1
|
Costa GL, Sautto GA. Towards an HCV vaccine: an overview of the immunization strategies for eliciting an effective B-cell response. Expert Rev Vaccines 2025; 24:96-120. [PMID: 39825640 DOI: 10.1080/14760584.2025.2452955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 10/26/2024] [Accepted: 01/09/2025] [Indexed: 01/20/2025]
Abstract
INTRODUCTION Fifty-eight million people worldwide are chronically infected with hepatitis C virus (HCV) and are at risk of developing cirrhosis and hepatocellular carcinoma (HCC). Direct-acting antivirals are highly effective; however, they are burdened by high costs and the unchanged risk of HCC and reinfection, making prophylactic countermeasures an urgent medical need. HCV high genetic diversity is one of the main obstacles to vaccine development. The protective role of the humoral response directed against the HCV E2 glycoprotein is well established, and broadly neutralizing antibodies play a crucial role in effective viral clearance. AREAS COVERED This review explores the HCV targets and the different vaccination approaches, encompassing different expression systems, antigen selection strategies, and delivery methods, focusing on those aimed at eliciting a broad and effective humoral response. Our search criteria included the keywords 'HCV,' 'Hepatitis C,' and 'vaccine' using publicly available databases. Following the screening, 54 papers were selected. EXPERT OPINION The investigation of novel vaccine platforms beyond traditional approaches is necessary. While progress has been made in this direction, continued investigations on the HCV virology, immunology, and vaccinology are essential to surmount associated obstacles, heling in the development of an HCV vaccine that can benefit the global public health.
Collapse
Affiliation(s)
- Gabriel L Costa
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, USA
| | - Giuseppe A Sautto
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, USA
| |
Collapse
|
2
|
Radić L, Offersgaard A, Kadavá T, Zon I, Capella-Pujol J, Mulder F, Koekkoek S, Spek V, Chumbe A, Bukh J, van Gils MJ, Sanders RW, Yin VC, Heck AJR, Gottwein JM, Sliepen K, Schinkel J. Bispecific antibodies against the hepatitis C virus E1E2 envelope glycoprotein. Proc Natl Acad Sci U S A 2025; 122:e2420402122. [PMID: 40193609 PMCID: PMC12012487 DOI: 10.1073/pnas.2420402122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 02/19/2025] [Indexed: 04/09/2025] Open
Abstract
Hepatitis C virus (HCV) currently causes about one million infections and 240,000 deaths worldwide each year. To reach the goal set by the World Health Organization of global HCV elimination by 2030, it is critical to develop a prophylactic vaccine. Broadly neutralizing antibodies (bNAbs) target the E1E2 envelope glycoproteins on the viral surface, can neutralize a broad range of the highly diverse circulating HCV strains, and are essential tools to inform vaccine design. However, bNAbs targeting a single E1E2 epitope might be limited in neutralization breadth, which can be enhanced by using combinations of bNAbs that target different envelope epitopes. We have generated 60 immunoglobulin G (IgG)-like bispecific antibodies (bsAbs) that can simultaneously target two distinct epitopes on E1E2. We combine non- or partially overlapping E1E2 specificities into three types of bsAbs, each containing a different hinge length. The majority of bsAbs shows retained or increased potency and breadth against a diverse panel of HCV pseudoparticles and HCV produced in cell culture compared to monospecific and cocktail controls. Additionally, we demonstrate that changes in the hinge length of bsAbs can alter the binding stoichiometry to E1E2. These results provide insights into the binding modes and the role of avidity in bivalent targeting of diverse E1E2 epitopes.This study illustrates how potential cooperative effects of HCV bNAbs can be utilized by strategically designing bispecific constructs. These HCV bsAbs can guide vaccine development and unlock novel therapeutic and prophylactic strategies against HCV and other (flavi)viruses.
Collapse
Affiliation(s)
- Laura Radić
- Department of Medical Microbiology and Infection Prevention, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam1105 AZ, the Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam1105 AZ, the Netherlands
| | - Anna Offersgaard
- Copenhagen Hepatitis C Program, Department of Infectious Diseases, Copenhagen University Hospital–Hvidovre, Hvidovre2650, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N2200, Denmark
| | - Tereza Kadavá
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht3584 CH, the Netherlands
- Netherlands Proteomics Center, Utrecht3584 CH, the Netherlands
| | - Ian Zon
- Department of Medical Microbiology and Infection Prevention, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam1105 AZ, the Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam1105 AZ, the Netherlands
| | - Joan Capella-Pujol
- Department of Medical Microbiology and Infection Prevention, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam1105 AZ, the Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam1105 AZ, the Netherlands
| | - Fabian Mulder
- Department of Medical Microbiology and Infection Prevention, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam1105 AZ, the Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam1105 AZ, the Netherlands
| | - Sylvie Koekkoek
- Department of Medical Microbiology and Infection Prevention, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam1105 AZ, the Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam1105 AZ, the Netherlands
| | - Vera Spek
- Department of Medical Microbiology and Infection Prevention, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam1105 AZ, the Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam1105 AZ, the Netherlands
| | - Ana Chumbe
- Department of Medical Microbiology and Infection Prevention, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam1105 AZ, the Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam1105 AZ, the Netherlands
| | - Jens Bukh
- Copenhagen Hepatitis C Program, Department of Infectious Diseases, Copenhagen University Hospital–Hvidovre, Hvidovre2650, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N2200, Denmark
| | - Marit J. van Gils
- Department of Medical Microbiology and Infection Prevention, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam1105 AZ, the Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam1105 AZ, the Netherlands
| | - Rogier W. Sanders
- Department of Medical Microbiology and Infection Prevention, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam1105 AZ, the Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam1105 AZ, the Netherlands
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY10065
| | - Victor C. Yin
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht3584 CH, the Netherlands
- Netherlands Proteomics Center, Utrecht3584 CH, the Netherlands
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht3584 CH, the Netherlands
- Netherlands Proteomics Center, Utrecht3584 CH, the Netherlands
| | - Judith M. Gottwein
- Copenhagen Hepatitis C Program, Department of Infectious Diseases, Copenhagen University Hospital–Hvidovre, Hvidovre2650, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N2200, Denmark
| | - Kwinten Sliepen
- Department of Medical Microbiology and Infection Prevention, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam1105 AZ, the Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam1105 AZ, the Netherlands
| | - Janke Schinkel
- Department of Medical Microbiology and Infection Prevention, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam1105 AZ, the Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam1105 AZ, the Netherlands
| |
Collapse
|
3
|
Kulakova L, Li KH, Chiang AWT, Schwoerer MP, Schoffelen S, Elkholy K, Chao KL, Shahid S, Kumar B, Murray NB, Archer-Hartmann S, Azadi P, Voldborg BG, Marin A, Mariuzza RA, Andrianov AK, Ploss A, Lewis NE, Toth EA, Fuerst TR. Glycoengineering of the hepatitis C virus E2 glycoprotein leads to improved biochemical properties and enhanced immunogenicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.02.646860. [PMID: 40291659 PMCID: PMC12026506 DOI: 10.1101/2025.04.02.646860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
An effective vaccine against hepatitis C virus (HCV) must elicit the production of broadly neutralizing antibodies (bnAbs) reproducibly against the E1E2 glycoprotein complex. Little is known about how glycan content affects this process. Ideally, glycans would maximize epitope exposure without compromising antigen stability or exposing new epitopes. However, typical recombinant vaccines contain considerable heterogeneity in glycan content, which can affect the antibody response and neutralization potency. Here we employed glycoengineered Chinese hamster ovary (geCHO) cell lines that impart nearly homogeneous glycosylation as a means to test how specific glycan features influence antigenicity and immunogenicity for the secreted HCV E2 ectodomain (sE2). Specific geCHO antigens exhibited a modest but reproducible increase in affinity for some mAbs relative to CHO- and HEK293-produced sE2. Surprisingly, one geCHO sE2 antigen failed to bind the CD81 receptor, indicating the potential for significant glycan effects on biochemical properties. We immunized mice with the four antigens and found the total antibody response to be the same for all groups. However, sera from one geCHO group exhibited a 7-fold improvement in neutralization against the homologous HCV pseudovirus and had the most mice whose sera exhibited neutralization activity against genotypes 1b, 2a, 2b, and 3. Further analysis identified beneficial and deleterious glycan features, and the glycan that correlated the most with decreased potency was relatively small. However, size was not the sole determinant of glycan-driven effects on the antibody response. In summary, glycan content impacts biochemical properties of antigens to varying degrees and such effects can influence immune response quality and uniformity.
Collapse
|
4
|
Nagarathinam K, Scheck A, Labuhn M, Ströh LJ, Herold E, Veselkova B, Tune S, Cramer JT, Rosset S, Vollers SS, Bankwitz D, Ballmaier M, Böning H, Roth E, Khera T, Ahsendorf-Abidi HP, Dittrich-Breiholz O, Obleser J, Nassal M, Jäck HM, Pietschmann T, Correia BE, Krey T. Epitope-focused immunogens targeting the hepatitis C virus glycoproteins induce broadly neutralizing antibodies. SCIENCE ADVANCES 2024; 10:eado2600. [PMID: 39642219 PMCID: PMC11623273 DOI: 10.1126/sciadv.ado2600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 11/04/2024] [Indexed: 12/08/2024]
Abstract
Hepatitis C virus (HCV) infection causes ~290,000 annual human deaths despite the highly effective antiviral treatment available. Several viral immune evasion mechanisms have hampered the development of an effective vaccine against HCV, among them the remarkable conformational flexibility within neutralization epitopes in the HCV antigens. Here, we report the design of epitope-focused immunogens displaying two distinct HCV cross-neutralization epitopes. We show that these immunogens induce a pronounced, broadly neutralizing antibody response in laboratory and transgenic human antibody mice. Monoclonal human antibodies isolated from immunized human antibody mice specifically recognized the grafted epitopes and neutralized four diverse HCV strains. Our results highlight a promising strategy for developing HCV immunogens and provide an encouraging paradigm for targeting structurally flexible epitopes to improve the induction of neutralizing antibodies.
Collapse
Affiliation(s)
- Kumar Nagarathinam
- Institute of Biochemistry, Center of Structural and Cell Biology in Medicine, University of Lübeck, 23562 Lübeck, Germany
| | - Andreas Scheck
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne CH-1015, Switzerland
| | - Maurice Labuhn
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625 Hannover, Germany
| | - Luisa J. Ströh
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany
| | - Elisabeth Herold
- Institute of Biochemistry, Center of Structural and Cell Biology in Medicine, University of Lübeck, 23562 Lübeck, Germany
| | - Barbora Veselkova
- Institute of Biochemistry, Center of Structural and Cell Biology in Medicine, University of Lübeck, 23562 Lübeck, Germany
| | - Sarah Tune
- Department of Psychology, University of Lübeck, 23562 Lübeck, Germany
- Center of Brain, Behavior, and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | | | - Stéphane Rosset
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne CH-1015, Switzerland
| | - Sabrina S. Vollers
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne CH-1015, Switzerland
| | - Dorothea Bankwitz
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625 Hannover, Germany
| | - Matthias Ballmaier
- Central Research Facility Cell Sorting, Hannover Medical School, 30625 Hannover, Germany
| | - Heike Böning
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany
| | - Edith Roth
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Tanvi Khera
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625 Hannover, Germany
| | | | | | - Jonas Obleser
- Department of Psychology, University of Lübeck, 23562 Lübeck, Germany
- Center of Brain, Behavior, and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Michael Nassal
- Department of Internal Medicine 2/Molecular Biology, University Hospital Freiburg, 79106 Freiburg, Germany
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Thomas Pietschmann
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625 Hannover, Germany
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, 30625 Hannover, Germany
- Excellence Cluster 2155 RESIST, Hannover Medical School, 30625 Hannover, Germany
| | - Bruno E. Correia
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne CH-1015, Switzerland
| | - Thomas Krey
- Institute of Biochemistry, Center of Structural and Cell Biology in Medicine, University of Lübeck, 23562 Lübeck, Germany
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany
- Excellence Cluster 2155 RESIST, Hannover Medical School, 30625 Hannover, Germany
- German Center for Infection Research (DZIF), partner site Hamburg-Lübeck-Borstel-Riems, 38124 Braunschweig, Germany
- Centre for Structural Systems Biology (CSSB), 22607 Hamburg, Germany
| |
Collapse
|
5
|
Zimmer K, Chmielewska AM, Jackowiak P, Figlerowicz M, Bienkowska-Szewczyk K. Alterations in N-glycosylation of HCV E2 Protein in Children Patients with IFN-RBV Therapy Failure. Pathogens 2024; 13:256. [PMID: 38535599 PMCID: PMC10974529 DOI: 10.3390/pathogens13030256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/08/2024] [Accepted: 03/09/2024] [Indexed: 02/11/2025] Open
Abstract
The glycosylation of viral envelope proteins plays an important role in virus biology and the immune response of the host to infection. Hepatitis C virus (HCV) envelope proteins E1 and E2, key players in virus entry and spread, are highly N-glycosylated and possess 4 (5 in certain genotypes) to 11 conserved glycosylation sites, respectively. Many published results based on recombinant proteins indicate that the glycan shield can mask the epitopes targeted by neutralizing antibodies. Glycan shifting within the conserved linear E2 region (412-423) could be one of the escape strategies used by HCV. In the present report, we isolated E2 genes from samples (collected before the IFN-RBV therapy) originating from pediatric patients infected with HCV gt 1a. We analyzed the biochemical properties of cloned E2 glycoprotein variants and investigated their glycosylation status. The sequencing of E2 genes isolated from patients who did not respond to therapy revealed mutations at N-glycosylation sites, thus leading to a lower molecular weight and a low affinity to both linear and conformational neutralizing antibodies. The loss of the glycosylation site within the conserved epitope (amino acid 417) impaired the binding with AP33, an antibody that potently neutralizes all genotypes of HCV. Our findings, based on clinical samples, confirm the influence of N-glycosylation aberrations on the antigenic and conformational properties of HCV E1/E2, which may possibly correlate with the outcome of therapy in patients.
Collapse
Affiliation(s)
- Karolina Zimmer
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology of UG and MUG, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland; (K.Z.); (A.M.C.)
- Department of Biochemistry and Molecular Biology, Faculty of Health Sciences, University of Bielsko-Biala, 43-309 Bielsko-Biala, Poland
| | - Alicja M. Chmielewska
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology of UG and MUG, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland; (K.Z.); (A.M.C.)
| | - Paulina Jackowiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznań, Poland (M.F.)
| | - Marek Figlerowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznań, Poland (M.F.)
| | - Krystyna Bienkowska-Szewczyk
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology of UG and MUG, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland; (K.Z.); (A.M.C.)
| |
Collapse
|
6
|
Marković V, Szczepańska A, Berlicki Ł. Antiviral Protein-Protein Interaction Inhibitors. J Med Chem 2024; 67:3205-3231. [PMID: 38394369 PMCID: PMC10945500 DOI: 10.1021/acs.jmedchem.3c01543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 01/04/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Continually repeating outbreaks of pathogenic viruses necessitate the construction of effective antiviral strategies. Therefore, the development of new specific antiviral drugs in a well-established and efficient manner is crucial. Taking into account the strong ability of viruses to change, therapies with diversified molecular targets must be sought. In addition to the widely explored viral enzyme inhibitor approach, inhibition of protein-protein interactions is a very valuable strategy. In this Perspective, protein-protein interaction inhibitors targeting HIV, SARS-CoV-2, HCV, Ebola, Dengue, and Chikungunya viruses are reviewed and discussed. Antibodies, peptides/peptidomimetics, and small molecules constitute three classes of compounds that have been explored, and each of them has some advantages and disadvantages for drug development.
