1
|
Morishita R, Nakanishi S, Yokoyama T, Hoshi N, Mantani Y. Histological study on the postnatal development of the nerve network in the rat ileal mucosa and submucosa. Cell Tissue Res 2025; 400:71-80. [PMID: 39945853 PMCID: PMC11965212 DOI: 10.1007/s00441-025-03949-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/08/2025] [Indexed: 04/04/2025]
Abstract
We have previously reported detailed structures of the mucosal nerve network in the rat ileum, but the mechanisms underlying the development of this nerve network remain unclear. Therefore, we aimed to clarify the developmental process of the mucosal nerve network and submucosal neurons (SM-neurons) or ganglia (SMG), which are the main source of nerve fibers projected to the mucosa, in the rat ileum during the postnatal period. Immunohistochemistry against tubulin beta III (Tuj1) revealed that Tuj1-immunopositivities were more abundant in the lamina propria at 2 weeks old (2wk; pre-weaning) than at postnatal day 0 (P0) or 4 weeks old (4wk; post-weaning) and more frequent on the mesenteric side than on the antimesenteric side at 2wk. Hu antigen D (HuD)-immunopositive SM-neurons and SMG were also more abundantly localized on the mesenteric side than the antimesenteric side at P0 and 2wk. On the other hand, cells immunopositive for SRY-related HMG-box 10 (Sox10), which is the marker for enteric nervous system progenitor cells and enteric glial cells, were homogenously scattered in the submucosa throughout the entire circumference at all ages. Glial cell marker S100 calcium-binding protein B (S100β) in the submucosa was detected at all ages without any significant difference between the mesenteric and antimesenteric sides. These findings indicate that SMG formation and associated neurite extension into the mucosa in the rat ileum might occur preferentially on the mesenteric side by the weaning period, leading us to hypothesize that the mechanism by which the mucosal nerve network and SMG develop differs along the mesenteric-antimesenteric side axis.
Collapse
Affiliation(s)
- Rinako Morishita
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-Cho, Nada-Ku, Kobe, Hyogo, 657-8501, Japan
| | - Satoki Nakanishi
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-Cho, Nada-Ku, Kobe, Hyogo, 657-8501, Japan
| | - Toshifumi Yokoyama
- Laboratory of Animal Molecular Morphology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-Cho, Nada-Ku, Kobe, Hyogo, 657-8501, Japan
| | - Nobuhiko Hoshi
- Laboratory of Animal Molecular Morphology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-Cho, Nada-Ku, Kobe, Hyogo, 657-8501, Japan
| | - Youhei Mantani
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-Cho, Nada-Ku, Kobe, Hyogo, 657-8501, Japan.
| |
Collapse
|
2
|
Grases-Pintó B, Torres-Castro P, Abril-Gil M, Castell M, Rodríguez-Lagunas MJ, Pérez-Cano FJ, Franch À. TGF-β2, EGF and FGF21 influence the suckling rat intestinal maturation. J Nutr Biochem 2025; 135:109778. [PMID: 39374742 DOI: 10.1016/j.jnutbio.2024.109778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/04/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024]
Abstract
Some of the growth factors present in breast milk, such as transforming growth factor-β (TGF-β), epidermal growth factor (EGF) and fibroblast growth factor 21 (FGF21), play important roles in the development of the intestinal tract. The aim of this study was to determine the effect of a supplementation with TGF-β2, EGF and FGF21 on suckling rats intestinal maturation. For this purpose, Wistar rats were supplemented daily with TGF-β2, EGF or FGF21 throughout the suckling period. We evaluated the functionality of the intestinal epithelial barrier through an in vivo dextran permeability assay, and by a histomorphometric and immunohistochemical study. In addition, the intestinal gene expression of tight junction-associated proteins, mucins, toll-like receptors, and maturation markers was analyzed. Moreover, the intraepithelial lymphocyte (IEL) phenotypical composition was established. During the suckling period, the supplementation with TGF-β2, EGF and FGF21 showed important signs of intestinal maturation. These results suggest that these molecules, present in breast milk, play a modulatory role in the maturation of the intestinal barrier function and the IEL composition during the suckling period.
Collapse
Affiliation(s)
- Blanca Grases-Pintó
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain; Nutrition and Food Safety Research Institute (INSA·UB), Santa Coloma de Gramenet, Spain
| | - Paulina Torres-Castro
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain; Nutrition and Food Safety Research Institute (INSA·UB), Santa Coloma de Gramenet, Spain
| | - Mar Abril-Gil
- Klinikum rechts der Isar, Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany
| | - Margarida Castell
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain; Nutrition and Food Safety Research Institute (INSA·UB), Santa Coloma de Gramenet, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - María J Rodríguez-Lagunas
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain; Nutrition and Food Safety Research Institute (INSA·UB), Santa Coloma de Gramenet, Spain
| | - Francisco J Pérez-Cano
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain; Nutrition and Food Safety Research Institute (INSA·UB), Santa Coloma de Gramenet, Spain.
| | - Àngels Franch
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain; Nutrition and Food Safety Research Institute (INSA·UB), Santa Coloma de Gramenet, Spain
| |
Collapse
|
3
|
Kandel Gambarte PC, Wolansky MJ. The gut microbiota as a biomarker for realistic exposures to pesticides: A critical consideration. Neurotoxicol Teratol 2022; 91:107074. [DOI: 10.1016/j.ntt.2022.107074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/24/2021] [Accepted: 01/10/2022] [Indexed: 10/19/2022]
|
4
|
Aydın MŞ, Yiğit EN, Vatandaşlar E, Erdoğan E, Öztürk G. Transfer and Integration of Breast Milk Stem Cells to the Brain of Suckling Pups. Sci Rep 2018; 8:14289. [PMID: 30250150 PMCID: PMC6155265 DOI: 10.1038/s41598-018-32715-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/12/2018] [Indexed: 01/19/2023] Open
Abstract
Beside its unique nutritional content breast milk also contains live cells from the mother. Fate of these cells in the offspring has not been adequately described. In this study, we aimed to detect and identify maternal cells in the suckling’s blood and the brain. Green fluorescent protein expressing transgenic female mice (GFP+) were used as foster mothers to breastfeed wildtype newborn pups. One week and two months after the birth, blood samples and brains of the sucklings were analyzed to detect presence of GFP+ cells by fluorescence activated cell sorting, polymerase chain reaction and immunohistochemistry on the brain sections and optically cleared brains. The tests confirmed that maternal cells were detectable in the blood and the brain of the pups and that they differentiated into both neuronal and glial cell types in the brain. This phenomenon represents breastfeeding – induced microchimerism in the brain with functional implications remain to be understood.
Collapse
Affiliation(s)
- Mehmet Şerif Aydın
- Regenerative and Restorative Medicine Research Center, Istanbul Medipol University, Istanbul, 34810, Turkey
| | - Esra Nur Yiğit
- Regenerative and Restorative Medicine Research Center, Istanbul Medipol University, Istanbul, 34810, Turkey
| | - Emre Vatandaşlar
- Regenerative and Restorative Medicine Research Center, Istanbul Medipol University, Istanbul, 34810, Turkey
| | - Ender Erdoğan
- Department of Histology and Embryology, Faculty of Medicine, Selcuk University, Konya, 42030, Turkey
| | - Gürkan Öztürk
- Regenerative and Restorative Medicine Research Center, Istanbul Medipol University, Istanbul, 34810, Turkey. .,Department of Physiology, International School of Medicine, Istanbul Medipol University, Istanbul, 34810, Turkey.
| |
Collapse
|
5
|
Zani BC, Sanches BDA, Maldarine JS, Biancardi MF, Santos FCA, Barquilha CN, Zucão MI, Baraldi CMB, Felisbino SL, Góes RM, Vilamaior PSL, Taboga SR. Telocytes role during the postnatal development of the Mongolian gerbil jejunum. Exp Mol Pathol 2018; 105:130-138. [PMID: 30003874 DOI: 10.1016/j.yexmp.2018.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 06/26/2018] [Accepted: 07/07/2018] [Indexed: 01/29/2023]
Abstract
Telocytes are recently categorised CD34-positive interstitial cells that comprise the cells which were previously called interstitial Cajal-like cells (ICLCs). These were detected in the stroma of various organs such as the prostate, lungs, mammary glands, liver, gallbladder, and jejunum, among others. Several functions have been proposed for telocytes, such as a supportive role in smooth muscle contraction and immune function in adult organs, and tissue organisation and paracrine signalling during development, as well as others. In the jejunum, little is known about the function of telocytes in the adult organ, or is there any information about when these cells develop or if they could have an auxiliary role in the development of the jejunum. The present study employed histological, immunohistochemical and immunofluorescence techniques on histological sections of the jejunum of Mongolian gerbil pups on two different days of postnatal development of the jejunum, covering the maturation period of the organ. By immunolabelling for CD34, it was observed that telocytes are already present in the jejunum during the first week of postnatal life and exist in close association with the developing muscularis mucosae, which are therefore TGFβ1-positive. The telocytes are still present at the end of the first month of life, and a portion of them present co-localisation with c-Kit. Fibroblast-like cells, which are exclusively c-Kit-positive, are also observed, which may indicate the presence of interstitial Cajal cells (ICCs). Finally, it can be hypothesised that a portion of the telocytes may give rise to ICCs, which are c-Kit-positive but CD34 negative.
