody titers were higher in mice inoculated with vaccine plus E8Pam2Cys compared to HCV VLPs alone. However, the TLR2 agonists did not result in stronger NAb responses compared to vaccine without adjuvant. Such a vaccine could provide a substantial addition to the overall goal to eliminate HCV.
Collapse
Affiliation(s)
- Dale Christiansen
- 1 Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne, Australia
| | - Linda Earnest-Silveira
- 1 Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne, Australia
| | - Brendon Chua
- 1 Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne, Australia
| | - Irene Boo
- 2 Burnet Institute , Melbourne, Australia
| | - Heidi E Drummer
- 1 Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne, Australia .,2 Burnet Institute , Melbourne, Australia .,3 Department of Microbiology, Monash University , Clayton, Australia
| | - Branka Grubor-Bauk
- 4 Department of Surgery, The University of Adelaide and The Basil Hetzel Institute for Translational Health Research, Adelaide, South Australia
| | - Eric J Gowans
- 4 Department of Surgery, The University of Adelaide and The Basil Hetzel Institute for Translational Health Research, Adelaide, South Australia
| | - David C Jackson
- 1 Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne, Australia
| | - Joseph Torresi
- 1 Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne, Australia
| |
Collapse
|
22
|
Ghasemi F, Ghayour-Mobarhan M, Gouklani H, Meshkat Z. Development of Preventive Vaccines for Hepatitis C Virus E1/E2 Protein. IRANIAN JOURNAL OF PATHOLOGY 2018; 13:113-124. [PMID: 30697280 PMCID: PMC6339490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 07/03/2018] [Indexed: 11/30/2022]
Abstract
Hepatitis C virus (HCV) is responsible for a vast majority of liver failure cases. HCV is a kind of blood disease estimated to chronically infect 3% of the worlds population, causing significant morbidity and mortality. Therefore, a complete knowledge of humoral responses against HCV, resulting antibodies, and virus-receptor and virus-antibody interactions, are essential to design a vaccine. HCV epitopes or full sequence of HCV proteins can induce HCV specific immune responses. In fact, structural proteins are usually the main target of humoral responses and non-structural proteins are usually the main target of cellular responses. Hence, various vaccines based on distinct antigenic combinations are developed to prevent HCV infection and the current study tried to summarize them.
Collapse
Affiliation(s)
- Faezeh Ghasemi
- Dept. of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran,Dept. of Medical Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Majid Ghayour-Mobarhan
- Biochemistry of Nutrition Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Gouklani
- Molecular Medicine Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Zahra Meshkat
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran,Dept. of Microbiology and Virology, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran,Zahra Meshkat, Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. E-mail:
| |
Collapse
|
23
|
Development and characterization of a human monoclonal antibody targeting the N-terminal region of hepatitis C virus envelope glycoprotein E1. Virology 2017; 514:30-41. [PMID: 29128754 DOI: 10.1016/j.virol.2017.10.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/16/2017] [Accepted: 10/20/2017] [Indexed: 12/23/2022]
Abstract
Monoclonal antibodies (mAbs) targeting the hepatitis C virus (HCV) envelope have been raised mainly against envelope protein 2 (E2), while the antigenic epitopes of envelope protein 1 (E1) are not fully identified. Here we describe the detailed characterization of a human mAb, designated A6, generated from an HCV genotype 1b infected patient. ELISA results showed reactivity of mAb A6 to full-length HCV E1E2 of genotypes 1a, 1b and 2a. Epitope mapping identified a region spanning amino acids 230-239 within the N-terminal region of E1 as critical for binding. Antibody binding to this epitope was not conformation dependent. Neutralization assays showed that mAb A6 lacks neutralizing capacity and does not interfere with the activity of known neutralizing antibodies. In summary, mAb A6 is an important tool to study the structure and function of E1 within the viral envelope, a crucial step in the development of an effective prophylactic HCV vaccine.
Collapse
|
24
|
Torresi J. The Rationale for a Preventative HCV Virus-Like Particle (VLP) Vaccine. Front Microbiol 2017; 8:2163. [PMID: 29163442 PMCID: PMC5674006 DOI: 10.3389/fmicb.2017.02163] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/20/2017] [Indexed: 12/16/2022] Open
Abstract
HCV represents a global health problem with ~200 million individuals currently infected, worldwide. With the high cost of antiviral therapies, the global burden of chronic hepatitis C infection (CHCV) infection will be substantially reduced by the development of an effective vaccine for HCV. The field of HCV vaccines is generally divided into proponents of strategies to induce neutralizing antibodies (NAb) and those who propose to elicit cell mediated immunity (CMI). However, for a hepatitis C virus (HCV) vaccine to be effective in preventing infection, it must be capable of generating cross-reactive CD4+, CD8+ T cell, and NAb responses that will cover the major viral genotypes. Simulation models of hepatitis C have predicted that a vaccine of even modest efficacy and coverage will significantly reduce the incidence of hepatitis C. A HCV virus like particle (VLP) based vaccine would fulfill the requirement of delivering critical conformational neutralizing epitopes in addition to providing HCV specific CD4+ and CD8+ epitopes. Several approaches have been reported including insect cell-derived genotype 1b HCV VLPs; a human liver-derived quadrivalent genotype 1a, 1b, 2, and 3a vaccine; a genotype 1a HCV E1 and E2 glycoprotein/MLV Gag pseudotype VLP vaccine; and chimeric HBs-HCV VLP vaccines. All to result in the production of cross-NAb and/or T cell responses against HCV. This paper summarizes the evidence supporting the development of a HCV VLP based vaccine.
Collapse
Affiliation(s)
- Joseph Torresi
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
25
|
Vietheer PT, Boo I, Gu J, McCaffrey K, Edwards S, Owczarek C, Hardy MP, Fabri L, Center RJ, Poumbourios P, Drummer HE. The core domain of hepatitis C virus glycoprotein E2 generates potent cross-neutralizing antibodies in guinea pigs. Hepatology 2017; 65:1117-1131. [PMID: 27997681 PMCID: PMC5408392 DOI: 10.1002/hep.28989] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 11/24/2016] [Accepted: 11/28/2016] [Indexed: 02/06/2023]
Abstract
UNLABELLED A vaccine that prevents hepatitis C virus (HCV) infection is urgently needed to support an emerging global elimination program. However, vaccine development has been confounded because of HCV's high degree of antigenic variability and the preferential induction of type-specific immune responses with limited potency against heterologous viral strains and genotypes. We showed previously that deletion of the three variable regions from the E2 receptor-binding domain (Δ123) increases the ability of human broadly neutralizing antibodies (bNAbs) to inhibit E2-CD81 receptor interactions, suggesting improved bNAb epitope exposure. In this study, the immunogenicity of Δ123 was examined. We show that high-molecular-weight forms of Δ123 elicit distinct antibody specificities with potent and broad neutralizing activity against all seven HCV genotypes. Antibody competition studies revealed that immune sera raised to high-molecular-weight Δ123 was poly specific, given that it inhibited the binding of human bNAbs directed to three major neutralization epitopes on E2. By contrast, the immune sera raised to monomeric Δ123 predominantly blocked the binding of a non-neutralizing antibody to Δ123, while having reduced ability to block bNAb binding to E2, and neutralization was largely toward the homologous genotype. This increased ability of oligomeric Δ123 to generate bNAbs correlates with occlusion of the non-neutralizing face of E2 in this glycoprotein form. CONCLUSION The results from this study reveal new information on the antigenic and immunogenic potential of E2-based immunogens and provide a pathway for the development of a simple, recombinant protein-based prophylactic vaccine for HCV with potential for universal protection. (Hepatology 2017;65:1117-1131).