Collapse
Affiliation(s)
- Violeta Marković
- Wrocław
University of Science and Technology, Department
of Bioorganic Chemistry, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
- University
of Kragujevac, Faculty of Science,
Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia
| | - Anna Szczepańska
- Wrocław
University of Science and Technology, Department
of Bioorganic Chemistry, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Łukasz Berlicki
- Wrocław
University of Science and Technology, Department
of Bioorganic Chemistry, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
7
|
Carriquí-Madroñal B, Sheldon J, Duven M, Stegmann C, Cirksena K, Wyler E, Zapatero-Belinchón FJ, Vondran FWR, Gerold G. The matrix metalloproteinase ADAM10 supports hepatitis C virus entry and cell-to-cell spread via its sheddase activity. PLoS Pathog 2023; 19:e1011759. [PMID: 37967063 PMCID: PMC10650992 DOI: 10.1371/journal.ppat.1011759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 10/16/2023] [Indexed: 11/17/2023] Open
Abstract
Hepatitis C virus (HCV) exploits the four entry factors CD81, scavenger receptor class B type I (SR-BI, also known as SCARB1), occludin, and claudin-1 as well as the co-factor epidermal growth factor receptor (EGFR) to infect human hepatocytes. Here, we report that the disintegrin and matrix metalloproteinase 10 (ADAM10) associates with CD81, SR-BI, and EGFR and acts as HCV host factor. Pharmacological inhibition, siRNA-mediated silencing and genetic ablation of ADAM10 reduced HCV infection. ADAM10 was dispensable for HCV replication but supported HCV entry and cell-to-cell spread. Substrates of the ADAM10 sheddase including epidermal growth factor (EGF) and E-cadherin, which activate EGFR family members, rescued HCV infection of ADAM10 knockout cells. ADAM10 did not influence infection with other enveloped RNA viruses such as alphaviruses and a common cold coronavirus. Collectively, our study reveals a critical role for the sheddase ADAM10 as a HCV host factor, contributing to EGFR family member transactivation and as a consequence to HCV uptake.
Collapse
Affiliation(s)
- Belén Carriquí-Madroñal
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hanover, Germany
| | - Julie Sheldon
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hanover, Germany
| | - Mara Duven
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hanover, Germany
| | - Cora Stegmann
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hanover, Germany
| | - Karsten Cirksena
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hanover, Germany
| | - Emanuel Wyler
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Francisco J. Zapatero-Belinchón
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hanover, Germany
- Gladstone Institutes, San Francisco, California, United States of America
| | - Florian W. R. Vondran
- Department of General, Visceral and Transplant Surgery, Regenerative Medicine and Experimental Surgery, Hannover Medical School, Hannover, Germany
- German Center for Infection Research Partner Site Hannover-Braunschweig Hannover, Germany
| | - Gisa Gerold
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hanover, Germany
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hanover, Germany
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
- Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden
| |
Collapse
|
8
|
Patra T, Meyer K, Haga Y, Reagan EK, Weissman D, Ray R. Hepatitis C virus E1 and modified E2 delivered from an mRNA vaccine induces protective immunity. NPJ Vaccines 2023; 8:42. [PMID: 36934116 PMCID: PMC10024013 DOI: 10.1038/s41541-023-00635-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 02/27/2023] [Indexed: 03/20/2023] Open
Abstract
Hepatitis C virus (HCV) is characterized by a high number of chronic cases due to an impairment of protective innate and adaptive immune responses. Here, we examined the contribution of the individual ectodomains of E1, E2, or a modified E2 with reduced CD81 binding and an inserted N-linked glycosylation site in combination as vaccine antigen mRNA-lipid nanoparticles (LNPs). The induction of a protective immune response to surrogate recombinant vaccinia virus (VV) expressing homologous HCV glycoprotein(s) challenge infection in a BALB/c mouse model was observed. Vaccination with a mRNA-LNP expressing soluble E1 (sE1) significantly reduced vv/HCV titer in the mouse ovary. However, the addition of sE2 mRNA-LNP for immunization impaired the efficacy of the sE1 construct. Further analysis showed that Th1 related cytokine responses to the sE1 mRNA-LNP were significantly altered in the presence of sE2 following co-immunization. Evaluation of immunogenicity revealed that the use of modified sE2F442NYT nucleoside mRNA-LNP vaccine results in an improved cellular immune response, IgG2a isotype switching, enhanced total IgG, and an increase in the neutralizing antibody response against HCV pseudotype virus. HCV cross genotype specific reactivity to peptides representing conserved E2 specific linear epitopes were enhanced in modified E2 vaccinated animal sera. In the absence of a suitable immunocompetent small animal model for HCV infection, protection from surrogate HCV vaccinia challenge infection model was observed in the immunized mice as compared to sE1 alone or an unmodified sE2 mRNA-LNP vaccine. Inclusion of sE1 with modified sE2F442NYT as mRNA-LNP vaccine candidate appeared to be beneficial for protection.
Collapse
Affiliation(s)
- Tapas Patra
- Department of Internal Medicine, Saint Louis University, Missouri, MO, 63104, USA
| | - Keith Meyer
- Department of Internal Medicine, Saint Louis University, Missouri, MO, 63104, USA
| | - Yuki Haga
- Department of Internal Medicine, Saint Louis University, Missouri, MO, 63104, USA
| | - Erin K Reagan
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ranjit Ray
- Department of Internal Medicine, Saint Louis University, Missouri, MO, 63104, USA.
- Department of Molecular Microbiology & Immunology, Saint Louis University, Missouri, MO, 63104, USA.
| |
Collapse
|
9
|
Czarnota A, Offersgaard A, Owsianka A, Alzua GP, Bukh J, Gottwein JM, Patel AH, Bieńkowska-Szewczyk K, Grzyb K. Effect of Glycan Shift on Antibodies against Hepatitis C Virus E2 412-425 Epitope Elicited by Chimeric sHBsAg-Based Virus-Like Particles. Microbiol Spectr 2023; 11:e0254622. [PMID: 36719195 PMCID: PMC10100762 DOI: 10.1128/spectrum.02546-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/12/2023] [Indexed: 02/01/2023] Open
Abstract
Two of the most important mechanisms of hepatitis C virus (HCV) immune evasion are the high variability of the amino acid sequence and epitope shielding via heavy glycosylation of the envelope (E) proteins. Previously, we showed that chimeric sHBsAg (hepatitis B virus [HBV] small surface antigen)-based virus-like particles (VLPs) carrying highly conserved epitope I from the HCV E2 glycoprotein (sHBsAg_412-425) elicit broadly neutralizing antibodies (bnAbs). However, many reports have identified escape mutations for such bnAbs that shift the N-glycosylation site from N417 to N415. This shift effectively masks the recognition of epitope I by antibodies raised against the wild-type glycoprotein. To investigate if glycan-shift-mediated immune evasion could be overcome by targeted vaccination strategies, we designed sHBsAg-based VLPs carrying epitope I with an N417S change (sHBsAg_N417S). Studies in BALB/c mice revealed that both sHBsAg_412-425 and sHBsAg_N417S VLPs were immunogenic, eliciting antibodies that recognized peptides encompassing epitope I regardless of the N417S change. However, we observed substantial differences in E1E2 glycoprotein binding and cell culture-derived HCV (HCVcc) neutralization between the sera elicited by sHBsAg_412-425 and those elicited by sHBsAg_N417S VLPs. Our results suggest a complex interplay among antibodies targeting epitope I, the E1E2 glycosylation status, and the epitope or global E1E2 conformation. Additionally, we observed striking similarities in the E1E2 glycoprotein binding patterns and HCVcc neutralization between sHBsAg_412-425 sera and AP33, suggesting that the immunization of mice with sHBsAg_412-425 VLPs can elicit AP33-like antibodies. This study emphasizes the role of antibodies against epitope I and represents an initial effort toward designing an antigen that elicits an immune response against epitope I with a glycan shift change. IMPORTANCE Epitope I, located within amino acids 412 to 423 of the HCV E2 glycoprotein, is an important target for an epitope-based HCV vaccine. One interesting feature of epitope I is the N417 glycosylation site, where a single change to S417 or T417 can shift the glycosylation site to position N415. This shift can effectively prevent the binding of broadly neutralizing antibodies targeting epitope I. Aiming to overcome glycan-shift-mediated immune evasion, we constructed sHBsAg_N417S VLPs carrying E2 epitope I, with N417S, and compared them with VLPs carrying wild-type epitope I. We show that antibodies elicited by the sHBsAg-based VLPs presenting two variants of the 412-425 epitope targeted two distinct glycan variants of the HCV E1E2 heterodimer. Our study suggests that due to the conformational flexibility of the E2 glycoprotein and epitope I, future vaccine antigens should elicit antibodies targeting more than one conformation and glycosylation variant of the 412-423 epitope.
Collapse
Affiliation(s)
- Anna Czarnota
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology of the University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Anna Offersgaard
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital—Hvidovre, Hvidovre, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ania Owsianka
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Garazi Peña Alzua
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital—Hvidovre, Hvidovre, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital—Hvidovre, Hvidovre, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Judith Margarete Gottwein
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital—Hvidovre, Hvidovre, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Arvind H. Patel
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Krystyna Bieńkowska-Szewczyk
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology of the University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Katarzyna Grzyb
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology of the University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
10
|
Sliepen K, Radić L, Capella-Pujol J, Watanabe Y, Zon I, Chumbe A, Lee WH, de Gast M, Koopsen J, Koekkoek S, Del Moral-Sánchez I, Brouwer PJM, Ravichandran R, Ozorowski G, King NP, Ward AB, van Gils MJ, Crispin M, Schinkel J, Sanders RW. Induction of cross-neutralizing antibodies by a permuted hepatitis C virus glycoprotein nanoparticle vaccine candidate. Nat Commun 2022; 13:7271. [PMID: 36434005 PMCID: PMC9700739 DOI: 10.1038/s41467-022-34961-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
Hepatitis C virus (HCV) infection affects approximately 58 million people and causes ~300,000 deaths yearly. The only target for HCV neutralizing antibodies is the highly sequence diverse E1E2 glycoprotein. Eliciting broadly neutralizing antibodies that recognize conserved cross-neutralizing epitopes is important for an effective HCV vaccine. However, most recombinant HCV glycoprotein vaccines, which usually include only E2, induce only weak neutralizing antibody responses. Here, we describe recombinant soluble E1E2 immunogens that were generated by permutation of the E1 and E2 subunits. We displayed the E2E1 immunogens on two-component nanoparticles and these nanoparticles induce significantly more potent neutralizing antibody responses than E2. Next, we generated mosaic nanoparticles co-displaying six different E2E1 immunogens. These mosaic E2E1 nanoparticles elicit significantly improved neutralization compared to monovalent E2E1 nanoparticles. These results provide a roadmap for the generation of an HCV vaccine that induces potent and broad neutralization.
Collapse
Affiliation(s)
- Kwinten Sliepen
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands.
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands.
| | - Laura Radić
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Joan Capella-Pujol
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Yasunori Watanabe
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Ian Zon
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Ana Chumbe
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Wen-Hsin Lee
- Department of Structural Biology and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Marlon de Gast
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Jelle Koopsen
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Sylvie Koekkoek
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Iván Del Moral-Sánchez
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Philip J M Brouwer
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Rashmi Ravichandran
- Department of Biochemistry, University of Washington, Seattle, USA
- Institute for Protein Design, University of Washington, Seattle, USA
| | - Gabriel Ozorowski
- Department of Structural Biology and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Neil P King
- Department of Biochemistry, University of Washington, Seattle, USA
- Institute for Protein Design, University of Washington, Seattle, USA
| | - Andrew B Ward
- Department of Structural Biology and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Marit J van Gils
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Janke Schinkel
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Rogier W Sanders
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands.
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands.
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, USA.
| |
Collapse
|
11
|
Pfaff-Kilgore JM, Davidson E, Kadash-Edmondson K, Hernandez M, Rosenberg E, Chambers R, Castelli M, Clementi N, Mancini N, Bailey JR, Crowe JE, Law M, Doranz BJ. Sites of vulnerability in HCV E1E2 identified by comprehensive functional screening. Cell Rep 2022; 39:110859. [PMID: 35613596 PMCID: PMC9281441 DOI: 10.1016/j.celrep.2022.110859] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 12/08/2021] [Accepted: 05/01/2022] [Indexed: 12/15/2022] Open
Abstract
The E1 and E2 envelope proteins of hepatitis C virus (HCV) form a heterodimer that drives virus-host membrane fusion. Here, we analyze the role of each amino acid in E1E2 function, expressing 545 individual alanine mutants of E1E2 in human cells, incorporating them into infectious viral pseudoparticles, and testing them against 37 different monoclonal antibodies (MAbs) to ascertain full-length translation, folding, heterodimer assembly, CD81 binding, viral pseudoparticle incorporation, and infectivity. We propose a model describing the role of each critical residue in E1E2 functionality and use it to examine how MAbs neutralize infection by exploiting functionally critical sites of vulnerability on E1E2. Our results suggest that E1E2 is a surprisingly fragile protein complex where even a single alanine mutation at 92% of positions disrupts its function. The amino-acid-level targets identified are highly conserved and functionally critical and can be exploited for improved therapies and vaccines.
