1
|
Schaerlaekens S, Jacobs L, Stobbelaar K, Cos P, Delputte P. All Eyes on the Prefusion-Stabilized F Construct, but Are We Missing the Potential of Alternative Targets for Respiratory Syncytial Virus Vaccine Design? Vaccines (Basel) 2024; 12:97. [PMID: 38250910 PMCID: PMC10819635 DOI: 10.3390/vaccines12010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024] Open
Abstract
Respiratory Syncytial Virus (RSV) poses a significant global health concern as a major cause of lower respiratory tract infections (LRTIs). Over the last few years, substantial efforts have been directed towards developing vaccines and therapeutics to combat RSV, leading to a diverse landscape of vaccine candidates. Notably, two vaccines targeting the elderly and the first maternal vaccine have recently been approved. The majority of the vaccines and vaccine candidates rely solely on a prefusion-stabilized conformation known for its highly neutralizing epitopes. Although, so far, this antigen design appears to be successful for the elderly, our current understanding remains incomplete, requiring further improvement and refinement in this field. Pediatric vaccines still have a long journey ahead, and we must ensure that vaccines currently entering the market do not lose efficacy due to the emergence of mutations in RSV's circulating strains. This review will provide an overview of the current status of vaccine designs and what to focus on in the future. Further research into antigen design is essential, including the exploration of the potential of alternative RSV proteins to address these challenges and pave the way for the development of novel and effective vaccines, especially in the pediatric population.
Collapse
Affiliation(s)
- Sofie Schaerlaekens
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp (UA), Universiteitsplein 1 S.7, 2610 Antwerp, Belgium; (S.S.); (L.J.); (K.S.); (P.C.)
| | - Lotte Jacobs
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp (UA), Universiteitsplein 1 S.7, 2610 Antwerp, Belgium; (S.S.); (L.J.); (K.S.); (P.C.)
| | - Kim Stobbelaar
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp (UA), Universiteitsplein 1 S.7, 2610 Antwerp, Belgium; (S.S.); (L.J.); (K.S.); (P.C.)
- Pediatrics Department, Antwerp University Hospital (UZA), Wilrijkstraat 10, 2650 Edegem, Belgium
| | - Paul Cos
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp (UA), Universiteitsplein 1 S.7, 2610 Antwerp, Belgium; (S.S.); (L.J.); (K.S.); (P.C.)
- Infla-Med Centre of Excellence, University of Antwerp (UA), Universiteitsplein 1 S.7, 2610 Antwerp, Belgium
| | - Peter Delputte
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp (UA), Universiteitsplein 1 S.7, 2610 Antwerp, Belgium; (S.S.); (L.J.); (K.S.); (P.C.)
- Infla-Med Centre of Excellence, University of Antwerp (UA), Universiteitsplein 1 S.7, 2610 Antwerp, Belgium
| |
Collapse
|
2
|
Zhou H, Zhu J, Mei Y, Chen A, Liu R, Wang X, Wu X, Chen X, Liu B. Intratumoral Injection of Engineered Mycobacterium smegmatis Induces Antitumor Immunity and Inhibits Tumor Growth. Biomater Res 2024; 29:0130. [PMID: 39780958 PMCID: PMC11704092 DOI: 10.34133/bmr.0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/05/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Conventional type 1 dendritic cells are essential for antigen presentation and successful initiation of antitumor CD8+ T cells. However, their abundance and function within tumors tend to be limited. Mycobacterium smegmatis, a fast-growing, nonpathogenic mycobacterium, proves to be easily modified with synthetic biology. Herein, we construct an engineered M. smegmatis expressing a fusion protein of Fms-like tyrosine kinase 3 ligand and costimulator CD40darpin (rM-FC) since the 2 drugs are reported to have a good synergistic effect. Intratumoral delivery of rM-FC effectively recruits and activates dendritic cells (DCs), especially CD103+ DCs and CD80+CD86+ DCs, further inducing sufficient migration of effector memory T cells into the tumor microenvironment. This successfully converts the so-called immune-desert tumors to the "hot" phenotype. In B16F10 mouse melanoma tumor models, local injection of rM-FC into the primary tumor triggers a robust T cell immune response to restrain the growth of both the treated tumors and the distant untreated ones. The population of PDL1+ tumor cells increased after the in situ vaccination, and murine tumors became more responsive to programmed death ligand 1 (PDL1) blockade, prompting the combination therapy. Overall, our findings demonstrate that rM-FC acts as a strong DC agonist and remarkably enhances antitumor immunity.
Collapse
Affiliation(s)
- Hang Zhou
- The Comprehensive Cancer Centre, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School,
Nanjing University, Nanjing 210008, China
| | - Junmeng Zhu
- The Comprehensive Cancer Centre, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School,
Nanjing University, Nanjing 210008, China
| | - Yi Mei
- The Comprehensive Cancer Centre, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School,
Nanjing University, Nanjing 210008, China
| | - Aoxing Chen
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine,
Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Rui Liu
- The Comprehensive Cancer Centre,
China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing 210008, China
| | - Xiaonan Wang
- The Comprehensive Cancer Centre, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School,
Nanjing University, Nanjing 210008, China
| | - Xiangyu Wu
- The Comprehensive Cancer Centre, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School,
Nanjing University, Nanjing 210008, China
| | - Xiaotong Chen
- The Comprehensive Cancer Centre, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School,
Nanjing University, Nanjing 210008, China
| | - Baorui Liu
- The Comprehensive Cancer Centre, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School,
Nanjing University, Nanjing 210008, China
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine,
Nanjing University of Chinese Medicine, Nanjing 210008, China
- The Comprehensive Cancer Centre,
China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing 210008, China
| |
Collapse
|
3
|
Wen Z, Fang C, Liu X, Liu Y, Li M, Yuan Y, Han Z, Wang C, Zhang T, Sun C. A recombinant Mycobacterium smegmatis-based surface display system for developing the T cell-based COVID-19 vaccine. Hum Vaccin Immunother 2023; 19:2171233. [PMID: 36785935 PMCID: PMC10012901 DOI: 10.1080/21645515.2023.2171233] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
The immune escape mutations of SARS-CoV-2 variants emerged frequently, posing a new challenge to weaken the protective efficacy of current vaccines. Thus, the development of novel SARS-CoV-2 vaccines is of great significance for future epidemic prevention and control. We herein reported constructing the attenuated Mycobacterium smegmatis (M. smegmatis) as a bacterial surface display system to carry the spike (S) and nucleocapsid (N) of SARS-CoV-2. To mimic the native localization on the surface of viral particles, the S or N antigen was fused with truncated PE_PGRS33 protein, which is a transportation component onto the cell wall of Mycobacterium tuberculosis (M.tb). The sub-cellular fraction analysis demonstrated that S or N protein was exactly expressed onto the surface (cell wall) of the recombinant M. smegmatis. After the immunization of the M. smegmatis-based COVID-19 vaccine candidate in mice, S or N antigen-specific T cell immune responses were effectively elicited, and the subsets of central memory CD4+ T cells and CD8+ T cells were significantly induced. Further analysis showed that there were some potential cross-reactive CTL epitopes between SARS-CoV-2 and M.smegmatis. Overall, our data provided insights that M. smegmatis-based bacterial surface display system could be a suitable vector for developing T cell-based vaccines against SARS-CoV-2 and other infectious diseases.
Collapse
Affiliation(s)
- Ziyu Wen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Cuiting Fang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China.,University of Chinese Academy of Sciences (UCAS), Beijing, China.,Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China.,China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| | - Xinglai Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yan Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China.,University of Chinese Academy of Sciences (UCAS), Beijing, China.,Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
| | - Minchao Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yue Yuan
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Zirong Han
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Congcong Wang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China.,University of Chinese Academy of Sciences (UCAS), Beijing, China.,Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China.,China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| | - Caijun Sun
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China.,Ministry of Education, Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Guangzhou, China
| |
Collapse
|
4
|
Xie W, Wang L, Luo D, Soni V, Rosenn EH, Wang Z. Mycobacterium smegmatis, a Promising Vaccine Vector for Preventing TB and Other Diseases: Vaccinomics Insights and Applications. Vaccines (Basel) 2023; 11:1302. [PMID: 37631870 PMCID: PMC10459588 DOI: 10.3390/vaccines11081302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/17/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Mycobacterium smegmatis (M.sm) is frequently used as an alternative model organism in Mycobacterium tuberculosis (M.tb) studies. While containing high sequence homology with M.tb, it is considered non-pathogenic in humans. As such it has been used to study M.tb and other infections in vivo and more recently been explored for potential therapeutic applications. A body of previous research has highlighted the potential of using genetically modified M.sm displaying rapid growth and unique immunostimulatory characteristics as an effective vaccine vector. Novel systems biology techniques can further serve to optimize these delivery constructs. In this article, we review recent advancements in vaccinomics tools that support the efficacy of a M.sm-based vaccine vector. Moreover, the integration of systems biology and molecular omics techniques in these pioneering studies heralds a potential accelerated pipeline for the development of next-generation recombinant vaccines against rapidly developing diseases.
Collapse
Affiliation(s)
- Weile Xie
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Longlong Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dan Luo
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Vijay Soni
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Eric H. Rosenn
- School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Zhe Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
5
|
Aslan G, Alkaya D. One Hundred of Tuberculosis Vaccine: History of Bacille Calmette-Guérin - Could BCG Vaccination Induce Trained Immunity? TURKISH JOURNAL OF IMMUNOLOGY 2022. [DOI: 10.4274/tji.galenos.2022.98598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
6
|
Kim BJ, Jeong H, Seo H, Lee MH, Shin HM, Kim BJ. Recombinant Mycobacterium paragordonae Expressing SARS-CoV-2 Receptor-Binding Domain as a Vaccine Candidate Against SARS-CoV-2 Infections. Front Immunol 2021; 12:712274. [PMID: 34512635 PMCID: PMC8432291 DOI: 10.3389/fimmu.2021.712274] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/04/2021] [Indexed: 01/14/2023] Open
Abstract
At present, concerns that the recent global emergence of SARS-CoV-2 variants could compromise the current vaccines have been raised, highlighting the urgent demand for new vaccines capable of eliciting T cell-mediated immune responses, as well as B cell-mediated neutralizing antibody production. In this study, we developed a novel recombinant Mycobacterium paragordonae expressing the SARS-CoV-2 receptor-binding domain (RBD) (rMpg-RBD-7) that is capable of eliciting RBD-specific immune responses in vaccinated mice. The potential use of rMpg-RBD-7 as a vaccine for SARS-CoV-2 infections was evaluated in in vivo using mouse models of two different modules, one for single-dose vaccination and the other for two-dose vaccination. In a single-dose vaccination model, we found that rMpg-RBD-7 versus a heat-killed strain could exert an enhanced cell-mediated immune (CMI) response, as well as a humoral immune response capable of neutralizing the RBD and ACE2 interaction. In a two-dose vaccination model, rMpg-RBD-7 in a two-dose vaccination could also exert a stronger CMI and humoral immune response to neutralize SARS-CoV-2 infections in pseudoviral or live virus infection systems, compared to single dose vaccinations of rMpg-RBD or two-dose RBD protein immunization. In conclusion, our data showed that rMpg-RBD-7 can lead to an enhanced CMI response and humoral immune responses in mice vaccinated with both single- or two-dose vaccination, highlighting its feasibility as a novel vaccine candidate for SARS-CoV-2. To the best of our knowledge, this study is the first in which mycobacteria is used as a delivery system for a SARS-CoV-2 vaccine.
Collapse
Affiliation(s)
- Byoung-Jun Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, South Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, South Korea
| | - Hyein Jeong
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, South Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, South Korea
- Liver Research Institute, College of Medicine, Seoul National University, Seoul, South Korea
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, South Korea
- Seoul National University Medical Research Center (SNUMRC), Seoul, South Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
| | - Hyejun Seo
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, South Korea
- Liver Research Institute, College of Medicine, Seoul National University, Seoul, South Korea
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, South Korea
- Seoul National University Medical Research Center (SNUMRC), Seoul, South Korea
- Interdisciplinary Program in Cancer Biology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Mi-Hyun Lee
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, South Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, South Korea
- Liver Research Institute, College of Medicine, Seoul National University, Seoul, South Korea
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, South Korea
- Seoul National University Medical Research Center (SNUMRC), Seoul, South Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
| | - Hyun Mu Shin
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, South Korea
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, South Korea
- Seoul National University Medical Research Center (SNUMRC), Seoul, South Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, South Korea
| | - Bum-Joon Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, South Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, South Korea
- Liver Research Institute, College of Medicine, Seoul National University, Seoul, South Korea
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, South Korea
- Seoul National University Medical Research Center (SNUMRC), Seoul, South Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
7
|
Jeong H, Lee SY, Seo H, Kim BJ. Recombinant Mycobacterium smegmatis delivering a fusion protein of human macrophage migration inhibitory factor (MIF) and IL-7 exerts an anticancer effect by inducing an immune response against MIF in a tumor-bearing mouse model. J Immunother Cancer 2021; 9:e003180. [PMID: 34389619 PMCID: PMC8365831 DOI: 10.1136/jitc-2021-003180] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Macrophage migration inhibitory factor (MIF) is a pleotropic inflammatory cytokine that is overexpressed in a number of cancer types including most types of human cancer. Inhibition of MIF signaling can restore anticancer immune responses in tumor microenvironments. In this study, we aimed to develop a therapeutic vaccine capable of inhibiting tumor development by inducing anti-MIF immune responses. METHODS We introduced a recombinant Mycobacterium smegmatis (rSmeg-hMIF-hIL-7) vaccine that could deliver a fusion protein of human macrophage migration inhibitory factor (MIF) and interleukin 7, which could act as a target antigen and as an adjuvant of cancer vaccine, respectively. We checked the anticancer potential of the vaccine in a tumor-bearing mouse model. RESULTS We found that rSmeg-hMIF-hIL-7 showed enhanced oncolytic activity compared with PBS, BCG or Smeg in MC38-bearing mice, and there was an increase in the humoral and cell-mediated immune responses against MIF. rSmeg-hMIF-hIL-7 can also induce a neutralizing effect regarding MIF tautomerase activity in the serum of vaccinated mice. We also found downregulation of MIF, CD74, and CD44, which are related to the MIF signaling pathway and PI3K/Akt and MMP2/9 signaling, which are regulated by MIF in the tumor tissue of rSmeg-hMIF-hIL-7-vaccinated mice, suggesting a significant role of the anti-MIF immune response to rSmeg-hMIF-hIL-7 in its anticancer effect. In addition, rSmeg-hMIF-hIL-7 treatment led to enhanced activation of CD4+ and CD8+ T cells in the tumor regions of vaccinated mice, also contributing to the anticancer effect. This trend was also found in LLC-bearing and PanO2-bearing mouse models. In addition, rSmeg-hMIF-hIL-7 treatment exerted an enhanced anticancer effect with one of the immune checkpoint inhibitors, the anti-PD-L1 antibody, in a tumor-bearing mouse model. CONCLUSIONS In conclusion, our data showed that rSmeg-hMIF-hIL-7 exerts a strong antitumor immune response in mice, possibly by inhibiting the MIF-dependent promotion of tumorigenesis by the anti-MIF immune response and via enhanced cytotoxic T cell recruitment into tumor microenvironments. We also found that it also exerted an enhanced anticancer effect with immune checkpoint inhibitors. These results suggest that rSmeg-hMIF-hIL-7 is a potential adjuvant for cancer immunotherapy. This is the first report to prove anticancer potential of immunotherapeutic vaccine targeting immune response against MIF.
