1
|
Chaaban H, Burge K, McElroy SJ. Evolutionary bridges: how factors present in amniotic fluid and human milk help mature the gut. J Perinatol 2024; 44:1552-1559. [PMID: 38844520 PMCID: PMC11521761 DOI: 10.1038/s41372-024-02026-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 08/22/2024]
Abstract
Necrotizing enterocolitis (NEC) continues to be a leading cause of morbidity and mortality in preterm infants. As modern medicine significantly improves the survival of extremely premature infants, the persistence of NEC underscores our limited understanding of its pathogenesis. Due to early delivery, a preterm infant's exposure to amniotic fluid (AF) is abruptly truncated. Replete with bioactive molecules, AF plays an important role in fetal intestinal maturation and preparation for contact with the environment, thus its absence during development of the intestine may contribute to increased susceptibility to NEC. Human milk (HM), particularly during the initial phases of lactation, is a cornerstone of neonatal intestinal defense. The concentrations and activities of several bioactive factors in HM parallel those of AF, suggesting continuity of protection. In this review, we discuss the predominant overlapping bioactive components of HM and AF, with an emphasis on those associated with intestinal growth or reduction of NEC.
Collapse
Affiliation(s)
- Hala Chaaban
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Kathryn Burge
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Steven J McElroy
- Department of Pediatrics, Division of Neonatology, University of California, Davis, Sacramento, CA, USA
| |
Collapse
|
2
|
Anthonymuthu S, Sabui S, Sheikh A, Fleckenstein JM, Said HM. Tumor necrosis factor α impedes colonic thiamin pyrophosphate and free thiamin uptake: involvement of JNK/ERK 1/2-mediated pathways. Am J Physiol Cell Physiol 2022; 323:C1664-C1680. [PMID: 36342158 PMCID: PMC9744649 DOI: 10.1152/ajpcell.00458.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022]
Abstract
The aim of this study was to examine the effect of TNFα (i.e., a predominant proinflammatory cytokine produced during chronic gut inflammation) on colonic uptake of thiamin pyrophosphate (TPP) and free thiamin, forms of vitamin B1 that are produced by the gut microbiota and are absorbed via distinct carrier-mediated systems. We utilized human-derived colonic epithelial CCD841 and NCM460 cells, human differentiated colonoid monolayers, and mouse intact colonic tissue preparations together with an array of cellular/molecular approaches in our investigation. The results showed that exposure of colonic epithelial cells to TNFα leads to a significant inhibition in TPP and free thiamin uptake. This inhibition was associated with: 1) a significant suppression in the level of expression of the colonic TPP transporter (cTPPT; encoded by SLC44A4), as well as thiamin transporters-1 & 2 (THTR-1 & -2; encoded by SLC19A2 & SLC19A3, respectively); 2) marked inhibition in activity of the SLC44A4, SLC19A2, and SLC19A3 promoters; and 3) significant suppression in level of expression of nuclear factors that are needed for activity of these promoters (i.e., CREB-1, Elf-3, NF-1A, SP-1). Furthermore, the inhibitory effects were found to be mediated via JNK and ERK1/2 signaling pathways. We also examined the level of expression of cTPPT and THTR-1 & -2 in colonic tissues of patients with active ulcerative colitis and found the levels to be significantly lower than in healthy controls. These findings demonstrate that exposure of colonocytes to TNFα suppresses TPP and free thiamin uptake at the transcriptional level via JNK- and Erk1/2-mediated pathways.
Collapse
Affiliation(s)
- Selvaraj Anthonymuthu
- Department of Physiology and Biophysics, University of California, Irvine, California
| | - Subrata Sabui
- Department of Physiology and Biophysics, University of California, Irvine, California
- Department of Medicine, University of California, Irvine, California
- Department of Medical Research, VA Medical Center, Long Beach, California
| | - Alaullah Sheikh
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - James M Fleckenstein
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
- Veterans Affairs Medical Center, St. Louis, Missouri
| | - Hamid M Said
- Department of Physiology and Biophysics, University of California, Irvine, California
- Department of Medicine, University of California, Irvine, California
- Department of Medical Research, VA Medical Center, Long Beach, California
| |
Collapse
|
3
|
Kent-Dennis C, Penner GB. Effects of a proinflammatory response on metabolic function of cultured, primary ruminal epithelial cells. J Dairy Sci 2020; 104:1002-1017. [PMID: 33131809 DOI: 10.3168/jds.2020-19092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022]
Abstract
Inflammation of ruminal epithelium may occur during ruminal acidosis as a result of translocation and interaction of ruminal epithelial cells (REC) with molecules such as lipopolysaccharide (LPS). Such inflammation has been reported to alter cellular processes such as nutrient absorption, metabolic regulation, and energy substrate utilization in other cell types but has not been investigated for REC. The objectives of this study were to investigate the effects of LPS on metabolism of short-chain fatty acids by primary REC, as well as investigating the effects of media containing short-chain fatty acids on the proinflammatory response. Ruminal papillae from 9 yearling Speckle Park beef heifers were used to isolate and culture primary REC. Cells were grown in minimum essential medium (MEM) for 12 d before use and then reseeded in 24-well culture plates. The study was conducted as a 2 × 2 factorial, where cells were grown in unaltered MEM (REG) or medium containing 2 mM butyrate and 5 mM propionate (SCFA) with (50,000 EU/mL; +LPS) or without LPS (-LPS) for 24 h. Supernatant samples were collected for analysis of glucose and SCFA consumption. Cells were collected to determine the expression of mRNA for genes associated with inflammation (TNF, IL1B, CXCL2, CXCL8, PTGS2, and TLR4), purinergic signaling (P2RX7, ADORAB2, and CD73), nutrient transport [SLC16A1 (MCT1), SLC16A3 (MCT4), SLC5A8, and MCU], and cell metabolism [ACAT1, SLC2A1 (GLUT1), IGFBP3, and IGFBP5]. Protein expression of TLR4 and ketogenic enzymes (BDH1 and HMGCS1) were also analyzed using flow cytometry. Statistical analysis was conducted with the MIXED model of SAS version 9.4 (SAS Institute Inc., Cary, NC) with medium, LPS exposure, and medium × LPS interaction as fixed effects and animal within plate as a random effect. Cells tended to consume more glucose when exposed to LPS as opposed to no LPS exposure (31.8 vs. 28.7 ± 2.7), but consumption of propionate and butyrate was not influenced by LPS. Expression of TNF and IL1B was upregulated when exposed to LPS, and expression of CXCL2 and CXCL8 increased following LPS exposure with SCFA (medium × LPS). For cells exposed to LPS, we found a downregulation of ACAT1 and IGFBP5 and an upregulation of SLC2A1, SLC16A3, MCU, and IGFBP3. Medium with SCFA led to greater expression of MCU. SLC16A1 was upregulated in cells incubated with SCFA and without LPS compared with the other groups. Protein expression of ketogenic enzymes was not affected; however, BDH1 mean fluorescence intensity (MFI) expression tended to be less in cells exposed to LPS. These data are interpreted to indicate that when REC are exposed to LPS, they may increase glucose metabolism. Moreover, transport of solutes was affected by SCFA in the medium and by exposure to LPS. Overall, the results suggest that metabolic function of REC in vitro is altered by a proinflammatory response, which may lead to a greater glucose requirement.
Collapse
Affiliation(s)
- C Kent-Dennis
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5A8
| | - G B Penner
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5A8.
| |
Collapse
|
4
|
Mitochondrial bioenergetics, uncoupling protein-2 activity, and reactive oxygen species production in the small intestine of a TNBS-induced colitis rat model. Mol Cell Biochem 2020; 470:87-98. [PMID: 32394310 DOI: 10.1007/s11010-020-03749-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/06/2020] [Indexed: 10/24/2022]
Abstract
Inflammatory bowel disease (IBD) is often associated with a decrease in energy-dependent nutrient uptake across the jejunum that serves as the main site for absorption in the small intestine. This association has prompted us to investigate the bioenergetics underlying the alterations in jejunal absorption in 2,4,6-trinitrobenzenesulfonic acid-induced colitis in rats. We have found that mitochondrial oxygen consumption did not change in state 2 and state 3 respirations but showed an increase in state 4 respiration indicating a decrease in the respiratory control ratio of jejunal mitochondria during the peak of inflammation. This decrease in the coupling state was found to be guanosine diphosphate-sensitive, hence, implicating the involvement of uncoupling protein-2 (UCP2). Furthermore, the study has reported that the production of reactive oxygen species (ROS), known to be activators of UCP2, correlated negatively with UCP2 activity. Thus, we suggest that ROS production in the jejunum might be activating UCP2 which has an antioxidant activity, and that uncoupling of the mitochondria decreases the efficiency of energy production, leading to a decrease in energy-dependent nutrient absorption. Hence, this study is the first to account for an involvement of energy production and a role for UCP2 in the absorptive abnormalities of the small intestine in animal models of colitis.
Collapse
|
5
|
Immunolocalization of Na+/K+-ATPase and proliferative activity of enterocytes after administration of glucan in chickens fed T-2 toxin. ACTA VET BRNO 2019. [DOI: 10.2754/avb201887040371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The protective effect of polysaccharide glucan in chickens fed low doses of T-2 toxin was assessed. The binder effect of β-D-glucan on jejunal mucosa in relation to the expression of Na+/K+-ATPase, proliferative activity of enterocytes and number of goblet cells was investigated. A total of 40 one-day-old chickens were allocated to four groups: control (C), β-D-glucan (G), T-2 toxin (T) and combined β-D-glucan+T-2 toxin (GT). The chickens were individually administrated per os 1.0 mg/bird/day of β-D-glucan derived from Candida albicans on days 11, 12, and 21 of the experiment (totally 3 mg per bird). T-2 toxin at a concentration of 1.45 μg·kg-1 was added to the feed from day 14 to day 28 of the experiment. The α subunit-specific anti-Na+/K+-ATPase antibody was used to identify the protein by immunofluorescence in the cell membrane of jejunal enterocytes. Higher expression of Na+/K+-ATPase was found in the jejunal epithelial cells and lamina propria in the chickens fed T-2 toxin and administered glucan (P < 0.05) compared to control. The number of proliferated enterocytes was higher in group T compared to group G and control (P < 0.001), as well group GT (P < 0.01). Goblet cell density did not present significant differences between groups of chickens, but group G showed the highest values. These data suggest that administration of pure T-2 toxin at low doses affects primarily the protein synthesis of actively dividing cells. Higher distribution of Na+/K+-ATPase in enterocytes of chickens in GT group suggests positive influence of glucan and mycotoxin on the ion pump. A binding effect of this immunomodulator on the digestive tract mucosa in the applied setup was not observed.
