1
|
Wang L, Ramirez A, Felgner J, Li E, Hernandez-Davies JE, Gregory AE, Felgner PL, Mohraz A, Davies DH, Wang SW. Development of a single-dose Q fever vaccine with an injectable nanoparticle-loaded hydrogel: effect of sustained co-delivery of antigen and adjuvant. Drug Deliv 2025; 32:2476144. [PMID: 40314164 DOI: 10.1080/10717544.2025.2476144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/20/2025] [Accepted: 02/28/2025] [Indexed: 05/03/2025] Open
Abstract
Q fever is a zoonotic infectious disease caused by Coxiella burnetii, and there is currently no FDA-approved vaccine for human use. The whole-cell inactivated vaccine Q-VAX, which is only licensed in Australia, has a risk of causing severe adverse reactions, making subunit vaccines a good alternative. However, most subunit antigens are weak immunogens and require two or more immunizations to elicit an adequate level of immunity. We hypothesized that by combining a nanoparticle to co-deliver both a protein antigen and an adjuvant, together with a hydrogel depot for sustained-release kinetics, a single-administration of a nanoparticle-loaded hydrogel vaccine could elicit a strong and durable immune response. We synthesized and characterized a protein nanoparticle (CBU-CpG-E2) that co-delivered the immunodominant protein antigen CBU1910 (CBU) from C. burnetii and the adjuvant CpG1826 (CpG). For sustained release, we examined different mixtures of PLGA-PEG-PLGA (PPP) polymers and identified a PPP solution that was injectable at room temperature, formed a hydrogel at physiological temperature, and continuously released protein for 8 weeks in vivo. Single-dose vaccine formulations were administered to mice, and IgG, IgG1, and IgG2c levels were determined over time. The vaccine combining both the CBU-CpG-E2 nanoparticles and the PPP hydrogel elicited a stronger and more durable humoral immune response than the soluble bolus nanoparticle vaccines (without hydrogel) and the free antigen and free adjuvant-loaded hydrogel vaccines (without nanoparticles), and it yielded a balanced IgG2c/IgG1 response. This study demonstrates the potential advantages of using this modular PPP hydrogel/nanoparticle system to elicit improved immune responses against infectious pathogens.
Collapse
Affiliation(s)
- Lu Wang
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, USA
| | - Aaron Ramirez
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, USA
| | - Jiin Felgner
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California, Irvine, CA, USA
| | - Enya Li
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, USA
| | - Jenny E Hernandez-Davies
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California, Irvine, CA, USA
| | - Anthony E Gregory
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California, Irvine, CA, USA
| | - Philip L Felgner
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California, Irvine, CA, USA
- Institute for Immunology, University of California, Irvine, CA, USA
| | - Ali Mohraz
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, USA
| | - D Huw Davies
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California, Irvine, CA, USA
- Institute for Immunology, University of California, Irvine, CA, USA
| | - Szu-Wen Wang
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, USA
- Institute for Immunology, University of California, Irvine, CA, USA
- Department of Biomedical Engineering, University of California, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California, Irvine, CA, USA
| |
Collapse
|
2
|
Islam MD, Islam MM, Inoue A, Yesmin S, Brindha S, Yoshizue T, Tsurui H, Kurosu T, Kuroda Y. Neutralizing antibodies against the Japanese encephalitis virus are produced by a 12 kDa E. coli- expressed envelope protein domain III (EDIII) tagged with a solubility-controlling peptide. Vaccine 2025; 56:127143. [PMID: 40267616 DOI: 10.1016/j.vaccine.2025.127143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 04/01/2025] [Accepted: 04/13/2025] [Indexed: 04/25/2025]
Abstract
Escherichia coli is a powerful and cost-effective platform for producing recombinant proteins. However, E. coli- produced proteins lack side-chain glycosylation and may be misfolded due to non-native disulfide bonds, often leading to poor immunogenicity. As a result, they are commonly perceived as unsuitable for use as antiviral vaccine antigens. This study addresses this challenge using the small 12 kDa envelope protein domain III of the Japanese encephalitis virus (JEV-EDIII) as a model. We demonstrate that the low immunogenicity of E. coli- produced proteins can be effectively overcome by employing a solubility-controlling peptide tag (SCP-tag) composed of five isoleucines (C5I). E. coli-produced JEV-EDIII oligomerized into 100 nm (Rh) soluble oligomers upon attachment of the C5I-tag, whereas the untagged JEV-EDIII remained monomeric (Rh ∼ 1.9 nm). The C5I-tag significantly enhanced anti-JEV EDIII IgG titers, as evidenced by ELISA, and increased the population of memory T cells in the spleen, as assessed by flow cytometry. Most notably, the C5I-tagged JEV-EDIII elicited neutralizing antibodies, confirmed by the FRNT50 neutralization assay using live JEV. These findings suggest that oligomerization via SCP-tagging offers a promising, adjuvant-free approach for producing neutralizing antibodies with long-term T cell memory, paving the way for developing E. coli- produced, protein domain-based vaccines.
Collapse
Affiliation(s)
- Md Din Islam
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, Nakamachi 2-24-16, Tokyo 184-8588, Japan
| | - M Monirul Islam
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu-shi, Tokyo 183-8538, Japan; Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh
| | - Ayae Inoue
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, Nakamachi 2-24-16, Tokyo 184-8588, Japan
| | - Sanjida Yesmin
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, Nakamachi 2-24-16, Tokyo 184-8588, Japan
| | - Subbaian Brindha
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, Nakamachi 2-24-16, Tokyo 184-8588, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu-shi, Tokyo 183-8538, Japan
| | - Takahiro Yoshizue
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, Nakamachi 2-24-16, Tokyo 184-8588, Japan
| | - Hiromichi Tsurui
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, Nakamachi 2-24-16, Tokyo 184-8588, Japan; Department of Immunological Diagnosis, Juntendo University School of Medicine, Hongo 2-1-1, Tokyo 113-8421, Japan
| | - Takeshi Kurosu
- Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Gakuen 4-7-1, Tokyo 208-0011, Japan
| | - Yutaka Kuroda
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, Nakamachi 2-24-16, Tokyo 184-8588, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu-shi, Tokyo 183-8538, Japan.
| |
Collapse
|
3
|
Wu J, Liang J, Li S, Lu J, Li Y, Zhang B, Gao M, Zhou J, Zhang Y, Chen J. Cancer vaccine designed from homologous ferritin-based fusion protein with enhanced DC-T cell crosstalk for durable adaptive immunity against tumors. Bioact Mater 2025; 46:516-530. [PMID: 39868073 PMCID: PMC11764028 DOI: 10.1016/j.bioactmat.2024.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/30/2024] [Accepted: 12/27/2024] [Indexed: 01/28/2025] Open
Abstract
Peptide vaccines based on tumor antigens face the challenges of rapid clearance of peptides, low immunogenicity, and immune suppressive tumor microenvironment. However, the traditional solution mainly uses exogenous substances as adjuvants or carriers to enhance innate immune responses, but excessive inflammation can damage adaptive immunity. In the current study, we propose a straightforward novel nanovaccine strategy by employing homologous human ferritin light chain for minimized innate immunity and dendritic cell (DC) targeting, the cationic KALA peptide for enhanced cellular uptake, and suppressor of cytokine signaling 1 (SOCS1) siRNA for modulating DC activity. Upon fusing with the KALA peptide, this nanovaccine presents as a novel 40-mer cage structure, with highly enriched antigen peptides of proper size (25 nm) for targeted delivery to lymph nodes. The loading of SOCS1 siRNA onto the KALA peptide promoted DC maturation in tumor environment, leading to a 3-fold increase in antigen presentation compared to alum adjuvant. Moreover, it demonstrates remarkable efficacy in suppressing tumor progression and metastasis, together with prolonged survival. In addition, the nanovaccine stimulates up to 40 % memory T cells, thereby achieving sustained protection against tumor re-challenge. This unprecedented nanovaccine platform can ignite fresh interdisciplinary discussions on interactive strategies for future peptide vaccine development.
Collapse
Affiliation(s)
- Jun Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
- School of Chemical & Material Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Jing Liang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Sichen Li
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Jinjin Lu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Yi Li
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Bin Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Min Gao
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Juan Zhou
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Yan Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Jinghua Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| |
Collapse
|
4
|
Wijesundara YH, Arora N, Ehrman RN, Howlett TS, Weyman TM, Trashi I, Trashi O, Kumari S, Diwakara SD, Tang W, Senarathna MC, Drewniak KH, Wang Z, Smaldone RA, Gassensmith JJ. A Self-Adjuvanting Large Pore 2D Covalent Organic Framework as a Vaccine Platform. Angew Chem Int Ed Engl 2025; 64:e202413020. [PMID: 39621809 DOI: 10.1002/anie.202413020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/01/2024] [Indexed: 12/17/2024]
Abstract
Vaccines are one of the greatest human achievements in public health, as they help prevent the spread of diseases, reduce illness and death rates, saving thousands of lives with few side effects. Traditional vaccine development is centered around using live attenuated or inactivated pathogens, which is expensive and has resulted in vaccine-associated illnesses. Advancements have led to the development of safer subunit vaccines, which contain recombinant proteins isolated from pathogens. Their short half-life and small size make most subunit vaccines less immunogenic. Here, we introduce a large pore 2D covalent organic framework (COF), PyCOFamide, as a promising solution for an effective subunit platform. Our study demonstrates that simple adsorption of a model antigen, ovalbumin (OVA), onto PyCOFamide (OVA@COF) significantly enhances humoral and cell-mediated immune response compared to free OVA. OVA@COF exhibited heightened immune cell activation and acts as an antigen reservoir, facilitating antigen-presenting cell trafficking to the draining lymph nodes, amplifying the humoral immune response. Additionally, the breakdown of the COF releases monomers that adjuvant the activation of immune cells vital to creating strong immunity. This platform offers a potential avenue for safer, more effective subunit vaccines.
Collapse
Affiliation(s)
- Yalini H Wijesundara
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, 75080, TX, USA
| | - Niyati Arora
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, 75080, TX, USA
| | - Ryanne N Ehrman
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, 75080, TX, USA
| | - Thomas Sinclair Howlett
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, 75080, TX, USA
| | - Trevor M Weyman
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, 75080, TX, USA
| | - Ikeda Trashi
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, 75080, TX, USA
| | - Orikeda Trashi
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, 75080, TX, USA
| | - Sneha Kumari
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, 75080, TX, USA
| | - Shashini D Diwakara
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, 75080, TX, USA
| | - Wendy Tang
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, 75080, TX, USA
| | - Milinda C Senarathna
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, 75080, TX, USA
| | - Katarzyna H Drewniak
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, 75080, TX, USA
| | - Ziqi Wang
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, 75080, TX, USA
| | - Ronald A Smaldone
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, 75080, TX, USA
| | - Jeremiah J Gassensmith
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, 75080, TX, USA
- Department of Bioengineering, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, 75080, TX, USA
| |
Collapse
|
5
|
Li Y, Rodriguez-Otero MR, Champion JA. Self-assembled protein vesicles as vaccine delivery platform to enhance antigen-specific immune responses. Biomaterials 2024; 311:122666. [PMID: 38879893 DOI: 10.1016/j.biomaterials.2024.122666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 05/18/2024] [Accepted: 06/11/2024] [Indexed: 06/18/2024]
Abstract
Self-assembling protein nanoparticles are beneficial platforms for enhancing the often weak and short-lived immune responses elicited by subunit vaccines. Their benefits include multivalency, similar sizes as pathogens and control of antigen orientation. Previously, the design, preparation, and characterization of self-assembling protein vesicles presenting fluorescent proteins and enzymes on the outer vesicle surface have been reported. Here, a full-size model antigen protein, ovalbumin (OVA), was genetically fused to the recombinant vesicle building blocks and incorporated into protein vesicles via self-assembly. Characterization of OVA protein vesicles showed room temperature stability and tunable size. Immunization of mice with OVA protein vesicles induced strong antigen-specific humoral and cellular immune responses. This work demonstrates the potential of protein vesicles as a modular platform for delivering full-size antigen proteins that can be extended to pathogen antigens to induce antigen specific immune responses.
