1
|
Han X, Clark JJ, Sharma P, Bentley EG, Kipar A, Alsayer M, Ren X, Robinson A, Alaidarous S, Mu Y, Sun Y, Hiscox JA, Zhou EM, Stewart JP, Zhao Q. Amino acids 1811-1960 of myosin heavy chain 9 is involved in murine gammaherpesvirus 68 infection. Virology 2023; 587:109849. [PMID: 37515945 DOI: 10.1016/j.virol.2023.109849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/31/2023]
Abstract
Myosin heavy chain 9 (MYH9) has been identified as a crucial factor in gammaherpesvirus infection. Murine gammaherpesvirus 68 (MHV-68) was used as an appropriate viral model for investigating gammaherpesviruses in vivo and developing antiviral treatments. However, the roles of MYH9 in MHV-68 infection have not been documented. In the study, the relationship between the expression of MYH9 and MHV-68 infection and MYH9 as the antiviral target were analyzed. The results revealed that MYH9 was enriched on the cell surface and co-localized with MHV-68 upon viral infection. Knocking down MYH9 with siRNA or using the specific inhibitor of MYH9 activity, Blebbistatin, resulted in the decreasing of MHV-68 infection. Furthermore, polyclonal antibodies against MYH9 reduced infection by approximately 74% at a dose of 100 μg/ml. The study determined that MYH9 contributes to MHV-68 infection by interacting with viral glycoprotein 150 (gp150) in the BHK-21 cell membrane. The specific region of MYH9, amino acids 1811-1960 (C-150), was identified as the key domain involved in the interaction with MHV-68 gp150 and was found to inhibit MHV-68 infection. Moreover, C-150 was also shown to decrease HSV-1 infection in Vero cells by approximately 73%. Both C-150 and Blebbistatin were found to inhibit MHV-68 replication and reduce histopathological lesions in vivo in C57BL/6J mice. Taken together, these findings suggested that MYH9 is crucial for MHV-68 infection through its interaction with viral gp150 and that C-150 may be a promising antiviral target for inhibiting MHV-68 infection in vitro and in vivo.
Collapse
Affiliation(s)
- Ximeng Han
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shannxi, 712100, China; Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, United Kingdom
| | - Jordan J Clark
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, United Kingdom
| | - Parul Sharma
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, United Kingdom
| | - Eleanor G Bentley
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, United Kingdom
| | - Anja Kipar
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, United Kingdom; Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Switzerland
| | - Mohammed Alsayer
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, United Kingdom
| | - Xiaolei Ren
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shannxi, 712100, China
| | - Amy Robinson
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, United Kingdom
| | - Sondus Alaidarous
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, United Kingdom
| | - Yang Mu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shannxi, 712100, China
| | - Yani Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shannxi, 712100, China
| | - Julian A Hiscox
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, United Kingdom
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shannxi, 712100, China.
| | - James P Stewart
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, United Kingdom.
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shannxi, 712100, China.
| |
Collapse
|
2
|
Dollery SJ. Towards Understanding KSHV Fusion and Entry. Viruses 2019; 11:E1073. [PMID: 31752107 PMCID: PMC6893419 DOI: 10.3390/v11111073] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/10/2019] [Accepted: 11/14/2019] [Indexed: 02/06/2023] Open
Abstract
How viruses enter cells is of critical importance to pathogenesis in the host and for treatment strategies. Over the last several years, the herpesvirus field has made numerous and thoroughly fascinating discoveries about the entry of alpha-, beta-, and gamma-herpesviruses, giving rise to knowledge of entry at the amino acid level and the realization that, in some cases, researchers had overlooked whole sets of molecules essential for entry into critical cell types. Herpesviruses come equipped with multiple envelope glycoproteins which have several roles in many aspects of infection. For herpesvirus entry, it is usual that a collective of glycoproteins is involved in attachment to the cell surface, specific interactions then take place between viral glycoproteins and host cell receptors, and then molecular interactions and triggers occur, ultimately leading to viral envelope fusion with the host cell membrane. The fact that there are multiple cell and virus molecules involved with the build-up to fusion enhances the diversity and specificity of target cell types, the cellular entry pathways the virus commandeers, and the final triggers of fusion. This review will examine discoveries relating to how Kaposi's sarcoma-associated herpesvirus (KSHV) encounters and binds to critical cell types, how cells internalize the virus, and how the fusion may occur between the viral membrane and the host cell membrane. Particular focus is given to viral glycoproteins and what is known about their mechanisms of action.