Collapse
|
6
|
Khachab M, Kanaan A, Awad D, Deeba E, Osman S, Nassar CF. Colectomy induces an aldosterone-mediated increase in jejunal glucose uptake in rats. Life Sci 2017; 174:43-49. [PMID: 28254387 DOI: 10.1016/j.lfs.2017.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/15/2017] [Accepted: 02/24/2017] [Indexed: 11/25/2022]
Abstract
AIMS The main function of the colon is water and electrolyte absorption. Total colectomy eliminates this colonic function and may alter the absorptive capacity of the small intestine for nutrients. This study examines the effect of total colectomy on jejunal glucose absorption and investigates the potential role of aldosterone in mediating the alterations in glucose uptake post-colectomy using the aldosterone antagonist spironolactone. MAIN METHODS Total colectomy with ileo-rectal anastomosis was performed on anesthetized rats. Sham rats were identically handled without colon resection. Two days post-surgery, groups of colectomized rats were injected with either a daily subcutaneous dose of spironolactone or sesame oil for 12days. Body weight changes and food and water intake were measured in all experimental groups. Glucose absorption was measured by in-vivo single pass perfusion in the rat jejunum of control, sham, colectomized, colectomized with spironolactone, and colectomized with sesame oil treatment. Na/K ATPase, SGK1, SGLT1 and GLUT2 expressions were determined in jejunal mucosa in control, colectomized and colectomized/spironolactone injected rats by Western blot analysis. Histological assessment was performed on jejunal sections in control and colectomized groups. KEY FINDINGS Glucose absorption significantly increased in colectomized rats with an observed increase in Na/K ATPase and SGK1 expression. No significant expression change in SGLT1 and GLUT2 was detected in the jejunum in colectomized rats. Spironolactone, however, significantly decreased the glucose uptake post-colectomy and normalized Na/K ATPase and SGK1 expression. SIGNIFICANCE Our results suggest that jejunal glucose uptake increases post-colectomy as a possible consequence of an aldosterone-mediated function.
Collapse
Affiliation(s)
- Maha Khachab
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, El-Kurah, Lebanon.
| | - Amjad Kanaan
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, El-Kurah, Lebanon
| | - Dania Awad
- Faculty of Health Sciences, Lebanese University, Tripoli, Lebanon
| | - Elie Deeba
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, El-Kurah, Lebanon
| | - Samira Osman
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, El-Kurah, Lebanon
| | - Camille F Nassar
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, El-Kurah, Lebanon
| |
Collapse
|
7
|
Mourad FH, Barada KA, Saade NE. Impairment of Small Intestinal Function in Ulcerative Colitis: Role of Enteric Innervation. J Crohns Colitis 2017; 11:369-377. [PMID: 27655154 DOI: 10.1093/ecco-jcc/jjw162] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 09/21/2016] [Indexed: 12/21/2022]
Abstract
Small intestinal dysfunction has been described in patients with ulcerative colitis and in experimental animal models of colitis. This is demonstrated by a decrease in fluid, electrolyte, amino acid, fat and carbohydrate absorption as well as by deranged intestinal motility. Histopathological changes in the small intestines in colitis have not been consistently demonstrated, but there is evidence of structural and biochemical alterations as shown by increased intestinal permeability and a decrease in the expression of multiple brush border membrane enzymes such as disaccharidases and aminopetidases, in both humans and experimental animals. The pathophysiology of this dysfunction has not been elucidated, but it is thought to include alterations in neural circuitry such as increased neuronal excitability, neuronal damage and changes of neuropeptidergic innervation and receptors as well as an increase in local production of pro-inflammatory cytokines and alterations in the production of some neurohumoral mediators. In the following, we provide an update on the advancement of clinical and scientific contributions to elucidate the underlying mechanisms of the alteration of the functions of apparently intact small intestinal segments, induced by ulcerative colitis.
Collapse
Affiliation(s)
- Fadi H Mourad
- Department of Anatomy, Cell Biology and Physiology, American University of Beirut, Beirut-Lebanon
- Department of Internal Medicine, American University of Beirut, Beirut-Lebanon
| | - Kassem A Barada
- Department of Anatomy, Cell Biology and Physiology, American University of Beirut, Beirut-Lebanon
- Department of Internal Medicine, American University of Beirut, Beirut-Lebanon
| | - Nayef E Saade
- Department of Anatomy, Cell Biology and Physiology, American University of Beirut, Beirut-Lebanon
| |
Collapse
|
8
|
Chronic social stress in pigs impairs intestinal barrier and nutrient transporter function, and alters neuro-immune mediator and receptor expression. PLoS One 2017; 12:e0171617. [PMID: 28170426 PMCID: PMC5295718 DOI: 10.1371/journal.pone.0171617] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/23/2017] [Indexed: 12/17/2022] Open
Abstract
Psychosocial stress is a major factor driving gastrointestinal (GI) pathophysiology and disease susceptibility in humans and animals. The mechanisms governing susceptibility to stress-induced GI disease remain poorly understood. In the present study, we investigated the influence of chronic social stress (CSS) in pigs, induced by 7 d of chronic mixing/crowding stress, on intestinal barrier and nutrient transport function, corticotropin releasing factor (CRF) signaling and immunological responses. Results from this study showed that CSS resulted in a significant impairment of ileal and colonic barrier function indicated by reduced transepithelial electrical resistance (TER) in the ileum and increased FD4 flux in the ileum (by 0.8 fold) and colon (by 0.7 fold). Ileal sodium glucose linked transporter 1 (SGLT-1) function, measured as glucose-induced changes in short-circuit current (Isc), was diminished (by 52%) in CSS pigs, associated with reduced body weight gain and feed efficiency. Although reductions in SGLT-1 function were observed in CSS pigs, mRNA expression for SGLT-1, villus heights were increased in CSS pigs. Corticotropin releasing factor (CRF) mRNA was upregulated (by 0.9 fold) in the ileum of CSS pigs but not in the colon. Urocortin 2 (Ucn2) mRNA was upregulated (by 1.5 fold) in the colon of CSS pigs, but not in the ileum. In CSS pigs, a downregulation of pro-inflammatory cytokines mRNA (IL1B, TNFA, IL8, and IL6) was observed in both ileum and colon, compared with controls. In contrast CSS induced a marked upregulation of mRNA for IL10 and mast cell chymase gene (CMA1) in the ileum and colon. Together, these data demonstrate that chronic stress in pigs results in significant alterations in intestinal barrier and nutrient transport function and neuro-immune mediator and receptor expression.
Collapse
|
9
|
Tian Z, Liu X, Dai R, Xiao Y, Wang X, Bi D, Shi D. Enterococcus faecium HDRsEf1 Protects the Intestinal Epithelium and Attenuates ETEC-Induced IL-8 Secretion in Enterocytes. Mediators Inflamm 2016; 2016:7474306. [PMID: 27890970 PMCID: PMC5116501 DOI: 10.1155/2016/7474306] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/21/2016] [Accepted: 09/28/2016] [Indexed: 12/25/2022] Open
Abstract
The probiotic Enterococcus faecium HDRsEf1 (Ef1) has been shown to have positive effects on piglet diarrhoea, but the mechanism has not yet been elucidated. In this study, using the IPEC-J2 cell line to mimic intestinal epithelial cells and enterotoxigenic Escherichia coli (ETEC) K88ac as a representative intestinal pathogen, the mechanism underlying Ef1 protection against an enteropathogen was investigated. The results demonstrated that Ef1 was effective in displacing K88ac from the IPEC-J2 cell layer. Moreover, Ef1 and its cell-free supernatant (S-Ef1) modulate IL-8 released by IPEC-J2 cells. Ef1 and its cell-free supernatant showed the potential to protect enterocytes from an acute inflammatory response. In addition, Ef1 and its cell-free supernatant increased the transepithelial electrical resistance (TEER) of the enterocyte monolayer, thus strengthening the intestinal barrier against ETEC. These results may contribute to the development of therapeutic interventions using Ef1 in intestinal disorders of piglets.
Collapse
Affiliation(s)
- Zhongyuan Tian
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiaofang Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ran Dai
- College of Animal Science and Technology, Agricultural University of Hebei, Baoding 071000, China
| | - Yuncai Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiliang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Dingren Bi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Deshi Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
10
|
Abstract
BACKGROUND Aside from cases of backwash ileitis, the ileal mucosa of patients with ulcerative colitis (UC), an idiotypic inflammatory bowel disease, has received little attention despite the fact that colitis is known to trigger alterations in morphology and/or functions of the small intestine remotely. METHODS The ileal mucosa was studied in patients with UC and in a spontaneous model of colitis (Il10/Nox1 mice) mimicking the histological and clinical features of UC and was also studied in acute and chronic murine models of chemically induced colitis. Proliferation and apoptosis were assessed using morphological and immunohistological methods and Western blot analysis. Peyer's patch immune cell subsets were analyzed. Cytokines levels were quantified using quantitative PCR and Luminex xMAP technology. Total RNA from isolated ileal crypts was used for whole genome transcriptome analysis. RESULTS The most striking features were an increased ileal crypt length associated with an enhanced cell proliferation of the transit-amplifying cells along with activation of the Wnt/β-catenin and MAPkinase pathways. These changes did not result from intestinal inflammation as assessed by histology and/or pro-inflammatory cytokine expression levels. The increased proliferation rate was dependent on the duration but not on the severity of colitis and was observed in different mouse models of colitis, including the Il10/Nox1 model and 2,4,6-trinitrobenzenesulfonic acid-treated mice. Interestingly, the ileal mucosa of patients with UC also displayed longer crypts and enhanced cell proliferation compared with control patients. CONCLUSIONS These data show that despite the absence of inflammation in the small intestine, alterations in the ileal mucosa homeostasis are present in UC.
Collapse
|
11
|
López-Yoldi M, Castilla-Madrigal R, Lostao MP, Barber A, Prieto J, Martínez JA, Bustos M, Moreno-Aliaga MJ. Cardiotrophin-1 decreases intestinal sugar uptake in mice and in Caco-2 cells. Acta Physiol (Oxf) 2016; 217:217-26. [PMID: 26972986 DOI: 10.1111/apha.12674] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 10/12/2015] [Accepted: 03/04/2016] [Indexed: 12/15/2022]
Abstract
AIM Cardiotrophin-1 (CT-1) is a member of the IL-6 family of cytokines with a key role in glucose and lipid metabolism. In the current investigation, we examined the in vivo and in vitro effects of CT-1 treatment on intestinal sugar absorption in different experimental models. METHODS rCT-1 effects on α-Methyl-D-glucoside uptake were assessed in everted intestinal rings from wild-type and CT-1(-/-) mice and in Caco-2 cells. rCT-1 actions on SGLT-1 expression in brush border membrane vesicles and the identification of the potential signalling pathways involved were determined by Western blot. RESULTS In vivo administration (0.2 mg kg(-1) ) of rCT-1 caused a significant decrease on α-Methyl-D-glucoside uptake in everted intestinal rings from wild-type and CT-1(-/-) mice after short-term and long-term treatments. Similarly, in vitro treatment (1-50 ng mL(-1) ) with rCT-1 reduced α-Methyl-D-glucoside uptake in everted intestinal rings. In Caco-2 cells, rCT-1 treatment (20 ng mL(-1) , 1 and 24 h) lowered apical uptake of α-Methyl-D-glucoside in parallel with a decrease on SGLT-1 protein expression. rCT-1 promoted the phosphorylation of STAT-3 after 5 and 15 min treatment, but inhibited the activation by phosphorylation of AMPK after 30 and 60 min. Interestingly, pre-treatment with the JAK/STAT inhibitor (AG490) and with the AMPK activator (AICAR) reversed the inhibitory effects of rCT-1 on α-Methyl-D-glucoside uptake. AICAR also prevented the inhibition of SGLT-1 observed in rCT-1-treated cells. CONCLUSIONS CT-1 inhibits intestinal sugar absorption by the reduction of SGLT-1 levels through the AMPK pathway, which could also contribute to explain the hypoglycaemic and anti-obesity properties of CT-1.