Collapse
Affiliation(s)
- Patricia T. Vietheer
- Centre for Biomedical ResearchBurnet InstituteMelbourneAustralia
- Department of MicrobiologyMonash UniversityClaytonAustralia
| | - Irene Boo
- Centre for Biomedical ResearchBurnet InstituteMelbourneAustralia
| | - Jun Gu
- Centre for Biomedical ResearchBurnet InstituteMelbourneAustralia
- Department of MicrobiologyMonash UniversityClaytonAustralia
| | - Kathleen McCaffrey
- Centre for Biomedical ResearchBurnet InstituteMelbourneAustralia
- Department of Microbiology and Immunology at The Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneParkvilleAustralia
| | | | | | | | | | - Rob J. Center
- Centre for Biomedical ResearchBurnet InstituteMelbourneAustralia
- Department of Microbiology and Immunology at The Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneParkvilleAustralia
| | - Pantelis Poumbourios
- Centre for Biomedical ResearchBurnet InstituteMelbourneAustralia
- Department of MicrobiologyMonash UniversityClaytonAustralia
| | - Heidi E. Drummer
- Centre for Biomedical ResearchBurnet InstituteMelbourneAustralia
- Department of Microbiology and Immunology at The Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneParkvilleAustralia
- Department of MicrobiologyMonash UniversityClaytonAustralia
| |
Collapse
|
26
|
Computational Prediction of the Heterodimeric and Higher-Order Structure of gpE1/gpE2 Envelope Glycoproteins Encoded by Hepatitis C Virus. J Virol 2017; 91:JVI.02309-16. [PMID: 28148799 DOI: 10.1128/jvi.02309-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/25/2017] [Indexed: 12/24/2022] Open
Abstract
Despite the recent success of newly developed direct-acting antivirals against hepatitis C, the disease continues to be a global health threat due to the lack of diagnosis of most carriers and the high cost of treatment. The heterodimer formed by glycoproteins E1 and E2 within the hepatitis C virus (HCV) lipid envelope is a potential vaccine candidate and antiviral target. While the structure of E1/E2 has not yet been resolved, partial crystal structures of the E1 and E2 ectodomains have been determined. The unresolved parts of the structure are within the realm of what can be modeled with current computational modeling tools. Furthermore, a variety of additional experimental data is available to support computational predictions of E1/E2 structure, such as data from antibody binding studies, cryo-electron microscopy (cryo-EM), mutational analyses, peptide binding analysis, linker-scanning mutagenesis, and nuclear magnetic resonance (NMR) studies. In accordance with these rich experimental data, we have built an in silico model of the full-length E1/E2 heterodimer. Our model supports that E1/E2 assembles into a trimer, which was previously suggested from a study by Falson and coworkers (P. Falson, B. Bartosch, K. Alsaleh, B. A. Tews, A. Loquet, Y. Ciczora, L. Riva, C. Montigny, C. Montpellier, G. Duverlie, E. I. Pecheur, M. le Maire, F. L. Cosset, J. Dubuisson, and F. Penin, J. Virol. 89:10333-10346, 2015, https://doi.org/10.1128/JVI.00991-15). Size exclusion chromatography and Western blotting data obtained by using purified recombinant E1/E2 support our hypothesis. Our model suggests that during virus assembly, the trimer of E1/E2 may be further assembled into a pentamer, with 12 pentamers comprising a single HCV virion. We anticipate that this new model will provide a useful framework for HCV envelope structure and the development of antiviral strategies.IMPORTANCE One hundred fifty million people have been estimated to be infected with hepatitis C virus, and many more are at risk for infection. A better understanding of the structure of the HCV envelope, which is responsible for attachment and fusion, could aid in the development of a vaccine and/or new treatments for this disease. We draw upon computational techniques to predict a full-length model of the E1/E2 heterodimer based on the partial crystal structures of the envelope glycoproteins E1 and E2. E1/E2 has been widely studied experimentally, and this provides valuable data, which has assisted us in our modeling. Our proposed structure is used to suggest the organization of the HCV envelope. We also present new experimental data from size exclusion chromatography that support our computational prediction of a trimeric oligomeric state of E1/E2.
Collapse
|
27
|
An Optimized Hepatitis C Virus E2 Glycoprotein Core Adopts a Functional Homodimer That Efficiently Blocks Virus Entry. J Virol 2017; 91:JVI.01668-16. [PMID: 28031364 DOI: 10.1128/jvi.01668-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Indexed: 12/25/2022] Open
Abstract
The hepatitis C virus (HCV) envelope glycoprotein E2 is the major target of broadly neutralizing antibodies in vivo and is the focus of efforts in the rational design of a universal B cell vaccine against HCV. The E2 glycoprotein exhibits a high degree of amino acid variability which localizes to three discrete regions: hypervariable region 1 (HVR1), hypervariable region 2 (HVR2), and the intergenotypic variable region (igVR). All three variable regions contribute to immune evasion and/or isolate-specific structural variations, both important considerations for vaccine design. A high-resolution structural definition of the intact HCV envelope glycoprotein complex containing E1 and E2 remains to be elucidated, while crystallographic structures of a recombinant E2 ectodomain failed to resolve HVR1, HVR2, and a major neutralization determinant adjacent to HVR1. To obtain further information on E2, we characterized the role of all three variable regions in E2 ectodomain folding and function in the context of a recombinant ectodomain fragment (rE2). We report that removal of the variable regions accelerates binding to the major host cell receptor CD81 and that simultaneous deletion of HVR2 and the igVR is required to maintain wild-type CD81-binding characteristics. The removal of the variable regions also rescued the ability of rE2 to form a functional homodimer. We propose that the rE2 core provides novel insights into the role of the variable motifs in the higher-order assembly of the E2 ectodomain and may have implications for E1E2 structure on the virion surface. IMPORTANCE Hepatitis C virus (HCV) infection affects ∼2% of the population globally, and no vaccine is available. HCV is a highly variable virus, and understanding the presentation of key antigenic sites at the virion surface is important for the design of a universal vaccine. This study investigates the role of three surface-exposed variable regions in E2 glycoprotein folding and function in the context of a recombinant soluble ectodomain. Our data demonstrate the variable motifs modulate binding of the E2 ectodomain to the major host cell receptor CD81 and have an impact on the formation of an E2 homodimer with high-affinity binding to CD81.
Collapse
|
28
|
Freedman H, Logan MR, Law JLM, Houghton M. Structure and Function of the Hepatitis C Virus Envelope Glycoproteins E1 and E2: Antiviral and Vaccine Targets. ACS Infect Dis 2016; 2:749-762. [PMID: 27933781 DOI: 10.1021/acsinfecdis.6b00110] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The hepatitis C virus (HCV) envelope glycoproteins E1 and E2 are critical in viral attachment and cell fusion, and studies of these proteins may provide valuable insights into their potential uses in vaccines and antiviral strategies. Progress has included elucidating the crystal structures of portions of their ectodomains, as well as many other studies of hypervariable regions, stem regions, glycosylation sites, and the participation of E1/E2 in viral fusion with the endosomal membrane. The available structural data have shed light on the binding sites of cross-neutralizing antibodies. A large amount of information has been discovered concerning heterodimerization, including the roles of transmembrane domains, disulfide bonding, and heptad repeat regions. The possible organization of higher order oligomers within the HCV virion has also been evaluated on the basis of experimental data. In this review, E1/E2 structure and function is discussed, and some important issues requiring further study are highlighted.