Collapse
Affiliation(s)
| | - Edgar Davidson
- Integral Molecular, Inc., 3711 Market St, Philadelphia, PA 19104, USA
| | | | - Mayda Hernandez
- Integral Molecular, Inc., 3711 Market St, Philadelphia, PA 19104, USA
| | - Erin Rosenberg
- Integral Molecular, Inc., 3711 Market St, Philadelphia, PA 19104, USA
| | - Ross Chambers
- Integral Molecular, Inc., 3711 Market St, Philadelphia, PA 19104, USA
| | - Matteo Castelli
- Laboratory of Medical Microbiology and Virology, University Vita-Salute San Raffaele, Milan, Italy
| | - Nicola Clementi
- Laboratory of Medical Microbiology and Virology, University Vita-Salute San Raffaele, Milan, Italy; IRCSS San Raffaele Hospital, Milan, Italy
| | - Nicasio Mancini
- Laboratory of Medical Microbiology and Virology, University Vita-Salute San Raffaele, Milan, Italy; IRCSS San Raffaele Hospital, Milan, Italy
| | - Justin R Bailey
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - James E Crowe
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mansun Law
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Benjamin J Doranz
- Integral Molecular, Inc., 3711 Market St, Philadelphia, PA 19104, USA.
| |
Collapse
|
12
|
McKay LGA, Thomas J, Albalawi W, Fattaccioli A, Dieu M, Ruggiero A, McKeating JA, Ball JK, Tarr AW, Renard P, Pollakis G, Paxton WA. The HCV Envelope Glycoprotein Down-Modulates NF-κB Signalling and Associates With Stimulation of the Host Endoplasmic Reticulum Stress Pathway. Front Immunol 2022; 13:831695. [PMID: 35371105 PMCID: PMC8964954 DOI: 10.3389/fimmu.2022.831695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Following acute HCV infection, the virus establishes a chronic disease in the majority of patients whilst few individuals clear the infection spontaneously. The precise mechanisms that determine chronic HCV infection or spontaneous clearance are not completely understood but are proposed to be driven by host and viral genetic factors as well as HCV encoded immunomodulatory proteins. Using the HIV-1 LTR as a tool to measure NF-κB activity, we identified that the HCV E1E2 glycoproteins and more so the E2 protein down-modulates HIV-1 LTR activation in 293T, TZM-bl and the more physiologically relevant Huh7 liver derived cell line. We demonstrate this effect is specifically mediated through inhibiting NF-κB binding to the LTR and show that this effect was conserved for all HCV genotypes tested. Transcriptomic analysis of 293T cells expressing the HCV glycoproteins identified E1E2 mediated stimulation of the endoplasmic reticulum (ER) stress response pathway and upregulation of stress response genes such as ATF3. Through shRNA mediated inhibition of ATF3, one of the components, we observed that E1E2 mediated inhibitory effects on HIV-1 LTR activity was alleviated. Our in vitro studies demonstrate that HCV Env glycoprotein activates host ER Stress Pathways known to inhibit NF-κB activity. This has potential implications for understanding HCV induced immune activation as well as oncogenesis.
Collapse
Affiliation(s)
- Lindsay G. A. McKay
- Department of Clinical Infection, Microbiology and Immunology, Institute of Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Jordan Thomas
- Department of Clinical Infection, Microbiology and Immunology, Institute of Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Wejdan Albalawi
- Department of Clinical Infection, Microbiology and Immunology, Institute of Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Antoine Fattaccioli
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Marc Dieu
- MaSUN, Mass Spectrometry Facility, University of Namur (UNamur), Namur, Belgium
| | - Alessandra Ruggiero
- Department of Clinical Infection, Microbiology and Immunology, Institute of Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Jane A. McKeating
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jonathan K. Ball
- Wolfson Centre for Global Virus Research and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Alexander W. Tarr
- Wolfson Centre for Global Virus Research and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Patricia Renard
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium,MaSUN, Mass Spectrometry Facility, University of Namur (UNamur), Namur, Belgium
| | - Georgios Pollakis
- Department of Clinical Infection, Microbiology and Immunology, Institute of Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - William A. Paxton
- Department of Clinical Infection, Microbiology and Immunology, Institute of Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom,*Correspondence: William A. Paxton,
| |
Collapse
|
13
|
Wang R, Suzuki S, Guest JD, Heller B, Almeda M, Andrianov AK, Marin A, Mariuzza RA, Keck ZY, Foung SKH, Yunus AS, Pierce BG, Toth EA, Ploss A, Fuerst TR. Induction of broadly neutralizing antibodies using a secreted form of the hepatitis C virus E1E2 heterodimer as a vaccine candidate. Proc Natl Acad Sci U S A 2022; 119:e2112008119. [PMID: 35263223 PMCID: PMC8931252 DOI: 10.1073/pnas.2112008119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 01/19/2022] [Indexed: 11/26/2022] Open
Abstract
SignificanceHepatitis C virus chronically infects approximately 1% of the world's population, making an effective vaccine for hepatitis C virus a major unmet public health need. The membrane-associated E1E2 envelope glycoprotein has been used in clinical studies as a vaccine candidate. However, limited neutralization breadth and difficulty in producing large amounts of homogeneous membrane-associated E1E2 have hampered efforts to develop an E1E2-based vaccine. Our previous work described the design and biochemical validation of a native-like soluble secreted form of E1E2 (sE1E2). Here, we describe the immunogenic characterization of the sE1E2 complex. sE1E2 elicited broadly neutralizing antibodies in immunized mice, with increased neutralization breadth relative to the membrane-associated E1E2, thereby validating this platform as a promising model system for vaccine development.
Collapse
Affiliation(s)
- Ruixue Wang
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
| | - Saori Suzuki
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540
| | - Johnathan D. Guest
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Brigitte Heller
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540
| | - Maricar Almeda
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540
| | - Alexander K. Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
| | - Alexander Marin
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
| | - Roy A. Mariuzza
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Zhen-Yong Keck
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
| | - Steven K. H. Foung
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
| | - Abdul S. Yunus
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
| | - Brian G. Pierce
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Eric A. Toth
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540
| | - Thomas R. Fuerst
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| |
Collapse
|
14
|
Salas JH, Urbanowicz RA, Guest JD, Frumento N, Figueroa A, Clark KE, Keck Z, Cowton VM, Cole SJ, Patel AH, Fuerst TR, Drummer HE, Major M, Tarr AW, Ball JK, Law M, Pierce BG, Foung SKH, Bailey JR. An Antigenically Diverse, Representative Panel of Envelope Glycoproteins for Hepatitis C Virus Vaccine Development. Gastroenterology 2022; 162:562-574. [PMID: 34655573 PMCID: PMC8792218 DOI: 10.1053/j.gastro.2021.10.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS Development of a prophylactic hepatitis C virus (HCV) vaccine will require accurate and reproducible measurement of neutralizing breadth of vaccine-induced antibodies. Currently available HCV panels may not adequately represent the genetic and antigenic diversity of circulating HCV strains, and the lack of standardization of these panels makes it difficult to compare neutralization results obtained in different studies. Here, we describe the selection and validation of a genetically and antigenically diverse reference panel of 15 HCV pseudoparticles (HCVpps) for neutralization assays. METHODS We chose 75 envelope (E1E2) clones to maximize representation of natural polymorphisms observed in circulating HCV isolates, and 65 of these clones generated functional HCVpps. Neutralization sensitivity of these HCVpps varied widely. HCVpps clustered into 15 distinct groups based on patterns of relative sensitivity to 7 broadly neutralizing monoclonal antibodies. We used these data to select a final panel of 15 antigenically representative HCVpps. RESULTS Both the 65 and 15 HCVpp panels span 4 tiers of neutralization sensitivity, and neutralizing breadth measurements for 7 broadly neutralizing monoclonal antibodies were nearly equivalent using either panel. Differences in neutralization sensitivity between HCVpps were independent of genetic distances between E1E2 clones. CONCLUSIONS Neutralizing breadth of HCV antibodies should be defined using viruses spanning multiple tiers of neutralization sensitivity rather than panels selected solely for genetic diversity. We propose that this multitier reference panel could be adopted as a standard for the measurement of neutralizing antibody potency and breadth, facilitating meaningful comparisons of neutralization results from vaccine studies in different laboratories.
Collapse
Affiliation(s)
- Jordan H Salas
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Richard A Urbanowicz
- School of Life Sciences, Faculty of Medicine and Health Sciences, The University of Nottingham, Nottingham, United Kingdom; Wolfson Centre for Global Virus Research, The University of Nottingham, Nottingham, United Kingdom; National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham University Hospitals National Health Service Trust, Nottingham, United Kingdom
| | - Johnathan D Guest
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland
| | - Nicole Frumento
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alexis Figueroa
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kaitlyn E Clark
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Zhenyong Keck
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Vanessa M Cowton
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Sarah J Cole
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Arvind H Patel
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Thomas R Fuerst
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland
| | - Heidi E Drummer
- Viral Entry and Vaccines Group, Burnet Institute, Melbourne, Victoria, Australia; Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia; Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Marian Major
- Division of Viral Products, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland
| | - Alexander W Tarr
- School of Life Sciences, Faculty of Medicine and Health Sciences, The University of Nottingham, Nottingham, United Kingdom; Wolfson Centre for Global Virus Research, The University of Nottingham, Nottingham, United Kingdom; National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham University Hospitals National Health Service Trust, Nottingham, United Kingdom
| | - Jonathan K Ball
- School of Life Sciences, Faculty of Medicine and Health Sciences, The University of Nottingham, Nottingham, United Kingdom; Wolfson Centre for Global Virus Research, The University of Nottingham, Nottingham, United Kingdom; National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham University Hospitals National Health Service Trust, Nottingham, United Kingdom
| | - Mansun Law
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California
| | - Brian G Pierce
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland
| | - Steven K H Foung
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Justin R Bailey
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
15
|
Yato K, Matsuda M, Watanabe N, Watashi K, Aizaki H, Kato T, Tamura K, Wakita T, Muramatsu M, Suzuki R. Induction of neutralizing antibodies against hepatitis C virus by a subviral particle-based DNA vaccine. Antiviral Res 2022; 199:105266. [DOI: 10.1016/j.antiviral.2022.105266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/09/2022] [Accepted: 02/17/2022] [Indexed: 12/26/2022]
|
16
|
Dobrica M, van Eerde A, Tucureanu C, Onu A, Paruch L, Caras I, Vlase E, Steen H, Haugslien S, Alonzi D, Zitzmann N, Bock R, Dubuisson J, Popescu C, Stavaru C, Liu Clarke J, Branza‐Nichita N. Hepatitis C virus E2 envelope glycoprotein produced in Nicotiana benthamiana triggers humoral response with virus-neutralizing activity in vaccinated mice. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2027-2039. [PMID: 34002936 PMCID: PMC8486241 DOI: 10.1111/pbi.13631] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 04/27/2021] [Accepted: 05/13/2021] [Indexed: 05/03/2023]
Abstract
Chronic infection with hepatitis C virus (HCV) remains a leading cause of liver-related pathologies and a global health problem, currently affecting more than 71 million people worldwide. The development of a prophylactic vaccine is much needed to complement the effective antiviral treatment available and achieve HCV eradication. Current strategies focus on increasing the immunogenicity of the HCV envelope glycoprotein E2, the major target of virus-neutralizing antibodies, by testing various expression systems or manipulating the protein conformation and the N-glycosylation pattern. Here we report the first evidence of successful production of the full-length HCV E2 glycoprotein in Nicotiana benthamiana, by using the Agrobacterium-mediated transient expression technology. Molecular and functional analysis showed that the viral protein was correctly processed in plant cells and achieved the native folding required for binding to CD81, one of the HCV receptors. N-glycan analysis of HCV-E2 produced in N. benthamiana and mammalian cells indicated host-specific trimming of mannose residues and possibly, protein trafficking. Notably, the plant-derived viral antigen triggered a significant immune response in vaccinated mice, characterized by the presence of antibodies with HCV-neutralizing activity. Together, our study demonstrates that N. benthamiana is a viable alternative to costly mammalian cell cultures for the expression of complex viral antigens and supports the use of plants as cost-effective production platforms for the development of HCV vaccines.
Collapse
Affiliation(s)
| | | | - Catalin Tucureanu
- Cantacuzino” Medico‐Military National Research InstituteBucharestRomania
| | - Adrian Onu
- Cantacuzino” Medico‐Military National Research InstituteBucharestRomania
| | - Lisa Paruch
- NIBIO ‐ Norwegian Institute of Bioeconomy ResearchÅsNorway
| | - Iuliana Caras
- Cantacuzino” Medico‐Military National Research InstituteBucharestRomania
| | - Ene Vlase
- Cantacuzino” Medico‐Military National Research InstituteBucharestRomania
| | - Hege Steen
- NIBIO ‐ Norwegian Institute of Bioeconomy ResearchÅsNorway
| | | | - Dominic Alonzi
- Oxford Glycobiology InstituteDepartment of BiochemistryUniversity of OxfordOxfordUK
| | - Nicole Zitzmann
- Oxford Glycobiology InstituteDepartment of BiochemistryUniversity of OxfordOxfordUK
| | - Ralph Bock
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Jean Dubuisson
- Université LilleCNRSINSERMCHU LilleInstitut Pasteur de LilleU1019‐UMR 9017‐CIIL‐Center for Infection and Immunity of LilleLilleFrance
| | | | - Crina Stavaru
- Cantacuzino” Medico‐Military National Research InstituteBucharestRomania
| | | | | |
Collapse
|
17
|
Challenges and Prospects of Plant-Derived Oral Vaccines against Hepatitis B and C Viruses. PLANTS 2021; 10:plants10102037. [PMID: 34685844 PMCID: PMC8537828 DOI: 10.3390/plants10102037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/13/2021] [Accepted: 09/23/2021] [Indexed: 12/20/2022]
Abstract
Hepatitis B and C viruses chronically affect approximately 3.5% of the global population, causing more than 800,000 deaths yearly due to severe liver pathogenesis. Current HBV vaccines have significantly contributed to the reduction of chronic HBV infections, supporting the notion that virus eradication is a feasible public health objective in the near future. In contrast to HBV, a prophylactic vaccine against HCV infection is not available yet; however, intense research efforts within the last decade have significantly advanced the field and several vaccine candidates are shortlisted for clinical trials. A successful vaccine against an infectious disease of global importance must not only be efficient and safe, but also easy to produce, distribute, administer, and economically affordable to ensure appropriate coverage. Some of these requirements could be fulfilled by oral vaccines that could complement traditional immunization strategies. In this review, we discuss the potential of edible plant-based oral vaccines in assisting the worldwide fight against hepatitis B and C infections. We highlight the latest research efforts to reveal the potential of oral vaccines, discuss novel antigen designs and delivery strategies, as well as the limitations and controversies of oral administration that remain to be addressed to make this approach successful.
Collapse
|
18
|
Two New Purification Methods of Hepatitis C Virus Particles from Serum-Free Culture System. HEPATITIS MONTHLY 2021. [DOI: 10.5812/hepatmon.115727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Background: The traditional ultracentrifugation purification method of hepatitis C virus (HCV) particles requires special equipment, limiting its wide application. Therefore, more effective and convenient methods for HCV are needed. Objectives: The present study aimed to establish simple and effective purification methods for HCV. Methods: The infectious clone of the HCV genome (JFH-1) was transfected to the human hepatoma cell line (Huh7.5.1) and cultured in Dulbecco’s modified eagle medium/nutrient mixture F-12. The infectivity of JFH-1 culture was determined by reverse transcription-quantitative polymerase chain reaction and immunofluorescence. After concentration by centrifugal filter devices, HCV particles were purified by heparin-affinity chromatography and magnetic separation technique. The purified viruses were detected by the western blot and immune-electron microscopy. Results: The infectious titer of JFH-1 transfected Huh7.5.1 in the serum-free culture medium was 4.5 × 104 FFU/mL, and HCV ribonucleic acid load was 3.946 × 106 IU/mL in 30 days of cell culture post-transfection. After purification by heparin-affinity chromatography or magnetic separation method, viral particles were visualized with spherical morphology and an average diameter of 55 nm assessed by electron microscopy. The viruses were confirmed by the western blot and immune-electron microscopy with specific antibodies to HCV. Conclusions: The heparin-affinity chromatography and magnetic separation methods were established for the purification of HCV, which were simple and efficient methods for the stable purification of HCV particles on a large scale.