Collapse
Affiliation(s)
- M. López-Yoldi
- Department of Nutrition, Food Science and Physiology; University of Navarra; Pamplona Navarra Spain
- Centre for Nutrition Research; University of Navarra; Pamplona Navarra Spain
| | - R. Castilla-Madrigal
- Department of Nutrition, Food Science and Physiology; University of Navarra; Pamplona Navarra Spain
- Centre for Nutrition Research; University of Navarra; Pamplona Navarra Spain
| | - M. P. Lostao
- Department of Nutrition, Food Science and Physiology; University of Navarra; Pamplona Navarra Spain
- Centre for Nutrition Research; University of Navarra; Pamplona Navarra Spain
- IdiSNA; Navarra Institute for Health Research; Pamplona Spain
| | - A. Barber
- Department of Nutrition, Food Science and Physiology; University of Navarra; Pamplona Navarra Spain
| | - J. Prieto
- Department of Gene Therapy and Hepatology; CIMA; University of Navarra; Pamplona Navarra Spain
- CIBERehd; Institute of Health Carlos III; Madrid Spain
| | - J. A. Martínez
- Department of Nutrition, Food Science and Physiology; University of Navarra; Pamplona Navarra Spain
- Centre for Nutrition Research; University of Navarra; Pamplona Navarra Spain
- IdiSNA; Navarra Institute for Health Research; Pamplona Spain
- CIBERobn; Physiopathology of Obesity and Nutrition; Institute of Health Carlos III; Madrid Spain
| | - M. Bustos
- Department of Gene Therapy and Hepatology; CIMA; University of Navarra; Pamplona Navarra Spain
| | - M. J. Moreno-Aliaga
- Department of Nutrition, Food Science and Physiology; University of Navarra; Pamplona Navarra Spain
- Centre for Nutrition Research; University of Navarra; Pamplona Navarra Spain
- IdiSNA; Navarra Institute for Health Research; Pamplona Spain
- CIBERobn; Physiopathology of Obesity and Nutrition; Institute of Health Carlos III; Madrid Spain
| |
Collapse
|
12
|
Enterococcus faecium NCIMB 10415 modulates epithelial integrity, heat shock protein, and proinflammatory cytokine response in intestinal cells. Mediators Inflamm 2015; 2015:304149. [PMID: 25948884 PMCID: PMC4408629 DOI: 10.1155/2015/304149] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/25/2014] [Accepted: 09/26/2014] [Indexed: 12/23/2022] Open
Abstract
Probiotics have shown positive effects on gastrointestinal diseases; they have barrier-modulating effects and change the inflammatory response towards pathogens in studies in vitro. The aim of this investigation has been to examine the response of intestinal epithelial cells to Enterococcus faecium NCIMB 10415 (E. faecium), a probiotic positively affecting diarrhea incidence in piglets, and two pathogenic Escherichia coli (E. coli) strains, with specific focus on the probiotic modulation of the response to the pathogenic challenge. Porcine (IPEC-J2) and human (Caco-2) intestinal cells were incubated without bacteria (control), with E. faecium, with enteropathogenic (EPEC) or enterotoxigenic E. coli (ETEC) each alone or in combination with E. faecium. The ETEC strain decreased transepithelial resistance (TER) and increased IL-8 mRNA and protein expression in both cell lines compared with control cells, an effect that could be prevented by pre- and coincubation with E. faecium. Similar effects were observed for the increased expression of heat shock protein 70 in Caco-2 cells. When the cells were challenged by the EPEC strain, no such pattern of changes could be observed. The reduced decrease in TER and the reduction of the proinflammatory and stress response of enterocytes following pathogenic challenge indicate the protective effect of the probiotic.
Collapse
|
13
|
Barada K, Mourad FH, Noutsi B, Saadé NE. Electrocautery-induced localized colonic injury elicits increased levels of pro-inflammatory cytokines in small bowel and decreases jejunal alanine absorption. Cytokine 2015; 71:109-118. [PMID: 25277469 DOI: 10.1016/j.cyto.2014.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/21/2014] [Accepted: 08/26/2014] [Indexed: 01/03/2023]
Abstract
BACKGROUND Colitis is associated with functional abnormalities in proximal non-inflamed gut areas, but animal models to study small bowel dysfunction in colitis have limitations. This study aims to determine small intestinal alanine absorption and cytokine expression in a novel model of colonic ulceration induced by electro-cautery. METHODS A descending colon ulcer was induced in rats by a bipolar electro-cautery probe. Ulcer score was determined using Satoh's criteria. Jejunal alanine absorption was measured immediately and at different time intervals post ulcer induction. Levels of interleukin-1 (IL-1), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) protein and m-RNA were determined in mucosal scrapings obtained from the colon, duodenum, jejunum and ileum at various time intervals after colonic ulcer induction. RESULTS The mean ulcer score was 3 up to 48h, followed by healing by 96h post ulcer induction. Small bowel histology was normal throughout. Jejunal alanine absorption was reduced by 12-34% immediately and up to 72h after cautery and returned to normal at 96h. IL-1 and TNF-α mRNA increased significantly in the colon, duodenum, jejunum and ileum 3h post electro-cautery and returned to normal at 48h, while that of IL-6 increased significantly at 48h post ulcer induction. Similarly, IL-1, IL-6 and TNF-α protein levels increased in the duodenum, jejunum, ileum and colon up to 48h post ulcer induction. CONCLUSIONS Electrically induced localized colonic injury increased production of pro-inflammatory cytokines in non-inflamed segments of the small intestine and was associated with derangements of jejunal absorptive function.
Collapse
Affiliation(s)
- Kassem Barada
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | - Fadi H Mourad
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Bakiza Noutsi
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Nayef E Saadé
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
14
|
Viñuales C, Gascón S, Barranquero C, Osada J, Rodríguez-Yoldi MJ. Interleukin-1beta reduces galactose transport in intestinal epithelial cells in a NF-kB and protein kinase C-dependent manner. Vet Immunol Immunopathol 2013; 155:171-81. [DOI: 10.1016/j.vetimm.2013.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 06/05/2013] [Accepted: 06/18/2013] [Indexed: 02/08/2023]
|
15
|
Ghareeb K, Awad WA, Soodoi C, Sasgary S, Strasser A, Böhm J. Effects of feed contaminant deoxynivalenol on plasma cytokines and mRNA expression of immune genes in the intestine of broiler chickens. PLoS One 2013; 8:e71492. [PMID: 23977054 PMCID: PMC3748120 DOI: 10.1371/journal.pone.0071492] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/05/2013] [Indexed: 01/07/2023] Open
Abstract
An experiment was conducted to investigate the individual and combined effects of dietary deoxynivalenol (DON) and a microbial feed additive on plasma cytokine level and on the expression of immune relevant genes in jejunal tissues of broilers. A total of 40 broiler chicks were obtained from a commercial hatchery and divided randomly into four groups (10 birds per group). Birds were reared in battery cages from one day old for 5 weeks. The dietary groups were 1) control birds fed basal diet; 2) DON group fed basal diet contaminated with 10 mg DON/ kg feed; 3) DON + Mycofix group fed basal diet contaminated with 10 mg DON/ kg feed and supplemented with a commercial feed additive, Mycofix® Select (MS) (2.5 kg/ton of feed); 4) Mycofix group fed basal diet supplemented with MS (2.5 kg/ton of feed). At 35 days, the plasma levels of tumor necrosis factor alpha (TNF-α) and interleukin 8 (IL-8) were quantified by ELISA test kits. Furthermore, the mRNA expression of TNF-α, IL-8, IL-1β, interferon gamma (IFNγ), transforming growth factor beta receptor I (TGFBR1) and nuclear factor kappa-light-chain-enhancer of activated B cells 1 (NF-κβ1) in jejunum were quantified by qRT-PCR. The results showed that the plasma TNF-α decreased in response to DON, while in combination with MS, the effect of DON was reduced. DON down-regulated the relative gene expression of IL-1β, TGFBR1 and IFN-γ, and addition of MS to the DON contaminated diet compensates these effects on IL-1β, TGFBR1 but not for IFN-γ. Furthermore, supplementation of MS to either DON contaminated or control diet up-regulated the mRNA expression of NF-κβ1. In conclusion, DON has the potential to provoke and modulate immunological reactions of broilers and subsequently could increase their susceptibility to disease. The additive seemed to have almost as much of an effect as DON, albeit on different genes.
Collapse
Affiliation(s)
- Khaled Ghareeb
- Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, Vienna, Austria
- Department of Animal Hygiene, Behaviour and Management, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
- * E-mail:
| | - Wageha A. Awad
- Clinic for Avian, Reptile and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Chimidtseren Soodoi
- Department of Biomedical Sciences, Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Vienna, Austria
| | - Soleman Sasgary
- Department of Biomedical Sciences, Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Vienna, Austria
| | - Alois Strasser
- Department of Biomedical Sciences, Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Vienna, Austria
| | - Josef Böhm
- Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
16
|
Zanello M, Vincenzi M, Di Mauro L, Gualdani S. Gut and sepsis: Victim of circumstance or prime mover. TRENDS IN ANAESTHESIA AND CRITICAL CARE 2013. [DOI: 10.1016/j.tacc.2013.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Klingspor S, Martens H, Caushi D, Twardziok S, Aschenbach JR, Lodemann U. Characterization of the effects of Enterococcus faecium on intestinal epithelial transport properties in piglets. J Anim Sci 2013; 91:1707-18. [PMID: 23345556 DOI: 10.2527/jas.2012-5648] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Probiotics have been shown to have positive effects on growth performance traits and the health of farm animals. The objective of the study was to examine whether the probiotic strain Enterococcus faecium NCIMB 10415 (E. faecium) changes the absorptive and secretory transport and barrier properties of piglet jejunum in vitro and thereby to verify tendencies observed in a former feeding trial with E. faecium. Further aims were to assess a potential mechanism of probiotics by testing effects of IL-α, which is upregulated in the peripheral blood mononuclear cells of E. faecium-supplemented piglets, and to test the hypothesis that IL-1α induces a change in ion transport. Sows and their piglets were randomly assigned to a control group and a probiotic group supplemented with E. faecium. The sows received the probiotic supplemented feed from d 28 before parturition and the piglets from d 12 after birth. Piglets were killed at the age of 12 ± 1, 26 ± 1, 34 ± 1, and 54 ± 1 d. Ussing chamber studies were conducted with isolated mucosae from the mid jejunum. Samples were taken for mRNA expression analysis of sodium-glucose-linked transporter 1 (SGLT1) and cystic fibrosis transmembrane conductance regulator (CFTR). The Na(+)/glucose cotransport was increased in the probiotic group compared with the control group at 26 (P = 0.04) and 54 d of age (P = 0.01). The PGE2-induced short circuit current (Isc) was greater at 54 d of age in the probiotic group compared with the control group (P = 0.03). In addition, effects of age on the absorptive (P < 0.01) and secretory (P < 0.01) capacities were observed. Neither SGLT1 nor CFTR mRNA expression was changed by probiotic supplementation. Mannitol flux rates as a marker of paracellular permeability decreased in both groups with increasing age and were less in the probiotic group at the 26 d of age (P = 0.04), indicating a tighter intestinal barrier. The ΔIsc induced by IL-1α was inhibited by bumetanide (P < 0.01), indicating an induction of Cl(-) secretion. Thus, in this experimental setup, E. faecium increased the absorptive and secretory capacity of jejunal mucosae and enhanced the intestinal barrier. Furthermore, the results indicated that IL-1α induces bumetanide-sensitive chloride secretion. The effects of cytokines as potential mediators of probiotic effects should, therefore, be the subject of further studies.