Collapse
Affiliation(s)
- Holly Freedman
- Li Ka Shing Institute of Virology, Department of Medical Microbiology
and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Michael R. Logan
- Li Ka Shing Institute of Virology, Department of Medical Microbiology
and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - John Lok Man Law
- Li Ka Shing Institute of Virology, Department of Medical Microbiology
and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Michael Houghton
- Li Ka Shing Institute of Virology, Department of Medical Microbiology
and Immunology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
29
|
Global mapping of antibody recognition of the hepatitis C virus E2 glycoprotein: Implications for vaccine design. Proc Natl Acad Sci U S A 2016; 113:E6946-E6954. [PMID: 27791171 DOI: 10.1073/pnas.1614942113] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The E2 envelope glycoprotein is the primary target of human neutralizing antibody response against hepatitis C virus (HCV), and is thus a major focus of vaccine and immunotherapeutics efforts. There is emerging evidence that E2 is a highly complex, dynamic protein with residues across the protein that are modulating antibody recognition, local and global E2 stability, and viral escape. To comprehensively map these determinants, we performed global E2 alanine scanning with a panel of 16 human monoclonal antibodies (hmAbs), resulting in an unprecedented dataset of the effects of individual alanine substitutions across the E2 protein (355 positions) on antibody recognition. Analysis of shared energetic effects across the antibody panel identified networks of E2 residues involved in antibody recognition and local and global E2 stability, as well as predicted contacts between residues across the entire E2 protein. Further analysis of antibody binding hotspot residues defined groups of residues essential for E2 conformation and recognition for all 14 conformationally dependent E2 antibodies and subsets thereof, as well as residues that enhance antibody recognition when mutated to alanine, providing a potential route to engineer E2 vaccine immunogens. By incorporating E2 sequence variability, we found a number of E2 polymorphic sites that are responsible for loss of neutralizing antibody binding. These data and analyses provide fundamental insights into antibody recognition of E2, highlighting the dynamic and complex nature of this viral envelope glycoprotein, and can serve as a reference for development and rational design of E2-targeting vaccines and immunotherapeutics.
Collapse
|
30
|
Merat SJ, Molenkamp R, Wagner K, Koekkoek SM, van de Berg D, Yasuda E, Böhne M, Claassen YB, Grady BP, Prins M, Bakker AQ, de Jong MD, Spits H, Schinkel J, Beaumont T. Hepatitis C virus Broadly Neutralizing Monoclonal Antibodies Isolated 25 Years after Spontaneous Clearance. PLoS One 2016; 11:e0165047. [PMID: 27776169 PMCID: PMC5077102 DOI: 10.1371/journal.pone.0165047] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/24/2016] [Indexed: 01/18/2023] Open
Abstract
Hepatitis C virus (HCV) is world-wide a major cause of liver related morbidity and mortality. No vaccine is available to prevent HCV infection. To design an effective vaccine, understanding immunity against HCV is necessary. The memory B cell repertoire was characterized from an intravenous drug user who spontaneously cleared HCV infection 25 years ago. CD27+IgG+ memory B cells were immortalized using BCL6 and Bcl-xL. These immortalized B cells were used to study antibody-mediated immunity against the HCV E1E2 glycoproteins. Five E1E2 broadly reactive antibodies were isolated: 3 antibodies showed potent neutralization of genotype 1 to 4 using HCV pseudotyped particles, whereas the other 2 antibodies neutralized genotype 1, 2 and 3 or 1 and 2 only. All antibodies recognized non-linear epitopes on E2. Finally, except for antibody AT12-011, which recognized an epitope consisting of antigenic domain C /AR2 and AR5, all other four antibodies recognized epitope II and domain B. These data show that a subject, who spontaneously cleared HCV infection 25 years ago, still has circulating memory B cells that are able to secrete broadly neutralizing antibodies. Presence of such memory B cells strengthens the argument for undertaking the development of an HCV vaccine.
Collapse
Affiliation(s)
| | - Richard Molenkamp
- Department of Medical Microbiology, Section of Clinical Virology, Academic Medical Center, Amsterdam, the Netherlands
| | - Koen Wagner
- AIMM Therapeutics, Amsterdam, the Netherlands
| | - Sylvie M. Koekkoek
- Department of Medical Microbiology, Section of Clinical Virology, Academic Medical Center, Amsterdam, the Netherlands
| | | | | | | | | | - Bart P. Grady
- Department of Infectious Diseases Research and Prevention, Cluster of Infectious Diseases, Public Health Service of Amsterdam, Amsterdam, the Netherlands
| | - Maria Prins
- Department of Infectious Diseases Research and Prevention, Cluster of Infectious Diseases, Public Health Service of Amsterdam, Amsterdam, the Netherlands
- Department of infectious diseases, Academic Medical Center, Amsterdam, the Netherlands
| | | | - Menno D. de Jong
- Department of Medical Microbiology, Section of Clinical Virology, Academic Medical Center, Amsterdam, the Netherlands
| | | | - Janke Schinkel
- Department of Medical Microbiology, Section of Clinical Virology, Academic Medical Center, Amsterdam, the Netherlands
| | - Tim Beaumont
- AIMM Therapeutics, Amsterdam, the Netherlands
- * E-mail:
| |
Collapse
|
31
|
Viral evasion and challenges of hepatitis C virus vaccine development. Curr Opin Virol 2016; 20:55-63. [PMID: 27657659 DOI: 10.1016/j.coviro.2016.09.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/24/2016] [Accepted: 09/06/2016] [Indexed: 12/12/2022]
Abstract
Hepatitis C virus (HCV) is a major global disease burden, often leading to chronic liver diseases, cirrhosis, cancer, and death in those infected. Despite the recent approval of antiviral therapeutics, a preventative vaccine is recognized as the most effective means to control HCV globally, particularly in at-risk and developing country populations. Here we describe the efforts and challenges related to the development of an HCV vaccine, which after decades of research have not been successful. Viral sequence variability poses a major challenge, yet recent research has provided unprecedented views of the atomic structure of HCV epitopes and immune recognition by antibodies and T cell receptors. This, coupled with insights from deep sequencing, robust neutralization assays, and other technological advances, is spurring research toward rationally HCV designed vaccines that preferentially elicit responses toward conserved epitopes of interest that are associated with viral neutralization and clearance.
Collapse
|
32
|
Earnest-Silveira L, Chua B, Chin R, Christiansen D, Johnson D, Herrmann S, Ralph SA, Vercauteren K, Mesalam A, Meuleman P, Das S, Boo I, Drummer H, Bock CT, Gowans EJ, Jackson DC, Torresi J. Characterization of a hepatitis C virus-like particle vaccine produced in a human hepatocyte-derived cell line. J Gen Virol 2016; 97:1865-1876. [PMID: 27147296 DOI: 10.1099/jgv.0.000493] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
An effective immune response against hepatitis C virus (HCV) requires the early development of multi-specific class 1 CD8+ and class II CD4+ T-cells together with broad neutralizing antibody responses. We have produced mammalian-cell-derived HCV virus-like particles (VLPs) incorporating core, E1 and E2 of HCV genotype 1a to produce such immune responses. Here we describe the biochemical and morphological characterization of the HCV VLPs and study HCV core-specific T-cell responses to the particles. The E1 and E2 glycoproteins in HCV VLPs formed non-covalent heterodimers and together with core protein assembled into VLPs with a buoyant density of 1.22 to 1.28 g cm-3. The HCV VLPs could be immunoprecipited with anti-ApoE and anti-ApoC. On electron microscopy, the VLPs had a heterogeneous morphology and ranged in size from 40 to 80 nm. The HCV VLPs demonstrated dose-dependent binding to murine-derived dendritic cells and the entry of HCV VLPs into Huh7 cells was blocked by anti-CD81 antibody. Vaccination of BALB/c mice with HCV VLPs purified from iodixanol gradients resulted in the production of neutralizing antibody responses while vaccination of humanized MHC class I transgenic mice resulted in the prodution of HCV core-specific CD8+ T-cell responses. Furthermore, IgG purified from the sera of patients chronically infected with HCV genotypes 1a and 3a blocked the binding and entry of the HCV VLPs into Huh7 cells. These results show that our mammalian-cell-derived HCV VLPs induce humoral and HCV-specific CD8+ T-cell responses and will have important implications for the development of a preventative vaccine for HCV.