Collapse
Affiliation(s)
- Bruno C Zani
- Univ. Estadual Paulista - UNESP, Department of Biology, Laboratory of Microscopy and Microanalysis, Cristóvão Colombo St., 2265, São José do Rio Preto, São Paulo, Brazil
| | - Bruno D A Sanches
- Department of Structural and Functional Biology, State University of Campinas, Bertrand Russel Av., Campinas, São Paulo, Brazil
| | - Juliana S Maldarine
- Department of Structural and Functional Biology, State University of Campinas, Bertrand Russel Av., Campinas, São Paulo, Brazil
| | - Manoel F Biancardi
- Department of Histology, Embryology and Cell Biology, Federal University of Goiás, Samambaia II, Goiânia, Goiás 74001970, Brazil
| | - Fernanda C A Santos
- Department of Histology, Embryology and Cell Biology, Federal University of Goiás, Samambaia II, Goiânia, Goiás 74001970, Brazil
| | - Caroline N Barquilha
- Univ. Estadual Paulista - UNESP, Institute of Biosciences, Prof. Dr. Antônio Celso Wagner Zanin St., 250, Rubião Júnior District, Botucatu, São Paulo 18618-689, Brazil
| | - Mariele I Zucão
- Univ. Estadual Paulista - UNESP, Department of Biology, Laboratory of Microscopy and Microanalysis, Cristóvão Colombo St., 2265, São José do Rio Preto, São Paulo, Brazil
| | - Carolina M B Baraldi
- Univ. Estadual Paulista - UNESP, Department of Biology, Laboratory of Microscopy and Microanalysis, Cristóvão Colombo St., 2265, São José do Rio Preto, São Paulo, Brazil
| | - Sergio L Felisbino
- Univ. Estadual Paulista - UNESP, Department of Biology, Laboratory of Microscopy and Microanalysis, Cristóvão Colombo St., 2265, São José do Rio Preto, São Paulo, Brazil; Univ. Estadual Paulista - UNESP, Institute of Biosciences, Prof. Dr. Antônio Celso Wagner Zanin St., 250, Rubião Júnior District, Botucatu, São Paulo 18618-689, Brazil
| | - Rejane M Góes
- Univ. Estadual Paulista - UNESP, Department of Biology, Laboratory of Microscopy and Microanalysis, Cristóvão Colombo St., 2265, São José do Rio Preto, São Paulo, Brazil; Department of Structural and Functional Biology, State University of Campinas, Bertrand Russel Av., Campinas, São Paulo, Brazil
| | - Patricia S L Vilamaior
- Univ. Estadual Paulista - UNESP, Department of Biology, Laboratory of Microscopy and Microanalysis, Cristóvão Colombo St., 2265, São José do Rio Preto, São Paulo, Brazil
| | - Sebastião R Taboga
- Univ. Estadual Paulista - UNESP, Department of Biology, Laboratory of Microscopy and Microanalysis, Cristóvão Colombo St., 2265, São José do Rio Preto, São Paulo, Brazil; Department of Structural and Functional Biology, State University of Campinas, Bertrand Russel Av., Campinas, São Paulo, Brazil.
| |
Collapse
|
6
|
Early effects on the intestinal barrier and pancreatic function after enteral stimulation with protease or kidney bean lectin in neonatal rats. Br J Nutr 2018; 119:992-1002. [PMID: 29457572 DOI: 10.1017/s0007114518000168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gut maturation naturally accelerates at weaning in altricial mammalian species, such as the rat. Mimicking this, gut development can also be induced precociously, 3-4 d earlier than it would occur naturally, by enteral exposure to phytohaemagglutinin (PHA), or various proteases. We investigated the early effects of gut provocation on intestinal barrier and pancreatic functions, to get a better understanding of the mechanisms that initiate gut maturation. The effects of oral administration of protease (trypsin) or PHA to 14-d-old suckling rats were studied during 24 h in comparison with water-fed controls. Intestinal in vivo permeability was assessed by oral administration of different-sized marker molecules and measuring their passage into the blood or urine 3 h later. A period of 24 h following oral administration, both PHA and protease provocation stimulated small intestinal (SI) growth and pancreatic secretion, as indicated by decreased pancreatic trypsin and increased luminal enzyme content. Within 1 h of oral administration, both treatments prevented the absorption of macromolecules to blood that was observed in controls. PHA treatment hindered the passage of fluorescein isothiocyanate-dextran (FD) 4 to blood, whereas protease treatment temporarily increased plasma levels of FD4, and the urine lactulose:mannitol ratio, indicating increased intestinal leakiness. Following protease treatment, fluorescence microscopy showed decreased vesicular uptake of FD70 in the proximal SI and increased epithelial fluorescence in the distal SI. In conclusion, PHA and protease differed in their early effects on the intestinal barrier; both exerted a blocking effect on epithelial endocytosis, whereas protease treatment alone temporarily increased epithelial leakiness, which seemed to be confined to the distal SI.
Collapse
|
7
|
Sureda EA, Gidlund C, Weström B, Prykhodko O. Induction of precocious intestinal maturation in T-cell deficient athymic neonatal rats. World J Gastroenterol 2017; 23:7531-7540. [PMID: 29204053 PMCID: PMC5698246 DOI: 10.3748/wjg.v23.i42.7531] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/31/2017] [Accepted: 09/13/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate whether gut maturation could be induced precociously in an athymic T-cell deficient neonatal rat model.
METHODS Fourteen day-old athymic (nude) rats (NIH-Foxn1rnu) were gavaged with either phytohaemagglutinin - a lectin from red kidney beans (PHA); trypsin - a protease (Prot); or water - vehicle (control) as a single dose on one day or once a day for 3-day. The nude rats were either nurtured by their mothers or cross-fostered by conventional foster dams of the Sprague-Dawley strain from days 3-5 after birth. At 17 d of age, 72 h after administration of the first treatment, intestinal macromolecular permeability was tested in vivo, prior to euthanasia, after which blood and gut organs were sampled.
RESULTS Provocation with both, PHA and protease, resulted in increased gut growth and maturation in nude rat pups independent of nursing. Foetal-type enterocytes were replaced by non-vacuolated adult-type enterocytes in the distal small intestine epithelium. Decreased intestinal macromolecular permeability (gut closure) was observed, with reduced permeability markers (BIgG and BSA, P < 0.001) in circulation. Increased pancreatic function, with an increased trypsin to protein ratio in pancreas homogenates, was observed independent of nursing in the nude pups. Immunostaining showed the presence of a few CD3+-cells in the intestinal mucosa of the nude pups. The number of CD3+-cells remained unaltered by provocation and no differences were observed between the nursing sets. Growth and vitality of the nude pups were dependent on nurturing, since cross-fostering by conventional dams increased their macromolecular absorptive capacity (BSA, P < 0.05), as well as their passive immunity (RIgG, P < 0.05).
CONCLUSION Precocious gut maturation can be induced by enteral provocation in athymic rat pups, similarly to in euthymic pups, thus showing an independence from thymus-derived T-cells.
Collapse
Affiliation(s)
| | - Catherine Gidlund
- Department of Biology, Faculty of Science, Lund University, Lund 22362, Sweden
| | - Björn Weström
- Department of Biology, Faculty of Science, Lund University, Lund 22362, Sweden
| | - Olena Prykhodko
- Department of Biology, Faculty of Science, Lund University, Lund 22362, Sweden
| |
Collapse
|
8
|
Su W, Zhang H, Ying Z, Li Y, Zhou L, Wang F, Zhang L, Wang T. Effects of dietary l-methionine supplementation on intestinal integrity and oxidative status in intrauterine growth-retarded weanling piglets. Eur J Nutr 2017; 57:2735-2745. [DOI: 10.1007/s00394-017-1539-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 09/18/2017] [Indexed: 01/12/2023]
|
9
|
Inoue R, Yajima T, Tsukahara T. Expression of TLR2 and TLR4 in murine small intestine during postnatal development. Biosci Biotechnol Biochem 2017; 81:350-358. [DOI: 10.1080/09168451.2016.1254534] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Abstract
The important role played by the gut microbiota in host immunity is mediated, in part, through toll-like receptors (TLRs). We evaluated the postnatal changes in expression of TLR2 and TLR4 in the murine small intestine and assessed how expression is influenced by gut microbiota. The expression of TLR2 and TLR4 in the murine small intestine was highly dynamic during development. The changes were especially profound during the suckling period, with the maximal mRNA levels detected in the mid-suckling period. Immunohistochemical and flow-cytometric analyses indicated that the changes in TLR2 and TLR4 expression involve primarily epithelial cells. The germ-free mice showed minor changes in TLR2/TLR4 mRNA and TLR2 protein during the suckling period. This study demonstrated that the postnatal expression of TLR2 and TLR4 in small intestinal epithelial cells is dynamic and depends on the presence of commensal intestinal microbiota.
Collapse
Affiliation(s)
- Ryo Inoue
- Laboratory of Animal Science, Department of Agricultural and Life Sciences, Kyoto Prefectural University, Kyoto, Japan
- Creative Research Initiative “Sousei” (CRIS), Hokkaido University, Sapporo, Japan
| | - Takaji Yajima
- Creative Research Initiative “Sousei” (CRIS), Hokkaido University, Sapporo, Japan
| | - Takamitsu Tsukahara
- Laboratory of Animal Science, Department of Agricultural and Life Sciences, Kyoto Prefectural University, Kyoto, Japan
- Kyoto Institute of Nutrition and Pathology, Kyoto, Japan
| |
Collapse
|
10
|
Rakoff-Nahoum S, Kong Y, Kleinstein SH, Subramanian S, Ahern PP, Gordon JI, Medzhitov R. Analysis of gene-environment interactions in postnatal development of the mammalian intestine. Proc Natl Acad Sci U S A 2015; 112:1929-36. [PMID: 25691701 PMCID: PMC4343130 DOI: 10.1073/pnas.1424886112] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Unlike mammalian embryogenesis, which takes place in the relatively predictable and stable environment of the uterus, postnatal development can be affected by a multitude of highly variable environmental factors, including diet, exposure to noxious substances, and microorganisms. Microbial colonization of the intestine is thought to play a particularly important role in postnatal development of the gastrointestinal, metabolic, and immune systems. Major changes in environmental exposure occur right after birth, upon weaning, and during pubertal maturation into adulthood. These transitions include dramatic changes in intestinal contents and require appropriate adaptations to meet changes in functional demands. Here, we attempt to both characterize and provide mechanistic insights into postnatal intestinal ontogeny. We investigated changes in global intestinal gene expression through postnatal developmental transitions. We report profound alterations in small and large intestinal transcriptional programs that accompany both weaning and puberty in WT mice. Using myeloid differentiation factor 88 (MyD88)/TIR-domain-containing adapter-inducing interferon-β (TRIF) double knockout littermates, we define the role of toll-like receptors (TLRs) and interleukin (IL)-1 receptor family member signaling in postnatal gene expression programs and select ontogeny-specific phenotypes, such as vascular and smooth muscle development and neonatal epithelial and mast cell homeostasis. Metaanalysis of the effect of the microbiota on intestinal gene expression allowed for mechanistic classification of developmentally regulated genes by TLR/IL-1R (TIR) signaling and/or indigenous microbes. We find that practically every aspect of intestinal physiology is affected by postnatal transitions. Developmental timing, microbial colonization, and TIR signaling seem to play distinct and specific roles in regulation of gene-expression programs throughout postnatal development.