Collapse
Affiliation(s)
- Hyein Jeong
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul 110799, Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National Universtiy, Seoul 03080, Korea
- Liver Research Institute, College of Medicine, Seoul National University, Seoul 03080, Korea
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Korea
- Seoul National University Medical Research Center (SNUMRC), Seoul 03080, Korea
| | - So-Young Lee
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul 110799, Korea
- Liver Research Institute, College of Medicine, Seoul National University, Seoul 03080, Korea
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Korea
- Seoul National University Medical Research Center (SNUMRC), Seoul 03080, Korea
| | - Hyejun Seo
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul 110799, Korea
- Liver Research Institute, College of Medicine, Seoul National University, Seoul 03080, Korea
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Korea
- Seoul National University Medical Research Center (SNUMRC), Seoul 03080, Korea
| | - Bum-Joon Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul 110799, Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National Universtiy, Seoul 03080, Korea
- Liver Research Institute, College of Medicine, Seoul National University, Seoul 03080, Korea
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Korea
- Seoul National University Medical Research Center (SNUMRC), Seoul 03080, Korea
| |
Collapse
|
8
|
Parmar K, Siddiqui A, Nugent K. Bacillus Calmette-Guerin Vaccine and Nonspecific Immunity. Am J Med Sci 2021; 361:683-689. [PMID: 33705721 PMCID: PMC7938189 DOI: 10.1016/j.amjms.2021.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/04/2021] [Indexed: 12/19/2022]
Abstract
Bacillus Calmette-Guerin (BCG) vaccine is one of the most widely used vaccines in the world. It protects against many non-mycobacterial infections secondary to its nonspecific immune effects. The mechanism for these effects includes modification of innate and adaptive immunity. The alteration in innate immunity is through histone modifications and epigenetic reprogramming of monocytes to develop an inflammatory phenotype, a process called “trained immunity.” The memory T cells of adaptive immunity are also responsible for resistance against secondary infections after administration of BCG vaccine, a process called “heterologous immunity.” Bacillus Calmette-Guerin vaccine is known to not only boosts immune responses to many vaccines when they are co-administered but also decrease severity of these infections when used alone. The BCG vaccine by itself induces a TH1 type response, and its use as a vector has also shown promising results. This review article summarizes the studies showing effects of BCG vaccines on various viral infections, its role in enhancing vaccine responses, the mechanisms for this protective effect, and information on its effect on COVID-19.
Collapse
Affiliation(s)
- Kanak Parmar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Afzal Siddiqui
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Kenneth Nugent
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
9
|
Oral delivery of bacteria: Basic principles and biomedical applications. J Control Release 2020; 327:801-833. [PMID: 32926886 DOI: 10.1016/j.jconrel.2020.09.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/05/2020] [Indexed: 12/18/2022]
|
10
|
Kilpeläinen A, Saubi N, Guitart N, Moyo N, Wee EG, Ravi K, Hanke T, Joseph J. Priming With Recombinant BCG Expressing Novel HIV-1 Conserved Mosaic Immunogens and Boosting With Recombinant ChAdOx1 Is Safe, Stable, and Elicits HIV-1-Specific T-Cell Responses in BALB/c Mice. Front Immunol 2019; 10:923. [PMID: 31156614 PMCID: PMC6530512 DOI: 10.3389/fimmu.2019.00923] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/10/2019] [Indexed: 11/13/2022] Open
Abstract
BCG is currently the only licensed vaccine against tuberculosis (TB) and confers protection against meningitis and miliary tuberculosis in infants, although pulmonary disease protection in adults is inconsistent. Recently, promising HIV-1 immunogens were developed, such as the T-cell immunogens "tHIVconsvX," designed using functionally conserved protein regions across group M strains, with mosaic immunogens to improve HIV-1 variant match and response breadth. In this study, we constructed an integrative E. coli-mycobacterial shuttle plasmid, p2auxo.HIVconsvXint, expressing the immunogens HIVconsv1&2. This expression vector used an antibiotic resistance-free mechanism for plasmid selection and maintenance. It was first transformed into a glycine auxotrophic E. coli strain and subsequently transformed into a lysine auxotrophic Mycobacterium bovis BCG strain to generate vaccines BCG.HIVconsv12auxo.int and BCG.HIVconsv22auxo.int. The DNA sequence coding for the HIVconsv1&2 immunogens and protein expression were confirmed and working vaccine stocks were genetically and phenotypically characterized. We demonstrated that BCG.HIVconsv1&22auxo.int in combination with ChAdOx1.tHIVconsv5&6 were well tolerated and induced HIV-1-specific T-cell responses in adult BALB/c mice. In addition, we showed that the BCG.HIVconsv1&22auxo.int vaccine strains were stable in vitro after 35 bacterial generations and in vivo 7 weeks after inoculation. The use of integrative expression vectors and novel HIV-1 immunogens are likely to have improved the mycobacterial vaccine stability and specific immunogenicity and may enable the development of a useful vaccine platform for priming protective responses against HIV-1/TB and other prevalent pediatric pathogens shortly following birth.
Collapse
Affiliation(s)
- Athina Kilpeläinen
- AIDS Research Unit, Infectious Diseases Department, Catalan Center for HIV Vaccine Research and Development, Hospital Clínic/IDIBAPS, Barcelona, Spain
| | - Narcís Saubi
- AIDS Research Unit, Infectious Diseases Department, Catalan Center for HIV Vaccine Research and Development, Hospital Clínic/IDIBAPS, Barcelona, Spain
| | - Núria Guitart
- AIDS Research Unit, Infectious Diseases Department, Catalan Center for HIV Vaccine Research and Development, Hospital Clínic/IDIBAPS, Barcelona, Spain
| | - Nathifa Moyo
- The Jenner Institute Laboratories, University of Oxford, Oxford, United Kingdom
| | - Edmund G. Wee
- The Jenner Institute Laboratories, University of Oxford, Oxford, United Kingdom
| | - Krupa Ravi
- The Jenner Institute Laboratories, University of Oxford, Oxford, United Kingdom
| | - Tomáš Hanke
- The Jenner Institute Laboratories, University of Oxford, Oxford, United Kingdom
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Joan Joseph
- AIDS Research Unit, Infectious Diseases Department, Catalan Center for HIV Vaccine Research and Development, Hospital Clínic/IDIBAPS, Barcelona, Spain
| |
Collapse
|
11
|
Broset E, Saubi N, Guitart N, Aguilo N, Uranga S, Kilpeläinen A, Eto Y, Hanke T, Gonzalo-Asensio J, Martín C, Joseph-Munné J. MTBVAC-Based TB-HIV Vaccine Is Safe, Elicits HIV-T Cell Responses, and Protects against Mycobacterium tuberculosis in Mice. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 13:253-264. [PMID: 30859110 PMCID: PMC6395831 DOI: 10.1016/j.omtm.2019.01.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 01/30/2019] [Indexed: 01/11/2023]
Abstract
The tuberculosis (TB) vaccine MTBVAC is the only live-attenuated Mycobacterium tuberculosis (Mtb)-based vaccine in clinical development, and it confers superior protection in different animal models compared to the current vaccine, BCG (Mycobacterium bovis bacillus Calmette-Guérin). With the aim of using MTBVAC as a vector for a dual TB-HIV vaccine, we constructed the recombinant MTBVAC.HIVA2auxo strain. First, we generated a lysine auxotroph of MTBVAC (MTBVACΔlys) by deleting the lysA gene. Then the auxotrophic MTBVACΔlys was transformed with the E. coli-mycobacterial vector p2auxo.HIVA, harboring the lysA-complementing gene and the HIV-1 clade A immunogen HIVA. This TB-HIV vaccine conferred similar efficacy to the parental strain MTBVAC against Mtb challenge in mice. MTBVAC.HIVA2auxo was safer than BCG and MTBVAC in severe combined immunodeficiency (SCID) mice, and it was shown to be maintained up to 42 bacterial generations in vitro and up to 100 days after inoculation in vivo. The MTBVAC.HIVA2auxo vaccine, boosted with modified vaccinia virus Ankara (MVA).HIVA, induced HIV-1 and Mtb-specific interferon-γ-producing T cell responses and polyfunctional HIV-1-specific CD8+ T cells producing interferon-γ (IFN-γ), tumor necrosis factor alpha (TNF-α), and CD107a in BALB/c mice. Here we describe new tools to develop combined vaccines against TB and HIV with the potential of expansion for other infectious diseases.
Collapse
Affiliation(s)
- Esther Broset
- Grupo de Genética de Micobacterias, Departamento de Microbiología y Medicina Preventiva, Facultad de Medicina, Universidad de Zaragoza, C/Domingo Miral s/n, Zaragoza 50009, Spain.,CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Zaragoza, Spain
| | - Narcís Saubi
- AIDS Research Group, Hospital Clínic de Barcelona/IDIBAPS-HIVACAT, School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain.,Red Temática de Investigación Cooperativa en SIDA (RD12/0017/0001), Spanish AIDS Network, Madrid, Spain
| | - Núria Guitart
- AIDS Research Group, Hospital Clínic de Barcelona/IDIBAPS-HIVACAT, School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain
| | - Nacho Aguilo
- Grupo de Genética de Micobacterias, Departamento de Microbiología y Medicina Preventiva, Facultad de Medicina, Universidad de Zaragoza, C/Domingo Miral s/n, Zaragoza 50009, Spain.,CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Santiago Uranga
- Grupo de Genética de Micobacterias, Departamento de Microbiología y Medicina Preventiva, Facultad de Medicina, Universidad de Zaragoza, C/Domingo Miral s/n, Zaragoza 50009, Spain.,CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Athina Kilpeläinen
- AIDS Research Group, Hospital Clínic de Barcelona/IDIBAPS-HIVACAT, School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain.,EAVI2020 European AIDS Vaccine Initiative H2020 Research Programme, London, UK
| | - Yoshiki Eto
- AIDS Research Group, Hospital Clínic de Barcelona/IDIBAPS-HIVACAT, School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain
| | - Tomáš Hanke
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jesús Gonzalo-Asensio
- Grupo de Genética de Micobacterias, Departamento de Microbiología y Medicina Preventiva, Facultad de Medicina, Universidad de Zaragoza, C/Domingo Miral s/n, Zaragoza 50009, Spain.,CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Zaragoza, Spain.,Servicio de Microbiología, Hospital Universitario Miguel Servet, IIS Aragón, Zaragoza, Spain
| | - Carlos Martín
- Grupo de Genética de Micobacterias, Departamento de Microbiología y Medicina Preventiva, Facultad de Medicina, Universidad de Zaragoza, C/Domingo Miral s/n, Zaragoza 50009, Spain.,CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Servicio de Microbiología, Hospital Universitario Miguel Servet, IIS Aragón, Zaragoza, Spain
| | - Joan Joseph-Munné
- AIDS Research Group, Hospital Clínic de Barcelona/IDIBAPS-HIVACAT, School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain.,EAVI2020 European AIDS Vaccine Initiative H2020 Research Programme, London, UK.,Servei de Malalties Infeccioses, Hospital Clínic de Barcelona, Catalonia, Spain
| |
Collapse
|
12
|
Kilpeläinen A, Maya-Hoyos M, Saubí N, Soto CY, Joseph Munne J. Advances and challenges in recombinant Mycobacterium bovis BCG-based HIV vaccine development: lessons learned. Expert Rev Vaccines 2018; 17:1005-1020. [PMID: 30300040 DOI: 10.1080/14760584.2018.1534588] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Human Immunodeficiency Virus/Acquired Immune Deficiency Syndrome, tuberculosis, and malaria are responsible for most human deaths produced by infectious diseases worldwide. Vaccination against HIV requires generation of memory T cells and neutralizing antibodies, mucosal immunity, and stimulation of an innate immune responses. In this context, the use of Mycobacterium bovis bacillus Calmette-Guérin (BCG) as a live vaccine vehicle is a promising approach for T-cell induction. AREAS COVERED In this review, we provide a comprehensive summary of the literature regarding immunogenicity studies in animal models performed since 2005. Furthermore, we provide expert commentary and 5-year view on how the development of potential recombinant BCG-based HIV vaccines involves careful selection of the HIV antigen, expression vectors, promoters, BCG strain, preclinical animal models, influence of preexisting immunity, and safety issues, for the rational design of recombinant BCG:HIV vaccines to prevent HIV transmission in the general population. EXPERT COMMENTARY The three critical issues to be considered when developing a rBCG:HIV vaccine are codon optimization, antigen localization, and plasmid stability in vivo. The use of integrative expression vectors are likely to improve the mycobacterial vaccine stability and immunogenicity to develop not only recombinant BCG-based vaccines expressing second generation of HIV-1 immunogens but also other major pediatric pathogens to prime protective responses shortly following birth.