Collapse
Affiliation(s)
- L Earnest-Silveira
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia
| | - B Chua
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia
| | - R Chin
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia
| | - D Christiansen
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia
- Department of Surgery, Austin Hospital, University of Melbourne, Australia
| | - D Johnson
- Department of Infectious Diseases, Austin Hospital, Heidelberg, Victoria 3084, Australia
| | - S Herrmann
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Australia
| | - S A Ralph
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Australia
| | - K Vercauteren
- Center for Vaccinology, Ghent University and Hospital, De Pintelaan 185 9000, Ghent, Belgium
| | - A Mesalam
- Center for Vaccinology, Ghent University and Hospital, De Pintelaan 185 9000, Ghent, Belgium
| | - P Meuleman
- Center for Vaccinology, Ghent University and Hospital, De Pintelaan 185 9000, Ghent, Belgium
| | - S Das
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - I Boo
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia
| | - H Drummer
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia
- Department of Microbiology, Monash University, Clayton, Australia
| | - C-T Bock
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - E J Gowans
- The Basil Hetzel Institute and Queen Elizabeth Hospital, University of Adelaide, Australia
| | - D C Jackson
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Joseph Torresi
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
33
|
Role of Conserved E2 Residue W420 in Receptor Binding and Hepatitis C Virus Infection. J Virol 2016; 90:7456-7468. [PMID: 27279607 DOI: 10.1128/jvi.00685-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/28/2016] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Hepatitis C virus (HCV) enters cells via interactions with several host factors, a key one being that between the viral E2 envelope glycoprotein and the CD81 receptor. We previously identified E2 tryptophan residue 420 (W420) as an essential CD81-binding residue. However, the importance of W420 in the context of the native virion is unknown, as those previous studies predate the infectious HCV cell culture (cell culture-derived HCV [HCVcc]) system. Here, we introduced four separate mutations (F, Y, A, or R) at position 420 within the infectious HCVcc JFH-1 genome and characterized their effects on the viral life cycle. While all mutations reduced E2-CD81 binding, only two (W420A and W420R) reduced HCVcc infectivity. Further analyses of mutants with hydrophobic residues (F or Y) found that interactions with the receptors SR-BI and CD81 were modulated, which in turn determined the viral uptake route. Both mutant viruses were significantly less dependent on SR-BI, and its lipid transfer activity, for virus entry. Furthermore, these viruses were resistant to the drug erlotinib, which targets epidermal growth factor receptor (EGFR) (a host cofactor for HCV entry) and also blocks SR-BI-dependent high-density lipoprotein (HDL)-mediated enhancement of virus entry. Together, our data indicate a model where an alteration at position 420 causes a subtle change in the E2 conformation that prevents interaction with SR-BI and increases accessibility to the CD81-binding site, in turn favoring a particular internalization route. These results further show that a hydrophobic residue with a strong preference for tryptophan at position 420 is important, both functionally and structurally, to provide an additional hydrophobic anchor to stabilize the E2-CD81 interaction. IMPORTANCE Hepatitis C virus (HCV) is a leading cause of liver disease, causing up to 500,000 deaths annually. The first step in the viral life cycle is the entry process. This study investigates the role of a highly conserved residue, tryptophan residue 420, of the viral glycoprotein E2 in this process. We analyzed the effect of changing this residue in the virus and confirmed that this region is important for binding to the CD81 receptor. Furthermore, alteration of this residue modulated interactions with the SR-BI receptor, and changes to these key interactions were found to affect the virus internalization route involving the host cofactor EGFR. Our results also show that the nature of the amino acid at this position is important functionally and structurally to provide an anchor point to stabilize the E2-CD81 interaction.
Collapse
|
34
|
Large scale production of a mammalian cell derived quadrivalent hepatitis C virus like particle vaccine. J Virol Methods 2016; 236:87-92. [PMID: 27373602 DOI: 10.1016/j.jviromet.2016.06.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/24/2016] [Accepted: 06/27/2016] [Indexed: 12/14/2022]
Abstract
A method for the large-scale production of a quadrivalent mammalian cell derived hepatitis C virus-like particles (HCV VLPs) is described. The HCV core E1 and E2 coding sequences of genotype 1a, 1b, 2a or 3a were co-expressed in Huh7 cell factories using a recombinant adenoviral expression system. The structural proteins self-assembled into VLPs that were purified from Huh7 cell lysates by iodixanol ultracentrifugation and Stirred cell ultrafiltration. Electron microscopy, revealed VLPs of the different genotypes that are morphologically similar. Our results show that it is possible to produce large quantities of individual HCV genotype VLPs with relative ease thus making this approach an alternative for the manufacture of a quadrivalent mammalian cell derived HCV VLP vaccine.
Collapse
|
35
|
Fauvelle C, Colpitts CC, Keck ZY, Pierce BG, Foung SKH, Baumert TF. Hepatitis C virus vaccine candidates inducing protective neutralizing antibodies. Expert Rev Vaccines 2016; 15:1535-1544. [PMID: 27267297 DOI: 10.1080/14760584.2016.1194759] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION With more than 150 million chronically infected people, hepatitis C virus (HCV) remains a substantial global health burden. Direct-acting antivirals have dramatically improved viral cure. However, limited access to therapy, late stage detection of infection and re-infection following cure illustrate the need for a vaccine for global control of infection. Vaccines with induction of neutralizing antibodies (nAbs) have been shown to protect successfully against infections by multiple viruses and are currently developed for HCV. Areas covered: Here we review the progress towards the development of vaccines aiming to confer protection against chronic HCV infection by inducing broadly nAbs. The understanding or viral immune evasion in infected patients, the development of novel model systems and the recent structural characterization of viral envelope glycoprotein E2 has markedly advanced our understanding of the molecular mechanisms of virus neutralization with the concomitant development of several vaccine candidates. Expert commentary: While HCV vaccine development remains challenged by the high viral diversity and immune evasion, marked progress in HCV research has advanced vaccine design. Several vaccine candidates have shown robust induction of nAbs in animal models and humans. Randomized clinical trials are the next step to assess their clinical efficacy for protection against chronic infection.
Collapse
Affiliation(s)
- Catherine Fauvelle
- a Inserm, U1110 , Institut de Recherche sur les Maladies Virales et Hépatiques , Strasbourg , France.,b Université de Strasbourg , Strasbourg , France
| | - Che C Colpitts
- a Inserm, U1110 , Institut de Recherche sur les Maladies Virales et Hépatiques , Strasbourg , France.,b Université de Strasbourg , Strasbourg , France
| | - Zhen-Yong Keck
- c Department of Pathology , Stanford University School of Medicine , Stanford , CA , USA
| | - Brian G Pierce
- d Institute for Bioscience and Biotechnology Research , University of Maryland , Rockville , MD , USA
| | - Steven K H Foung
- c Department of Pathology , Stanford University School of Medicine , Stanford , CA , USA
| | - Thomas F Baumert
- a Inserm, U1110 , Institut de Recherche sur les Maladies Virales et Hépatiques , Strasbourg , France.,b Université de Strasbourg , Strasbourg , France.,e Institut Hospitalo-Universitaire, Pôle Hépato-digestif , Hôpitaux Universitaires de Strasbourg , Strasbourg , France
| |
Collapse
|
36
|
Broad Anti-Hepatitis C Virus (HCV) Antibody Responses Are Associated with Improved Clinical Disease Parameters in Chronic HCV Infection. J Virol 2016; 90:4530-4543. [PMID: 26912610 PMCID: PMC4836347 DOI: 10.1128/jvi.02669-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/15/2016] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED During hepatitis C virus (HCV) infection, broadly neutralizing antibody (bNAb) responses targeting E1E2 envelope glycoproteins are generated in many individuals. It is unclear if these antibodies play a protective or a pathogenic role during chronic infection. In this study, we investigated whether bNAb responses in individuals with chronic infection were associated with differences in clinical presentation. Patient-derived purified serum IgG was used to assess the breadth of HCV E1E2 binding and the neutralization activity of HCV pseudoparticles. The binding and neutralization activity results for two panels bearing viral envelope proteins representing either an intergenotype or an intragenotype 1 group were compared. We found that the HCV load was negatively associated with strong cross-genotypic E1E2 binding (P= 0.03). Overall, we observed only a modest correlation between total E1E2 binding and neutralization ability. The breadth of intergenotype neutralization did not correlate with any clinical parameters; however, analysis of individuals with genotype 1 (gt1) HCV infection (n= 20), using an intragenotype pseudoparticle panel, found a strong association between neutralization breadth and reduced liver fibrosis (P= 0.006). A broad bNAb response in our cohort with chronic infection was associated with a single nucleotide polymorphism (SNP) in theHLA-DQB1 gene (P= 0.038), as previously reported in a cohort with acute disease. Furthermore, the bNAbs in these individuals targeted more than one region of E2-neutralizing epitopes, as assessed through cross-competition of patient bNAbs with well-characterized E2 antibodies. We conclude that the bNAb responses in patients with chronic gt1 infection are associated with lower rates of fibrosis and host genetics may play a role in the ability to raise such responses. IMPORTANCE Globally, there are 130 million to 150 million people with chronic HCV infection. Typically, the disease is progressive and is a major cause of severe liver cirrhosis and hepatocellular carcinoma. While it is known that neutralizing antibodies have a role in spontaneous clearance during acute infection, little is known about their role in chronic infection. In the present work, we investigated the antibody response in a cohort of chronically infected individuals and found that a broadly neutralizing antibody response is protective and is associated with reduced levels of liver fibrosis and cirrhosis. We also found an association between SNPs in class II HLA genes and the presence of a broadly neutralizing response, indicating that antigen presentation may be important for the production of HCV-neutralizing antibodies.