Collapse
|
3
|
Glycoprotein K8.1A of Kaposi's Sarcoma-Associated Herpesvirus Is a Critical B Cell Tropism Determinant Independent of Its Heparan Sulfate Binding Activity. J Virol 2019; 93:JVI.01876-18. [PMID: 30567992 DOI: 10.1128/jvi.01876-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/11/2018] [Indexed: 11/20/2022] Open
Abstract
B lymphocytes are the major cellular reservoir in individuals infected with Kaposi's sarcoma-associated herpesvirus (KSHV), and the virus is etiologically linked to two B cell lymphoproliferative disorders. We previously described the MC116 human B cell line as a KSHV-susceptible model to overcome the paradoxical refractoriness of B cell lines to experimental KSHV infection. Here, using monoclonal antibody inhibition and a deletion mutant virus, we demonstrate that the KSHV virion glycoprotein K8.1A is critical for infection of MC116, as well as tonsillar B cells; in contrast, we confirm previous reports on the dispensability of the glycoprotein for infection of primary endothelial cells and other commonly studied non-B cell targets. Surprisingly, we found that the role of K8.1A in B cell infection is independent of its only known biochemical activity of binding to surface heparan sulfate, suggesting the possible involvement of an additional molecular interaction(s). Our finding that K8.1A is a critical determinant for KSHV B cell tropism parallels the importance of proteins encoded by positionally homologous genes for the cell tropism of other gammaherpesviruses.IMPORTANCE Elucidating the molecular mechanisms by which KSHV infects B lymphocytes is critical for understanding how the virus establishes lifelong persistence in infected people, in whom it can cause life-threatening B cell lymphoproliferative disease. Here, we show that K8.1A, a KSHV-encoded glycoprotein on the surfaces of the virus particles, is critical for infection of B cells. This finding stands in marked contrast to previous studies with non-B lymphoid cell types, for which K8.1A is known to be dispensable. We also show that the required function of K8.1A in B cell infection does not involve its binding to cell surface heparan sulfate, the only known biochemical activity of the glycoprotein. The discovery of this critical role of K8.1A in KSHV B cell tropism opens promising new avenues to unravel the complex mechanisms underlying infection and disease caused by this viral human pathogen.
Collapse
|
4
|
Hughes DJ, Kipar A, Leeming G, Sample JT, Stewart JP. Experimental infection of laboratory-bred bank voles (Myodes glareolus) with murid herpesvirus 4. Arch Virol 2012; 157:2207-12. [PMID: 22782137 DOI: 10.1007/s00705-012-1397-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 05/21/2012] [Indexed: 11/26/2022]
Abstract
MuHV-4 is a natural pathogen of rodents of the genus Apodemus (e.g., wood mice, yellow-necked mice) and Myodes glareolus (bank voles). We report experimental MuHV-4 infection of bank voles in comparison with infection of A. sylvaticus (wood mice) and BALB/c mice. Like in wood mice, the level of productive replication in the lungs of bank voles was significantly lower than in BALB/c mice. In contrast to other hosts, however, the level of latent infection in the lung and spleen of bank voles was extremely low. These findings, together with those of previous studies, suggest that bank voles are an occasional and inefficient host for MuHV-4.
Collapse
Affiliation(s)
- David J Hughes
- Department of Infection Biology, University of Liverpool, Liverpool L69 7ZJ, UK
| | | | | | | | | |
Collapse
|
5
|
Stevens HC, Cham KSW, Hughes DJ, Sun R, Sample JT, Bubb VJ, Stewart JP, Quinn JP. CTCF and Sp1 interact with the Murine gammaherpesvirus 68 internal repeat elements. Virus Genes 2012; 45:265-73. [DOI: 10.1007/s11262-012-0769-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 05/29/2012] [Indexed: 01/08/2023]
|
6
|
Ruiss R, Ohno S, Steer B, Zeidler R, Adler H. Murine gammaherpesvirus 68 glycoprotein 150 does not contribute to latency amplification in vivo. Virol J 2012; 9:107. [PMID: 22681851 PMCID: PMC3439311 DOI: 10.1186/1743-422x-9-107] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 06/03/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Murine gammaherpesvirus 68 (MHV-68) is used as a model to study the function of gammaherpesvirus glycoproteins. gp150 of MHV-68, encoded by open reading frame M7, is a positional homolog of gp350/220 of EBV and of gp35/37 of KSHV. Since it had been proposed that gp350/220 of EBV might be a suitable vaccine antigen to protect from EBV-associated diseases, gp150 has been applied as a model vaccine in the MHV-68 system. When analyzing the function of gp150, previous studies yielded conflicting results on the role of gp150 in latency amplification, and disparities between the mutant viruses which had been analyzed were blamed for the observed differences. RESULTS To further develop MHV-68 as model to study the function of gammaherpesvirus glycoproteins in vivo, it is important to know whether gp150 contributes to latency amplification or not. Thus, we re-evaluated this question by testing a number of gp150 mutants side by side. Our results suggest that gp150 is dispensable for latency amplification. Furthermore, we investigated the effect of vaccination with gp150 using gp150-containing exosomes. Vaccination with gp150 induced a strong humoral and cellular immune response, yet it did not affect a subsequent MHV-68 challenge infection. CONCLUSIONS In this study, we found no evidence for a role of gp150 in latency amplification. The previously observed contradictory results on the role of gp150 in latency amplification were not related to differences between the mutant viruses which had been used.