Collapse
|
19
|
Characterization of linear epitope specificity of antibodies potentially contributing to spontaneous clearance of hepatitis C virus. PLoS One 2021; 16:e0256816. [PMID: 34449828 PMCID: PMC8396737 DOI: 10.1371/journal.pone.0256816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 08/16/2021] [Indexed: 11/19/2022] Open
Abstract
Background Around 30% of the HCV infected patients can spontaneously clear the virus. Cumulative evidence suggests the role of neutralizing antibodies in such spontaneous resolution. Understanding the epitope specificity of such antibodies will inform the rational vaccine design as such information is limited to date. In addition to conformational epitope targeted antibodies, linear epitope specific antibodies have been identified that are broadly cross reactive against diverse HCV strains. In this study, we have characterized the potential role of three conserved linear epitopes in the spontaneous clearance of HCV. Methods We tested the reactivity of sera from chronic patients (CP) and spontaneous resolvers (SR) with linear peptides corresponding to three conserved regions of HCV envelope protein E2 spanning amino acids 412–423, 523–532 and 432–443 using ELISA. Subsequently, we characterized the dependency of HCV neutralization by the reactive serum samples on the antibodies specific for these epitopes using pseudoparticle-based neutralization assay. In ELISA most of the CP sera showed reactivity to multiple peptides while most of the SR samples were reactive to a single peptide suggesting presence of more specific antibodies in the SR sera. In most of the HCVpp neutralizing sera of particular peptide reactivity the neutralization was significantly affected by the presence of respective peptide. HCV neutralization by CP sera was affected by multiple peptides while 75% of the HCVpp neutralizing SR sera were competed by the 432 epitope. Conclusions These findings suggest that individuals who spontaneously resolve HCV infection at the acute phase, can produce antibodies specific for conserved linear epitopes, and those antibodies can potentially play a role in the spontaneous viral clearance. The epitope present in the 432–443 region of E2 was identified as the primary neutralizing epitope with potential role in spontaneous viral clearance and this epitope potentiates for the design of immunogen for prophylactic vaccine.
Collapse
|
20
|
Antigenic and immunogenic evaluation of permutations of soluble hepatitis C virus envelope protein E2 and E1 antigens. PLoS One 2021; 16:e0255336. [PMID: 34329365 PMCID: PMC8323887 DOI: 10.1371/journal.pone.0255336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/14/2021] [Indexed: 01/25/2023] Open
Abstract
Yearly, about 1.5 million people become chronically infected with hepatitis C virus (HCV) and for the 71 million with chronic HCV infection about 400,000 die from related morbidities, including liver cirrhosis and cancer. Effective treatments exist, but challenges including cost-of-treatment and wide-spread undiagnosed infection, necessitates the development of vaccines. Vaccines should induce neutralizing antibodies (NAbs) against the HCV envelope (E) transmembrane glycoprotein 2, E2, which partly depends on its interaction partner, E1, for folding. Here, we generated three soluble HCV envelope protein antigens with the transmembrane regions deleted (i.e., fused peptide backbones), termed sE1E2 (E1 followed by E2), sE2E1 (E2 followed by E1), and sE21E (E2 followed by inverted E1). The E1 inversion for sE21E positions C-terminal residues of E1 near C-terminal residues of E2, which is in analogy to how they likely interact in native E1/E2 complexes. Probing conformational E2 epitope binding using HCV patient-derived human monoclonal antibodies, we show that sE21E was superior to sE2E1, which was consistently superior to sE1E2. This correlated with improved induction of NAbs by sE21E compared with sE2E1 and especially compared with sE1E2 in female BALB/c mouse immunizations. The deletion of the 27 N-terminal amino acids of E2, termed hypervariable region 1 (HVR1), conferred slight increases in antigenicity for sE2E1 and sE21E, but severely impaired induction of antibodies able to neutralize in vitro viruses retaining HVR1. Finally, comparing sE21E with sE2 in mouse immunizations, we show similar induction of heterologous NAbs. In summary, we find that C-terminal E2 fusion of E1 or 1E is superior to N-terminal fusion, both in terms of antigenicity and the induction of heterologous NAbs. This has relevance when designing HCV E1E2 vaccine antigens.
Collapse
|
21
|
Brasher NA, Adhikari A, Lloyd AR, Tedla N, Bull RA. Hepatitis C Virus Epitope Immunodominance and B Cell Repertoire Diversity. Viruses 2021; 13:v13060983. [PMID: 34070572 PMCID: PMC8229270 DOI: 10.3390/v13060983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/02/2022] Open
Abstract
Despite the advent of effective, curative treatments for hepatitis C virus (HCV), a preventative vaccine remains essential for the global elimination of HCV. It is now clear that the induction of broadly neutralising antibodies (bNAbs) is essential for the rational design of such a vaccine. This review details the current understanding of epitopes on the HCV envelope, characterising the potency, breadth and immunodominance of antibodies induced against these epitopes, as well as describing the interactions between B-cell receptors and HCV infection, with a particular focus on bNAb heavy and light chain variable gene usage. Additionally, we consider the importance of a public repertoire for antibodies against HCV, compiling current knowledge and suggesting that further research in this area may be critical to the rational design of an effective HCV vaccine.
Collapse
Affiliation(s)
- Nicholas A. Brasher
- Faculty of Medicine, School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia; (N.A.B.); (A.A.); (N.T.)
- The Kirby Institute, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2052, Australia;
| | - Anurag Adhikari
- Faculty of Medicine, School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia; (N.A.B.); (A.A.); (N.T.)
- The Kirby Institute, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2052, Australia;
- Department of Infection and Immunology, Kathmandu Research Institute for Biological Sciences, Lalitpur 44700, Nepal
| | - Andrew R. Lloyd
- The Kirby Institute, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2052, Australia;
| | - Nicodemus Tedla
- Faculty of Medicine, School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia; (N.A.B.); (A.A.); (N.T.)
| | - Rowena A. Bull
- Faculty of Medicine, School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia; (N.A.B.); (A.A.); (N.T.)
- The Kirby Institute, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2052, Australia;
- Correspondence:
| |
Collapse
|
22
|
From Structural Studies to HCV Vaccine Design. Viruses 2021; 13:v13050833. [PMID: 34064532 PMCID: PMC8147963 DOI: 10.3390/v13050833] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/21/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is a serious and growing public health problem despite recent developments of antiviral therapeutics. To achieve global elimination of HCV, an effective cross-genotype vaccine is needed. The failure of previous vaccination trials to elicit an effective cross-reactive immune response demands better vaccine antigens to induce a potent cross-neutralizing response to improve vaccine efficacy. HCV E1 and E2 envelope (Env) glycoproteins are the main targets for neutralizing antibodies (nAbs), which aid in HCV clearance and protection. Therefore, a molecular-level understanding of the nAb responses against HCV is imperative for the rational design of cross-genotype vaccine antigens. Here we summarize the recent advances in structural studies of HCV Env and Env-nAb complexes and how they improve our understanding of immune recognition of HCV. We review the structural data defining HCV neutralization epitopes and conformational plasticity of the Env proteins, and the knowledge applicable to rational vaccine design.
Collapse
|
23
|
Velázquez-Moctezuma R, Augestad EH, Castelli M, Holmboe Olesen C, Clementi N, Clementi M, Mancini N, Prentoe J. Mechanisms of Hepatitis C Virus Escape from Vaccine-Relevant Neutralizing Antibodies. Vaccines (Basel) 2021; 9:291. [PMID: 33804732 PMCID: PMC8004074 DOI: 10.3390/vaccines9030291] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/15/2022] Open
Abstract
Hepatitis C virus (HCV) is a major causative agent of acute and chronic hepatitis. It is estimated that 400,000 people die every year from chronic HCV infection, mostly from severe liver-related diseases such as cirrhosis and liver cancer. Although HCV was discovered more than 30 years ago, an efficient prophylactic vaccine is still missing. The HCV glycoprotein complex, E1/E2, is the principal target of neutralizing antibodies (NAbs) and, thus, is an attractive antigen for B-cell vaccine design. However, the high genetic variability of the virus necessitates the identification of conserved epitopes. Moreover, the high intrinsic mutational capacity of HCV allows the virus to continually escape broadly NAbs (bNAbs), which is likely to cause issues with vaccine-resistant variants. Several studies have assessed the barrier-to-resistance of vaccine-relevant bNAbs in vivo and in vitro. Interestingly, recent studies have suggested that escape substitutions can confer antibody resistance not only by direct modification of the epitope but indirectly through allosteric effects, which can be grouped based on the breadth of these effects on antibody susceptibility. In this review, we summarize the current understanding of HCV-specific NAbs, with a special focus on vaccine-relevant bNAbs and their targets. We highlight antibody escape studies pointing out the different methodologies and the escape mutations identified thus far. Finally, we analyze the antibody escape mechanisms of envelope protein escape substitutions and polymorphisms according to the most recent evidence in the HCV field. The accumulated knowledge in identifying bNAb epitopes as well as assessing barriers to resistance and elucidating relevant escape mechanisms may prove critical in the successful development of an HCV B-cell vaccine.
Collapse
Affiliation(s)
- Rodrigo Velázquez-Moctezuma
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (R.V.-M.); (E.H.A.); (C.H.O.)
- Department of Infectious Diseases, Hvidovre Hospital, 2650 Hvidovre, Denmark
| | - Elias H. Augestad
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (R.V.-M.); (E.H.A.); (C.H.O.)
- Department of Infectious Diseases, Hvidovre Hospital, 2650 Hvidovre, Denmark
| | - Matteo Castelli
- Laboratory of Microbiology and Virology, Università “Vita-Salute” San Raffaele, 20132 Milano, Italy; (M.C.); (N.C.); (M.C.); (N.M.)
| | - Christina Holmboe Olesen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (R.V.-M.); (E.H.A.); (C.H.O.)
- Department of Infectious Diseases, Hvidovre Hospital, 2650 Hvidovre, Denmark
| | - Nicola Clementi
- Laboratory of Microbiology and Virology, Università “Vita-Salute” San Raffaele, 20132 Milano, Italy; (M.C.); (N.C.); (M.C.); (N.M.)
| | - Massimo Clementi
- Laboratory of Microbiology and Virology, Università “Vita-Salute” San Raffaele, 20132 Milano, Italy; (M.C.); (N.C.); (M.C.); (N.M.)
| | - Nicasio Mancini
- Laboratory of Microbiology and Virology, Università “Vita-Salute” San Raffaele, 20132 Milano, Italy; (M.C.); (N.C.); (M.C.); (N.M.)
| | - Jannick Prentoe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (R.V.-M.); (E.H.A.); (C.H.O.)
- Department of Infectious Diseases, Hvidovre Hospital, 2650 Hvidovre, Denmark
| |
Collapse
|
24
|
Abstract
Antibody responses in hepatitis C virus (HCV) have been a rather mysterious research topic for many investigators working in the field. Chronic HCV infection is often associated with dysregulation of immune functions particularly in B cells, leading to abnormal lymphoproliferation or the production of autoantibodies that exacerbate inflammation and extrahepatic diseases. When considering the antiviral function of antibody, it was difficult to endorse its role in HCV protection, whereas T-cell response has been shown unequivocally critical for natural recovery. Recent breakthroughs in the study of HCV and antigen-specific antibody responses provide important insights into viral vulnerability to antibodies and the immunogenetic and structural properties of the neutralizing antibodies. The new knowledge reinvigorates HCV vaccine research by illuminating a new path for the rational design of vaccine antigens to elicit broadly neutralizing antibodies for protection.
Collapse
Affiliation(s)
- Mansun Law
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California 92109, USA
| |
Collapse
|
25
|
Meuleman TJ, Cowton VM, Patel AH, Liskamp RMJ. Design and Synthesis of HCV-E2 Glycoprotein Epitope Mimics in Molecular Construction of Potential Synthetic Vaccines. Viruses 2021; 13:v13020326. [PMID: 33672697 PMCID: PMC7924389 DOI: 10.3390/v13020326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/10/2021] [Accepted: 02/13/2021] [Indexed: 12/30/2022] Open
Abstract
Hepatitis C virus remains a global threat, despite the availability of highly effective direct-acting antiviral (DAA) drugs. With thousands of new infections annually, the need for a prophylactic vaccine is evident. However, traditional vaccine design has been unable to provide effective vaccines so far. Therefore, alternative strategies need to be investigated. In this work, a chemistry-based approach is explored towards fully synthetic peptide-based vaccines using epitope mimicry, by focusing on highly effective and conserved amino acid sequences in HCV, which, upon antibody binding, inhibit its bio-activity. Continuous and discontinuous epitope mimics were both chemically synthesized based on the HCV-E2 glycoprotein while using designed fully synthetic cyclic peptides. These cyclic epitope mimics were assembled on an orthogonally protected scaffold. The scaffolded epitope mimics have been assessed in immunization experiments to investigate the elicitation of anti-HCV-E2 glycoprotein antibodies. The neutralizing potential of the elicited antibodies was investigated, representing a first step in employing chemically synthesized epitope mimics as a novel strategy towards vaccine design.
Collapse
Affiliation(s)
- Theodorus J. Meuleman
- School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow G12 8QQ, UK;
- Enzytag, Daelderweg, 9 6361 HK Nuth, The Netherlands
| | - Vanessa M. Cowton
- MRC-University of Glasgow Centre for Virus Research, Garscube Campus, Sir Michael Stoker Building, 464 Bearsden Road, Glasgow G61 1QH, UK;
| | - Arvind H. Patel
- MRC-University of Glasgow Centre for Virus Research, Garscube Campus, Sir Michael Stoker Building, 464 Bearsden Road, Glasgow G61 1QH, UK;
- Correspondence: (A.H.P.); (R.M.J.L.)
| | - Rob M. J. Liskamp
- School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow G12 8QQ, UK;
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Faculty of Health, Medicine and Life Sciences, Maastricht UMC, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
- Chemical Biology and Drug Discovery, Department of Pharmaceutics, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
- Cristal Therapeutics, Oxfordlaan 55, 6229 EV Maastricht, The Netherlands
- Correspondence: (A.H.P.); (R.M.J.L.)
| |
Collapse
|
26
|
Cowton VM, Owsianka AM, Fadda V, Ortega-Prieto AM, Cole SJ, Potter JA, Skelton JK, Jeffrey N, Di Lorenzo C, Dorner M, Taylor GL, Patel AH. Development of a structural epitope mimic: an idiotypic approach to HCV vaccine design. NPJ Vaccines 2021; 6:7. [PMID: 33420102 PMCID: PMC7794244 DOI: 10.1038/s41541-020-00269-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 12/08/2020] [Indexed: 02/08/2023] Open
Abstract
HCV vaccine development is stymied by the high genetic diversity of the virus and the variability of the envelope glycoproteins. One strategy to overcome this is to identify conserved, functionally important regions—such as the epitopes of broadly neutralizing antibodies (bNAbs)—and use these as a basis for structure-based vaccine design. Here, we report an anti-idiotype approach that has generated an antibody that mimics a highly conserved neutralizing epitope on HCV E2. Crucially, a mutagenesis screen was used to identify the antibody, designated B2.1 A, whose binding characteristics to the bNAb AP33 closely resemble those of the original antigen. Protein crystallography confirmed that B2.1 A is a structural mimic of the AP33 epitope. When used as an immunogen B2.1 A induced antibodies that recognized the same epitope and E2 residues as AP33 and most importantly protected against HCV challenge in a mouse model.