Collapse
Affiliation(s)
- S Klingspor
- Institute of Veterinary Physiology, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Vojdani A, Lambert J. The Role of Th17 in Neuroimmune Disorders: Target for CAM Therapy. Part II. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:984965. [PMID: 19622601 PMCID: PMC3137879 DOI: 10.1093/ecam/nep063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Accepted: 05/22/2009] [Indexed: 12/23/2022]
Abstract
Decades of research went into understanding the role that Th1 autoreactive T-cells play in neuroinflammation. Here we describe another effector population, the IL-17-producing T-helper lineage (Th17), which drives the inflammatory process. Through the recruitment of inflammatory infiltration neutrophils and the activation of matrix metalloproteinases, IL-17, a cytokine secreted by Th17 cells, contributes to blood-brain barrier breakdown and the subsequent attraction of macrophages and monocytes into the nervous system. The entry of cells along with the local production of inflammatory cytokines leads to myelin and axonal damage. This activation of the inflammatory response system is induced by different pathogenic factors, such as gut bacterial endotoxins resulting in progressive neurodegeneration by Th17 cells. Through the understanding of the role of bacterial endotoxins and other pathogenic factors in the induction of autoimmune diseases by Th17 cells, CAM practitioners will be able to design CAM therapies targeting IL-17 activity. Targeted therapy can restore the integrity of the intestinal and blood-brain barriers using probiotics, N-acetyl-cysteine, α-lipoic acid, resveratrol and others for their patients with autoimmunities, in particular those with neuroinflammation and neurodegeneration.
Collapse
|
19
|
García-Barrios A, Guillén N, Gascón S, Osada J, Vazquez CM, Miguel-Carrasco JL, Rodríguez-Yoldi MJ. Nitric oxide involved in the IL-1β-induced inhibition of fructose intestinal transport. J Cell Biochem 2011; 111:1321-9. [PMID: 20803526 DOI: 10.1002/jcb.22859] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Interleukin-1β (IL-1β) is a pleiotropic cytokine produced by cells of the immune system and a large variety of other cell types including endothelial cells. It is released during inflammatory and infectious diseases, and possesses a wide spectrum of autocrine, paracrine and endocrine activities. The aim of this work was to examine the IL-1β effect on D-fructose transport across rabbit jejunum and try to identify the mediators implicated in this process. A sepsis condition was induced for 90 min after intravenous (iv) administration of IL-1β and body temperature was recorded. Studies on cellular intestinal integrity have not shown modifications of the epithelium and the basement membrane. D-fructose intestinal transport was studied in rabbit jejunum from control and treated animals and it was reduced in the latter ones. This cytokine decreased both the mucosal to serosal transepithelial flux and the transport across brush-border membrane vesicles of D-fructose. The inhibition was reversed by L-NAME (nitric oxide [NO] synthase inhibitor), but not by indomethacin (cyclooxygenase 1 and 2 inhibitor). Both inhibitors were administered iv 15 min before the IL-1β. The protein levels of GLUT5 were not changed in all animal groups and those of mRNA were even increased. In summary, these findings indicate that IL-1β, at the time assayed, induced a significant reduction in the relative intrinsic activity of GLUT5 and in this decrease are involved NO signalling pathways. In this way, blockage of D-fructose intestinal uptake by IL-1β may be playing an essential role in the pathophysiology of septic shock.
Collapse
Affiliation(s)
- Alberto García-Barrios
- Physiology Unit, Department of Pharmacology and Physiology, Veterinary Faculty, University of Zaragoza, 50013 Zaragoza, Spain
| | | | | | | | | | | | | |
Collapse
|
20
|
Yang YM, Han CY, Kim YJ, Kim SG. AMPK-associated signaling to bridge the gap between fuel metabolism and hepatocyte viability. World J Gastroenterol 2010; 16:3731-42. [PMID: 20698033 PMCID: PMC2921082 DOI: 10.3748/wjg.v16.i30.3731] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The adenosine monophosphate-activated protein kinase (AMPK) and p70 ribosomal S6 kinase-1 pathway may serve as a key signaling flow that regulates energy metabolism; thus, this pathway becomes an attractive target for the treatment of liver diseases that result from metabolic derangements. In addition, AMPK emerges as a kinase that controls the redox-state and mitochondrial function, whose activity may be modulated by antioxidants. A close link exists between fuel metabolism and mitochondrial biogenesis. The relationship between fuel metabolism and cell survival strongly implies the existence of a shared signaling network, by which hepatocytes respond to challenges of external stimuli. The AMPK pathway may belong to this network. A series of drugs and therapeutic candidates enable hepatocytes to protect mitochondria from radical stress and increase cell viability, which may be associated with the activation of AMPK, liver kinase B1, and other molecules or components. Consequently, the components downstream of AMPK may contribute to stabilizing mitochondrial membrane potential for hepatocyte survival. In this review, we discuss the role of the AMPK pathway in hepatic energy metabolism and hepatocyte viability. This information may help identify ways to prevent and/or treat hepatic diseases caused by the metabolic syndrome. Moreover, clinical drugs and experimental therapeutic candidates that directly or indirectly modulate the AMPK pathway in distinct manners are discussed here with particular emphasis on their effects on fuel metabolism and mitochondrial function.
Collapse
|
21
|
Calcitriol mediates the activity of SGLT1 through an extranuclear initiated mechanism that involves intracellular signaling pathways. J Physiol Biochem 2010; 66:105-15. [DOI: 10.1007/s13105-010-0015-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 04/13/2010] [Indexed: 12/17/2022]
|
22
|
Abstract
Independent of the cause and location, inflammation - even when minimal - has clear effects on gastrointestinal morphology and function. These result in altered digestion, absorption and barrier function. There is evidence of reduced villus height and crypt depth, increased permeability, as well as altered sugar and peptide absorption in the small intestine after induction of inflammation in experimental models, which is supported by some clinical data. Identification of inflammatory factors which may promote the process of gastrointestinal dysfunction as well as clinical research to verify experimental observations of inflammatory modulation of gastrointestinal function are required. Moreover, nutritional strategies to support functional restitution are needed.
Collapse
|
23
|
Niu L, Qiao W, Li G, Li Q, Huang Q, Gong J, Zhu W, Li N, Li J. Different alterations in rat intestinal glutamine transport during the progression of CLP- and LPS-induced sepsis. J Surg Res 2009; 169:284-91. [PMID: 20338592 DOI: 10.1016/j.jss.2009.11.732] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 11/09/2009] [Accepted: 11/23/2009] [Indexed: 11/28/2022]
Abstract
BACKGROUND A marked deficiency of glutamine in clinical critical illness is correlated with mortality in the intensive care unit. Though intestinal glutamine transport was reported to be impaired in late sepsis, we hypothesized that there might be a different alteration in the early stage, with differential effects on the Na(+)-dependent glutamine transporters B(0)AT1, ATB(0,+), and ATA2. MATERIALS AND METHODS Sepsis was induced by cecal ligation and puncture or lipopolysaccharide intraperitoneal injection in Sprague Dawley rats, and the samples were collected at 0, 2, 6, 12, 24h. Small intestinal brush border glutamine transport was studied by a rapid filtration technique. The relative contributions of the three main transporter, B(0)AT1, ATB(0,+), and ATA2, were determined by competitive inhibition. The mRNA level of each transporter was analyzed by RT-PCR, and an extra immunohistochemistry analysis was performed to detect the localization of ATA2 protein in small intestine. Serum TNF-α and IL-10 concentrations were quantitated by ELISA. RESULTS Intestinal glutamine transport showed a biphasic change with an early increase and a late decrease in both CLP and LPS group. The early increase of glutamine transport was mainly attributable to the increased contributions of ATA2 and ATB(0,+). The transport activities of B(0)AT1, ATB(0,+) altered mainly because of the number of transporters (mRNA level as an indicator), while turned to ATA2, the redistribution was also found to be involved. The plasma TNF-α and IL-10 levels, especially the former, showed similar changing profiles to glutamine transport and, thus, may have relevance to it. CONCLUSION Rat intestinal glutamine transport showed an early increase and a late decrease in sepsis, and may provide some information for sepsis treatment.
Collapse
Affiliation(s)
- Lingying Niu
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Krimi RB, Letteron P, Chedid P, Nazaret C, Ducroc R, Marie JC. Resistin-like molecule-beta inhibits SGLT-1 activity and enhances GLUT2-dependent jejunal glucose transport. Diabetes 2009; 58:2032-8. [PMID: 19502416 PMCID: PMC2731541 DOI: 10.2337/db08-1786] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVE An increased expression of RELM-beta (resistin-like molecule-beta), a gut-derived hormone, is observed in animal models of insulin resistance/obesity and intestinal inflammation. Intestinal sugar absorption is modulated by dietary environment and hormones/cytokines. The aim of this study was to investigate the effect of RELM-beta on intestinal glucose absorption. RESEARCH DESIGN AND METHODS Oral glucose tolerance test was performed in mice and rats in the presence and the absence of RELM-beta. The RELM-beta action on glucose transport in rat jejunal sacs, everted rings, and mucosal strips was explored as well as downstream kinases modulating SGLT-1 and GLUT2 glucose transporters. RESULTS Oral glucose tolerance test carried out in rodents showed that oral administration of RELM-beta increased glycemia. Studies in rat jejunal tissue indicated that mucosal RELM-beta promoted absorption of glucose from the gut lumen. RELM-beta had no effect on paracellular mannitol transport, suggesting a transporter-mediated transcellular mechanism. In studies with jejunal mucosa mounted in Ussing chamber, luminal RELM-beta inhibited SGLT-1 activity in line with a diminished SGLT-1 abundance in brush border membranes (BBMs). Further, the potentiating effect of RELM-beta on jejunal glucose uptake was associated with an increased abundance of GLUT2 at BBMs. The effects of RELM-beta were associated with an increased amount of protein kinase C betaII in BBMs and an increased phosphorylation of AMP-activated protein kinase (AMPK). CONCLUSIONS The regulation of SGLT-1 and GLUT2 by RELM-beta expands the role of gut hormones in short-term AMPK/protein kinase C mediated control of energy balance.