Collapse
Affiliation(s)
- Romana Ruiss
- Institute of Molecular Immunology, Helmholtz Zentrum München-German Research Center for Environmental Health, Munich, Germany
| | | | | | | | | |
Collapse
|
7
|
Hughes DJ, Kipar A, Leeming GH, Bennett E, Howarth D, Cummerson JA, Papoula-Pereira R, Flanagan BF, Sample JT, Stewart JP. Chemokine binding protein M3 of murine gammaherpesvirus 68 modulates the host response to infection in a natural host. PLoS Pathog 2011; 7:e1001321. [PMID: 21445235 PMCID: PMC3060169 DOI: 10.1371/journal.ppat.1001321] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Accepted: 02/16/2011] [Indexed: 12/15/2022] Open
Abstract
Murine γ-herpesvirus 68 (MHV-68) infection of Mus musculus-derived strains of mice is an attractive model of γ-herpesvirus infection. Surprisingly, however, ablation of expression of MHV-68 M3, a secreted protein with broad chemokine-binding properties in vitro, has no discernable effect during experimental infection via the respiratory tract. Here we demonstrate that M3 indeed contributes significantly to MHV-68 infection, but only in the context of a natural host, the wood mouse (Apodemus sylvaticus). Specifically, M3 was essential for two features unique to the wood mouse: virus-dependent inducible bronchus-associated lymphoid tissue (iBALT) in the lung and highly organized secondary follicles in the spleen, both predominant sites of latency in these organs. Consequently, lack of M3 resulted in substantially reduced latency in the spleen and lung. In the absence of M3, splenic germinal centers appeared as previously described for MHV-68-infected laboratory strains of mice, further evidence that M3 is not fully functional in the established model host. Finally, analyses of M3's influence on chemokine and cytokine levels within the lungs of infected wood mice were consistent with the known chemokine-binding profile of M3, and revealed additional influences that provide further insight into its role in MHV-68 biology. Infection of inbred strains of laboratory mice (Mus musculus) with the rodent γ-herpesvirus MHV-68 continues to be developed as an attractive experimental model of γ-herpesvirus infection. In this regard, the MHV-68 protein M3 has been shown to selectively bind and inhibit chemokines involved in the antiviral immune response, a property expected to contribute significantly to virus infection and host colonization. However, inactivation of the M3 gene has no discernable consequence on infection in this animal host. Prompted by recent evidence that natural hosts of MHV-68 are members of the genus Apodemus, and that MHV-68 infection in laboratory-bred wood mice (Apodemus sylvaticus) differs significantly from that which has been described in standard strains of laboratory mice, we addressed whether M3 functions in a host-specific manner. Indeed, we find that M3 is responsible for host-specific differences observed for MHV-68 infection, that its influence on infection within wood mice is consistent with its chemokine-binding properties, and that in its absence, persistent latent infection - a hallmark of herpesvirus infections - is attenuated. This highlights the importance of host selection when investigating specific roles of pathogenesis-related viral genes, and advances our understanding of this model and its potential application to human γ-herpesvirus infections.