Collapse
Affiliation(s)
- Seth Rakoff-Nahoum
- Howard Hughes Medical Institute, Department of Immunobiology, Division of Infectious Diseases, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115
| | - Yong Kong
- Department of Molecular Biophysics and Biochemistry, W. M. Keck Foundation Biotechnology Resource Laboratory, and
| | - Steven H Kleinstein
- Interdepartmental Program in Computational Biology and Bioinformatics and Department of Pathology, Yale University School of Medicine, New Haven, CT 06510
| | - Sathish Subramanian
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63108; and
| | - Philip P Ahern
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63108; and
| | - Jeffrey I Gordon
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63108; and
| | | |
Collapse
|
11
|
Abstract
The transition from liquid to solid feed during weaning results in morphological, histological and microbial changes in the young animal's intestinal tract and often is associated with diarrhoea. The ban of in-feed antibiotics in pig production in the European Union has led to increasing interest in alternatives to overcome weaning-associated problems. Among others, nucleotides may have the potential to alleviate health impairments due to weaning. Nucleotides are natural components of the non-protein fraction of milk and have important effects on the maintenance of health in young animals. Nucleotides and their related metabolic products play key roles in many biological processes and become essential dietary components when endogenous supply is insufficient for normal function. The present review summarises nucleotide composition of milk from different species, the biology of nucleotides and possible effects of dietary nucleotides on intestinal morphology and function, intestinal microbiota, immune function, nutrient metabolism, hepatic morphology and function as well as growth performance. Special attention is given to data available for pigs, and suggestions are made for inclusion of nucleotides in the diet to benefit piglets' health and reduce the consequences accompanying early weaning.
Collapse
|
12
|
Gefeller EM, Martens H, Aschenbach JR, Klingspor S, Twardziok S, Wrede P, Pieper R, Lodemann U. Effects of age and zinc supplementation on transport properties in the jejunum of piglets. J Anim Physiol Anim Nutr (Berl) 2014; 99:542-52. [DOI: 10.1111/jpn.12232] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 06/30/2014] [Indexed: 11/29/2022]
Affiliation(s)
- E. M. Gefeller
- Faculty of Veterinary Medicine; Institute of Veterinary Physiology; Freie Universität Berlin; Berlin Germany
| | - H. Martens
- Faculty of Veterinary Medicine; Institute of Veterinary Physiology; Freie Universität Berlin; Berlin Germany
| | - J. R. Aschenbach
- Faculty of Veterinary Medicine; Institute of Veterinary Physiology; Freie Universität Berlin; Berlin Germany
| | - S. Klingspor
- Faculty of Veterinary Medicine; Institute of Veterinary Physiology; Freie Universität Berlin; Berlin Germany
| | - S. Twardziok
- Molecular Biology and Bioinformatic; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - P. Wrede
- Molecular Biology and Bioinformatic; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - R. Pieper
- Faculty of Veterinary Medicine; Institute of Animal Nutrition; Freie Universität Berlin; Berlin Germany
| | - U. Lodemann
- Faculty of Veterinary Medicine; Institute of Veterinary Physiology; Freie Universität Berlin; Berlin Germany
| |
Collapse
|
13
|
Use of pigs as a potential model for research into dietary modulation of the human gut microbiota. Nutr Res Rev 2013; 26:191-209. [DOI: 10.1017/s0954422413000152] [Citation(s) in RCA: 212] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The human intestinal microbial ecosystem plays an important role in maintaining health. A multitude of diseases including diarrhoea, gastrointestinal inflammatory disorders, such as necrotising enterocolitis (NEC) of neonates, and obesity are linked to microbial composition and metabolic activity. Therefore, research on possible dietary strategies influencing microbial composition and activity, both preventive and curative, is being accomplished. Interest has focused on pre- and probiotics that stimulate the intestinal production of beneficial bacterial metabolites such as butyrate, and beneficially affect microbial composition. The suitability of an animal model to study dietary linked diseases is of much concern. The physiological similarity between humans and pigs in terms of digestive and associated metabolic processes places the pig in a superior position over other non-primate models. Furthermore, the pig is a human-sized omnivorous animal with comparable nutritional requirements, and shows similarities to the human intestinal microbial ecosystem. Also, the pig has been used as a model to assess microbiota–health interactions, since pigs exhibit similar syndromes to humans, such as NEC and partly weanling diarrhoea. In contrast, when using rodent models to study diet–microbiota–health interactions, differences between rodents and humans have to be considered. For example, studies with mice and human subjects assessing possible relationships between the composition and metabolic activity of the gut microbiota and the development of obesity have shown inconsistencies in results between studies. The present review displays the similarities and differences in intestinal microbial ecology between humans and pigs, scrutinising the pig as a potential animal model, with regard to possible health effects.
Collapse
|
14
|
Diosmectite-zinc oxide composite improves intestinal barrier function, modulates expression of pro-inflammatory cytokines and tight junction protein in early weaned pigs. Br J Nutr 2013; 110:681-8. [PMID: 23308387 DOI: 10.1017/s0007114512005508] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The study evaluated whether feeding diosmectite-ZnO composite (DS-ZnO) at 500 mg Zn/kg to early weaned pigs would alleviate the weaning-related intestinal disorders as a substitute for high concentration of ZnO (2250 mg Zn/kg). The pigs weaned at an age of 21 ± 1 d were allotted to four treatments groups as follows: (1) control; (2) DS-ZnO, 500 mg Zn/kg diet; (3) ZnO, 2250 mg Zn/kg diet; and (4) mixture of 2·0 g DS/kg and 500 mg Zn/kg from ZnO (equal amount of DS and ZnO in the DS-ZnO treatment group). The results showed that, compared with the control on days 7 and 14 post-weaning, addition of DS-ZnO at 500 mg Zn/kg improved (P<0·05) daily gain and feed intake, decreased (P<0·05) post-weaning scour scores, increased (P<0·05) jejunal villus height and the ratio of villus height and crypt depth, decreased (P<0·05) jejunal paracellular permeability of fluorescein isothiocyanate dextran 4 kDa and up-regulated (P<0·05) tight junction protein expression of occludin, claudin-1 and zonula occludens-1 in jejunal mucosa. The mRNA levels of TNF-α, IL-6 and interferon-γ (IFN-γ) on day 7 post-weaning were also decreased (P<0·05). The piglets fed DS-ZnO at 500 mg Zn/kg did not differ in the above parameters from those fed ZnO at 2250 mg Zn/kg, while they had better performance than those fed the mixture of DS and ZnO. Supplementation with DS-ZnO at 500 mg Zn/kg was effective in alleviating diarrhoea, barrier dysfunction and inflammatory cytokine expression and up-regulating tight junction protein expression.
Collapse
|
15
|
Furuya S, Furuya K. Roles of substance P and ATP in the subepithelial fibroblasts of rat intestinal villi. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 304:133-89. [PMID: 23809436 DOI: 10.1016/b978-0-12-407696-9.00003-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ingestion of food and water induces chemical and mechanical signals that trigger peristaltic reflexes and also villous movement in the gut. In the intestinal villi, subepithelial fibroblasts under the epithelium form contractile cellular networks and closely contact to the varicosities of substance P and nonsubstance P afferent neurons. Subepithelial fibroblasts of the duodenal villi possess purinergic receptor P2Y1 and tachykinin receptor NK1. ATP and substance P induce increase in intracellular Ca(2+) and cell contraction in subepithelial fibroblasts. They are highly mechanosensitive and release ATP by mechanical stimuli. Released ATP spreads to form an ATP "cloud" with nearly 1μM concentration and activates the surroundings via P2Y1 and afferent neurons via P2X receptors. These findings suggest that villous subepithelial fibroblasts and afferent neurons interact via ATP and substance P. This mutual interaction may play important roles in the signal transduction of mechano reflex pathways including a coordinate villous movement and also in the maturation of the structure and function of the intestinal villi.
Collapse
Affiliation(s)
- Sonoko Furuya
- Section of Brain Structure Information, Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Japan.
| | | |
Collapse
|
16
|
The suckling rat as a model for immunonutrition studies in early life. Clin Dev Immunol 2012; 2012:537310. [PMID: 22899949 PMCID: PMC3415261 DOI: 10.1155/2012/537310] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 06/18/2012] [Accepted: 06/19/2012] [Indexed: 12/17/2022]
Abstract
Diet plays a crucial role in maintaining optimal immune function. Research demonstrates the immunomodulatory properties and mechanisms of particular nutrients; however, these aspects are studied less in early life, when diet may exert an important role in the immune development of the neonate. Besides the limited data from epidemiological and human interventional trials in early life, animal models hold the key to increase the current knowledge about this interaction in this particular period. This paper reports the potential of the suckling rat as a model for immunonutrition studies in early life. In particular, it describes the main changes in the systemic and mucosal immune system development during rat suckling and allows some of these elements to be established as target biomarkers for studying the influence of particular nutrients. Different approaches to evaluate these immune effects, including the manipulation of the maternal diet during gestation and/or lactation or feeding the nutrient directly to the pups, are also described in detail. In summary, this paper provides investigators with useful tools for better designing experimental approaches focused on nutrition in early life for programming and immune development by using the suckling rat as a model.
Collapse
|
17
|
Gessner DK, Ringseis R, Siebers M, Keller J, Kloster J, Wen G, Eder K. Inhibition of the pro-inflammatory NF-κB pathway by a grape seed and grape marc meal extract in intestinal epithelial cells. J Anim Physiol Anim Nutr (Berl) 2011; 96:1074-83. [PMID: 21895782 DOI: 10.1111/j.1439-0396.2011.01222.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In pigs and other monogastric animal, the weaning phase is commonly accompanied by an increased susceptibility to gut disorders such as diarrhoea owing to the induction of an inflammatory process in the intestine during weaning. Given the unfavourable effects of intestinal inflammation on feed consumption, digestive capacity of the intestine and growth of animals, controlling intestinal inflammation is a reasonable approach for the maintenance of performance characteristics of livestock animals. Therefore, this study aimed to study the anti-inflammatory potential of a commercial polyphenol-rich grape seed (GS) and grape marc (GM) meal-based feed additive in a well-established in vitro intestinal epithelium model (polarized Caco-2 cells). The anti-inflammatory potential was evaluated by studying the effect of an ethanolic extract obtained from the GS and GM meal-based feed additive (GSGME) on the pro-inflammatory transcription factor NF-κB, which is considered to play a key role in the induction of weaning-associated intestinal inflammation. The highest non-cytotoxic concentrations of the ethanolic GSGME dose dependently reduced TNFα-induced NF-κB transactivation and decreased TNFα-induced mRNA levels of the NF-κB target genes IL-1β, IL-8, MCP-1 and CXCL1 in Caco-2 intestinal cells (p < 0.05). No effect of the ethanolic GSGME was observed on the cytoprotective Nrf2 pathway in Caco-2 cells as evidenced by an unaltered Nrf2 transactivation and unchanged mRNA levels of Nrf2 target genes, such as GPX-2, NQO1, CYP1A1 and UGT1A1. In conclusion, this study shows that an ethanolic GSGME exerts anti-inflammatory effects in intestinal cells under in vitro conditions. Thus, polyphenol-rich GSGM meal-based feed additives may be useful for the inhibition or prevention of inflammatory processes in the intestine of livestock animals, in particular during states with inappropriate NF-κB activation in the intestinal tissue, such as the weaning phase. Future studies are warranted to prove the in vivo anti-inflammatory potential of GSGM meal-based feed additives.