Collapse
Affiliation(s)
- Athina Kilpeläinen
- a Catalan Center for HIV Vaccine Research and Development, AIDS Research Unit, Infectious Diseases Department, Hospital Clínic/IDIBAPS, School of Medicine , University of Barcelona , Barcelona , Spain
| | - Milena Maya-Hoyos
- b Chemistry Department, Faculty of Sciences , Universidad Nacional de Colombia, Ciudad Universitaria , Bogotá , Colombia
| | - Narcís Saubí
- a Catalan Center for HIV Vaccine Research and Development, AIDS Research Unit, Infectious Diseases Department, Hospital Clínic/IDIBAPS, School of Medicine , University of Barcelona , Barcelona , Spain
| | - Carlos Y Soto
- b Chemistry Department, Faculty of Sciences , Universidad Nacional de Colombia, Ciudad Universitaria , Bogotá , Colombia
| | - Joan Joseph Munne
- a Catalan Center for HIV Vaccine Research and Development, AIDS Research Unit, Infectious Diseases Department, Hospital Clínic/IDIBAPS, School of Medicine , University of Barcelona , Barcelona , Spain
| |
Collapse
|
13
|
Jian W, Li X, Kang J, Lei Y, Bai Y, Xue Y. Antitumor effect of recombinant Mycobacterium smegmatis expressing MAGEA3 and SSX2 fusion proteins. Exp Ther Med 2018; 16:2160-2166. [PMID: 30186454 DOI: 10.3892/etm.2018.6425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 06/08/2018] [Indexed: 12/17/2022] Open
Abstract
Mycobacterium smegmatis (M. smegmatis), which is a nonpathogenic and fast-growing mycobacterium, is a potential vaccine vector capable of expressing heterologous antigens. Spontaneous humoral and cellular immune responses have been demonstrated against cancer/testis antigens (CTA), including melanoma-associated antigen A (MAGEA) and SSX. In the present study, recombinant plasmids expressing MAGEA3 and SSX2 were constructed. The recombinant plasmids were transferred into M. smegmatis to generate the novel antitumor DNA vaccine. As MAGEA3 and SSX2 were in different ligation sequences, the two DNA vaccines were recombinant M. smegmatis MAGEA3-SSX2 (rM.S-MS) and recombinant M. smegmatis SSX2-MAGEA3 (rM.S-SM), respectively. The expression levels of Fusion proteins were assessed by western blotting. BALB/c mice were immunized with rM.S and western blot analysis was used to determine whether antibodies against MAGEA3 or SSX2 were produced in immunized mice. EC9706 cells were inoculated into BALB/c nude mice and the mice were maintained until an obvious visible tumor appeared on the back. Subsequently, the blood from the rM.S immunized BALB/c mice was injected into the BALB/c nude mice via the tail vein. In order to evaluate the antitumor effect of the vaccines, tumor volume and weight were measured 5 to 21 days after injection. Mice were euthanized on day 21 of tumor growth, and the tumor was dissected and weighed. The two fusion proteins were expressed in the rM.S and the specific fusion protein antibodies were expressed in the blood of immunized BALB/c mice. The tumor volumes and weight in the recombinant M. smegmatis MAGEA3 (rM.S-M) and recombinant M. smegmatis SSX2 (rM.S-S) groups were significantly reduced compared with the control group. Furthermore, the decrease in tumor volumes and weight in the rM.S-MS and rM.S-SM groups was more severe than in the rM.S-M or rM.S-S groups. There was no significant difference in the antitumor effect of the rM.S-MS and rM.S-SM groups. The present findings suggest that this rM.S may be a potential candidate therapeutic vaccine for the treatment of cancer.
Collapse
Affiliation(s)
- Wen Jian
- Department of Respiratory Medicine, The First Affiliated Hospital of The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Xin Li
- Medical Oncology Center, Dongguan Kanghua Hospital, Dongguan, Guangdong 523080, P.R. China
| | - Jian Kang
- Department of Basic Microbiology, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Yingfeng Lei
- Department of Basic Microbiology, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Yinlan Bai
- Department of Basic Microbiology, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Ying Xue
- Medical Oncology Center, Dongguan Kanghua Hospital, Dongguan, Guangdong 523080, P.R. China.,Department of Radiation Oncology, The First Affiliated Hospital of The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| |
Collapse
|
14
|
Gong W, Liang Y, Wu X. The current status, challenges, and future developments of new tuberculosis vaccines. Hum Vaccin Immunother 2018; 14:1697-1716. [PMID: 29601253 DOI: 10.1080/21645515.2018.1458806] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Mycobacterium tuberculosis complex causes tuberculosis (TB), one of the top 10 causes of death worldwide. TB results in more fatalities than multi-drug resistant (MDR) HIV strain related coinfection. Vaccines play a key role in the prevention and control of infectious diseases. Unfortunately, the only licensed preventive vaccine against TB, bacilli Calmette-Guérin (BCG), is ineffective for prevention of pulmonary TB in adults. Therefore, it is very important to develop novel vaccines for TB prevention and control. This literature review provides an overview of the innate and adaptive immune response during M. tuberculosis infection, and presents current developments and challenges to novel TB vaccines. A comprehensive understanding of vaccines in preclinical and clinical studies provides extensive insight for the development of safer and more efficient vaccines, and may inspire new ideas for TB prevention and treatment.
Collapse
Affiliation(s)
- Wenping Gong
- a Army Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research , Haidian District, Beijing , China
| | - Yan Liang
- a Army Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research , Haidian District, Beijing , China
| | - Xueqiong Wu
- a Army Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research , Haidian District, Beijing , China
| |
Collapse
|
15
|
Mahant A, Saubi N, Eto Y, Guitart N, Gatell JM, Hanke T, Joseph J. Preclinical development of BCG.HIVA 2auxo.int, harboring an integrative expression vector, for a HIV-TB Pediatric vaccine. Enhancement of stability and specific HIV-1 T-cell immunity. Hum Vaccin Immunother 2017; 13:1798-1810. [PMID: 28426273 PMCID: PMC5557246 DOI: 10.1080/21645515.2017.1316911] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
One of the critical issues that should be addressed in the development of a BCG-based HIV vaccine is genetic plasmid stability. Therefore, to address this issue we have considered using integrative vectors and the auxotrophic mutant of BCG complemented with a plasmid carrying a wild-type complementing gene. In this study, we have constructed an integrative E. coli-mycobacterial shuttle plasmid, p2auxo.HIVAint, expressing the HIV-1 clade A immunogen HIVA. This shuttle vector uses an antibiotic resistance-free mechanism for plasmid selection and maintenance. It was first transformed into a glycine auxotrophic E. coli strain and subsequently transformed into a lysine auxotrophic Mycobacterium bovis BCG strain to generate the vaccine BCG.HIVA2auxo.int. Presence of the HIVA gene sequence and protein expression was confirmed. We demonstrated that the in vitro stability of the integrative plasmid p2auxo.HIVAint was increased 4-fold, as compared with the BCG strain harboring the episomal plasmid, and was genetically and phenotypically characterized. The BCG.HIVA2auxo.int vaccine in combination with modified vaccinia virus Ankara (MVA).HIVA was found to be safe and induced HIV-1 and Mycobacterium tuberculosis-specific interferon-γ-producing T-cell responses in adult BALB/c mice. We have engineered a more stable and immunogenic BCG-vectored vaccine using the prototype immunogen HIVA. Thus, the use of integrative expression vectors and the antibiotic-free plasmid selection system based on “double” auxotrophic complementation are likely to improve the mycobacterial vaccine stability in vivo and immunogenicity to develop not only recombinant BCG-based vaccines expressing second generation of HIV-1 immunogens but also other major pediatric pathogens to prime protective responses shortly following birth.
Collapse
Affiliation(s)
- Aakash Mahant
- a AIDS Research Group, Hospital Clínic/IDIBAPS-HIVACAT, School of Medicine , University of Barcelona , Barcelona , Catalonia , Spain
| | - Narcís Saubi
- a AIDS Research Group, Hospital Clínic/IDIBAPS-HIVACAT, School of Medicine , University of Barcelona , Barcelona , Catalonia , Spain
| | - Yoshiki Eto
- a AIDS Research Group, Hospital Clínic/IDIBAPS-HIVACAT, School of Medicine , University of Barcelona , Barcelona , Catalonia , Spain
| | - Núria Guitart
- a AIDS Research Group, Hospital Clínic/IDIBAPS-HIVACAT, School of Medicine , University of Barcelona , Barcelona , Catalonia , Spain
| | - Josep Ma Gatell
- a AIDS Research Group, Hospital Clínic/IDIBAPS-HIVACAT, School of Medicine , University of Barcelona , Barcelona , Catalonia , Spain
| | - Tomáš Hanke
- b The Jenner Institute , University of Oxford , Oxford , UK
| | - Joan Joseph
- a AIDS Research Group, Hospital Clínic/IDIBAPS-HIVACAT, School of Medicine , University of Barcelona , Barcelona , Catalonia , Spain
| |
Collapse
|
16
|
Kim BJ, Gong JR, Kim GN, Kim BR, Lee SY, Kook YH, Kim BJ. Recombinant Mycobacterium smegmatis with a pMyong2 vector expressing Human Immunodeficiency Virus Type I Gag can induce enhanced virus-specific immune responses. Sci Rep 2017; 7:44776. [PMID: 28300196 PMCID: PMC5353558 DOI: 10.1038/srep44776] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 12/19/2016] [Indexed: 11/22/2022] Open
Abstract
Recently, we have developed a novel Mycobacterium-Escherichia coli shuttle vector system using pMyong2, which can provide an enhanced expression of heterologous genes in recombinant Mycobacterium smegmatis (rSmeg). To investigate the usefulness of rSmeg using pMyong2 in vaccine application, we vaccinated M. smegmatis with pMyong2 system expressing Human Immunodeficiency Virus Type I (HIV-1) Gag p24 antigen (rSmeg-pMyong2-p24) into mice and examined its cellular and humoral immune responses against HIV gag protein. We found that rSmeg-pMyong2-p24 expressed higher levels of Gag protein in bacteria, macrophage cell line (J774A.1) and mouse bone marrow derived dendritic cells (BMDCs) compared to rSmeg strains using two other vector systems, pAL5000 derived vector (rSmeg-pAL-p24) and the integrative plasmid, pMV306 (rSmeg-pMV306-p24). Inoculation of mice with rSmeg-pMyong2-p24 elicited more effective immunity compared to the other two rSmeg strains, as evidenced by higher levels of HIV-1 Gag-specific CD4 and CD8 T lymphocyte proliferation, interferon gamma ELISPOT cell induction, and antibody production. Furthermore, rSmeg-pMyong2-p24 showed a higher level of cytotoxic T cell response against target cells expressing Gag p24 proteins. Our data suggest that Mycobacterium-Escherichia coli shuttle vector system with pMyong2 may provide an advantage in vaccine application of rSmeg over other vector systems.
Collapse
Affiliation(s)
- Byoung-Jun Kim
- Department of Microbiology and Immunology, Biomedical Sciences, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea
| | - Jeong-Ryeol Gong
- Department of Microbiology and Immunology, Biomedical Sciences, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea
| | - Ga-Na Kim
- Department of Microbiology and Immunology, Biomedical Sciences, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea
| | - Bo-Ram Kim
- Department of Microbiology and Immunology, Biomedical Sciences, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea
| | - So-Young Lee
- Department of Microbiology and Immunology, Biomedical Sciences, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea
| | - Yoon-Hoh Kook
- Department of Microbiology and Immunology, Biomedical Sciences, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea
| | - Bum-Joon Kim
- Department of Microbiology and Immunology, Biomedical Sciences, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea
| |
Collapse
|
17
|
Deshpande V, Krishnan R, Philip S, Faludi I, Ponnusamy T, Thota LNR, Endresz V, Lu X, Kakkar VV, Mundkur LA. Oral administration of recombinant Mycobacterium smegmatis expressing a tripeptide construct derived from endogenous and microbial antigens prevents atherosclerosis in ApoE(-/-) mice. Cardiovasc Ther 2017; 34:314-24. [PMID: 27241889 DOI: 10.1111/1755-5922.12201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
INTRODUCTION Immunotherapy by inducing oral tolerance to atherogenic self-antigens is gaining importance as an alternative treatment modality for atherosclerosis. The use of live bacterial vectors to express the recombinant antigen in vivo will obviate the need for large-scale purification of recombinant protein and may also augment the efficacy of oral tolerance induction. AIM The objective of the study was to explore the use of recombinant Mycobacterium smegmatis as a live vector for oral delivery of antigens to induce immune tolerance. METHOD AND RESULTS We developed a M. smegmatis vector to secrete a recombinant tripeptide construct (AHC; peptides from Apolipoprotein B, Heat-shock protein 60 and Chlamydia pneumoniae outer membrane protein) expressed in a dendroaspin protein scaffold in pJH154 background. Immune response and oral tolerance to the cloned peptides were studied in C57/BL6 mice. The efficacy of this live vaccine to control atherosclerosis was studied in ApoE(-/-) knockout mice in C57/BL6 background. Oral administration of M. smegmatis secreting the cloned AHC antigen was found to induce tolerance to cloned protein and reduce the development of atherosclerosis by 24.0% compared to control. Protection against atherosclerosis was associated with increase in expression of regulatory T cell-associated markers including CTLA4 (1.8-fold), Foxp3 (2.6-fold), TGF-β (2.8-fold), IL10 (2.9-fold), and reduction in lipids, macrophage infiltration, and expression of inflammatory mediators in aorta. CONCLUSIONS Our results suggest that M. smegmatis can be developed as an oral carrier of recombinant proteins to treat inflammatory autoimmune diseases.