Collapse
Affiliation(s)
- Vanessa M Cowton
- MRC-University of Glasgow Centre for Virus Research, Garscube Campus, 464 Bearsden Road, Glasgow, UK
| | - Ania M Owsianka
- MRC-University of Glasgow Centre for Virus Research, Garscube Campus, 464 Bearsden Road, Glasgow, UK
| | - Valeria Fadda
- Biomedical Sciences Research Complex, University of St. Andrews, Fife, UK
| | | | - Sarah J Cole
- MRC-University of Glasgow Centre for Virus Research, Garscube Campus, 464 Bearsden Road, Glasgow, UK
| | - Jane A Potter
- Biomedical Sciences Research Complex, University of St. Andrews, Fife, UK
| | - Jessica K Skelton
- Section of Virology, Department of Medicine, Imperial College London, London, UK
| | - Nathan Jeffrey
- MRC-University of Glasgow Centre for Virus Research, Garscube Campus, 464 Bearsden Road, Glasgow, UK
| | - Caterina Di Lorenzo
- MRC-University of Glasgow Centre for Virus Research, Garscube Campus, 464 Bearsden Road, Glasgow, UK
| | - Marcus Dorner
- Section of Virology, Department of Medicine, Imperial College London, London, UK
| | - Garry L Taylor
- Biomedical Sciences Research Complex, University of St. Andrews, Fife, UK
| | - Arvind H Patel
- MRC-University of Glasgow Centre for Virus Research, Garscube Campus, 464 Bearsden Road, Glasgow, UK.
| |
Collapse
|
27
|
Palor M, Stejskal L, Mandal P, Lenman A, Alberione MP, Kirui J, Moeller R, Ebner S, Meissner F, Gerold G, Shepherd AJ, Grove J. Cholesterol sensing by CD81 is important for hepatitis C virus entry. J Biol Chem 2020; 295:16931-16948. [PMID: 32900848 PMCID: PMC7863897 DOI: 10.1074/jbc.ra120.014761] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/11/2020] [Indexed: 01/12/2023] Open
Abstract
CD81 plays a central role in a variety of physiological and pathological processes. Recent structural analysis of CD81 indicates that it contains an intramembrane cholesterol-binding pocket and that interaction with cholesterol may regulate a conformational switch in the large extracellular domain of CD81. Therefore, CD81 possesses a potential cholesterol-sensing mechanism; however, its relevance for protein function is thus far unknown. In this study we investigate CD81 cholesterol sensing in the context of its activity as a receptor for hepatitis C virus (HCV). Structure-led mutagenesis of the cholesterol-binding pocket reduced CD81-cholesterol association but had disparate effects on HCV entry, both reducing and enhancing CD81 receptor activity. We reasoned that this could be explained by alterations in the consequences of cholesterol binding. To investigate this further we performed molecular dynamic simulations of CD81 with and without cholesterol; this identified a potential allosteric mechanism by which cholesterol binding regulates the conformation of CD81. To test this, we designed further mutations to force CD81 into either the open (cholesterol-unbound) or closed (cholesterol-bound) conformation. The open mutant of CD81 exhibited reduced HCV receptor activity, whereas the closed mutant enhanced activity. These data are consistent with cholesterol sensing switching CD81 between a receptor active and inactive state. CD81 interactome analysis also suggests that conformational switching may modulate the assembly of CD81-partner protein networks. This work furthers our understanding of the molecular mechanism of CD81 cholesterol sensing, how this relates to HCV entry, and CD81's function as a molecular scaffold; these insights are relevant to CD81's varied roles in both health and disease.
Collapse
Affiliation(s)
- Machaela Palor
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College, London, United Kingdom
| | - Lenka Stejskal
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College, London, United Kingdom; Institute of Structural and Molecular Biology, Birkbeck College, London, United Kingdom
| | - Piya Mandal
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College, London, United Kingdom
| | - Annasara Lenman
- Department of Clinical Microbiology, Virology & Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden; Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - María Pía Alberione
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Jared Kirui
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Rebecca Moeller
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Stefan Ebner
- Experimental Systems Immunology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Felix Meissner
- Experimental Systems Immunology, Max Planck Institute of Biochemistry, Martinsried, Germany; Institute of Innate Immunity, Department of Systems Immunology and Proteomics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Gisa Gerold
- Department of Clinical Microbiology, Virology & Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden; Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany; Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Adrian J Shepherd
- Institute of Structural and Molecular Biology, Birkbeck College, London, United Kingdom
| | - Joe Grove
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College, London, United Kingdom.
| |
Collapse
|
28
|
Pierce BG, Keck ZY, Wang R, Lau P, Garagusi K, Elkholy K, Toth EA, Urbanowicz RA, Guest JD, Agnihotri P, Kerzic MC, Marin A, Andrianov AK, Ball JK, Mariuzza RA, Fuerst TR, Foung SKH. Structure-Based Design of Hepatitis C Virus E2 Glycoprotein Improves Serum Binding and Cross-Neutralization. J Virol 2020; 94:e00704-20. [PMID: 32878891 PMCID: PMC7592221 DOI: 10.1128/jvi.00704-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/20/2020] [Indexed: 12/22/2022] Open
Abstract
An effective vaccine for hepatitis C virus (HCV) is a major unmet need, and it requires an antigen that elicits immune responses to key conserved epitopes. Based on structures of antibodies targeting HCV envelope glycoprotein E2, we designed immunogens to modulate the structure and dynamics of E2 and favor induction of broadly neutralizing antibodies (bNAbs) in the context of a vaccine. These designs include a point mutation in a key conserved antigenic site to stabilize its conformation, as well as redesigns of an immunogenic region to add a new N-glycosylation site and mask it from antibody binding. Designs were experimentally characterized for binding to a panel of human monoclonal antibodies (HMAbs) and the coreceptor CD81 to confirm preservation of epitope structure and preferred antigenicity profile. Selected E2 designs were tested for immunogenicity in mice, with and without hypervariable region 1, which is an immunogenic region associated with viral escape. One of these designs showed improvement in polyclonal immune serum binding to HCV pseudoparticles and neutralization of isolates associated with antibody resistance. These results indicate that antigen optimization through structure-based design of the envelope glycoproteins is a promising route to an effective vaccine for HCV.IMPORTANCE Hepatitis C virus infects approximately 1% of the world's population, and no vaccine is currently available. Due to the high variability of HCV and its ability to actively escape the immune response, a goal of HCV vaccine design is to induce neutralizing antibodies that target conserved epitopes. Here, we performed structure-based design of several epitopes of the HCV E2 envelope glycoprotein to engineer its antigenic properties. Designs were tested in vitro and in vivo, demonstrating alteration of the E2 antigenic profile in several cases, and one design led to improvement of cross-neutralization of heterologous viruses. This represents a proof of concept that rational engineering of HCV envelope glycoproteins can be used to modulate E2 antigenicity and optimize a vaccine for this challenging viral target.
Collapse
Affiliation(s)
- Brian G Pierce
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Zhen-Yong Keck
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Ruixue Wang
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
| | - Patrick Lau
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Kyle Garagusi
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
| | - Khadija Elkholy
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
| | - Eric A Toth
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
| | - Richard A Urbanowicz
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, United Kingdom
| | - Johnathan D Guest
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Pragati Agnihotri
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Melissa C Kerzic
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Alexander Marin
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
| | - Alexander K Andrianov
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
| | - Jonathan K Ball
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, United Kingdom
| | - Roy A Mariuzza
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Thomas R Fuerst
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Steven K H Foung
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
29
|
A Novel Approach To Display Structural Proteins of Hepatitis C Virus Quasispecies in Patients Reveals a Key Role of E2 HVR1 in Viral Evolution. J Virol 2020; 94:JVI.00622-20. [PMID: 32554700 DOI: 10.1128/jvi.00622-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) infection remains a major worldwide health problem despite development of highly effective direct-acting antivirals. HCV rapidly evolves upon acute infection and generates multiple viral variants (quasispecies), leading to immune evasion and persistent viral infection. Identification of epitopes of broadly neutralizing anti-HCV antibodies (nAbs) is critical to guide HCV vaccine development. In this study, we developed a new reverse genetics system for HCV infection based on trans-complementation of viral structural proteins. The HCV genome (JFH1 strain) lacking the structural protein-coding sequence can be efficiently rescued by ectopic expression of core-E1-E2-p7-NS2 (core-NS2) or core-E1-E2-p7 (core-p7) in trans, leading to production of single-round infectious virions designated HCVΔS. JFH1-based HCVΔS can be also rescued by expressing core-NS2 of other HCV genotypes, rendering it an efficient tool to display the structural proteins of HCV strains of interests. Furthermore, we successfully rescued HCVΔS with structural proteins from clinical isolates. Multiple viral structural proteins with different sensitivities to nAbs were identified from a same patient serum, demonstrating the genetic diversity of HCV quasispecies in vivo Interestingly, the structural protein-coding sequences of highly divergent viral quasispecies from the same patient can be clustered based on their hypervariable region 1 (HVR1) in viral envelope protein E2, which critically dictates the sensitivity to neutralizing antibodies. In summary, we developed a novel reverse genetics system that efficiently displays viral structural proteins from HCV clinical isolates, and analysis of quasispecies from the same patient using this system demonstrated that E2 HVR1 is the major determinant of viral evolution in vivo IMPORTANCE A cell culture model that can recapitulate the diversity of HCV quasispecies in patients is important for analysis of neutralizing epitopes and HCV vaccine development. In this study, we developed a new reverse genetics system for HCV infection based on trans-complementation of viral structural proteins (HCVΔS). This system can be used to display structural proteins of HCV strains of multiple genotypes as well as clinical isolates. By using this system, we showed that multiple different HCV structural proteins from a same patient were displayed on HCVΔS. Interestingly, these variant structural proteins within the same patient can be classified according to the sequence of HVR1in E2, which dictates viral sensitivity to nAbs and viral evolution in vivo Our work provided a new tool to study highly divergent HCV quasispecies and shed light on underlying mechanisms driving HCV evolution.
Collapse
|
30
|
Optimized Hepatitis C Virus (HCV) E2 Glycoproteins and their Immunogenicity in Combination with MVA-HCV. Vaccines (Basel) 2020; 8:vaccines8030440. [PMID: 32764419 PMCID: PMC7563715 DOI: 10.3390/vaccines8030440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/22/2020] [Accepted: 07/25/2020] [Indexed: 12/20/2022] Open
Abstract
Hepatitis C virus (HCV) represents a major global health challenge and an efficient vaccine is urgently needed. Many HCV vaccination strategies employ recombinant versions of the viral E2 glycoprotein. However, recombinant E2 readily forms disulfide-bonded aggregates that might not be optimally suited for vaccines. Therefore, we have designed an E2 protein in which we strategically changed eight cysteines to alanines (E2.C8A). E2.C8A formed predominantly monomers and virtually no aggregates. Furthermore, E2.C8A also interacted more efficiently with broadly neutralizing antibodies than conventional E2. We used mice to evaluate different prime/boost immunization strategies involving a modified vaccinia virus Ankara (MVA) expressing the nearly full-length genome of HCV (MVA-HCV) in combination with either the E2 aggregates or the E2.C8A monomers. The combined MVA-HCV/E2 aggregates prime/boost strategy markedly enhanced HCV-specific effector memory CD4+ T cell responses and antibody levels compared to MVA-HCV/MVA-HCV. Moreover, the aggregated form of E2 induced higher levels of anti-E2 antibodies in vaccinated mice than E2.C8A monomers. These antibodies were cross-reactive and mainly of the IgG1 isotype. Our findings revealed how two E2 viral proteins that differ in their capacity to form aggregates are able to enhance to different extent the HCV-specific cellular and humoral immune responses, either alone or in combination with MVA-HCV. These combined protocols of MVA-HCV/E2 could serve as a basis for the development of a more effective HCV vaccine.
Collapse
|
31
|
Tzarum N, Giang E, Kadam RU, Chen F, Nagy K, Augestad EH, Velázquez-Moctezuma R, Keck ZY, Hua Y, Stanfield RL, Dreux M, Prentoe J, Foung SKH, Bukh J, Wilson IA, Law M. An alternate conformation of HCV E2 neutralizing face as an additional vaccine target. SCIENCE ADVANCES 2020; 6:eabb5642. [PMID: 32754640 PMCID: PMC7380959 DOI: 10.1126/sciadv.abb5642] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/12/2020] [Indexed: 05/11/2023]
Abstract
To achieve global elimination of hepatitis C virus (HCV), an effective cross-genotype vaccine is needed. The HCV envelope glycoprotein E2 is the main target for neutralizing antibodies (nAbs), which aid in HCV clearance and protection. E2 is structurally flexible and functions in engaging host receptors. Many nAbs bind to the "neutralizing face" on E2, including several broadly nAbs encoded by the VH1-69 germline gene family that bind to a similar conformation (A) of this face. Here, a previously unknown conformation (B) of the neutralizing face is revealed in crystal structures of two of four additional E2-VH1-69 nAb complexes. In this conformation, the E2 front-layer region is displaced upon antibody binding, exposing residues in the back layer for direct antibody interaction. This E2 B structure may represent another conformational state in the viral entry process that is susceptible to antibody neutralization and thus provide a new target for rational vaccine development.
Collapse
Affiliation(s)
- Netanel Tzarum
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Erick Giang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rameshwar U. Kadam
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Fang Chen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kenna Nagy
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Elias H. Augestad
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rodrigo Velázquez-Moctezuma
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Zhen-Yong Keck
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yuanzi Hua
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Robyn L. Stanfield
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Marlene Dreux
- CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France
| | - Jannick Prentoe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Steven K. H. Foung
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Corresponding author. (M.L.); (I.A.W.)
| | - Mansun Law
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Corresponding author. (M.L.); (I.A.W.)
| |
Collapse
|
32
|
Czarnota A, Offersgaard A, Pihl AF, Prentoe J, Bukh J, Gottwein JM, Bieńkowska-Szewczyk K, Grzyb K. Specific Antibodies Induced by Immunization with Hepatitis B Virus-Like Particles Carrying Hepatitis C Virus Envelope Glycoprotein 2 Epitopes Show Differential Neutralization Efficiency. Vaccines (Basel) 2020; 8:vaccines8020294. [PMID: 32532076 PMCID: PMC7350033 DOI: 10.3390/vaccines8020294] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/30/2020] [Accepted: 06/06/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) infection with associated chronic liver diseases is a major health problem worldwide. Here, we designed hepatitis B virus (HBV) small surface antigen (sHBsAg) virus-like particles (VLPs) presenting different epitopes derived from the HCV E2 glycoprotein (residues 412-425, 434-446, 502-520, and 523-535 of isolate H77C). Epitopes were selected based on their amino acid sequence conservation and were previously reported as targets of HCV neutralizing antibodies. Chimeric VLPs obtained in the Leishmania tarentolae expression system, in combination with the adjuvant Addavax, were used to immunize mice. Although all VLPs induced strong humoral responses, only antibodies directed against HCV 412-425 and 523-535 epitopes were able to react with the native E1E2 glycoprotein complexes of different HCV genotypes in ELISA. Neutralization assays against genotype 1-6 cell culture infectious HCV (HCVcc), revealed that only VLPs carrying the 412-425 epitope induced efficient HCV cross-neutralizing antibodies, but with isolate specific variations in efficacy that could not necessarily be explained by differences in epitope sequences. In contrast, antibodies targeting 434-446, 502-520, and 523-535 epitopes were not neutralizing HCVcc, highlighting the importance of conformational antibodies for efficient virus neutralization. Thus, 412-425 remains the most promising linear E2 epitope for further bivalent, rationally designed vaccine research.