Collapse
Affiliation(s)
- D K Gessner
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Gießen, Heinrich-Buff-Ring 26-32, Gießen, Germany
| | | | | | | | | | | | | |
Collapse
|
18
|
Sauer N, Eklund M, Roth S, Rink F, Jezierny D, Bauer E, Mosenthin R. Short-term effect of dietary yeast nucleotide supplementation on small intestinal enzyme activities, bacterial populations and metabolites and ileal nutrient digestibilities in newly weaned pigs. J Anim Physiol Anim Nutr (Berl) 2011; 96:700-8. [PMID: 21797935 DOI: 10.1111/j.1439-0396.2011.01198.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In previous studies, dietary nucleotides have been shown to improve performance in single-stomached animals by promoting the renewal of small intestine epithelial cells and by influencing the activity and composition of the microbial community in the digestive tract. The present experiment was carried out with 12 barrows weaned at the age of 18 days and fitted with a simple T-cannula at the distal ileum. To determine short-term effects of dietary yeast nucleotides, the piglets received a grain-soybean meal-based basal diet with or without supplementation of 1 g/kg of a dried yeast product containing free nucleotides. Dietary supplementation with yeast did not affect bacterial numbers in the ileum as well as ileal concentrations of individual short-chain fatty acids (SCFA), total SCFA and total lactic acid (p > 0.05). Moreover, there was no effect of supplemental yeast nucleotides on ileal α-amylase, leucine amino peptidase, maltase and lactase activities (p > 0.05), as well as on ileal dry matter, crude protein and crude fibre digestibilities (p > 0.05). In conclusion, short-term supplementation with dietary yeast nucleotides did not affect microbial metabolite concentrations, bacterial numbers and enzyme activities in the ileal digesta as well as ileal nutrient digestibilities of newly weaned pigs.
Collapse
Affiliation(s)
- N Sauer
- Institute of Animal Nutrition, University of Hohenheim, Stuttgart, Germany
| | | | | | | | | | | | | |
Collapse
|
19
|
Furuya S, Furuya K, Shigemoto R, Sokabe M. Localization of NK1 receptors and roles of substance-P in subepithelial fibroblasts of rat intestinal villi. Cell Tissue Res 2010; 342:243-59. [PMID: 20967467 DOI: 10.1007/s00441-010-1056-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 09/10/2010] [Indexed: 11/28/2022]
Abstract
Subepithelial fibroblasts of the intestinal villi, which form a contractile cellular network beneath the epithelium, are in close contact with epithelial cells, nerve varicosities, capillaries, smooth muscles and immune cells, and secrete extracellular matrix molecules, growth factors and cytokines, etc. Cultured subepithelial fibroblasts of the rat duodenal villi display various receptors such as endothelins, ATP, substance-P and bradykinin, and release ATP in response to mechanical stimulation. In this study, the presence of functional NK1 receptors (NK1R) was pharmacologically confirmed in primary culture by Ca(2+) measurement, and the effects of substance-P were measured in an acute preparation of epithelium-free duodenal villi from 2- to 3-week-old rats using a two-photon laser microscope. Substance-P elicited an increase in the intracellular Ca(2+) concentration and contraction of the subepithelial fibroblasts in culture and the isolated villi. The localization of NK1R and substance-P in the villi was examined by light and electron microscopic immunohistochemistry. NK1R-like immunoreactivity was intensely localized on the plasma membrane of villous subepithelial fibroblasts in 10-day- to 4-week-old rats and mice and was decreased or absent in adulthood. The pericryptal fibroblasts of the small and large intestine were NK1R immuno-negative. These villous subepithelial fibroblasts form synapse-like structures with both substance-P-immunopositive and -immunonegative nerve varicosities. Here, we propose that the mutual interaction between villous subepithelial fibroblasts and afferent neurons via substance-P and ATP plays important roles in the maturation of the structure and function of the small intestine.
Collapse
Affiliation(s)
- Sonoko Furuya
- Section of Brain Structure, Center for Brain Research, National Institute for Physiological Sciences, Myodaiji, Okazaki, 444-8585, Japan.
| | | | | | | |
Collapse
|
20
|
Tooley KL, El-Merhibi A, Cummins AG, Grose RH, Lymn KA, DeNichilo M, Penttila IA. Maternal milk, but not formula, regulates the immune response to beta-lactoglobulin in allergy-prone rat pups. J Nutr 2009; 139:2145-51. [PMID: 19759244 DOI: 10.3945/jn.109.108845] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Controversy exists regarding the timing of the introduction of allergic foods into the diet. We investigated the immune response of rat pups exposed to beta-lactoglobulin (BLG), one of the main allergenic proteins in cow milk. Brown Norway allergy-prone rats were allocated into groups: dam-reared and unchallenged (DR), DR challenged with BLG via gavage (11 mg/d), or rats fed via gastric cannula a formula containing BLG (11 mg/d). BLG was given from d 4 of life. Rats were killed at d 10, 14, or 21. Sera were assayed for total IgE, BLG-specific IgG1, and rat mucosal mast cell protease II (RMCPII; indicator of mucosal mast cell degranulation). Ileum was assessed for cytokine mRNA. Mesenteric lymph nodes (MLN) were assessed for forkhead boxP3 (Foxp3) and chemokine (C-C motif) receptor 7 (CCR7) expression by real-time PCR and immunostained for Foxp3(+) CD4(+) regulatory cells. Formula feeding compared with dam-rearing with or without oral BLG challenge resulted in significantly greater serum IgE, BLG-specific IgG1, RMCPII, and intestinal mast cells but reduced MLN Foxp3(+) cells, Foxp3, and CCR7 expression and ileal cytokines, interleukin (IL)-4, IL-10, and interferon-gamma (P < 0.05). Importantly, giving BLG in the presence of maternal milk resulted in an immune response profile similar to that of unchallenged DR rats but with greater Foxp3 and CCR7 mRNA expression and CD4(+) Foxp3(+) cells (P < 0.05). We conclude that introducing an allergenic food with breast milk reduces immunological indicators of an allergic response, whereas introduction during formula feeding generates an allergic response.
Collapse
Affiliation(s)
- Katie L Tooley
- Women's and Children's Health Research Institute, Women's and Children's Hospital, North Adelaide, 5006 SA, Australia
| | | | | | | | | | | | | |
Collapse
|
21
|
Inoue R, Otsuka M, Ushida K. Development of intestinal microbiota in mice and its possible interaction with the evolution of luminal IgA in the intestine. Exp Anim 2009; 54:437-45. [PMID: 16365521 DOI: 10.1538/expanim.54.437] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The development of the intestinal microbiota and the evolution of the fecal IgA in mice were analyzed from 18 to 40 days old by PCR temperature gradient gel electrophoresis (TGGE) and ELISA, respectively. There were two events for the diversification of the intestinal microbiota from suckling to maturity. The first change occurred between days 21 and 22 after birth, when the diversity of the intestinal microbiota showed a remarkable increase at this time. The second change occurred from days 27 to 30 after birth, and the increase in the diversity of the intestinal microbiota ceased. The amount of fecal IgA decreased from days 18 to 20, remained low until day 22, on day 23, it recovered and then continued to increase. This study suggests that there are possible interactions between the development of intestinal microbiota and the evolution of intestinal secretion of IgA in mice, the same as in rats, although the second change in mice intestinal microbiota occurred a few days later than in rats. The decline in maternal IgA supply as the suckling period proceeded presumably allowed the bacterial colonization. As a consequence of this increase in bacterial colonization, the secretion of the self-SIgA was accelerated in the pups.
Collapse
Affiliation(s)
- Ryo Inoue
- Laboratory of Animal Science, Kyoto Prefectural University, Shimogamo, Kyoto, Japan
| | | | | |
Collapse
|
22
|
Willing BP, Van Kessel AG. Intestinal microbiota differentially affect brush border enzyme activity and gene expression in the neonatal gnotobiotic pig. J Anim Physiol Anim Nutr (Berl) 2008; 93:586-95. [PMID: 19141103 DOI: 10.1111/j.1439-0396.2008.00841.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To study microbial influence on intestinal development pertaining to nutrient digestion, two separate gnotobiotic experiments were performed, each with 16 piglets allocated to four treatment groups: germfree (GF), monoassociation with Escherichia coli, monoassociation with Lactobacillus fermentum or conventionalization with faecal bacteria (CV). Enzyme activity and gene expression of lactase phlorizin hydrolase (LPH) and aminopeptidase N (APN) were measured in isolated enterocytes, harvested on day 14, using specific substrates and quantitative PCR respectively. Enterocytes of CV pigs had reduced APN activity, but had increased gene expression relative to GF, making the specific activity:mRNA (A:G) ratio dramatically lower (p < 0.05). Similarly, LPH A:G ratio was significantly reduced (p < 0.05) in enterocytes of CV pigs as compared with GF. The results of co-incubation of L. fermentum, E. coli and faecal bacteria with APN indicate a direct relationship between enzyme inactivation and specific A:G ratio in enterocytes. We conclude that enterocyte up-regulation of APN expression occurs as either a direct response to microbial colonization or as a feedback mechanism in response to reduced enzyme activity through microbial degradation. This mechanism may play a role in ensuring effective competition of the host with the intestinal microbiota for available nutrients.