Collapse
Affiliation(s)
- Yirui Li
- BioEngineering Program, Georgia Institute of Technology, USA
| | - Mariela R Rodriguez-Otero
- BioEngineering Program, Georgia Institute of Technology, USA; School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, USA
| | - Julie A Champion
- BioEngineering Program, Georgia Institute of Technology, USA; School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, USA.
| |
Collapse
|
6
|
Zhao J, He J, Ding X, Zhou Y, Liu M, Chen X, Quan W, Hua D, Tong J, Li J. DENV Peptides Delivered as Spherical Nucleic Acid Constructs Enhance Antigen Presentation and Immunogenicity in vitro and in vivo. Int J Nanomedicine 2024; 19:9757-9770. [PMID: 39318604 PMCID: PMC11421446 DOI: 10.2147/ijn.s467427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/06/2024] [Indexed: 09/26/2024] Open
Abstract
Background The global prevalence of Dengue virus (DENV) infection poses a significant health risk, urging the need for effective vaccinations. Peptide vaccines, known for their capacity to induce comprehensive immunity against multiple virus serotypes, offer promise due to their stability, safety, and design flexibility. Spherical nucleic acid (SNA), particularly those with gold nanoparticle cores, present an attractive avenue for enhancing peptide vaccine efficacy due to their modularity and immunomodulatory properties. Methods The spherical nucleic acid-TBB (SNA-TBB), a novel nanovaccine construct, was fabricated through the co-functionalization process of SNA with epitope peptide, targeting all four serotypes of the DENV. This innovative approach aims to enhance immunogenicity and provide broad-spectrum protection against DENV infections. The physicochemical properties of SNA-TBB were characterized using dynamic light scattering, zeta potential measurement, and transmission electron microscopy. In vitro assessments included endocytosis studies, cytotoxicity evaluation, bone marrow-dendritic cells (BMDCs) maturation and activation analysis, cytokine detection, RNA sequencing, and transcript level analysis in BMDCs. In vivo immunization studies in mice involved evaluating IgG antibody titers, serum protection against DENV infection and safety assessment of nanovaccines. Results SNA-TBB demonstrated successful synthesis, enhanced endocytosis, and favorable physicochemical properties. In vitro assessments revealed no cytotoxicity and promoted BMDCs maturation. Cytokine analyses exhibited heightened IL-12p70, TNF-α, and IL-1β levels. Transcriptomic analysis highlighted genes linked to BMDCs maturation and immune responses. In vivo studies immunization with SNA-TBB resulted in elevated antigen-specific IgG antibody levels and conferred protection against DENV infection in neonatal mice. Evaluation of in vivo safety showed no signs of adverse effects in vital organs. Conclusion The study demonstrates the successful development of SNA-TBB as a promising nanovaccine platform against DENV infection and highlights the potential of SNA-based peptide vaccines as a strategy for developing safe and effective antiviral immunotherapy.
Collapse
Affiliation(s)
- Jing Zhao
- College of Basic Medicine, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Jiuxiang He
- College of Basic Medicine, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Xiaoyan Ding
- College of Basic Medicine, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Yuxin Zhou
- College of Basic Medicine, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Minchi Liu
- College of Basic Medicine, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Xiaozhong Chen
- College of Basic Medicine, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Wenxuan Quan
- College of Basic Medicine, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Dong Hua
- College of Basic Medicine, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Jun Tong
- College of Basic Medicine, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Jintao Li
- College of Basic Medicine, Army Medical University, Chongqing, 400038, People's Republic of China
| |
Collapse
|
7
|
Jahanafrooz Z, Oroojalian F, Mokhtarzadeh A, Rahdar A, Díez-Pascual AM. Nanovaccines: Immunogenic tumor antigens, targeted delivery, and combination therapy to enhance cancer immunotherapy. Drug Dev Res 2024; 85:e22244. [PMID: 39138855 DOI: 10.1002/ddr.22244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/16/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024]
Abstract
Nanovaccines have been designed to overcome the limitations associated with conventional vaccines. Effective delivery methods such as engineered carriers or smart nanoparticles (NPs) are critical requisites for inducing self-tolerance and optimizing vaccine immunogenicity with minimum side effects. NPs can be used as adjuvants, immunogens, or nanocarriers to develop nanovaccines for efficient antigen delivery. Multiloaded nanovaccines carrying multiple tumor antigens along with immunostimulants can effectively increase immunity against tumor cells. They can be biologically engineered to boost interactions with dendritic cells and to allow a gradual and constant antigen release. Modifying NPs surface properties, using high-density lipoprotein-mimicking nanodiscs, and developing nano-based artificial antigen-presenting cells such as dendritic cell-derived-exosomes are amongst the new developed technologies to enhance antigen-presentation and immune reactions against tumor cells. The present review provides an overview on the different perspectives, improvements, and barriers of successful clinical application of current cancer therapeutic and vaccination options. The immunomodulatory effects of different types of nanovaccines and the nanoparticles incorporated into their structure are described. The advantages of using nanovaccines to prevent and treat common illnesses such as AIDS, malaria, cancer and tuberculosis are discussed. Further, potential paths to develop optimal cancer vaccines are described. Given the immunosuppressive characteristics of both cancer cells and the tumor microenvironment, applying immunomodulators and immune checkpoint inhibitors in combination with other conventional anticancer therapies are necessary to boost the effectiveness of the immune response.
Collapse
Affiliation(s)
- Zohreh Jahanafrooz
- Department of Biology, Faculty of Sciences, University of Maragheh, Maragheh, Iran
| | - Fatemeh Oroojalian
- Natural Products & Medicinal Plants Research Center, North Khorasan University of Medical Sciences Bojnurd, Bojnurd, Iran
- Department of Medical Nanotechnology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Rahdar
- Department of Physics, Faculty of Sciences, University of Zabol, Zabol, Iran
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingenieria Química, Alcalá de Henares, Spain
| |
Collapse
|
8
|
Yu H, Chen G, Li L, Wei G, Li Y, Xiong S, Qi X. Spider minor ampullate silk protein nanoparticles: an effective protein delivery system capable of enhancing systemic immune responses. MedComm (Beijing) 2024; 5:e573. [PMID: 38882211 PMCID: PMC11179522 DOI: 10.1002/mco2.573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/17/2024] [Accepted: 04/05/2024] [Indexed: 06/18/2024] Open
Abstract
Spider silk proteins (spidroins) are particularly attractive due to their excellent biocompatibility. Spider can produce up to seven different types of spidroins, each with unique properties and functions. Spider minor ampullate silk protein (MiSp) might be particularly interesting for biomedical applications, as the constituent silk is mechanically strong and does not super-contract in water, attributed to its amino acid composition. In this study, we evaluate the potential of recombinant nanoparticles derived from Araneus ventricosus MiSp as a protein delivery carrier. The MiSp-based nanoparticles were able to serve as an effective delivery system, achieving nearly 100% efficiency in loading the model protein lysozyme, and displayed a sustained release profile at physiological pH. These nanoparticles could significantly improve the delivery efficacy of the model proteins through different administration routes. Furthermore, nanoparticles loaded with model protein antigen lysozyme after subcutaneous or intramuscular administration could enhance antigen-specific immune responses in mouse models, through a mechanism involving antigen-depot effects at the injection site, long-term antigen persistence, and efficient uptake by dendritic cells as well as internalization by lymph nodes. These findings highlight the transnational potential of MiSp-based nanoparticle system for protein drug and vaccine delivery.
Collapse
Affiliation(s)
- Hairui Yu
- The Jiangsu Key Laboratory of Infection and Immunity Institutes of Biology and Medical Sciences Soochow University Suzhou China
| | - Gefei Chen
- Department of Biosciences and Nutrition Karolinska Institutet Huddinge Sweden
| | - Linchao Li
- The Jiangsu Key Laboratory of Infection and Immunity Institutes of Biology and Medical Sciences Soochow University Suzhou China
| | - Guoqiang Wei
- The Jiangsu Key Laboratory of Infection and Immunity Institutes of Biology and Medical Sciences Soochow University Suzhou China
| | - Yanan Li
- Department of Neurosurgery Changhai Hospital Naval Medical University Shanghai China
| | - Sidong Xiong
- The Jiangsu Key Laboratory of Infection and Immunity Institutes of Biology and Medical Sciences Soochow University Suzhou China
| | - Xingmei Qi
- The Jiangsu Key Laboratory of Infection and Immunity Institutes of Biology and Medical Sciences Soochow University Suzhou China
| |
Collapse
|
9
|
Guo J, Liu C, Qi Z, Qiu T, Zhang J, Yang H. Engineering customized nanovaccines for enhanced cancer immunotherapy. Bioact Mater 2024; 36:330-357. [PMID: 38496036 PMCID: PMC10940734 DOI: 10.1016/j.bioactmat.2024.02.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/05/2024] [Accepted: 02/23/2024] [Indexed: 03/19/2024] Open
Abstract
Nanovaccines have gathered significant attention for their potential to elicit tumor-specific immunological responses. Despite notable progress in tumor immunotherapy, nanovaccines still encounter considerable challenges such as low delivery efficiency, limited targeting ability, and suboptimal efficacy. With an aim of addressing these issues, engineering customized nanovaccines through modification or functionalization has emerged as a promising approach. These tailored nanovaccines not only enhance antigen presentation, but also effectively modulate immunosuppression within the tumor microenvironment. Specifically, they are distinguished by their diverse sizes, shapes, charges, structures, and unique physicochemical properties, along with targeting ligands. These features of nanovaccines facilitate lymph node accumulation and activation/regulation of immune cells. This overview of bespoke nanovaccines underscores their potential in both prophylactic and therapeutic applications, offering insights into their future development and role in cancer immunotherapy.
Collapse
Affiliation(s)
- Jinyu Guo
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou, 362801, PR China
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
| | - Changhua Liu
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
| | - Zhaoyang Qi
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou, 362801, PR China
| | - Ting Qiu
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou, 362801, PR China
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
| | - Jin Zhang
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou, 362801, PR China
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, PR China
| |
Collapse
|
10
|
Gray M, Rodriguez-Otero MR, Champion JA. Self-Assembled Recombinant Elastin and Globular Protein Vesicles with Tunable Properties for Diverse Applications. Acc Chem Res 2024; 57:1227-1237. [PMID: 38624000 PMCID: PMC11080046 DOI: 10.1021/acs.accounts.3c00694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 04/17/2024]
Abstract
Vesicles are self-assembled structures comprised of a membrane-like exterior surrounding a hollow lumen with applications in drug delivery, artificial cells, and micro-bioreactors. Lipid or polymer vesicles are the most common and are made of lipids or polymers, respectively. They are highly useful structures for many applications but it can be challenging to decorate them with proteins or encapsulate proteins in them, owing to the use of organic solvent in their formation and the large size of proteins relative to lipid or polymer molecules. By utilization of recombinant fusion proteins to make vesicles, specific protein domains can be directly incorporated while also imparting tunability and stability. Protein vesicle assembly relies on the design and use of self-assembling amphiphilic proteins. A specific protein vesicle platform made in purely aqueous conditions of a globular, functional protein fused to a glutamate-rich leucine zipper (ZE) and a thermoresponsive elastin-like polypeptide (ELP) fused to an arginine-rich leucine zipper (ZR) is discussed here. The hydrophobic conformational change of the ELP above its transition temperature drives assembly, and strong ZE/ZR binding enables incorporation of the desired functional protein. Mixing the soluble proteins on ice induces zipper binding, and then warming above the ELP transition temperature (Tt) triggers the transition to and growth of protein-rich coacervates and, finally, reorganization of proteins into vesicles. Vesicle size is tunable based on salt concentration, rate of heating, protein concentration, size of the globular protein, molar ratio of the proteins, and the ELP sequence. Increasing the salt concentration decreases vesicle size by decreasing the Tt, resulting in a shorter coacervation transition stage. Likewise, directly changing the heating rate also changes this time and increasing protein concentration increases coalescence. Increasing globular protein size decreases the size of the vesicle due to steric hindrance. By changing the ELP sequence, which consists of (VPGXG)n, through the guest residue (X) or number of repeats (n), Tt is changed, affecting size. Additionally, the chemical nature of X variation has endowed vesicles with stimuli responsiveness and stability at physiological conditions.Protein vesicles have been used for biocatalysis, biomacromolecular drug delivery, and vaccine applications. Photo-cross-linkable vesicles were used to deliver small molecule cargo to cancer cells in vitro and antigen to immune cells in vivo. pH-responsive vesicles effectively delivered functional protein cargo, including cytochrome C, to the cytosol of cancer cells in vitro, using hydrophobic ion pairing to improve cargo distribution in the vesicles and release. The globular protein used to make the vesicles can be varied to achieve different functions. For example, enzyme vesicles exhibit biocatalysis, and antigen vesicles induce antibody and cellular immune responses after vaccination in mice. Collectively, the development and engineering of the protein vesicle platform has employed amphiphilic self-assembly strategies and rational protein engineering to control physical, chemical, and biological properties for biotechnology and nanomedicine applications.