Collapse
Affiliation(s)
| | | | - Sheena Philip
- Molecular Immunology, Thrombosis Research Institute, Bangalore, India
| | - Ildiko Faludi
- Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary
| | | | | | - Valeria Endresz
- Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary
| | - Xinjie Lu
- Molecular Immunology, Thrombosis Research Institute, London, UK
| | - Vijay V Kakkar
- Molecular Immunology, Thrombosis Research Institute, Bangalore, India.,Molecular Immunology, Thrombosis Research Institute, London, UK
| | - Lakshmi A Mundkur
- Molecular Immunology, Thrombosis Research Institute, Bangalore, India.
| |
Collapse
|
18
|
Jensen K, Dela Pena-Ponce MG, Piatak M, Shoemaker R, Oswald K, Jacobs WR, Fennelly G, Lucero C, Mollan KR, Hudgens MG, Amedee A, Kozlowski PA, Estes JD, Lifson JD, Van Rompay KKA, Larsen M, De Paris K. Balancing Trained Immunity with Persistent Immune Activation and the Risk of Simian Immunodeficiency Virus Infection in Infant Macaques Vaccinated with Attenuated Mycobacterium tuberculosis or Mycobacterium bovis BCG Vaccine. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:e00360-16. [PMID: 27655885 PMCID: PMC5216431 DOI: 10.1128/cvi.00360-16] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/12/2016] [Indexed: 12/14/2022]
Abstract
Our goal is to develop a pediatric combination vaccine to protect the vulnerable infant population against human immunodeficiency virus type 1 (HIV-1) and tuberculosis (TB) infections. The vaccine consists of an auxotroph Mycobacterium tuberculosis strain that coexpresses HIV antigens. Utilizing an infant rhesus macaque model, we have previously shown that this attenuated M. tuberculosis (AMtb)-simian immunodeficiency virus (SIV) vaccine is immunogenic, and although the vaccine did not prevent oral SIV infection, a subset of vaccinated animals was able to partially control virus replication. However, unexpectedly, vaccinated infants required fewer SIV exposures to become infected compared to naive controls. Considering that the current TB vaccine, Mycobacterium bovis bacillus Calmette-Guérin (BCG), can induce potent innate immune responses and confer pathogen-unspecific trained immunity, we hypothesized that an imbalance between enhanced myeloid cell function and immune activation might have influenced the outcome of oral SIV challenge in AMtb-SIV-vaccinated infants. To address this question, we used archived samples from unchallenged animals from our previous AMtb-SIV vaccine studies and vaccinated additional infant macaques with BCG or AMtb only. Our results show that vaccinated infants, regardless of vaccine strain or regimen, had enhanced myeloid cell responses. However, CD4+ T cells were concurrently activated, and the persistence of these activated target cells in oral and/or gastrointestinal tissues may have facilitated oral SIV infection. Immune activation was more pronounced in BCG-vaccinated infant macaques than in AMtb-vaccinated infant macaques, indicating a role for vaccine attenuation. These findings underline the importance of understanding the interplay of vaccine-induced immunity and immune activation and its effect on HIV acquisition risk and outcome in infants.
Collapse
Affiliation(s)
- Kara Jensen
- Department of Microbiology and Immunology and Center for AIDS Research, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Myra Grace Dela Pena-Ponce
- Department of Microbiology and Immunology and Center for AIDS Research, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Michael Piatak
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Rebecca Shoemaker
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Kelli Oswald
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | | | - Glenn Fennelly
- Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Carissa Lucero
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Katie R Mollan
- Lineberger Cancer Center and Center for AIDS Research, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Michael G Hudgens
- Gillings School of Global Public Health and Center for AIDS Research, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Angela Amedee
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Pamela A Kozlowski
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Jacob D Estes
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Koen K A Van Rompay
- California National Primate Research Center, University of California, Davis, Davis, California, USA
| | - Michelle Larsen
- Albert Einstein College of Medicine, New York, New York, USA
| | - Kristina De Paris
- Department of Microbiology and Immunology and Center for AIDS Research, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
19
|
Xu W, Chen L, Guo S, Wu L, Zhang J. Intranasal Administration of Recombinant Mycobacterium smegmatis Inducing IL-17A Autoantibody Attenuates Airway Inflammation in a Murine Model of Allergic Asthma. PLoS One 2016; 11:e0151581. [PMID: 26974537 PMCID: PMC4790942 DOI: 10.1371/journal.pone.0151581] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/01/2016] [Indexed: 11/30/2022] Open
Abstract
Asthma is a chronic inflammatory disorder, previous studies have shown that IL-17A contributes to the development of asthma, and there is a positive correlation between the level of IL-17A and the severity of disease. Here, we constructed recombinant Mycobacterium smegmatis expressing fusion protein Ag85A-IL-17A (rMS-Ag85a-IL-17a) and evaluated whether it could attenuate allergic airway inflammation, and further investigated the underlying mechanism. In this work, the murine model of asthma was established with ovalbumin, and mice were intranasally vaccinated with rMS-Ag85a-IL-17a. Autoantibody of IL-17A in sera was detected, and the airway inflammatory cells infiltration, the local cytokines and chemokines production and the histopathological changes of lung tissue were investigated. We found that the administration of rMS-Ag85a-IL-17a induced the autoantibody of IL-17A in sera. The vaccination of rMS-Ag85a-IL-17a remarkably reduced the infiltration of inflammatory cells and the secretion of mucus in lung tissue and significantly decreased the numbers of the total cells, eosinophils and neutrophils in BALF. Th1 cells count in spleen, Th1 cytokine levels in BALF and supernatant of splenocytes and mediastinal lymph nodes, and T-bet mRNA in lung tissue were significantly increased with rMS-Ag85a-IL-17a administration. Meanwhile, rMS-Ag85a-IL-17a vaccination markedly decreased Th2 cells count, Th2 cytokine and Th17 cytokine levels in BALF and supernatant of splenocytes and mediastinal lymph nodes, and chemokines mRNA expression in lung tissue. These data confirmed that recombinant Mycobacterium smegmatis in vivo could induce autoantibody of IL-17A, which attenuated asthmatic airway inflammation.
Collapse
Affiliation(s)
- Wanting Xu
- Department of Paediatrics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Ling Chen
- Department of Paediatrics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Sheng Guo
- Department of Endocrinology, Shanghai Jiao Tong University Affiliated Children’s Hospital, Shanghai, China
| | - Liangxia Wu
- Department of Paediatrics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Jianhua Zhang
- Department of Paediatrics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| |
Collapse
|
20
|
Kadir NA, Sarmiento ME, Acosta A, Norazmi MN. Cellular and humoral immunogenicity of recombinant Mycobacterium smegmatis expressing Ag85B epitopes in mice. Int J Mycobacteriol 2016; 5:7-13. [DOI: 10.1016/j.ijmyco.2015.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 09/22/2015] [Accepted: 09/27/2015] [Indexed: 10/22/2022] Open
|
21
|
Xie E, Kotha A, Biaco T, Sedani N, Zou J, Stashenko P, Duncan MJ, Campos-Neto A, Cayabyab MJ. Oral Delivery of a Novel Recombinant Streptococcus mitis Vector Elicits Robust Vaccine Antigen-Specific Oral Mucosal and Systemic Antibody Responses and T Cell Tolerance. PLoS One 2015; 10:e0143422. [PMID: 26618634 PMCID: PMC4664415 DOI: 10.1371/journal.pone.0143422] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 11/04/2015] [Indexed: 12/22/2022] Open
Abstract
The pioneer human oral commensal bacterium Streptococcus mitis has unique biologic features that make it an attractive mucosal vaccine or therapeutic delivery vector. S. mitis is safe as a natural persistent colonizer of the mouth, throat and nasopharynx and the oral commensal bacterium is capable of inducing mucosal antibody responses. A recombinant S. mitis (rS. mitis) that stably expresses HIV envelope protein was generated and tested in the germ-free mouse model to evaluate the potential usefulness of this vector as a mucosal vaccine against HIV. Oral vaccination led to the efficient and persistent bacterial colonization of the mouth and the induction of both salivary and systemic antibody responses. Interestingly, persistently colonized animals developed antigen-specific systemic T cell tolerance. Based on these findings we propose the use of rS. mitis vaccine vector for the induction of mucosal antibodies that will prevent the penetration of the mucosa by pathogens such as HIV. Moreover, the first demonstration of rS. mitis having the ability to elicit T cell tolerance suggest the potential use of rS. mitis as an immunotherapeutic vector to treat inflammatory, allergic and autoimmune diseases.
Collapse
Affiliation(s)
- Emily Xie
- Global Infectious Disease Research Center and the Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, Massachusetts, United States of America
| | - Abhiroop Kotha
- Global Infectious Disease Research Center and the Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, Massachusetts, United States of America
| | - Tracy Biaco
- Global Infectious Disease Research Center and the Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, Massachusetts, United States of America
| | - Nikita Sedani
- Global Infectious Disease Research Center and the Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, Massachusetts, United States of America
| | - Jonathan Zou
- Global Infectious Disease Research Center and the Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, Massachusetts, United States of America
| | - Phillip Stashenko
- Global Infectious Disease Research Center and the Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, Massachusetts, United States of America
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Margaret J. Duncan
- Department of Microbiology, The Forsyth Institute, 245 First Street, Cambridge, Massachusetts, United States of America
| | - Antonio Campos-Neto
- Global Infectious Disease Research Center and the Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, Massachusetts, United States of America
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Mark J. Cayabyab
- Global Infectious Disease Research Center and the Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, Massachusetts, United States of America
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
22
|
Ayala-Torres C, Novoa-Aponte L, Soto CY. Pma1 is an alkali/alkaline earth metal cation ATPase that preferentially transports Na(+) and K(+) across the Mycobacterium smegmatis plasma membrane. Microbiol Res 2015; 176:1-6. [PMID: 26070686 DOI: 10.1016/j.micres.2015.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 04/07/2015] [Accepted: 04/17/2015] [Indexed: 12/14/2022]
Abstract
Mycobacterium smegmatis Pma1 is the orthologue of M. tuberculosis P-type ATPase cation transporter CtpF, which is activated under stress conditions, such as hypoxia, starvation and response to antituberculous and toxic substances. The function of Pma1 in the mycobacterial processes across the plasma membrane has not been characterised. In this work, bioinformatic analyses revealed that Pma1 likely contains potential sites for, Na(+), K(+) and Ca(2+) binding and transport. Accordingly, RT-qPCR experiments showed that M. smegmatis pma1 transcription is stimulated by sub-lethal doses of Na(+), K(+) and Ca(2+); in addition, the ATPase activity of plasma membrane vesicles in recombinant Pma1-expressing M. smegmatis cells is stimulated by treatment with these cations. In contrast, M. smegmatis cells homologously expressing Pma1 displayed tolerance to high doses of Na(+) and K(+) but not to Ca(2+) ions. Consistently, the recombinant protein Km embedded in plasma membrane demonstrated that Ca(2+) has more affinity for Pma1 than Na(+) and K(+) ions; furthermore, the estimation of Vmax/Km suggests that Na(+) and K(+) ions are more efficiently translocated than Ca(2+). Thus, these results strongly suggest that Pma1 is a promiscuous alkali/alkaline earth cation ATPase that preferentially transports Na(+) and/or K(+) across the mycobacterial plasma membrane.
Collapse
Affiliation(s)
- Carlos Ayala-Torres
- Chemistry Department, Faculty of Sciences, Universidad Nacional de Colombia, Carrera 30 # 45-03, Ciudad Universitaria, Bogotá, Colombia
| | - Lorena Novoa-Aponte
- Chemistry Department, Faculty of Sciences, Universidad Nacional de Colombia, Carrera 30 # 45-03, Ciudad Universitaria, Bogotá, Colombia
| | - Carlos Y Soto
- Chemistry Department, Faculty of Sciences, Universidad Nacional de Colombia, Carrera 30 # 45-03, Ciudad Universitaria, Bogotá, Colombia.
| |
Collapse
|
23
|
Lee H, Kim BJ, Kim BR, Kook YH, Kim BJ. The development of a novel Mycobacterium-Escherichia coli shuttle vector system using pMyong2, a linear plasmid from Mycobacterium yongonense DSM 45126T. PLoS One 2015; 10:e0122897. [PMID: 25822634 PMCID: PMC4378964 DOI: 10.1371/journal.pone.0122897] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 02/24/2015] [Indexed: 11/18/2022] Open
Abstract
The Mycobacterium-Escherichia coli shuttle vector system, equipped with the pAL5000 replicon, is widely used for heterologous gene expression and gene delivery in mycobacteria. Despite its extensive use, this system has certain limitations, which has led to the development of alternative mycobacterial vector systems. The present study describes the molecular structure and expression profiles of a novel 18-kb linear plasmid, pMyong2, from Mycobacterium yongonense. Sixteen open reading frames and a putative origin of replication were identified, and the compatibility of the pMyong2 and pAL5000 vector systems was demonstrated. In recombinant Mycobacterium smegmatis (rSmeg), the pMyong2 vector system showed a copy number that was approximately 37 times greater than that of pAL5000. Furthermore, pMyong2 increased the mRNA and protein expression of the human macrophage migration inhibitory factor (hMIF) over pAL5000 levels by approximately 10-fold and 50-fold, respectively, demonstrating the potential utility of the pMyong2 vector system in heterologous gene expression in mycobacteria. Successful delivery of the EGFP gene into mammalian cells via rSmeg carrying the pMyong2 vector system was also observed, demonstrating the feasibility of this system for DNA delivery. In conclusion, the pMyong2 vector system could be effectively used not only for the in vivo delivery of recombinant protein and DNA but also for mycobacterial genetic studies as an alternative or a complement to the pAL5000 vector system.
