1
|
Jonker PB, Sadullozoda M, Cognet G, Saab JJA, Sokol KH, Wu VX, Kumari D, Sheehan C, Ozgurses ME, Agovino D, Croley G, Patel SA, Bock-Hughes A, Macleod KF, Shah H, Coloff JL, Lien EC, Muir A. Microenvironmental arginine restriction sensitizes pancreatic cancers to polyunsaturated fatty acids by suppression of lipid synthesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.10.642426. [PMID: 40161789 PMCID: PMC11952453 DOI: 10.1101/2025.03.10.642426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Nutrient limitation is a characteristic feature of poorly perfused tumors. In contrast to well-perfused tissues, nutrient deficits in tumors perturb cellular metabolic activity, which imposes metabolic constraints on cancer cells. The metabolic constraints created by the tumor microenvironment can lead to vulnerabilities in cancers. Identifying the metabolic constraints of the tumor microenvironment and the vulnerabilities that arise in cancers can provide new insight into tumor biology and identify promising antineoplastic targets. To identify how the microenvironment constrains the metabolism of pancreatic tumors, we challenged pancreatic cancer cells with microenvironmental nutrient levels and analyzed changes in cell metabolism. We found that arginine limitation in pancreatic tumors perturbs saturated and monounsaturated fatty acid synthesis by suppressing the lipogenic transcription factor SREBP1. Synthesis of these fatty acids is critical for maintaining a balance of saturated, monounsaturated, and polyunsaturated fatty acids in cellular membranes. As a consequence of microenvironmental constraints on fatty acid synthesis, pancreatic cancer cells and tumors are unable to maintain lipid homeostasis when exposed to polyunsaturated fatty acids, leading to cell death by ferroptosis. In sum, arginine restriction in the tumor microenvironment constrains lipid metabolism in pancreatic cancers, which renders these tumors vulnerable to polyunsaturatedenriched fat sources.
Collapse
Affiliation(s)
- Patrick B. Jonker
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA, 60637
| | - Mumina Sadullozoda
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA, 60637
| | - Guillaume Cognet
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA, 60637
| | - Juan J. Apiz Saab
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA, 60637
| | - Kelly H. Sokol
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, Michigan, USA, 49503
| | - Violet X. Wu
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA, 60637
| | - Deepa Kumari
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA, 60637
| | - Colin Sheehan
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA, 60637
| | - Mete E. Ozgurses
- Department of Physiology and Biophysics, University of Illinois College of Medicine, Chicago, IL, USA, 60612
| | - Darby Agovino
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA, 60637
| | - Grace Croley
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA, 60637
| | - Smit A. Patel
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA, 60637
| | - Althea Bock-Hughes
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA, 60637
| | - Kay F. Macleod
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA, 60637
| | - Hardik Shah
- Metabolomics Platform, Comprehensive Cancer Center, The University of Chicago, Chicago, IL, USA, 60637
| | - Jonathan L. Coloff
- Department of Physiology and Biophysics, University of Illinois College of Medicine, Chicago, IL, USA, 60612
| | - Evan C. Lien
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, Michigan, USA, 49503
| | - Alexander Muir
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA, 60637
| |
Collapse
|
2
|
Xie R, Luo Y, Bao B, Wu X, Guo J, Wang J, Qu X, Che X, Zheng C. The Role of Fatty Acid Metabolism, the Related Potential Biomarkers, and Targeted Therapeutic Strategies in Gastrointestinal Cancers. Drug Dev Res 2024; 85:e70014. [PMID: 39527665 DOI: 10.1002/ddr.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/12/2024] [Accepted: 10/13/2024] [Indexed: 11/16/2024]
Abstract
Gastrointestinal cancer has emerged as a significant global health concern due to its high incidence and mortality, limited effectiveness of early detection, suboptimal treatment outcomes, and poor prognosis. Metabolic reprogramming is a prominent feature of cancer, and fatty acid metabolism assumes a pivotal role in bridging glucose metabolism and lipid metabolism. Fatty acids play important roles in cellular structural composition, energy supply, signal transduction, and other lipid-related processes. Changes in the levels of fatty acid metabolite may indicate the malignant transformation of gastrointestinal cells, which have an impact on the prognosis of patients and can be used as a marker to monitor the efficacy of anticancer therapy. Therefore, targeting key enzymes involved in fatty acid metabolism, either as monotherapy or in combination with other agents, is a promising strategy for anticancer treatment. This article reviews the potential mechanisms of fatty acid metabolism disorders in the occurrence and development of gastrointestinal tumors, and summarizes the related potential biomarkers and anticancer strategies.
Collapse
Affiliation(s)
- Ruixi Xie
- Department of Medical Oncology, Provincial Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, Clinical Cancer Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ying Luo
- Department of Medical Oncology, Provincial Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, Clinical Cancer Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Bowen Bao
- Department of Medical Oncology, Provincial Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, Clinical Cancer Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xinshu Wu
- Department of Medical Oncology, Provincial Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, Clinical Cancer Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jia Guo
- Department of Medical Oncology, Provincial Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, Clinical Cancer Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jin Wang
- Department of Medical Oncology, Provincial Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, Clinical Cancer Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiujuan Qu
- Department of Medical Oncology, Provincial Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, Clinical Cancer Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaofang Che
- Department of Medical Oncology, Provincial Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, Clinical Cancer Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chunlei Zheng
- Department of Medical Oncology, Provincial Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, Clinical Cancer Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Oncology, Shanghai Electric Power Hospital, Shanghai, China
| |
Collapse
|
3
|
Jiang YL, Li X, Tan YW, Fang YJ, Liu KY, Wang YF, Ma T, Ou QJ, Zhang CX. Docosahexaenoic acid inhibits the invasion and migration of colorectal cancer by reversing EMT through the TGF-β1/Smad signaling pathway. Food Funct 2024; 15:9420-9433. [PMID: 39189524 DOI: 10.1039/d4fo02346c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The primary cause of mortality in colorectal cancer (CRC) patients is tumor metastasis. The epithelial-mesenchymal transition (EMT) stands out as a crucial factor promoting the metastasis of CRC. Previous findings suggest a potential inhibitory effect of docosahexaenoic acid (DHA) on CRC metastasis, but the precise mechanism remains unknown, this study aims to explore this issue. We assessed metastasis and recurrence, all-cause mortality, and cancer-related mortality rates according to DHA intake in independent CRC cohorts (n = 367) by survival analysis. The ability of DHA to block CRC cell migration and invasion was tested using transwell and wound-healing assays. The regulation of EMT marker genes in CRC by DHA was detected by quantitative real-time PCR (qPCR) and immunoblotting, and the effect of DHA on the TGF-β1/Smad signaling pathway was further investigated. These cellular findings were validated using a subcutaneous CRC mouse model. Survival analyses showed that lower DHA intake was associated with a higher risk of CRC metastasis and a poorer prognosis. In vitro experiments showed that DHA inhibits the TGF-β1/Smad signaling pathway and regulates downstream transcription factors, thereby reversing the EMT and inhibiting invasion and migration. In the mouse model, dietary DHA supplementation effectively increased blood DHA concentrations and inhibited CRC metastasis. Our study demonstrated that DHA inhibits CRC invasion and metastasis by inhibiting the TGF-β1/Smad signaling pathway. Increased intake of DHA among CRC patients may provide additional benefits to the prognosis of colorectal cancer.
Collapse
Affiliation(s)
- Yi-Ling Jiang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Xue Li
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Ya-Wen Tan
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Yu-Jing Fang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Kai-Yan Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Yi-Fan Wang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Ting Ma
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Qing-Jian Ou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Cai-Xia Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
4
|
Ng WL, Tan JK, Gnanaraj C, Shah MD, Nor Rashid N, Abdullah I, Yong YS. Cytotoxicity of Physalis minima Linn (Solanaceae) fruit against HCT116 and HT29 colorectal cancer cell lines. Nat Prod Res 2024:1-6. [PMID: 38953123 DOI: 10.1080/14786419.2024.2370521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 06/15/2024] [Indexed: 07/03/2024]
Abstract
The pantropical Physalis minima are traditionally used for the prevention and treatment of various illnesses, diseases, and cancers. While most earlier studies on the species have focused on the phytochemistry of the leaf and stem extracts, recent studies have indicated that its fruit may contain bioactive compounds of medical interest. In this study, we investigated the cytotoxicity of extracts from the fruit of P. minima against colorectal cancer cell lines and revealed its phytochemical profile via high-resolution tandem mass spectrometry analysis. Following a 24-h treatment with the fruit extract, cytoplasm shrinkage and nucleus condensation were observed in the colorectal cancer cell lines HCT116 and HT29, indicating the induction of programmed cell death. Phytochemically, 71 putative metabolites were identified. Some of these metabolites have been reported to inhibit cancers to varying degrees, further supporting the correlation of the putative metabolites with the cytotoxicity against colorectal cancer cells demonstrated in this study.
Collapse
Affiliation(s)
- Wei Lun Ng
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Selangor, Malaysia
| | - Jen Kit Tan
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan, Kuala Lumpur, Malaysia
| | - Charles Gnanaraj
- Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Perak, Malaysia
| | | | - Nurshamimi Nor Rashid
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Iskandar Abdullah
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Yoong Soon Yong
- Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
- Centre of Research for Advanced Aquaculture, UCSI University, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Ping P, Li J, Xu X. The value of plasma omega-3 polyunsaturated fatty acids in predicting the response and prognosis of cervical squamous cell carcinoma patients to concurrent chemoradiotherapy. Front Pharmacol 2024; 15:1379508. [PMID: 38860167 PMCID: PMC11163051 DOI: 10.3389/fphar.2024.1379508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/08/2024] [Indexed: 06/12/2024] Open
Abstract
Background: In recent years, abnormalities in plasma omega-3 polyunsaturated fatty acids (omega-3 PUFAs) have been proven to be related to the risk of cancer, but their prognostic value for cancer is unclear. The purpose of this study was to retrospectively evaluate the response and prognostic significance of plasma omega-3 PUFAs in patients with cervical squamous cell carcinoma (CSCC) treated with concurrent chemoradiotherapy (CCRT). Spearman rank correlation analysis was used to analyze the correlation between omega-3 PUFAs and squamous cell carcinoma antigen (SCC-Ag) levels. Methods: A total of 89 patients with CSCC who underwent CCRT were evaluated retrospectively. Binary logistic regression analysis was used to analyze the independent predictors related to complete response (CR) after CCRT. A Cox proportional hazard model and Kaplan-Meier analysis were utilized to perform survival analysis. Results: According to multivariate logistic regression analyses, a high level of plasma EPA was independently correlated with an increased incidence of CR after CCRT (odds ratio (OR), 0.980; 95% confidence interval (CI), 0.962-0.999, p = 0.038). With a median follow-up of 41.3 months, the CSCC patients in the high EPA (≥46.0 nmol/mL) group exhibited longer OS and PFS. According to our multivariate analysis, pretreatment plasma EPA level was an independent prognostic factor for PFS in patients with CSCC who underwent CCRT (hazard ratio (HR), 0.263; 95% CI, 0.089-0.782, p = 0.016). However, it was not an independent prognostic factor of OS. Spearman rank correlation analysis revealed was a negative correlation between pretreatment SCC-Ag (pre SCC-Ag) levels and EPA levels (r = -0.305, p = 0.004), and a weak negative correlation between posttreatment SCC-Ag (post SCC-Ag) levels and EPA levels (r = -0.251, p = 0.018). Conclusion: Plasma omega-3 PUFAs are related to the response and survival outcome of patients with CSCC who underwent CCRT. Pretreatment plasma EPA levels may be a promising biomarker for predicting the response and prognosis of patients with CSCC who undergo CCRT. In addition, the pretreatment plasma EPA levels presented a negative correlation with the SCC-Ag levels.
Collapse
Affiliation(s)
| | - Juan Li
- *Correspondence: Juan Li, ; Xiaoying Xu,
| | | |
Collapse
|
6
|
Roux-Levy C, Binquet C, Vaysse C, Scherrer ML, Ayav A, Ortega-Deballon P, Lakkis Z, Liu D, Deguelte S, Cottet V. Association between polyunsaturated fatty acids in adipose tissue and mortality of colorectal cancer patients. Nutrition 2024; 121:112358. [PMID: 38401197 DOI: 10.1016/j.nut.2024.112358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/29/2023] [Accepted: 01/08/2024] [Indexed: 02/26/2024]
Abstract
INTRODUCTION Nutritional intake and dysregulation of fatty acid metabolism play a role in the progression of various tumors, but the consumption of fatty acids is difficult to assess accurately with dietary questionnaires. Biomarkers can objectively assess intake, storage and bioavailability. OBJECTIVE We studied the association between the polyunsaturated fatty acid (PUFA) composition of abdominal subcutaneous adipose tissue (good indicator of dietary intake over 2-3 years) and all-cause mortality. METHODS In the multicenter AGARIC study, samples from 203 patients with colorectal cancer (CRC) undergoing curative surgery, were harvested from subcutaneous adipose tissue, which were then analyzed for PUFA composition. RESULTS After a median follow-up of 45 months, 76 patients died. These patients were more often men (72.4% versus 57.5%, P = 0.04), diabetic (32.9% versus 13.4%, P = 0.001), old (median: 74.5 versus 66.6 years, P < 0.001) and with high alcohol consumption (47.4% versus 30.7%, P = 0.005). An increased risk of death was observed with higher levels of 20:2 ω-6 (hazard ratiotertile3 vstertile1 (HRT3vsT1) 2.12; 95% confidence interval (CI) 1.01-4.42; p-trend = 0.04), 22:4 ω-6 (HRT3vsT1 = 3.52; 95% CI = 1.51-8.17; p-trend = 0.005), and 22:5 ω-6 (HRT3vsT1 = 3.50; 95% CI = 1.56-7.87; p-trend = 0.002). Conversely, the risk of death seemed lower when higher concentrations of 18:3 ω-6 (HRT3vsT1 = 0.52; 95% CI = 0.27-0.99; p-trend = 0.04) and the essential fatty acid, α-linolenic acid 18:3 ω-3 (HRT3vsT1 = 0.47; 95% CI = 0.24-0.93; p-trend = 0.03) were observed. CONCLUSION The risk of death was increased in CRC patients with higher concentrations of certain ω-6 PUFAs and lower concentrations of α-linolenic acid in their subcutaneous adipose tissue. These results reflect dietary habits and altered fatty acid metabolism. Our exploratory results warrant confirmation in larger studies with further exploration of the mechanisms involved.