Collapse
Affiliation(s)
- Mikaela
A. Gray
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Dr NW, Atlanta, Georgia 30332, United States
| | - Mariela R. Rodriguez-Otero
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Dr NW, Atlanta, Georgia 30332, United States
- BioEngineering
Program, Georgia Institute of Technology, 950 Atlantic Dr NW, Atlanta, Georgia 30332, United States
| | - Julie A. Champion
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Dr NW, Atlanta, Georgia 30332, United States
- BioEngineering
Program, Georgia Institute of Technology, 950 Atlantic Dr NW, Atlanta, Georgia 30332, United States
| |
Collapse
|
11
|
Zareein A, Mahmoudi M, Jadhav SS, Wilmore J, Wu Y. Biomaterial engineering strategies for B cell immunity modulations. Biomater Sci 2024; 12:1981-2006. [PMID: 38456305 PMCID: PMC11019864 DOI: 10.1039/d3bm01841e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
B cell immunity has a penetrating effect on human health and diseases. Therapeutics aiming to modulate B cell immunity have achieved remarkable success in combating infections, autoimmunity, and malignancies. However, current treatments still face significant limitations in generating effective long-lasting therapeutic B cell responses for many conditions. As the understanding of B cell biology has deepened in recent years, clearer regulation networks for B cell differentiation and antibody production have emerged, presenting opportunities to overcome current difficulties and realize the full therapeutic potential of B cell immunity. Biomaterial platforms have been developed to leverage these emerging concepts to augment therapeutic humoral immunity by facilitating immunogenic reagent trafficking, regulating T cell responses, and modulating the immune microenvironment. Moreover, biomaterial engineering tools have also advanced our understanding of B cell biology, further expediting the development of novel therapeutics. In this review, we will introduce the general concept of B cell immunobiology and highlight key biomaterial engineering strategies in the areas including B cell targeted antigen delivery, sustained B cell antigen delivery, antigen engineering, T cell help optimization, and B cell suppression. We will also discuss our perspective on future biomaterial engineering opportunities to leverage humoral immunity for therapeutics.
Collapse
Affiliation(s)
- Ali Zareein
- Department of Biomedical Engineering, Syracuse University, Syracuse, NY, USA.
- The BioInspired Institute for Material and Living Systems, Syracuse University, Syracuse, NY, USA
| | - Mina Mahmoudi
- Department of Biomedical Engineering, Syracuse University, Syracuse, NY, USA.
- The BioInspired Institute for Material and Living Systems, Syracuse University, Syracuse, NY, USA
| | - Shruti Sunil Jadhav
- Department of Biomedical Engineering, Syracuse University, Syracuse, NY, USA.
| | - Joel Wilmore
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Yaoying Wu
- Department of Biomedical Engineering, Syracuse University, Syracuse, NY, USA.
- The BioInspired Institute for Material and Living Systems, Syracuse University, Syracuse, NY, USA
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
12
|
Jia Z, Liu R, Chang Q, Zhou X, De X, Yang Z, Li Y, Zhang C, Wang F, Ge J. Proof of concept in utilizing the peptidoglycan skeleton of pathogenic bacteria as antigen delivery platform for enhanced immune response. Int J Biol Macromol 2024; 264:130591. [PMID: 38437938 DOI: 10.1016/j.ijbiomac.2024.130591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
Subunit vaccines are becoming increasingly important because of their safety and effectiveness. However, subunit vaccines often exhibit limited immunogenicity, necessitating the use of suitable adjuvants to elicit robust immune responses. In this study, we demonstrated for the first time that pathogenic bacteria can be prepared into a purified peptidoglycan skeleton without nucleic acids and proteins, presenting bacterium-like particles (pBLP). Our results showed that the peptidoglycan skeletons screened from four pathogens could activate Toll-like receptor1/2 receptors better than bacterium-like particles from Lactococcus lactis in macrophages. We observed that pBLP was safe in mouse models of multiple ages. Furthermore, pBLP improved the performance of two commercial vaccines in vivo. We confirmed that pBLP successfully loaded antigens onto the surface and proved to be an effective antigen delivery platform with enhanced antibody titers, antibody avidity, balanced subclass distribution, and mucosal immunity. These results indicate that the peptidoglycan skeleton of pathogenic bacteria represents a new strategy for developing subunit vaccine delivery systems.
Collapse
Affiliation(s)
- Zheng Jia
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China
| | - Runhang Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China; State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150086, China
| | - Qingru Chang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China
| | - Xinyao Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China
| | - Xinqi De
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China
| | - Zaixing Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China
| | - Yifan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China
| | - Chuankun Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China
| | - Fang Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150086, China.
| | - Junwei Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China; Heilongjiang Provincial Key Laboratory of Zoonosis, Harbin 150036, China.
| |
Collapse
|
13
|
Feng X, Shi Y, Zhang Y, Lei F, Ren R, Tang X. Opportunities and Challenges for Inhalable Nanomedicine Formulations in Respiratory Diseases: A Review. Int J Nanomedicine 2024; 19:1509-1538. [PMID: 38384321 PMCID: PMC10880554 DOI: 10.2147/ijn.s446919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/24/2024] [Indexed: 02/23/2024] Open
Abstract
Lungs experience frequent interactions with the external environment and have an abundant supply of blood; therefore, they are susceptible to invasion by pathogenic microorganisms and tumor cells. However, the limited pharmacokinetics of conventional drugs in the lungs poses a clinical challenge. The emergence of different nano-formulations has been facilitated by advancements in nanotechnology. Inhaled nanomedicines exhibit better targeting and prolonged therapeutic effects. Although nano-formulations have great potential, they still present several unknown risks. Herein, we review the (1) physiological anatomy of the lungs and their biological barriers, (2) pharmacokinetics and toxicology of nanomaterial formulations in the lungs; (3) current nanomaterials that can be applied to the respiratory system and related design strategies, and (4) current applications of inhaled nanomaterials in treating respiratory disorders, vaccine design, and imaging detection based on the characteristics of different nanomaterials. Finally, (5) we analyze and summarize the challenges and prospects of nanomaterials for respiratory disease applications. We believe that nanomaterials, particularly inhaled nano-formulations, have excellent prospects for application in respiratory diseases. However, we emphasize that the simultaneous toxic side effects of biological nanomaterials must be considered during the application of these emerging medicines. This study aims to offer comprehensive guidelines and valuable insights for conducting research on nanomaterials in the domain of the respiratory system.
Collapse
Affiliation(s)
- Xujun Feng
- Department of Respiratory and Critical Care Medicine, Sleep Medicine Center, Mental Health Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Yuan Shi
- Department of Respiratory and Critical Care Medicine, Sleep Medicine Center, Mental Health Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Ye Zhang
- Department of Respiratory and Critical Care Medicine, Sleep Medicine Center, Mental Health Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Fei Lei
- Department of Respiratory and Critical Care Medicine, Sleep Medicine Center, Mental Health Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Rong Ren
- Department of Respiratory and Critical Care Medicine, Sleep Medicine Center, Mental Health Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Xiangdong Tang
- Department of Respiratory and Critical Care Medicine, Sleep Medicine Center, Mental Health Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
14
|
Sahu R, Verma R, Egbo TE, Giambartolomei GH, Singh SR, Dennis VA. Effects of prime-boost strategies on the protective efficacy and immunogenicity of a PLGA (85:15)-encapsulated Chlamydia recombinant MOMP nanovaccine. Pathog Dis 2024; 82:ftae004. [PMID: 38862192 PMCID: PMC11186516 DOI: 10.1093/femspd/ftae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/08/2024] [Accepted: 06/10/2024] [Indexed: 06/13/2024] Open
Abstract
To begin to optimize the immunization routes for our reported PLGA-rMOMP nanovaccine [PLGA-encapsulated Chlamydia muridarum (Cm) recombinant major outer membrane protein (rMOMP)], we compared two prime-boost immunization strategies [subcutaneous (SC) and intramuscular (IM-p) prime routes followed by two SC-boosts)] to evaluate the nanovaccine-induced protective efficacy and immunogenicity in female BALB/c mice. Our results showed that mice immunized via the SC and IM-p routes were protected against a Cm genital challenge by a reduction in bacterial burden and with fewer bacteria in the SC mice. Protection of mice correlated with rMOMP-specific Th1 (IL-2 and IFN-γ) and not Th2 (IL-4, IL-9, and IL-13) cytokines, and CD4+ memory (CD44highCD62Lhigh) T-cells, especially in the SC mice. We also observed higher levels of IL-1α, IL-6, IL-17, CCL-2, and G-CSF in SC-immunized mice. Notably, an increase of cytokines/chemokines was seen after the challenge in the SC, IM-p, and control mice (rMOMP and PBS), suggesting a Cm stimulation. In parallel, rMOMP-specific Th1 (IgG2a and IgG2b) and Th2 (IgG1) serum, mucosal, serum avidity, and neutralizing antibodies were more elevated in SC than in IM-p mice. Overall, the homologous SC prime-boost immunization of mice induced enhanced cellular and antibody responses with better protection against a genital challenge compared to the heterologous IM-p.
Collapse
Affiliation(s)
- Rajnish Sahu
- Center for NanoBiotechnology Research, Department of Biological Sciences, 1627 Harris Way, Alabama State University, Montgomery AL, 36104, United States
| | - Richa Verma
- Center for NanoBiotechnology Research, Department of Biological Sciences, 1627 Harris Way, Alabama State University, Montgomery AL, 36104, United States
| | - Timothy E Egbo
- US Army Medical Research Institute of Infectious Diseases, Unit 8900, DPO, AE, Box 330, 09831, United States
| | - Guillermo H Giambartolomei
- Instituto de Inmunología, Genética y Metabolismo (INIGEM). CONICET. AV. Cordoba 2351, Universidad de Buenos Aires, Buenos Aires, C1120AAR, Argentina
| | - Shree R Singh
- Center for NanoBiotechnology Research, Department of Biological Sciences, 1627 Harris Way, Alabama State University, Montgomery AL, 36104, United States
| | - Vida A Dennis
- Center for NanoBiotechnology Research, Department of Biological Sciences, 1627 Harris Way, Alabama State University, Montgomery AL, 36104, United States
| |
Collapse
|
15
|
Han J, Zhang J, Hu L, Wang C, Wang S, Miao G. Chloroplast display of subunit vaccines and their efficacy via oral administration. Int J Biol Macromol 2024; 258:129125. [PMID: 38163512 DOI: 10.1016/j.ijbiomac.2023.129125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
As a safe and natural "capsule," plants have several advantages over mammals and microorganisms for the production of oral vaccines. In this study, we innovatively utilized the transmembrane region of the pea Translocase of chloroplast 34 (TOC34) protein to display two subunit vaccines, capsid protein VP2 of Porcine parvovirus (PPV) and the heat-labile enterotoxin B (LTB) of Escherichia coli, on the surface of chloroplasts. Unlike microbial display techniques, chloroplast display circumvents antigen degradation in the stomach while retaining the size characteristic of microorganisms. Additionally, a co-expressed peptide adjuvant, antimicrobial peptide protegin-1 (PG1), was used to enhance the strength of oral immunization. Immunohistochemistry and trypsin digestion of chloroplast surface proteins confirmed the successful localization of both antigens on the chloroplast surface. In stable transgenic tobacco plants, the expression level of VP2-TOC34 ranged from 0.21 to 6.83 μg/g FW, while LTB-TOC34 ranged from 2.42 to 10.04 μg/g FW. By contrasting the digestive characteristics of plant materials with different particle sizes, it was observed that plant materials with diameters around 1 mm exhibited more prominent advantages in terms of chloroplast release and antigen exposure compared to both larger and smaller particles. Oral immunization resulted in significantly increased levels of specific IgG and secretory IgA in the mice compared to the control, with similar effects observed between the groups receiving oral immunization alone and those receiving a combination of initial injection and subsequent oral immunization. Challenge experiments further demonstrated the effective protection against infection in mice using this approach. These findings highlight the potential of chloroplast display technology for the development of effective oral vaccines.
Collapse
Affiliation(s)
- Juan Han
- Department of Bioengineering, Huainan Normal University, Huainan, Anhui Province 232038, China
| | - Jifeng Zhang
- Department of Bioengineering, Huainan Normal University, Huainan, Anhui Province 232038, China; Institute of Digital Ecology and Health, Huainan Normal University, Huainan, Anhui Province 232038, China
| | - Luya Hu
- Department of Bioengineering, Huainan Normal University, Huainan, Anhui Province 232038, China
| | - Chengrun Wang
- Department of Bioengineering, Huainan Normal University, Huainan, Anhui Province 232038, China; Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, Anhui Province 232038, China
| | - Shunchang Wang
- Department of Bioengineering, Huainan Normal University, Huainan, Anhui Province 232038, China; Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, Anhui Province 232038, China
| | - Guopeng Miao
- Department of Bioengineering, Huainan Normal University, Huainan, Anhui Province 232038, China; Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, Anhui Province 232038, China.
| |
Collapse
|
16
|
Park J, Champion JA. Development of Self-Assembled Protein Nanocage Spatially Functionalized with HA Stalk as a Broadly Cross-Reactive Influenza Vaccine Platform. ACS NANO 2023; 17:25045-25060. [PMID: 38084728 PMCID: PMC10753887 DOI: 10.1021/acsnano.3c07669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/27/2023]
Abstract
There remains a need for the development of a universal influenza vaccine, as current seasonal influenza vaccines exhibit limited protection against mismatched, mutated, or pandemic influenza viruses. A desirable approach to developing an effective universal influenza vaccine is the incorporation of highly conserved antigens in a multivalent scaffold that enhances their immunogenicity. Here, we develop a broadly cross-reactive influenza vaccine by functionalizing self-assembled protein nanocages (SAPNs) with multiple copies of the hemagglutinin stalk on the outer surface and matrix protein 2 ectodomain on the inner surface. SAPNs were generated by engineering short coiled coils, and the design was simulated by MD GROMACS. Due to the short sequences, off-target immune responses against empty SAPN scaffolds were not seen in immunized mice. Vaccination with the multivalent SAPNs induces high levels of broadly cross-reactive antibodies of only external antigens, demonstrating tight spatial control over the designed antigen placement. This work demonstrates the use of SAPNs as a potential influenza vaccine.