Collapse
Affiliation(s)
- David J. Hughes
- School of Infection and Host Defence, The University of Liverpool, Liverpool, United Kingdom
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Anja Kipar
- Veterinary Pathology, School of Veterinary Science, The University of Liverpool, Liverpool, United Kingdom
| | - Gail H. Leeming
- Veterinary Pathology, School of Veterinary Science, The University of Liverpool, Liverpool, United Kingdom
| | - Elaine Bennett
- School of Infection and Host Defence, The University of Liverpool, Liverpool, United Kingdom
| | - Deborah Howarth
- School of Infection and Host Defence, The University of Liverpool, Liverpool, United Kingdom
| | - Joanne A. Cummerson
- School of Infection and Host Defence, The University of Liverpool, Liverpool, United Kingdom
| | - Rita Papoula-Pereira
- Veterinary Pathology, School of Veterinary Science, The University of Liverpool, Liverpool, United Kingdom
| | - Brian F. Flanagan
- School of Infection and Host Defence, The University of Liverpool, Liverpool, United Kingdom
| | - Jeffery T. Sample
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - James P. Stewart
- School of Infection and Host Defence, The University of Liverpool, Liverpool, United Kingdom
- * E-mail:
| |
Collapse
|
8
|
Abstract
Due to the oncogenic potential associated with persistent infection of human gamma-herpesviruses, including Epstein-Barr virus (EBV or HHV-4) and Kaposi's sarcoma-associated herpesvirus (KSHV or HHV-8), vaccine development has focused on subunit vaccines. However, the results using an animal model of mouse infection with a related rodent virus, murine gamma-herpesvirus 68 (MHV-68, γHV-68, or MuHV-4), have shown that the only effective vaccination strategy is based on live attenuated viruses, including viruses engineered to be incapable of establishing persistence. Vaccination with a virus lacking persistence would eliminate many potential complications. Progress in understanding persistent infections of EBV and KSHV raises the possibility of engineering a live attenuated virus without persistence. Therefore, we should keep the option open for developing a live EBV or KSHV vaccine.
Collapse
Affiliation(s)
- Ting-Ting Wu
- Department of Molecular and Medical Pharmacology, School of Medicine, University of California at Los Angeles, CA 90095, USA.
| | | | | |
Collapse
|
9
|
Persistent gammaherpesvirus replication and dynamic interaction with the host in vivo. J Virol 2008; 82:12498-509. [PMID: 18842717 DOI: 10.1128/jvi.01152-08] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Gammaherpesviruses establish life-long persistency inside the host and cause various diseases during their persistent infection. However, the systemic interaction between the virus and host in vivo has not been studied in individual hosts continuously, although such information can be crucial to control the persistent infection of the gammaherpesviruses. For the noninvasive and continuous monitoring of the interaction between gammaherpesvirus and the host, a recombinant murine gammaherpesvirus 68 (MHV-68, a gammaherpesvirus 68) was constructed to express a firefly luciferase gene driven by the viral M3 promoter (M3FL). Real-time monitoring of M3FL infection revealed novel sites of viral replication, such as salivary glands, as well as acute replication in the nose and the lung and progression to the spleen. Continuous monitoring of M3FL infection in individual mice demonstrated the various kinetics of transition to different organs and local clearance, rather than systemically synchronized clearance. Moreover, in vivo spontaneous reactivation of M3FL from latency was detected after the initial clearance of acute infection and can be induced upon treatment with either a proteasome inhibitor Velcade or an immunosuppressant cyclosporine A. Taken together, our results demonstrate that the in vivo replication and reactivation of gammaherpesvirus are dynamically controlled by the locally defined interaction between the virus and the host immune system and that bioluminescence imaging can be successfully used for the real-time monitoring of this dynamic interaction of MHV-68 with its host in vivo.
Collapse
|
10
|
Abstract
The gammaherpesvirus alcelaphine herpesvirus 1 (AlHV-1) causes malignant catarrhal fever in susceptible ungulates but infects its natural host, wildebeest, without obvious clinical signs. In tissue culture, AlHV-1 is initially predominantly cell associated and virulent but on extended culture becomes cell-free and attenuated. We wanted to determine what changes in protein composition had taken place during the transition from virulent to attenuated virus in culture. Purified virus preparations were fractionated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and proteins were analyzed by liquid chromatography-electrospray ionization-tandem mass spectrometry. Peptides were identified in serial gel slices by using MASCOT software to interrogate virus-specific and nonredundant sequence databases. Twenty-three AlHV-1-encoded proteins and six cellular proteins were identified in the attenuated and virulent viruses. Two polypeptides were detected in only the virulent virus preparations, while one other protein was found in only the attenuated virus. Two of these virus-specific proteins were identified by a single peptide, suggesting that these may be low-abundance virion proteins rather than markers of attenuation or pathogenesis. The results suggest that attenuation of AlHV-1 is not the result of gross changes in the composition of the virus particle but probably due to altered viral gene expression in the infected cell.