Collapse
Affiliation(s)
- Hyungki Lee
- Department of Microbiology and Immunology, Biomedical Sciences, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea
| | - Byoung-Jun Kim
- Department of Microbiology and Immunology, Biomedical Sciences, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea
| | - Bo-Ram Kim
- Department of Microbiology and Immunology, Biomedical Sciences, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea
| | - Yoon-Hoh Kook
- Department of Microbiology and Immunology, Biomedical Sciences, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea
| | - Bum-Joon Kim
- Department of Microbiology and Immunology, Biomedical Sciences, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea
| |
Collapse
|
24
|
Chapman R, Bourn WR, Shephard E, Stutz H, Douglass N, Mgwebi T, Meyers A, Chin'ombe N, Williamson AL. The use of directed evolution to create a stable and immunogenic recombinant BCG expressing a modified HIV-1 Gag antigen. PLoS One 2014; 9:e103314. [PMID: 25061753 PMCID: PMC4111510 DOI: 10.1371/journal.pone.0103314] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 06/28/2014] [Indexed: 01/09/2023] Open
Abstract
Numerous features make Mycobacterium bovis BCG an attractive vaccine vector for HIV. It has a good safety profile, it elicits long-lasting cellular immune responses and in addition manufacturing costs are affordable. Despite these advantages it is often difficult to express viral antigens in BCG, which results in genetic instability and low immunogenicity. The aim of this study was to generate stable recombinant BCG (rBCG) that express high levels of HIV antigens, by modification of the HIV genes. A directed evolution process was applied to recombinant mycobacteria that expressed HIV-1 Gag fused to the green fluorescent protein (GFP). Higher growth rates and increased GFP expression were selected for. Through this process a modified Gag antigen was selected. Recombinant BCG that expressed the modified Gag (BCG[pWB106] and BCG[pWB206]) were more stable, produced higher levels of antigen and grew faster than those that expressed the unmodified Gag (BCG[pWB105]). The recombinant BCG that expressed the modified HIV-1 Gag induced 2 to 3 fold higher levels of Gag-specific CD4 T cells than those expressing the unmodified Gag (BCG[pWB105]). Mice primed with 107 CFU BCG[pWB206] and then boosted with MVA-Gag developed Gag-specific CD8 T cells with a frequency of 1343±17 SFU/106 splenocytes, 16 fold greater than the response induced with MVA-Gag alone. Levels of Gag-specific CD4 T cells were approximately 5 fold higher in mice primed with BCG[pWB206] and boosted with MVA-Gag than in those receiving the MVA-Gag boost alone. In addition mice vaccinated with BCG[pWB206] were protected from a surrogate vaccinia virus challenge.
Collapse
Affiliation(s)
- Rosamund Chapman
- Division of Virology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- * E-mail:
| | - William R. Bourn
- Division of Virology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Enid Shephard
- Division of Virology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Medical Research Council, Cape Town, South Africa
- Department of Medicine Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Helen Stutz
- Division of Virology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Nicola Douglass
- Division of Virology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Thandi Mgwebi
- Division of Virology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Ann Meyers
- Department of Molecular and Cell Biology, Faculty Of Science, University of Cape Town, Cape Town, South Africa
| | - Nyasha Chin'ombe
- Division of Virology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Anna-Lise Williamson
- Division of Virology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- National Health Laboratory Services, Cape Town, South Africa
| |
Collapse
|
25
|
Saubi N, Gea-Mallorquí E, Ferrer P, Hurtado C, Sánchez-Úbeda S, Eto Y, Gatell JM, Hanke T, Joseph J. Engineering new mycobacterial vaccine design for HIV-TB pediatric vaccine vectored by lysine auxotroph of BCG. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2014; 1:14017. [PMID: 26015961 PMCID: PMC4362382 DOI: 10.1038/mtm.2014.17] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 03/26/2014] [Indexed: 02/05/2023]
Abstract
In this study, we have engineered a new mycobacterial vaccine design by using an antibiotic-free plasmid selection system. We assembled a novel Escherichia coli (E. coli)–mycobacterial shuttle plasmid p2auxo.HIVA, expressing the HIV-1 clade A immunogen HIVA. This shuttle vector employs an antibiotic resistance-free mechanism for plasmid selection and maintenance based on glycine complementation in E. coli and lysine complementation in mycobacteria. This plasmid was first transformed into glycine auxotroph of E. coli strain and subsequently transformed into lysine auxotroph of Mycobacterium bovis BCG strain to generate vaccine BCG.HIVA2auxo. We demonstrated that the episomal plasmid p2auxo.HIVA was stable in vivo over a 7-week period and genetically and phenotypically characterized the BCG.HIVA2auxo vaccine strain. The BCG.HIVA2auxo vaccine in combination with modified vaccinia virus Ankara (MVA). HIVA was safe and induced HIV-1 and Mycobacterium tuberculosis-specific interferon-γ-producing T-cell responses in adult BALB/c mice. Polyfunctional HIV-1-specific CD8+ T cells, which produce interferon-γ and tumor necrosis factor-α and express the degranulation marker CD107a, were induced. Thus, we engineered a novel, safer, good laboratory practice–compatible BCG-vectored vaccine using prototype immunogen HIVA. This antibiotic-free plasmid selection system based on “double” auxotrophic complementation might be a new mycobacterial vaccine platform to develop not only recombinant BCG-based vaccines expressing second generation of HIV-1 immunogens but also other major pediatric pathogens to prime protective response soon after birth.
Collapse
Affiliation(s)
- Narcís Saubi
- AIDS Research Group, Hospital Clinic/HIVACAT, School of Medicine, University of Barcelona , Barcelona, Catalonia, Spain
| | - Ester Gea-Mallorquí
- AIDS Research Group, Hospital Clinic/HIVACAT, School of Medicine, University of Barcelona , Barcelona, Catalonia, Spain
| | - Pau Ferrer
- Department of Chemical Engineering, Group of Bioprocess Engineering and Applied Biocatalysis, School of Engineering, Autonomous University of Barcelona , Barcelona, Catalonia, Spain
| | - Carmen Hurtado
- AIDS Research Group, Hospital Clinic/HIVACAT, School of Medicine, University of Barcelona , Barcelona, Catalonia, Spain
| | - Sara Sánchez-Úbeda
- AIDS Research Group, Hospital Clinic/HIVACAT, School of Medicine, University of Barcelona , Barcelona, Catalonia, Spain
| | - Yoshiki Eto
- AIDS Research Group, Hospital Clinic/HIVACAT, School of Medicine, University of Barcelona , Barcelona, Catalonia, Spain
| | - Josep M Gatell
- AIDS Research Group, Hospital Clinic/HIVACAT, School of Medicine, University of Barcelona , Barcelona, Catalonia, Spain
| | - Tomáš Hanke
- The Jenner Institute, University of Oxford , Oxford, UK ; MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford , Oxford, UK
| | - Joan Joseph
- AIDS Research Group, Hospital Clinic/HIVACAT, School of Medicine, University of Barcelona , Barcelona, Catalonia, Spain
| |
Collapse
|
26
|
Junqueira-Kipnis AP, de Oliveira FM, Trentini MM, Tiwari S, Chen B, Resende DP, Silva BDS, Chen M, Tesfa L, Jacobs WR, Kipnis A. Prime-boost with Mycobacterium smegmatis recombinant vaccine improves protection in mice infected with Mycobacterium tuberculosis. PLoS One 2013; 8:e78639. [PMID: 24250805 PMCID: PMC3826754 DOI: 10.1371/journal.pone.0078639] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 09/21/2013] [Indexed: 02/06/2023] Open
Abstract
The development of a new vaccine as a substitute for Bacillus Calmette-Guerin or to improve its efficacy is one of the many World Health Organization goals to control tuberculosis. Mycobacterial vectors have been used successfully in the development of vaccines against tuberculosis. To enhance the potential utility of Mycobacterium smegmatis as a vaccine, it was transformed with a recombinant plasmid containing the partial sequences of the genes Ag85c, MPT51, and HspX (CMX) from M. tuberculosis. The newly generated recombinant strain mc(2)-CMX was tested in a murine model of infection. The recombinant vaccine induced specific IgG1 or IgG2a responses to CMX. CD4(+) and CD8(+) T cells from the lungs and spleen responded ex vivo to CMX, producing IFN-γ, IL17, TNF-α, and IL2. The vaccine thus induced a significant immune response in mice. Mice vaccinated with mc(2)-CMX and challenged with M. tuberculosis showed better protection than mice immunized with wild-type M. smegmatis or BCG. To increase the safety and immunogenicity of the CMX antigens, we used a recombinant strain of M. smegmatis, IKE (immune killing evasion), to express CMX. The recombinant vaccine IKE-CMX induced a better protective response than mc(2)-CMX. The data presented here suggest that the expression of CMX antigens improves the immune response and the protection induced in mice when M. smegmatis is used as vaccine against tuberculosis.
Collapse
Affiliation(s)
- Ana Paula Junqueira-Kipnis
- Instituto de Patologia Tropical e Saúde Pública. Universidade Federal de Goiás, Goiânia, Goiás, Brazil
- * E-mail:
| | - Fábio Muniz de Oliveira
- Instituto de Patologia Tropical e Saúde Pública. Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Monalisa Martins Trentini
- Instituto de Patologia Tropical e Saúde Pública. Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Sangeeta Tiwari
- Microbiology and Immunology, Molecular Genetics, Albert Einstein College of Medicine, New York, New York, United States of America
| | - Bing Chen
- Microbiology and Immunology, Molecular Genetics, Albert Einstein College of Medicine, New York, New York, United States of America
| | - Danilo Pires Resende
- Instituto de Patologia Tropical e Saúde Pública. Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Bruna D. S. Silva
- Instituto de Patologia Tropical e Saúde Pública. Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Mei Chen
- Microbiology and Immunology, Molecular Genetics, Albert Einstein College of Medicine, New York, New York, United States of America
| | - Lydia Tesfa
- Microbiology and Immunology, Molecular Genetics, Albert Einstein College of Medicine, New York, New York, United States of America
- Flow Cytometry Core Facility, Albert Einstein College of Medicine, New York, New York, United States of America
| | - William R. Jacobs
- Microbiology and Immunology, Molecular Genetics, Albert Einstein College of Medicine, New York, New York, United States of America
| | - André Kipnis
- Instituto de Patologia Tropical e Saúde Pública. Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| |
Collapse
|
27
|
Wang P, Wang L, Zhang W, Bai Y, Kang J, Hao Y, Luo T, Shi C, Xu Z. Immunotherapeutic efficacy of recombinant Mycobacterium smegmatis expressing Ag85B-ESAT6 fusion protein against persistent tuberculosis infection in mice. Hum Vaccin Immunother 2013; 10:150-8. [PMID: 23982126 DOI: 10.4161/hv.26171] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The application of immunotherapy in combination with chemotherapy is considered an effective treatment strategy against persistent Mycobacterium tuberculosis (Mtb) infection. In this study, we constructed a novel recombinant Mycobacterium smegmatis (rMS) strain that expresses Ag85B and ESAT6 fusion protein (AE-rMS). Immunization of C57BL/6 mice with AE-rMS generated mainly Th1-type immune responses by strongly stimulating IFN-γ- and IL-2-producing splenocytes and increasing antigen-specific cytotoxic T lymphocyte (CTL) activity. To test the immunotherapeutic efficacy of AE-rMS, a persistent tuberculosis infection (PTBI) model was established via tail-vein injection of C57BL/6 mice with 1×10(4) colony forming units (CFU) of Mtb strain H37Rv in combination with concurrent chemotherapy drugs isoniazid (INH) and pyrazinamide (PZA). PTBI mice immunized with AE-rMS showed high levels of IFN-γ secreted by splenocytes and decreased bacteria loads in lung. Treatment with only the anti-tuberculosis (anti-TB) drugs RFP and INH (RI), decreased bacteria loads to low levels, with the Th1-type immune response further attenuated. Moreover, AE-rMS, when combined with RI treatment, further reduced the bacteria load as well as the pathological tissue damage in lung. Together, these results demonstrated the essential roles of AE-rMS-induced Th1-type responses, providing an effective treatment strategy by combining AE-rMS and RI for persistent TB.
Collapse
Affiliation(s)
- Ping Wang
- Department of Microbiology; the Fourth Military Medical University; Xi'an, Shaanxi Province, PR China; Department of Pathology and Clinical Laboratory; Luoyang, Henan Province, PR China
| | - Limei Wang
- Department of Microbiology; the Fourth Military Medical University; Xi'an, Shaanxi Province, PR China
| | - Wei Zhang
- Department of Microbiology; the Fourth Military Medical University; Xi'an, Shaanxi Province, PR China
| | - Yinlan Bai
- Department of Microbiology; the Fourth Military Medical University; Xi'an, Shaanxi Province, PR China
| | - Jian Kang
- Department of Microbiology; the Fourth Military Medical University; Xi'an, Shaanxi Province, PR China
| | - Yanfei Hao
- Department of Microbiology; the Fourth Military Medical University; Xi'an, Shaanxi Province, PR China
| | - Tailai Luo
- Department of Microbiology; the Fourth Military Medical University; Xi'an, Shaanxi Province, PR China
| | - Changhong Shi
- Division of Infection and Immunology; Laboratory Animals Center; the Fourth Military Medical University; Xi'an, Shaanxi Province, PR China
| | - Zhikai Xu
- Department of Microbiology; the Fourth Military Medical University; Xi'an, Shaanxi Province, PR China
| |
Collapse
|
28
|
Cayabyab MJ, Macovei L, Campos-Neto A. Current and novel approaches to vaccine development against tuberculosis. Front Cell Infect Microbiol 2012; 2:154. [PMID: 23230563 PMCID: PMC3515764 DOI: 10.3389/fcimb.2012.00154] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 11/20/2012] [Indexed: 11/29/2022] Open
Abstract
Antibiotics and vaccines are the two most successful medical countermeasures that humans have created against a number of pathogens. However a select few e.g., Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB) have evaded eradication by vaccines and therapeutic approaches. TB is a global public health problem that kills 1.4 million people per year. The past decade has seen significant progress in developing new vaccine candidates, but the most fundamental questions in understanding disease progression and protective host responses that are responsible for controlling Mtb infection still remain poorly resolved. Current TB treatment requires intense chemotherapy with several antimicrobials, while the only approved vaccine is the classical viable whole-cell based Bacille-Calmette-Guerin (BCG) that protects children from severe forms of TB, but fails to protect adults. Taken together, there is a growing need to conduct basic and applied research to develop novel vaccine strategies against TB. This review is focused on the discussion surrounding current strategies and innovations being explored to discover new protective antigens, adjuvants, and delivery systems in the hopes of creating an efficacious TB vaccine.