Collapse
Affiliation(s)
- Rim Belharbi Krimi
- From INSERM, U773, Centre de Recherche Bichat Beaujon CRB3, and Université Paris 7 Denis Diderot, Paris, France
| | - Philippe Letteron
- From INSERM, U773, Centre de Recherche Bichat Beaujon CRB3, and Université Paris 7 Denis Diderot, Paris, France
| | - Pia Chedid
- From INSERM, U773, Centre de Recherche Bichat Beaujon CRB3, and Université Paris 7 Denis Diderot, Paris, France
| | - Corinne Nazaret
- From INSERM, U773, Centre de Recherche Bichat Beaujon CRB3, and Université Paris 7 Denis Diderot, Paris, France
| | - Robert Ducroc
- From INSERM, U773, Centre de Recherche Bichat Beaujon CRB3, and Université Paris 7 Denis Diderot, Paris, France
| | - Jean-Claude Marie
- From INSERM, U773, Centre de Recherche Bichat Beaujon CRB3, and Université Paris 7 Denis Diderot, Paris, France
- Corresponding author: Jean-Claude Marie,
| |
Collapse
|
25
|
Zanobbio L, Palazzo M, Gariboldi S, Dusio GF, Cardani D, Mauro V, Marcucci F, Balsari A, Rumio C. Intestinal glucose uptake protects liver from lipopolysaccharide and D-galactosamine, acetaminophen, and alpha-amanitin in mice. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:1066-76. [PMID: 19700751 DOI: 10.2353/ajpath.2009.090071] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have recently observed that oral administration of D-glucose saves animals from lipopolysaccharide (LPS)-induced death. This effect is the likely consequence of glucose-induced activation of the sodium-dependent glucose transporter-1. In this study, we investigated possible hepatoprotective effects of glucose-induced, sodium-dependent, glucose transporter-1 activation. We show that oral administration of D-glucose, but not of either D-fructose or sucrose, prevents LPS-induced liver injury, as well as liver injury and death induced by an overdose of acetaminophen. In both of these models, physiological liver morphology is maintained and organ protection is confirmed by unchanged levels of the circulating markers of hepatotoxicity, such as alanine transaminase or lactate dehydrogenase. In addition, D-glucose was found to protect the liver from alpha-amanitin-induced liver injury. In this case, in contrast to the previously described models, a second signal had to be present in addition to glucose to achieve protective efficacy. Toll-like receptor 4 stimulation that was induced by low doses of LPS was identified as such a second signal. Eventually, the protective effect of orally administered glucose on liver injury induced by LPS, overdose of acetaminophen, or alpha-amanitin was shown to be mediated by the anti-inflammatory cytokine interleukin-10. These findings, showing glucose-induced protective effects in several animal models of liver injury, might be relevant in view of possible therapeutic interventions against different forms of acute hepatic injury.
Collapse
Affiliation(s)
- Laura Zanobbio
- Faculty of Pharmacy, Department of Human Morphology and Biomedical Sciences Città Studi, Università degli Studi di Milano, via Mangiagalli 31, Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Lessard M, Boudry G, Sève B, Oswald IP, Lallès JP. Intestinal physiology and peptidase activity in male pigs are modulated by consumption of corn culture extracts containing fumonisins. J Nutr 2009; 139:1303-7. [PMID: 19474154 DOI: 10.3945/jn.109.105023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Fumonisin B(1) (FB1) alters intestinal epithelial cell cycle and absorptive, secretory, and barrier properties in vitro, but in vivo data are lacking. Therefore, we tested the hypothesis that repeated intake of a corn culture extract rich in fumonisins, mainly in FB1, alters indices of intestinal absorptive and secretory physiology and barrier function in vivo. Intra-litter pairs of pigs (n = 36) weaned at 28 d, were fed the vehicle (control) or the extract (providing 1.5 mg FB1/kg body weight) daily for 9 d starting 7 d postweaning. After slaughter, the jejunal mucosa of pigs was mounted in Ussing chambers (UC). Extract consumption for 9 d decreased the gain:feed ratio (P = 0.04) and increased liver weight (P = 0.01). Basal net ion secretion (P = 0.02), sodium-dependent glucose absorption (P = 0.02), and theophylline-induced secretion (P < 0.01) of the jejunal mucosa determined in UC were higher in pigs fed the extract than in controls. By contrast, jejunal permeability to the horseradish peroxidase model protein in UC was not influenced by extract consumption. Ileal villi tended to be longer (P = 0.07) and jejunal aminopeptidase N activity was lower (P < 0.01) in pigs fed the extract. In conclusion, consumption of an extract rich in fumonisins for 9 d has the potential to alter intestinal physiology, villous architecture, and enzyme activities. Underlying mechanisms remain to be investigated.
Collapse
Affiliation(s)
- Martin Lessard
- Institut National de la Recherche Agronomique Unité Mixte de Recherche 1039, Systèmes d'Elevage, Nutrition Animale et Humaine, F-35590 Saint-Gilles, France
| | | | | | | | | |
Collapse
|
27
|
Foster DR, Gonzales JP, Amidon GL, Welage LS. Intestinal Dipeptide Absorption Is Preserved During Thermal Injury and Cytokine Treatment. JPEN J Parenter Enteral Nutr 2009; 33:520-8. [DOI: 10.1177/0148607109333002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- David R. Foster
- From the Department of Pharmacy Practice, Purdue University School of Pharmacy and Pharmaceutical Sciences, Indianapolis, Indiana; Department of Pharmacy Practice and Science, University of Maryland School of Pharmacy, Baltimore, Maryland; Department of Pharmaceutical Sciences, University of Michigan, College of Pharmacy, Ann Arbor, Michigan; Department of Clinical, Social and Administrative Sciences, University of Michigan College of Pharmacy,
| | - Jeffrey P. Gonzales
- From the Department of Pharmacy Practice, Purdue University School of Pharmacy and Pharmaceutical Sciences, Indianapolis, Indiana; Department of Pharmacy Practice and Science, University of Maryland School of Pharmacy, Baltimore, Maryland; Department of Pharmaceutical Sciences, University of Michigan, College of Pharmacy, Ann Arbor, Michigan; Department of Clinical, Social and Administrative Sciences, University of Michigan College of Pharmacy,
| | - Gordon L. Amidon
- From the Department of Pharmacy Practice, Purdue University School of Pharmacy and Pharmaceutical Sciences, Indianapolis, Indiana; Department of Pharmacy Practice and Science, University of Maryland School of Pharmacy, Baltimore, Maryland; Department of Pharmaceutical Sciences, University of Michigan, College of Pharmacy, Ann Arbor, Michigan; Department of Clinical, Social and Administrative Sciences, University of Michigan College of Pharmacy,
| | - Lynda S. Welage
- From the Department of Pharmacy Practice, Purdue University School of Pharmacy and Pharmaceutical Sciences, Indianapolis, Indiana; Department of Pharmacy Practice and Science, University of Maryland School of Pharmacy, Baltimore, Maryland; Department of Pharmaceutical Sciences, University of Michigan, College of Pharmacy, Ann Arbor, Michigan; Department of Clinical, Social and Administrative Sciences, University of Michigan College of Pharmacy,
| |
Collapse
|
28
|
Drozdowski LA, Clandinin MT, Thomson ABR. Morphological, kinetic, membrane biochemical and genetic aspects of intestinal enteroplasticity. World J Gastroenterol 2009; 15:774-87. [PMID: 19230039 PMCID: PMC2653378 DOI: 10.3748/wjg.15.774] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The process of intestinal adaptation (“enteroplasticity”) is complex and multifaceted. Although a number of trophic nutrients and non-nutritive factors have been identified in animal studies, successful, reproducible clinical trials in humans are awaited. Understanding mechanisms underlying this adaptive process may direct research toward strategies that maximize intestinal function and impart a true clinical benefit to patients with short bowel syndrome, or to persons in whom nutrient absorption needs to be maximized. In this review, we consider the morphological, kinetic and membrane biochemical aspects of enteroplasticity, focus on the importance of nutritional factors, provide an overview of the many hormones that may alter the adaptive process, and consider some of the possible molecular profiles. While most of the data is derived from rodent studies, wherever possible, the results of human studies of intestinal enteroplasticity are provided.
Collapse
|
29
|
Tappenden KA. Inflammation and Intestinal Function: Where Does It Start and What Does It Mean? JPEN J Parenter Enteral Nutr 2008; 32:648-50. [DOI: 10.1177/0148607108325177] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Kelly A. Tappenden
- From the Division of Nutritional Sciences and Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign
| |
Collapse
|
30
|
Willing BP, Van Kessel AG. Intestinal microbiota differentially affect brush border enzyme activity and gene expression in the neonatal gnotobiotic pig. J Anim Physiol Anim Nutr (Berl) 2008; 93:586-95. [PMID: 19141103 DOI: 10.1111/j.1439-0396.2008.00841.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To study microbial influence on intestinal development pertaining to nutrient digestion, two separate gnotobiotic experiments were performed, each with 16 piglets allocated to four treatment groups: germfree (GF), monoassociation with Escherichia coli, monoassociation with Lactobacillus fermentum or conventionalization with faecal bacteria (CV). Enzyme activity and gene expression of lactase phlorizin hydrolase (LPH) and aminopeptidase N (APN) were measured in isolated enterocytes, harvested on day 14, using specific substrates and quantitative PCR respectively. Enterocytes of CV pigs had reduced APN activity, but had increased gene expression relative to GF, making the specific activity:mRNA (A:G) ratio dramatically lower (p < 0.05). Similarly, LPH A:G ratio was significantly reduced (p < 0.05) in enterocytes of CV pigs as compared with GF. The results of co-incubation of L. fermentum, E. coli and faecal bacteria with APN indicate a direct relationship between enzyme inactivation and specific A:G ratio in enterocytes. We conclude that enterocyte up-regulation of APN expression occurs as either a direct response to microbial colonization or as a feedback mechanism in response to reduced enzyme activity through microbial degradation. This mechanism may play a role in ensuring effective competition of the host with the intestinal microbiota for available nutrients.
Collapse
Affiliation(s)
- B P Willing
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada
| | | |
Collapse
|
31
|
Al-Sadi R, Ye D, Dokladny K, Ma TY. Mechanism of IL-1beta-induced increase in intestinal epithelial tight junction permeability. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 180:5653-61. [PMID: 18390750 PMCID: PMC3035485 DOI: 10.4049/jimmunol.180.8.5653] [Citation(s) in RCA: 333] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The IL-1beta-induced increase in intestinal epithelial tight junction (TJ) permeability has been postulated to be an important mechanism contributing to intestinal inflammation of Crohn's disease and other inflammatory conditions of the gut. The intracellular and molecular mechanisms that mediate the IL-1beta-induced increase in intestinal TJ permeability remain unclear. The purpose of this study was to elucidate the mechanisms that mediate the IL-1beta-induced increase in intestinal TJ permeability. Specifically, the role of myosin L chain kinase (MLCK) was investigated. IL-1beta caused a progressive increase in MLCK protein expression. The time course of IL-1beta-induced increase in MLCK level correlated linearly with increase in Caco-2 TJ permeability. Inhibition of the IL-1beta-induced increase in MLCK protein expression prevented the increase in Caco-2 TJ permeability. Inhibition of the IL-1beta-induced increase in MLCK activity also prevented the increase in Caco-2 TJ permeability. Additionally, knock-down of MLCK protein expression by small interference RNA prevented the IL-1beta-induced increase in Caco-2 TJ permeability. The IL-1beta-induced increase in MLCK protein expression was preceded by an increase in MLCK mRNA expression. The IL-1beta-induced increase in MLCK mRNA transcription and subsequent increase in MLCK protein expression and Caco-2 TJ permeability was mediated by activation of NF-kappaB. In conclusion, our data indicate that the IL-1beta increase in Caco-2 TJ permeability was mediated by an increase in MLCK expression and activity. Our findings also indicate that the IL-1beta-induced increase in MLCK protein expression and Caco-2 TJ permeability was mediated by an NF-kappaB-dependent increase in MLCK gene transcription.