Collapse
Affiliation(s)
- Cécile Roux-Levy
- Inserm UMR 1231, Université de Bourgogne, LabEx LipSTIC ANR-11-LABX-0021, Dijon, France
| | - Christine Binquet
- Inserm UMR 1231, Université de Bourgogne, LabEx LipSTIC ANR-11-LABX-0021, Dijon, France; Inserm CIC 1432, Clinical Epidemiology Team, Faculté de Médecine de Dijon, Dijon, France; University Hospital of Dijon, Dijon, France
| | - Carole Vaysse
- ITERG - Team of Nutrition Life Sciences, Bordeaux, France
| | - Marie-Lorraine Scherrer
- Department of Digestive, Cancer, Bariatric and Emergency Surgery, Regional Hospital Centre Metz Thionville, Hôpital de Mercy, Ars-Laquenexy, France
| | - Ahmet Ayav
- Department of General and Digestive Surgery, University Hospital of Nancy, Hôpital Brabois, Vandoeuvre-les-Nancy, France
| | - Pablo Ortega-Deballon
- Inserm UMR 1231, Université de Bourgogne, LabEx LipSTIC ANR-11-LABX-0021, Dijon, France; Department of Digestive Surgical Oncology, University Hospital of Dijon, Dijon, France
| | - Zaher Lakkis
- Department of General, Digestive and Oncologic Surgery, University Hospital of Besançon, Besançon, France
| | - David Liu
- Department of General and Digestive Surgery, University Hospital of Strasbourg, Hôpital de Hautepierre, Strasbourg, France
| | - Sophie Deguelte
- Department of General, Digestive and Endocrine Surgery, University Hospital of Reims, Reims, France
| | - Vanessa Cottet
- Inserm UMR 1231, Université de Bourgogne, LabEx LipSTIC ANR-11-LABX-0021, Dijon, France; Inserm CIC 1432, Clinical Epidemiology Team, Faculté de Médecine de Dijon, Dijon, France; University Hospital of Dijon, Dijon, France.
| |
Collapse
|
7
|
Chai Z, Zhang H, Ji X, Hu X, He Y, Zhao F, Song C, Zhou Y, Li T, He C, Zhou D, Zhang X. The disparate effects of omega-3 PUFAs on intestinal microbial homeostasis in experimental rodents under physiological condition. Prostaglandins Leukot Essent Fatty Acids 2024; 203:102643. [PMID: 39317024 DOI: 10.1016/j.plefa.2024.102643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/26/2024]
Abstract
The health benefits of omega-3 polyunsaturated fatty acids (omega-3 PUFAs), primarily eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are linked to their regulatory effects on the composition of the gut microbiota. However, there is a lack of direct evidence on whether omega-3 PUFAs regulate the gut microbial homeostasis under physiological conditions. This study investigated the impact of equivalent doses of EPA, DHA, and fish oil (FO) with a DHA to EPA ratio of approximately 1:1 on the bacterial and fungal composition of normal young mice. This study also analyzed changes in key components of the gut microenvironment, including the colonic mucus barrier and short-chain fatty acids, to address the prebiotic potential of omega-3 PUFAs. The results showed that all three omega-3 PUFAs interventions induced significant fluctuations in the gut bacteria and fungi, leading to an increase in the abundance of some probiotics. Notably, DHA, EPA, and FO interventions significantly increased the abundance of the probiotic Lactobacillus, Bifidobacterium, and Akkermansia, respectively. Both DHA and fish oil interventions also significantly reduced the abundance of potentially pathogenic fungi, such as Aspergillus and Penicillium. Association analysis of the top 19 differential fungal and bacterial genera in abundance revealed a much more bacteria-bacteria and bacteria-fungi connections, but fewer fungi-fungi connections. This highlights the importance of bacteria in the gut microecological network. Furthermore, the levels of butyric acid and valeric acid in the colonic contents of DHA intervention group were significantly increased, and the colonic mucus layer thickness was increased in three treatment groups. In summary, DHA, EPA and FO interventions showed targeted enhancement of different probiotics and enhanced colon defense barrier (mucus barrier), showing potential prebiotic effects.
Collapse
Affiliation(s)
- Zhenglong Chai
- School of Public Health, Health Science Center, Ningbo University, Zhejiang Key Laboratory of Pathophysiology, Ningbo, Zhejiang, 315211, China
| | - Hui Zhang
- School of Public Health, Health Science Center, Ningbo University, Zhejiang Key Laboratory of Pathophysiology, Ningbo, Zhejiang, 315211, China; Academy of Integrative Medicine Institute, The First Donguan Affiliated Hospital, Guangdong Medical University, Donguan, Guangdong, 523000, China
| | - Xinyue Ji
- School of Public Health, Health Science Center, Ningbo University, Zhejiang Key Laboratory of Pathophysiology, Ningbo, Zhejiang, 315211, China
| | - Xinyi Hu
- School of Public Health, Health Science Center, Ningbo University, Zhejiang Key Laboratory of Pathophysiology, Ningbo, Zhejiang, 315211, China
| | - Yannan He
- OmegaBandz. Inc Shanghai, 1180 Xingxian Road, Shanghai, 201815, China; Institute of Nutrition and Health of Qingdao University, Qingdao, Shandong, 266021, China
| | - Feng Zhao
- Xi'an University, Xi'an, Shanxi, 710065, China
| | - Chunyan Song
- School of Public Health, Health Science Center, Ningbo University, Zhejiang Key Laboratory of Pathophysiology, Ningbo, Zhejiang, 315211, China
| | - Yiqiu Zhou
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315020, China
| | - Tao Li
- HEALTH BioMed Research & Development Center, Health BioMed Co. Ltd., Ningbo, Zhejiang 315801, China
| | - Canxia He
- School of Public Health, Health Science Center, Ningbo University, Zhejiang Key Laboratory of Pathophysiology, Ningbo, Zhejiang, 315211, China
| | - Dezheng Zhou
- School of Public Health, Health Science Center, Ningbo University, Zhejiang Key Laboratory of Pathophysiology, Ningbo, Zhejiang, 315211, China
| | - Xiaohong Zhang
- School of Public Health, Health Science Center, Ningbo University, Zhejiang Key Laboratory of Pathophysiology, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
8
|
Kim SJ, Hyun J. Altered lipid metabolism as a predisposing factor for liver metastasis in MASLD. Mol Cells 2024; 47:100010. [PMID: 38237744 PMCID: PMC10960132 DOI: 10.1016/j.mocell.2024.100010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/22/2023] [Accepted: 12/09/2023] [Indexed: 02/12/2024] Open
Abstract
Recently, the incidence of metabolic dysfunction-associated steatotic liver disease (MASLD) is increasing due to the high prevalence of metabolic conditions, such as obesity and type 2 diabetes mellitus. Steatotic liver is a hotspot for cancer metastasis in MASLD. Altered lipid metabolism, a hallmark of MASLD, remodels the tissue microenvironment, making it conducive to the growth of metastatic liver cancer. Tumors exacerbate the dysregulation of hepatic metabolism by releasing extracellular vesicles and particles into the liver. Altered lipid metabolism influences the proliferation, differentiation, and functions of immune cells, contributing to the formation of an immunosuppressive and metastasis-prone liver microenvironment in MASLD. This review discusses the mechanisms by which the steatotic liver promotes liver metastasis progression, focusing on its role in fostering an immunosuppressive microenvironment in MASLD. Furthermore, this review highlights lipid metabolism manipulation strategies for the therapeutic management of metastatic liver cancer.
Collapse
Affiliation(s)
- So Jung Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Jeongeun Hyun
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, College of Dentistry, Dankook University, Cheonan 31116, Republic of Korea.
| |
Collapse
|
9
|
Pettersen CHH, Samdal H, Sætrom P, Wibe A, Hermansen E, Schønberg SA. The Salmon Oil OmeGo Reduces Viability of Colorectal Cancer Cells and Potentiates the Anti-Cancer Effect of 5-FU. Mar Drugs 2023; 21:636. [PMID: 38132957 PMCID: PMC10744414 DOI: 10.3390/md21120636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancer types worldwide. Chemotherapy is toxic to normal cells, and combinatory treatment with natural well-tolerated products is being explored. Some omega-3 polyunsaturated fatty acids (n-3 PUFAs) and marine fish oils have anti-cancer effects on CRC cells. The salmon oil OmeGo (Hofseth BioCare) contains a spectrum of fatty acids, including the n-3 PUFAs docosahexaenoic acid (DHA) and eicosahexaenoic acid (EPA). We explored a potential anti-cancer effect of OmeGo on the four CRC cell lines DLD-1, HCT-8, LS411N, and LS513, alone and in combination with the chemotherapeutic agent 5-Fluorouracil (5-FU). Screening indicated a time- and dose-dependent effect of OmeGo on the viability of the DLD-1 and LS513 CRC cell lines. Treatment with 5-FU and OmeGo (IC20-IC30) alone indicated a significant reduction in viability. A combinatory treatment with OmeGo and 5-FU resulted in a further reduction in viability in DLD-1 and LS513 cells. Treatment of CRC cells with DHA + EPA in a concentration corresponding to the content in OmeGo alone or combined with 5-FU significantly reduced viability of all four CRC cell lines tested. The lowest concentration of OmeGo reduced viability to a higher degree both alone and in combination with 5-FU compared to the corresponding concentrations of DHA + EPA in three of the cell lines. Results suggest that a combination of OmeGo and 5-FU could have a potential as an alternative anti-cancer therapy for patients with CRC.
Collapse
Affiliation(s)
- Caroline H. H. Pettersen
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; (H.S.); (P.S.); (A.W.); (S.A.S.)
- Department of Surgery, St. Olav’s University Hospital, 7006 Trondheim, Norway
- Hofseth BioCare, Kipervikgata 13, 6003 Ålesund, Norway;
| | - Helle Samdal
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; (H.S.); (P.S.); (A.W.); (S.A.S.)
- Department of Surgery, St. Olav’s University Hospital, 7006 Trondheim, Norway
| | - Pål Sætrom
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; (H.S.); (P.S.); (A.W.); (S.A.S.)
- Department of Computer Science, Faculty of Information Technology and Electrical Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
- Bioinformatics Core Facility—BioCore, Norwegian University of Science and Technology (NTNU), 7006 Trondheim, Norway
- K.G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology (NTNU), 7006 Trondheim, Norway
| | - Arne Wibe
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; (H.S.); (P.S.); (A.W.); (S.A.S.)
- Department of Surgery, St. Olav’s University Hospital, 7006 Trondheim, Norway
| | | | - Svanhild A. Schønberg
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; (H.S.); (P.S.); (A.W.); (S.A.S.)
| |
Collapse
|
10
|
Hull MA, Ow PL, Ruddock S, Brend T, Smith AF, Marshall H, Song M, Chan AT, Garrett WS, Yilmaz O, Drew DA, Collinson F, Cockbain AJ, Jones R, Loadman PM, Hall PS, Moriarty C, Cairns DA, Toogood GJ. Randomised, placebo-controlled, phase 3 trial of the effect of the omega-3 polyunsaturated fatty acid eicosapentaenoic acid (EPA) on colorectal cancer recurrence and survival after surgery for resectable liver metastases: EPA for Metastasis Trial 2 (EMT2) study protocol. BMJ Open 2023; 13:e077427. [PMID: 38030258 PMCID: PMC10689403 DOI: 10.1136/bmjopen-2023-077427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
INTRODUCTION There remains an unmet need for safe and cost-effective adjunctive treatment of advanced colorectal cancer (CRC). The omega-3 polyunsaturated fatty acid eicosapentaenoic acid (EPA) is safe, well-tolerated and has anti-inflammatory as well as antineoplastic properties. A phase 2 randomised trial of preoperative EPA free fatty acid 2 g daily in patients undergoing surgery for CRC liver metastasis showed no difference in the primary endpoint (histological tumour proliferation index) compared with placebo. However, the trial demonstrated possible benefit for the prespecified exploratory endpoint of postoperative disease-free survival. Therefore, we tested the hypothesis that EPA treatment, started before liver resection surgery (and continued postoperatively), improves CRC outcomes in patients with CRC liver metastasis. METHODS AND ANALYSIS The EPA for Metastasis Trial 2 trial is a randomised, double-blind, placebo-controlled, phase 3 trial of 4 g EPA ethyl ester (icosapent ethyl (IPE; Vascepa)) daily in patients undergoing liver resection surgery for CRC liver metastasis with curative intent. Trial treatment continues for a minimum of 2 years and maximum of 4 years, with 6 monthly assessments, including quality of life outcomes, as well as annual clinical record review after the trial intervention. The primary endpoint is CRC progression-free survival. Key secondary endpoints are overall survival, as well as the safety and tolerability of IPE. A minimum 388 participants are estimated to provide 247 CRC progression events during minimum 2-year follow-up, allowing detection of an HR of 0.7 in favour of IPE, with a power of 80% at the 5% (two sided) level of significance, assuming drop-out of 15%. ETHICS AND DISSEMINATION Ethical and health research authority approval was obtained in January 2018. All data will be collected by 2025. Full trial results will be published in 2026. Secondary analyses of health economic data, biomarker studies and other translational work will be published subsequently. TRIAL REGISTRATION NUMBER NCT03428477.
Collapse
Affiliation(s)
- Mark A Hull
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Pei Loo Ow
- Leeds Cancer Research UK Clinical Trials Unit, Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Sharon Ruddock
- Leeds Cancer Research UK Clinical Trials Unit, Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Tim Brend
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Alexandra F Smith
- Leeds Cancer Research UK Clinical Trials Unit, Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Helen Marshall
- Leeds Cancer Research UK Clinical Trials Unit, Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Mingyang Song
- Harvard TH Chan School of Public Health, Boston, Massachusetts, USA
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Wendy S Garrett
- Harvard TH Chan School of Public Health, Boston, Massachusetts, USA
| | - Omer Yilmaz
- Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Boston, Massachusetts, USA
| | - David A Drew
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Fiona Collinson
- Leeds Cancer Research UK Clinical Trials Unit, Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | | | - Robert Jones
- Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, UK
| | - Paul M Loadman
- Institute of Cancer Therapeutics, University of Bradford, Bradford, UK
| | - Peter S Hall
- Edinburgh Clinical Trials Unit, University of Edinburgh, Edinburgh, UK
| | | | - David A Cairns
- Leeds Cancer Research UK Clinical Trials Unit, Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Giles J Toogood
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
- Leeds Teaching Hospitals NHS Trust, Leeds, UK
| |
Collapse
|
11
|
Cadili L, van Dijk PAD, Grudzinski AL, Cape J, Kuhnen AH. The effect of preoperative oral nutritional supplementation on surgical site infections among adult patients undergoing elective surgery: A systematic review and meta-analysis. Am J Surg 2023; 226:330-339. [PMID: 37385857 DOI: 10.1016/j.amjsurg.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 07/01/2023]
Abstract
INTRODUCTION Mixed findings are reported on the effect of oral nutritional supplements in reducing Surgical Site Infections (SSIs). MATERIAL AND METHODS PubMED, EMBASE and Cochrane were searched. Studies from inception to July 2022 were included if they involved adults undergoing elective surgery and compared preoperative macronutrient oral nutritional supplements to placebo/standard diet. RESULTS Of 372 unique citations, 19 were included (N = 2480): 13 RCTs (N = 1506) and 6 observational studies (N = 974). Moderate-certainty evidence suggested that nutritional supplements SSI risk (OR 0.54, 95% C.I. 0.40-0.72, N = 2718 participants). In elective colorectal surgery, this risk-reduction was 0.43 (95% C.I. 0.26-0.61, N = 835 participants) and among patients who received Impact 0.48 (95% C.I. 0.32-0.70, N = 1338). CONCLUSION Oral nutritional supplements prior to adult elective surgery may significantly reduce SSIs, with an overall 50% protective effect. This protective effect persisted in subgroup analysis of colorectal surgery patients and the use of Impact.