Collapse
Affiliation(s)
- B P Willing
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada
| | | |
Collapse
|
23
|
Cummins AG, Catto-Smith AG, Cameron DJ, Couper RT, Davidson GP, Day AS, Hammond PD, Moore DJ, Thompson FM. Crypt fission peaks early during infancy and crypt hyperplasia broadly peaks during infancy and childhood in the small intestine of humans. J Pediatr Gastroenterol Nutr 2008; 47:153-157. [PMID: 18664866 DOI: 10.1097/mpg.0b013e3181604d27] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Postnatal growth of the small intestine occurs by crypt hyperplasia and by the less recognised mechanism of crypt fission. How the small intestine grows is largely extrapolated from animals and is poorly described in humans. AIM To investigate crypt fission and crypt hyperplasia as mechanisms of intestinal growth in humans. PATIENTS AND METHODS Proximal intestinal samples were taken from 3 neonates at surgical anastomosis, and duodenal biopsies were taken at endoscopy from 16 infants (mean age 0.7, range 0.3-1.7 years), 14 children (mean age 7.9, range 2.4-16.2 years), and 39 adults. Morphometric measures of villous area, crypt length (measure of crypt hyperplasia), and percentage of bifid crypts (measure of crypt fission) were assessed by a microdissection technique. RESULTS Mean crypt fission rates in neonates, infants, children, and adults were 7.8%, 15%, 4.9%, and 1.7%, respectively. In particular, crypt fission peaked at 18% in 5 infants from 6 to 12 months of age. Mean crypt length was 123 microm in neonates, 287 microm in infants, 277 microm in children, and 209 microm in adults. Thus, crypt hyperplasia had a broad peak during infancy and childhood. CONCLUSIONS We conclude that crypt fission was present predominantly during infancy, and crypt hyperplasia occurred during both infancy and childhood.
Collapse
Affiliation(s)
- Adrian G Cummins
- Department of Gastroenterology and Hepatology, Digestive Disease Research Centre, Basil Hetzel Institute for Medical Research, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Schjoldager KTBG, Maltesen HR, Balmer S, Lund LR, Claesson MH, Sjöström H, Troelsen JT, Olsen J. Cellular cross talk in the small intestinal mucosa: postnatal lymphocytic immigration elicits a specific epithelial transcriptional response. Am J Physiol Gastrointest Liver Physiol 2008; 294:G1335-43. [PMID: 18388184 DOI: 10.1152/ajpgi.00265.2007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
During the early postnatal period lymphocytes migrate into the mouse small intestine. Migrating infiltrative lymphocytes have the potential to affect the epithelial cells via secreted cytokines. Such cross talk can result in the elicitation of an epithelial transcriptional response. Knowledge about such physiological cross talk between the immune system and the epithelium in the postnatal small intestinal mucosa is lacking. We have investigated the transcriptome changes occurring in the postnatal mouse small intestine using DNA microarray technology, immunocytochemistry, and quantitative real-time RT-PCR analysis. The DNA microarray data were analyzed bioinformatically by using a combination of projections to latent structures analysis and functional annotation analysis. The results show that infiltrating lymphocytes appear in the mouse small intestine in the late postweaning period and give rise to distinct changes in the epithelial transcriptome. Of particular interest is the expression of three genes encoding a mucin (Muc4), a mucinlike protein (16000D21Rik), and ATP citrate lyase (Acly). All three genes were shown to be expressed by the epithelium and to be upregulated in response to lymphocytic migration into the small intestinal mucosa.
Collapse
Affiliation(s)
- Katrine T-B G Schjoldager
- Dept. of Cellular and Molecular Medicine, Univ. of Copenhagen, The Panum Institute Bldg. 6.4, Blegdamsvej 3, DK2200 Copenhagen N, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Maternal consumption of Lactobacillus plantarum 299v affects gastrointestinal growth and function in the suckling rat. Br J Nutr 2008; 100:332-8. [PMID: 18179726 DOI: 10.1017/s0007114507883036] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
After birth, the gastrointestinal (GI) tract undergoes vast structural and functional adaptations to be able to digest mother's milk and later, during the weaning period, solid food. Studies on germ-free animals have shown the role of the gut microbiota for stimulating GI maturation, but which groups are involved is unclear. In the present study, we administered the probiotic bacterium, Lactobacillus plantarum 299v (Lp299v), in the drinking water to pregnant and lactating rat dams until their pups had reached an age of 14 d. It was found that Lp299v colonizing the mothers were also able to colonize the pups, which had an impact on their gut growth and function. The small intestine, pancreas and liver weighed more in the 14 d-old pups born from dams exposed to Lp299v than in the control pups from dams given only water. Furthermore, the Lp299v pups showed decreased gut permeability. Despite a heavier spleen in the Lp299v pups, as compared to the control pups, no significant increase in the acute-phase protein, haptoglobin, was found. In conclusion, the results reported here clearly show that manipulating the maternal microflora by exposing expecting mothers to a Gram-positive, probiotic bacterium prior to parturition and during lactation impacts the gut growth and function in the offspring.
Collapse
|
26
|
Probert CSJ, Williams AM, Stepankova R, Tlaskalova-Hogenova H, Phillips A, Bland PW. The effect of weaning on the clonality of alpha beta T-cell receptor T cells in the intestine of GF and SPF mice. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2007; 31:606-17. [PMID: 17055051 DOI: 10.1016/j.dci.2006.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Revised: 08/27/2006] [Accepted: 08/29/2006] [Indexed: 05/12/2023]
Abstract
In humans, intestinal antigen exposure during neonatal life influences the T-cell receptor (TCR) repertoire. To define the relative effects of bacteria and food antigens in early life, we examined TCR diversity in the intestine of SPF and GF mice. TCR repertoire was assessed at a single time point pre-, peri- and post-weaning in the small and large intestine of SPF and GF mice using spectratyping and/or TCR-beta-chain sequencing. There was good concordance of data obtained by the two techniques. In SPF mice, the repertoire was polyclonal shortly after birth in the small and large intestine. After weaning, there was a significant change towards an oligoclonal repertoire in the small intestine. There was some evidence that specific clones were shared between the small and large intestine. In contrast, in GF mice, the repertoire was oligoclonal after birth, and remained restricted. These data show: firstly, that under SPF conditions, the intestine is seeded with a diverse T-cell population that becomes oligoclonal around the time of weaning; secondly, that GF mice were oligoclonal at each time point.
Collapse
Affiliation(s)
- Christopher S J Probert
- Department of Clinical Science at South Bristol, Bristol Royal Infirmary, University of Bristol, Bristol, BS2 8HW, UK.
| | | | | | | | | | | |
Collapse
|
27
|
Cummins AG, Jones BJ, Thompson FM. Postnatal epithelial growth of the small intestine in the rat occurs by both crypt fission and crypt hyperplasia. Dig Dis Sci 2006; 51:718-23. [PMID: 16614994 DOI: 10.1007/s10620-006-3197-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Accepted: 08/05/2005] [Indexed: 01/13/2023]
Abstract
Studies of growth of the small intestine have largely concentrated on crypt hyperplasia rather than crypt fission. The aim of this study was to investigate quantitatively both crypt fission and crypt hyperplasia. DAxPVG/c rats were killed at 7, 11, 14, 17, 19, 21, 25, 55, and 72-73 days of life. Samples of jejunum at one third of the intestinal length were taken for morphometry (villous area, crypt area, percentage of bifid crypts, and crypt mitotic count) by microdissection. Growth factors and their receptors were assessed by oligonucleotide microarray. Crypt fission was 10.5%, 5.2%, and 1.5% at days 11, 25, and 72-73 of life, respectively. Crypt hyperplasia increased from day 21. No conventional growth factor was identified during crypt fission. We conclude that crypt fission contributes to growth of the small intestine prior to weaning and crypt hyperplasia to growth after weaning.
Collapse
Affiliation(s)
- Adrian G Cummins
- Department of Gastroenterology and Hepatology, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia.
| | | | | |
Collapse
|
28
|
Burns-Guydish SM, Olomu IN, Zhao H, Wong RJ, Stevenson DK, Contag CH. Monitoring age-related susceptibility of young mice to oral Salmonella enterica serovar Typhimurium infection using an in vivo murine model. Pediatr Res 2005; 58:153-8. [PMID: 15774831 DOI: 10.1203/01.pdr.0000157725.44213.c4] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Neonates and young children are acutely susceptible to infections by gastrointestinal bacterial pathogens, such as Salmonella enterica serovar Typhimurium (S. typhimurium). To reveal age-related differences in susceptibility to this pathogen, we used in vivo bioluminescence imaging (BLI) to monitor the progression of infection in neonatal (1-wk-old), suckling (2-wk-old), juvenile (4-wk-old), and adult (6-wk-old) BALB/c mice. Mice were orally infected with various doses of a bioluminescent-labeled wild-type or mutant S. typhimurium strain, and progression of infection was monitored by BLI for 2 wks. We found that neonatal and suckling mice were more susceptible to the wild-type strain at inoculum sizes 4 and 2 log(10)'s lower for neonatal and suckling mice, respectively, than those for adult mice. At the lower inocula, newborn mice showed disseminated systemic infection as indicated by the pattern of photon emission assessed by BLI, whereas no bioluminescent signals were detectable in adult mice. In addition, an orgA(-) mutant strain of S. typhimurium with reduced virulence in adult mice produced systemic infection in newborn, suckling, and juvenile mice. Furthermore, as low as 3 log(10) CFU could be detected by BLI in tissue. The present study demonstrates that susceptibility to S. typhimurium infection decreases with age. Also, we established that BLI can be used to monitor the progression of infection in mice. Thus, this model of age-related susceptibility to S. typhimurium using BLI can be used to advance our understanding of the mechanisms involved in newborn susceptibility to infection.
Collapse
Affiliation(s)
- Stacy M Burns-Guydish
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Peulen O, Gharbi M, Powroznik B, Dandrifosse G. Differential effect of dietary spermine on alkaline phosphatase activity in jejunum and ileum of unweaned rats. Biochimie 2005; 86:487-93. [PMID: 15308338 DOI: 10.1016/j.biochi.2004.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Accepted: 06/11/2004] [Indexed: 11/18/2022]
Abstract
Spermine is a low molecular weight polyamine involved in the postnatal maturation of the gut. When it is administered orally to suckling rats it induces the maturation of their spleen, liver, pancreas, and small intestine. We showed that this polyamine modulates differently the activity of alkaline phosphatase in jejunum and ileum in suckling rat. In 14-day-old rat which had received spermine orally for 3 days, once daily, an increase of alkaline phosphatase activity in the jejunum and a decrease of this activity in the ileum was observed. Alkaline phosphatase was located at the bottom of the villus in the control jejunum and in the whole length of the villus in spermine-treated rats. On the contrary, in ileum of controls, this enzyme was present in the whole length of the villus but disappeared in the spermine-treated animals. An enzyme mass shift was observed in the small intestine after spermine administration. Spermine administration did not change the expression of genes coding for alkaline phosphatase, suggesting a post-transcriptional modification.