Collapse
|
11
|
Kayhan B, Yager EJ, Lanzer K, Cookenham T, Jia Q, Wu TT, Woodland DL, Sun R, Blackman MA. A replication-deficient murine gamma-herpesvirus blocked in late viral gene expression can establish latency and elicit protective cellular immunity. THE JOURNAL OF IMMUNOLOGY 2008; 179:8392-402. [PMID: 18056385 DOI: 10.4049/jimmunol.179.12.8392] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The human gamma-herpesviruses, EBV and Kaposi's sarcoma-associated herpesvirus, are widely disseminated and are associated with the onset of a variety of malignancies. Thus, the development of prophylactic and therapeutic vaccination strategies is an important goal. The experimental mouse gamma-herpesvirus, gammaHV68 (or MHV-68), has provided an in vivo model for studying immune control of these persistent viruses. In the current studies, we have examined infectivity, immunogenicity, and protective efficacy following infection with a replication-deficient gammaHV68 blocked in late viral gene expression, ORF31STOP. The data show that ORF31STOP was able to latently infect B cells. However, the anatomical site and persistence of the infection depended on the route of inoculation, implicating a role for viral replication in viral spread but not the infectivity per se. Furthermore, i.p. infection with ORF31STOP elicited strong cellular immunity but a non-neutralizing Ab response. In contrast, intranasal infection was poorly immunogenic. Consistent with this, mice infected i.p. had enhanced control of both the lytic and latent viral loads following challenge with wild-type gammaHV68, whereas intranasal infected mice were not protected. These data provide important insight into mechanisms of infection and protective immunity for the gamma-herpesviruses and demonstrate the utility of replication-deficient mutant viruses in direct testing of "proof of principal" vaccination strategies.
Collapse
|
12
|
Gillet L, Stevenson PG. Evidence for a multiprotein gamma-2 herpesvirus entry complex. J Virol 2007; 81:13082-91. [PMID: 17898071 PMCID: PMC2169126 DOI: 10.1128/jvi.01141-07] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 09/17/2007] [Indexed: 11/20/2022] Open
Abstract
Herpesviruses use multiple virion glycoproteins to enter cells. How these work together is not well understood: some may act separately or they may form a single complex. Murine gammaherpesvirus 68 (MHV-68) gB, gH, gL, and gp150 all participate in entry. gB and gL are involved in binding, gB and gH are conserved fusion proteins, and gp150 inhibits cell binding until glycosaminoglycans are engaged. Here we show that a gH-specific antibody coprecipitates gB and thus that gH and gB are associated in the virion membrane. A gH/gL-specific antibody also coprecipitated gB, implying a tripartite complex of gL/gH/gB, although the gH/gB association did not require gL. The association was also independent of gp150, and gp150 was not demonstrably bound to gB or gH. However, gp150 incorporation into virions was partly gL dependent, suggesting that it too contributes to a single entry complex. gp150- and gL- gp150- mutants bound better than the wild type to B cells and readily colonized B cells in vivo. Thus, gp150 and gL appear to be epithelial cell-adapted accessories of a core gB/gH entry complex. The cell binding revealed by gp150 disruption did not require gL and therefore seemed most likely to involve gB.
Collapse
Affiliation(s)
- Laurent Gillet
- Division of Virology, Department of Pathology, Tennis Court Road, Cambridge CB2 1QP, United Kingdom
| | | |
Collapse
|
13
|
Gillet L, May JS, Colaco S, Stevenson PG. The murine gammaherpesvirus-68 gp150 acts as an immunogenic decoy to limit virion neutralization. PLoS One 2007; 2:e705. [PMID: 17684552 PMCID: PMC1931612 DOI: 10.1371/journal.pone.0000705] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Accepted: 07/05/2007] [Indexed: 11/19/2022] Open
Abstract
Herpesviruses maintain long-term infectivity without marked antigenic variation. They must therefore evade neutralization by other means. Immune sera block murine gammaherpesvirus-68 (MHV-68) infection of fibroblasts, but fail to block and even enhance its infection of IgG Fc receptor-bearing cells, suggesting that the antibody response to infection is actually poor at ablating virion infectivity completely. Here we analyzed this effect further by quantitating the glycoprotein-specific antibody response of MHV-68 carrier mice. Gp150 was much the commonest glycoprotein target and played a predominant role in driving Fc receptor-dependent infection: when gp150-specific antibodies were boosted, Fc receptor-dependent infection increased; and when gp150-specific antibodies were removed, Fc receptor-dependent infection was largely lost. Neither gp150-specific monoclonal antibodies nor gp150-specific polyclonal sera gave significant virion neutralization. Gp150 therefore acts as an immunogenic decoy, distorting the MHV-68-specific antibody response to promote Fc receptor-dependent infection and so compromise virion neutralization. This immune evasion mechanism may be common to many non-essential herpesvirus glycoproteins.