Collapse
Affiliation(s)
- Lina Cadili
- Harvard T.H. Chan School of Public Health, Boston, MA, USA; Division of General Surgery, Department of General Surgery, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Pim A D van Dijk
- Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Orthopaedic Surgery, Academic Center for Evidence-based Sports Medicine (ACES) and Amsterdam Collaboration for Health and Safety in Sports, ACHSS, Amsterdam UMC IOC Research Center, University of Amsterdam, the Netherlands
| | - Alexa L Grudzinski
- Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Anesthesiology and Pain Medicine, University of Ottawa, Ontario, Canada
| | - Jennifer Cape
- Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Plastic and Reconstructive Surgery, Western University, London, Ontario, Canada
| | - Angela H Kuhnen
- Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Colon and Rectal Surgery, Lahey Hospital, Tufts University School of Medicine, Burlington, MA, USA
| |
Collapse
|
12
|
Tojjari A, Choucair K, Sadeghipour A, Saeed A, Saeed A. Anti-Inflammatory and Immune Properties of Polyunsaturated Fatty Acids (PUFAs) and Their Impact on Colorectal Cancer (CRC) Prevention and Treatment. Cancers (Basel) 2023; 15:4294. [PMID: 37686570 PMCID: PMC10487099 DOI: 10.3390/cancers15174294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Colorectal cancer (CRC) remains a leading cause of death from cancer worldwide, with increasing incidence in the Western world. Diet has become the focus of research as a significant risk factor for CRC occurrence, and the role of dietary polyunsaturated fatty acids (PUFAs) has become an area of interest given their potential role in modulating inflammation, particularly in the pro-carcinogenic inflammatory environment of the colon. This work reviews the main types of PUFAs, their characteristics, structure, and physiologic role. We then highlight their potential role in preventing CRC, their signaling function vis-à-vis tumorigenic signaling, and their subsequent potential role in modulating response to different treatment modalities. We review pre-clinical and clinical data and discuss their potential use as adjunct therapies to currently existing treatment modalities. Given our understanding of PUFAs' immune and inflammation modulatory effects, we explore the possible combination of PUFAs with immune checkpoint inhibitors and other targeted therapies.
Collapse
Affiliation(s)
- Alireza Tojjari
- Division of Hematology and Oncology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA;
| | - Khalil Choucair
- Division of Hematology and Oncology, Department of Medicine, Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201, USA;
| | - Arezoo Sadeghipour
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modarres University, Tehran 14115-175, Iran;
| | - Azhar Saeed
- Department of Pathology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA;
| | - Anwaar Saeed
- Division of Hematology and Oncology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA;
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| |
Collapse
|
13
|
Kim SH, Park DH, Lim YJ. Impact of Diet on Colorectal Cancer Progression and Prevention: From Nutrients to Neoplasms. THE KOREAN JOURNAL OF GASTROENTEROLOGY = TAEHAN SOHWAGI HAKHOE CHI 2023; 82:73-83. [PMID: 37621242 DOI: 10.4166/kjg.2023.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/26/2023]
Abstract
Colorectal cancer (CRC), one of the most common cancers worldwide, continues to increase in incidence and mortality rates. This trend is closely linked to changes in dietary habits, which are major risk factors for colorectal cancer. The increase in the incidence of CRC in countries previously considered low-risk and with low socioeconomic status is most likely due to lifestyle and dietary changes. Understanding the influence of dietary factors on the onset of colorectal cancer is essential for prevention and treatment. This review explores the complex interplay between dietary factors and colorectal cancer, focusing on the key nutrients and dietary habits that influence disease onset and progression. The impact of diet on colorectal microbiota and the influence of diet on early-onset colorectal cancer are also reviewed, reviewing recent research on how dietary interventions affect the treatment and recurrence of colorectal cancer. Finally, the future research directions for developing and applying effective dietary intervention strategies are discussed.
Collapse
Affiliation(s)
- Sang Hoon Kim
- Department of Internal Medicine, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang, Korea
| | - Dong Hwan Park
- Department of Internal Medicine, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang, Korea
| | - Yun Jeong Lim
- Department of Internal Medicine, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang, Korea
| |
Collapse
|
14
|
Torres W, Pérez JL, Díaz MP, D’Marco L, Checa-Ros A, Carrasquero R, Angarita L, Gómez Y, Chacín M, Ramírez P, Villasmil N, Durán-Agüero S, Cano C, Bermúdez V. The Role of Specialized Pro-Resolving Lipid Mediators in Inflammation-Induced Carcinogenesis. Int J Mol Sci 2023; 24:12623. [PMID: 37628804 PMCID: PMC10454572 DOI: 10.3390/ijms241612623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/10/2023] [Accepted: 04/15/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer is a process involving cell mutation, increased proliferation, invasion, and metastasis. Over the years, this condition has represented one of the most concerning health problems worldwide due to its significant morbidity and mortality. At present, the incidence of cancer continues to grow exponentially. Thus, it is imperative to open new avenues in cancer research to understand the molecular changes driving DNA transformation, cell-to-cell interaction derangements, and immune system surveillance decay. In this regard, evidence supports the relationship between chronic inflammation and cancer. In light of this, a group of bioactive lipids derived from polyunsaturated fatty acids (PUFAs) may have a position as novel anti-inflammatory molecules known as the specialized pro-resolving mediators (SPMs), a group of pro-resolutive inflammation agents that could improve the anti-tumor immunity. These molecules have the potential role of chemopreventive and therapeutic agents for various cancer types, and their effects have been documented in the scientific literature. Thus, this review objective centers around understanding the effect of SPMs on carcinogenesis and their potential therapeutic effect.
Collapse
Affiliation(s)
- Wheeler Torres
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - José Luis Pérez
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - María P. Díaz
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Luis D’Marco
- Grupo de Investigación en Enfermedades Cardiorrenales y Metabólicas, Departamento de Medicina y Cirugía, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Valencia, Spain
| | - Ana Checa-Ros
- Grupo de Investigación en Enfermedades Cardiorrenales y Metabólicas, Departamento de Medicina y Cirugía, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Valencia, Spain
| | - Rubén Carrasquero
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Lissé Angarita
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad Andres Bello, Concepción 4260000, Chile
| | - Yosselin Gómez
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Maricarmen Chacín
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080022, Colombia
| | - Paola Ramírez
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Nelson Villasmil
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Samuel Durán-Agüero
- Facultad de Ciencias Para el Cuidado de la Salud, Universidad San Sebastián, Los Leones 8420524, Chile
| | - Clímaco Cano
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Valmore Bermúdez
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080022, Colombia
| |
Collapse
|
15
|
George J, White D, Fielding B, Scott M, Rockall T, Whyte MB. Systematic review of preoperative n-3 fatty acids in major gastrointestinal surgery. BMJ SURGERY, INTERVENTIONS, & HEALTH TECHNOLOGIES 2023; 5:e000172. [PMID: 37397953 PMCID: PMC10314636 DOI: 10.1136/bmjsit-2022-000172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 05/17/2023] [Indexed: 07/04/2023] Open
Abstract
Objectives Perioperative nutrition aims to replenish nutritional stores before surgery and reduce postoperative complications. 'Immunonutrition' (including omega-3 fatty acids) may modulate the immune system and attenuate the postoperative inflammatory response. Hitherto, immunonutrition has overwhelmingly been administered in the postoperative period-however, this may be too late to provide benefit. Design A systematic literature search using MEDLINE and EMBASE for randomized controlled trials (RCTs). Setting Perioperative major gastrointestinal surgery. Participants Patients undergoing major gastrointestinal surgery. Interventions Omega-3 fatty acid supplementation commenced in the preoperative period, with or without continuation into postoperative period. Main outcome measures The effect of preoperative omega-3 fatty acids on inflammatory response and clinical outcomes. Results 833 studies were identified. After applying inclusion and exclusion criteria, 12 RCTs, involving 1456 randomized patients, were included. Ten articles exclusively enrolled patients with cancer. Seven studies used a combination of EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid) as the intervention and five studies used EPA alone. Eight out of 12 studies continued preoperative nutritional support into the postoperative period.Of the nine studies reporting mortality, no difference was seen. Duration of hospitalisation ranged from 4.5 to 18 days with intervention and 3.5 to 23.5 days with control. Omega-3 fatty acids had no effect on postoperative C-reactive protein and the effect on cytokines (including tumor necrosis factor-α, interleukin (IL)-6 and IL-10) was inconsistent. Ten of the 12 studies had low risk of bias, with one study having moderate bias from allocation and blinding. Conclusions There is insufficient evidence to support routine preoperative omega-3 fatty acid supplementation for major gastrointestinal surgery, even when this is continued after surgery. PROSPERO registration number CRD42018108333.
Collapse
Affiliation(s)
- Jason George
- Minimal Access Therapy Training Unit, Guildford, UK
- University of Surrey Faculty of Health and Medical Sciences, Guildford, UK
| | - Daniel White
- Minimal Access Therapy Training Unit, Guildford, UK
- University of Surrey Faculty of Health and Medical Sciences, Guildford, UK
| | - Barbara Fielding
- University of Surrey Faculty of Health and Medical Sciences, Guildford, UK
| | - Michael Scott
- Minimal Access Therapy Training Unit, Guildford, UK
- Anaesthesia and Critical Care Medicine, Virginia Commonwealth University Health System, Richmond, Virginia, USA
| | | | | |
Collapse
|
16
|
Liu H, Chen J, Shao W, Yan S, Ding S. Efficacy and safety of Omega-3 polyunsaturated fatty acids in adjuvant treatments for colorectal cancer: A meta-analysis of randomized controlled trials. Front Pharmacol 2023; 14:1004465. [PMID: 37144220 PMCID: PMC10151497 DOI: 10.3389/fphar.2023.1004465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 04/05/2023] [Indexed: 05/06/2023] Open
Abstract
Background: Colorectal cancer (CRC) ranks third globally. There are many adverse reactions to treatments such as surgeries and post-surgical chemotherapy, which affect patients' prognosis and reduce their life quality. Omega-3 polyunsaturated fatty acids (O3FAs) have become an essential part of immune nutrition due to their anti-inflammatory properties, which improve body immunity and have attracted widespread attention. A systematic review focused on the efficacy and safety of O3FAs for patients undergoing surgeries in combination with chemotherapy or a surgery alone is lacking. Objectives: To evaluate the efficacy of O3FAs in the adjuvant treatment of CRC, a meta-analysis was conducted on patients with CRC who underwent surgeries in combination with chemotherapy or a surgery alone. Methods: As of March 2023, publications have been obtained using search terms from digital databases such as PubMed, Web of Science, Embase and Cochrane Library. Only randomized clinical trials (RCTs) evaluating the efficacy and safety of O3FAs following adjuvant treatments for CRC were included in the meta-analysis. Key outcomes were tumor necrosis factor-alpha (TNF-α), C-reactive protein (CRP), interleukin-6 (IL-6), interleukin-1beta (IL-1β), albumin, body mass index (BMI), weight, the rate of infectious and non-infectious complications, the length of hospital stay (LOS), CRC mortality and life quality. Results: After screening 1,080 studies, 19 RCTs (n = 1,556) with O3FAs in CRC were included, in all of which at least one efficacy or safety outcome was examined. Compared to the control group, the level of TNF-α (MD = -0.79, 95% CI: 1.51 to -0.07, p = 0.03) and IL-6 was reduced due to O3FA-enriched nutrition during the perioperative period (MD = -4.70, 95% CI: 6.59 to -2.80, p < 0.00001). It also reduces LOS (MD = 9.36, 95% CI: 2.16 to 16.57, p = 0.01). No significant differences were found in CRP, IL-1β, albumin, BMI, weight, the rate of infectious and non-infectious complications, CRC mortality or life quality. The inflammatory status of patients with CRC undergoing adjuvant therapies decreased after a total parenteral nutrition (TPN) O3FA supplementation (TNF-α, MD = -1.26, 95% CI: 2.25 to -0.27, p = 0.01, I 2 = 4%, n = 183 participants). The rate of infectious and non-infectious complications was reduced among patients with CRC undergoing adjuvant therapies after a parenteral nutrition (PN) O3FA supplementation (RR = 3.73, 95% CI: 1.52 to 9.17, p = 0.004, I 2 = 0%, n = 76 participants). Conclusion: Our observations suggest that supplementation with O3FAs has little or no effect on patients with CRC undergoing adjuvant therapies and that a prolonged inflammatory state may be modified. To validate these findings, well-designed, large-scale, randomized and controlled studies on homogeneous patient populations are expected.
Collapse
Affiliation(s)
- Haoshuang Liu
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Jingfeng Chen
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Weihao Shao
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Su Yan
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Suying Ding
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
17
|
Kian N, Behrouzieh S, Razi S, Rezaei N. Diet Influences Immunotherapy Outcomes in Cancer Patients: A Literature Review. Nutr Cancer 2023; 75:415-429. [PMID: 36254373 DOI: 10.1080/01635581.2022.2133151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The outbreak of immunotherapy has revolutionized cancer treatment. Despite the results confirming the effectiveness of immunotherapy, some studies have reported poor responsiveness to this therapeutic approach. The effectiveness of immunotherapy is dependent on numerous factors related to patients' lifestyles and health status. Diet, as an essential component of lifestyle, plays a major role in determining immunotherapy outcomes. It can significantly influence the body, gut microbiome composition, and metabolism, both in general and in tumor microenvironment. Consuming certain diets has resulted in either improved or worsened outcomes in patients receiving immunotherapy. For example, several recent studies have associated ketogenic, plant-based, and microbiome-favoring diets with promising outcomes. Moreover, obesity and dietary deprivation have impacted immunotherapy responsiveness, yet the studies are inconsistent in this context. This narrative review aims to integrate the results from many articles that have studied the contribution of diet to immunotherapy. We will start by introducing the multiple effects of dietary status on cancer progression and treatment. Then we will proceed to discuss various regimens known to affect immunotherapy outcomes, including ketogenic, high-fiber, and obesity-inducing diets and regimens that either contain or lack specific nutrients. Finally, we will elaborate on how composition of the gut microbiome may influence immunotherapy.
Collapse
Affiliation(s)
- Naghmeh Kian
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sadra Behrouzieh
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden
| |
Collapse
|
18
|
Correlation between Olive Oil Intake and Gut Microbiota in Colorectal Cancer Prevention. Nutrients 2022; 14:nu14183749. [PMID: 36145125 PMCID: PMC9504660 DOI: 10.3390/nu14183749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Extra virgin olive oil (EVOO) is a mainstay of the Mediterranean diet with its excellent balance of fats and antioxidant bioactive compounds. Both the phenolic and lipid fractions of EVOO contain a variety of antioxidant and anticancer substances which might protect from the development of colorectal cancer (CRC). The function of the intestinal microbiome is essential for the integrity of the intestinal epithelium, being protective against pathogens and maintaining immunity. Indeed, dysbiosis of the microbiota alters the physiological functions of the organ, leading to the onset of different diseases including CRC. It is known that some factors, including diet, could deeply influence and modulate the colon microenvironment. Although coming from animal models, there is increasing evidence that a diet rich in EVOO is linked to a significant reduction in the diversity of gut microbiome (GM), causing a switch from predominant bacteria to a more protective group of bacteria. The potential beneficial effect of the EVOO compounds in the carcinogenesis of CRC is only partially known and further trials are needed in order to clarify this issue. With this narrative review, we aim at discussing the available evidence on the effect of olive oil consumption on GM in the prevention of CRC.