Collapse
|
37
|
Antibody Response to Hypervariable Region 1 Interferes with Broadly Neutralizing Antibodies to Hepatitis C Virus. J Virol 2016; 90:3112-22. [PMID: 26739044 DOI: 10.1128/jvi.02458-15] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/30/2015] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Hypervariable region 1 (HVR1) (amino acids [aa] 384 to 410) on the E2 glycoprotein of hepatitis C virus contributes to persistent infection by evolving escape mutations that attenuate binding of inhibitory antibodies and by blocking access of broadly neutralizing antibodies to their epitopes. A third proposed mechanism of immune antagonism is that poorly neutralizing antibodies binding to HVR1 interfere with binding of other superior neutralizing antibodies. Epitope mapping of human monoclonal antibodies (HMAbs) that bind to an adjacent, conserved domain on E2 encompassing aa 412 to 423 revealed two subsets, designated HC33 HMAbs. While both subsets have contact residues within aa 412 to 423, alanine-scanning mutagenesis suggested that one subset, which includes HC33.8, has an additional contact residue within HVR1. To test for interference of anti-HVR1 antibodies with binding of antibodies to aa 412 to 423 and other E2 determinants recognized by broadly neutralizing HMAbs, two murine MAbs against HVR1 (H77.16) and aa 412 to 423 (H77.39) were studied. As expected, H77.39 inhibited the binding of all HC33 HMAbs. Unexpectedly, H77.16 also inhibited the binding of both subsets of HC33 HMAbs. This inhibition also was observed against other broadly neutralizing HMAbs to epitopes outside aa 412 to 423. Combination antibody neutralization studies by the median-effect analysis method with H77.16 and broadly reactive HMAbs revealed antagonism between these antibodies. Structural studies demonstrated conformational flexibility in this antigenic region, which supports the possibility of anti-HVR1 antibodies hindering the binding of broadly neutralizing MAbs. These findings support the hypothesis that anti-HVR1 antibodies can interfere with a protective humoral response against HCV infection. IMPORTANCE HVR1 contributes to persistent infection by evolving mutations that escape from neutralizing antibodies to HVR1 and by shielding broadly neutralizing antibodies from their epitopes. This study provides insight into a new immune antagonism mechanism by which the binding of antibodies to HVR1 blocks the binding and activity of broadly neutralizing antibodies to HCV. Immunization strategies that avoid the induction of HVR1 antibodies should increase the inhibitory activity of broadly neutralizing anti-HCV antibodies elicited by candidate vaccines.
Collapse
|
38
|
A Diverse Panel of Hepatitis C Virus Glycoproteins for Use in Vaccine Research Reveals Extremes of Monoclonal Antibody Neutralization Resistance. J Virol 2015; 90:3288-301. [PMID: 26699643 PMCID: PMC4794667 DOI: 10.1128/jvi.02700-15] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 12/11/2015] [Indexed: 02/07/2023] Open
Abstract
Despite significant advances in the treatment of hepatitis C virus (HCV) infection, the need to develop preventative vaccines remains. Identification of the best vaccine candidates and evaluation of their performance in preclinical and clinical development will require appropriate neutralization assays utilizing diverse HCV isolates. We aimed to generate and characterize a panel of HCV E1E2 glycoproteins suitable for subsequent use in vaccine and therapeutic antibody testing. Full-length E1E2 clones were PCR amplified from patient-derived serum samples, cloned into an expression vector, and used to generate viral pseudoparticles (HCVpp). In addition, some of these clones were used to generate cell culture infectious (HCVcc) clones. The infectivity and neutralization sensitivity of these viruses were then determined. Bioinformatic and HCVpp infectivity screening of approximately 900 E1E2 clones resulted in the assembly of a panel of 78 functional E1E2 proteins representing distinct HCV genotypes and different stages of infection. These HCV glycoproteins differed markedly in their sensitivity to neutralizing antibodies. We used this panel to predict antibody efficacy against circulating HCV strains, highlighting the likely reason why some monoclonal antibodies failed in previous clinical trials. This study provides the first objective categorization of cross-genotype patient-derived HCV E1E2 clones according to their sensitivity to antibody neutralization. It has shown that HCV isolates have clearly distinguishable neutralization-sensitive, -resistant, or -intermediate phenotypes, which are independent of genotype. The panel provides a systematic means for characterization of the neutralizing response elicited by candidate vaccines and for defining the therapeutic potential of monoclonal antibodies. IMPORTANCE Hepatitis C virus (HCV) has a global burden of more than 170 million people, many of whom cannot attain the new, expensive, direct-acting antiviral therapies. A safe and effective vaccine that generates both T cell responses and neutralizing antibodies is required to eradicate the disease. Regions within the HCV surface glycoproteins E1 and E2 are essential for virus entry and are targets for neutralizing antibodies. Screening of vaccine candidates requires suitable panels of glycoproteins that represent the breadth of neutralization resistance. Use of a standard reference panel for vaccine studies will ensure comparability of data sets, as has become routine for HIV-1. Here, we describe a large panel of patient-derived HCV glycoproteins with an assessment of their neutralization sensitivity to defined monoclonal antibodies, which has enabled us to predict their likely efficacy in the wider HCV-infected population. The panel could also be important for future selection of additional therapeutic antibodies and for vaccine design.
Collapse
|
39
|
Kolesanova EF, Sobolev BN, Moysa AA, Egorova EA, Archakov AI. [Way to the peptide vaccine against hepatitis C]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2015; 61:254-64. [PMID: 25978391 DOI: 10.18097/pbmc20156102254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In order to surpass the problem of genetic variability of hepatitis C virus envelope proteins during vaccine development, we used the so-called "reverse vaccinology"approach--"from genome to vaccine". Database of HCV protein sequences was designed, viral genome analysis was performed, and several highly conserved sites were revealed in HCV envelope proteins in the framework of this approach. These sites demonstrated low antigenic activity in full-size proteins and HCV virions: antibodies against these sites were not found in all hepatitis C patients. However, two sites, which contained a wide set of potential T-helper epitope motifs, were revealed among these highly conserved ones. We constructed and prepared by solid-phase peptide synthesis several artificial peptide constructs composed of two linker-connected highly conserved HCV envelope E2 protein sites; one of these sites contained a set of T-helper epitope motifs. Experiments on laboratory animals demonstrated that the developed peptide constructs manifested immunogenicity compared with one of protein molecules and were able to raise antibodies, which specifically bound HCV envelope proteins. We succeeded in obtaining antibodies reactive with HCV from hepatitis C patient plasma upon the immunization with some constructs. An original preparation of a peptide vaccine against hepatitis C is under development on the basis of these peptide constructs.