Collapse
Affiliation(s)
- Olivier Peulen
- Department of Biochemistry and General Physiology, Institute of Chemistry B6C, Immunology Centre, University of Liège, B-4000 Liège (Sart-Tilman), Belgium
| | | | | | | |
Collapse
|
30
|
Boudry G, Péron V, Le Huërou-Luron I, Lallès JP, Sève B. Weaning induces both transient and long-lasting modifications of absorptive, secretory, and barrier properties of piglet intestine. J Nutr 2004; 134:2256-62. [PMID: 15333713 DOI: 10.1093/jn/134.9.2256] [Citation(s) in RCA: 264] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study investigated intestinal physiology of piglets at weaning. Piglets (n = 60) weaned at 21 d were food deprived for 2 d and then tube-fed using 2 different diets (a conventional diet vs. a wheat-enriched diet). They were slaughtered at d 0, 2, 5, 8, or 15 postweaning. Jejunum, ileum, and colon were mounted in Ussing chambers. In addition, segments of the proximal jejunum of 4 growing pigs were studied 35 d after weaning. Secretory function was assessed by basal short-circuit current (Isc) and secretagogue-stimulated Isc. Glucose absorption was measured by the increase in Isc after the addition of glucose. Epithelial barrier function was measured by transmucosal resistance (R) and horseradish peroxidase (HRP) fluxes across the epithelium. There were no significant differences between the pigs fed the 2 diets for any of the parameters studied. As already reported, a transient villous atrophy was observed. At the same time, we observed an increased basal Isc in jejunum and colon, increased glucose absorption and a dramatic drop of R in jejunum. These parameters had returned to preweaning values by d 5. Weaning was also followed by long-lasting modifications. In jejunum, responses to the secretagogues and glucose absorption were decreased at wk 2 after weaning and were not different between d 15 and 35. Ileal transmucosal resistance increased on d 5 and was stable thereafter. HRP flux in jejunum declined on d 2 and stayed at this low level throughout the experiment. We conclude that weaning induces transient dramatic changes in intestinal physiology but is also a period of maturation of the intestine.
Collapse
Affiliation(s)
- Gaëlle Boudry
- Institut National de la Recherche Agronomique (INRA)-UMRVP, St-Gilles, France.
| | | | | | | | | |
Collapse
|
31
|
Kimura Y, Nagata Y, Buddington RK. Some dietary fibers increase elimination of orally administered polychlorinated biphenyls but not that of retinol in mice. J Nutr 2004; 134:135-42. [PMID: 14704306 DOI: 10.1093/jn/134.1.135] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Dietary fiber supplementation can increase the size and nutrient absorption capacities of the small intestine in some mammals, but does this increase the risk of accumulating environmental contaminants? This study addressed this question by feeding mice diets containing various types of fiber at 0 or 100 g/kg (cellulose, lactosucrose, polydextrose, indigestible dextrin, soy polysaccharide, rice bran and chitosan) for 10 wk. During the final 2 wk, the mice were fed retinol and a dose of Arochlor 1254 [polychlorinated biphenyls (PCB)] estimated to be 5% of the median lethal dose. Accumulation was determined using whole blood samples collected on days 1, 3 and 7 as well as eight tissues (whole blood, small and large intestine, liver, gall bladder, mesentery, kidney and brain). Elimination of Arochlor 1254 and retinol was determined using daily collections of feces and urine. The patterns of accumulation and elimination differed between Arochlor 1254 and retinol, among tissues, and among mice fed diets with various amounts and types of fiber. Dietary fiber supplementation did not decrease accumulation of PCB. However, the diet with chitosan increased fecal excretion of Arochlor 1254 compared to the fiber-free diet (P<0.05). The diets with fermentable fiber (polydextrose, indigestible dextrin and soy polysaccharides) increased urinary excretion of PCB compared to the diets with water-insoluble fiber (cellulose, rice bran and chitosan; P<0.05). The most efficacious diets for minimizing accumulation of environmental contaminants and accelerating elimination likely include a combination of soluble and insoluble fiber, but the specific types, proportions and amounts remain to be determined.
Collapse
Affiliation(s)
- Yasuhiro Kimura
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | | | | |
Collapse
|
32
|
Manzano M, Abadía-Molina AC, Olivares EG, Gil A, Rueda R. Dietary nucleotides accelerate changes in intestinal lymphocyte maturation in weanling mice. J Pediatr Gastroenterol Nutr 2003; 37:453-61. [PMID: 14508216 DOI: 10.1097/00005176-200310000-00010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVE Nucleotides, the building blocks of nucleic acids, are normal components of the mammalian diet. These molecules have been implicated in biologic processes, such as the stimulation of the immunologic response. Nucleotides have also been considered as conditionally essential nutrients for infant formulas. The authors evaluated the influence of dietary nucleotides on the expression of several surface antigens by different intestinal lymphocyte populations in weanling mice. METHODS Mice at weaning were fed a semipurified diet with or without 3 g/kg of each of the following nucleotides: adenosine monophosphate, cytosine monophosphate, guanosine monophosphate, and uridine monophosphate. Animals were killed at different times (0, 4, 7, 12, and 18 days) after weaning, and lymphocytes from intestinal Peyer's patches, epithelium, and lamina propria were isolated. The expression of different antigens (CD3, CD4, CD8alpha, CD8beta, TCRalphabeta, TCRgammadelta, CD5, CD22 and CD45R) was analyzed by flow cytometry. RESULTS The expression of these antigens changed parallel to the maturation of the lymphocytes from Peyer's patches, epithelium, and lamina propria. However, developmental changes of expression for most of the antigens occurred sooner in the animals fed the diet supplemented with nucleotides. The expression of T and B antigens was different in the lymphocyte populations analyzed and also changed according to the diet within each population. In general, nucleotides promoted the expression of B- and T-helper cell antigens. CONCLUSIONS The authors conclude that dietary nucleotides may affect the process of maturation and differentiation of intestinal lymphocytes, which usually takes place at weaning.
Collapse
|
33
|
Inoue R, Ushida K. Development of the intestinal microbiota in rats and its possible interactions with the evolution of the luminal IgA in the intestine. FEMS Microbiol Ecol 2003; 45:147-53. [DOI: 10.1016/s0168-6496(03)00134-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
34
|
Yates CA, Evans GS, Pearson T, Powers HJ. Absence of luminal riboflavin disturbs early postnatal development of the gastrointestinal tract. Dig Dis Sci 2003; 48:1159-64. [PMID: 12822879 DOI: 10.1023/a:1023785200638] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
An increase in the size and cellularity of duodenal crypts and a decreased incidence of bifurcating crypts is observed in response to very short-term feeding of a riboflavin-deficient diet to weanling rats. A study was conducted to determine whether the absence of riboflavin in the lumen of the small intestine impairs gastrointestinal development. Forty-eight female weanling Wistar rats were allocated to one of two treatment regimens, to receive either a riboflavin-deficient diet and a daily intraperitoneal injection of flavin mononucleotide (luminally deficient group) or a complete diet and a daily intraperitoneal injection of saline (control group). Animals were killed at 93, 141, or 165 hr from feeding. The flavin injection regimen maintained normal systemic riboflavin status in the luminally deficient group. In this group, however, crypt hypertrophy and reduced crypt bifurcation were evident by 141 hr of luminal riboflavin deprivation. The absence of riboflavin in the duodenal lumen impairs normal development, suggesting that a crypt sensing mechanism may be involved in the response to riboflavin deficiency.
Collapse
Affiliation(s)
- C A Yates
- The Centre for Human Nutrition, University of Sheffield, The Northern General Hospital, Sheffield, UK
| | | | | | | |
Collapse
|
35
|
Cummins AG, Thompson FM. Effect of breast milk and weaning on epithelial growth of the small intestine in humans. Gut 2002; 51:748-54. [PMID: 12377819 PMCID: PMC1773445 DOI: 10.1136/gut.51.5.748] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/18/2002] [Indexed: 12/13/2022]
Abstract
Breast feeding and weaning are important physiologically significant luminal events that influence the growth of the small intestine in humans. A variety of factors including genetic preprogramming, systemic and local hormones, and permissive factors contribute and modulate intestinal growth. Here, we offer a view that integrates some of these factors, especially those relating to breast feeding and weaning.
Collapse
Affiliation(s)
- A G Cummins
- Bazil Hetzel Research Institute and the Department of Gastroenterology and Hepatology, The Queen Elizabeth Hospital, Adelaide, South Australia, Australia.
| | | |
Collapse
|
36
|
Kozáková H, Reháková Z, Kolínská J. Bifidobacterium bifidum monoassociation of gnotobiotic mice: effect on enterocyte brush-border enzymes. Folia Microbiol (Praha) 2002; 46:573-6. [PMID: 11898351 DOI: 10.1007/bf02818005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The effect of intestinal colonization with Bifidobacterium bifidum (Gram-positive anaerobic bacterium colonizing the intestine of healthy new-born mammals, exhibiting a probiotic effect, protecting the intestinal mucosa against colonization by pathogenic microflora) on enterocyte brush-border enzymes was examined in weaned 23-d- and in 2-month-old gnotobiotic inbred mice and compared with that in corresponding germ-free (GF) and conventional (CV) controls. The two groups of GF mice were associated with human B. bifidum 11 d before the end of the experiment. Specific activity of enterocyte brush-border enzymes--lactase, alkaline phosphatase and gamma-glutamyltranspeptidase was significantly higher in both age groups of GF mice in comparison with CV ones; on the other hand, sucrase and glucoamylase activities were higher in CV mice. Monoassociation with B. bifidum accelerates biochemical maturation of enterocytes resulting in a shift of specific activities of brush-border enzymes between the values found for GF and CV mice. This effect of B. bifidum supplementation was less pronounced for alkaline phosphatase, sucrase, glucoamylase and dipeptidyl peptidase i.v. in immature gut of weaned mice than of 2-month-old ones.