Collapse
|
19
|
Fu Y, Xie D, Zhu Y, Zhang X, Yue H, Zhu K, Pi Z, Dai Y. Anti-colorectal cancer effects of seaweed-derived bioactive compounds. Front Med (Lausanne) 2022; 9:988507. [PMID: 36059851 PMCID: PMC9437318 DOI: 10.3389/fmed.2022.988507] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/01/2022] [Indexed: 12/12/2022] Open
Abstract
Seaweeds are classified as Chlorophyta, Rhodophyta, and Phaeophyta. They constitute a number of the most significant repositories of new therapeutic compounds for human use. Seaweed has been proven to possess diverse bioactive properties, which include anticancer properties. The present review focuses on colorectal cancer, which is a primary cause of cancer-related mortality in humans. In addition, it discusses various compounds derived from a series of seaweeds that have been shown to eradicate or slow the progression of cancer. Therapeutic compounds extracted from seaweed have shown activity against colorectal cancer. Furthermore, the mechanisms through which these compounds can induce apoptosis in vitro and in vivo were reviewed. This review emphasizes the potential utility of seaweeds as anticancer agents through the consideration of the capability of compounds present in seaweeds to fight against colorectal cancer.
Collapse
Affiliation(s)
- Yunhua Fu
- Changchun University of Chinese Medicine, Changchun, China
| | - Dong Xie
- Changchun University of Chinese Medicine, Changchun, China
| | - Yinghao Zhu
- Changchun University of Chinese Medicine, Changchun, China
| | - Xinyue Zhang
- Jilin Academy of Agricultural Machinery, Changchun, China
| | - Hao Yue
- Changchun University of Chinese Medicine, Changchun, China
| | - Kai Zhu
- Changchun University of Chinese Medicine, Changchun, China
| | - Zifeng Pi
- Changchun University of Chinese Medicine, Changchun, China
- Zifeng Pi
| | - Yulin Dai
- Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Yulin Dai
| |
Collapse
|
20
|
Gholamalizadeh M, Majidi N, Tajaddod S, Abdollahi S, Poorhosseini SM, Ahmadzadeh M, Naimi Joubani M, Mirzaei Dahka S, Shafaei H, Hajiesmaeil M, Alizadeh A, Doaei S, Houshiar-Rad A. Interactions of Colorectal Cancer, Dietary Fats, and Polymorphisms of Arachidonate Lipoxygenase and Cyclooxygenase Genes: A Literature Review. Front Oncol 2022; 12:865208. [PMID: 35928873 PMCID: PMC9343633 DOI: 10.3389/fonc.2022.865208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveGenetics and dietary factors play important roles in the development of colorectal cancer (CRC). However, the underlying mechanisms of the interactions between CRC, gene polymorphisms, and dietary fat are unclear. This review study investigated the effects of polymorphisms of arachidonate lipoxygenase (ALOX) and cyclooxygenase (COX) genes in the association between CRC and dietary fat.MethodsAll the related papers published from 2000 to 2022 were collected from different databases such as PubMed, Science Direct, Scopus, and Cochran using related keywords such as colorectal cancer, ALOX, COX, polymorphism, and dietary fat. Non-English and unrelated documents were excluded.ResultsSome single-nucleotide polymorphisms (SNPs) in the ALOX and COX genes, such as rs2228065, rs6413416, and rs4986832 in the ALOX gene, and rs689465 in the COX gene may play significant roles in the association between the risk of CRC and dietary fats. SNPs of ALOX and COX genes may influence the effects of dietary fatty acids on the risk of CRC.ConclusionSome polymorphisms of the ALOX and COX genes may have important roles in the effects of dietary fat on the risk of CRC. If future studies confirm these results, dietary recommendations for preventing colorectal cancer may be personalized based on the genotype of the ALOX and COX genes.
Collapse
Affiliation(s)
- Maryam Gholamalizadeh
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nazanin Majidi
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shirin Tajaddod
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sepideh Abdollahi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Poorhosseini
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Ahmadzadeh
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Naimi Joubani
- Research Center of Health and Enviroment, School of Health, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Hanieh Shafaei
- Nursing and Midwifery School, Guilan University of Medical Sciences, Rasht, Iran
| | - Mogge Hajiesmaeil
- Department of Biology and Biotechnology ”Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Atiyeh Alizadeh
- Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeid Doaei
- Reproductive Health Research Center, Department of Obstetrics and Gynecology, School of Medicine, Al-Zahra Hospital, Guilan University of Medical Sciences, Rasht, Iran
- *Correspondence: Saeid Doaei, ; Anahita Houshiar-Rad,
| | - Anahita Houshiar-Rad
- Dept. of Nutrition Research, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Saeid Doaei, ; Anahita Houshiar-Rad,
| |
Collapse
|
21
|
Sherratt SCR, Libby P, Bhatt DL, Mason RP. A biological rationale for the disparate effects of omega-3 fatty acids on cardiovascular disease outcomes. Prostaglandins Leukot Essent Fatty Acids 2022; 182:102450. [PMID: 35690002 DOI: 10.1016/j.plefa.2022.102450] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 12/29/2022]
Abstract
The omega-3 fatty acids (n3-FAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) rapidly incorporate into cell membranes where they modulate signal transduction pathways, lipid raft formation, and cholesterol distribution. Membrane n3-FAs also form specialized pro-resolving mediators and other intracellular oxylipins that modulate inflammatory pathways, including T-cell differentiation and gene expression. Cardiovascular (CV) trials have shown that EPA, administered as icosapent ethyl (IPE), reduces composite CV events, along with plaque volume, in statin-treated, high-risk patients. Mixed EPA/DHA regimens have not shown these benefits, perhaps as the result of differences in formulation, dosage, or potential counter-regulatory actions of DHA. Indeed, EPA and DHA have distinct, tissue-specific effects on membrane structural organization and cell function. This review summarizes: (1) results of clinical outcome and imaging trials using n3-FA formulations; (2) membrane interactions of n3-FAs; (3) effects of n3-FAs on membrane oxidative stress and cholesterol crystalline domain formation during hyperglycemia; (4) n3-FA effects on endothelial function; (5) role of n3-FA-generated metabolites in inflammation; and (6) ongoing and future clinical investigations exploring treatment targets for n3-FAs, including COVID-19.
Collapse
Affiliation(s)
- Samuel C R Sherratt
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH 03823, USA; Elucida Research LLC, Beverly, MA 01915-0091, USA
| | - Peter Libby
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115-6110, USA
| | - Deepak L Bhatt
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115-6110, USA
| | - R Preston Mason
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115-6110, USA; Elucida Research LLC, Beverly, MA 01915-0091, USA.
| |
Collapse
|
22
|
Hou Z, Song F, Xing J, Zheng Z, Liu S, Liu Z. Comprehensive fecal metabolomics and gut microbiota for the evaluation of the mechanism of Panax Ginseng in the treatment of Qi-deficiency liver cancer. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115222. [PMID: 35341933 DOI: 10.1016/j.jep.2022.115222] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/08/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qi deficiency liver cancer (QDLC) is an important part of liver cancer research in traditional Chinese medicine (TCM). In the course of its treatment, Panax ginseng is often selected as the main Chinese herbal medicine, and its function has special significance in the tumor treatment of Qi deficiency constitution. However, its mechanism is not clear. AIM OF THE STUDY The research tried to evaluate the mechanism of Panax ginseng in the treatment of QDLC through fecal metabonomics and gut microbiota on the basis of previous pharmacodynamic evaluation. MATERIALS AND METHODS Firstly, biomarkers and related metabolic pathways were screened and identified by metabonomics and Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Then, 16S rRNA sequencing technique was used to investigate the composition, β diversity and key differences of gut microbiota. Finally, the relationship among phenotypes, gut microbiota and fecal metabolites was comprehensively analyzed by spearman correlation coefficient. RESULTS 31 pharmacodynamic potential biomarkers and 20 synergistic potential biomarkers of effective parts of Panax ginseng on QDLC were screened and identified by fecal metabonomics. And then, 6 major metabolic pathways were searched, including bile acid biosynthesis, unsaturated fatty acid biosynthesis, tryptophan metabolism, arachidonic acid metabolism, pyrimidine metabolism, vitamin B6 metabolism. In the study of gut microbiota, at the genus level, 25 species of bacteria with significant differences of effective parts on QDLC and 23 species of bacteria with significant differences of synergistic action of ginsenosides and polysaccharides were screened. In addition, Spearman correlation analysis showed that there was a complex potential relationship among phenotype, gut microbiota and fecal metabolites during the development of QDLC and Panax ginseng intervention, which was mainly reflected in the close potential relationship between bacteria and fecal metabolites such as bile acids, unsaturated fatty acids and indole compounds. CONCLUSION Through the changes of fecal endogenous metabolites and intestinal bacteria, the mechanism of Panax ginseng on QDLC were preliminarily clarified.
Collapse
Affiliation(s)
- Zong Hou
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Fengrui Song
- Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Junpeng Xing
- Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Zhong Zheng
- Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Shu Liu
- Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Zhiqiang Liu
- Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| |
Collapse
|
23
|
Contribution of n-3 Long-Chain Polyunsaturated Fatty Acids to the Prevention of Breast Cancer Risk Factors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19137936. [PMID: 35805595 PMCID: PMC9265492 DOI: 10.3390/ijerph19137936] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 02/01/2023]
Abstract
Nowadays, diet and breast cancer are studied at different levels, particularly in tumor prevention and progression. Thus, the molecular mechanisms leading to better knowledge are deciphered with a higher precision. Among the molecules implicated in a preventive and anti-progressive way, n-3 long chain polyunsaturated fatty acids (n-3 LC-PUFAs) are good candidates. These molecules, like docosahexaenoic (DHA) and eicosapentaenoic (EPA) acids, are generally found in marine material, such as fat fishes or microalgae. EPA and DHA act as anti-proliferative, anti-invasive, and anti-angiogenic molecules in breast cancer cell lines, as well as in in vivo studies. A better characterization of the cellular and molecular pathways involving the action of these fatty acids is essential to have a realistic image of the therapeutic avenues envisaged behind their use. This need is reinforced by the increase in the number of clinical trials involving more and more n-3 LC-PUFAs, and this, in various pathologies ranging from obesity to a multitude of cancers. The objective of this review is, therefore, to highlight the new elements showing the preventive and beneficial effects of n-3 LC-PUFAs against the development and progression of breast cancer.
Collapse
|
24
|
Elghaffar RYA, Amin BH, Hashem AH, Sehim AE. Promising Endophytic Alternaria alternata from Leaves of Ziziphus spina-christi: Phytochemical Analyses, Antimicrobial and Antioxidant Activities. Appl Biochem Biotechnol 2022; 194:3984-4001. [PMID: 35579741 PMCID: PMC9424163 DOI: 10.1007/s12010-022-03959-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/02/2022] [Indexed: 11/30/2022]
Abstract
Fungal endophytes are considered one of the most important reservoirs of bioactive compounds which defeat resistant microbes. In our study, endophytic Alternaria alternata was isolated from Ziziphus spina-christi and identified morphologically and genetically with accession number OM 331,682. Preliminary phytochemical screening of ethyl acetate (EA) crude extract of A. alternata revealed that this extract contains alkaloids, tannins, flavonoids, glycosides, phenols, and terpenoids. Moreover, the extract was analyzed using gas chromatography-mass spectrometry (GC–MS) which verified the presence of numerous bioactive compounds. Antimicrobial results illustrated that EA crude extract exhibited promising antimicrobial activity against Gram-negative bacteria (Escherichia coli ATCC 11229, Proteus vulgaris RCMB 004, Pseudomonas aeruginosa ATCC 27853, and Klebsiella pneumonia RCMB 003), Gram-positive bacteria (Bacillus subtilis RCMB 015, Staphylococcus aureus ATCC 25923, and Staphylococcus epidermidis ATCC 14990), and unicellular fungi (Candida albicans ATCC 90028). Ultrastructure study of treated K. pneumonia showed remarkably elucidated destruction of the cell wall and cell membrane and leakage of cytoplasmic materials. Furthermore, the extract has potential antioxidant activity where IC50 was 409 µg/mL. Moreover, this extract did not show any toxicity on Vero normal cell line. These findings confirmed that the endophytic A. alternata from Z. spina-christi is a promising source of bioactive compounds which can be used in different biological applications.
Collapse
Affiliation(s)
- Rasha Y Abd Elghaffar
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| | - Basma H Amin
- The regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo, 11787, Egypt
| | - Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt.
| | - Amira E Sehim
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| |
Collapse
|
25
|
Aldoori J, Cockbain AJ, Toogood GJ, Hull MA. Omega-3 polyunsaturated fatty acids: moving towards precision use for prevention and treatment of colorectal cancer. Gut 2022; 71:822-837. [PMID: 35115314 DOI: 10.1136/gutjnl-2021-326362] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/19/2021] [Indexed: 12/12/2022]
Abstract
Data from experimental studies have demonstrated that marine omega-3 polyunsaturated fatty acids (O3FAs) have anti-inflammatory and anticancer properties. In the last decade, large-scale randomised controlled trials of pharmacological delivery of O3FAs and prospective cohort studies of dietary O3FA intake have continued to investigate the relationship between O3FA intake and colorectal cancer (CRC) risk and mortality. Clinical data suggest that O3FAs have differential anti-CRC activity depending on several host factors (including pretreatment blood O3FA level, ethnicity and systemic inflammatory response) and tumour characteristics (including location in the colorectum, histological phenotype (eg, conventional adenoma or serrated polyp) and molecular features (eg, microsatellite instability, cyclooxygenase expression)). Recent data also highlight the need for further investigation of the effect of O3FAs on the gut microbiota as a possible anti-CRC mechanism, when used either alone or in combination with other anti-CRC therapies. Overall, these data point towards a precision approach to using O3FAs for optimal prevention and treatment of CRC based on mechanistic understanding of host, tumour and gut microbiota factors that predict anticancer activity of O3FAs.