Collapse
Affiliation(s)
- Anna Czarnota
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk, 80-309 Gdańsk, Poland; (A.C.); (K.B.-S.)
| | - Anna Offersgaard
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, 2650 Hvidovre, Denmark; (A.O.); (A.F.P.); (J.P.); (J.B.); (J.M.G.)
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Anne Finne Pihl
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, 2650 Hvidovre, Denmark; (A.O.); (A.F.P.); (J.P.); (J.B.); (J.M.G.)
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jannick Prentoe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, 2650 Hvidovre, Denmark; (A.O.); (A.F.P.); (J.P.); (J.B.); (J.M.G.)
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, 2650 Hvidovre, Denmark; (A.O.); (A.F.P.); (J.P.); (J.B.); (J.M.G.)
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Judith Margarete Gottwein
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, 2650 Hvidovre, Denmark; (A.O.); (A.F.P.); (J.P.); (J.B.); (J.M.G.)
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Krystyna Bieńkowska-Szewczyk
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk, 80-309 Gdańsk, Poland; (A.C.); (K.B.-S.)
| | - Katarzyna Grzyb
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk, 80-309 Gdańsk, Poland; (A.C.); (K.B.-S.)
- Correspondence:
| |
Collapse
|
33
|
de Haan W, Øie C, Benkheil M, Dheedene W, Vinckier S, Coppiello G, Aranguren XL, Beerens M, Jaekers J, Topal B, Verfaillie C, Smedsrød B, Luttun A. Unraveling the transcriptional determinants of liver sinusoidal endothelial cell specialization. Am J Physiol Gastrointest Liver Physiol 2020; 318:G803-G815. [PMID: 32116021 PMCID: PMC7191457 DOI: 10.1152/ajpgi.00215.2019] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Liver sinusoidal endothelial cells (LSECs) are the first liver cells to encounter waste macromolecules, pathogens, and toxins in blood. LSECs are highly specialized to mediate the clearance of these substances via endocytic scavenger receptors and are equipped with fenestrae that mediate the passage of macromolecules toward hepatocytes. Although some transcription factors (TFs) are known to play a role in LSEC specialization, information about the specialized LSEC signature and its transcriptional determinants remains incomplete.Based on a comparison of liver, heart, and brain endothelial cells (ECs), we established a 30-gene LSEC signature comprising both established and newly identified markers, including 7 genes encoding TFs. To evaluate the LSEC TF regulatory network, we artificially increased the expression of the 7 LSEC-specific TFs in human umbilical vein ECs. Although Zinc finger E-box-binding protein 2, homeobox B5, Cut-like homolog 2, and transcription factor EC (TCFEC) had limited contributions, musculoaponeurotic fibrosarcoma (C-MAF), GATA binding protein 4 (GATA4), and MEIS homeobox 2 (MEIS2) emerged as stronger inducers of LSEC marker expression. Furthermore, a combination of C-MAF, GATA4, and MEIS2 showed a synergistic effect on the increase of LSEC signature genes, including liver/lymph node-specific ICAM-3 grabbing non-integrin (L-SIGN) (or C-type lectin domain family member M (CLEC4M)), mannose receptor C-Type 1 (MRC1), legumain (LGMN), G protein-coupled receptor 182 (GPR182), Plexin C1 (PLXNC1), and solute carrier organic anion transporter family member 2A1 (SLCO2A1). Accordingly, L-SIGN, MRC1, pro-LGMN, GPR182, PLXNC1, and SLCO2A1 protein levels were elevated by this combined overexpression. Although receptor-mediated endocytosis was not significantly induced by the triple TF combination, it enhanced binding to E2, the hepatitis C virus host-binding protein. We conclude that C-MAF, GATA4, and MEIS2 are important transcriptional regulators of the unique LSEC fingerprint and LSEC interaction with viruses. Additional factors are however required to fully recapitulate the molecular, morphological, and functional LSEC fingerprint.NEW & NOTEWORTHY Liver sinusoidal endothelial cells (LSECs) are the first liver cells to encounter waste macromolecules, pathogens, and toxins in the blood and are highly specialized. Although some transcription factors are known to play a role in LSEC specialization, information about the specialized LSEC signature and its transcriptional determinants remains incomplete. Here, we show that Musculoaponeurotic Fibrosarcoma (C-MAF), GATA binding protein 4 (GATA4), and Meis homeobox 2 (MEIS2) are important transcriptional regulators of the unique LSEC signature and that they affect the interaction of LSECs with viruses.
Collapse
Affiliation(s)
- Willeke de Haan
- 1Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Cristina Øie
- 2Vascular Biology Research Group, Department of Medical Biology, University of Tromsø – The Arctic University of Norway, Tromsø, Norway
| | | | - Wouter Dheedene
- 1Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Stefan Vinckier
- 4Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium,5Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
| | - Giulia Coppiello
- 1Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Xabier López Aranguren
- 1Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Manu Beerens
- 1Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Joris Jaekers
- 6Abdominal Surgery, Universitair Ziekenhuis Leuven, Leuven, Belgiuincreased the expression of the 7 LSEC-specificm
| | - Baki Topal
- 6Abdominal Surgery, Universitair Ziekenhuis Leuven, Leuven, Belgiuincreased the expression of the 7 LSEC-specificm
| | - Catherine Verfaillie
- 7Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Bård Smedsrød
- 2Vascular Biology Research Group, Department of Medical Biology, University of Tromsø – The Arctic University of Norway, Tromsø, Norway
| | - Aernout Luttun
- 1Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
34
|
Duncan JD, Urbanowicz RA, Tarr AW, Ball JK. Hepatitis C Virus Vaccine: Challenges and Prospects. Vaccines (Basel) 2020; 8:vaccines8010090. [PMID: 32079254 PMCID: PMC7157504 DOI: 10.3390/vaccines8010090] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/25/2020] [Accepted: 02/04/2020] [Indexed: 02/07/2023] Open
Abstract
The hepatitis C virus (HCV) causes both acute and chronic infection and continues to be a global problem despite advances in antiviral therapeutics. Current treatments fail to prevent reinfection and remain expensive, limiting their use to developed countries, and the asymptomatic nature of acute infection can result in individuals not receiving treatment and unknowingly spreading HCV. A prophylactic vaccine is therefore needed to control this virus. Thirty years since the discovery of HCV, there have been major gains in understanding the molecular biology and elucidating the immunological mechanisms that underpin spontaneous viral clearance, aiding rational vaccine design. This review discusses the challenges facing HCV vaccine design and the most recent and promising candidates being investigated.
Collapse
Affiliation(s)
- Joshua D. Duncan
- School of Life Sciences, The University of Nottingham, Nottingham NG7 2UH, UK; (R.A.U.); (A.W.T.); (J.K.B.)
- NIHR Nottingham BRC, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
- Correspondence:
| | - Richard A. Urbanowicz
- School of Life Sciences, The University of Nottingham, Nottingham NG7 2UH, UK; (R.A.U.); (A.W.T.); (J.K.B.)
- NIHR Nottingham BRC, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Alexander W. Tarr
- School of Life Sciences, The University of Nottingham, Nottingham NG7 2UH, UK; (R.A.U.); (A.W.T.); (J.K.B.)
- NIHR Nottingham BRC, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Jonathan K. Ball
- School of Life Sciences, The University of Nottingham, Nottingham NG7 2UH, UK; (R.A.U.); (A.W.T.); (J.K.B.)
- NIHR Nottingham BRC, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
35
|
Meuleman TJ, Cowton VM, Patel AH, Liskamp RM. Improving the aqueous solubility of HCV-E2 glycoprotein epitope mimics by cyclization using POLAR hinges. J Pept Sci 2020; 26:e3222. [PMID: 31984607 PMCID: PMC7050536 DOI: 10.1002/psc.3222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/05/2019] [Accepted: 09/09/2019] [Indexed: 12/20/2022]
Abstract
In this research we describe the improvement of the water-solubility of cyclic epitope mimics based on the HCV E2 glycoprotein by incorporation of suitable polar hinges. The poor solubility of epitope mimics based on peptide sequences in the envelope (E2) protein hampered their synthesis and purification and made it very difficult to prepare the molecular constructs for evaluation of their bioactivity. Since changes in the amino acid composition are hardly possible in these epitope mimics in order to increase water-solubility, a polar cyclization hinge may offer a remedy leading to a significant increase of polarity and therefore water solubility. These polar hinges were applied in the synthesis of better water-soluble HCV-E2 epitopes. An azide functionality in the polar hinges allowed attachment of a tetraethylene glycol linker by Cu-catalyzed azide-alkyne cyclo-addition (CuAAC) for a convenient conjugation to ELISA plates in order to evaluate the bio-activity of the epitope mimics. The immunoassays showed that the use of more polar cyclization hinges still supported anti-HCV antibody recognition and did not negatively influence their binding. This significantly increased solubility induced by polar hinges should therefore allow for the molecular construction and ultimate evaluation of synthetic vaccine molecules.
Collapse
Affiliation(s)
- Theodorus J. Meuleman
- School of Chemistry, University of GlasgowJoseph Black Building, University AvenueGlasgowG12 8QQUK
| | - Vanessa M. Cowton
- MRC‐University of Glasgow Centre for Virus ResearchGarscube Campus, Sir Michael Stoker Building, 464 Bearsden RoadGlasgowG61 1QHUK
| | - Arvind H. Patel
- MRC‐University of Glasgow Centre for Virus ResearchGarscube Campus, Sir Michael Stoker Building, 464 Bearsden RoadGlasgowG61 1QHUK
| | - Rob M.J. Liskamp
- School of Chemistry, University of GlasgowJoseph Black Building, University AvenueGlasgowG12 8QQUK
| |
Collapse
|
36
|
Velázquez-Moctezuma R, Galli A, Law M, Bukh J, Prentoe J. Hepatitis C Virus-Escape Studies for Human Monoclonal Antibody AR4A Reveal Isolate-Specific Resistance and a High Barrier to Resistance. J Infect Dis 2019; 219:68-79. [PMID: 30102355 DOI: 10.1093/infdis/jiy481] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/07/2018] [Indexed: 12/14/2022] Open
Abstract
Global control of hepatitis C virus (HCV) depends on development of a prophylactic vaccine. We studied escape for cross-genotype-reactive neutralizing antibody AR4A, providing valuable information for HCV vaccine design. We cultured HCV core-NS2 recombinants H77 (genotype 1a)/JFH1 or the highly antibody-susceptible hypervariable region 1 (HVR1)-deleted variants H77/JFH1∆HVR1 and J6(genotype 2a)/JFH1∆HVR1 in Huh7.5 cells with AR4A. Long-term AR4A exposure of H77/JFH1 and H77/JFH1∆HVR1 did not yield resistance. However, J6/JFH1∆HVR1 developed the envelope-E2 substitutions I696T or I696N, which reduced AR4A binding (I696N > I696T). I696N conferred greater AR4A resistance than I696T in J6/JFH1∆HVR1, whereas the reverse was observed in J6/JFH1. This was because I696N but not I696T conferred broadly increased antibody neutralization susceptibility to J6/JFH1. I696N and I696T abrogated infectivity of H77/JFH1 and broadly increased neutralization susceptibility of S52 (genotype 3a)/JFH1. In conclusion, I696 is in the AR4A epitope, which has a high barrier to resistance, thus strengthening the rationale for its inclusion in rational HCV vaccine designs.
Collapse
Affiliation(s)
- Rodrigo Velázquez-Moctezuma
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Hvidovre Hospital.,Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Andrea Galli
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Hvidovre Hospital.,Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Mansun Law
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Hvidovre Hospital.,Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jannick Prentoe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Hvidovre Hospital.,Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
37
|
Wrensch F, Ligat G, Heydmann L, Schuster C, Zeisel MB, Pessaux P, Habersetzer F, King BJ, Tarr AW, Ball JK, Winkler M, Pöhlmann S, Keck ZY, Foung SK, Baumert TF. Interferon-Induced Transmembrane Proteins Mediate Viral Evasion in Acute and Chronic Hepatitis C Virus Infection. Hepatology 2019; 70:1506-1520. [PMID: 31062385 PMCID: PMC6819197 DOI: 10.1002/hep.30699] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 04/30/2019] [Indexed: 02/07/2023]
Abstract
Although adaptive immune responses against hepatitis C virus (HCV) infection have been studied in great detail, the role of innate immunity in protection against HCV infection and immune evasion is only partially understood. Interferon-induced transmembrane proteins (IFITMs) are innate effector proteins restricting host cell entry of many enveloped viruses, including HCV. However, the clinical impact of IFITMs on HCV immune escape remains to be determined. Here, we show that IFITMs promote viral escape from the neutralizing antibody (nAb) response in clinical cohorts of HCV-infected patients. Using pseudoparticles bearing HCV envelope proteins from acutely infected patients, we show that HCV variants isolated preseroconversion are more sensitive to the antiviral activity of IFITMs than variants from patients isolated during chronic infection postseroconversion. Furthermore, HCV variants escaping nAb responses during liver transplantation exhibited a significantly higher resistance to IFITMs than variants that were eliminated posttransplantation. Gain-of-function and mechanistic studies revealed that IFITMs markedly enhance the antiviral activity of nAbs and suggest a cooperative effect of human monoclonal antibodies and IFITMs for antibody-mediated neutralization driving the selection pressure in viral evasion. Perturbation studies with the IFITM antagonist amphotericin B revealed that modulation of membrane properties by IFITM proteins is responsible for the IFITM-mediated blockade of viral entry and enhancement of antibody-mediated neutralization. Conclusion: Our results indicate IFITM proteins as drivers of viral immune escape and antibody-mediated HCV neutralization in acute and chronic HCV infection. These findings are of clinical relevance for the design of urgently needed HCV B-cell vaccines and might help to increase the efficacy of future vaccine candidates.