Collapse
Affiliation(s)
- Jaeyoung Park
- School of Chemical and Biomolecular
Engineering, Georgia Institute of Technology, 950 Atlantic Dr. NW, Atlanta, Georgia 30332-2000, United States
| | - Julie A. Champion
- School of Chemical and Biomolecular
Engineering, Georgia Institute of Technology, 950 Atlantic Dr. NW, Atlanta, Georgia 30332-2000, United States
| |
Collapse
|
17
|
Luo H, Ma Y, Ren Y, Li Z, Sheng Y, Wang Y, Su Z, Bi J, Zhang S. Study of self-assembling properties of HBc-VLP derivatives aided by molecular dynamic simulations from a thermodynamic perspective. J Biomol Struct Dyn 2023; 42:12822-12835. [PMID: 37908124 DOI: 10.1080/07391102.2023.2273438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/14/2023] [Indexed: 11/02/2023]
Abstract
Self-assembling protein nanoparticles showed promise for vaccine design due to efficient antigen presentations and safety. However, the unpredictable formations of epitopes-fused protein assemblies remain challenging in the upstream design. This study suggests employing molecular dynamic (MD) simulations to investigate the assembly properties of Hepatitis B core protein (HBc) from thermodynamic perspectives. Eight HBc derivatives were expressed in E. coli, with their self-assembly properties characterised by high-performance liquid chromatography and transmission electron microscopy. MD simulations on the dimers, based on AlphaFold-predicted 3D structures, analysed the derivative at the atomic level. Results revealed that HBc derivatives can form dissociative polymers or large multi-subunit structures due to assembly failures. The instability of the dimer in aqueous solvents or inappropriate intradimer distances could cause major assembly failures. Polar solvation energies played a vital role too in forming assemble-incompetent dimers. Importantly, our study demonstrated that MD simulations on dimers can provide preliminary predictions on the assembly properties of HBc derivatives, thus aiding vaccine design by lowering the risk of self-assembling failures in engineered proteins.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hong Luo
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, University of Adelaide, Adelaide, Australia
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, PR China
- Institute of Pharmaceutical and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, PR China
| | - Yanyan Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, PR China
| | - Ying Ren
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, PR China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, PR China
| | - Zhengjun Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, PR China
| | - Yanan Sheng
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, PR China
| | - Yingli Wang
- Institute of Pharmaceutical and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, PR China
| | - Zhiguo Su
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, PR China
| | - Jingxiu Bi
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, University of Adelaide, Adelaide, Australia
| | - Songping Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, PR China
| |
Collapse
|
18
|
Shrimali PC, Chen S, Das A, Dreher R, Howard MK, Ryan JJ, Buck J, Kim D, Sprunger ML, Rudra JS, Jackrel ME. Amyloidogenic propensity of self-assembling peptides and their adjuvant potential for use as DNA vaccines. Acta Biomater 2023; 169:464-476. [PMID: 37586449 DOI: 10.1016/j.actbio.2023.08.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/27/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
De novo designed peptides that self-assemble into cross-β rich fibrillar biomaterials have been pursued as an innovative platform for the development of adjuvant- and inflammation-free vaccines. However, they share structural and morphological properties similar to amyloid species implicated in neurodegenerative diseases, which has been a long-standing concern for their successful translation. Here, we comprehensively characterize the amyloidogenic character of the amphipathic self-assembling cross-β peptide KFE8, compared to pathological amyloid and amyloid-like proteins α-synuclein (α-syn) and TDP-43. Further, we developed plasmid-based DNA vaccines with the KFE8 backbone serving as a scaffold for delivery of a GFP model antigen. We find that expression of tandem repeats of KFE8 is non-toxic and efficiently cleared by autophagy. We also demonstrate that preformed KFE8 fibrils do not cross-seed amyloid formation of α-syn in mammalian cells compared to α-syn preformed fibrils. In mice, vaccination with plasmids encoding the KFE32-GFP fusion protein elicited robust immune responses, inducing production of significantly higher levels of anti-GFP antibodies compared to soluble GFP. Antigen-specific CD8+T cells were also detected in the spleens of vaccinated mice and cytokine profiles from antigen recall assays indicate a balanced Th1/Th2 response. These findings illustrate that cross-β-rich peptide nanofibers have distinct physicochemical properties from those of pathological amyloidogenic proteins, and are an attractive platform for the development of DNA vaccines with self-adjuvanting properties and improved safety profiles. STATEMENT OF SIGNIFICANCE: Biomaterials comprised of self-assembling peptides hold great promise for the development of new vaccines that do not require use of adjuvants. However, these materials have safety concerns, as they self-assemble into cross-β rich fibrils that are structurally similar to amyloid species implicated in disease. Here, we comprehensively study the properties of these biomaterials. We demonstrate that they have distinct properties from pathological proteins. They are non-toxic and do not trigger amyloidogenesis. Vaccination of these materials in mice elicited a robust immune response. Most excitingly, our work suggests that this platform could be used to develop DNA-based vaccines, which have few storage requirements. Further, due to their genetic encoding, longer sequences can be generated and the vaccines will be amenable to modification.
Collapse
Affiliation(s)
- Paresh C Shrimali
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA
| | - Sheng Chen
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Anirban Das
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA; Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Rachel Dreher
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Matthew K Howard
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Jeremy J Ryan
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Jeremy Buck
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA
| | - Darren Kim
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA
| | - Macy L Sprunger
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Jai S Rudra
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA.
| | - Meredith E Jackrel
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA.
| |
Collapse
|
19
|
Ruiz-Dávila CE, Solís-Andrade KI, Olvera-Sosa M, Palestino G, Rosales-Mendoza S. Core-shell chitosan/Porphyridium-exopolysaccharide microgels: Synthesis, properties, and biological evaluation. Int J Biol Macromol 2023; 246:125655. [PMID: 37399864 DOI: 10.1016/j.ijbiomac.2023.125655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/15/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Advanced materials used in the biomedicine field comprises a diverse group of organic molecules, including polymers, polysaccharides, and proteins. A significant trend in this area is the design of new micro/nano gels whose small size, physical stability, biocompatibility, and bioactivity could lead to new applications. Herein a new synthesis route is described to obtain core-shell microgels based on chitosan and Porphyridium exopolysaccharides (EPS) crosslinked with sodium tripolyphosphate (TPP). First, the synthesis of EPS-chitosan gels through ionic interactions was explored, leading to the formation of unstable gels. Alternatively, the use of TTP as crosslinker agent led to stable core-shell structures. The influence of reaction temperature, sonication time, and exopolysaccharide concentration, pH and TPP concentration were determined as a function of particle size and polydispersity index (PDI). The obtained EPS-chitosan gels were characterized by TEM, TGA, and FTIR; followed by the assessment of protein load capacity, stability upon freezing, cytotoxicity, and mucoadhesivity. Experimentation revealed that the core-shell particles size ranges 100-300 nm, have a 52 % loading capacity for BSA and a < 90 % mucoadhesivity, and no toxic effects in mammalian cell cultures. The potential application of the obtained microgels in the biomedical field is discussed.
Collapse
Affiliation(s)
- Claudia Elizabeth Ruiz-Dávila
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP 78210, Mexico; Centro de Investigación en Ciencias de la Salud y Biomedicina (CICSaB), Universidad Autónoma de San Luis Potosí, Mexico
| | - Karla Ivón Solís-Andrade
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP 78210, Mexico; Centro de Investigación en Ciencias de la Salud y Biomedicina (CICSaB), Universidad Autónoma de San Luis Potosí, Mexico
| | - Miguel Olvera-Sosa
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP 78210, Mexico; División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, A.C. (IPICYT), Camino a la Presa San José 2055, Lomas 4a Sección, San Luis Potosí C.P. 78216, SLP, Mexico
| | - Gabriela Palestino
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP 78210, Mexico; Centro de Investigación en Ciencias de la Salud y Biomedicina (CICSaB), Universidad Autónoma de San Luis Potosí, Mexico.
| | - Sergio Rosales-Mendoza
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP 78210, Mexico; Centro de Investigación en Ciencias de la Salud y Biomedicina (CICSaB), Universidad Autónoma de San Luis Potosí, Mexico.
| |
Collapse
|
20
|
Park J, Pho T, Champion JA. Chemical and biological conjugation strategies for the development of multivalent protein vaccine nanoparticles. Biopolymers 2023; 114:e23563. [PMID: 37490564 PMCID: PMC10528127 DOI: 10.1002/bip.23563] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/19/2023] [Accepted: 07/03/2023] [Indexed: 07/27/2023]
Abstract
The development of subunit vaccine platforms has been of considerable interest due to their good safety profile and ability to be adapted to new antigens, compared to other vaccine typess. Nevertheless, subunit vaccines often lack sufficient immunogenicity to fully protect against infectious diseases. A wide variety of subunit vaccines have been developed to enhance antigen immunogenicity by increasing antigen multivalency, as well as stability and delivery properties, via presentation of antigens on protein nanoparticles. Increasing multivalency can be an effective approach to provide a potent humoral immune response by more strongly engaging and clustering B cell receptors (BCRs) to induce activation, as well as increased uptake by antigen presenting cells and their subsequent T cell activation. Proper orientation of antigen on protein nanoparticles is also considered a crucial factor for enhanced BCR engagement and subsequent immune responses. Therefore, various strategies have been reported to decorate highly repetitive surfaces of protein nanoparticle scaffolds with multiple copies of antigens, arrange antigens in proper orientation, or combinations thereof. In this review, we describe different chemical bioconjugation methods, approaches for genetic fusion of recombinant antigens, biological affinity tags, and enzymatic conjugation methods to effectively present antigens on the surface of protein nanoparticle vaccine scaffolds.
Collapse
Affiliation(s)
- Jaeyoung Park
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Dr. NW, Atlanta, GA, 30332-2000, USA
| | - Thomas Pho
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Dr. NW, Atlanta, GA, 30332-2000, USA
- BioEngineering Program
| | - Julie A. Champion
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Dr. NW, Atlanta, GA, 30332-2000, USA
- BioEngineering Program
| |
Collapse
|
21
|
Wilks LR, Joshi G, Kang SM, Wang BZ, Gill HS. Peptide Cross-Linking Using Tyrosine Residues Facilitated by an Exogenous Nickel-Histidine Complex: A Facile Approach for Enhancing Vaccine-Specific Immunogenicity. ACS Infect Dis 2022; 8:2389-2395. [PMID: 36346898 DOI: 10.1021/acsinfecdis.2c00265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
An improved method for the generation of peptide vaccines using di-tyrosine cross-linking is described. The conserved ion channel peptide, M2e, of influenza A virus was modified with the addition of small tyrosine-rich regions (GYGY-) at both the N- and C-termini and extensively cross-linked via tyrosine-tyrosine linkages to form peptide nanoclusters. The cross-linking was catalyzed using exogenous nickel(II) ions complexed to an exogenous glycine-glycine-histidine peptide in the presence of an oxidizer. Mice that were intranasally or intramuscularly immunized with the M2e-vaccine nanoclusters induced comparable levels of M2e-specific serum antibodies. Vaccination via the intranasal or intramuscular route protected mice from subsequent lethal challenge with an influenza A virus. In comparison to our previous approach, where a histidine-rich tag was added into the peptide structure, the use of exogenous histidine reduced irrelevant off-target immune response. Additionally, the purity of the resulting nanoclusters is an attractive feature, making this approach appealing for vaccine development.