Collapse
Affiliation(s)
| | - B N Sobolev
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A A Moysa
- Institute of Biomedical Chemistry, Moscow, Russia
| | - E A Egorova
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A I Archakov
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
40
|
Sun W, Li Q, Zhu D, Feng J, Zhuang Z, Sun X, Xiao G, Duan Y. Enhancement of immune response to a hepatitis C virus E2 DNA vaccine by an immunoglobulin Fc fusion tag. J Med Virol 2015; 87:2090-7. [PMID: 26010499 DOI: 10.1002/jmv.24277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2015] [Indexed: 11/11/2022]
Abstract
Neutralizing antibodies and cellular immune response both play essential roles in the clearance of Hepatitis C virus (HCV) infection. The envelope glycoprotein E2 is a major target for producing neutralizing antibodies against HCV. Here, we constructed a recombinant plasmid, termed pcDNA3.1-E2-Fc, to express HCV E2 with an immunoglobulin Fc fusion tag (E2-Fc). Importantly, we found that the titers of E2-specific IgG from mice immunized with pcDNA3.1-E2-Fc were significantly higher than that from mice immunized with pcDNA3.1-E2. Moreover, pcDNA3.1-E2-Fc immunization could boost E2-specific lymphocyte proliferation and enhance the secretion of IFN-γ by lymphocytes upon in vitro stimulation with soluble E2 compared to pcDNA3.1-E2 immunization. Neutralization assays showed that serum from pcDNA3.1-E2-Fc immunized mice exhibited more effective neutralizing capacity of HCVpp entry into Huh-7 cells compared with that from pcDNA3.1-E2 immunized mice, although both of the sera could inhibit the virus entry. Taken together, our results imply that pcDNA3.1-E2-Fc immunization could enhance E2-specific humoral and cellular immune response in mice and thus provide a promising candidate for the development of an HCV vaccine.
Collapse
Affiliation(s)
- Wei Sun
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Qun Li
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Dandan Zhu
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Jinrong Feng
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Zhong Zhuang
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Xiaolei Sun
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Gengfu Xiao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Yinong Duan
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu, People's Republic of China
| |
Collapse
|
41
|
Low cross-neutralization of hepatitis C correlates with liver disease in immunocompromized patients. AIDS 2015; 29:1025-33. [PMID: 26125137 DOI: 10.1097/qad.0000000000000651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND AND AIMS Chronic hepatitis C virus (HCV) infection causes severe liver disease in HIV-infected patients and liver transplant recipients. The impact of serum and immunoglobulin on viral entry was analysed in these patients. METHOD Sera from 60 anti-HCV positive patients, including 30 who were also anti-HIV positive, were tested with HCVpp from different genotypes (1a, 1b, 3 and 4) and with HCVcc (H77/JFH1). Seventeen HIV-seropositive and 13 HIV-seronegative patients with decompensated liver disease were studied before and after liver transplant. RESULTS Serum neutralization was markedly lower after liver transplant and in HIV patients than in mono-infected immune-competent individuals. This effect was due to low antibody-mediated neutralization. In HIV patients, low neutralization was correlated with low lymphocyte T CD4 cell counts and the severity of liver disease. To characterize neutralization, we tested HCVpp lacking hypervariable region (HVR1) and SR-BI receptor cholesterol transfer inhibition by BLT-4. These experiments showed that neutralization was strongly dependent on the HVR1 and the SR-BI receptor. HVR1 sequences showed that selective pressures were low in immune-compromised patients and highly correlated to HCV neutralization after liver transplant. Neutralization experiments were reproduced with HCV strain JFH1. CONCLUSION Serum neutralization in HIV-coinfected patients and HCV-infected liver transplant recipients is poor enhancing HCV entry through HVR1/SR-BI interplay. This may contribute to the severity of hepatitis C in these settings.
Collapse
|
42
|
Kong L, Jackson KN, Wilson IA, Law M. Capitalizing on knowledge of hepatitis C virus neutralizing epitopes for rational vaccine design. Curr Opin Virol 2015; 11:148-57. [PMID: 25932568 PMCID: PMC4507806 DOI: 10.1016/j.coviro.2015.04.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/08/2015] [Indexed: 12/13/2022]
Abstract
Hepatitis C virus infects nearly 3% of the world's population and is often referred as a silent epidemic. It is a leading cause of liver cirrhosis and hepatocellular carcinoma in endemic countries. Although antiviral drugs are now available, they are not readily accessible to marginalized social groups and developing nations that are disproportionally impacted by HCV. To stop the HCV pandemic, a vaccine is needed. Recent advances in HCV research have provided new opportunities for studying HCV neutralizing antibodies and their subsequent use for rational vaccine design. It is now recognized that neutralizing antibodies to conserved antigenic sites of the virus can cross-neutralize diverse HCV genotypes and protect against infection in vivo. Structural characterization of the neutralizing epitopes has provided valuable information for design of candidate immunogens.
Collapse
Affiliation(s)
- Leopold Kong
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kelli N Jackson
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Mansun Law
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
43
|
Li Y, Pierce BG, Wang Q, Keck ZY, Fuerst TR, Foung SKH, Mariuzza RA. Structural basis for penetration of the glycan shield of hepatitis C virus E2 glycoprotein by a broadly neutralizing human antibody. J Biol Chem 2015; 290:10117-25. [PMID: 25737449 DOI: 10.1074/jbc.m115.643528] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Indexed: 12/13/2022] Open
Abstract
Hepatitis C virus (HCV) is a major cause of liver cirrhosis and hepatocellular carcinoma. A challenge for HCV vaccine development is to identify conserved epitopes able to elicit protective antibodies against this highly diverse virus. Glycan shielding is a mechanism by which HCV masks such epitopes on its E2 envelope glycoprotein. Antibodies to the E2 region comprising residues 412-423 (E2(412-423)) have broadly neutralizing activities. However, an adaptive mutation in this linear epitope, N417S, is associated with a glycosylation shift from Asn-417 to Asn-415 that enables HCV to escape neutralization by mAbs such as HCV1 and AP33. By contrast, the human mAb HC33.1 can neutralize virus bearing the N417S mutation. To understand how HC33.1 penetrates the glycan shield created by the glycosylation shift to Asn-415, we determined the structure of this broadly neutralizing mAb in complex with its E2(412-423) epitope to 2.0 Å resolution. The conformation of E2(412-423) bound to HC33.1 is distinct from the β-hairpin conformation of this peptide bound to HCV1 or AP33, because of disruption of the β-hairpin through interactions with the unusually long complementarity-determining region 3 of the HC33.1 heavy chain. Whereas Asn-415 is buried by HCV1 and AP33, it is solvent-exposed in the HC33.1-E2(412-423) complex, such that glycosylation of Asn-415 would not prevent antibody binding. Furthermore, our results highlight the structural flexibility of the E2(412-423) epitope, which may serve as an immune evasion strategy to impede induction of antibodies targeting this site by reducing its antigenicity.