Collapse
Affiliation(s)
- Joanna Aldoori
- Gastrointestinal & Surgical Sciences, Leeds Institute of Medical Research, University of Leeds, Leeds, UK.,Hepatobiliary Surgery, St James's University Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Andrew J Cockbain
- Hepatobiliary Surgery, St James's University Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Giles J Toogood
- Hepatobiliary Surgery, St James's University Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Mark A Hull
- Gastrointestinal & Surgical Sciences, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| |
Collapse
|
26
|
Aoyama T, Yoshikawa T, Ida S, Cho H, Sakamaki K, Ito Y, Fujitani K, Takiguchi N, Kawashima Y, Nishikawa K, Nunobe S, Hiki N. Effects of perioperative eicosapentaenoic acid‑enriched oral nutritional supplement on the long‑term oncological outcomes after total gastrectomy for gastric cancer. Oncol Lett 2022; 23:151. [PMID: 35836480 PMCID: PMC9258592 DOI: 10.3892/ol.2022.13272] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/15/2022] [Indexed: 12/24/2022] Open
Abstract
Basic and clinical reports have suggested that eicosapentaenoic acid (EPA) exhibits anti-tumor activity. The present study evaluated whether perioperative EPA could improve the survival of patients with localized gastric cancer as a key secondary endpoint of a randomized clinical study. The present study was designed as multicenter, open-label, superiority, randomized trial to confirm the preventive effect of EPA on body weight loss after total gastrectomy for gastric cancer. Eligible patients were randomized to either the standard-diet group (EPA-off group) or EPA-on group by a centralized dynamic method. An EPA-enriched supplement (ProSure®) was given to the EPA-on group in addition to their standard diet. This supplement included 600 kcal with 2.2 g/day of EPA. Among the 126 patients who were randomized, 123 patients (EPA-off group, n=60; EPA-on group, n=63) were examined in the survival analyses. All background factors were well balanced between the two groups. The 3-year and 5-year overall survival rates were 74.6 and 67.8%, respectively, in the EPA-off group, and 77.8 and 76.2% in the EPA-on group. There was no significant difference between the EPA-off and EPA-on groups (hazard ratio, 0.77; P=0.424). In the subgroup analysis, the hazard ratio was 0.39 in patients who received neoadjuvant chemotherapy and 0.57 in patients with nodal metastasis. In conclusion, a clear survival benefit of perioperative EPA was not observed in localized gastric cancer. The value of EPA should be further tested in a future study in patients with unfavorable advanced gastric cancer. Clinical trial number: UMIN000006380; date of registration, September 21, 2011.
Collapse
Affiliation(s)
- Toru Aoyama
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Kanagawa 241‑8515, Japan
| | - Takaki Yoshikawa
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Kanagawa 241‑8515, Japan
| | - Satoshi Ida
- Department of Gastroenterological Surgery, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135‑0063, Japan
| | - Haruhiko Cho
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Kanagawa 241‑8515, Japan
| | - Kentaro Sakamaki
- Department of Biostatistics and Epidemiology, Yokohama City University Medical Center, Yokohama, Kanagawa 232‑0024, Japan
| | - Yuichi Ito
- Department of Gastroenterological Surgery, Aichi Cancer Center, Nagoya, Aichi 464‑8681, Japan
| | - Kazumasa Fujitani
- Department of Surgery, Osaka General Medical Center, Osaka 558‑8558, Japan
| | - Nobuhiro Takiguchi
- Division of Gastroenterological Surgery, Chiba Cancer Center, Chuo-ku, Chiba 260‑8781, Japan
| | - Yoshiyuki Kawashima
- Department of Gastroenterological Surgery, Saitama Cancer Center, Kitaadachi, Saitama 362‑0806, Japan
| | | | - Soya Nunobe
- Department of Gastroenterological Surgery, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135‑0063, Japan
| | - Naoki Hiki
- Department of Gastroenterological Surgery, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135‑0063, Japan
| |
Collapse
|
27
|
Wei L, Wu Z, Chen YQ. Multi-targeted therapy of cancer by omega-3 fatty acids-an update. Cancer Lett 2022; 526:193-204. [PMID: 34843864 DOI: 10.1016/j.canlet.2021.11.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 12/11/2022]
Abstract
Low in dietary ω3 polyunsaturated fatty acid (PUFA) consumption has been associated with increased incidence of cancers. Many basic and clinical studies have been conducted over the last several decades. We previously reviewed multi-targeted therapy of cancer by omega-3 fatty acids in 2008, and since hundreds of new clinical trials are being conducted to validate the effectiveness of ω3 PUFA in cancer therapy. Because of the availability of such large amount of clinical trial data, in this update we summarize clinical data, sort out trials that show promising results, and discuss potential mechanism(s) responsible for the clinical outcomes. It appears that ω3 PUFA mainly affects cancer-associated symptoms, namely cachexia, inflammation, neuropathy, post operative complications and quality of life. Mechanisms responsible for these effects are possible regulation of skeletal muscle protein turnover, inflammatory response and neuron cell survive by ω3 PUFA.
Collapse
Affiliation(s)
- Lengyun Wei
- Wuxi School of Medicine, Jiangnan University, Jiangsu Province, 214122, China; Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, China; School of Food Science and Technology, Jiangnan University, Jiangsu Province, 214122, China
| | - Zhipeng Wu
- Wuxi School of Medicine, Jiangnan University, Jiangsu Province, 214122, China
| | - Yong Q Chen
- Wuxi School of Medicine, Jiangnan University, Jiangsu Province, 214122, China; Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, China; School of Food Science and Technology, Jiangnan University, Jiangsu Province, 214122, China.
| |
Collapse
|
28
|
Wang Y, Liu K, Long T, Long J, Li Y, Li J, Cheng L. Dietary fish and omega-3 polyunsaturated fatty acids intake and cancer survival: A systematic review and meta-analysis. Crit Rev Food Sci Nutr 2022; 63:6235-6251. [PMID: 35068276 DOI: 10.1080/10408398.2022.2029826] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fish and omega-3 polyunsaturated fatty acids (PUFA) have been suggested to play a role in improving cancer prognosis. However, results from epidemiological studies remain inconsistent. Here we assess the association between dietary fish and/or omega-3 PUFAs intake and cancer prognosis with meta-analysis of observational studies. A systematic search of related publications was performed using PubMed and Web of Science databases. Hazard ratios (HR) and 95% confidence intervals (CI) were extracted and then pooled using a random-effect model. Potential linear and non-linear dose-response relationships were explored using generalized least squares estimation and restricted cubic splines. As a result, 21 cohort studies were included in our analysis. Compared to the lowest category, the highest category of fish intake was associated with a significant lower mortality in patients with ovarian cancer (n = 1, HR = 0.74, 95% CI: 0.57-0.95) and overall cancer (n = 12, HR = 0.87, 95% CI: 0.81-0.94). Marine omega-3 PUFAs intake rather than total omega-3 PUFAs intake showed significant protective effects on survival of overall cancer (n = 8, HR = 0.81, 95% CI: 0.71-0.94), in particular prostate cancer (n = 2, HR = 0.62, 95% CI: 0.46-0.82). Dose-response meta-analysis indicated a nonlinear and a linear relationship between fish intake, as well as marine omega-3 PUFAs intake, and overall cancer survival, respectively. In conclusion, our analysis demonstrated a protective effect of dietary fish and marine omega-3 PUFAs consumption on cancer survival.
Collapse
Affiliation(s)
- Yi Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Liu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Long
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jieyi Long
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Li
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaoyuan Li
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liming Cheng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
29
|
Shimizu Y, Ashida R, Sugiura T, Okamura Y, Ito T, Yamamoto Y, Ohgi K, Otsuka S, Notsu A, Uesaka K. Prognostic Impact of Indicators of Systemic Inflammation and the Nutritional Status of Patients with Resected Carcinoma of the Ampulla of Vater: A Single-Center Retrospective Study. World J Surg 2021; 46:246-258. [PMID: 34661701 DOI: 10.1007/s00268-021-06346-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND Several indicators of systemic inflammation and nutritional status were recently shown to serve as novel prognostic factors for certain cancers. Here, we aimed to investigate the prognostic impact of preoperative indicators of systemic inflammation and nutritional status associated with the survival of patients with resected ampulla of Vater carcinoma (AC). METHODS We retrospectively analyzed the records of 91 patients who underwent pancreatoduodenectomy (PD) for AC from January 2002 through December 2018. Indices for systemic inflammation and nutritional status (Systemic immune-inflammation index [SII], Prognostic nutritional index [PNI], modified Glasgow prognostic score [mGPS], and Controlling nutritional status score [CONUT]) were determined using preoperative blood tests. Clinicopathological factors and these indices were analyzed to identify predictors of overall survival (OS). RESULTS The median preoperative SII and PNI values were 456.7 and 47.5, respectively, and their optimal cut-off values were 670.0 and 50.0, respectively. Univariate analysis revealed that high SII, low PNI, mGPS ≥ 1, and malnutrition, assessed using the CONUT, were significant predictors of shorter OS. Multivariate analysis revealed that high SII (HR = 2.71, p = 0.023) and malnutrition assessed using the CONUT (hazard ratio = 3.98, p = 0.006) were independent predictors of shorter OS. CONCLUSION SII and the CONUT predicted the survival of patients with AC after radical resection. These indicators are easily calculated using preoperative blood tests and may contribute to the development of improved strategies to treat AC.
Collapse
Affiliation(s)
- Yuji Shimizu
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center, 1007, Shimo-Nagakubo, Sunto-Nagaizumi, Shizuoka, 411-8777, Japan
| | - Ryo Ashida
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center, 1007, Shimo-Nagakubo, Sunto-Nagaizumi, Shizuoka, 411-8777, Japan.
| | - Teiichi Sugiura
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center, 1007, Shimo-Nagakubo, Sunto-Nagaizumi, Shizuoka, 411-8777, Japan
| | - Yukiyasu Okamura
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center, 1007, Shimo-Nagakubo, Sunto-Nagaizumi, Shizuoka, 411-8777, Japan
| | - Takaaki Ito
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center, 1007, Shimo-Nagakubo, Sunto-Nagaizumi, Shizuoka, 411-8777, Japan
| | - Yusuke Yamamoto
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center, 1007, Shimo-Nagakubo, Sunto-Nagaizumi, Shizuoka, 411-8777, Japan
| | - Katsuhisa Ohgi
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center, 1007, Shimo-Nagakubo, Sunto-Nagaizumi, Shizuoka, 411-8777, Japan
| | - Shimpei Otsuka
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center, 1007, Shimo-Nagakubo, Sunto-Nagaizumi, Shizuoka, 411-8777, Japan
| | - Akifumi Notsu
- Clinical Research Center, Shizuoka Cancer Center, Sunto-Nagaizumi, Shizuoka, Japan
| | - Katsuhiko Uesaka
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center, 1007, Shimo-Nagakubo, Sunto-Nagaizumi, Shizuoka, 411-8777, Japan
| |
Collapse
|
30
|
Herrera Vielma F, Valenzuela R, Videla LA, Zúñiga-Hernández J. N-3 Polyunsaturated Fatty Acids and Their Lipid Mediators as A Potential Immune-Nutritional Intervention: A Molecular and Clinical View in Hepatic Disease and Other Non-Communicable Illnesses. Nutrients 2021; 13:3384. [PMID: 34684386 PMCID: PMC8539469 DOI: 10.3390/nu13103384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 02/06/2023] Open
Abstract
In recent years, the beneficial effect of n-3 polyunsaturated fatty acids (n-3 PUFAs) intake on human health has been widely accepted in the field of immunonutrition. Today, we find a diversity of supplements based on n-3 PUFAs and/or minerals, vitamins and other substances. The main objective of this review is to discuss the importance of n-3 PUFAs and their derivatives on immunity and inflammatory status related to liver disease and other non-communicable illnesses. Based on the burden of liver diseases in 2019, more than two million people die from liver pathologies per year worldwide, because it is the organ most exposed to agents such as viruses, toxins and medications. Consequently, research conducted on n-3 PUFAs for liver disease has been gaining prominence with encouraging results, given that these fatty acids have anti-inflammatory and cytoprotective effects. In addition, it has been described that n-3 PUFAs are converted into a novel species of lipid intermediaries, specialized pro-resolving mediators (SPMs). At specific levels, SPMs improve the termination of inflammation as well as the repairing and regeneration of tissues, but they are deregulated in liver disease. Since evidence is still insufficient to carry out pharmacological trials to benefit the resolution of acute inflammation in non-communicable diseases, there remains a call for continuing preclinical and clinical research to better understand SPM actions and outcomes.
Collapse
Affiliation(s)
- Francisca Herrera Vielma
- Department of Biomedical Basic Sciences, School of Health Sciences, University of Talca, Talca 3460000, Chile;
| | - Rodrigo Valenzuela
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380000, Chile;
| | - Luis A. Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Science, Faculty of Medicine, University of Chile, Santiago 8380000, Chile;
| | - Jessica Zúñiga-Hernández
- Department of Biomedical Basic Sciences, School of Health Sciences, University of Talca, Talca 3460000, Chile;
| |
Collapse
|
31
|
Nana G, Mitra S, Watson H, Young C, Wood HM, Perry SL, Race AD, Quirke P, Toogood GJ, Loadman PM, Hull MA. Luminal Bioavailability of Orally Administered ω-3 PUFAs in the Distal Small Intestine, and Associated Changes to the Ileal Microbiome, in Humans with a Temporary Ileostomy. J Nutr 2021; 151:2142-2152. [PMID: 34036331 PMCID: PMC8349127 DOI: 10.1093/jn/nxab113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/22/2021] [Accepted: 03/29/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Oral administration of purified omega-3 (ω-3) PUFAs is associated with changes to the fecal microbiome. However, it is not known whether this effect is associated with increased PUFA concentrations in the gut. OBJECTIVES We investigated the luminal bioavailability of oral ω-3 PUFAs (daily dose 1 g EPA and 1g DHA free fatty acid equivalents as triglycerides in soft-gel capsules, twice daily) and changes to the gut microbiome, in the ileum. METHODS Ileostomy fluid (IF) and blood were obtained at baseline, after first capsule dosing (median 2 h), and at a similar time after final dosing on day 28, in 11 individuals (median age 63 y) with a temporary ileostomy. Fatty acids were measured by LC-tandem MS. The ileal microbiome was characterized by 16S rRNA PCR and Illumina sequencing. RESULTS There was a mean 6.0 ± 9.8-fold and 6.6 ± 9.6-fold increase in ileal EPA and DHA concentrations (primary outcome), respectively, at 28 d, which was associated with increased RBC ω-3 PUFA content (P ≤ 0.05). The first oral dose did not increase the ileal ω-3 PUFA concentration except in 4 individuals, who displayed high luminal EPA and DHA concentrations, which reduced to concentrations similar to the overall study population at day 28, suggesting physiological adaptation. Bacteroides, Clostridium, and Streptococcus were abundant bacterial genera in the ileum. Ileal microbiome variability over time and between individuals was large, with no consistent change associated with acute ω-3 PUFA dosing. However, high concentrations of EPA and DHA in IF on day 28 were associated with higher abundance of Bacteroides (r2 > 0.86, P < 0.05) and reduced abundance of other genera, including Actinomyces (r2 > 0.94, P < 0.05). CONCLUSIONS Oral administration of ω-3 PUFAs leads to increased luminal ω-3 PUFA concentrations and changes to the microbiome, in the ileum of individuals with a temporary ileostomy. This study is registered on the ISRCTN registry as ISRCTN14530452.