Collapse
Affiliation(s)
- H Kozáková
- Department of Immunology and Gnotobiology, Institute of Microbiology, Academy of Sciences of the Czech Republic, 549 22 Nový Hrádek, Czechia.
| | | | | |
Collapse
|
37
|
Johnson TN, Tanner MS, Tucker GT. Developmental changes in the expression of enterocytic and hepatic cytochromes P4501A in rat. Xenobiotica 2002; 32:595-604. [PMID: 12162855 DOI: 10.1080/00498250210131888] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
1. The development of CYP1A enzymes was studied in enterocytic and hepatic microsomes from 1-day-old to adult male and female rats. Microsomes were prepared by calcium precipitation. Enzyme expression was determined by Western blotting using a polyclonal CYP1A1 antibody. 2. The developmental expression of CYP1A in enterocytic and hepatic microsomes was similar for males and females. 3. Enterocytic CYP1A (CYP1A1) showed a sharp increase at weaning, plateauing at adult levels by 60 days. 4. Hepatic CYP1A (mostly CYP1A2) increased sharply just before weaning. However, in contrast to the enterocytic enzyme, there was a 4-fold decrease in enzyme expression down to adult levels by day 60.
Collapse
Affiliation(s)
- T N Johnson
- University of Sheffield, Academic Unit of Molecular Pharmacology and Pharmacogenetics, Division of Clinical Sciences, Royal Hallamshire Hospital, Sheffield S10 2JF, UK.
| | | | | |
Collapse
|
38
|
Kimura Y, Nagata Y, Bryant CW, Buddington RK. Nondigestible oligosaccharides do not increase accumulation of lipid soluble environmental contaminants by mice. J Nutr 2002; 132:80-7. [PMID: 11773512 DOI: 10.1093/jn/132.1.80] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Supplementing diets with nondigestible fibers that are fermented by the gastrointestinal tract bacteria increases the dimension and absorptive capacities of the small intestine; we hypothesized that this would increase the accumulation of environmental contaminants. This was tested by feeding mice for 6-8 wk diets with fiber at two levels (0 and 100 g/kg) and from different sources (cellulose, lactosucrose, polydextrose, indigestible dextrin, inulin) before a 2-wk oral exposure to (14)C-labeled mirex or methylmercury in combination with (3)H-labeled retinol. Concentrations of contaminants and retinol were measured in urine and feces collected for the last 2 d of exposure and in seven tissues (small and large intestine, brain, liver, kidneys, gastrointestinal tract mesentery, gall bladder). Mice fed the same diets, but not exposed to the contaminants, were used for routine microbiology of alimentary canal contents, measurements of intestinal dimensions and in vitro rates of glucose, mirex, methylmercury and retinol absorption by the small intestine. Mice fed the diets with nondigestible oligosaccharides had higher densities of anaerobic bacteria and larger small and large intestines, but did not have greater rates of contaminant absorption or accumulation. Mice exposed to methylmercury accumulated less retinol than mice exposed to mirex. Although diets with nondigestible oligosaccharides fibers reduce accumulation of environmental contaminants, but not retinol, the specific responses vary among tissues, sources of fiber and contaminants. The mechanisms responsible for the influence of nondigestible oligosaccharides can include reduced absorption, increased fecal elimination and transformation to forms that are excreted in the urine.
Collapse
Affiliation(s)
- Yasuhiro Kimura
- Department of Biological Sciences, Mississippi State University, MS 39762, USA
| | | | | | | |
Collapse
|
39
|
Chapter 4 Maturation of intestinal digestive and immune systems by food polyamines. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s1877-1823(09)70120-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
40
|
Lu L, Walker WA. Pathologic and physiologic interactions of bacteria with the gastrointestinal epithelium. Am J Clin Nutr 2001; 73:1124S-1130S. [PMID: 11393190 DOI: 10.1093/ajcn/73.6.1124s] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Communication between microorganisms and the gastrointestinal epithelium, ie, bacterial-epithelial "crosstalk," is examined. Because most basic research on the molecular interaction of bacteria with the gut epithelium relates to pathogen-enterocyte interaction, crosstalk with pathologic bacterial is considered in detail. Through their interactions with the intestinal epithelium, pathogens can modify epithelium function to enhance their penetration across the epithelial barrier and to exploit mucosal host defenses for their own benefit. Three representative pathogens are used to illustrate the various adaptive techniques used to colonize and penetrate the mucosal barrier. Salmonella enterica typhimurium interacts with the physiologic receptor for epidermal growth factor to co-opt the receptor's signal transduction mechanisms. Enteropathic Escherichia coli secretes a receptor (type III secretion) into the microvillus surface of enterocytes that disrupts the microvillus and alters its actin structure to form a dome-like anchoring site. Shigella flexneri is used to illustrate how pathogens use the follicular epithelial cell (M cell), the physiologic conduit for antigens to reach gut associated-lymphoid tissues, for penetration of the epithelial barrier. Shigella organisms attached to M cells use their endocytotic properties to enter the cell. Once inside the cell, the organism lyses the endocytic vacuole and co-opts actin and myosin to form a propelling tail for further penetration of the epithelium through the basolateral surface. Probiotics can protect the intestine by competing with pathogens for attachment, strengthening tight junctions between enterocytes, and enhancing the mucosal immune response to pathogens. However, additional molecular studies are needed to define more precisely the mechanism of probiotic-epithelial crosstalk.
Collapse
Affiliation(s)
- L Lu
- Harvard Medical School, Boston, USA
| | | |
Collapse
|
41
|
Kuo S, El Guindy A, Panwala CM, Hagan PM, Camerini V. Differential appearance of T cell subsets in the large and small intestine of neonatal mice. Pediatr Res 2001; 49:543-51. [PMID: 11264439 DOI: 10.1203/00006450-200104000-00017] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We examined the appearance of intestinal intraepithelial lymphocytes (IEL) during the first 12 wk of life to gain insight into postnatal factors that contribute to the differences found between IEL in the large and small intestines of adult mice. Intestinal T cells were very infrequent at birth, but increased in number in the large and small intestine during the first 4 wk of life and then stabilized. The small intestinal epithelium at 2 wk of age contained mostly T cell receptor (TCR) alphabeta+, CD2+ T cells, unlike IEL in adult mice, which were composed of nearly equal proportions of CD2-, TCR alphabeta+ and TCR gammadelta+ cells. Between 2 and 3 wk of age, TCR gammadelta+, CD2- IEL increased greatly in the small intestine, whereas TCR alphabeta+ cells expressing CD2 decreased. By contrast, IEL in the large intestine at 2 and 3 wk of age were mostly TCR alphabeta+, CD2+ T cells similar to large intestinal IEL in adult mice. And finally, the expression of CD69 increased earlier and to higher levels on TCR alphabeta+ and TCR gammadelta+ IEL in the small intestine than in the large intestine. Our results demonstrate that IEL in the large and small intestine are phenotypically similar during suckling and that differences between these populations are established after weaning. Furthermore, the earlier accumulation of IEL with an activated adult IEL phenotype in the small intestine suggests that these T cells mature or expand in the gut and contribute to the maturation of immune function during postnatal life in mice.
Collapse
Affiliation(s)
- S Kuo
- Department of Pediatrics, Division of Neonatology, University of Virginia Health Sciences Center, Charlottesville, VA 22908, U.S.A
| | | | | | | | | |
Collapse
|
42
|
Peulen O, Dandrifosse G. Cyclosporine A inhibits partially spermine-induced differentiation but not cell loss of suckling rat small intestine. Dig Dis Sci 2000; 45:750-4. [PMID: 10759246 DOI: 10.1023/a:1005451928488] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
The polyamines are of great importance in several biological processes, such as cell proliferation, and differentiation. The ingestion of spermine by suckling rats induces the precocious maturation of their small intestine. This phenomenon is preceded by a cell elimination at the villus tip. We hypothesize that these two phenomena could be mediated by the immune system and thus inhibited by an immunosuppressive agent such as cyclosporine A. Cyclosporine A inhibits, at least partially, the spermine-induced increase of the maltase- and sucrase-specific activities in the small intestine but failed to inhibit lactase-specific activity decrease and cell loss. Spermine does not act by the same mechanism in differentiation and in cell loss. Moreover, spermine acts in a different way on lactase-specific activity compared to maltase- or sucrase-specific activity. We hypothesize that spermine acts on differentiation by a T-cell/IL-2-dependent mechanism.
Collapse
Affiliation(s)
- O Peulen
- Department of Biochemistry and General Physiology, University of Liège, Belgium
| | | |
Collapse
|
43
|
McCracken BA, Spurlock ME, Roos MA, Zuckermann FA, Gaskins HR. Weaning anorexia may contribute to local inflammation in the piglet small intestine. J Nutr 1999; 129:613-9. [PMID: 10082764 DOI: 10.1093/jn/129.3.613] [Citation(s) in RCA: 193] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Compromising alterations in villus-crypt structure are common in pigs postweaning. Possible contributions of local inflammatory reactions to villus-crypt alterations during the weaning transition have not been described. This study evaluated local inflammatory responses and their relationship with morphological changes in the intestine in 21-d-old pigs (n = 112) killed either at weaning (Day 0) or 0.5, 1, 2, 4 or 7 d after weaning to either milk- or soy-based pelleted diets. Cumulative intake averaged <100 g during the first 2 d postweaning, regardless of diet. During this period of weaning anorexia, inflammatory T-cell numbers and local expression of the matrix metalloproteinase stromelysin increased while jejunal villus height, crypt depth and major histocompatibility complex (MHC) class I RNA expression decreased. Upon resumption of feed intake by the fourth d postweaning, villus height and crypt depth, CD8(+) T cell numbers, MHC class I RNA expression and local expression of stromelysin returned to Day 0 values. Together the results indicate that inadequate feed intake during the immediate postweaning period may contribute to intestinal inflammation and thereby compromise villus-crypt structure and function.