Collapse
Affiliation(s)
- Rana Al-Sadi
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Dongmei Ye
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Karol Dokladny
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Thomas Y. Ma
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131
- Albuquerque Veterans Affairs Medical Center, Albuquerque, NM 87108
| |
Collapse
|
32
|
Lee YJ, Lee YJ, Han HJ. Regulatory mechanisms of Na(+)/glucose cotransporters in renal proximal tubule cells. Kidney Int 2007:S27-35. [PMID: 17653207 DOI: 10.1038/sj.ki.5002383] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Glucose is a key fuel and an important metabolic substrate in mammals. Renal proximal tubular cells (PTCs) not only reabsorb filtered glucose but are also believed to play a role in the glucotoxicity associated with renal pathogenesis, such as in diabetes. The proximal tubule environment is where 90% of the filtered glucose is reabsorbed by the low-affinity/high-capacity Na(+)/glucose cotransporter 2 (SGLT2) and facilitated diffusion glucose transporter 2 (GLUT2). Both active and facilitative glucose transporters have distinct distribution profiles along the proximal tubule related to their particular kinetic characteristics. A number of mechanisms contribute to the changes in the cellular functions, which occur in response to exposure to various endogenous factors. Hyperglycemia was reported to regulate the renal SGLT activities through the reactive oxygen species-nuclear factor-kappaB pathways, which suggests that the transcellular glucose uptake within the PTCs contribute to the development of diabetic-like nephropathy. Angiotensin II (ANG II) plays an important role in its development through epidermal growth factor receptor (EGFR) transactivation. Therefore, a combination of high glucose, ANG II, and EGF are involved in diabetic-like nephropathy by regulating the SGLT activity. In addition, endogenously enhanced SGLTs have a cytoprotective function. The renal proximal tubules play a major role in regulating the plasma glucose levels, and there is increasing interest in the renal glucose transporters on account of their potential implications in the treatment of various conditions including diabetes mellitus.
Collapse
Affiliation(s)
- Y J Lee
- Biotherapy Human Resources Center, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | | | | |
Collapse
|
33
|
Wong TP, Debnam ES, Leung PS. Involvement of an enterocyte renin-angiotensin system in the local control of SGLT1-dependent glucose uptake across the rat small intestinal brush border membrane. J Physiol 2007; 584:613-23. [PMID: 17702818 PMCID: PMC2277173 DOI: 10.1113/jphysiol.2007.138578] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
There is increasing evidence that locally produced angiotensin AII (AII) regulates the function of many tissues, but the involvement of enterocyte-derived AII in the control of intestinal transport is unknown. This study examined whether there is a local renin-angiotensin system (RAS) in rat villus enterocytes and assessed the effects of AII on SGLT1-dependent glucose transport across the brush border membrane (BBM). Gene and protein expression of angiotensinogen, ACE, and AT(1) and AT(2) receptors were studied in jejunal and ileal enterocytes using immunocytochemistry, Western blotting and RT-PCR. Mucosal uptake of d-[(14)C]glucose by everted intestinal sleeves before and after addition of AII (0-100 nm) to the mucosal buffer was measured in the presence or absence of the AT(1) receptor antagonist losartan (1 microm). Immunocytochemistry revealed the expression of angiotensinogen, ACE, and AT(1) and AT(2) receptors in enterocytes; immunoreactivity of AT(1) receptor and angiotensinogen proteins was especially pronounced at the BBM. Expression of angiotensinogen and AT(1) and AT(2) receptors, but not ACE, was greater in the ileum than the jejunum. Addition of AII to mucosal buffer inhibited phlorizin-sensitive (SGLT1-dependent) jejunal glucose uptake in a rapid and dose-dependent manner and reduced the expression of SGLT1 at the BBM. Losartan attenuated the inhibitory action of AII on glucose uptake. AII did not affect jejunal uptake of l-leucine. The detection of RAS components at the enterocyte BBM, and the rapid inhibition of SGLT1-dependent glucose uptake by luminal AII suggest that AII secretion exerts autocrine control of intestinal glucose transport.
Collapse
MESH Headings
- Angiotensin II/metabolism
- Angiotensin II Type 1 Receptor Blockers/pharmacology
- Angiotensinogen/genetics
- Angiotensinogen/metabolism
- Animals
- Autocrine Communication
- Blotting, Western
- Enterocytes/drug effects
- Enterocytes/metabolism
- Glucose/metabolism
- Ileum/cytology
- Ileum/drug effects
- Ileum/metabolism
- Immunohistochemistry
- In Vitro Techniques
- Jejunum/cytology
- Jejunum/drug effects
- Jejunum/metabolism
- Leucine/metabolism
- Losartan/pharmacology
- Male
- Microvilli/metabolism
- Peptidyl-Dipeptidase A/genetics
- Peptidyl-Dipeptidase A/metabolism
- Polymerase Chain Reaction
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 2/genetics
- Receptor, Angiotensin, Type 2/metabolism
- Renin-Angiotensin System/drug effects
- Renin-Angiotensin System/genetics
- Sodium-Glucose Transporter 1/metabolism
Collapse
Affiliation(s)
- Tung Po Wong
- Department of Physiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | | | | |
Collapse
|
34
|
Lee YJ, Heo JS, Suh HN, Lee MY, Han HJ. Interleukin-6 stimulates alpha-MG uptake in renal proximal tubule cells: involvement of STAT3, PI3K/Akt, MAPKs, and NF-kappaB. Am J Physiol Renal Physiol 2007; 293:F1036-46. [PMID: 17581928 DOI: 10.1152/ajprenal.00034.2007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recent studies have shown that interleukin 6 (IL-6) acts on the cellular proliferation-activating transduction signals during cellular regeneration. Therefore, this study examined the effect of IL-6 on the activation of Na(+)/glucose cotransporters (SGLTs) and its related signaling pathways in primary cultured renal proximal tubule cells (PTCs). IL-6 increased the level of alpha-methyl-d-[(14)C]glucopyranoside (alpha-MG) uptake in time- and dose-dependent manners. IL-6 also increased SGLT1 plus SGLT2 mRNA and protein expression level. The IL-6 receptors (IL-6Ralpha and gp 130) were expressed in PTCs. In addition, genistein and herbimycin A completely blocked the IL-6-induced increases in alpha-MG uptake and the protein expression level of SGLTs. On the other hand, IL-6 increased the level of 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate-sensitive cellular reactive oxygen species (ROS), and IL-6-induced increases in alpha-MG uptake and the protein expression level of SGLTs were blocked by ascorbic acid or taurine (antioxidants). IL-6 also increased the phosphorylation of signal transducer and activator of transcription-3 (STAT3), phosphoinositide-3 kinase (PI3K)/Akt, and mitogen-activated protein kinases (MAPKs) in a time-dependent manner. A pretreatment with STAT3 inhibitor LY 294002, an Akt inhibitor, or MAPK inhibitors significantly blocked the IL-6-induced increase in alpha-MG uptake. In addition, IL-6 increased the level of nuclear factor-kappaB (NF-kappaB) phosphorylation. A pretreatment with SN50 or BAY 11-7082 also blocked the IL-6-induced increase in alpha-MG uptake. In conclusion, IL-6 increases the SGLT activity through ROS, and its action in renal PTCs is associated with the STAT3, PI3K/Akt, MAPKs, and NF-kappaB signaling pathways.
Collapse
Affiliation(s)
- Yu Jin Lee
- Department of Veterinary Physiology, Biotherapy Human Resources Center, College of Veterinary Medicine, Chonnam National University, Gwangju, Korea
| | | | | | | | | |
Collapse
|
35
|
Barada KA, Mourad FH, Sawah SI, Khoury C, Safieh-Garabedian B, Nassar CF, Saadé NE. Localized colonic inflammation increases cytokine levels in distant small intestinal segments in the rat. Life Sci 2006; 79:2032-2042. [PMID: 16904127 DOI: 10.1016/j.lfs.2006.06.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Revised: 06/17/2006] [Accepted: 06/26/2006] [Indexed: 01/02/2023]
Abstract
Local inflammation in the colon has been associated with nutrient malabsorption and altered motility in the small bowel. These remote effects suggest the release of mediators which can act (or alter) the function of intestinal segments located far from the primary area of inflammation. This study describes the changes in the expression of pro-inflammatory cytokines in the colon and in various segments of the small intestine in two rat models of experimental colitis. Colitis was induced by the intracolonic administration of 100 microL of 6% iodoacetamide or 250 microL of 2, 4, 6-trinitrobenzene sulfonic acid. Levels of interleukin one beta, interleukin 6, and tumor necrosis factor alpha were measured by ELISA in tissue homogenate sampled from duodenum, jejunum, ileum and colon at different time intervals. In homogenates of strips isolated from duodenum, jejunum and ileum, tumor necrosis alpha and interleukin-6, increased significantly 3-6 h after iodoacetamide or TNBS administration and remained elevated until the colonic inflammation subsided. Interleukin one beta showed comparable but delayed increase. Similar, but more pronounced increase of the three cytokines was noticed in areas of the colon adjacent to the ulcer. Histologic examinations revealed important inflammatory changes in the colon; however, examination of sections from the small intestines did not reveal significant differences between controls and rats with colitis. In conclusion, expression of pro-inflammatory cytokines is increased in remote segments of the small intestines during colitis. The findings may provide a partial explanation or a molecular substrate for the associated small bowel dysfunction.
Collapse
Affiliation(s)
- Kassem A Barada
- Department of Internal Medicine, American University of Beirut, Beirut 110 72020, Lebanon.
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Intestinal failure is a condition characterized by malnutrition and/or dehydration as a result of the inadequate digestion and absorption of nutrients. The most common cause of intestinal failure is short bowel syndrome, which occurs when the functional gut mass is reduced below the level necessary for adequate nutrient and water absorption. This condition may be congenital, or may be acquired as a result of a massive resection of the small bowel. Following resection, the intestine is capable of adaptation in response to enteral nutrients as well as other trophic stimuli. Identifying factors that may enhance the process of intestinal adaptation is an exciting area of research with important potential clinical applications.
Collapse
|
37
|
Lodemann U, Hübener K, Jansen N, Martens H. Effects ofEnterococcus faeciumNCIMB 10415 as probiotic supplement on intestinal transport and barrier function of piglets. Arch Anim Nutr 2006; 60:35-48. [PMID: 16529156 DOI: 10.1080/17450390500468099] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Many studies report positive effects of probiotic supplementation on the performance and health of piglets. The intention of this study was to describe the effects of Enterococcus faecium NCIMB 10415 on the transport and barrier functions of pig small intestine to improve our understanding of the underlying mechanisms of this probiotic. Ussing chamber studies were conducted with isolated jejunal epithelia of piglets at the age of 14, 28, 35 and 56 days. Jejunal tissues of the control group were compared with epithelia of piglets that had received a diet supplemented with the probiotic Enterococcus faecium NCIMB 10415. Transport properties (absorption and secretion) of the epithelia were examined by mucosal addition of glucose or L-glutamine or by serosal addition of PGE2. Electrophysiology of the epithelia was continuously recorded and the change in short circuit current (Isc) was determined. Paracellular permeability was measured by measuring the flux rates of mannitol. The increase of Isc caused by mucosal addition of glucose was, at all glucose concentrations, higher in the probiotic group compared with the control group. However, the difference (up to 100% of the control) was not significant. The increase of Isc after the mucosal addition of L-glutamine (12mmol/l) was higher in the tissues of the probiotic group but did not reach significance. Serosal PGE2 induced a significantly higher increase of Isc in tissues of the probiotic group at the age of 28 days. No consistent differences were observed in mannitol transport rates between the feeding groups. Significant age-dependent alterations of absorptive and secretory properties of the jejunal epithelium were observed; these were independent of the treatment. A probiotic supplementation seems to influence transport properties of small intestine epithelium. The increased absorption of glucose could be interpreted as a positive effect for the animal.