Collapse
Affiliation(s)
- Laurent Gillet
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Janet S. May
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Susanna Colaco
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Philip G. Stevenson
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
14
|
Bortz E, Wang L, Jia Q, Wu TT, Whitelegge JP, Deng H, Zhou ZH, Sun R. Murine gammaherpesvirus 68 ORF52 encodes a tegument protein required for virion morphogenesis in the cytoplasm. J Virol 2007; 81:10137-50. [PMID: 17634243 PMCID: PMC2045416 DOI: 10.1128/jvi.01233-06] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The tegument, a semiordered matrix of proteins overlying the nucleocapsid and underlying the virion envelope, in viruses in the gamma subfamily of Herpesviridae is poorly understood. Murine gammaherpesvirus 68 (MHV-68) is a robust model for studying gammaherpesvirus virion structure, assembly, and composition, as MHV-68 efficiently completes the lytic phase and productively infects cultured cells. We have found that MHV-68 ORF52 encodes an abundant tegument protein conserved among gammaherpesviruses. Detergent sensitivity experiments revealed that the MHV-68 ORF52 protein is more tightly bound to the virion nucleocapsid than the ORF45 tegument protein but could be dissociated from particles that retained the ORF65 small capsomer protein. ORF52, tagged with enhanced green fluorescent protein or FLAG epitope, localized to the cytoplasm. A recombinant MHV-68 bacterial artificial chromosome mutant with a nonsense mutation incorporated into ORF52 exhibited viral DNA replication, expression of late lytic genes, and capsid assembly and packaging at levels near those of the wild type. However, the MHV-68 ORF52-null virus was deficient in the assembly and release of infectious virion particles. Instead, partially tegumented capsids produced by the ORF52-null mutant accumulated in the cytoplasm, containing conserved capsid proteins, the ORF64 and ORF67 tegument proteins, but virtually no ORF45 tegument protein. Thus, ORF52 is essential for the tegumentation and egress of infectious MHV-68 particles in the cytoplasm, suggesting an important conserved function in gammaherpesvirus virion morphogenesis.
Collapse
Affiliation(s)
- Eric Bortz
- Molecular Biology IDP, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Kobayashi T, Shiratori M, Nakano H, Eguchi C, Shirai M, Naka D, Shibui T. Short peptide tags increase the yield of C-terminally labeled protein. Biotechnol Lett 2007; 29:1065-73. [PMID: 17479226 DOI: 10.1007/s10529-007-9362-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Accepted: 03/05/2007] [Indexed: 12/01/2022]
Abstract
C-Terminal protein labeling allows non-radioactive detection of proteins by using fluorescent puromycin derivatives and cell-free translation systems. However, yields of some labeled proteins are low. Here, we report that the yield of labeled protein mainly depends on the C-terminal amino acid sequence. The short peptide tag sequence, RGAA, at the C-terminus increased not only the labeling efficiency (more than 80%) but also the synthesis yield of labeled proteins. To examine the relationship between the C-terminal amino acid sequence and the yield of labeled proteins, we synthesized C-terminally labeled glutathione S-transferase (GST) containing four identical amino acid residues at the C-terminus. The results demonstrated that 4 x Ala, 4 x His, 4 x Gln, and 4 x Cys produced over 200% of the yield of wild-type GST. In addition, the two Ala residues produced almost the same synthesis activity as 4 x Ala and RGAA. Similar results were obtained with various proteins and cell-free translation systems.