Collapse
Affiliation(s)
- Logan R Wilks
- Department of Chemical Engineering, Texas Tech University, 8th street and Canton Ave., Mail Stop 3121, Lubbock, Texas 79409-3121, United States
| | - Gaurav Joshi
- Department of Chemical Engineering, Texas Tech University, 8th street and Canton Ave., Mail Stop 3121, Lubbock, Texas 79409-3121, United States
| | - Sang-Moo Kang
- Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Ave., Atlanta, Georgia 30302, United States
| | - Bao-Zhong Wang
- Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Ave., Atlanta, Georgia 30302, United States
| | - Harvinder Singh Gill
- Department of Chemical Engineering, Texas Tech University, 8th street and Canton Ave., Mail Stop 3121, Lubbock, Texas 79409-3121, United States
| |
Collapse
|
22
|
Pho T, Champion JA. Surface Engineering of Protein Nanoparticles Modulates Transport, Adsorption, and Uptake in Mucus. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51697-51710. [PMID: 36354361 DOI: 10.1021/acsami.2c14670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Protein nanoparticles have been demonstrated as effective carriers for protein antigens and therapeutics due to properties endowed by their protein composition. They exhibit high protein to carrier yields, biocompatibility, and heterogeneous surface properties. While protein nanoparticles have been delivered via multiple routes, including intranasal, their interactions with mucosal barriers have not been well studied or modified. Biological barriers associated with intranasal delivery consist of viscoelastic mucus that hinders material transport through surface interactions and the underlying epithelium. Herein, we altered protein nanoparticle surface properties and characterized interactions with nasal mucus and the subsequent effects on diffusion, cellular uptake, and immune cell maturation. Ovalbumin protein nanoparticles were used, serving as a model vaccine nanoparticle. Unmodified ovalbumin protein nanoparticles were compared to cationic ovalbumin particles functionalized with amine groups, neutral particles functionalized with polyethylene glycol, and zwitterionic particles coated layer-by-layer (LBL) with chitosan and oligonucleotides. Transport analysis indicated rapid diffusion of polyethylene glycol and LBL-modified ovalbumin nanoparticles in porcine nasal mucus, while cationic particles were mucoadhesive. Cellular uptake in the presence of mucus by epithelial and dendritic cells was highest for particles containing positive charges, both LBL and amine-functionalized. These particles also exhibited the most diverse adsorbed protein corona from nasal fluids. The corona impacted both dendritic cell uptake and maturation, with polyethylene glycol and LBL modifications improving CD86 expression. Altogether, surface modifications on protein-based nanocarriers are shown to facilitate distinctive physical and cellular behavior associated with mucosal delivery.
Collapse
Affiliation(s)
- Thomas Pho
- School of Chemical and Biomolecular Engineering, BioEngineering Program, Georgia Institute of Technology, 950 Atlantic Drive NW, Atlanta, Georgia30332-2000, United States
| | - Julie A Champion
- School of Chemical and Biomolecular Engineering, BioEngineering Program, Georgia Institute of Technology, 950 Atlantic Drive NW, Atlanta, Georgia30332-2000, United States
| |
Collapse
|
23
|
Anand U, Bandyopadhyay A, Jha NK, Pérez de la Lastra JM, Dey A. Translational aspect in peptide drug discovery and development: An emerging therapeutic candidate. Biofactors 2022; 49:251-269. [PMID: 36326181 DOI: 10.1002/biof.1913] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/11/2022] [Indexed: 11/06/2022]
Abstract
In the last two decades, protein-protein interactions (PPIs) have been used as the main target for drug development. However, with larger or superficial binding sites, it has been extremely difficult to disrupt PPIs with small molecules. On the other hand, intracellular PPIs cannot be targeted by antibodies that cannot penetrate the cell membrane. Peptides that have a combination of conformational rigidity and flexibility can be used to target difficult binding interfaces with appropriate binding affinity and specificity. Since the introduction of insulin nearly a century ago, more than 80 peptide drugs have been approved to treat a variety of diseases. These include deadly diseases such as cancer and human immunodeficiency virus infection. It is also useful against diabetes, chronic pain, and osteoporosis. Today, more research is being done on these drugs as lessons learned from earlier approaches, which are still valid today, complement newer approaches such as peptide display libraries. At the same time, integrated genomics and peptide display libraries are new strategies that open new avenues for peptide drug discovery. The purpose of this review is to examine the problems in elucidating the peptide-protein recognition mechanism. This is important to develop peptide-based interventions that interfere with endogenous protein interactions. New approaches are being developed to improve the binding affinity and specificity of existing approaches and to develop peptide agents as potentially useful drugs. We also highlight the key challenges that must be overcome in peptide drug development to realize their potential and provide an overview of recent trends in peptide drug development. In addition, we take an in-depth look at early efforts in human hormone discovery, smart medicinal chemistry and design, natural peptide drugs, and breakthrough advances in molecular biology and peptide chemistry.
Collapse
Affiliation(s)
- Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, Punjab, India
- Department of Biotechnology, School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - José M Pérez de la Lastra
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología, IPNA-CSIC, Tenerife, Spain
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| |
Collapse
|
24
|
Strategies for Improving Peptide Stability and Delivery. Pharmaceuticals (Basel) 2022; 15:ph15101283. [PMID: 36297395 PMCID: PMC9610364 DOI: 10.3390/ph15101283] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Peptides play an important role in many fields, including immunology, medical diagnostics, and drug discovery, due to their high specificity and positive safety profile. However, for their delivery as active pharmaceutical ingredients, delivery vectors, or diagnostic imaging molecules, they suffer from two serious shortcomings: their poor metabolic stability and short half-life. Major research efforts are being invested to tackle those drawbacks, where structural modifications and novel delivery tactics have been developed to boost their ability to reach their targets as fully functional species. The benefit of selected technologies for enhancing the resistance of peptides against enzymatic degradation pathways and maximizing their therapeutic impact are also reviewed. Special note of cell-penetrating peptides as delivery vectors, as well as stapled modified peptides, which have demonstrated superior stability from their parent peptides, are reported.
Collapse
|
25
|
de Pinho Favaro MT, Atienza-Garriga J, Martínez-Torró C, Parladé E, Vázquez E, Corchero JL, Ferrer-Miralles N, Villaverde A. Recombinant vaccines in 2022: a perspective from the cell factory. Microb Cell Fact 2022; 21:203. [PMID: 36199085 PMCID: PMC9532831 DOI: 10.1186/s12934-022-01929-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/30/2022] [Indexed: 12/02/2022] Open
Abstract
The last big outbreaks of Ebola fever in Africa, the thousands of avian influenza outbreaks across Europe, Asia, North America and Africa, the emergence of monkeypox virus in Europe and specially the COVID-19 pandemics have globally stressed the need for efficient, cost-effective vaccines against infectious diseases. Ideally, they should be based on transversal technologies of wide applicability. In this context, and pushed by the above-mentioned epidemiological needs, new and highly sophisticated DNA-or RNA-based vaccination strategies have been recently developed and applied at large-scale. Being very promising and effective, they still need to be assessed regarding the level of conferred long-term protection. Despite these fast-developing approaches, subunit vaccines, based on recombinant proteins obtained by conventional genetic engineering, still show a wide spectrum of interesting potentialities and an important margin for further development. In the 80's, the first vaccination attempts with recombinant vaccines consisted in single structural proteins from viral pathogens, administered as soluble plain versions. In contrast, more complex formulations of recombinant antigens with particular geometries are progressively generated and explored in an attempt to mimic the multifaceted set of stimuli offered to the immune system by replicating pathogens. The diversity of recombinant antimicrobial vaccines and vaccine prototypes is revised here considering the cell factory types, through relevant examples of prototypes under development as well as already approved products.
Collapse
Affiliation(s)
- Marianna Teixeira de Pinho Favaro
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain
- Laboratory of Vaccine Development, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jan Atienza-Garriga
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, 08193, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain
| | - Carlos Martínez-Torró
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, 08193, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain
| | - Eloi Parladé
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, 08193, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, 08193, Barcelona, Spain.
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
| | - José Luis Corchero
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, 08193, Barcelona, Spain.
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, 08193, Barcelona, Spain.
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, 08193, Barcelona, Spain.
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
| |
Collapse
|
26
|
Kubiatowicz LJ, Mohapatra A, Krishnan N, Fang RH, Zhang L. mRNA nanomedicine: Design and recent applications. EXPLORATION (BEIJING, CHINA) 2022; 2:20210217. [PMID: 36249890 PMCID: PMC9539018 DOI: 10.1002/exp.20210217] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 08/11/2022] [Indexed: 11/06/2022]
Abstract
The rational design and application of mRNA-based medicine have recently yielded some key successes in the clinical management of human diseases. mRNA technology allows for the facile and direct production of proteins in vivo, thus circumventing the need for lengthy drug development cycles and complex production workflows. As such, mRNA formulations can significantly improve upon the biological therapies that have become commonplace in modern medicine. Despite its many advantages, mRNA is inherently fragile and has specific delivery requirements. Leveraging the engineering flexibility of nanobiotechnology, mRNA payloads can be incorporated into nanoformulations such that they do not invoke unwanted immune responses, are targeted to tissues of interest, and can be delivered to the cytosol, resulting in improved safety while enhancing bioactivity. With the rapidly evolving landscape of nanomedicine, novel technologies that are under development have the potential to further improve the clinical utility of mRNA medicine. This review covers the design principles relevant to engineering mRNA-based nanomedicine platforms. It also details the current research on mRNA nanoformulations for addressing viral infections, cancers, and genetic diseases. Given the trends in the field, future mRNA-based nanomedicines have the potential to change how many types of diseases are managed in the clinic.
Collapse
Affiliation(s)
- Luke J. Kubiatowicz
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer CenterUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Animesh Mohapatra
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer CenterUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Nishta Krishnan
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer CenterUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Ronnie H. Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer CenterUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer CenterUniversity of California San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
27
|
The Biocomplex Assembled from Antigen Peptide and Toll-like Receptor Agonist Improved the Immunity against Pancreatic Adenocarcinoma In Vivo. JOURNAL OF ONCOLOGY 2022; 2022:2965496. [PMID: 36059807 PMCID: PMC9436581 DOI: 10.1155/2022/2965496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/01/2022] [Indexed: 11/23/2022]
Abstract
Purpose One of the biggest challenges in cancer immunotherapy is generating robust cancer-specific immunity. This work describes using a biocomplex assembled from a toll-like receptor agonist CpG oligodeoxynucleotide 1826 (CpG) and a pancreatic cancer antigen peptide mesothelin for tuning pancreatic tumor immunity. Methods This biocomplex was assembled via electrostatic interactions and characterized in size, morphology, zeta potential, and cargo loading. The effect of biocomplex on cell viability and activation of DCs and macrophages were measured by flow cytometry. The production of cytokines (GM-CSF, TNF, and IL-6) was evaluated by using ELISA kits. The effect of biocomplex on tumor cell proliferation was also evaluated by in vivo tumor model. Result We can modulate the surface charge of the biocomplex by simply varying the ratios of the two components. In cell models, this biocomplex did not impact cell viability in the antigen-presenting cell (i.e., dendritic cell and macrophage)-directed immunity. Moreover, this biocomplex regulated the secretion of tumor-related cytokines (i.e., GM-CSF, TNF, and IL-6) and promoted the activation of immune cell surface markers (i.e., CD80+, CD86+, and CD40+). In the mouse model, the biocomplex inhibited the tumor burden effectively and promoted the production of effector cytokines. Conclusion The present studies showed that the biocomplex with antigen peptide and toll-like receptor agonist was able to potentiate the antitumor immunity in vivo. This study will help understanding of immunity in pancreatic cancer and developing new immune therapeutic strategies for pancreatic adenocarcinoma.
Collapse
|
28
|
Chavda VP, Chen Y, Dave J, Chen ZS, Chauhan SC, Yallapu MM, Uversky VN, Bezbaruah R, Patel S, Apostolopoulos V. COVID-19 and vaccination: myths vs science. Expert Rev Vaccines 2022; 21:1603-1620. [PMID: 35980281 DOI: 10.1080/14760584.2022.2114900] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Several vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been developed since the inception of the coronavirus disease 2019 (COVID-19) in December 2019, at unprecedented speed. However, these rapidly developed vaccines raised many questions related to the efficacy and safety of vaccines in different communities across the globe. Various hypotheses regarding COVID-19 and its vaccines were generated, and many of them have also been answered with scientific evidence. Still, there are many myths/misinformation related to COVID-19 and its vaccines, which create hesitancy for COVID-19 vaccination, and must be addressed critically to achieve success in the battle against the pandemic. AREA COVERED The development of anti-SARS-CoV-2 vaccines against COVID-19, their safety and efficacy, and myths/misinformation relating to COVID-19 and vaccines are presented. EXPERT OPINION In this pandemic we have seen a global collaborative effort of researchers, governments, and industry, supported by billions of dollars in funding, have allowed the development of vaccines far more quickly than in the past. Vaccines go through rigorous testing, analysis, and evaluations in clinical settings prior to their approval, even if they are approved for emergency use. Despite the myths, vaccination represents an important strategy to get back to normality.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad
| | - Yangmin Chen
- Peter J. Tobin College of Business, St. John's University, Queens, NY 11439, USA
| | - Jayant Dave
- Department of Pharmaceutical Quality Assurance, L.M. College of Pharmacy, Ahmedabad
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Subhash C Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institure, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Rajashri Bezbaruah
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh -786004, Assam, India
| | - Sandip Patel
- Department of Pharmacology, L.M. College of Pharmacy, Ahmedabad
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Immunology and Translational Research Group, Victoria University, Melbourne, VIC, 3030, Australia.,Immunology Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC, 3021, Australia
| |
Collapse
|
29
|
Designing a novel E2-IFN-γ fusion protein against CSFV by immunoinformatics and structural vaccinology approaches. Appl Microbiol Biotechnol 2022; 106:3611-3623. [PMID: 35524776 DOI: 10.1007/s00253-022-11919-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/01/2022] [Accepted: 04/08/2022] [Indexed: 11/02/2022]
Abstract
Subunit vaccines with high purity and safety are gradually becoming a main trend in vaccinology. However, adjuvants such as interferon-gamma (IFN-γ) are required to enhance immune responses of subunit vaccines due to their poor immunogenicity. The conjugation of antigen with adjuvant can induce more potent immune responses compared to the mixture of antigen and adjuvant. At the same time, the selection of linker, indispensable in the construction of the stable and bioactive fusion proteins, is complicated and time-consuming. The development of immunoinformatics and structural vaccinology approaches provides a means to address the abovementioned problem. Therefore, in this study, a E2-IFN-γ fusion protein with an optimal linker (E2-R2-PIFN) was designed by bioinformatics approaches to improve the immunogenicity of the classical swine fever virus (CSFV) E2 subunit vaccine. Moreover, the E2-R2-PIFN fusion protein was expressed in HEK293T cells and the biological effects of IFN-γ in E2-R2-PIFN were confirmed in vitro via Western blotting. Here, an alternative method is utilized to simplify the design and validation of the antigen-adjuvant fusion protein, providing a potential subunit vaccine candidate against CSFV. KEY POINTS: • An effective and simple workflow of antigen-adjuvant fusion protein design and validation was established by immunoinformatics and structural vaccinology. • A novel E2-IFN-γ fusion protein with an optimal linker was designed as a potential CSFV vaccine. • The bioactivity of the newly designed fusion protein was preliminarily validated through in vitro experiments.