Collapse
Affiliation(s)
- Mark J Cayabyab
- Forsyth Institute Cambridge, MA, USA ; Harvard School of Dental Medicine Boston, MA, USA
| | | | | |
Collapse
|
29
|
Saubi N, Mbewe-Mvula A, Gea-Mallorqui E, Rosario M, Gatell JM, Hanke T, Joseph J. Pre-clinical development of BCG.HIVA(CAT), an antibiotic-free selection strain, for HIV-TB pediatric vaccine vectored by lysine auxotroph of BCG. PLoS One 2012; 7:e42559. [PMID: 22927933 PMCID: PMC3424164 DOI: 10.1371/journal.pone.0042559] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 07/09/2012] [Indexed: 01/13/2023] Open
Abstract
In the past, we proposed to develop a heterologous recombinant BCG prime-recombinant modified vaccinia virus Ankara (MVA) boost dual pediatric vaccine platform against transmission of breast milk HIV-1 and Mycobacterium tuberculosis (Mtb). In this study, we assembled an E. coli-mycobacterial shuttle plasmid pJH222.HIVACAT expressing HIV-1 clade A immunogen HIVA. This shuttle vector employs an antibiotic resistance-free mechanism based on Operator-Repressor Titration (ORT) system for plasmid selection and maintenance in E. coli and lysine complementation in mycobacteria. This shuttle plasmid was electroporated into parental lysine auxotroph (safer) strain of BCG to generate vaccine BCG.HIVACAT. All procedures complied with Good Laboratory Practices (GLPs). We demonstrated that the episomal plasmid pJH222.HIVACAT was stable in vivo over a 20-week period, and genetically and phenotypically characterized the BCG.HIVACAT vaccine strain. The BCG.HIVACAT vaccine in combination with MVA.HIVA induced HIV-1- and Mtb-specific interferon γ-producing T-cell responses in newborn and adult BALB/c mice. On the other hand, when adult mice were primed with BCG.HIVACAT and boosted with MVA.HIVA.85A, HIV-1-specific CD8+ T-cells producing IFN-γ, TNF-α, IL-2 and CD107a were induced. To assess the biosafety profile of BCG.HIVACAT-MVA.HIVA regimen, body mass loss of newborn mice was monitored regularly throughout the vaccination experiment and no difference was observed between the vaccinated and naïve groups of animals. Thus, we demonstrated T-cell immunogenicity of a novel, safer, GLP-compatible BCG-vectored vaccine using prototype immunogen HIVA. Second generation immunogens derived from HIV-1 as well as other major pediatric pathogens can be constructed in a similar fashion to prime protective responses soon after birth.
Collapse
Affiliation(s)
- Narcís Saubi
- AIDS Research Group, Hospital Clinic/IDIBAPS-HIVACAT, School of Medicine, University of Barcelona, Barcelona, Spain
| | | | - Ester Gea-Mallorqui
- AIDS Research Group, Hospital Clinic/IDIBAPS-HIVACAT, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Maximillian Rosario
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Josep Maria Gatell
- AIDS Research Group, Hospital Clinic/IDIBAPS-HIVACAT, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Tomáš Hanke
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Joan Joseph
- AIDS Research Group, Hospital Clinic/IDIBAPS-HIVACAT, School of Medicine, University of Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
30
|
Enhanced priming of adaptive immunity by Mycobacterium smegmatis mutants with high-level protein secretion. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:1416-25. [PMID: 22787192 DOI: 10.1128/cvi.00131-12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mycobacteria have features that make them attractive as potential vaccine vectors. The nonpathogenic and rapidly growing Mycobacterium smegmatis can express both Mycobacterium tuberculosis antigens and heterologous antigens from other pathogens, and it has been used as a viable vector for the development of live vaccines. In order to further improve antigen-specific immunogenicity of M. smegmatis, we screened a random transposon mutant library for mutants displaying enhanced efficiency of protein secretion ("high secretors") and isolated 61 mutants showing enhanced endogenic and transgenic protein secretion. Sequence analysis identified a total of 54 genes involved in optimal secretion of insert proteins, as well as multiple independent transposon insertions localized within the same genomic loci and operons. The majority of transposon insertions occurred in genes that have no known protein secretion function. These transposon mutants were shown to prime antigen-specific CD8(+) T cell responses better than the parental strain. Specifically, upon introducing the simian immunodeficiency virus (SIV) gag gene into these transposon mutant strains, we observed that they primed SIV Gag-specific CD8(+) T cell responses significantly better than the control prime immunization in a heterologous prime/boost regimen. Our results reveal a dependence on bacterial secretion of mycobacterial and foreign antigens for the induction of antigen-specific CD8(+) T cells in vivo. The data also suggest that these M. smegmatis transposon mutants could be used as novel live attenuated vaccine strains to express foreign antigens, such as those of human immunodeficiency virus type 1 (HIV-1), and induce strong antigen-specific T cell responses.
Collapse
|
31
|
Chapman R, Shephard E, Stutz H, Douglass N, Sambandamurthy V, Garcia I, Ryffel B, Jacobs W, Williamson AL. Priming with a recombinant pantothenate auxotroph of Mycobacterium bovis BCG and boosting with MVA elicits HIV-1 Gag specific CD8+ T cells. PLoS One 2012; 7:e32769. [PMID: 22479338 PMCID: PMC3315557 DOI: 10.1371/journal.pone.0032769] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 01/30/2012] [Indexed: 12/03/2022] Open
Abstract
A safe and effective HIV vaccine is required to significantly reduce the number of people becoming infected with HIV each year. In this study wild type Mycobacterium bovis BCG Pasteur and an attenuated pantothenate auxotroph strain (BCGΔpanCD) that is safe in SCID mice, have been compared as vaccine vectors for HIV-1 subtype C Gag. Genetically stable vaccines BCG[pHS400] (BCG-Gag) and BCGΔpanCD[pHS400] (BCGpan-Gag) were generated using the Pasteur strain of BCG, and a panothenate auxotroph of Pasteur respectively. Stability was achieved by the use of a codon optimised gag gene and deletion of the hsp60-lysA promoter-gene cassette from the episomal vector pCB119. In this vector expression of gag is driven by the mtrA promoter and the Gag protein is fused to the Mycobacterium tuberculosis 19 kDa signal sequence. Both BCG-Gag and BCGpan-Gag primed the immune system of BALB/c mice for a boost with a recombinant modified vaccinia virus Ankara expressing Gag (MVA-Gag). After the boost high frequencies of predominantly Gag-specific CD8(+) T cells were detected when BCGpan-Gag was the prime in contrast to induction of predominantly Gag-specific CD4(+) T cells when priming with BCG-Gag. The differing Gag-specific T-cell phenotype elicited by the prime-boost regimens may be related to the reduced inflammation observed with the pantothenate auxotroph strain compared to the parent strain. These features make BCGpan-Gag a more desirable HIV vaccine candidate than BCG-Gag. Although no Gag-specific cells could be detected after vaccination of BALB/c mice with either recombinant BCG vaccine alone, BCGpan-Gag protected mice against a surrogate vaccinia virus challenge.
Collapse
Affiliation(s)
- Rosamund Chapman
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Division of Medical Virology, Department of Clinical Laboratory Science, University of Cape Town, Cape Town, South Africa
| | - Enid Shephard
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Medical Research Council, Cape Town, South Africa
| | - Helen Stutz
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Division of Medical Virology, Department of Clinical Laboratory Science, University of Cape Town, Cape Town, South Africa
| | - Nicola Douglass
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Division of Medical Virology, Department of Clinical Laboratory Science, University of Cape Town, Cape Town, South Africa
| | | | - Irene Garcia
- Department of Pathology and Immunology, Centre Médical Universitaire, Hôpitaux Universitaires de Genève, University of Geneva, Geneva, Switzerland
| | - Bernhard Ryffel
- University of Orleans and Centre National de la Recherche Scientifique, Unité Mixte de Recherche, Molecular Immunology and Embryology, Orleans, France
| | - William Jacobs
- Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Anna-Lise Williamson
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Division of Medical Virology, Department of Clinical Laboratory Science, University of Cape Town, Cape Town, South Africa
- National Health Laboratory Service, Cape Town, South Africa
| |
Collapse
|
32
|
Protective and therapeutic efficacy of Mycobacterium smegmatis expressing HBHA-hIL12 fusion protein against Mycobacterium tuberculosis in mice. PLoS One 2012; 7:e31908. [PMID: 22363768 PMCID: PMC3283714 DOI: 10.1371/journal.pone.0031908] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 01/16/2012] [Indexed: 12/22/2022] Open
Abstract
Tuberculosis (TB) remains a major worldwide health problem. The only vaccine against TB, Mycobacterium bovis Bacille Calmette-Guerin (BCG), has demonstrated relatively low efficacy and does not provide satisfactory protection against the disease. More efficient vaccines and improved therapies are urgently needed to decrease the worldwide spread and burden of TB, and use of a viable, metabolizing mycobacteria vaccine may be a promising strategy against the disease. Here, we constructed a recombinant Mycobacterium smegmatis (rMS) strain expressing a fusion protein of heparin-binding hemagglutinin (HBHA) and human interleukin 12 (hIL-12). Immune responses induced by the rMS in mice and protection against Mycobacterium tuberculosis (MTB) were investigated. Administration of this novel rMS enhanced Th1-type cellular responses (IFN-γ and IL-2) in mice and reduced bacterial burden in lungs as well as that achieved by BCG vaccination. Meanwhile, the bacteria load in M. tuberculosis infected mice treated with the rMS vaccine also was significantly reduced. In conclusion, the rMS strain expressing the HBHA and human IL-12 fusion protein enhanced immunogencity by improving the Th1-type response against TB, and the protective effect was equivalent to that of the conventional BCG vaccine in mice. Furthermore, it could decrease bacterial load and alleviate histopathological damage in lungs of M. tuberculosis infected mice.
Collapse
|
33
|
Oral immunization with recombinant Mycobacterium smegmatis expressing the outer membrane protein 26-kilodalton antigen confers prophylactic protection against Helicobacter pylori infection. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:1957-61. [PMID: 21900527 DOI: 10.1128/cvi.05306-11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Helicobacter pylori infection is prevalent worldwide and results in chronic gastritis, which may lead to gastric mucosa-associated lymphoid tissue lymphoma and gastric cancer. We have previously reported that oral immunization with recombinant Mycobacterium smegmatis expressing the H. pylori outer membrane protein 26-kilodalton (Omp26) antigen affords therapeutic protection against H. pylori infection in mice. In the present study, we investigated the prophylactic effects of this vaccine candidate on H. pylori challenge in mice. We found that oral immunization with recombinant Mycobacterium Omp26 significantly reduced H. pylori colonization in the stomach compared to inoculation with wild-type M. smegmatis in control mice. Six of the recombinant Mycobacterium-immunized mice (60%) were completely protected from H. pylori infection. The severity of H. pylori-associated chronic gastritis assessed histologically was significantly milder in mice vaccinated with recombinant Mycobacterium than in control animals. Mice immunized with recombinant Mycobacterium showed enhanced antigen-specific lymphocyte proliferation and antibody responses. Moreover, immunization with recombinant Mycobacterium resulted in an increased expression of interleukin-2 and gamma interferon in the stomach and spleen, as determined by reverse transcription-PCR analysis. Our results collectively suggest that vaccination with recombinant Mycobacterium Omp26 confers prophylactic protection against H. pylori infection. The inhibition of H. pylori colonization is associated with the induction of antigen-specific humoral and cell-mediated immune responses.
Collapse
|
34
|
Saubi N, Im EJ, Fernández-Lloris R, Gil O, Cardona PJ, Gatell JM, Hanke T, Joseph J. Newborn mice vaccination with BCG.HIVA²²² + MVA.HIVA enhances HIV-1-specific immune responses: influence of age and immunization routes. Clin Dev Immunol 2011; 2011:516219. [PMID: 21603216 PMCID: PMC3095426 DOI: 10.1155/2011/516219] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 02/01/2011] [Indexed: 11/17/2022]
Abstract
We have evaluated the influence of age and immunization routes for induction of HIV-1- and M. tuberculosis-specific immune responses after neonatal (7 days old) and adult (7 weeks old) BALB/c mice immunization with BCG.HIVA(222) prime and MVA.HIVA boost. The specific HIV-1 cellular immune responses were analyzed in spleen cells. The body weight of the newborn mice was weekly recorded. The frequencies of HIV-specific CD8(+) T cells producing IFN-γ were higher in adult mice vaccinated intradermally and lower in adult and newborn mice vaccinated subcutaneously. In all cases the IFN-γ production was significantly higher when mice were primed with BCG.HIVA(222) compared with BCGwt. When the HIV-specific CTL activity was assessed, the frequencies of specific killing were higher in newborn mice than in adults. The prime-boost vaccination regimen which includes BCG.HIVA(222) and MVA.HIVA was safe when inoculated to newborn mice. The administration of BCG.HIVA(222) to newborn mice is safe and immunogenic and increased the HIV-specific responses induced by MVA.HIVA vaccine. It might be a good model for infant HIV and Tuberculosis bivalent vaccine.