Collapse
Affiliation(s)
- Florian Wrensch
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France,Université de Strasbourg, 67000 Strasbourg, France
| | - Gaëtan Ligat
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France,Université de Strasbourg, 67000 Strasbourg, France
| | - Laura Heydmann
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France,Université de Strasbourg, 67000 Strasbourg, France
| | - Catherine Schuster
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France,Université de Strasbourg, 67000 Strasbourg, France
| | - Mirjam B. Zeisel
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France,Université de Strasbourg, 67000 Strasbourg, France,Inserm U1052, CNRS UMR 5286, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL), 69373 Lyon, France
| | - Patrick Pessaux
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France,Université de Strasbourg, 67000 Strasbourg, France,Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
| | - François Habersetzer
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France,Université de Strasbourg, 67000 Strasbourg, France,Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
| | - Barnabas J. King
- School of Life Sciences, The University of Nottingham, Nottingham NG7 2UH, UK,NIHR Nottingham BRC, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
| | - Alexander W. Tarr
- School of Life Sciences, The University of Nottingham, Nottingham NG7 2UH, UK,NIHR Nottingham BRC, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
| | - Jonathan K. Ball
- School of Life Sciences, The University of Nottingham, Nottingham NG7 2UH, UK,NIHR Nottingham BRC, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
| | - Michael Winkler
- Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, 37077 Göttingen, Germany,Faculty of Biology and Psychology, University of Göttingen, 37073 Göttingen, Germany
| | - Zhen-yong Keck
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
| | - Steven K.H. Foung
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
| | - Thomas F. Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France,Université de Strasbourg, 67000 Strasbourg, France,Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France,Institut Universitaire de France, 75231 Paris, France
| |
Collapse
|
38
|
A Recombinant Hepatitis C Virus Genotype 1a E1/E2 Envelope Glycoprotein Vaccine Elicits Antibodies That Differentially Neutralize Closely Related 2a Strains through Interactions of the N-Terminal Hypervariable Region 1 of E2 with Scavenger Receptor B1. J Virol 2019; 93:JVI.00810-19. [PMID: 31462563 PMCID: PMC6819942 DOI: 10.1128/jvi.00810-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/15/2019] [Indexed: 12/17/2022] Open
Abstract
A vaccine is still urgently needed to overcome the hepatitis C virus (HCV) epidemic. It is estimated that 1.75 million new HCV infections occur each year, many of which will go undiagnosed and untreated. Untreated HCV can lead to continued spread of the disease, progressive liver fibrosis, cirrhosis, and eventually, end-stage liver disease and/or hepatocellular carcinoma (HCC). Previously, our 1a E1/E2 glycoprotein vaccine was shown to elicit broadly cross-neutralizing antibodies; however, there remains variation in the effectiveness of these antibodies against different HCV genotypes. In this study, we investigated determinants of differential neutralization sensitivity between two highly related genotype 2a isolates, J6 and JFH-1. Our data indicate that the HVR1 region determines neutralization sensitivity to vaccine antisera through modulation of sensitivity to antibodies and interactions with SR-B1. Our results provide additional insight into optimizing a broadly neutralizing HCV vaccine. The global health burden for hepatitis C virus (HCV) remains high, despite available effective treatments. To eliminate HCV, a prophylactic vaccine is needed. One major challenge in the development of a vaccine is the genetic diversity of the virus, with 7 major genotypes and many subtypes. A global vaccine must be effective against all HCV genotypes. Our previous data showed that the 1a E1/E2 glycoprotein vaccine component elicits broad cross-neutralizing antibodies in humans and animals. However, some variation is seen in the effectiveness of these antibodies to neutralize different HCV genotypes and isolates. Of interest was the differences in neutralizing activity against two closely related isolates of HCV genotype 2a, the J6 and JFH-1 strains. Using site-directed mutagenesis to generate chimeric viruses between the J6 and JFH-1 strains, we found that variant amino acids within the core E2 glycoprotein domain of these two HCV genotype 2a viruses do not influence isolate-specific neutralization. Further analysis revealed that the N-terminal hypervariable region 1 (HVR1) of the E2 protein determines the sensitivity of isolate-specific neutralization, and the HVR1 of the resistant J6 strain binds scavenger receptor class-B type-1 (SR-B1), while the sensitive JFH-1 strain does not. Our data provide new information on mechanisms of isolate-specific neutralization to facilitate the optimization of a much-needed HCV vaccine. IMPORTANCE A vaccine is still urgently needed to overcome the hepatitis C virus (HCV) epidemic. It is estimated that 1.75 million new HCV infections occur each year, many of which will go undiagnosed and untreated. Untreated HCV can lead to continued spread of the disease, progressive liver fibrosis, cirrhosis, and eventually, end-stage liver disease and/or hepatocellular carcinoma (HCC). Previously, our 1a E1/E2 glycoprotein vaccine was shown to elicit broadly cross-neutralizing antibodies; however, there remains variation in the effectiveness of these antibodies against different HCV genotypes. In this study, we investigated determinants of differential neutralization sensitivity between two highly related genotype 2a isolates, J6 and JFH-1. Our data indicate that the HVR1 region determines neutralization sensitivity to vaccine antisera through modulation of sensitivity to antibodies and interactions with SR-B1. Our results provide additional insight into optimizing a broadly neutralizing HCV vaccine.
Collapse
|
39
|
Walker MR, Leung P, Eltahla AA, Underwood A, Abayasingam A, Brasher NA, Li H, Wu BR, Maher L, Luciani F, Lloyd AR, Bull RA. Clearance of hepatitis C virus is associated with early and potent but narrowly-directed, Envelope-specific antibodies. Sci Rep 2019; 9:13300. [PMID: 31527718 PMCID: PMC6746763 DOI: 10.1038/s41598-019-49454-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/20/2019] [Indexed: 12/13/2022] Open
Abstract
Hepatitis C virus (HCV) is one of very few viruses that are either naturally cleared, or alternatively persist to cause chronic disease. Viral diversity and escape, as well as host adaptive immune factors, are believed to control the outcome. To date, there is limited understanding of the critical, early host-pathogen interactions. The asymptomatic nature of early HCV infection generally prevents identification of the transmitted/founder (T/F) virus, and thus the study of host responses directed against the autologous T/F strain. In this study, 14 rare subjects identified from very early in infection (4–45 days) with varied disease outcomes (n = 7 clearers) were examined in regard to the timing, breadth, and magnitude of the neutralizing antibody (nAb) response, as well as evolution of the T/F strain. Clearance was associated with earlier onset and more potent nAb responses appearing at a mean of 71 days post-infection (DPI), but these responses were narrowly directed against the autologous T/F virus or closely related variants. In contrast, a delayed onset of nAbs (mean 425 DPI) was observed in chronic progressors that appear to have targeted longitudinal variants rather than the T/F strain. The nAb responses in the chronic progressors mapped to known CD81 binding epitopes, and were associated with rapid emergence of new viral variants with reduced CD81 binding. We propose that the prolonged period of viremia in the absence of nAbs in these subjects was associated with an increase in viral diversity, affording the virus greater options to escape nAb pressure once it emerged. These findings indicate that timing of the nAb response is essential for clearance. Further investigation of the specificities of the early nAbs and the factors regulating early induction of protective nAbs is needed.
Collapse
Affiliation(s)
- Melanie R Walker
- Viral Immunology Systems Program, The Kirby Institute, Sydney, Australia.,School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Preston Leung
- Viral Immunology Systems Program, The Kirby Institute, Sydney, Australia.,School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Auda A Eltahla
- Viral Immunology Systems Program, The Kirby Institute, Sydney, Australia.,School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Alexander Underwood
- Viral Immunology Systems Program, The Kirby Institute, Sydney, Australia.,School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Arunasingam Abayasingam
- Viral Immunology Systems Program, The Kirby Institute, Sydney, Australia.,School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Nicholas A Brasher
- Viral Immunology Systems Program, The Kirby Institute, Sydney, Australia.,School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Hui Li
- Viral Immunology Systems Program, The Kirby Institute, Sydney, Australia.,School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Bing-Ru Wu
- Viral Immunology Systems Program, The Kirby Institute, Sydney, Australia.,School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Lisa Maher
- Viral Immunology Systems Program, The Kirby Institute, Sydney, Australia
| | - Fabio Luciani
- Viral Immunology Systems Program, The Kirby Institute, Sydney, Australia.,School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Andrew R Lloyd
- Viral Immunology Systems Program, The Kirby Institute, Sydney, Australia
| | - Rowena A Bull
- Viral Immunology Systems Program, The Kirby Institute, Sydney, Australia. .,School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, Australia.
| |
Collapse
|
40
|
Merat SJ, Bru C, van de Berg D, Molenkamp R, Tarr AW, Koekkoek S, Kootstra NA, Prins M, Ball JK, Bakker AQ, de Jong MD, Spits H, Beaumont T, Schinkel J. Cross-genotype AR3-specific neutralizing antibodies confer long-term protection in injecting drug users after HCV clearance. J Hepatol 2019; 71:14-24. [PMID: 30797052 DOI: 10.1016/j.jhep.2019.02.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 01/29/2019] [Accepted: 02/12/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND & AIMS In order to design an effective vaccine against hepatitis C virus (HCV) infection, it is necessary to understand immune protection. A number of broadly reactive neutralizing antibodies have been isolated from B cells of HCV-infected patients. However, it remains unclear whether B cells producing such antibodies contribute to HCV clearance and long-term immune protection against HCV. METHODS We analysed the B cell repertoire of 13 injecting drug users from the Amsterdam Cohort Study, who were followed up for a median of 17.5 years after primary infection. Individuals were classified into 2 groups based on the outcome of HCV infection: 5 who became chronically infected either after primary infection or after reinfection, and 8 who were HCV RNA negative following spontaneous clearance of ≥1 HCV infection(s). From each individual, 10,000 CD27+IgG+B cells, collected 0.75 year after HCV infection, were cultured to characterize the antibody repertoire. RESULTS Using a multiplex flow cytometry-based assay to study the antibody binding to E1E2 from genotype 1 to 6, we found that a high frequency of cross-genotype antibodies was associated with spontaneous clearance of 1 or multiple infections (p = 0.03). Epitope specificity of these cross-genotype antibodies was determined by alanine mutant scanning in 4 individuals who were HCV RNA negative following spontaneous clearance of 1 or multiple infections. Interestingly, the cross-genotype antibodies were mainly antigenic region 3 (AR3)-specific and showed cross-neutralizing activity against HCV. In addition to AR3 antibodies, 3 individuals developed antibodies recognizing antigenic region 4, of which 1 monoclonal antibody showed cross-neutralizing capacity. CONCLUSIONS Together, these data suggest that a strong B cell response producing cross-genotype and neutralizing antibodies, especially targeting AR3, contributes to HCV clearance and long-term immune protection against HCV. LAY SUMMARY Although effective treatments against hepatitis C virus (HCV) are available, 500,000 people die from liver disease caused by HCV each year and approximately 1.75 million people are newly infected. This could be prevented by a vaccine. To design a vaccine against HCV, more insight into the role of antibodies in the protection against HCV infection is needed. In a cohort of injecting drug users, we found that antibodies interfering with virus cell entry, and recognizing multiple HCV genotypes, conferred long-term protection against chronic HCV infection.
Collapse
Affiliation(s)
| | - Camille Bru
- AIMM Therapeutics, Amsterdam, the Netherlands
| | | | - Richard Molenkamp
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Alexander W Tarr
- School of Life Sciences, The University of Nottingham, Nottingham, UK; NIHR Nottingham BRC, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - Sylvie Koekkoek
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Neeltje A Kootstra
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Maria Prins
- Public Health Service of Amsterdam, Amsterdam, the Netherlands; Department of Infectious Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Jonathan K Ball
- School of Life Sciences, The University of Nottingham, Nottingham, UK; NIHR Nottingham BRC, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | | | - Menno D de Jong
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | | | | | - Janke Schinkel
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
41
|
Syntenin regulates hepatitis C virus sensitivity to neutralizing antibody by promoting E2 secretion through exosomes. J Hepatol 2019; 71:52-61. [PMID: 30880226 DOI: 10.1016/j.jhep.2019.03.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 02/22/2019] [Accepted: 03/05/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Assembly of infectious hepatitis C virus (HCV) particles is known to involve host lipoproteins, giving rise to unique lipo-viro-particles (LVPs), but proteome studies now suggest that additional cellular proteins are associated with HCV virions or other particles containing the viral envelope glycoprotein E2. Many of these host cell proteins are common markers of exosomes, most notably the intracellular adaptor protein syntenin, which is required for exosome biogenesis. We aimed to elucidate the role of syntenin/E2 in HCV infection. METHODS Using cell culture-derived HCV, we studied the biogenesis and function of E2-coated exosomes in both hepatoma cells and primary human hepatocytes (PHHs). RESULTS Knockout of syntenin had a negligible impact on HCV replication and virus production, whereas ectopic expression of syntenin at physiological levels reduced intracellular E2 abundance, while concomitantly increasing the secretion of E2-coated exosomes. Importantly, cells expressing syntenin and HCV structural proteins efficiently released exosomes containing E2 but lacking the core protein. Furthermore, infectivity of HCV released from syntenin-expressing hepatoma cells and PHHs was more resistant to neutralization by E2-specific antibodies and chronic-phase patient serum. We also found that high E2/syntenin levels in sera correlate with lower serum neutralization capability. CONCLUSIONS E2- and syntenin-containing exosomes are a major type of particle released from cells expressing high levels of syntenin. Efficient production of E2-coated exosomes renders HCV infectivity less susceptible to antibody neutralization in hepatoma cells and PHHs. LAY SUMMARY This study identifies a key role for syntenin in the regulation of E2 secretion via exosomes. Efficient production of E2-coated exosomes was shown to make hepatitis C virus less sensitive to antibody neutralization. These results may have implications for the development of a hepatitis C virus vaccine.