Collapse
Affiliation(s)
- Gael Nana
- Leeds Institute of Medical Research, St James's University Hospital, University of Leeds, Leeds, United Kingdom
- Department of Hepatobiliary Surgery, St James's University Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Suparna Mitra
- Leeds Institute of Medical Research, St James's University Hospital, University of Leeds, Leeds, United Kingdom
| | - Henry Watson
- Leeds Institute of Medical Research, St James's University Hospital, University of Leeds, Leeds, United Kingdom
- Department of Hepatobiliary Surgery, St James's University Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Caroline Young
- Leeds Institute of Medical Research, St James's University Hospital, University of Leeds, Leeds, United Kingdom
| | - Henry M Wood
- Leeds Institute of Medical Research, St James's University Hospital, University of Leeds, Leeds, United Kingdom
| | - Sarah L Perry
- Leeds Institute of Medical Research, St James's University Hospital, University of Leeds, Leeds, United Kingdom
| | - Amanda D Race
- Institute of Cancer Therapeutics, University of Bradford, Bradford, United Kingdom
| | - Philip Quirke
- Leeds Institute of Medical Research, St James's University Hospital, University of Leeds, Leeds, United Kingdom
| | - Giles J Toogood
- Department of Hepatobiliary Surgery, St James's University Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Paul M Loadman
- Institute of Cancer Therapeutics, University of Bradford, Bradford, United Kingdom
| | - Mark A Hull
- Leeds Institute of Medical Research, St James's University Hospital, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
32
|
Newell M, Mazurak V, Postovit LM, Field CJ. N-3 Long-Chain Polyunsaturated Fatty Acids, Eicosapentaenoic and Docosahexaenoic Acid, and the Role of Supplementation during Cancer Treatment: A Scoping Review of Current Clinical Evidence. Cancers (Basel) 2021; 13:1206. [PMID: 33801979 PMCID: PMC8000768 DOI: 10.3390/cancers13061206] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/02/2021] [Accepted: 03/06/2021] [Indexed: 01/07/2023] Open
Abstract
This scoping review examines the evidence for n-3 long-chain polyunsaturated fatty acid [LCPUFA, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)] supplementation in clinical cancer therapy. A comprehensive literature search was performed to identify relevant clinical intervention studies conducted through August 2020. Fifty-seven unique cancer trials, assessing EPA and/or DHA supplementation pre- or post-treatment, concomitant with neoadjuvant chemotherapy, radiation or surgery, or in palliative therapy were included. Breast, head and neck, gastrointestinal, gastric, colorectal/rectal, esophageal, leukemia/lymphoma, lung, multiple myeloma and pancreatic cancers were investigated. Across the spectrum of cancers, the evidence suggests that supplementation increased or maintained body weight, increased progression-free and overall survival, improved overall quality of life, resulted in beneficial change in immune parameters and decreased serious adverse events. Taken together, the data support that EPA and/or DHA could be used to improve outcomes important to the patient and disease process. However, before incorporation into treatment can occur, there is a need for randomized clinical trials to determine the dose and type of n-3 LCPUFA intervention required, and expansion of outcomes assessed and improved reporting of outcomes.
Collapse
Affiliation(s)
- Marnie Newell
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (M.N.); (V.M.)
| | - Vera Mazurak
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (M.N.); (V.M.)
| | - Lynne M. Postovit
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R7, Canada;
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Catherine J. Field
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (M.N.); (V.M.)
| |
Collapse
|
33
|
Fuentes NR, Mlih M, Wang X, Webster G, Cortes-Acosta S, Salinas ML, Corbin IR, Karpac J, Chapkin RS. Membrane therapy using DHA suppresses epidermal growth factor receptor signaling by disrupting nanocluster formation. J Lipid Res 2021; 62:100026. [PMID: 33515553 PMCID: PMC7933808 DOI: 10.1016/j.jlr.2021.100026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/11/2021] [Accepted: 01/19/2021] [Indexed: 02/07/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) signaling drives the formation of many types of cancer, including colon cancer. Docosahexaenoic acid (DHA, 22∶6Δ4,7,10,13,16,19), a chemoprotective long-chain n-3 polyunsaturated fatty acid suppresses EGFR signaling. However, the mechanism underlying this phenotype remains unclear. Therefore, we used super-resolution microscopy techniques to investigate the mechanistic link between EGFR function and DHA-induced alterations to plasma membrane nanodomains. Using isogenic in vitro (YAMC and IMCE mouse colonic cell lines) and in vivo (Drosophila, wild type and Fat-1 mice) models, cellular DHA enrichment via therapeutic nanoparticle delivery, endogenous synthesis, or dietary supplementation reduced EGFR-mediated cell proliferation and downstream Ras/ERK signaling. Phospholipid incorporation of DHA reduced membrane rigidity and the size of EGFR nanoclusters. Similarly, pharmacological reduction of plasma membrane phosphatidic acid (PA), phosphatidylinositol-4,5-bisphosphate (PIP2) or cholesterol was associated with a decrease in EGFR nanocluster size. Furthermore, in DHA-treated cells only the addition of cholesterol, unlike PA or PIP2, restored EGFR nanoscale clustering. These findings reveal that DHA reduces EGFR signaling in part by reshaping EGFR proteolipid nanodomains, supporting the feasibility of using membrane therapy, i.e., dietary/drug-related strategies to target plasma membrane organization, to reduce EGFR signaling and cancer risk.
Collapse
Affiliation(s)
- Natividad R Fuentes
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, USA; Department of Nutrition, Texas A&M University, College Station, TX, USA; Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, USA
| | - Mohamed Mlih
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, Bryan, TX, USA
| | - Xiaoli Wang
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, USA; Department of Nutrition, Texas A&M University, College Station, TX, USA
| | - Gabriella Webster
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, USA; Department of Nutrition, Texas A&M University, College Station, TX, USA
| | - Sergio Cortes-Acosta
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, USA; Department of Nutrition, Texas A&M University, College Station, TX, USA
| | - Michael L Salinas
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, USA; Department of Nutrition, Texas A&M University, College Station, TX, USA
| | - Ian R Corbin
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jason Karpac
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, Bryan, TX, USA
| | - Robert S Chapkin
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, USA; Department of Nutrition, Texas A&M University, College Station, TX, USA; Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, USA; Center for Translational Environmental Health Research, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
34
|
Gao B, Luo J, Liu Y, Zhong F, Yang X, Gan Y, Su S, Li B. Clinical Efficacy of Perioperative Immunonutrition Containing Omega-3-Fatty Acids in Patients Undergoing Hepatectomy: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. ANNALS OF NUTRITION AND METABOLISM 2020; 76:375-386. [PMID: 33311018 DOI: 10.1159/000509979] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/05/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND The effect of immunonutrition in patients undergoing hepatectomy remains unclear. This meta-analysis aimed to assess the impact of immunonutrition on postoperative clinical outcomes in patients undergoing hepatectomy. METHODS A literature search of PubMed, Cochrane Library, Web of Science, and Embase databases was performed to identify all randomized controlled trials (RCTs) exploring the effect of perioperative immunonutrition in patients undergoing hepatectomy until the end of March 10, 2020. Quality assessment and data extraction of RCTs were conducted independently by 3 reviewers. Mean difference (MD) and odds ratio (OR) with 95% confidence interval (CI) were calculated using a fixed-effects or random-effects model. The meta-analysis was performed with RevMan 5.3 software. RESULTS Nine RCTs involving a total of 966 patients were finally included. This meta-analysis showed that immunonutrition significantly reduced the incidences of overall postoperative complications (OR = 0.57, 95% CI: 0.34-0.95; p = 0.03), overall postoperative infectious complications (OR = 0.53, 95% CI: 0.37-0.75; p = 0.0003), and incision infection (OR = 0.50, 95% CI: 0.28-0.89; p = 0.02), and it shortened the length of hospital stay (MD = -3.80, 95% CI: -6.59 to -1.02; p = 0.007). There were no significant differences in the incidences of pulmonary infection (OR = 0.60, 95% CI: 0.32-1.12; p = 0.11), urinary tract infection (OR = 1.30, 95% CI: 0.55-3.08; p = 0.55), liver failure (OR = 0.54, 95% CI: 0.23-1.24; p = 0.15), and postoperative mortality (OR = 0.69, 95% CI: 0.26-1.83; p = 0.46). CONCLUSION Given its positive impact on postoperative complications and the tendency to shorten the length of hospital stay, perioperative immunonutrition should be encouraged in patients undergoing hepatectomy.
Collapse
Affiliation(s)
- Benjian Gao
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jia Luo
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ying Liu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Furui Zhong
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaoli Yang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yu Gan
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Song Su
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Bo Li
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China,
| |
Collapse
|
35
|
Story MJ. Zinc, ω-3 polyunsaturated fatty acids and vitamin D: An essential combination for prevention and treatment of cancers. Biochimie 2020; 181:100-122. [PMID: 33307154 DOI: 10.1016/j.biochi.2020.11.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 11/14/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023]
Abstract
Zinc, ω-3 polyunsaturated fatty acids (PUFAs) and vitamin D are essential nutrients for health, maturation and general wellbeing. Extensive literature searches have revealed the widespread similarity in molecular biological properties of zinc, ω-3 PUFAs and vitamin D, and their similar anti-cancer properties, even though they have different modes of action. These three nutrients are separately essential for good health, especially in the aged. Zinc, ω-3 PUFAs and vitamin D are inexpensive and safe as they are fundamentally natural and have the properties of correcting and inhibiting undesirable actions without disturbing the normal functions of cells or their extracellular environment. This review of the anticancer properties of zinc, ω-3 PUFAs and vitamin D is made in the context of the hallmarks of cancer. The anticancer properties of zinc, ω-3 PUFAs and vitamin D can therefore be used beneficially through combined treatment or supplementation. It is proposed that sufficiency of zinc, ω-3 PUFAs and vitamin D is a necessary requirement during chemotherapy treatment and that clinical trials can have questionable integrity if this sufficiency is not checked and maintained during efficacy trials.
Collapse
Affiliation(s)
- Michael J Story
- Story Pharmaceutics Pty Ltd, PO Box 6086, Linden Park, South Australia, 5065, Australia.
| |
Collapse
|
36
|
Tu M, Wang W, Zhang G, Hammock BD. ω-3 Polyunsaturated Fatty Acids on Colonic Inflammation and Colon Cancer: Roles of Lipid-Metabolizing Enzymes Involved. Nutrients 2020; 12:nu12113301. [PMID: 33126566 PMCID: PMC7693568 DOI: 10.3390/nu12113301] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 02/06/2023] Open
Abstract
Substantial human and animal studies support the beneficial effects of ω-3 polyunsaturated fatty acids (PUFAs) on colonic inflammation and colorectal cancer (CRC). However, there are inconsistent results, which have shown that ω-3 PUFAs have no effect or even detrimental effects, making it difficult to effectively implement ω-3 PUFAs for disease prevention. A better understanding of the molecular mechanisms for the anti-inflammatory and anticancer effects of ω-3 PUFAs will help to clarify their potential health-promoting effects, provide a scientific base for cautions for their use, and establish dietary recommendations. In this review, we summarize recent studies of ω-3 PUFAs on colonic inflammation and CRC and discuss the potential roles of ω-3 PUFA-metabolizing enzymes, notably the cytochrome P450 monooxygenases, in mediating the actions of ω-3 PUFAs.
Collapse
Affiliation(s)
- Maolin Tu
- Department of Food Science, University of Massachusetts, Amherst, MA 01002, USA; (M.T.); (G.Z.)
- Department of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Weicang Wang
- Department of Entomology and Comprehensive Cancer Center, University of California, Davis, CA 95616, USA;
| | - Guodong Zhang
- Department of Food Science, University of Massachusetts, Amherst, MA 01002, USA; (M.T.); (G.Z.)
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01002, USA
| | - Bruce D. Hammock
- Department of Entomology and Comprehensive Cancer Center, University of California, Davis, CA 95616, USA;
- Correspondence: ; Tel.: +1-530-752-7519
| |
Collapse
|
37
|
Volpato M, Ingram N, Perry SL, Spencer J, Race AD, Marshall C, Hutchinson JM, Nicolaou A, Loadman PM, Coletta PL, Hull MA. Cyclooxygenase activity mediates colorectal cancer cell resistance to the omega-3 polyunsaturated fatty acid eicosapentaenoic acid. Cancer Chemother Pharmacol 2020; 87:173-184. [PMID: 33040178 PMCID: PMC7870614 DOI: 10.1007/s00280-020-04157-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/24/2020] [Indexed: 01/05/2023]
Abstract
Purpose The naturally-occurring omega-3 polyunsaturated fatty acid eicosapentaenoic acid (EPA) is safe, well-tolerated and inexpensive, making it an attractive anti-cancer intervention. However, EPA has only modest anti-colorectal cancer (CRC) activity, when used alone. Both cyclooxygenase (COX) isoforms metabolise EPA and are over-expressed in CRC cells. We investigated whether COX inhibition increases the sensitivity of CRC cells to growth inhibition by EPA. Methods A panel of 18 human and mouse CRC cell lines was used to characterize the differential sensitivity of CRC cells to the growth inhibitory effects of EPA. The effect of CRISPR-Cas9 genetic deletion and pharmacological inhibition of COX-1 and COX-2 on the anti-cancer activity of EPA was determined using in vitro and in vivo models. Results Genetic ablation of both COX isoforms increased sensitivity of CT26 mouse CRC cells to growth inhibition by EPA in vitro and in vivo. The non-selective COX inhibitor aspirin and the selective COX-2 inhibitor celecoxib increased sensitivity of several human and mouse CRC cell lines to EPA in vitro. However, in a MC38 mouse CRC cell tumour model, with dosing that mirrored low-dose aspirin use in humans, thereby producing significant platelet COX-1 inhibition, there was ineffective intra-tumoral COX-2 inhibition by aspirin and no effect on EPA sensitivity of MC38 cell tumours. Conclusion Cyclooxygenase inhibition by non-steroidal anti-inflammatory drugs represents a therapeutic opportunity to augment the modest anti-CRC activity of EPA. However, intra-tumoral COX inhibition is likely to be critical for this drug-nutrient interaction and careful tissue pharmacodynamic profiling is required in subsequent pre-clinical and human studies. Electronic supplementary material The online version of this article (10.1007/s00280-020-04157-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Milene Volpato
- Leeds Institute of Medical Research at St James's, University of Leeds, St James's University Hospital, Leeds, LS9 7TF, UK.
| | - Nicola Ingram
- Leeds Institute of Medical Research at St James's, University of Leeds, St James's University Hospital, Leeds, LS9 7TF, UK
| | - Sarah L Perry
- Leeds Institute of Medical Research at St James's, University of Leeds, St James's University Hospital, Leeds, LS9 7TF, UK
| | - Jade Spencer
- Institute of Cancer Therapeutics, University of Bradford, Bradford, BD7 1DP, UK
| | - Amanda D Race
- Institute of Cancer Therapeutics, University of Bradford, Bradford, BD7 1DP, UK
| | - Catriona Marshall
- Leeds Institute of Medical Research at St James's, University of Leeds, St James's University Hospital, Leeds, LS9 7TF, UK
| | - John M Hutchinson
- Leeds Institute of Medical Research at St James's, University of Leeds, St James's University Hospital, Leeds, LS9 7TF, UK
| | - Anna Nicolaou
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Manchester, M13 9PT, UK.,Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PT, UK
| | - Paul M Loadman
- Institute of Cancer Therapeutics, University of Bradford, Bradford, BD7 1DP, UK
| | - P Louise Coletta
- Leeds Institute of Medical Research at St James's, University of Leeds, St James's University Hospital, Leeds, LS9 7TF, UK
| | - Mark A Hull
- Leeds Institute of Medical Research at St James's, University of Leeds, St James's University Hospital, Leeds, LS9 7TF, UK
| |
Collapse
|
38
|
Bhatt DL, Hull MA, Song M, Van Hulle C, Carlsson C, Chapman MJ, Toth PP. Beyond cardiovascular medicine: potential future uses of icosapent ethyl. Eur Heart J Suppl 2020; 22:J54-J64. [PMID: 33061868 PMCID: PMC7537800 DOI: 10.1093/eurheartj/suaa119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The REDUCE-IT trial demonstrated that icosapent ethyl, an ethyl ester of eicosapentaenoic acid (EPA), reduced cardiovascular events in an at-risk population by a substantial degree. While the cardiovascular protective properties of this compound are now proven, several other potential uses are being actively explored in clinical studies. These areas of investigation include cancer, inflammatory bowel disease, infections, Alzheimer's disease, dementia, and depression. The next decade promises to deepen our understanding of the beneficial effects that EPA may offer beyond cardiovascular risk reduction.