Collapse
|
30
|
Files MA, Naqvi KF, Saito TB, Clover TM, Rudra JS, Endsley JJ. Self-adjuvanting nanovaccines boost lung-resident CD4 + T cell immune responses in BCG-primed mice. NPJ Vaccines 2022; 7:48. [PMID: 35474079 PMCID: PMC9043212 DOI: 10.1038/s41541-022-00466-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 03/21/2022] [Indexed: 01/04/2023] Open
Abstract
Heterologous vaccine regimens could extend waning protection in the global population immunized with Mycobacterium bovis Bacille Calmette-Guerin (BCG). We demonstrate that pulmonary delivery of peptide nanofibers (PNFs) bearing an Ag85B CD4+ T cell epitope increased the frequency of antigen-specific T cells in BCG-primed mice, including heterogenous populations with tissue resident memory (Trm) and effector memory (Tem) phenotype, and functional cytokine recall. Adoptive transfer of dendritic cells pulsed with Ag85B-bearing PNFs further expanded the frequency and functional repertoire of memory CD4+ T cells. Transcriptomic analysis suggested that the adjuvanticity of peptide nanofibers is, in part, due to the release of damage-associated molecular patterns. A single boost with monovalent Ag85B PNF in BCG-primed mice did not reduce lung bacterial burden compared to BCG alone following aerosol Mtb challenge. These findings support the need for novel BCG booster strategies that activate pools of Trm cells with potentially diverse localization, trafficking, and immune function.
Collapse
Grants
- R01 AI130278 NIAID NIH HHS
- R21 AI115302 NIAID NIH HHS
- U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
- Predoctoral Fellowship, Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas 77555
- Predoctoral Fellowship, James W. McLaughlin Endowment, University of Texas Medical Branch, Galveston, Texas, 77555
- Washington University McKelvey School of Engineering, Department of Biomedical Engineering Commitment Funds (12-360-94361J)
Collapse
Affiliation(s)
- Megan A Files
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Institute of Translational Science, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Kubra F Naqvi
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Tais B Saito
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Laboratory of Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Tara M Clover
- Comprehensive Industrial Hygiene Laboratory (CIHL), Navy Environmental and Preventive Medicine Unit TWO (NEPMU-2), Department of the Navy, Norfolk, VA, 23551, USA
| | - Jai S Rudra
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| | - Janice J Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
31
|
Gorbunov AA, Sannikova EP, Gubaidullin II, Serobyan GA, Gorbunova AY, Serkina AV, Plokhikh KS, Kamyshinsky RA, Vorovitch MF, Bulushova NV, Kuchin S, Kozlov DG. Vaccine building ‘kit’: combining peptide bricks to elicit a desired immune response without adding an adjuvant. Nanomedicine (Lond) 2022; 17:461-475. [DOI: 10.2217/nnm-2021-0424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Protein nanoparticles (NPs) can be used as vaccine platforms for target antigen presentation. Aim: To conduct a proof-of-concept study to demonstrate that an effective NP platform can be built based on a short self-assembling peptide (SAP) rather than a large self-assembling protein. Materials & methods: SUMO-based protein fusions (SFs) containing an N-terminal SAP and a C-terminal antigen were designed, expressed in Escherichia coli and purified. The structure was investigated by electron microscopy. The antibody response was tested in mice after two adjuvant-free immunizations. Results: Renatured SFs form fiber-like NPs with the antigen exposed on the surface and induce a significant antibody response with a remarkably high target-to-platform ratio. Conclusion: The platform is effective and has considerable potential for modification toward various applications, including vaccine development.
Collapse
Affiliation(s)
| | | | - Irek I Gubaidullin
- National Research Center ‘Kurchatov Institute’, Moscow, 123182, Russia
- National Research Center ‘Kurchatov Institute' - GOSNIIGENETIKA, Kurchatov Genomic Center, Moscow, 117545, Russia
| | - Gayane A Serobyan
- National Research Center ‘Kurchatov Institute’, Moscow, 123182, Russia
| | | | - Anna V Serkina
- National Research Center ‘Kurchatov Institute’, Moscow, 123182, Russia
| | | | | | - Mikhail F Vorovitch
- FSBSI ‘Chumakov FSC R&D IBP RAS’, Moscow, 108819, Russia
- Institute of Translational Medicine & Biotechnology, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | | | - Sergei Kuchin
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Dmitry G Kozlov
- National Research Center ‘Kurchatov Institute’, Moscow, 123182, Russia
| |
Collapse
|
32
|
Koirala P, Bashiri S, Toth I, Skwarczynski M. Current Prospects in Peptide-Based Subunit Nanovaccines. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2412:309-338. [PMID: 34918253 DOI: 10.1007/978-1-0716-1892-9_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Vaccination renders protection against pathogens via stimulation of the body's natural immune responses. Classical vaccines that utilize whole organisms or proteins have several disadvantages, such as induction of undesired immune responses, poor stability, and manufacturing difficulties. The use of minimal immunogenic pathogen components as vaccine antigens, i.e., peptides, can greatly reduce these shortcomings. However, subunit antigens require a specific delivery system and immune adjuvant to increase their efficacy. Recently, nanotechnology has been extensively utilized to address this issue. Nanotechnology-based formulation of peptide vaccines can boost immunogenicity and efficiently induce cellular and humoral immune responses. This chapter outlines the recent developments and advances of nano-sized delivery platforms for peptide antigens, including nanoparticles composed of polymers, peptides, lipids, and inorganic materials.
Collapse
Affiliation(s)
- Prashamsa Koirala
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Sahra Bashiri
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia. .,Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia. .,School of Pharmacy, The University of Queensland, St Lucia, QLD, Australia.
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
33
|
Jiang M, Zhao L, Cui X, Wu X, Zhang Y, Guan X, Ma J, Zhang W. Cooperating minimalist nanovaccine with PD-1 blockade for effective and feasible cancer immunotherapy. J Adv Res 2022; 35:49-60. [PMID: 35003793 PMCID: PMC8721234 DOI: 10.1016/j.jare.2021.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/01/2021] [Accepted: 08/17/2021] [Indexed: 01/21/2023] Open
Abstract
Facile antigen/adjuvant co-loaded nanovaccine made by convenient green preparation. The immunological activity of the antigen and adjuvant was maximally preserved. The minimalist nanovaccine had excellent stability and antitumor immune activation. Nanovaccine combined with PD-1 antibody synergistically enhanced therapy outcome. Good practicability for expanding clinical translation and personalized therapy.
Introduction Tumor vaccine has been a research boom for cancer immunotherapy, while its therapeutic outcome is severely depressed by the vulnerable in vivo delivery efficiency. Moreover, tumor immune escape is also another intractable issue, which has badly whittled down the therapeutic efficiency. Objectives Our study aims to solve the above dilemmas by cooperating minimalist nanovaccine with PD-1 blockade for effective and feasible cancer immunotherapy. Methods The minimalist antigen and adjuvant co-delivery nanovaccine was developed by employing natural polycationic protamine (PRT) to carry the electronegative ovalbumin (OVA) antigen and unmethylated Cytosine-phosphorothioate-Guanine (CpG) adjuvant via convenient chemical bench-free “green” preparation without chemical-synthesis and no organic solvent was required, which could preserve the immunological activities of the antigens and adjuvants. On that basis, PD-1 antibody (aPD-1) was utilized to block the tumor immune escape and cooperate with the nanovaccine by maintaining the tumoricidal-activity of the vaccine-induced T cells. Results Benefited from the polycationic PRT, the facile PRT/CpG/OVA nanovaccine displayed satisfactory delivery performance, involving enhanced cellular uptake in dendritic cells (DCs), realizable endosomal escape and promoted stimulation for DCs’ maturation. These features would be helpful for the antitumor immunotherapeutic efficiency of the nanovaccine. Furthermore, the cooperation of the nanovaccine with aPD-1 synergistically improved the immunotherapy outcome, profiting by the cooperation of the “T cell induction” competency of the nanovaccine and the “T cell maintenance” function of the aPD-1. Conclusion This study will provide new concepts for the design and construction of facile nanovaccines, and contribute valuable scientific basis for cancer immunotherapy.
Collapse
Affiliation(s)
- Mingxia Jiang
- College of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Liping Zhao
- College of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Xiaoming Cui
- College of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Xinghan Wu
- College of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Yuhan Zhang
- College of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Xiuwen Guan
- College of Pharmacy, Weifang Medical University, Weifang 261053, China.,Collaborative Innovation Center for Target Drug Delivery System, Weifang Medical University, Weifang 261053, China.,Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang 261053, China
| | - Jinlong Ma
- College of Pharmacy, Weifang Medical University, Weifang 261053, China.,Collaborative Innovation Center for Target Drug Delivery System, Weifang Medical University, Weifang 261053, China.,Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang 261053, China
| | - Weifen Zhang
- College of Pharmacy, Weifang Medical University, Weifang 261053, China.,Collaborative Innovation Center for Target Drug Delivery System, Weifang Medical University, Weifang 261053, China.,Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang 261053, China
| |
Collapse
|
34
|
Ren E, Liu C, Lv P, Wang J, Liu G. Genetically Engineered Cellular Membrane Vesicles as Tailorable Shells for Therapeutics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100460. [PMID: 34494387 PMCID: PMC8564451 DOI: 10.1002/advs.202100460] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/20/2021] [Indexed: 05/04/2023]
Abstract
Benefiting from the blooming interaction of nanotechnology and biotechnology, biosynthetic cellular membrane vesicles (Bio-MVs) have shown superior characteristics for therapeutic transportation because of their hydrophilic cavity and hydrophobic bilayer structure, as well as their inherent biocompatibility and negligible immunogenicity. These excellent cell-like features with specific functional protein expression on the surface can invoke their remarkable ability for Bio-MVs based recombinant protein therapy to facilitate the advanced synergy in poly-therapy. To date, various tactics have been developed for Bio-MVs surface modification with functional proteins through hydrophobic insertion or multivalent electrostatic interactions. While the Bio-MVs grow through genetically engineering strategies can maintain binding specificity, sort orders, and lead to strict information about artificial proteins in a facile and sustainable way. In this progress report, the most current technology of Bio-MVs is discussed, with an emphasis on their multi-functionalities as "tailorable shells" for delivering bio-functional moieties and therapeutic entities. The most notable success and challenges via genetically engineered tactics to achieve the new generation of Bio-MVs are highlighted. Besides, future perspectives of Bio-MVs in novel bio-nanotherapy are provided.
Collapse
Affiliation(s)
- En Ren
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
| | - Chao Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
| | - Peng Lv
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
| | - Junqing Wang
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐sen UniversityGuangzhou510275China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
| |
Collapse
|
35
|
Wilks LR, Joshi G, Grisham MR, Gill HS. Tyrosine-Based Cross-Linking of Peptide Antigens to Generate Nanoclusters with Enhanced Immunogenicity: Demonstration Using the Conserved M2e Peptide of Influenza A. ACS Infect Dis 2021; 7:2723-2735. [PMID: 34432416 DOI: 10.1021/acsinfecdis.1c00219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A method of creating nanoclusters (NCs) from soluble peptide molecules is described utilizing an approach based on a tyrosine-tyrosine cross-linking reaction. A reactive tag comprising histidine and tyrosine residues was introduced at the termini of the peptide molecules. The cross-linking reaction led to the creation of dityrosine bonds within the tag, which allowed for the generation of peptide NCs. We show that it is essential for the reactive tag to be present at both the "N" and "C" termini of the peptide for cluster formation to occur. Additionally, the cross-linking reaction was systematically characterized to show the importance of reaction conditions on final cluster diameter, allowing us to generate NCs of various sizes. To demonstrate the immunogenic potential of the peptide clusters, we chose to study the conserved influenza peptide, M2e, as the antigen. M2e NCs were formulated using the cross-linking reaction. We show the ability of the clusters to generate protective immunity in a dose, size, and frequency dependent manner against a lethal influenza A challenge in BALB/c mice. Taken together, the data presented suggest this new cluster formation technique can generate highly immunogenic peptide NCs in a simple and controllable manner.