Collapse
|
42
|
Hepatitis C Virus Escape Studies of Human Antibody AR3A Reveal a High Barrier to Resistance and Novel Insights on Viral Antibody Evasion Mechanisms. J Virol 2019; 93:JVI.01909-18. [PMID: 30487284 DOI: 10.1128/jvi.01909-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 11/20/2018] [Indexed: 12/19/2022] Open
Abstract
Yearly, ∼2 million people become hepatitis C virus (HCV) infected, resulting in an elevated lifetime risk for severe liver-related chronic illnesses. Characterizing epitopes of broadly neutralizing antibodies (NAbs), such as AR3A, is critical to guide vaccine development. Previously identified alanine substitutions that can reduce AR3A binding to expressed H77 envelope were introduced into chimeric cell culture-infectious HCV recombinants (HCVcc) H77(core-NS2)/JFH1. Substitutions G523A, G530A, and D535A greatly reduced fitness, and S424A, P525A, and N540A, although viable, conferred only low-level AR3A resistance. Using highly NAb-sensitive hypervariable region 1 (HVR1)-deleted HCVcc, H77/JFH1ΔHVR1 and J6(core-NS2)/JFH1ΔHVR1, we previously reported a low barrier to developing AR5A NAb resistance substitutions. Here, we cultured Huh7.5 cells infected with H77/JFH1, H77/JFH1ΔHVR1, or J6/JFH1ΔHVR1 with AR3A. We identified the resistance envelope substitutions M345T in H77/JFH1, L438S and F442Y in H77/JFH1ΔHVR1, and D431G in J6/JFH1ΔHVR1 M345T increased infectivity and conferred low-level AR3A resistance to H77/JFH1 but not H77/JFH1ΔHVR1 L438S and F442Y conferred high-level AR3A resistance to H77/JFH1ΔHVR1 but abrogated the infectivity of H77/JFH1. D431G conferred AR3A resistance to J6/JFH1ΔHVR1 but not J6/JFH1. This was possibly because D431G conferred broadly increased neutralization sensitivity to J6/JFH1D431G but not J6/JFH1ΔHVR1/D431G while decreasing scavenger receptor class B type I coreceptor dependency. Common substitutions at positions 431 and 442 did not confer high-level resistance in other genotype 2a recombinants [JFH1 or T9(core-NS2)/JFH1]. Although the data indicate that AR3A has a high barrier to resistance, our approach permitted identification of low-level resistance substitutions. Also, the HVR1-dependent effects on AR3A resistance substitutions suggest a complex role of HVR1 in virus escape and receptor usage, with important implications for HCV vaccine development.IMPORTANCE Hepatitis C virus (HCV) is a leading cause of liver-related mortality, and limited treatment accessibility makes vaccine development a high priority. The vaccine-relevant cross-genotype-reactive antibody AR3A has shown high potency, but the ability of the virus to rapidly escape by mutating the AR3A epitope (barrier to resistance) remains unexplored. Here, we succeeded in inducing only low-level AR3A resistance, indicating a higher barrier to resistance than what we have previously reported for AR5A. Furthermore, we identify AR3A resistance substitutions that have hypervariable region 1 (HVR1)-dependent effects on HCV viability and on broad neutralization sensitivity. One of these substitutions increased envelope breathing and decreased scavenger receptor class B type I HCV coreceptor dependency, both in an HVR1-dependent fashion. Thus, we identify novel AR3A-specific resistance substitutions and the role of HVR1 in protecting HCV from AR3-targeting antibodies. These viral escape mechanisms should be taken into consideration in future HCV vaccine development.
Collapse
|
43
|
Wang X, Yan Y, Gan T, Yang X, Li D, Zhou D, Sun Q, Huang Z, Zhong J. A trivalent HCV vaccine elicits broad and synergistic polyclonal antibody response in mice and rhesus monkey. Gut 2019; 68:140-149. [PMID: 29180585 DOI: 10.1136/gutjnl-2017-314870] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/26/2017] [Accepted: 11/11/2017] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Despite the development of highly effective direct-acting antivirals, a prophylactic vaccine is needed for eradicating HCV. A major hurdle of HCV vaccine development is to induce immunity against HCV with high genome diversity. We previously demonstrated that a soluble E2 (sE2) expressed from insect cells induces broadly neutralising antibodies (NAbs) and prevents HCV infection. The objective of this study is to develop a multivalent HCV vaccine to increase the antigenic coverage. DESIGN We designed a trivalent vaccine containing sE2 from genotype 1a, 1b and 3a. Mice and rhesus macaques were immunised with monovalent or trivalent sE2 vaccine, and sera or purified immunoglobulin were assessed for neutralisation against a panel of cell culture-derived virion (HCVcc) of genotype 1-7 in cell culture. Splenocytes from the vaccinated macaques were assessed for HCV-specific T cell response. RESULTS We showed that the trivalent vaccine elicited pangenotypic NAbs in mice, which neutralised HCVcc of all the seven genotypes more potently than the monovalent vaccine. Further analyses demonstrated that each sE2 component of this trivalent vaccine elicited unique spectrum of NAbs which acted synergistically to inhibit HCV infection. Finally, the trivalent vaccine triggered stronger and more uniform multigenotypic neutralising antibody response than the monovalent vaccine in rhesus macaques. CONCLUSIONS In summary, we developed a trivalent HCV vaccine that induces broad and synergistic-acting neutralising antibodies in mice and non-human primates.
Collapse
Affiliation(s)
- Xuesong Wang
- Unit of Viral Hepatitis, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,Unit of Vaccinology and Antiviral Strategies, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yu Yan
- Unit of Viral Hepatitis, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Tianyu Gan
- Unit of Viral Hepatitis, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xi Yang
- University of Chinese Academy of Sciences, Beijing, China.,Vaccine Research Center, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Dapeng Li
- Unit of Viral Hepatitis, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,Unit of Vaccinology and Antiviral Strategies, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Dongming Zhou
- University of Chinese Academy of Sciences, Beijing, China.,Vaccine Research Center, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Qiang Sun
- University of Chinese Academy of Sciences, Beijing, China.,Suzhou Non-human Primate Facility, Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Zhong Huang
- Unit of Vaccinology and Antiviral Strategies, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jin Zhong
- Unit of Viral Hepatitis, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
44
|
Bailey JR, Barnes E, Cox AL. Approaches, Progress, and Challenges to Hepatitis C Vaccine Development. Gastroenterology 2019; 156:418-430. [PMID: 30268785 PMCID: PMC6340767 DOI: 10.1053/j.gastro.2018.08.060] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/12/2018] [Accepted: 08/14/2018] [Indexed: 12/16/2022]
Abstract
Risk factors for hepatitis C virus (HCV) infection vary, and there were an estimated 1.75 million new cases worldwide in 2015. The World Health Organization aims for a 90% reduction in new HCV infections by 2030. An HCV vaccine would prevent transmission, regardless of risk factors, and significantly reduce the global burden of HCV-associated disease. Barriers to development include virus diversity, limited models for testing vaccines, and our incomplete understanding of protective immune responses. Although highly effective vaccines could prevent infection altogether, immune responses that increase the rate of HCV clearance and prevent chronic infection may be sufficient to reduce disease burden. Adjuvant envelope or core protein and virus-vectored nonstructural antigen vaccines have been tested in healthy volunteers who are not at risk for HCV infection; viral vectors encoding nonstructural proteins are the only vaccine strategy to be tested in at-risk individuals. Despite development challenges, a prophylactic vaccine is necessary for global control of HCV.
Collapse
Affiliation(s)
- Justin R. Bailey
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Eleanor Barnes
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine and the Oxford NIHR Biomedical Research Centre, Oxford University, UK
| | - Andrea L. Cox
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland,Reprint requests Address requests for reprints to: Andrea L. Cox, MD, PhD, Division of Infectious Diseases, Johns Hopkins University School of Medicine, 551 Rangos Building, 855 N Wolfe Street, Baltimore, Maryland 21205. fax: (443)769-1221.
| |
Collapse
|
45
|
Abstract
In spite of the immense progress in hepatitis C virus (HCV) research, efforts to prevent infection, such as generating a vaccine, have not yet been successful. The high price tag associated with current treatment options for chronic infection and the spike in new infections concurrent with growing opioid abuse are strong motivators for developing effective immunization and understanding neutralizing antibodies' role in preventing infection. Humanized mice-both human liver chimeras as well as genetically humanized models-are important platforms for testing both possible vaccine candidates as well as antibody-based therapies. This chapter details the variety of ways humanized mouse technology can be employed in pursuit of learning how HCV infection can be prevented.
Collapse
Affiliation(s)
- Jenna M Gaska
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Qiang Ding
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- School of Medicine, Tsinghua University, Beijing, China
| | - Alexander Ploss
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
46
|
Similarities and Differences Between HCV Pseudoparticle (HCVpp) and Cell Culture HCV (HCVcc) in the Study of HCV. Methods Mol Biol 2019; 1911:33-45. [PMID: 30593616 DOI: 10.1007/978-1-4939-8976-8_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
For a long time, the study of the HCV infectious cycle has been a major challenge for researchers because of the difficulties in generating an efficient cell culture system leading to a productive viral infection. The development of HCVpp and later on HCVcc model allowing for functional studies of HCV in cell culture completely revolutionized HCV research. The aim of this review is to provide the reader with a brief overview of the development of these two models. We describe the advantages of each model as well as their limitations in the study of the HCV life cycle, with a particular emphasis on virus entry. A comparison between these two models is presented in terms of virion composition and their use as tools for the characterization of entry factors, envelope glycoprotein functions, and antibody neutralization. We also compare the production and biosafety level of these two types of viral particles. Globally, this review provides a general description of the most adequate applications for HCVpp and HCVcc in HCV research.
Collapse
|
47
|
Abstract
Enzyme-linked immunosorbent assays (ELISAs) enable rapid detection and quantitation of antibodies in samples. Such assays can be highly sensitive and can be performed in most laboratories with basic equipment. Although detecting binding antibodies to the surface proteins of most pathogens by ELISA is not always indicative of antibody function, i.e., neutralizing activity of antibodies, the results can be used as a first step toward more in-depth analysis of antibody responses. Here we describe a method that can be used to standardize ELISAs for the detection of HCV envelope antibodies across laboratories and provide adaptations of the method to further characterize antibody responses in serum samples.
Collapse
|
48
|
Prentoe J, Bukh J. Hypervariable Region 1 in Envelope Protein 2 of Hepatitis C Virus: A Linchpin in Neutralizing Antibody Evasion and Viral Entry. Front Immunol 2018; 9:2146. [PMID: 30319614 PMCID: PMC6170631 DOI: 10.3389/fimmu.2018.02146] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 08/30/2018] [Indexed: 12/15/2022] Open
Abstract
Chronic hepatitis C virus (HCV) infection is the cause of about 400,000 annual liver disease-related deaths. The global spread of this important human pathogen can potentially be prevented through the development of a vaccine, but this challenge has proven difficult, and much remains unknown about the multitude of mechanisms by which this heterogeneous RNA virus evades inactivation by neutralizing antibodies (NAbs). The N-terminal motif of envelope protein 2 (E2), termed hypervariable region 1 (HVR1), changes rapidly in immunoglobulin-competent patients due to antibody-driven antigenic drift. HVR1 contains NAb epitopes and is directly involved in protecting diverse antibody-specific epitopes on E1, E2, and E1/E2 through incompletely understood mechanisms. The ability of HVR1 to protect HCV from NAbs appears linked with modulation of HCV entry co-receptor interactions. Thus, removal of HVR1 increases interaction with CD81, while altering interaction with scavenger receptor class B, type I (SR-BI) in a complex fashion, and decreasing interaction with low-density lipoprotein receptor. Despite intensive efforts this modulation of receptor interactions by HVR1 remains incompletely understood. SR-BI has received the most attention and it appears that HVR1 is involved in a multimodal HCV/SR-BI interaction involving high-density-lipoprotein associated ApoCI, which may prime the virus for later entry events by exposing conserved NAb epitopes, like those in the CD81 binding site. To fully elucidate the multifunctional role of HVR1 in HCV entry and NAb evasion, improved E1/E2 models and comparative studies with other NAb evasion strategies are needed. Derived knowledge may be instrumental in the development of a prophylactic HCV vaccine.
Collapse
Affiliation(s)
- Jannick Prentoe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, Copenhagen, Denmark.,Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, Copenhagen, Denmark.,Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
49
|
Tarr AW, Backx M, Hamed MR, Urbanowicz RA, McClure CP, Brown RJP, Ball JK. Immunization with a synthetic consensus hepatitis C virus E2 glycoprotein ectodomain elicits virus-neutralizing antibodies. Antiviral Res 2018; 160:25-37. [PMID: 30217650 DOI: 10.1016/j.antiviral.2018.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/06/2018] [Accepted: 09/10/2018] [Indexed: 01/06/2023]
Abstract
Global eradication of hepatitis C virus (HCV) infection will require an efficacious vaccine capable of eliciting protective immunity against genetically diverse HCV strains. Natural spontaneous resolution of HCV infection is associated with production of broadly-neutralizing antibodies targeting the HCV glycoproteins E1 and E2. As such, production of cross-neutralizing antibodies is an important endpoint for experimental vaccine trials. Varying success generating cross-neutralizing antibodies has been achieved with immunogens derived from naturally-occurring HCV strains. In this study the challenge of minimising the genetic diversity between the vaccine strain and circulating HCV isolates was addressed. Two novel synthetic E2 glycoprotein immunogens (NotC1 and NotC2) were derived from consensus nucleotide sequences deduced from samples of circulating genotype 1 HCV strains. These two synthetic sequences differed in their relative positions in the overall genotype 1a/1b phylogeny. Expression of these constructs in Drosophila melanogaster S2 cells resulted in high yields of correctly-folded, monomeric E2 protein, which were recognised by broadly neutralizing monoclonal antibodies. Immunization of guinea pigs with either of these consensus immunogens, or a comparable protein representing a circulating genotype 1a strain resulted in high titres of cross-reactive anti-E2 antibodies. All immunogens generated antibodies capable of neutralizing the H77 strain, but NotC1 elicited antibodies that more potently neutralized virus entry. These vaccine-induced antibodies neutralized some viruses representing genotype 1, but not strains representing genotype 2 or genotype 3. Thus, while this approach to vaccine design resulted in correctly folded, immunogenic protein, cross-neutralizing epitopes were not preferentially targeted by the host immune response generated by this immunogen. Greater immunofocussing of vaccines to common epitopes is necessary to successfully elicit broadly neutralizing antibodies.
Collapse
Affiliation(s)
- Alexander W Tarr
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, UK; School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Matthijs Backx
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, UK; School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Mohamed R Hamed
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, UK; School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK; Medical Microbiology and Immunology Department, Faculty of Medicine, Mansoura University, Egypt
| | - Richard A Urbanowicz
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, UK; School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - C Patrick McClure
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, UK; School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Richard J P Brown
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, UK; School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Jonathan K Ball
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, UK; School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK.
| |
Collapse
|
50
|
Ramirez S, Bukh J. Current status and future development of infectious cell-culture models for the major genotypes of hepatitis C virus: Essential tools in testing of antivirals and emerging vaccine strategies. Antiviral Res 2018; 158:264-287. [PMID: 30059723 DOI: 10.1016/j.antiviral.2018.07.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/17/2018] [Accepted: 07/20/2018] [Indexed: 02/08/2023]
Abstract
In this review, we summarize the relevant scientific advances that led to the development of infectious cell culture systems for hepatitis C virus (HCV) with the corresponding challenges and successes. We also provide an overview of how these systems have contributed to the study of antiviral compounds and their relevance for the development of a much-needed vaccine against this major human pathogen. An efficient infectious system to study HCV in vitro, using human hepatoma derived cells, has only been available since 2005, and was limited to a single isolate, named JFH1, until 2012. Successive developments have been slow and cumbersome, as each available system has been the result of a systematic effort for discovering adaptive mutations conferring culture replication and propagation to patient consensus clones that are inherently non-viable in vitro. High genetic heterogeneity is a paramount characteristic of this virus, and as such, it should preferably be reflected in basic, translational, and clinical studies. The limited number of efficient viral culture systems, in the context of the vast genetic diversity of HCV, continues to represent a major hindrance for the study of this virus, posing a significant barrier towards studies of antivirals (particularly of resistance) and for advancing vaccine development. Intensive research efforts, driven by isolate-specific culture adaptation, have only led to efficient full-length infectious culture systems for a few strains of HCV genotypes 1, 2, 3, and 6. Hence research aimed at identifying novel strategies that will permit universal culture of HCV will be needed to further our understanding of this unique virus causing 400 thousand deaths annually.
Collapse
Affiliation(s)
- Santseharay Ramirez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|