Collapse
Affiliation(s)
- Deepak L Bhatt
- Brigham and Women’s Hospital, Heart & Vascular Center and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Mark A Hull
- Division of Gastrointestinal and Surgical Sciences, Leeds Institute of Medical Research, St James’s University Hospital, University of Leeds, Leeds, LS9 7TF, UK
| | - Mingyang Song
- Departments of Epidemiology and Nutrition, Harvard T.H. Chan School of Public Health, 665 Huntington Ave, Boston, MA 02115, USA
- Clinical and Translational Epidemiology Unit, Mongan Institute, Massachusetts General Hospital and Harvard Medical School, 100 Cambridge Street, Boston, MA 02114, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, 50 Fruit Street, Boston, MA 02114, USA
| | - Carol Van Hulle
- University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Cindy Carlsson
- William S. Middleton Memorial Veterans Hospital, Madison VA Geriatric Research, Education and Clinical Center (GRECC), 2500 Overlook Terrace, Madison, WI 53705, USA
- Division of Geriatrics and Gerontology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer’s Disease Research Center (ADRC), 600 Highland Ave, J5/1 Mezzanine, Madison, WI 53792, USA
- Wisconsin Alzheimer’s Institute (WAI), 610 Walnut St Suite 957, Madison, WI 53726, USA
| | - M John Chapman
- Sorbonne University, 21, Rue de l'Ecole de Medicine, 75006 Paris, France
- Endocrinology-Metabolism Division, Pitie-Salpetriere University Hospital, 47-83, Boulevard de lopital, 75651 Paris Cedex, France
| | - Peter P Toth
- CGH Medical Center, 101 East Miller Road, Sterling, IL 61081, USA
- Cicarrone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
39
|
Khadge S, Sharp JG, Thiele GM, McGuire TR, Talmadge JE. Fatty Acid Mediators in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1259:125-153. [PMID: 32578175 DOI: 10.1007/978-3-030-43093-1_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Patients with cancer frequently overexpress inflammatory cytokines with an associated neutrophilia both of which may be downregulated by diets with high omega-3 polyunsaturated fatty acids (ω-3 PUFA). The anti-inflammatory activity of dietary ω-3 PUFA has been suggested to have anticancer properties and to improve survival of cancer patients. Currently, the majority of dietary research efforts do not differentiate between obesity and dietary fatty acid consumption as mediators of inflammatory cell expansion and tumor microenvironmental infiltration, initiation, and progression. In this chapter, we discuss the relationships between dietary lipids, inflammation, neoplasia and strategies to regulate these relationships. We posit that dietary composition, notably the ratio of ω-3 vs. ω-6 PUFA, regulates tumor initiation and progression and the frequency and sites of metastasis that, together, impact overall survival (OS). We focus on three broad topics: first, the role of dietary lipids in chronic inflammation and tumor initiation, progression, and regression; second, lipid mediators linking inflammation and cancer; and third, dietary lipid regulation of murine and human tumor initiation, progression, and metastasis.
Collapse
Affiliation(s)
- Saraswoti Khadge
- Department of Pathology and Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE, USA.,Vanderbilt University, Nashville, TN, USA
| | - John Graham Sharp
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Geoffrey M Thiele
- Department of Pathology and Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA.,Veteran Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Timothy R McGuire
- Department of Pharmacy Practice, University of Nebraska Medical Center, Omaha, NE, USA
| | - James E Talmadge
- Department of Pathology and Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE, USA. .,Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
40
|
Long Z, Zhou J, Xie K, Wu Z, Yin H, Daria V, Tian J, Zhang N, Li L, Zhao Y, Wang F, Wang M, Cui Y. Metabolomic Markers of Colorectal Tumor With Different Clinicopathological Features. Front Oncol 2020; 10:981. [PMID: 32626659 PMCID: PMC7311671 DOI: 10.3389/fonc.2020.00981] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 05/18/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Colorectal cancer (CRC) is the result of complex interactions between the tumor's molecular profile and metabolites produced by its microenvironment. Despite recent studies identifying CRC molecular subtypes, a metabolite classification system is still lacking. We aimed to explore the distinct phenotypes and subtypes of CRC at the metabolite level. Methods: We conducted an untargeted metabolomics analysis of 51 paired tumor tissues and adjacent mucosa using ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry. Multivariate analysis including principal component analysis, orthogonal partial least squares discriminant analysis and heat maps, univariate analysis, and pathway analysis were used to identify potential metabolite phenotypes of CRC. Unsupervised consensus clustering was used to identify robust metabolite subtypes, and evaluated their clinical relevance. Results: A total of 173 metabolites (including nucleotides, carbohydrates, free fatty acids, and choline) were identified between CRC tumor tissue and adjacent mucosa. We found that lipid metabolism was closely related to the occurrence and progression of CRC. In particular, CRC tissues could be divided into three subtypes, and statistically significant correlations between different subtypes and clinical prognosis were observed. Conclusions: CRC tumor tissue exhibits distinct metabolite phenotypes. Metabolite differences between subtypes may provide a basis and direction for further clinical individualized treatment planning.
Collapse
Affiliation(s)
- Zhiping Long
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| | - Junde Zhou
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kun Xie
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| | - Zhen Wu
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| | - Huihui Yin
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| | - Volontovich Daria
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| | - Jingshen Tian
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| | - Nannan Zhang
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| | - Liangliang Li
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| | - Yashuang Zhao
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| | - Fan Wang
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| | - Maoqing Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Yunfu Cui
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
41
|
Yurko-Mauro K, Van Elswyk M, Teo L. A Scoping Review of Interactions between Omega-3 Long-Chain Polyunsaturated Fatty Acids and Genetic Variation in Relation to Cancer Risk. Nutrients 2020; 12:E1647. [PMID: 32498320 PMCID: PMC7352171 DOI: 10.3390/nu12061647] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023] Open
Abstract
This scoping review examines the interaction of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) and genetic variants of various types of cancers. A comprehensive search was performed to identify controlled and observational studies conducted through August 2017. Eighteen unique studies were included: breast cancer (n = 2), gastric cancer (n = 1), exocrine pancreatic cancer (n = 1), chronic lymphocytic leukemia (n = 1), prostate cancer (n = 7) and colorectal cancer (n = 6). An additional 13 studies that focused on fish intake or at-risk populations were summarized to increase readers' understanding of the topic based on this review, DHA and EPA interact with certain genetic variants to decrease breast, colorectal and prostate cancer risk, although data was limited and identified polymorphisms were heterogeneous. The evidence to date demonstrates that omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) may decrease cancer risk by affecting genetic variants of inflammatory pathways, oxidative stress and tumor apoptosis. Collectively, data supports the notion that once a genetic variant is identified, the benefits of a targeted, personalized therapeutic regimen that includes DHA and/or EPA should be considered.
Collapse
Affiliation(s)
| | | | - Lynn Teo
- Teo Research Consulting, Silver Spring, MD, 20910, USA;
| |
Collapse
|
42
|
Sørensen LS, Rasmussen SL, Calder PC, Yilmaz MN, Schmidt EB, Thorlacius-Ussing O. Long-term outcomes after perioperative treatment with omega-3 fatty acid supplements in colorectal cancer. BJS Open 2020; 4:678-684. [PMID: 32391656 PMCID: PMC7397352 DOI: 10.1002/bjs5.50295] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/30/2020] [Indexed: 01/01/2023] Open
Abstract
Background This study aimed to evaluate the effect of perioperative supplementation with omega‐3 fatty acids (n‐3 FA) on perioperative outcomes and survival in patients undergoing colorectal cancer surgery. Methods Patients scheduled for elective resection of colorectal cancer between 2007 and 2010 were randomized to either an n‐3 FA‐enriched oral nutrition supplement (ONS) twice daily or a standard ONS (control) for 7 days before and after surgery. Outcome measures, including postoperative complications, 3‐year cumulative incidence of local or metastatic colorectal cancer recurrence and 5‐year overall survival, were compared between the groups. Results Of 148 patients enrolled in the study, 125 (65 patients receiving n‐3 FA‐enriched ONS and 60 receiving standard ONS) were analysed. There were no differences in postoperative complications after surgery (P = 0·544). The risk of disease recurrence at 3 years was similar (relative risk 1·66, 95 per cent c.i. 0·65 to 4·26).The 5‐year survival rate of patients treated with n‐3 FA was 69·2 (95 per cent c.i. 56·5 to 78·9) per cent, compared with 81·7 (69·3 to 89·4) per cent in the control group (P = 0·193). After adjustment for age, stage of disease and adjuvant chemotherapy, n‐3 FA was associated with higher mortality compared with controls (hazard ratio 1·73, 95 per cent c.i. 1·06 to 2·83; P = 0·029). The interaction between n‐3 FA and adjuvant chemotherapy was not statistically significant. Conclusion Perioperative supplementation with n‐3 FA did not confer a survival benefit in patients undergoing colorectal cancer surgery. n‐3 FA did not benefit the subgroup of patients treated with adjuvant chemotherapy or decrease the risk of disease recurrence.
Collapse
Affiliation(s)
- L Schmidt Sørensen
- Department of Gastrointestinal Surgery, Aalborg, Denmark.,Clinical Cancer Research Centre, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - S Ladefoged Rasmussen
- Department of Gastrointestinal Surgery, Aalborg, Denmark.,Clinical Cancer Research Centre, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - P C Calder
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.,National Institute for Health Research Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| | | | - E Berg Schmidt
- Department of Cardiology, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - O Thorlacius-Ussing
- Department of Gastrointestinal Surgery, Aalborg, Denmark.,Clinical Cancer Research Centre, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
43
|
Abstract
The preventability estimate for colorectal cancer (CRC) is approximately 50%, highlighting the huge potential for altering modifiable lifestyle factors (including diet and body fatness) in order to reduce risk of this common malignancy. There is strong evidence that dietary factors (including intake of wholegrains, fibre, red and processed meat and alcohol) affect CRC risk. The lack of positive intervention trials and limited mechanistic understanding likely explain limited public health impact of epidemiological observations, to date. An alternative strategy for nutritional prevention of CRC is use of supplements that provide higher individual nutrient exposure than obtained through the diet (chemoprevention). There are positive data for calcium and/or vitamin D and the n-3 fatty acid EPA from polyp prevention trials using colorectal adenoma as a CRC risk biomarker. Although CRC is an obesity-related malignancy, there remains a paucity of observational data supporting intentional weight loss for CRC risk reduction. Some types of obesity surgeries (Roux-en-Y gastric bypass) might actually increase subsequent CRC risk due to alteration of local intestinal factors. There is intense interest in nutritional therapy of patients after diagnosis of CRC, in order to impact on recurrence and overall survival (now often termed cancer interception). In conclusion, nutritional prevention of CRC continues to hold much promise. Increased mechanistic understanding of the role of individual nutrients (linked to intestinal microbiota), as well as a precision medicine approach to CRC chemoprevention and interception based on both tumour and host factors, should enable translation of nutritional interventions into effective CRC risk reduction measures.
Collapse
|
44
|
Song M, Lee IM, Manson JE, Buring JE, Dushkes R, Gordon D, Walter J, Wu K, Chan AT, Ogino S, Fuchs CS, Meyerhardt JA, Giovannucci EL. Effect of Supplementation With Marine ω-3 Fatty Acid on Risk of Colorectal Adenomas and Serrated Polyps in the US General Population: A Prespecified Ancillary Study of a Randomized Clinical Trial. JAMA Oncol 2020; 6:108-115. [PMID: 31750855 DOI: 10.1001/jamaoncol.2019.4587] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Importance Marine ω-3 fatty acid has been suggested to protect against colorectal cancer. Objective To assess the effect of daily marine ω-3 fatty acid supplementation on the risk of colorectal cancer precursors, including conventional adenomas and serrated polyps. Design, Setting, and Participants This study was a prespecified ancillary study of the placebo-controlled randomized clinical trial VITAL (Vitamin D and Omega-3 Trial). An intention-to-treat analysis was used to examine the effect of daily marine ω-3 supplements among 25 871 adults in the US general population (including 5106 African American persons) free of cancer and cardiovascular disease at enrollment. Randomization was from November 2011 to March 2014, and intervention ended as planned on December 31, 2017. Interventions Marine ω-3 fatty acid, 1 g daily (which included eicosapentaenoic acid, 460 mg, and docosahexaenoic acid, 380 mg) and vitamin D3 (2000 IU daily) supplements. Main Outcomes and Measures Risk of conventional adenomas (including tubular adenoma, tubulovillous adenoma, villous adenoma, and adenoma with high-grade dysplasia) or serrated polyps (including hyperplastic polyp, traditional serrated adenoma, and sessile serrated polyp). In a subset of participants who reported receiving a diagnosis of polyp on follow-up questionnaires, endoscopic and pathologic records were obtained to confirm the diagnosis. Odds ratios (ORs) and 95% CIs were calculated using logistic regression, after adjusting for age, sex, vitamin D treatment assignment, and use of endoscopy. Secondary analyses were performed according to polyp features and participants' characteristics. Results The demographic characteristics of participants at randomization were well balanced between the treatment and placebo groups; for example, 50.6% vs 50.5% were women, and 19.7% vs 19.8% were African American persons were included in each group. The mean (SD) age was 67.1 (7.1) years in the placebo group and 67.2 (7.1) in the ω-3 treatment group. During a median follow-up of 5.3 years (range, 3.8-6.1 years), 294 cases of conventional adenomas were documented in the ω-3 group and 301 in the control group (multivariable OR, 0.98; 95% CI, 0.83-1.15) (1:1 ratio between number of cases and number of participants). In addition, 174 cases of serrated polyps were documented in the ω-3 group and 167 in the control group (OR, 1.05; 95% CI, 0.84-1.29). Null associations were found for polyp subgroups according to size, location, multiplicity, or histology. In secondary analyses, marine ω-3 treatment appeared to be associated with lower risk of conventional adenomas among individuals with low plasma levels of ω-3 index at baseline (OR, 0.76; 95% CI, 0.57-1.02; P = .03 for interaction by ω-3 index). A beneficial association of supplementation was also noted in the African American population (OR, 0.59; 95% CI, 0.35-1.00) but not in other racial/ethnic groups (P = .11 for interaction). Conclusions and Relevance Supplementation with marine ω-3 fatty acids, 1 g per day, was not associated with reduced risk of colorectal cancer precursors. A potential benefit of this supplementation for individuals with low baseline ω-3 levels or for African American persons requires further confirmation. Trial Registration ClinicalTrials.gov identifier: NCT01169259.