Collapse
|
16
|
Krug LT, Moser JM, Dickerson SM, Speck SH. Inhibition of NF-kappaB activation in vivo impairs establishment of gammaherpesvirus latency. PLoS Pathog 2007; 3:e11. [PMID: 17257062 PMCID: PMC1781481 DOI: 10.1371/journal.ppat.0030011] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Accepted: 12/13/2006] [Indexed: 12/20/2022] Open
Abstract
A critical determinant in chronic gammaherpesvirus infections is the ability of these viruses to establish latency in a lymphocyte reservoir. The nuclear factor (NF)-κB family of transcription factors represent key players in B-cell biology and are targeted by gammaherpesviruses to promote host cell survival, proliferation, and transformation. However, the role of NF-κB signaling in the establishment of latency in vivo has not been addressed. Here we report the generation and in vivo characterization of a recombinant murine gammaherpesvirus 68 (γHV68) that expresses a constitutively active form of the NF-κB inhibitor, IκBαM. Inhibition of NF-κB signaling upon infection with γHV68-IκBαM did not affect lytic replication in cell culture or in the lung following intranasal inoculation. However, there was a substantial decrease in the frequency of latently infected lymphocytes in the lung (90% reduction) and spleens (97% reduction) 16 d post intranasal inoculation. Importantly, the defect in establishment of latency in lung B cells could not be overcome by increasing the dose of virus 100-fold. The observed decrease in establishment of viral latency correlated with a loss of activated, CD69hi B cells in both the lungs and spleen at day 16 postinfection, which was not apparent by 6 wk postinfection. Constitutive expression of Bcl-2 in B cells did not rescue the defect in the establishment of latency observed with γHV68-IκBαM, indicating that NF-κB–mediated functions apart from Bcl-2–mediated B-cell survival are critical for the efficient establishment of gammaherpesvirus latency in vivo. In contrast to the results obtained following intranasal inoculation, infection of mice with γHV68-IκBαM by the intraperitoneal route had only a modest impact on splenic latency, suggesting that route of inoculation may alter requirements for establishment of virus latency in B cells. Finally, analyses of the pathogenesis of γHV68-IκBαM provides evidence that NF-κB signaling plays an important role during multiple stages of γHV68 infection in vivo and, as such, represents a key host regulatory pathway that is likely manipulated by the virus to establish latency in B cells. A central aspect of chronic infection of a host by herpesviruses is the ability of these viruses to establish a quiescent infection (latent infection) in some cell type(s) in which there is only intermittent production of progeny virus (virus reactivation). The establishment of a latent infection in the antibody producing cells of the host immune system (B lymphocytes) is critical for life-long persistence of gammaherpesviruses, as well as the development of virus-associated lymphoproliferative diseases (e.g., B-cell lymphomas). Nuclear factor (NF)-κB transcription factors are a family of cellular proteins that play an important role regulating gene expression in B cells, and it has been shown that gammaherpesviruses have evolved multiple strategies for manipulating NF-κB activity. However, to date there has been no reported examination of the role of NF-κB in the establishment of chronic gammaherpesvirus infection in vivo. Murine gammaherpesvirus 68 (γHV68) infects rodents and shares genetic and biologic properties with the human gammaherpesviruses, Epstein-Barr virus and Kaposi sarcoma–associated herpesvirus. To selectively block the function of NF-κB in infected cells, we engineered a transgenic virus that expresses a repressor of NF-κB activation (IκBαM). Notably, this recombinant virus was defective in the establishment of latency in B cells in the lungs and spleen following intranasal inoculation. We also observed that the decrease in B-cell infection could not be rescued by forced expression of the cellular Bcl-2 protein, which is normally upregulated by NF-κB and serves to protect B cells from some forms of cell death. Thus, we conclude that NF-κB is an important host factor for the successful establishment of a chronic infection by gammaherpesviruses, and likely requires functions of NF-κB apart from its role in B-cell survival.
Collapse
Affiliation(s)
- Laurie T Krug
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- The Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Janice M Moser
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- The Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Shelley M Dickerson
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- The Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Samuel H Speck
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- The Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
17
|
Hart J, Ackermann M, Jayawardane G, Russell G, Haig DM, Reid H, Stewart JP. Complete sequence and analysis of the ovine herpesvirus 2 genome. J Gen Virol 2007; 88:28-39. [PMID: 17170433 DOI: 10.1099/vir.0.82284-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ovine herpesvirus 2 (OvHV-2) is endemic in sheep populations worldwide and causes malignant catarrhal fever (MCF), a lymphoproliferative disease, in cattle, bison and deer. OvHV-2 has been placed in the gammaherpesvirus subfamily and is related closely to Alcelaphine herpesvirus 1 (AlHV-1). Here, the cloning, sequencing and analysis of the complete OvHV-2 genome derived from a lymphoblastoid cell line from an affected cow (BJ1035) are reported. The unique portion of the genome consists of 130,930 bp, with a mean G+C content of 52 mol%. The unique DNA is flanked by multiple copies of terminal repeat elements 4205 bp in length, with a mean G+C content of 72 mol%. Analysis revealed 73 open reading frames (ORFs), the majority (62) of which showed homology to other gammaherpesvirus genes. A further subset of nine ORFs is shared with only the related AlHV-1. Three ORFs are entirely unique to OvHV-2, including a spliced homologue of cellular interleukin-10 that retains the exon structure of the cellular gene. The sequence of OvHV-2 is a critical first step in the study of the pathogenesis and treatment of MCF.