Collapse
Affiliation(s)
- Yili Li
- From the University of Maryland Institute for Bioscience and Biotechnology Research, W. M. Keck Laboratory for Structural Biology, Rockville, Maryland 20850, the Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, and
| | - Brian G Pierce
- From the University of Maryland Institute for Bioscience and Biotechnology Research, W. M. Keck Laboratory for Structural Biology, Rockville, Maryland 20850
| | - Qian Wang
- From the University of Maryland Institute for Bioscience and Biotechnology Research, W. M. Keck Laboratory for Structural Biology, Rockville, Maryland 20850, the Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, and
| | - Zhen-Yong Keck
- the Department of Pathology, Stanford University School of Medicine, Stanford, California 94304
| | - Thomas R Fuerst
- From the University of Maryland Institute for Bioscience and Biotechnology Research, W. M. Keck Laboratory for Structural Biology, Rockville, Maryland 20850, the Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, and
| | - Steven K H Foung
- the Department of Pathology, Stanford University School of Medicine, Stanford, California 94304
| | - Roy A Mariuzza
- From the University of Maryland Institute for Bioscience and Biotechnology Research, W. M. Keck Laboratory for Structural Biology, Rockville, Maryland 20850, the Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, and
| |
Collapse
|
44
|
Carlsen TH, Pedersen J, Prentoe JC, Giang E, Keck ZY, Mikkelsen LS, Law M, Foung SKH, Bukh J. Breadth of neutralization and synergy of clinically relevant human monoclonal antibodies against HCV genotypes 1a, 1b, 2a, 2b, 2c, and 3a. Hepatology 2014; 60:1551-62. [PMID: 25043937 PMCID: PMC4415877 DOI: 10.1002/hep.27298] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 07/02/2014] [Indexed: 12/30/2022]
Abstract
UNLABELLED Human monoclonal antibodies (HMAbs) with neutralizing capabilities constitute potential immune-based treatments or prophylaxis against hepatitis C virus (HCV). However, lack of cell culture-derived HCV (HCVcc) harboring authentic envelope proteins (E1/E2) has hindered neutralization investigations across genotypes, subtypes, and isolates. We investigated the breadth of neutralization of 10 HMAbs with therapeutic potential against a panel of 16 JFH1-based HCVcc-expressing patient-derived Core-NS2 from genotypes 1a (strains H77, TN, and DH6), 1b (J4, DH1, and DH5), 2a (J6, JFH1, and T9), 2b (J8, DH8, and DH10), 2c (S83), and 3a (S52, DBN, and DH11). Virus stocks used for in vitro neutralization analysis contained authentic E1/E2, with the exception of full-length JFH1 that acquired the N417S substitution in E2. The 50% inhibition concentration (IC50) for each HMAb against the HCVcc panel was determined by dose-response neutralization assays in Huh7.5 cells with antibody concentrations ranging from 0.0012 to 100 μg/mL. Interestingly, IC50 values against the different HCVcc's exhibited large variations among the HMAbs, and only three HMAbs (HC-1AM, HC84.24, and AR4A) neutralized all 16 HCVcc recombinants. Furthermore, the IC50 values for a given HMAb varied greatly with the HCVcc strain, which supports the use of a diverse virus panel. In cooperation analyses, HMAbs HC84.24, AR3A, and, especially HC84.26, demonstrated synergistic effects towards the majority of the HCVcc's when combined individually with AR4A. CONCLUSION Through a neutralization analysis of 10 clinically relevant HMAbs against 16 JFH1-based Core-NS2 recombinants from genotypes 1a, 1b, 2a, 2b, 2c, and 3a, we identified at least three HMAbs with potent and broad neutralization potential. The neutralization synergism obtained when pooling the most potent HMAbs could have significant implications for developing novel strategies to treat and control HCV.
Collapse
Affiliation(s)
- Thomas H.R. Carlsen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Hvidovre Hospital and Department of International Health, Immunology, and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jannie Pedersen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Hvidovre Hospital and Department of International Health, Immunology, and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jannick C. Prentoe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Hvidovre Hospital and Department of International Health, Immunology, and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Erick Giang
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, USA
| | - Zhen-Yong Keck
- Department of Pathology, Stanford University School of Medicine, California, USA
| | - Lotte S. Mikkelsen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Hvidovre Hospital and Department of International Health, Immunology, and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Mansun Law
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, USA
| | - Steven K. H. Foung
- Department of Pathology, Stanford University School of Medicine, California, USA
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Hvidovre Hospital and Department of International Health, Immunology, and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
,Corresponding Author. Mailing address: Department of Infectious Diseases #144, Hvidovre Hospital, Kettegaard Allé 30, DK-2650 Hvidovre, Denmark. Phone: +4538626380. Fax: +4536474979.
| |
Collapse
|
45
|
Keck ZY, Angus AGN, Wang W, Lau P, Wang Y, Gatherer D, Patel AH, Foung SKH. Non-random escape pathways from a broadly neutralizing human monoclonal antibody map to a highly conserved region on the hepatitis C virus E2 glycoprotein encompassing amino acids 412-423. PLoS Pathog 2014; 10:e1004297. [PMID: 25122476 PMCID: PMC4133389 DOI: 10.1371/journal.ppat.1004297] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 06/23/2014] [Indexed: 12/15/2022] Open
Abstract
A challenge for hepatitis C virus (HCV) vaccine development is to define epitopes that are able to elicit protective antibodies against this highly diverse virus. The E2 glycoprotein region located at residues 412-423 is conserved and antibodies to 412-423 have broadly neutralizing activities. However, an adaptive mutation, N417S, is associated with a glycan shift in a variant that cannot be neutralized by a murine but by human monoclonal antibodies (HMAbs) against 412-423. To determine whether HCV escapes from these antibodies, we analyzed variants that emerged when cell culture infectious HCV virions (HCVcc) were passaged under increasing concentrations of a specific HMAb, HC33.1. Multiple nonrandom escape pathways were identified. Two pathways occurred in the context of an N-glycan shift mutation at N417T. At low antibody concentrations, substitutions of two residues outside of the epitope, N434D and K610R, led to variants having improved in vitro viral fitness and reduced sensitivity to HC33.1 binding and neutralization. At moderate concentrations, a S419N mutation occurred within 412-423 in escape variants that have greatly reduced sensitivity to HC33.1 but compromised viral fitness. Importantly, the variants generated from these pathways differed in their stability. N434D and K610R-associated variants were stable and became dominant as the virions were passaged. The S419N mutation reverted back to N419S when immune pressure was reduced by removing HC33.1. At high antibody concentrations, a mutation at L413I was observed in variants that were resistant to HC33.1 neutralization. Collectively, the combination of multiple escape pathways enabled the virus to persist under a wide range of antibody concentrations. Moreover, these findings pose a different challenge to vaccine development beyond the identification of highly conserved epitopes. It will be necessary for a vaccine to induce high potency antibodies that prevent the formation of escape variants, which can co-exist with lower potency or levels of neutralizing activities.
Collapse
Affiliation(s)
- Zhen-yong Keck
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Allan G. N. Angus
- MRC – University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Wenyan Wang
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Patrick Lau
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Yong Wang
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Derek Gatherer
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
| | - Arvind H. Patel
- MRC – University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
- * E-mail: (AHP); (SKHF)
| | - Steven K. H. Foung
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail: (AHP); (SKHF)
| |
Collapse
|
46
|
Drummer HE. Challenges to the development of vaccines to hepatitis C virus that elicit neutralizing antibodies. Front Microbiol 2014; 5:329. [PMID: 25071742 PMCID: PMC4080681 DOI: 10.3389/fmicb.2014.00329] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 06/16/2014] [Indexed: 12/24/2022] Open
Abstract
Despite 20 years of research, a vaccine to prevent hepatitis C virus (HCV) infection has not been developed. A vaccine to prevent HCV will need to induce broadly reactive immunity able to prevent infection by the 7 genetically and antigenically distinct genotypes circulating world-wide. HCV encodes two surface exposed glycoproteins, E1 and E2 that function as a heterodimer to mediate viral entry. Neutralizing antibodies (NAbs) to both E1 and E2 have been described with the major NAb target being E2. The function of E2 is to attach virions to host cells via cell surface receptors that include, but is not limited to, the tetraspanin CD81 and scavenger receptor class B type 1. However, E2 has developed a number of immune evasion strategies to limit the effectiveness of the NAb response and possibly limit the ability of the immune system to generate potent NAbs in natural infection. Hypervariable regions that shield the underlying core domain, subdominant neutralization epitopes and glycan shielding combine to make E2 a difficult target for the immune system. This review summarizes recent information on the role of NAbs to prevent HCV infection, the targets of the NAb response and structural information on glycoprotein E2 in complex with neutralizing antibodies. This new information should provide a framework for the rational design of new vaccine candidates that elicit highly potent broadly reactive NAbs to prevent HCV infection.