Collapse
Affiliation(s)
- Logan R. Wilks
- Department of Chemical Engineering, Texas Tech University, 8th Street and Canton Avenue, Mail Stop 3121, Lubbock, Texas 79409-3121, United States
| | - Gaurav Joshi
- Department of Chemical Engineering, Texas Tech University, 8th Street and Canton Avenue, Mail Stop 3121, Lubbock, Texas 79409-3121, United States
| | - Megan R. Grisham
- Department of Chemical Engineering, Texas Tech University, 8th Street and Canton Avenue, Mail Stop 3121, Lubbock, Texas 79409-3121, United States
| | - Harvinder Singh Gill
- Department of Chemical Engineering, Texas Tech University, 8th Street and Canton Avenue, Mail Stop 3121, Lubbock, Texas 79409-3121, United States
| |
Collapse
|
36
|
Song SJ, Shin GI, Noh J, Lee J, Kim DH, Ryu G, Ahn G, Jeon H, Diao HP, Park Y, Kim MG, Kim WY, Kim YJ, Sohn EJ, Song CS, Hwang I. Plant-based, adjuvant-free, potent multivalent vaccines for avian influenza virus via Lactococcus surface display. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1505-1520. [PMID: 34051041 DOI: 10.1111/jipb.13141] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/26/2021] [Indexed: 05/28/2023]
Abstract
Influenza epidemics frequently and unpredictably break out all over the world, and seriously affect the breeding industry and human activity. Inactivated and live attenuated viruses have been used as protective vaccines but exhibit high risks for biosafety. Subunit vaccines enjoy high biosafety and specificity but have a few weak points compared to inactivated virus or live attenuated virus vaccines, especially in low immunogenicity. In this study, we developed a new subunit vaccine platform for a potent, adjuvant-free, and multivalent vaccination. The ectodomains of hemagglutinins (HAs) of influenza viruses were expressed in plants as trimers (tHAs) to mimic their native forms. tHAs in plant extracts were directly used without purification for binding to inactivated Lactococcus (iLact) to produce iLact-tHAs, an antigen-carrying bacteria-like particle (BLP). tHAs BLP showed strong immune responses in mice and chickens without adjuvants. Moreover, simultaneous injection of two different antigens by two different formulas, tHAH5N6 + H9N2 BLP or a combination of tHAH5N6 BLP and tHAH9N2 BLP, led to strong immune responses to both antigens. Based on these results, we propose combinations of plant-based antigen production and BLP-based delivery as a highly potent and cost-effective platform for multivalent vaccination for subunit vaccines.
Collapse
Affiliation(s)
- Shi-Jian Song
- Department of Life Science, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Gyeong-Im Shin
- College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju, 660-701, Korea
| | | | - Jiho Lee
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, 05029, Korea
| | - Deok-Hwan Kim
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, 05029, Korea
| | - Gyeongryul Ryu
- College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju, 660-701, Korea
| | - Gyeongik Ahn
- Division of Applied Life Science (BK21 PLUS), Institute of Agriculture & Life Sciences, Gyeongsang National University, Jinju, 52828, Korea
| | - Hyungmin Jeon
- Department of Life Science, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Hai-Ping Diao
- Department of Life Science, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Youngmin Park
- Department of Life Science, Pohang University of Science and Technology, Pohang, 37673, Korea
- Bioapp, Inc., Pohang Technopark Complex, Pohang, 37668, Korea
| | - Min Gab Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju, 660-701, Korea
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21 PLUS), Institute of Agriculture & Life Sciences, Gyeongsang National University, Jinju, 52828, Korea
| | - Young-Jin Kim
- Department of Life Science, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Eun-Ju Sohn
- Bioapp, Inc., Pohang Technopark Complex, Pohang, 37668, Korea
| | - Chang Seon Song
- KCAV Inc., Gwangjin-gu, 05029, Korea
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, 05029, Korea
| | - Inhwan Hwang
- Department of Life Science, Pohang University of Science and Technology, Pohang, 37673, Korea
| |
Collapse
|
37
|
Martínez-Flores D, Zepeda-Cervantes J, Cruz-Reséndiz A, Aguirre-Sampieri S, Sampieri A, Vaca L. SARS-CoV-2 Vaccines Based on the Spike Glycoprotein and Implications of New Viral Variants. Front Immunol 2021; 12:701501. [PMID: 34322129 PMCID: PMC8311925 DOI: 10.3389/fimmu.2021.701501] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
Coronavirus 19 Disease (COVID-19) originating in the province of Wuhan, China in 2019, is caused by the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), whose infection in humans causes mild or severe clinical manifestations that mainly affect the respiratory system. So far, the COVID-19 has caused more than 2 million deaths worldwide. SARS-CoV-2 contains the Spike (S) glycoprotein on its surface, which is the main target for current vaccine development because antibodies directed against this protein can neutralize the infection. Companies and academic institutions have developed vaccines based on the S glycoprotein, as well as its antigenic domains and epitopes, which have been proven effective in generating neutralizing antibodies. However, the emergence of new SARS-CoV-2 variants could affect the effectiveness of vaccines. Here, we review the different types of vaccines designed and developed against SARS-CoV-2, placing emphasis on whether they are based on the complete S glycoprotein, its antigenic domains such as the receptor-binding domain (RBD) or short epitopes within the S glycoprotein. We also review and discuss the possible effectiveness of these vaccines against emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Daniel Martínez-Flores
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jesús Zepeda-Cervantes
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Adolfo Cruz-Reséndiz
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sergio Aguirre-Sampieri
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alicia Sampieri
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luis Vaca
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
38
|
Luzuriaga MA, Shahrivarkevishahi A, Herbert FC, Wijesundara YH, Gassensmith JJ. Biomaterials and nanomaterials for sustained release vaccine delivery. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1735. [PMID: 34180608 DOI: 10.1002/wnan.1735] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/03/2021] [Accepted: 06/04/2021] [Indexed: 12/17/2022]
Abstract
Vaccines are considered one of the most significant medical advancements in human history, as they have prevented hundreds of millions of deaths since their discovery; however, modern travel permits disease spread at unprecedented rates, and vaccine shortcomings like thermal sensitivity and required booster shots have been made evident by the COVID-19 pandemic. Approaches to overcoming these issues appear promising via the integration of vaccine technology with biomaterials, which offer sustained-release properties and preserve proteins, prevent conformational changes, and enable storage at room temperature. Sustained release and thermal stabilization of therapeutic biomacromolecules is an emerging area that integrates material science, chemistry, immunology, nanotechnology, and pathology to investigate different biocompatible materials. Biomaterials, including natural sugar polymers, synthetic polyesters produced from biologically derived monomers, hydrogel blends, protein-polymer blends, and metal-organic frameworks, have emerged as early players in the field. This overview will focus on significant advances of sustained release biomaterial in the context of vaccines against infectious disease and the progress made towards thermally stable "single-shot" formulations. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Michael A Luzuriaga
- Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA.,Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Fabian C Herbert
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardon, Texas, USA
| | - Yalini H Wijesundara
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardon, Texas, USA
| | - Jeremiah J Gassensmith
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardon, Texas, USA.,Department of Bioengineering, The University of Texas at Dallas, Richardon, Texas, USA
| |
Collapse
|
39
|
Drozdov AD, deClaville Christiansen J. Thermo-Viscoelastic Response of Protein-Based Hydrogels. Bioengineering (Basel) 2021; 8:73. [PMID: 34072950 PMCID: PMC8228610 DOI: 10.3390/bioengineering8060073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 11/16/2022] Open
Abstract
Because of the bioactivity and biocompatibility of protein-based gels and the reversible nature of bonds between associating coiled coils, these materials demonstrate a wide spectrum of potential applications in targeted drug delivery, tissue engineering, and regenerative medicine. The kinetics of rearrangement (association and dissociation) of the physical bonds between chains has been traditionally studied in shear relaxation tests and small-amplitude oscillatory tests. A characteristic feature of recombinant protein gels is that chains in the polymer network are connected by temporary bonds between the coiled coil complexes and permanent cross-links between functional groups of amino acids. A simple model is developed for the linear viscoelastic behavior of protein-based gels. Its advantage is that, on the one hand, the model only involves five material parameters with transparent physical meaning and, on the other, it correctly reproduces experimental data in shear relaxation and oscillatory tests. The model is applied to study the effects of temperature, the concentration of proteins, and their structure on the viscoelastic response of hydrogels.
Collapse
Affiliation(s)
- Aleksey D. Drozdov
- Department of Materials and Production, Aalborg University, Fibigerstraede 16, 9220 Aalborg, Denmark;
| | | |
Collapse
|
40
|
Chauhan N, Soni S, Gupta A, Aslam M, Jain U. Interpretative immune targets and contemporary position for vaccine development against SARS-CoV-2: A systematic review. J Med Virol 2021; 93:1967-1982. [PMID: 33270225 PMCID: PMC7753271 DOI: 10.1002/jmv.26709] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 11/29/2020] [Indexed: 12/17/2022]
Abstract
The year 2020 started with the emergence of novel coronavirus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which causes COVID-19 infection. Soon after the first evidence was reported in Wuhan, China, the World Health Organization declared global public health emergency and imminent need to understand the pathogenicity of the virus was required in limited time. Once the genome sequence of the virus was delineated, scientists across the world started working on the development of vaccines. Although, some laboratories have been using previously developed vaccine platforms from severe acute respiratory syndrome coronavirus (SARS) and middle east respiratory syndrome-related coronavirus and apply them in COVID-19 vaccines due to genetic similarities between coronaviruses. We have conducted a literature review to assess the background and current status of COVID-19 vaccines. The worldwide implementation and strategies for COVID-19 vaccine development are summarized from studies reported in years 2015-2020. While discussing the vaccine candidates, we have also explained interpretative immune responses of SARS-CoV-2 infection. There are several vaccine candidates at preclinical and clinical stages; however, only 42 vaccines are under clinical trials. Therefore, more industry collaborations and financial supports to COVID-19 studies are needed for mass-scale vaccine development. To develop effective vaccine platforms against SARS-CoV-2, the genetic resemblance with other coronaviruses are being evaluated which may further promote fast-track trials on previously developed SARS-CoV vaccines.
Collapse
Affiliation(s)
- Nidhi Chauhan
- Amity Institute of Nanotechnology (AINT)Amity University Uttar Pradesh (AUUP)NoidaIndia
| | - Shringika Soni
- Amity Institute of Nanotechnology (AINT)Amity University Uttar Pradesh (AUUP)NoidaIndia
| | - Abhinandan Gupta
- Amity Institute of Nanotechnology (AINT)Amity University Uttar Pradesh (AUUP)NoidaIndia
| | - Mohammad Aslam
- Rahat Hospital and Research Centre, Noor Mahal, AVAS VikasRampurIndia
| | - Utkarsh Jain
- Amity Institute of Nanotechnology (AINT)Amity University Uttar Pradesh (AUUP)NoidaIndia
| |
Collapse
|
41
|
The Versatile Manipulations of Self-Assembled Proteins in Vaccine Design. Int J Mol Sci 2021; 22:ijms22041934. [PMID: 33669238 PMCID: PMC7919822 DOI: 10.3390/ijms22041934] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/06/2021] [Accepted: 02/11/2021] [Indexed: 12/16/2022] Open
Abstract
Protein assemblies provide unique structural features which make them useful as carrier molecules in biomedical and chemical science. Protein assemblies can accommodate a variety of organic, inorganic and biological molecules such as small proteins and peptides and have been used in development of subunit vaccines via display parts of viral pathogens or antigens. Such subunit vaccines are much safer than traditional vaccines based on inactivated pathogens which are more likely to produce side-effects. Therefore, to tackle a pandemic and rapidly produce safer and more effective subunit vaccines based on protein assemblies, it is necessary to understand the basic structural features which drive protein self-assembly and functionalization of portions of pathogens. This review highlights recent developments and future perspectives in production of non-viral protein assemblies with essential structural features of subunit vaccines.
Collapse
|
42
|
Abstract
The rapid development of nanobiotechnology has enabled progress in therapeutic cancer vaccines. These vaccines stimulate the host innate immune response by tumor antigens followed by a cascading adaptive response against cancer. However, an improved antitumor immune response is still in high demand because of the unsatisfactory clinical performance of the vaccine in tumor inhibition and regression. To date, a complicated tumor immunosuppressive environment and suboptimal design are the main obstacles for therapeutic cancer vaccines. The optimization of tumor antigens, vaccine delivery pathways, and proper adjuvants for innate immune response initiation, along with reprogramming of the tumor immunosuppressive environment, is essential for therapeutic cancer vaccines in triggering an adequate antitumor immune response. In this review, we aim to review the challenges in and strategies for enhancing the efficacy of therapeutic vaccines. We start with the summary of the available tumor antigens and their properties and then the optimal strategies for vaccine delivery. Subsequently, the vaccine adjuvants focused on the intrinsic adjuvant properties of nanostructures are further discussed. Finally, we summarize the combination strategies with therapeutic cancer vaccines and discuss their positive impact in cancer immunity.