Collapse
Affiliation(s)
- Narcís Saubi
- AIDS Research Unit, Hospital Clínic/IDIBAPS-HIVACAT, University of Barcelona, Calle Villarroel 170, 08036 Barcelona, Spain
| | - Eung-Jun Im
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University and The John Radcliffe, Oxford OX3 9DS, UK
| | - Raquel Fernández-Lloris
- AIDS Research Unit, Hospital Clínic/IDIBAPS-HIVACAT, University of Barcelona, Calle Villarroel 170, 08036 Barcelona, Spain
| | - Olga Gil
- Unitat Tuberculosi Experimental, Institut “Germans Trias i Pujol”, Carretera del Canyet S/N, Badalona 08916, Barcelona, Spain
| | - Pere-Joan Cardona
- Unitat Tuberculosi Experimental, Institut “Germans Trias i Pujol”, Carretera del Canyet S/N, Badalona 08916, Barcelona, Spain
| | - Josep Maria Gatell
- AIDS Research Unit, Hospital Clínic/IDIBAPS-HIVACAT, University of Barcelona, Calle Villarroel 170, 08036 Barcelona, Spain
| | - Tomáš Hanke
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University and The John Radcliffe, Oxford OX3 9DS, UK
| | - Joan Joseph
- AIDS Research Unit, Hospital Clínic/IDIBAPS-HIVACAT, University of Barcelona, Calle Villarroel 170, 08036 Barcelona, Spain
| |
Collapse
|
35
|
Faludi I, Szabó Á, Burián K, Endrész V, Miczák A. Recombinant Mycobacterium smegmatis vaccine candidates. Acta Microbiol Immunol Hung 2011; 58:13-22. [PMID: 21450551 DOI: 10.1556/amicr.58.2011.1.2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mycobacterium smegmatis is a species of rapidly growing saprophytes with a number of properties that make it an effective vaccine vector. Recombinant M. smegmatis expressing protective antigens of different pathogens and molecules modulating the immune responses offers some potential for reduction of the burden of tuberculosis, HIV and hepatitis B infections. This paper discusses the molecular methods used to generate recombinant M. smegmatis and the results obtained with some of these recombinants.
Collapse
Affiliation(s)
- Ildikó Faludi
- 1 University of Szeged Department of Medical Microbiology and Immunobiology Szeged Hungary
| | - Ágnes Szabó
- 1 University of Szeged Department of Medical Microbiology and Immunobiology Szeged Hungary
| | - Katalin Burián
- 1 University of Szeged Department of Medical Microbiology and Immunobiology Szeged Hungary
| | - Valéria Endrész
- 1 University of Szeged Department of Medical Microbiology and Immunobiology Szeged Hungary
| | - A. Miczák
- 1 University of Szeged Department of Medical Microbiology and Immunobiology Szeged Hungary
| |
Collapse
|
36
|
Sciaranghella G, Lakhashe SK, Ayash-Rashkovsky M, Mirshahidi S, Siddappa NB, Novembre FJ, Velu V, Amara RR, Zhou C, Li S, Li Z, Frankel FR, Ruprecht RM. A live attenuated Listeria monocytogenes vaccine vector expressing SIV Gag is safe and immunogenic in macaques and can be administered repeatedly. Vaccine 2010; 29:476-86. [PMID: 21070847 DOI: 10.1016/j.vaccine.2010.10.072] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 10/23/2010] [Accepted: 10/25/2010] [Indexed: 02/05/2023]
Abstract
Listeria monocytogenes (Lm) is known to induce strong cellular immune responses. We constructed a live-attenuated Lm vector, Lmdd-BdopSIVgag, which encodes SIVmac239 gag. Intragastric (i.g.) administration of 3 × 10(12) bacteria to rhesus macaques was safe and induced anti-Gag cellular but no humoral immune responses. Boosting of Gag-specific cellular responses was observed after i.g. administration of Lmdd-BdopSIVgag to previously vaccinated RM despite preexisting anti-Lm immunity shown by lymphoproliferative responses. Surprisingly, anti-Lm cellular responses were also detected in non-vaccinated controls, which may reflect the fact that Lm is a ubiquitous bacterium. The novel, live-attenuated Lmdd-BdopSIVgag may be an attractive platform for oral vaccine delivery.
Collapse
Affiliation(s)
- Gaia Sciaranghella
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Prime-boost vaccination using chemokine-fused gp120 DNA and HIV envelope peptides activates both immediate and long-term memory cellular responses in rhesus macaques. J Biomed Biotechnol 2010; 2010:860160. [PMID: 20454526 PMCID: PMC2864514 DOI: 10.1155/2010/860160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2009] [Accepted: 03/02/2010] [Indexed: 11/17/2022] Open
Abstract
HIV vaccine candidates with improved immunogenicity and induction of mucosal T-cell immunity are needed. A prime-boost strategy using a novel HIV glycoprotein 120 DNA vaccine was employed to immunize rhesus macaques. The DNA vaccine encoded a chimeric gp120 protein in fusion with monocyte chemoattractant protein-3, which was hypothesized to improve the ability of antigen-presenting cells to capture viral antigen through chemokine receptor-mediated endocytosis. DNA vaccination induced virus-reactive T cells in peripheral blood, detectable by T cell proliferation, INFgamma ELISPOT and sustained IL-6 production, without humoral responses. With a peptide-cocktail vaccine containing a set of conserved polypeptides of HIV-1 envelope protein, given by nasogastric administration, primed T-cell immunity was significantly boosted. Surprisingly, long-term and peptide-specific mucosal memory T-cell immunity was detected in both vaccinated macaques after one year. Therefore, data from this investigation offer proof-of-principle for potential effectiveness of the prime-boost strategy with a chemokine-fused gp120 DNA and warrant further testing in the nonhuman primate models for developing as a potential HIV vaccine candidate in humans.
Collapse
|
38
|
Nicolò C, Sali M, Di Sante G, Geloso MC, Signori E, Penitente R, Uniyal S, Rinaldi M, Ingrosso L, Fazio VM, Chan BMC, Delogu G, Ria F. Mycobacterium smegmatisExpressing a Chimeric Protein MPT64-Proteolipid Protein (PLP) 139–151 Reorganizes the PLP-Specific T Cell Repertoire Favoring a CD8-Mediated Response and Induces a Relapsing Experimental Autoimmune Encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2009; 184:222-35. [DOI: 10.4049/jimmunol.0804263] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
39
|
Recombinant pro-apoptotic Mycobacterium tuberculosis generates CD8+ T cell responses against human immunodeficiency virus type 1 Env and M. tuberculosis in neonatal mice. Vaccine 2009; 28:152-61. [PMID: 19808028 DOI: 10.1016/j.vaccine.2009.09.087] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 07/29/2009] [Accepted: 09/23/2009] [Indexed: 12/18/2022]
Abstract
Mycobacterium bovis BCG is an attractive vaccine vector against breast milk HIV transmission because it elicits Th1-type responses in newborns. However, BCG causes disease in HIV-infected infants. Genetically attenuated Mycobacterium tuberculosis (Mtb) mutants represent a safer alternative for immunocompromised populations. In the current study, we compared the immunogenicity in mice of three different recombinant attenuated Mtb strains expressing an HIV envelope (Env) antigen construct. Two of these strains (DeltalysA DeltapanCD Mtb and DeltaRD1 DeltapanCD Mtb) failed to induce significant levels of HIV Env-specific CD8(+) T cell responses. In striking contrast, an HIV-1 Env-expressing attenuated DeltalysA Mtb containing a deletion in secA2, which encodes a virulence-related secretion system involved in evading adaptive immunity, generated consistently measurable Env-specific CD8(+) T cell responses that were significantly greater than those observed after immunization with BCG expressing HIV Env. Similarly, another strain of DeltalysA DeltasecA2 Mtb expressing SIV Gag induced Gag- and Mtb-specific CD8(+) T cells producing perforin or IFNgamma, and Gag-specific CD4(+) T cells producing IFNgamma within 3 weeks after immunization in adult mice; in addition, IFNgamma-producing Gag-specific CD8(+) T cells and Mtb-specific CD4(+) T cells were observed in neonatal mice within 1 week of immunization. We conclude that DeltalysA DeltasecA2 Mtb is a promising vaccine platform to construct a safe combination HIV-TB vaccine for use in neonates.
Collapse
|
40
|
Recombinant Mycobacterium bovis BCG prime-recombinant adenovirus boost vaccination in rhesus monkeys elicits robust polyfunctional simian immunodeficiency virus-specific T-cell responses. J Virol 2009; 83:5505-13. [PMID: 19297477 DOI: 10.1128/jvi.02544-08] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While mycobacteria have been proposed as vaccine vectors because of their persistence and safety, little has been done systematically to optimize their immunogenicity in nonhuman primates. We successfully generated recombinant Mycobacterium bovis BCG (rBCG) expressing simian immunodeficiency virus (SIV) Gag and Pol as multigenic, nonintegrating vectors, but rBCG-expressing SIV Env was unstable. A dose and route determination study in rhesus monkeys revealed that intramuscular administration of rBCG was associated with local reactogenicity, whereas intravenous and intradermal administration of 10(6) to 10(8) CFU of rBCG was well tolerated. After single or repeat rBCG inoculations, monkeys developed high-frequency gamma interferon enzyme-linked immunospot responses against BCG purified protein derivative. However, the same animals developed only modest SIV-specific CD8(+) T-cell responses. Nevertheless, high-frequency SIV-specific cellular responses were observed in the rBCG-primed monkeys after boosting with recombinant adenovirus 5 (rAd5) expressing the SIV antigens. These cellular responses were of greater magnitude and more persistent than those generated after vaccination with rAd5 alone. The vaccine-elicited cellular responses were predominantly polyfunctional CD8(+) T cells. These findings support the further exploration of mycobacteria as priming vaccine vectors.
Collapse
|
41
|
Bueno SM, González PA, Cautivo KM, Mora JE, Leiva ED, Tobar HE, Fennelly GJ, Eugenin EA, Jacobs WR, Riedel CA, Kalergis AM. Protective T cell immunity against respiratory syncytial virus is efficiently induced by recombinant BCG. Proc Natl Acad Sci U S A 2008; 105:20822-7. [PMID: 19075247 PMCID: PMC2634951 DOI: 10.1073/pnas.0806244105] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Indexed: 12/22/2022] Open
Abstract
Respiratory syncytial virus (RSV) is one of the leading causes of childhood hospitalization and a major health burden worldwide. Unfortunately, because of an inefficient immunological memory, RSV infection provides limited immune protection against reinfection. Furthermore, RSV can induce an inadequate Th2-type immune response that causes severe respiratory tract inflammation and obstruction. It is thought that effective RSV clearance requires the induction of balanced Th1-type immunity, involving the activation of IFN-gamma-secreting cytotoxic T cells. A recognized inducer of Th1 immunity is Mycobacterium bovis bacillus Calmette-Guérin (BCG), which has been used in newborns for decades in several countries as a tuberculosis vaccine. Here, we show that immunization with recombinant BCG strains expressing RSV antigens promotes protective Th1-type immunity against RSV in mice. Activation of RSV-specific T cells producing IFN-gamma and IL-2 was efficiently obtained after immunization with recombinant BCG. This type of T cell immunity was protective against RSV challenge and caused a significant reduction of inflammatory cell infiltration in the airways. Furthermore, mice immunized with recombinant BCG showed no weight loss and reduced lung viral loads. These data strongly support recombinant BCG as an efficient vaccine against RSV because of its capacity to promote protective Th1 immunity.
Collapse
Affiliation(s)
- Susan M. Bueno
- Millennium Nucleus on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas and
| | - Pablo A. González
- Millennium Nucleus on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas and
| | - Kelly M. Cautivo
- Millennium Nucleus on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas and
| | - Jorge E. Mora
- Millennium Nucleus on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas and
| | - Eduardo D. Leiva
- Millennium Nucleus on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas and
| | - Hugo E. Tobar
- Millennium Nucleus on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas and
| | - Glenn J. Fennelly
- The Lewis M. Fraad Department of Pediatrics, Jacobi Medical Center, Bronx, NY 10461
- Departments of Pediatrics and
| | | | - William R. Jacobs
- Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, NY 10461; and
| | - Claudia A. Riedel
- Departamento de Ciencias Biológicas, Laboratorio de Biologia Celular y Farmacologia, Universidad Andrés Bello, Santiago 8370146, Chile
| | - Alexis M. Kalergis
- Millennium Nucleus on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas and
- Departamento de Reumatología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| |
Collapse
|
42
|
Lü L, Cao HD, Zeng HQ, Wang PL, Wang LJ, Liu SN, Xiang TX. Recombinant Mycobacterium smegmatis mc(2)155 vaccine expressing outer membrane protein 26 kDa antigen affords therapeutic protection against Helicobacter pylori infection. Vaccine 2008; 27:972-8. [PMID: 19111590 DOI: 10.1016/j.vaccine.2008.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 12/04/2008] [Accepted: 12/05/2008] [Indexed: 11/30/2022]
Abstract
Orally administered recombinant Mycobacterium smegmatis (rM. smegmatis) vaccines represent an attractive option for mass vaccination programmes against various infectious diseases. Therefore, in the present study, we evaluated the capacity of the outer membrane protein 26kDa antigen (Omp26) of Helicobacter pylori (H. pylori) to induce therapeutic protection against H. pylori infection in mice. Omp26 was cloned and expressed in M. smegmatis mc(2)155 as a fusion with the Mycobacterium fortuitum beta-lactamase protein under the control of the up-regulated M. fortuitum beta-lactamase promoter, pBlaF. The rM. smegmatis strain was shown to be relatively stable in vitro in terms of plasmid stability and bacterial persistence. We found that oral immunization of H. pylori-infected mice with rM. smegmatis-Omp26 induced protection, i.e., significant reduction in bacterial colonization in the stomach. The protection was strongly related to serum specific antibodies with a Th(1) and Th(2) profile as well as to local cytokines in the stomach and spleen. These findings suggest that Omp26 is a promising vaccine candidate antigen for use in a therapeutic vaccine against H. pylori. The rM. smegmatis expressing Omp26 antigen could constitute an effective, low-cost combined vaccine against H. pylori.