Collapse
Affiliation(s)
- Mingyang Song
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Clinical and Translational Epidemiology Unit, Mongan Institute, Massachusetts General Hospital, Harvard Medical School, Boston.,Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - I-Min Lee
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - JoAnn E Manson
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Julie E Buring
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Rimma Dushkes
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - David Gordon
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Joseph Walter
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Kana Wu
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Mongan Institute, Massachusetts General Hospital, Harvard Medical School, Boston.,Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge
| | - Shuji Ogino
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge.,Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Charles S Fuchs
- Yale Cancer Center, New Haven, Connecticut.,Department of Medicine, Yale School of Medicine, New Haven, Connecticut.,Smilow Cancer Hospital, New Haven, Connecticut
| | - Jeffrey A Meyerhardt
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Edward L Giovannucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | | |
Collapse
|
45
|
Irún P, Lanas A, Piazuelo E. Omega-3 Polyunsaturated Fatty Acids and Their Bioactive Metabolites in Gastrointestinal Malignancies Related to Unresolved Inflammation. A Review. Front Pharmacol 2019; 10:852. [PMID: 31427966 PMCID: PMC6687876 DOI: 10.3389/fphar.2019.00852] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 07/03/2019] [Indexed: 12/21/2022] Open
Abstract
Chronic inflammation takes part in the pathogenesis of some malignancies of the gastrointestinal tract including colorectal (CRC), gastric, and esophageal cancers. The use of ω3 polyunsaturated fatty acid (ω3-PUFA) supplements for chemoprevention or adjuvant therapy of gastrointestinal cancers is being investigated in recent years. Most evidence has been reported in CRC, although their protective role has also been reported for Helicobacter pylori-induced gastric cancer or Barrett’s esophagus-derived adenocarcinoma. Studies based on ω3-PUFA supplementation in animal models of familial adenomatous polyposis (FAP) and CRC revealed positive effects on cancer prevention, reducing the number and size of tumors, down-regulating arachidonic acid-derived eicosanoids, upregulating anti-oxidant enzymes, and reducing lipid peroxidation, whereas contradictory results have been found in induced colitis and colitis-associated cancer. Beneficial effects have also been found in FAP and ulcerative colitis patients. Of special interest is their positive effect as adjuvants on radio- and chemo-sensitivity, specificity, and prevention of treatment complications. Some controversial results obtained in CRC might be justified by different dietary sources, extraction and preparation procedures of ω3-PUFAs, difficulties on filling out food questionnaires, daily dose and type of PUFAs, adenoma subtype, location of CRC, sex differences, and genetic factors. Studies using animal models of inflammatory bowel disease have confirmed that exogenous administration of active metabolites derived from PUFAs called pro-resolving mediators like lipoxin A4, arachidonic acid-derived, resolvins derived from eicosapentaenoic (EPA), docosahexaenoic (DHA), and docosapentaenoic (DPA) acids as well as maresin 1 and protectins DHA- and DPA-derived improve disease and inflammatory outcomes without causing immunosuppression or other side effects.
Collapse
Affiliation(s)
- Pilar Irún
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain.,Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
| | - Angel Lanas
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain.,Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain.,Department of Gastroenterology, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain.,Departamento de Medicina, Psiquiatría y Dermatología, Facultad de Medicina, Universidad de Zaragoza, Zaragoza, Spain
| | - Elena Piazuelo
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain.,Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain.,Instituto Aragonés de Ciencias de la Salud, Zaragoza, Spain.,Departamento de Farmacología y Fisiología. Facultad de Medicina, Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
46
|
Abstract
The majority of evidence linking anti-colorectal cancer (CRC) activity with omega-3 polyunsaturated fatty acids (O3FAs) has focussed on decreased CRC risk (prevention). More recently, preclinical data and human observational studies have begun to make the case for adjuvant treatment of advanced CRC. Herein, we review latest data regarding the effect of O3FAs on post-diagnosis CRC outcomes, including mechanistic preclinical data, evidence that O3FAs have beneficial effects on efficacy and tolerability of CRC chemotherapy, and human epidemiological data linking dietary O3FA intake with CRC outcomes. We also highlight ongoing randomised controlled trials of O3FAs with CRC endpoints and discuss critical gaps in the evidence base, which include limited understanding of the effects of O3FAs on the tumour microenvironment, the host immune response to CRC, and the intestinal microbiome.
Collapse
Affiliation(s)
- Milene Volpato
- Leeds Institute of Biomedical and Clinical Sciences, St James's University Hospital, University of Leeds, Leeds, LS9 7TF, UK
| | - Mark A Hull
- Leeds Institute of Biomedical and Clinical Sciences, St James's University Hospital, University of Leeds, Leeds, LS9 7TF, UK.
| |
Collapse
|
47
|
Song M, Ou FS, Zemla TJ, Hull MA, Shi Q, Limburg PJ, Alberts SR, Sinicrope FA, Giovannucci EL, Van Blarigan EL, Meyerhardt JA, Chan AT. Marine omega-3 fatty acid intake and survival of stage III colon cancer according to tumor molecular markers in NCCTG Phase III trial N0147 (Alliance). Int J Cancer 2019; 145:380-389. [PMID: 30623420 DOI: 10.1002/ijc.32113] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 12/12/2018] [Accepted: 12/19/2018] [Indexed: 12/13/2022]
Abstract
Marine omega-3 polyunsaturated fatty acids (MO3PUFAs) have anticancer properties and may improve colon cancer survival. However, it remains unknown whether the benefit differs by tumor molecular subtype. We examined data from a phase III randomized trial of FOLFOX or FOLFOX + cetuximab among 1,735 stage III colon cancer patients who completed a dietary questionnaire at enrollment. Multivariable hazard ratios and 95% confidence intervals (CIs) were calculated for the association between MO3PUFA and disease-free survival (DFS) and overall survival according to KRAS and BRAFV600E mutations and DNA mismatch repair (MMR) status. Higher MO3PUFA intake was associated with improved 3-year DFS for KRAS wild-type tumors (77% vs. 73%; HR: 0.84; 95% CI: 0.67-1.05) but not KRAS-mutant tumors (64% vs. 70%; HR: 1.30; 95% CI: 0.97-1.73; Pinteraction = 0.02). Similar heterogeneity was found by MMR (Pinteraction = 0.14): higher MO3PUFA was associated with better 3-year DFS for tumors with deficient MMR (72% vs. 67%) but not proficient MMR (72% vs. 72%). No heterogeneity was found by BRAFV600E mutation. Similar findings were obtained for overall survival. In conclusion, we found a suggestive beneficial association between higher MO3PUFA intake and improved survival among stage III colon cancer patients with wild-type KRAS and deficient MMR. Given the relatively small number of cases with tumor molecular assessments, further studies, preferably through pooled analyses of multiples cohorts, are needed to validate our findings.
Collapse
Affiliation(s)
- Mingyang Song
- Department of Epidemiology and Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA.,Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA.,Division of Gastroenterology, Massachusetts General Hospital, Boston, MA
| | - Fang-Shu Ou
- Alliance Statistics and Data Center, Mayo Clinic, Rochester, MN
| | - Tyler J Zemla
- Alliance Statistics and Data Center, Mayo Clinic, Rochester, MN
| | - Mark A Hull
- Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, St. James's University Hospital, Leeds, United Kingdom
| | - Qian Shi
- Alliance Statistics and Data Center, Mayo Clinic, Rochester, MN
| | - Paul J Limburg
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | | | - Frank A Sinicrope
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, MN.,Department of Oncology, Mayo Clinic, Rochester, MN
| | - Edward L Giovannucci
- Department of Epidemiology and Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Erin L Van Blarigan
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA.,Department of Urology, University of California, San Francisco, CA
| | - Jeffrey A Meyerhardt
- Department of Medical Oncology, Dana-Farber/Partners Cancer Care and Harvard Medical School, Boston, MA
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA.,Division of Gastroenterology, Massachusetts General Hospital, Boston, MA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA
| |
Collapse
|
48
|
Song M, Chan AT. Environmental Factors, Gut Microbiota, and Colorectal Cancer Prevention. Clin Gastroenterol Hepatol 2019; 17:275-289. [PMID: 30031175 PMCID: PMC6314893 DOI: 10.1016/j.cgh.2018.07.012] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/02/2018] [Accepted: 07/06/2018] [Indexed: 02/07/2023]
Abstract
The substantial burden of colorectal cancer and increasing trend in young adults highlight the importance of lifestyle modification as a complement to screening for colorectal cancer prevention. Several dietary and lifestyle factors have been implicated in the development of colorectal cancer, possibly through the intricate metabolic and inflammatory mechanisms. Likewise, as a key metabolic and immune regulator, the gut microbiota has been recognized to play an important role in colorectal tumorigenesis. Increasing data support that environmental factors are crucial determinants for the gut microbial composition and function, whose alterations induce changes in the host gene expression, metabolic regulation, and local and systemic immune response, thereby influencing cancer development. Here, we review the epidemiologic and mechanistic evidence regarding the links between diet and lifestyle and the gut microbiota in the development of colorectal cancer. We focus on factors for which substantial data support their importance for colorectal cancer and their potential role in the gut microbiota, including overweight and obesity, physical activity, dietary patterns, fiber, red and processed meat, marine omega-3 fatty acid, alcohol, and smoking. We also briefly describe other colorectal cancer-preventive factors for which the links with the gut microbiota have been suggested but remain to be mechanistically characterized, including vitamin D status, dairy consumption, and metformin use. Given limitations in available evidence, we highlight the need for further investigations in the relationship between environmental factors, gut microbiota, and colorectal cancer, which may lead to development and clinical translation of potential microbiota-based strategies for cancer prevention.
Collapse
Affiliation(s)
- Mingyang Song
- Departments of Epidemiology and Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA
| | - Andrew T. Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA
| |
Collapse
|
49
|
Gorjao R, Dos Santos CMM, Serdan TDA, Diniz VLS, Alba-Loureiro TC, Cury-Boaventura MF, Hatanaka E, Levada-Pires AC, Sato FT, Pithon-Curi TC, Fernandes LC, Curi R, Hirabara SM. New insights on the regulation of cancer cachexia by N-3 polyunsaturated fatty acids. Pharmacol Ther 2018; 196:117-134. [PMID: 30521881 DOI: 10.1016/j.pharmthera.2018.12.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancer cachexia is a multifactorial syndrome that develops during malignant tumor growth. Changes in plasma levels of several hormones and inflammatory factors result in an intense catabolic state, decreased activity of anabolic pathways, anorexia, and marked weight loss, leading to cachexia development and/or accentuation. Inflammatory mediators appear to be related to the control of a highly regulated process of muscle protein degradation that accelerates the process of cachexia. Several mediators have been postulated to participate in this process, including TNF-α, myostatin, and activated protein degradation pathways. Some interventional therapies have been proposed, including nutritional (dietary, omega-3 fatty acid supplementation), hormonal (insulin), pharmacological (clenbuterol), and nonpharmacological (physical exercise) therapies. Omega-3 (n-3) polyunsaturated fatty acids (PUFAs), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid, are recognized for their anti-inflammatory properties and have been used in therapeutic approaches to treat or attenuate cancer cachexia. In this review, we discuss recent findings on cellular and molecular mechanisms involved in inflammation in the cancer cachexia syndrome and the effectiveness of n-3 PUFAs to attenuate or prevent cancer cachexia.
Collapse
Affiliation(s)
- Renata Gorjao
- Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo, Brazil
| | | | | | | | | | | | - Elaine Hatanaka
- Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo, Brazil
| | | | - Fábio Takeo Sato
- Institute of Biology, State University of Campinas, Campinas, Brazil; School of Biomedical Sciences, Monash University, Melbourne, Australia
| | | | | | - Rui Curi
- Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo, Brazil; Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Sandro Massao Hirabara
- Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo, Brazil; Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
50
|
Costea T, Hudiță A, Ciolac OA, Gălățeanu B, Ginghină O, Costache M, Ganea C, Mocanu MM. Chemoprevention of Colorectal Cancer by Dietary Compounds. Int J Mol Sci 2018; 19:E3787. [PMID: 30487390 PMCID: PMC6321468 DOI: 10.3390/ijms19123787] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/18/2018] [Accepted: 11/23/2018] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer is one of the leading causes of death, and the third most diagnosed type of cancer, worldwide. It is most common amongst men and women over 50 years old. Risk factors include smoking, alcohol, diet, physical inactivity, genetics, alterations in gut microbiota, and associated pathologies (diabetes, obesity, chronic inflammatory bowel diseases). This review will discuss, in detail, the chemopreventive properties of some dietary compounds (phenolic compounds, carotenoids, iridoids, nitrogen compounds, organosulfur compounds, phytosterols, essential oil compounds, polyunsaturated fatty acids and dietary fiber) against colorectal cancer. We present recent data, focusing on in vitro, laboratory animals and clinical trials with the previously mentioned compounds. The chemopreventive properties of the dietary compounds involve multiple molecular and biochemical mechanisms of action, such as inhibition of cell growth, inhibition of tumor initiation, inhibition of adhesion, migration and angiogenesis, apoptosis, interaction with gut microbiota, regulation of cellular signal transduction pathways and xenobiotic metabolizing enzymes, etc. Moreover, this review will also focus on the natural dietary compounds' bioavailability, their synergistic protective effect, as well as the association with conventional therapy. Dietary natural compounds play a major role in colorectal chemoprevention and continuous research in this field is needed.
Collapse
Affiliation(s)
- Teodora Costea
- Department of Pharmacognosy, Phytochemistry and Phytotherapy, "Carol Davila" University of Medicine and Pharmacy, 020956 Bucharest, Romania.
| | - Ariana Hudiță
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania.
| | - Oana-Alina Ciolac
- Department of Biophysics, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| | - Bianca Gălățeanu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania.
| | - Octav Ginghină
- Department of Surgery, "Sf. Ioan" Emergency Clinical Hospital, 042122 Bucharest, Romania.
- Department II, Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy, 030167 Bucharest, Romania.
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania.
| | - Constanța Ganea
- Department of Biophysics, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| | - Maria-Magdalena Mocanu
- Department of Biophysics, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| |
Collapse
|