Collapse
Affiliation(s)
- Jie Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 1001190, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Muhetaerjiang Mamuti
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 1001190, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 1001190, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
43
|
Pustulka SM, Ling K, Pish SL, Champion JA. Protein Nanoparticle Charge and Hydrophobicity Govern Protein Corona and Macrophage Uptake. ACS APPLIED MATERIALS & INTERFACES 2020; 12:48284-48295. [PMID: 33054178 DOI: 10.1021/acsami.0c12341] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Protein nanoparticles are biomaterials composed entirely of proteins, with the protein sequence and structure determining the nanoparticle physicochemical properties. Upon exposure to physiological or environmental fluids, it is likely that protein nanoparticles, like synthetic nanoparticles, will adsorb proteins and this protein corona will be dependent on the surface properties of the protein nanoparticles. As there is little understanding of this phenomenon for engineered protein nanoparticles, the purpose of this work was to create protein nanoparticles with variable surface hydrophobicity and surface charge and establish the effect of these properties on the mass and composition of the adsorbed corona, using the fetal bovine serum as a model physiological solution. Albumin, cationic albumin, and ovalbumin cross-linked nanoparticles were developed for this investigation and their adsorbed protein coronas were isolated and characterized by gel electrophoresis and nanoliquid chromatography mass spectrometry. Distinct trends in corona mass and composition were identified for protein nanoparticles based on surface charge and surface hydrophobicity. Proteomic analyses revealed unique protein corona patterns and identified distinct proteins that are known to affect nanoparticle clearance in vivo. Further, the protein corona influenced nanoparticle internalization in vitro in a macrophage cell line. Altogether, these results demonstrate the strong effect protein identity and properties have on the corona formed on nanoparticles made from that protein. This work builds the foundation for future study of protein coronas on the wide array of protein nanoparticles used in nanomedicine and environmental applications.
Collapse
Affiliation(s)
- Samantha M Pustulka
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| | - Kevin Ling
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| | - Stephanie L Pish
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| | - Julie A Champion
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| |
Collapse
|
44
|
Sabatino D. Medicinal Chemistry and Methodological Advances in the Development of Peptide-Based Vaccines. J Med Chem 2020; 63:14184-14196. [PMID: 32990437 DOI: 10.1021/acs.jmedchem.0c00848] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The evolution of rapidly proliferating infectious and tumorigenic diseases has resulted in an urgent need to develop new and improved intervention strategies. Among the many therapeutic strategies at our disposal, our immune system remains the gold-standard in disease prevention, diagnosis, and treatment. Vaccines have played an important role in eradicating or mitigating the spread of infectious diseases by bolstering our immunity. Despite their utility, the design and development of new, more effective vaccines remains a public health necessity. Peptide-based vaccines have been developed for a wide range of established and emerging infectious and tumorigenic diseases. New innovations in epitope design and selection, synthesis, and formulation as well as screening techniques against immunological targets have led to more effective peptide vaccines. Current and future work is geared toward the translation of peptide vaccines from preclinical to clinical utility.
Collapse
Affiliation(s)
- David Sabatino
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, New Jersey 07079, United States
| |
Collapse
|
45
|
Tsoras AN, Wong KM, Paravastu AK, Champion JA. Rational Design of Antigen Incorporation Into Subunit Vaccine Biomaterials Can Enhance Antigen-Specific Immune Responses. Front Immunol 2020; 11:1547. [PMID: 32849524 PMCID: PMC7396695 DOI: 10.3389/fimmu.2020.01547] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/11/2020] [Indexed: 12/29/2022] Open
Abstract
Peptide subunit vaccines increase safety by reducing the risk of off-target responses and improving the specificity of the induced adaptive immune response. The immunogenicity of most soluble peptides, however, is often insufficient to produce robust and lasting immunity. Many biomaterials and delivery vehicles have been developed for peptide antigens to improve immune response while maintaining specificity. Peptide nanoclusters (PNC) are a subunit peptide vaccine material that has shown potential to increase immunogenicity of peptide antigens. PNC are comprised only of crosslinked peptide antigen and have been synthesized from several peptide antigens as small as 8 amino acids in length. However, as with many peptide vaccine biomaterials, synthesis requires adding residues to the peptide and/or engaging amino acids within the antigen epitope covalently to form a stable material. The impact of antigen modifications made to enable biomaterial incorporation or formation is rarely investigated, since the goal of most studies is to compare the soluble antigen with biomaterial form of antigen. This study investigates PNC as a platform vaccine biomaterial to evaluate how peptide modification and biomaterial formation with different crosslinking chemistries affect epitope-specific immune cell presentation and activation. Several types of PNC were synthesized by desolvation from the model peptide epitope SIINFEKL, which is derived from the immunogenic protein ovalbumin. SIINFEKL was altered to include extra residues on each end, strategically chosen to enable multiple conjugation chemistry options for incorporation into PNC. Several crosslinking methods were used to control which functional groups were used to stabilize the PNC, as well as the reducibility of the crosslinking. These variations were evaluated for immune responses and biodistribution following in vivo immunization. All modified antigen formulations still induced comparable immune responses when incorporated into PNC compared to unmodified soluble antigen alone. However, some crosslinking methods led to a significant increase in desirable immune responses while others did not, suggesting that not all PNC were processed the same. These results help guide future peptide vaccine biomaterial design, including PNC and a wide variety of conjugated and self-assembled peptide antigen materials, to maximize and tune the desired immune response.
Collapse
Affiliation(s)
| | | | | | - Julie A. Champion
- School of Chemical & Biomolecular Engineering, Atlanta, GA, United States
| |
Collapse
|
46
|
Habibi N, Christau S, Ochyl LJ, Fan Z, Hassani Najafabadi A, Kuehnhammer M, Zhang M, Helgeson M, Klitzing R, Moon JJ, Lahann J. Engineered Ovalbumin Nanoparticles for Cancer Immunotherapy. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000100] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nahal Habibi
- Department of Chemical Engineering University of Michigan Ann Arbor MI 48109 USA
- Biointerfaces Institute University of Michigan Ann Arbor MI 48109 USA
| | - Stephanie Christau
- Department of Chemical Engineering University of Michigan Ann Arbor MI 48109 USA
- Biointerfaces Institute University of Michigan Ann Arbor MI 48109 USA
| | - Lukasz J. Ochyl
- Biointerfaces Institute University of Michigan Ann Arbor MI 48109 USA
- Department of Pharmaceutical Sciences University of Michigan Ann Arbor MI 48109 USA
| | - Zixing Fan
- Department of Chemical Engineering University of Michigan Ann Arbor MI 48109 USA
| | - Alireza Hassani Najafabadi
- Biointerfaces Institute University of Michigan Ann Arbor MI 48109 USA
- Department of Pharmaceutical Sciences University of Michigan Ann Arbor MI 48109 USA
| | | | - Mengwen Zhang
- Department of Chemical Engineering University of California Santa Barbara Santa Barbara CA 93106 USA
| | - Matthew Helgeson
- Department of Chemical Engineering University of California Santa Barbara Santa Barbara CA 93106 USA
| | - Regine Klitzing
- Department of Physics Technische Universitaet Darmstadt Darmstadt 64289 Germany
| | - James J. Moon
- Biointerfaces Institute University of Michigan Ann Arbor MI 48109 USA
- Department of Pharmaceutical Sciences University of Michigan Ann Arbor MI 48109 USA
| | - Joerg Lahann
- Department of Chemical Engineering University of Michigan Ann Arbor MI 48109 USA
- Biointerfaces Institute University of Michigan Ann Arbor MI 48109 USA
| |
Collapse
|
47
|
Bhardwaj P, Bhatia E, Sharma S, Ahamad N, Banerjee R. Advancements in prophylactic and therapeutic nanovaccines. Acta Biomater 2020; 108:1-21. [PMID: 32268235 PMCID: PMC7163188 DOI: 10.1016/j.actbio.2020.03.020] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 02/07/2023]
Abstract
Vaccines activate suitable immune responses to fight against diseases but can possess limitations such as compromised efficacy and immunogenic responses, poor stability, and requirement of adherence to multiple doses. ‘Nanovaccines’ have been explored to elicit a strong immune response with the advantages of nano-sized range, high antigen loading, enhanced immunogenicity, controlled antigen presentation, more retention in lymph nodes and promote patient compliance by a lower frequency of dosing. Various types of nanoparticles with diverse pathogenic or foreign antigens can help to overcome immunotolerance and alleviate the need of booster doses as required with conventional vaccines. Nanovaccines have the potential to induce both cell-mediated and antibody-mediated immunity and can render long-lasting immunogenic memory. With such properties, nanovaccines have shown high potential for the prevention of infectious diseases such as acquired immunodeficiency syndrome (AIDS), malaria, tuberculosis, influenza, and cancer. Their therapeutic potential has also been explored in the treatment of cancer. The various kinds of nanomaterials used for vaccine development and their effects on immune system activation have been discussed with special relevance to their implications in various pathological conditions. Statement of Significance Interaction of nanoparticles with the immune system has opened multiple avenues to combat a variety of infectious and non-infectious pathological conditions. Limitations of conventional vaccines have paved the path for nanomedicine associated benefits with a hope of producing effective nanovaccines. This review highlights the role of different types of nanovaccines and the role of nanoparticles in modulating the immune response of vaccines. The applications of nanovaccines in infectious and non-infectious diseases like malaria, tuberculosis, AIDS, influenza, and cancers have been discussed. It will help the readers develop an understanding of mechanisms of immune activation by nanovaccines and design appropriate strategies for novel nanovaccines.
Collapse
|
48
|
Zhao L, Jin W, Cruz JG, Marasini N, Khalil ZG, Capon RJ, Hussein WM, Skwarczynski M, Toth I. Development of Polyelectrolyte Complexes for the Delivery of Peptide-Based Subunit Vaccines against Group A Streptococcus. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E823. [PMID: 32357402 PMCID: PMC7712447 DOI: 10.3390/nano10050823] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022]
Abstract
Peptide subunit vaccines hold great potential compared to traditional vaccines. However, peptides alone are poorly immunogenic. Therefore, it is of great importance that a vaccine delivery platform and/or adjuvant that enhances the immunogenicity of peptide antigens is developed. Here, we report the development of two different systems for the delivery of lipopeptide subunit vaccine (LCP-1) against group A streptococcus: polymer-coated liposomes and polyelectrolyte complexes (PECs). First, LCP-1-loaded and alginate/trimethyl chitosan (TMC)-coated liposomes (Lip-1) and LCP-1/alginate/TMC PECs (PEC-1) were examined for their ability to trigger required immune responses in outbred Swiss mice; PEC-1 induced stronger humoral immune responses than Lip-1. To further assess the adjuvanting effect of anionic polymers in PECs, a series of PECs (PEC-1 to PEC-5) were prepared by mixing LCP-1 with different anionic polymers, namely alginate, chondroitin sulfate, dextran, hyaluronic acid, and heparin, then coated with TMC. All produced PECs had similar particle sizes (around 200 nm) and surface charges (around + 30 mV). Notably, PEC-5, which contained heparin, induced higher antigen-specific systemic IgG and mucosal IgA titers than all other PECs. PEC systems, especially when containing heparin and TMC, could function as a promising platform for peptide-based subunit vaccine delivery for intranasal administration.
Collapse
Affiliation(s)
- Lili Zhao
- School of Chemistry & Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (L.Z.); (W.J.); (N.M.); (W.M.H.)
| | - Wanli Jin
- School of Chemistry & Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (L.Z.); (W.J.); (N.M.); (W.M.H.)
| | - Jazmina Gonzalez Cruz
- Diamantina Institute, Translational Research Institute, The University of Queensland, Wooloongabba, QLD 4102, Australia;
| | - Nirmal Marasini
- School of Chemistry & Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (L.Z.); (W.J.); (N.M.); (W.M.H.)
| | - Zeinab G. Khalil
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (Z.G.K.); (R.J.C.)
| | - Robert J. Capon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (Z.G.K.); (R.J.C.)
| | - Waleed M. Hussein
- School of Chemistry & Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (L.Z.); (W.J.); (N.M.); (W.M.H.)
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Helwan 11795, Egypt
| | - Mariusz Skwarczynski
- School of Chemistry & Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (L.Z.); (W.J.); (N.M.); (W.M.H.)
| | - Istvan Toth
- School of Chemistry & Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (L.Z.); (W.J.); (N.M.); (W.M.H.)
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (Z.G.K.); (R.J.C.)
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| |
Collapse
|