Collapse
Affiliation(s)
- Ulrike Lodemann
- Department of Veterinary Physiology, Faculty of Veterinary Medicine, Freie Universität Berlin, Germany.
| | | | | | | |
Collapse
|
38
|
Mourad FH, Barada KA, Bou Rached NA, Khoury CI, Saadé NE, Nassar CF. Inhibitory effect of experimental colitis on fluid absorption in rat jejunum: role of the enteric nervous system, VIP, and nitric oxide. Am J Physiol Gastrointest Liver Physiol 2006; 290:G262-G268. [PMID: 16123200 DOI: 10.1152/ajpgi.00271.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Impairment of small intestinal absorption has been described in patients with ulcerative colitis and in animal models of experimental colitis. The pathophysiology of this dysfunction has not been elucidated. The aim of this study was to investigate the effect of chemical colitis on jejunal fluid absorption and determine the role of the enteric nervous system and some putative neurotransmitters. In a rat model of iodoacetamide-induced colitis, jejunal net fluid absorption was evaluated by the in vivo single-pass perfusion technique. The effects of 1) tetrodotoxin (TTX), 2) benzylalkonium chloride (BAC), 3) capsaicin, 4) vasoactive intestinal polypeptide (VIP) antagonism, 5) nitric oxide (NO) synthase (NOS) inhibition, and 6) 5-hydroxytryptamine type 3 and 4 (5-HT(3) and 5-HT(4)) receptor antagonism on the changes in fluid movement were investigated. A significant decrease in jejunal net fluid absorption was found 2 and 4 days after colitis induction: 26 (SD 14) and 28 (SD 19) microl x min(-1) x g dry intestinal wt(-1), respectively [P < 0.0002 compared with sham rats at 61 (SD 6.5) microl x min(-1) x g dry intestinal wt(-1)]. No histological changes were evident in jejunal sections. TTX and BAC reversed this decrease in fluid absorption: 54 (SD 13) and 44 (SD 14) microl x min(-1) x g dry intestinal wt(-1) (P = 0.0005 and P = 0.019, respectively, compared with colitis). Ablation of capsaicin-sensitive primary afferent fibers had a partial effect: 45 (SD 5) microl x min(-1) x g dry intestinal wt(-1) (P = 0.001 and P = 0.003 compared with colitis and sham, respectively). Constitutive and neuronal NOS inhibition and VIP antagonism returned jejunal net fluid absorption to normal values: 66 (SD 19), 61 (SD 5), and 56 (SD 14) microl x min(-1) x g dry intestinal wt(-1), respectively. 5-HT(3) and 5-HT(4) receptor antagonism had no effect. Chemical colitis is associated with a significant decrease in jejunal net fluid absorption. This decrease is neurally mediated and involves VIP- and NO-related mechanisms.
Collapse
Affiliation(s)
- Fadi H Mourad
- American University of Beirut Medical Centre, PO Box 113-6044, Hamra 110-32090, Beirut, Lebanon.
| | | | | | | | | | | |
Collapse
|
39
|
Raja KB, O Latunde-Dada G, Peters TJ, McKie AT, Simpson RJ. Role of interleukin-6 in hypoxic regulation of intestinal iron absorption. Br J Haematol 2006; 131:656-62. [PMID: 16351643 DOI: 10.1111/j.1365-2141.2005.05814.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The regulation of intestinal iron absorption is not fully understood. Hepcidin, a liver-produced peptide, has recently been identified as a negative regulator of iron absorption in various conditions associated with altered iron metabolism (e.g. inflammation, anaemia, hypoxia). It is not clear whether these perturbants share a common signalling pathway. In this study, the importance of the cytokine interleukin-6 (IL-6) was investigated in the hypoxic mouse model. Hypoxia was associated with increased levels of circulating IL-6, decreased liver hepcidin mRNA and increased iron absorption (especially MT). A significant positive correlation existed between the total iron uptake and IL-6 levels in circulation. IL-6 per se, though inducing hepcidin mRNA, failed to affect basal iron absorption. The adaptive response to absorption following the hypoxic exposure was, however, more prominent if mice had been treated concurrently with IL-6. This enhancement in absorption occurred even though hepcidin mRNA was not significantly changed. Similar prominent responses were seen with both human and mouse IL-6. Anti-IL-6 antiserum normalised iron absorption in mice exposed to hypoxia, because of a reduction in the MT. These data indicate that IL-6 can influence iron absorption (especially MT) during the hypoxic exposure, but via a mechanism independent of hepcidin.
Collapse
Affiliation(s)
- Kishor B Raja
- Department of Clinical Biochemistry, King's College Hospital, London, UK.
| | | | | | | | | |
Collapse
|
40
|
Coon S, Kim J, Shao G, Sundaram U. Na-glucose and Na-neutral amino acid cotransport are uniquely regulated by constitutive nitric oxide in rabbit small intestinal villus cells. Am J Physiol Gastrointest Liver Physiol 2005; 289:G1030-5. [PMID: 16099871 DOI: 10.1152/ajpgi.00124.2005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Na-nutrient cotransport processes are not only important for the assimilation of essential nutrients but also for the absorption of Na in the mammalian small intestine. The effect of constitutive nitric oxide (cNO) on Na-glucose (SGLT-1) and Na-amino acid cotransport (NAcT) in the mammalian small intestine is unknown. Inhibition of cNO synthase with N(G)-nitro-l-arginine methyl ester (L-NAME) resulted in the inhibition of Na-stimulated (3)H-O-methyl-D-glucose uptake in villus cells. However, Na-stimulated alanine uptake was not affected in these cells. The L-NAME-induced reduction in SGLT-1 in villus cells was not secondary to an alteration in basolateral membrane Na-K-ATPase activity, which provides the favorable Na gradient for this cotransport process. In fact, SGLT-1 was inhibited in villus cell brush-border membrane (BBM) vesicles prepared from animals treated with L-NAME. Kinetic studies demonstrated that the mechanism of inhibition of SGLT-1 was secondary to a decrease in the affinity for glucose without a change in the maximal rate of uptake of glucose. Northern blot studies demonstrated no change in the mRNA levels of SGLT-1. Western blot studies demonstrated no significant change in the immunoreactive protein levels of SGLT-1 in ileal villus cell BBM from L-NAME-treated rabbits. These studies indicate that inhibition of cNO production inhibits SGLT-1 but not NAcT in the rabbit small intestine. Therefore, whereas cNO promotes Na-glucose cotransport, it does not affect NAcT in the mammalian small intestine.
Collapse
Affiliation(s)
- Steven Coon
- Section of Digestive Diseases, West Virginia University Medical Center, Morgantown, WV 26506, USA
| | | | | | | |
Collapse
|
41
|
Kimura Y, Turner JR, Braasch DA, Buddington RK. Lumenal adenosine and AMP rapidly increase glucose transport by intact small intestine. Am J Physiol Gastrointest Liver Physiol 2005; 289:G1007-14. [PMID: 16020657 DOI: 10.1152/ajpgi.00085.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Adenosine modulates the intestinal functions of secretion, motility, and immunity, yet little is known about the regulation of nutrient absorption. Therefore, we measured the carrier-mediated uptake of tracer D-[(14)C]glucose (2 microM) by everted sleeves of the mouse intestine after a lumenal exposure to adenosine and a disodium salt of AMP. Rates of glucose uptake by intact tissues increased almost twofold after a 7-min exposure to 5 mM adenosine (a physiological dose). The response was slightly more pronounced for AMP and could be induced by forskolin. The response to adenosine was blocked by theophylline and the A(2) receptor antagonist 3,7-dimethyl-1-proparglyxanthine but not by the A(1) receptor antagonist 8-phenyltheophylline. Glucose uptake by control and AMP-stimulated tissues was inhibited by phloridzin, implying that sodium-dependent glucose transporter 1 (SGLT1) is the responsive transporter, but the involvement of glucose transporter 2 (GLUT2) cannot be excluded. Of clinical relevance, AMP accelerated the systemic availability of 3-O-methylglucose after an oral administration to mice. Our results indicate that adenosine causes a rapid increase in carrier-mediated glucose uptake that is of clinical relevance and acts via receptors linked to a signaling pathway that involves intracellular cAMP production.
Collapse
Affiliation(s)
- Yasuhiro Kimura
- Dept. of Biological Sciences, Mississippi State University, MS 39762, USA
| | | | | | | |
Collapse
|
42
|
Suzuki S, Goncalves CG, Meguid MM. Catabolic outcome from non-gastrointestinal malignancy-related malabsorption leading to malnutrition and weight loss. Curr Opin Clin Nutr Metab Care 2005; 8:419-27. [PMID: 15930968 DOI: 10.1097/01.mco.0000172583.25009.ab] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Malnutrition of cancer patients is a significant cause of mortality and morbidity. RECENT FINDINGS The contributory factors in cancers anatomically involving the gastrointestinal tract are self-evident. However, how non-gastrointestinal malignancies affect gastrointestinal structure and function is not clear. The aim of this paper is to review the relationship between non-gastrointestinal malignancies and malabsorption, which leads to malnutrition, weight loss and increased mortality. In non-gastrointestinal cancer patients, intestinal morphological atrophy occurs, whereas in the jejunum absorption is impaired. Cytokines including IL-1 and TNF-alpha primarily induce delayed gastric emptying and also act directly on intestinal mucosa to induce malabsorption. These cytokines also directly act on several gastrointestinal hormones including cholecystokinin, neuropeptides including corticotropin-releasing factor, and via the vagus to decrease gastrointestinal motility. SUMMARY The combination of small intestine atrophy and delayed gastrointestinal motility are some of the reasons for malabsorption in cancer patients with non-gastrointestinal malignancies that contribute to the catabolic process.
Collapse
Affiliation(s)
- Sususmu Suzuki
- Surgical Metabolism and Nutrition Laboratory, Department of Surgery, University Hospital, Upstate Medical University, Syracuse, New York 13210, USA
| | | | | |
Collapse
|
43
|
Carey AL, Febbraio MA. Interleukin-6 and insulin sensitivity: friend or foe? Diabetologia 2004; 47:1135-1142. [PMID: 15241593 DOI: 10.1007/s00125-004-1447-y] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2004] [Accepted: 04/19/2004] [Indexed: 02/03/2023]
Affiliation(s)
- A L Carey
- The Skeletal Muscle Research Laboratory, School of Medical Sciences, RMIT University, PO Box 71, Bundoora 3083, Victoria, Australia
| | - M A Febbraio
- The Skeletal Muscle Research Laboratory, School of Medical Sciences, RMIT University, PO Box 71, Bundoora 3083, Victoria, Australia.
| |
Collapse
|
44
|
Pié S, Lallès JP, Blazy F, Laffitte J, Sève B, Oswald IP. Weaning is associated with an upregulation of expression of inflammatory cytokines in the intestine of piglets. J Nutr 2004; 134:641-7. [PMID: 14988461 DOI: 10.1093/jn/134.3.641] [Citation(s) in RCA: 429] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cytokines play a central role in immune cell response, but they also participate in the maintenance of tissue integrity. Changes in the cytokine network of the pig gut may be expected at weaning, because abrupt changes in dietary and environmental factors lead to important morphological and functional adaptations in the gut. This study measured the gene expression of 6 inflammatory cytokines along the small intestine (SI) and the proximal colon in 28-d-old piglets (n = 45) at different time points (0, 1, 2, 5 and 8 d) postweaning, using RT-PCR. Villus-crypt architecture and enzymatic activities of lactase and sucrase in the SI were also examined. The results confirmed that weaning is associated with morphological and enzymatic changes in the SI. In addition, the data indicated that cytokine response in the gut could be divided into two periods: an early acute response (0 to 2 d postweaning) and a late long-lasting response (2 to 8 d postweaning). Between d 0 and d 2, the levels of IL-1beta, IL-6, and TNF-alpha messenger RNA (mRNA) increased. Marked upregulation of IL-1beta mRNA occurred in most parts of the intestine, whereas IL-6 and TNF-alpha mRNA markedly increased only at specific sites in the intestine. Between d 2 and d 8, the levels of IL-1beta, IL-6, and TNF-alpha mRNA rapidly returned to preweaning values, except that the level of TNF-alpha mRNA remained high in the distal SI. Levels of IL-12 subunit p40 (IL-12p40) and IL-18 mRNA also decreased, compared to those on d 0. Taken together, these results demonstrate that weaning in piglets is associated with an early and transient response in gene expression of inflammatory cytokines in the gut.