Collapse
Affiliation(s)
- Heidi E Drummer
- Viral Fusion Laboratory, Centre for Biomedical Research, Burnet Institute Melbourne, VIC, Australia. ; Department of Microbiology, Monash University Clayton, VIC, Australia ; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne Parkville, VIC, Australia
| |
Collapse
|
47
|
Ball JK, Tarr AW, McKeating JA. The past, present and future of neutralizing antibodies for hepatitis C virus. Antiviral Res 2014; 105:100-11. [PMID: 24583033 PMCID: PMC4034163 DOI: 10.1016/j.antiviral.2014.02.013] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/08/2014] [Accepted: 02/13/2014] [Indexed: 12/11/2022]
Abstract
Hepatitis C virus (HCV) is a major cause of liver disease and hepatocellular carcinoma worldwide. HCV establishes a chronic infection in the majority of cases. However, some individuals clear the virus, demonstrating a protective role for the host immune response. Although new all-oral drug combinations may soon replace traditional ribavirin-interferon therapy, the emerging drug cocktails will be expensive and associated with side-effects and resistance, making a global vaccine an urgent priority. T cells are widely accepted to play an essential role in clearing acute HCV infection, whereas the role antibodies play in resolution and disease pathogenesis is less well understood. Recent studies have provided an insight into viral neutralizing determinants and the protective role of antibodies during infection. This review provides a historical perspective of the role neutralizing antibodies play in HCV infection and discusses the therapeutic benefits of antibody-based therapies. This article forms part of a symposium in Antiviral Research on "Hepatitis C: next steps toward global eradication."
Collapse
Affiliation(s)
- Jonathan K Ball
- School of Life Sciences and The Nottingham Digestive Diseases Centre Biomedical Research Unit, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, United Kingdom
| | - Alexander W Tarr
- School of Life Sciences and The Nottingham Digestive Diseases Centre Biomedical Research Unit, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, United Kingdom
| | - Jane A McKeating
- Viral Hepatitis Research Group and Centre for Human Virology, Institute for Biomedical Research, University of Birmingham, Birmingham B15 2TT, United Kingdom.
| |
Collapse
|
48
|
Fénéant L, Levy S, Cocquerel L. CD81 and hepatitis C virus (HCV) infection. Viruses 2014; 6:535-72. [PMID: 24509809 PMCID: PMC3939471 DOI: 10.3390/v6020535] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 01/29/2014] [Accepted: 02/02/2014] [Indexed: 12/16/2022] Open
Abstract
Hepatitis C Virus (HCV) infection is a global public health problem affecting over 160 million individuals worldwide. Its symptoms include chronic hepatitis, liver cirrhosis and hepatocellular carcinoma. HCV is an enveloped RNA virus mainly targeting liver cells and for which the initiation of infection occurs through a complex multistep process involving a series of specific cellular entry factors. This process is likely mediated through the formation of a tightly orchestrated complex of HCV entry factors at the plasma membrane. Among HCV entry factors, the tetraspanin CD81 is one of the best characterized and it is undoubtedly a key player in the HCV lifecycle. In this review, we detail the current knowledge on the involvement of CD81 in the HCV lifecycle, as well as in the immune response to HCV infection.
Collapse
Affiliation(s)
- Lucie Fénéant
- Center for Infection and Immunity of Lille, CNRS-UMR8204, Inserm-U1019, Institut Pasteur de Lille, Université Lille Nord de France, Institut de Biologie de Lille, 1 rue du Pr Calmette, CS50447, 59021 Lille Cedex, France.
| | - Shoshana Levy
- Department of Medicine, Division of Oncology, CCSR, Stanford University Medical Center, Stanford, CA 94305, USA.
| | - Laurence Cocquerel
- Center for Infection and Immunity of Lille, CNRS-UMR8204, Inserm-U1019, Institut Pasteur de Lille, Université Lille Nord de France, Institut de Biologie de Lille, 1 rue du Pr Calmette, CS50447, 59021 Lille Cedex, France.
| |
Collapse
|
49
|
Lavie M, Dubuisson J. Structural knowledge of HCV envelope protein region recognized by broadly neutralizing antibodies. Future Virol 2013. [DOI: 10.2217/fvl.13.75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Evaluation of: Krey T, Meola A, Keck Z, Damier-Piolle L, Foung S, Rey F. Structural basis of HCV neutralization by human monoclonal antibodies resistant to viral neutralization escape. PLoS Pathog. 9(5), e1003364 (2013). HCV infects 3% of the world’s population. In approximately 80% of infected individuals the infection becomes chronic, which is a major risk factor for liver cirrhosis and cancer. One important hurdle in HCV therapy is the high mutation rate of the virus. Indeed, the efficacy of current HCV therapy is notably limited by its dependency on the virus genotype and the potential emergence of resistant viruses. Nevertheless, some viral envelope epitopes cannot tolerate high variability without affecting viral fitness and thus constitute an interesting target for neutralizing antibodies. In this paper, Krey and colleagues report the crystal structure of the Fab fragments from two broadly reactive human neutralizing monoclonal antibodies in contact with their cognate epitopes that are resistant to viral escape. They identified the main contact residues that form a hydrophobic protrusion at the surface of the HCV envelope glycoprotein E2 and are involved in interactions with the HCV coreceptor CD81. Thus, this structural motif that contains these residues represents an interesting target for vaccine design.
Collapse
Affiliation(s)
- Muriel Lavie
- Center for Infection & Immunity of Lille, Institut Pasteur of Lille, Inserm U1019, CNRS UMR-8204, University Lille Nord de France, F-59021 Lille, France
| | - Jean Dubuisson
- Center for Infection & Immunity of Lille, Institut Pasteur of Lille, Inserm U1019, CNRS UMR-8204, University Lille Nord de France, F-59021 Lille, France
| |
Collapse
|
50
|
Structural and antigenic definition of hepatitis C virus E2 glycoprotein epitopes targeted by monoclonal antibodies. Clin Dev Immunol 2013; 2013:450963. [PMID: 23935648 PMCID: PMC3722892 DOI: 10.1155/2013/450963] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 06/10/2013] [Indexed: 12/24/2022]
Abstract
Hepatitis C virus (HCV) is the major cause of chronic liver disease as well as the major indication for liver transplantation worldwide. Current standard of care is not completely effective, not administrable in grafted patients, and burdened by several side effects. This incomplete effectiveness is mainly due to the high propensity of the virus to continually mutate under the selective pressure exerted by the host immune response as well as currently administered antiviral drugs. The E2 envelope surface glycoprotein of HCV (HCV/E2) is the main target of the host humoral immune response and for this reason one of the major variable viral proteins. However, broadly cross-neutralizing monoclonal antibodies (mAbs) directed against HCV/E2 represent a promising tool for the study of virus-host interplay as well as for the development of effective prophylactic and therapeutic approaches. In the last few years many anti-HCV/E2 mAbs have been evaluated in preclinical and clinical trials as possible candidate antivirals, particularly for administration in pre- and post-transplant settings. In this review we summarize the antigenic and structural characteristics of HCV/E2 determined through the use of anti-HCV/E2 mAbs, which, given the absence of a crystal structure of this glycoprotein, represent currently the best tool available.
Collapse
|