Collapse
Affiliation(s)
- B A McCracken
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| | | | | | | | | |
Collapse
|
44
|
Penttila IA, van Spriel AB, Zhang MF, Xian CJ, Steeb CB, Cummins AG, Zola H, Read LC. Transforming growth factor-beta levels in maternal milk and expression in postnatal rat duodenum and ileum. Pediatr Res 1998; 44:524-31. [PMID: 9773841 DOI: 10.1203/00006450-199810000-00010] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
After birth, the gastrointestinal tract of the neonate is exposed to food and bacterial and environmental antigens. Maternal milk components may play a role in regulation of mucosal immune activity to luminal antigens. In this study we determine the ontogeny of transforming growth factor (TGF)-beta1-producing cells in the rat pup small intestine and assess maternal milk concentrations of TGF-beta. Intestinal tissue samples of duodenum and ileum were collected, processed, and stained for TGF-beta1, and in situ hybridization for TGF-beta1 mRNA was also performed on the duodenum. TGF-beta levels in milk were assayed by ELISA. TGF-beta2 levels in milk were high at d 6, and declined thereafter at d 10 and 19. TGF-beta1 was not detected. In contrast, the cell number and intensity of staining of TGF-beta1 peptide in the small intestine was low in 3- and 10-d-old rats and increased markedly by 19 d of life. In the duodenum mRNA levels mirrored this trend. TGF-beta1 expression in the lamina propria was absent before d 19, and increased progressively over time. Maternal milk TGF-beta2 levels are high in early milk and decrease during the weaning period. In contrast, endogenous TGF-beta production in the small intestine increases during the weaning period.
Collapse
Affiliation(s)
- I A Penttila
- CRC for Tissue Growth and Repair, Child Health Research Institute, North Adelaide, South Australia, Australia
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Thompson FM, Catto-Smith AG, Moore D, Davidson G, Cummins AG. Epithelial growth of the small intestine in human infants. J Pediatr Gastroenterol Nutr 1998; 26:506-12. [PMID: 9586760 DOI: 10.1097/00005176-199805000-00004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Findings in studies in rodents have suggested that epithelial growth of the small intestine is dependent on activation of the immune system. The purpose of this study was to compare changes of postnatal epithelial growth with immunologic activity in humans. METHODS Duodenal biopsies were obtained by endoscopy from 74 infants. Villus area, crypt length, and mitotic count were measured, using a microdissection technique. Enterocyte height, intraepithelial lymphocytes and mucosal mast cells were recorded in histologic sections, and soluble interleukin-2 receptor levels were measured in sera. These data were compared with those from 77 adult control subjects. RESULTS Mean +/- SD villus area was similar in infants compared with that in adults (0.364 +/- 0.108 mm2 vs. 0.339 +/- 0.1 mm2); but mean crypt length was 31% longer (270 +/- 56 microm vs. 206 +/- 29 microm; p < 0.0001), and mitotic count was 68% higher (4.2 +/- 2.8 vs. 2.5 +/- 1 per crypt; p < 0.0001) in infants. Enterocyte height was lower during infancy (27.0 +/- 3.4 microm vs. 30.9 +/- 4.6 microm; p < 0.0001). There was no evidence of a trophic effect on the small intestine of breast feeding compared with the effect of bottle feeding. Counts of intraepithelial lymphocytes but not mucosal mast cells were significantly less in infants. Mean soluble interleukin-2 receptor levels peaked during early infancy, compared with levels in adults (1,820 +/- 596 U/ml vs. 695 +/- 359 U/ml). CONCLUSION These results indicate that epithelial proliferation is increased during infancy at an age when immunologic activity is high.
Collapse
Affiliation(s)
- F M Thompson
- Gastroenterology Unit, The Queen Elizabeth Hospital, Woodville South, SA, Australia
| | | | | | | | | |
Collapse
|
46
|
Palanch AC, Alvares EP. Feeding manipulation elicits different proliferative responses in the gastrointestinal tract of suckling and weanling rats. Braz J Med Biol Res 1998; 31:565-72. [PMID: 9698811 DOI: 10.1590/s0100-879x1998000400015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Food deprivation has been found to stimulate cell proliferation in the gastric mucosa of suckling rats, whereas the weanling period has been reported to be unresponsive in terms of proliferative activity. In the present study we analyze regional differences in the effect of milk or food deprivation on cell proliferation of the epithelia of the esophagus and of five segments of small intestine in suckling, weanling and newly weaned Wistar rats of both sexes. DNA synthesis was determined using tritiated thymidine to obtain labeling indices (LI); crypt depth and villus height were also determined. Milk deprivation decreased LI by 50% in the esophagus (from 15 to 8.35%) and small intestine (from 40 to 20%) of 14-day-old rats. In 18-day-old rats, milk and food deprivation decreased LI in the esophagus (from 13 to 5%) and in the distal segments of the small intestine (from 36-40 to 24-32%). In contrast, the LI of the epithelia of the esophagus (5%) and of all small intestine segments (around 30%) of 22-day-old rats were not modified by food deprivation. Crypt depth did not change after treatment (80 to 120 microns in 14- and 22-day-old rats, respectively). Villus height decreased in some small intestine segments of unfed 14- (from 400 to 300 microns) and 18-day-old rats (from 480 to 360 microns). The results show that, contrary to the stomach response, milk deprivation inhibited cell proliferation in the esophagus and small intestine of suckling rats, demonstrating the regional variability of each segment of the gastrointestinal tract in suckling rats. In newly weaned rats, food deprivation did not alter the proliferation of these epithelia, similarly to the stomach, indicating that weanling is a period marked by the insensitivity of gastrointestinal epithelia to dietary alterations.
Collapse
Affiliation(s)
- A C Palanch
- Departamento de Histologia e Embriologia, Universidade de São Paulo, Brasil
| | | |
Collapse
|
47
|
Helgeland L, Brandtzaeg P, Rolstad B, Vaage JT. Sequential development of intraepithelial gamma delta and alpha beta T lymphocytes expressing CD8 alpha beta in neonatal rat intestine: requirement for the thymus. Immunology 1997; 92:447-56. [PMID: 9497485 PMCID: PMC1364149 DOI: 10.1046/j.1365-2567.1997.00379.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Previous studies in congenitally athymic nude rats have suggested that the thymus is important for the development of intestinal T cells. Here we have examined the effect of the nude mutation on intraepithelial lymphocyte (IEL) development from the perinatal period. By immunohistochemistry it was shown that CD3(-)CD8 alpha alpha + putative IEL precursors colonized the epithelium of both normal and athymic neonatal rats. Mature T cells, however, did not develop in athymic neonates. In normal rats, gamma delta T cells were present at birth and alpha beta T cells appeared within 8 days of postnatal life. At this age, the composition and relative number of intraepithelial T cells were similar to that in normal adult rats, with the exception that most neonatal T-cell receptor-gamma delta + and -alpha beta + IEL expressed CD8 beta. By contrast, extrathymic T-cell maturation in the gut of congenitally athymic rats occurred slowly, as CD3+ IEL did not appear until 4-6 months of age. These intraepithelial T cells displayed variable phenotypes and appeared to be induced by environmental antigens as they were not found in isolator-kept old nudes. In conclusion, the present results indicate that the major colonization of the gut epithelium with gamma delta and alpha beta T cells expressing CD8 alpha beta takes place perinatally and requires the presence of the thymus. The developmental relationship between these neonatal T cells and more immature CD3- CD8 alpha alpha +/- IEL remains elusive.
Collapse
Affiliation(s)
- L Helgeland
- Laboratory for Immunohistochemistry and Immunopathology (LIIPAT), University of Oslo, Norway
| | | | | | | |
Collapse
|
48
|
Cummins AG, Thompson FM. Postnatal changes in mucosal immune response: a physiological perspective of breast feeding and weaning. Immunol Cell Biol 1997; 75:419-29. [PMID: 9429889 DOI: 10.1038/icb.1997.67] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
There are profound changes of immune activity during infancy from suppression during breast feeding, activation with weaning, and later intrinsic down-regulation after weaning. Breast feeding, as well as protecting against infections, seems to have a fundamental role in modifying the immune system against certain disease states. Transforming growth factor (TGF)beta in breast milk may mediate this immunosuppressive effect. Although the infant immune system is not in an adult state, the notion that the infant immune system is immature is difficult to reconcile with evidence that most infants respond appropriately to immunization and to infections. The systemic immune system of neonates may be subject to Th2 immune deviation, while the mucosal immune system, particularly of the gastrointestinal tract and probably the respiratory tract, is up-regulated with physiological inflammation during infancy. Weaning is associated with a peak of intestinal immune activation which includes mucosal mast cells and T cells. The physiological effects of this activation are promotion of epithelial growth of the small intestine and initial activation of mechanisms leading to subsequent down-regulation of the physiological heightened immune activity. This coincides with the development of mucosal (oral) tolerance to food and bacterial antigens.
Collapse
Affiliation(s)
- A G Cummins
- Gastroenterology Unit, Queen Elizabeth Hospital, Australia.
| | | |
Collapse
|
49
|
Mengheri E, Ciapponi L, Vignolini F, Nobili F. Cytokine gene expression in intestine of rat during the postnatal developmental period: increased IL-1 expression at weaning. Life Sci 1996; 59:1227-36. [PMID: 8845009 DOI: 10.1016/0024-3205(96)00446-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In the present study we have investigate whether cytokines are constitutively and differently expressed in intestine during the differentiative processes that take place at weaning. We have analyzed the expression of IL-1 beta, IL-2, IL-4 and IFN gamma by polymerase chain reaction in Peyer's patches (PP) and in intestine deprived of PP (I-PP) of rats from 16 to 30 days of age. The results showed a constitutive and marked expression of the cytokines already before weaning, with the exception of IL-2 in PP and IFN gamma in I-PP. IL-beta was the only cytokine to show a different expression at various ages with an initial increase at 19 days and a further elevation at 21 days when intestinal epithelium passes through major differentiative stages, suggesting an involvement of this cytokine in intestinal development. We have also tested whether treatment of rats with the immunosuppressor cyclosporin A (CsA) could affect intestinal differentiation. The results showed that only some markers of differentiation were affected (proliferation of staminal crypt cells and length of crypts). This was probably due to a direct effect rather than an immunomediated effect of CsA, since treatment of three intestinal cell lines (Caco-2, HT-29, FRIC) with CsA indicated that this drug can exert a cytostatic activity on intestinal cells.
Collapse
Affiliation(s)
- E Mengheri
- Istituto Nazionale della Nutrizione, Roma, Italy
| | | | | | | |
Collapse
|
50
|
Affiliation(s)
- P G Holt
- Division of Cell Biology, Institute for Child Health Research, West Perth, Western Australia
| |
Collapse
|