Collapse
Affiliation(s)
- S Pié
- Unité de Pharmacologie-Toxicologie, Institut National de la Recherche Agronomique, 31931 Toulouse Cedex 9, France
| | | | | | | | | | | |
Collapse
|
45
|
Thomson ABR, Drozdowski L, Iordache C, Thomson BKA, Vermeire S, Clandinin MT, Wild G. Small bowel review: Normal physiology, part 1. Dig Dis Sci 2003; 48:1546-64. [PMID: 12924651 DOI: 10.1023/a:1024719925058] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Alan B R Thomson
- Nutrition and Metabolism Group, Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | |
Collapse
|
46
|
Febbraio MA, Ott P, Nielsen HB, Steensberg A, Keller C, Krustrup P, Secher NH, Pedersen BK. Hepatosplanchnic clearance of interleukin-6 in humans during exercise. Am J Physiol Endocrinol Metab 2003; 285:E397-402. [PMID: 12857677 DOI: 10.1152/ajpendo.00134.2003] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The cytokine interleukin (IL)-6 can increase markedly in the circulation during exercise, but whether the liver is a source of this increase is unknown. The aim of this study was to measure IL-6 flux across the hepatosplanchnic tissues in humans. To elevate systemic concentrations of IL-6, six healthy male subjects performed 120 min of semirecumbent cycling, and blood samples were simultaneously obtained from a brachial artery and the hepatic vein before and during exercise for the analysis of IL-6. Hepatosplanchnic blood flow (HBF) was measured using the indocyanine green infusion technique. Net hepatosplanchnic IL-6 balance was calculated from these measures. HBF was 1.3 +/- 0.1 l/min at rest and was not reduced throughout exercise, averaging 1.1 +/- 0.2 l/min. Arterial plasma IL-6 markedly increased (P < 0.05) from 1.8 +/- 0.6 ng/l at rest to 14.3 +/- 3.2 ng/l after 120 min of exercise. The hepatosplanchnic viscera did not contribute to this increase, since there was a net hepatosplanchnic IL-6 uptake (0.8 +/- 0.3 vs. 5.5 +/- 1.9 ng/min, rest vs. 120 min; P < 0.05). These data demonstrate that the hepatosplanchnic viscera remove IL-6 from the circulation in humans. This removal may constitute a mechanism limiting the negative chronic metabolic action of chronically elevated circulating IL-6.
Collapse
Affiliation(s)
- Mark A Febbraio
- Skeletal Muscle Research Laboratory, School of Medical Sciences, RMIT Univ., Bundoora, Victoria 3083, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Steensberg A, Fischer CP, Sacchetti M, Keller C, Osada T, Schjerling P, van Hall G, Febbraio MA, Pedersen BK. Acute interleukin-6 administration does not impair muscle glucose uptake or whole-body glucose disposal in healthy humans. J Physiol 2003; 548:631-8. [PMID: 12640021 PMCID: PMC2342867 DOI: 10.1113/jphysiol.2002.032938] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The cytokine interleukin (IL)-6 has recently been linked with type 2 diabetes mellitus and has been suggested to affect glucose metabolism. To determine whether acute IL-6 administration affects whole-body glucose kinetics or muscle glucose uptake, 18 healthy young men were assigned to one of three groups receiving a high dose of recombinant human IL-6 (HiIL-6; n = 6), a low dose of IL-6 (LoIL-6; n = 6) or saline (Con; n = 6) infused into one femoral artery for 3 h. The stable isotope [6,6-2H2] glucose was infused into a forearm vein throughout the 3 h infusion period and for a further 3 h after the cessation of infusion (recovery) to determine endogenous glucose production and whole-body glucose disposal. Infusion with HiIL-6 and LoIL-6 resulted in a marked (P < 0.05) increase in systemic IL-6 concentration throughout the 3 h of infusion (mean arterial plasma [IL-6]s of 319 and 143 pg ml-1 for HiIL-6 and LoIL-6, respectively), followed by a rapid decline (P < 0.05) during the recovery period. Subjects experienced clinical symptoms such as shivering and discomfort during HiIL-6 administration, but were asymptomatic during LoIL-6 administration. In addition, only HiIL-6 elevated (P < 0.05) plasma adrenaline (epinephrine). IL-6 infusion, irrespective of dose, did not result in any changes to endogenous glucose production, whole-body glucose disposal or leg- glucose uptake. These data demonstrate that acute IL-6 administration does not impair whole-body glucose disposal, net leg-glucose uptake, or increase endogenous glucose production at rest in healthy young humans.
Collapse
|
48
|
Pedersen BK, Steensberg A, Keller P, Keller C, Fischer C, Hiscock N, van Hall G, Plomgaard P, Febbraio MA. Muscle-derived interleukin-6: lipolytic, anti-inflammatory and immune regulatory effects. Pflugers Arch 2003; 446:9-16. [PMID: 12690457 DOI: 10.1007/s00424-002-0981-z] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Interleukin-6 (IL-6) is produced locally in working skeletal muscle and can account for the exercise-induced increase in plasma IL-6. The transcription rate for IL-6 in muscle nuclei isolated from muscle biopsies during exercise is very high and is enhanced further when muscle glycogen content is low. Furthermore, cultured human primary muscle cells can increase IL-6 mRNA when incubated with the calcium ionophore ionomycin and it is likely that myocytes produce IL-6 in response to muscle contraction. The biological roles of muscle-derived IL-6 have been investigated in studies in which human recombinant IL-6 was infused in healthy volunteers to mimic closely the IL-6 concentrations observed during prolonged exercise. Using stable isotopes, we have demonstrated that physiological concentrations of IL-6 induce lipolysis. Although we have yet to determine the precise biological action of muscle-derived IL-6, our data support the hypothesis that the role of IL-6 released from contracting muscle during exercise is to act in a hormone-like manner to mobilize extracellular substrates and/or augment substrate delivery during exercise. In addition, IL-6 inhibits low-level TNF-alpha production, and IL-6 produced during exercise probably inhibits TNF-alpha-induced insulin resistance in peripheral tissues. Hence, IL-6 produced by skeletal muscle during contraction may play an important role in the beneficial health effects of exercise
Collapse
Affiliation(s)
- Bente Klarlund Pedersen
- Dept. of Infectious Diseases, Rigshospitalet, Section 7641, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Bétis F, Brest P, Hofman V, Guignot J, Kansau I, Rossi B, Servin A, Hofman P. Afa/Dr diffusely adhering Escherichia coli infection in T84 cell monolayers induces increased neutrophil transepithelial migration, which in turn promotes cytokine-dependent upregulation of decay-accelerating factor (CD55), the receptor for Afa/Dr adhesins. Infect Immun 2003; 71:1774-83. [PMID: 12654791 PMCID: PMC152057 DOI: 10.1128/iai.71.4.1774-1783.2003] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2002] [Revised: 10/23/2002] [Accepted: 01/03/2003] [Indexed: 01/19/2023] Open
Abstract
Ulcerative colitis and Crohn's disease are inflammatory bowel diseases thought to involve strains of Escherichia coli. We report here that two wild-type Afa/Dr diffusely adhering E. coli (DAEC) strains, C1845 and IH11128, which harbor the fimbrial F1845 adhesin and the Dr hemagglutinin, respectively, and the E. coli laboratory strain HB101, transformed with the pSSS1 plasmid to produce Afa/Dr F1845 adhesin, all induced interleukin-8 (IL-8) production and transepithelial migration of polymorphonuclear leukocytes (PMNL) in polarized monolayers of the human intestinal cell line T84 grown on semipermeable filters. We observed that after PMNL migration, expression of decay-accelerating factor (DAF, or CD55), the brush border-associated receptor for Afa/Dr adhesins, was strongly enhanced, increasing the adhesion of Afa/Dr DAEC bacteria. When examining the mechanism by which DAF expression was enhanced, we observed that the PMNL transepithelial migration induced epithelial synthesis of tumor necrosis factor alpha and IL-1beta, which in turn promoted the upregulation of DAF.
Collapse
Affiliation(s)
- Fréderic Bétis
- Unité INSERM 36, IFR 50, Faculté de Médecine, avenue de Valombrose, 06107 Nice Cédex 02, France
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Bétis F, Brest P, Hofman V, Guignot J, Bernet-Camard MF, Rossi B, Servin A, Hofman P. The Afa/Dr adhesins of diffusely adhering Escherichia coli stimulate interleukin-8 secretion, activate mitogen-activated protein kinases, and promote polymorphonuclear transepithelial migration in T84 polarized epithelial cells. Infect Immun 2003; 71:1068-74. [PMID: 12595416 PMCID: PMC148852 DOI: 10.1128/iai.71.3.1068-1074.2003] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2002] [Revised: 10/31/2002] [Accepted: 12/10/2002] [Indexed: 12/17/2022] Open
Abstract
Afa/Dr diffusely adhering Escherichia coli (Afa/Dr DAEC) strains cause symptomatic urinary tract and intestinal infections. The proinflammatory effects of Afa/Dr DAEC strains in vitro have been not investigated to date. In the present study, we used confluent polarized monolayers of intestinal cell line T84 to evaluate the consequences of epithelial infection by Afa/Dr DAEC strains in terms of proinflammatory response. Polymorphonuclear leukocyte (PMNL) migration across the epithelial barrier was induced after incubation of the T84 monolayers with the wild-type Afa/Dr DAEC strain C1845 harboring the fimbrial F1845 adhesin and strain IH11128 harboring the Dr hemagglutinin, and the E. coli laboratory strain HB101 was transformed with the pSSS1 plasmid, producing Afa/Dr F1845 adhesin. PMNL migrations were correlated with a basolateral secretion of interleukin-8 by T84 cells and were abolished after incubation of epithelial cells with an anti-decay accelerating factor (DAF) antibody that recognized the short consensus repeat 3 domain of DAF (monoclonal antibody 1H4). Moreover, Afa/Dr DAEC strains induced tyrosine phosphorylation of several T84 proteins and activated the mitogen-activated protein kinases (ERK1/2 mitogen-activated protein, P38, and Jun-C kinases). These data demonstrated for the first time that, in vitro, Afa/Dr DAEC strains exert a proinflammatory signal in intestinal epithelial cells.
Collapse
|