Collapse
Affiliation(s)
- Lin Lü
- Department of Gastroenterology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | | | | | | | | | | | | |
Collapse
|
43
|
Shephard E, Burgers WA, Van Harmelen JH, Monroe JE, Greenhalgh T, Williamson C, Williamson AL. A multigene HIV type 1 subtype C modified vaccinia Ankara (MVA) vaccine efficiently boosts immune responses to a DNA vaccine in mice. AIDS Res Hum Retroviruses 2008; 24:207-17. [PMID: 18240963 DOI: 10.1089/aid.2007.0206] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Heterologous prime-boost vaccine strategies have generated high frequencies of antigen-specific T cells in preclinical and clinical trials of candidate HIV vaccines. We have developed a DNA (SAAVI DNA-C) and MVA (SAAVI MVA-C) vaccine based on HIV-1 subtype C for testing in clinical trials. Both vaccines contain five subtype C genes: gag, reverse transcriptase, tat, and nef, expressed as a polyprotein, and a truncated env (gp150). The individual vaccines induced CD8(+) and CD4(+) T cells specific for the vaccine-expressed antigens in BALB/c mice. Combining the vaccines in a DNA prime and MVA boost regimen increased the cumulative peptide response compared to the DNA vaccine alone 10-fold, to over 6000 SFU/10(6) splenocytes in the IFN-gamma ELISPOT assay. Th1 cytokine IFN-gamma and TNF-alpha levels from HIV-specific CD8(+) and CD4(+) T cells increased 20- and 8-fold, respectively, with a SAAVI MVA-C boost. Effector and effector memory RT- and Env-specific memory CD8(+) T cell subsets were boosted after MVA immunization, and over time the cells returned to an intermediate memory phenotype similar to that prior to the boost. Immunization of guinea pigs with the DNA-MVA combination induced high titers of antibodies to gp120, although neutralizing activity was weak or absent. The demonstration that these vaccines induce potent cellular immune responses merits their testing in clinical trials.
Collapse
Affiliation(s)
- Enid Shephard
- Institute of Infectious Disease and Molecular Medicine and Division of Medical Virology, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, South Africa
- MRC/UCT Liver Research Centre, University of Cape Town, Cape Town, South Africa
| | - Wendy A. Burgers
- Institute of Infectious Disease and Molecular Medicine and Division of Medical Virology, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, South Africa
| | - Joanne H. Van Harmelen
- Institute of Infectious Disease and Molecular Medicine and Division of Medical Virology, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, South Africa
| | | | | | - Carolyn Williamson
- Institute of Infectious Disease and Molecular Medicine and Division of Medical Virology, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, South Africa
| | - Anna-Lise Williamson
- Institute of Infectious Disease and Molecular Medicine and Division of Medical Virology, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, South Africa
- National Health Laboratory Services, Groote Schuur Hospital, Cape Town, South Africa
| |
Collapse
|
44
|
Majumder N, Bhattacharjee S, Dey R, Bhattacharyya Majumdar S, Pal NK, Majumdar S. Arabinosylated lipoarabinomannan modulates the impaired cell mediated immune response in Mycobacterium tuberculosis H37Rv infected C57BL/6 mice. Microbes Infect 2007; 10:349-57. [PMID: 18417403 DOI: 10.1016/j.micinf.2007.12.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 12/10/2007] [Accepted: 12/19/2007] [Indexed: 11/24/2022]
Abstract
Mycobacterium tuberculosis is a facultative intracellular pathogen that flourishes inside the host macrophages. This organism has the ability to deactivate the cell-mediated immune responses involving the down-regulation of pro-inflammatory cytokines, T cell proliferation, apoptosis of CD4+T cells and impairment of the expression of MHC Class II molecules. We observed that Arabinosylated Lipoarabinomannan (Ara-LAM), a glycolipid present in the cell wall of the avirulent Mycobacterium smegmatis, could effectively restrict the growth of tubercle bacilli, induced the transcription of Th1 cytokines in alveolar macrophages (AMs) and splenocytes, enhanced the frequency of CD4+T cells secreting IFN-gamma and induced the expression of MHC Class II molecules on the splenocyte membrane, compared to that of Mycobacterium tuberculosis H37Rv infected C57BL/6 mice. Collectively our findings strongly suggest that Ara-LAM had the potency to restore the impaired cell mediated immune responses in mice infected with Mycobacterium tuberculosis H37Rv, and hence could be utilized as an effective immuno-prophylactic tool in the control of tuberculosis.
Collapse
|
45
|
Mo Y, Quanquin NM, Vecino WH, Ranganathan UD, Tesfa L, Bourn W, Derbyshire KM, Letvin NL, Jacobs WR, Fennelly GJ. Genetic alteration of Mycobacterium smegmatis to improve mycobacterium-mediated transfer of plasmid DNA into mammalian cells and DNA immunization. Infect Immun 2007; 75:4804-16. [PMID: 17664267 PMCID: PMC2044538 DOI: 10.1128/iai.01877-06] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacteria target and persist within phagocytic monocytes and are strong adjuvants, making them attractive candidate vectors for DNA vaccines. We characterized the ability of mycobacteria to deliver transgenes to mammalian cells and the effects of various bacterial chromosomal mutations on the efficiency of transfer in vivo and in vitro. First, we observed green fluorescent protein expression via microscopy and fluorescence-activated cell sorting analysis after infection of phagocytic and nonphagocytic cell lines by Mycobacterium smegmatis or M. bovis BCG harboring a plasmid encoding the fluorescence gene under the control of a eukaryotic promoter. Next, we compared the efficiencies of gene transfer using M. smegmatis or BCG containing chromosomal insertions or deletions that cause early lysis, hyperconjugation, or an increased plasmid copy number. We observed a significant-albeit only 1.7-fold-increase in the level of plasmid transfer to eukaryotic cells infected with M. smegmatis hyperconjugation mutants. M. smegmatis strains that overexpressed replication proteins (Rep) of pAL5000, a plasmid whose replicon is incorporated in many mycobacterial constructs, generated a 10-fold increase in plasmid copy number and 3.5-fold and 3-fold increases in gene transfer efficiency to HeLa cells and J774 cells, respectively. Although BCG strains overexpressing Rep could not be recovered, BCG harboring a plasmid with a copy-up mutation in oriM resulted in a threefold increase in gene transfer to J774 cells. Moreover, M. smegmatis strains overexpressing Rep enhanced gene transfer in vivo compared with a wild-type control. Immunization of mice with mycobacteria harboring a plasmid (pgp120(h)(E)) encoding human immunodeficiency virus gp120 elicited gp120-specific CD8 T-cell responses among splenocytes and peripheral blood mononuclear cells that were up to twofold (P < 0.05) and threefold (P < 0.001) higher, respectively, in strains supporting higher copy numbers. The magnitude of these responses was approximately one-half of that observed after intramuscular immunization with pgp120(h)(E). M. smegmatis and other nonpathogenic mycobacteria are promising candidate vectors for DNA vaccine delivery.
Collapse
Affiliation(s)
- Yongkai Mo
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Im EJ, Saubi N, Virgili G, Sander C, Teoh D, Gatell JM, McShane H, Joseph J, Hanke T. Vaccine platform for prevention of tuberculosis and mother-to-child transmission of human immunodeficiency virus type 1 through breastfeeding. J Virol 2007; 81:9408-18. [PMID: 17596303 PMCID: PMC1951420 DOI: 10.1128/jvi.00707-07] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Most children in Africa receive their vaccine against tuberculosis at birth. Those infants born to human immunodeficiency virus type 1 (HIV-1)-positive mothers are at high risk of acquiring HIV-1 infection through breastfeeding in the first weeks of their lives. Thus, the development of a vaccine which would protect newborns against both of these major global killers is a logical yet highly scientifically, ethically, and practically challenging aim. Here, a recombinant lysine auxotroph of Mycobacterium bovis bacillus Calmette-Guérin (BCG), a BCG strain that is safer than those currently used and expresses an African HIV-1 clade-derived immunogen, was generated and shown to be stable and to induce durable, high-quality HIV-1-specific CD4(+)- and CD8(+)-T-cell responses. Furthermore, when the recombinant BCG vaccine was used in a priming-boosting regimen with heterologous components, the HIV-1-specific responses provided protection against surrogate virus challenge, and the recombinant BCG vaccine alone protected against aerosol challenge with M. tuberculosis. Thus, inserting an HIV-1-derived immunogen into the scheduled BCG vaccine delivered at or soon after birth may prime HIV-1-specific responses, which can be boosted by natural exposure to HIV-1 in the breast milk and/or by a heterologous vaccine such as recombinant modified vaccinia virus Ankara delivering the same immunogen, and decrease mother-to-child transmission of HIV-1 during breastfeeding.
Collapse
Affiliation(s)
- Eung-Jun Im
- Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe, Oxford OX3 9DS, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Behar SM, Woodworth JS, Wu Y. Next generation: tuberculosis vaccines that elicit protective CD8+ T cells. Expert Rev Vaccines 2007; 6:441-56. [PMID: 17542758 PMCID: PMC3134449 DOI: 10.1586/14760584.6.3.441] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Tuberculosis continues to cause considerable human morbidity and mortality worldwide, particularly in people coinfected with HIV. The emergence of multidrug resistance makes the medical treatment of tuberculosis even more difficult. Thus, the development of a tuberculosis vaccine is a global health priority. Here we review the data concerning the role of CD8+ T cells in immunity to tuberculosis and consider how CD8+ T cells can be elicited by vaccination. Many immunization strategies have the potential to elicit CD8+ T cells and we critically review the data supporting a role for vaccine-induced CD8+ T cells in protective immunity. The synergy between CD4+ and CD8+ T cells suggests that a vaccine that elicits both T-cell subsets has the best chance at preventing tuberculosis.
Collapse
Affiliation(s)
- Samuel M. Behar
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women’s Hospital and Harvard Medical School, Smith Building Room 516C, One Jimmy Fund Way, Boston, MA 02115. Phone: (617)-525-1033, Fax: (617)-525-1010
| | - Joshua S.M. Woodworth
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women’s Hospital and Harvard Medical School, Smith Building Room 516C, One Jimmy Fund Way, Boston, MA 02115. Phone: (617)-525-1065, Fax: (617)-525-1010
| | - Ying Wu
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women’s Hospital and Harvard Medical School, Smith Building Room 516C, One Jimmy Fund Way, Boston, MA 02115. Phone: (617)-525-1042, Fax: (617)-525-1010
| |
Collapse
|
48
|
Yu JS, Peacock JW, Jacobs WR, Frothingham R, Letvin NL, Liao HX, Haynes BF. Recombinant Mycobacterium bovis bacillus Calmette-Guerin elicits human immunodeficiency virus type 1 envelope-specific T lymphocytes at mucosal sites. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 14:886-93. [PMID: 17507541 PMCID: PMC1951062 DOI: 10.1128/cvi.00407-06] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A successful vaccine vector for human immunodeficiency virus type 1 (HIV-1) should induce anti-HIV-1 T-cell immune responses at mucosal sites. We have constructed recombinant Mycobacterium bovis bacillus Calmette-Guérin (rBCG) expressing an HIV-1 group M consensus envelope (Env) either as a surface, intracellular, or secreted protein as an immunogen. rBCG containing HIV-1 env plasmids engineered for secretion induced optimal Env-specific T-cell gamma interferon enzyme-linked immunospot responses in murine spleen, female reproductive tract, and lungs. While rBCG-induced T-cell responses to HIV-1 envelope in spleen were lower than those induced by adenovirus prime/recombinant vaccinia virus (rAd-rVV) boost, rBCG induced comparable responses to rAd-rVV immunization in the female reproductive tract and lungs. T-cell responses induced by rBCG were primarily CD4(+), although rBCG alone did not induce anti-HIV-1 antibody. However, rBCG could prime for a protein boost by HIV-1 envelope protein. Thus, rBCG can serve as a vector for induction of anti-HIV-1 consensus Env cellular responses at mucosal sites.
Collapse
Affiliation(s)
- Jae-Sung Yu
- Human Vaccine Institute and Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710 , USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Joseph J, Saubi N, Pezzat E, Gatell JM. Progress towards an HIV vaccine based on recombinant bacillus Calmette-Guérin: failures and challenges. Expert Rev Vaccines 2007; 5:827-38. [PMID: 17184220 DOI: 10.1586/14760584.5.6.827] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The need for an affordable, safe and effective HIV vaccine has never been greater. As the immunogenicity of all the vaccine vectors being evaluated currently in human populations is limited, novel vaccine strategies are needed to stimulate the innate immune system, to generate high levels of neutralizing antibodies and to induce strong cell-mediated and mucosal immunity. There is strong evidence for a role for cytotoxic T lymphocytes in the containment of HIV replication. Several vaccine approaches have been tested to elicit anti-HIV cytotoxic T-lymphocyte responses. One promising approach is Bacillus Calmette-Guérin (BCG) as a bacterial live recombinant vaccine vehicle. BCG has a long record of safety in humans and is able to induce long-lasting immunity. In this review, we describe the limitations and challenges of developing a recombinant BCG-based HIV vaccine. We also emphasize possible approaches for overcoming the plasmid instability in vivo and the low levels of gene expression and immunogenicity induction. Today, projects all over the world are focused on the development of an AIDS vaccine. Overcoming the remaining scientific, logistical and financial hurdles to the development of an effective HIV vaccine will require real imagination and firm commitment from all stakeholders.
Collapse
Affiliation(s)
- Joan Joseph
- HIVACAT (Catalan Center for HIV Vaccine Research and Development), AIDS Research Unit, Infectious Diseases Department, Hospital Clínic/IDIBAPS, School of Medicine, University of Barcelona, Barcelona, Spain.
| | | | | | | |
Collapse
|
50
|
Abstract
Recent experimental observations suggest approaches to immunization that might finally result in at least a partially effective vaccine against infection with HIV-1. In particular, advances in our understanding of the contribution of vaccine-elicited cellular immunity to protecting memory CD4(+) T cells from virus-mediated destruction provide rational strategies for the development of this vaccine. This is therefore an ideal time to review our current understanding of HIV-1 and its control by the immune system, as well as the remaining problems that must be solved to facilitate the development of an effective vaccine against AIDS.
Collapse
Affiliation(s)
- Norman L Letvin
- Division of Viral Pathogenesis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, Massachusetts 02215, USA.
| |
Collapse
|