Collapse
Affiliation(s)
- Jane Hart
- Department of Veterinary Pathology, University of Edinburgh, Edinburgh, UK
| | | | - Gamini Jayawardane
- Division of Medical Microbiology, School of Infection and Host Defence, University of Liverpool, Duncan Building, Daulby Street, Liverpool L69 3GA, UK
| | - George Russell
- Division of Virology, Moredun Research Institute, Edinburgh, UK
| | - David M Haig
- Division of Virology, Moredun Research Institute, Edinburgh, UK
| | - Hugh Reid
- Division of Virology, Moredun Research Institute, Edinburgh, UK
| | - James P Stewart
- Division of Medical Microbiology, School of Infection and Host Defence, University of Liverpool, Duncan Building, Daulby Street, Liverpool L69 3GA, UK
| |
Collapse
|
18
|
Abstract
Gammaherpesviruses are members of an emerging subfamily among the Herpesviridae. Two genera are discriminated: (i) lymphocryptovirus, including its type species Epstein-Barr virus (EBV), and (ii) rhadinovirus, including viruses of interest for medicine, veterinary medicine, and biomedical research, i.e. alcelaphine herpesvirus 1, bovine herpesvirus 4, equine herpesvirus 2, human herpesvirus 8, mouse herpesvirus 68, and ovine herpesvirus 2 (OvHV-2). The perception that these viruses have a narrow host range is misleading, since they cover a surprisingly wide host range, both on the cellular and the organism's level. For example, the natural range of OvHV-2 infection extends over a common animal order. While the host range determinants of EBV are well known, the corresponding features of the rhadinoviruses need still to be defined. Similarly, the gene expression patterns of the veterinary rhadinoviruses during latency require further characterization. In vivo, the gammaherpesviruses have evolved to actively protect their latently infected cells from being destroyed by immune functions of their native host. In return, those reservoir hosts have evolved to being infected and transmit the virus without overt disease symptoms. However, a balanced immune response needs to be in control over the number of infected cells. Virus excretion is usually at low level and may occur either constantly or intermittently. Animal species that are targeted by the virus but did not participate in the process of co-evolution as well as hosts with immune deficiencies are known to loose control over the amount of latently infected cells, which results in the development of lethal diseases, such as malignant catarrhal fever or Kaposi's sarcoma.
Collapse
Affiliation(s)
- Mathias Ackermann
- Institute of Virology, University of Zurich, Winterthurerstrasse 266a, CH-8057 Zurich, Switzerland.
| |
Collapse
|
19
|
May JS, Walker J, Colaco S, Stevenson PG. The murine gammaherpesvirus 68 ORF27 gene product contributes to intercellular viral spread. J Virol 2005; 79:5059-68. [PMID: 15795291 PMCID: PMC1069585 DOI: 10.1128/jvi.79.8.5059-5068.2005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Herpesviruses remain predominantly cell associated within their hosts, implying that they spread between cells by a mechanism distinct from free virion release. We previously identified the efficient release of murine gammaherpesvirus 68 (MHV-68) virions as a function of the viral gp150 protein. Here we show that the MHV-68 ORF27 gene product, gp48, contributes to the direct spread of viruses from lytically infected to uninfected cells. Monoclonal antibodies to gp48 identified it on infected cell surfaces and in virions. gp48-deficient viruses showed no obvious deficit in virion cell binding, single-cycle replication, or virion release but had reduced lytic propagation between cells. After intranasal infection of mice, ORF27-deficient viruses were impaired predominantly in lytic replication in the lungs. There was a small deficit in latency establishment, but long-term latency appeared normal. Since ORF27 has homologs in both Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus, it is likely part of a conserved mechanism employed by gammaherpesviruses to disseminate lytically in their hosts.
Collapse
Affiliation(s)
- Janet S May
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom
| | | | | | | |
Collapse
|