1
|
Ren L, Zhang H, Zhou J, Wu Y, Liu B, Wang S, Liu X, Hao X, Zhao L. Unique and generic crossed metabolism in response to four sub-lethal environmental stresses in the oriental fruit fly, Bactrocera dorsalis Hendel. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115434. [PMID: 37690174 DOI: 10.1016/j.ecoenv.2023.115434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 08/08/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023]
Abstract
Bactrocera dorsalis is a well-known invasive pest that causes considerable ecological and economic losses worldwild. Although it has a wide environmental tolerance, few studies have reported its mechanism of adaptation to multiple sub-lethal environmental stresses. In this study, 38, 41, 39 and 34 metabolites changed significantly in B. dorsalis under four sub-lethal stresses (heat, cold, desiccation and hypoxia), as found by the metabolomic method. Therein, lactic acid and pyruvic acid were induced, whereas metabolites in the tricarboxylic acid (TCA) cycle such as citric acid, α-ketoglutarate acid, malic acid and fumaric acid were reduced under at least one of the stresses. Enzyme activity and quantitative polymerase chain reaction (qPCR) analyses verified the repression of pyruvic acid proceeding into the TCA cycle. In addition, the levels of several cryoprotectants and membrane fatty acids in B. dorsalis were altered. The findings indicated that B. dorsalis has evolved shared metabolic pathways to adapt to heat, hypoxia and desiccation stresses, such as reducing energy consumption by activating the anaerobic glycolytic metabolism. Cryoprotectants and membrane fatty acids were produced to improve the efficiency of stress resistance. This study revealed the unique and generic crossed physiological mechanism of insects to adapt to various environmental stresses.
Collapse
Affiliation(s)
- Lili Ren
- Science and Technology Research Center of China Customs, Beijing 100026, China; Institute of Inspection Technology and Equipment, Chinese Academy of Inspection and Quarantine, Beijing 100029, China
| | - Hongxia Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiao Zhou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yajing Wu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bo Liu
- School of Medical Artificial Intelligence, Binzhou Medical University, Yantai 264003, Shandong, China
| | - Shuping Wang
- Animal, Plant and Food Inspection and Quarantine Technology Center, Shanghai Customs, Shanghai 200002, China
| | - Xin Liu
- Science and Technology Research Center of China Customs, Beijing 100026, China
| | - Xin Hao
- Science and Technology Research Center of China Customs, Beijing 100026, China
| | - Lilin Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
2
|
Xu Z, Wang G, Luo J, Zhu M, Hu L, Liang S, Li B, Huang X, Wang Y, Zhang G, Zhang C, Zhou Y, Yuan D, Chen T, Chen L, Ma W, Gao W, Lindsey K, Zhang X, Ding F, Jin S. The chromosome-scale reference genome of mirid bugs (Adelphocoris suturalis) genome provides insights into omnivory, insecticide resistance, and survival adaptation. BMC Biol 2023; 21:195. [PMID: 37726763 PMCID: PMC10510153 DOI: 10.1186/s12915-023-01666-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 07/22/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND Adelphocoris suturalis (Hemiptera: Miridae) is a notorious agricultural pest, which causes serious economic losses to a diverse range of agricultural crops around the world. The poor understanding of its genomic characteristics has seriously hindered the establishment of sustainable and environment-friendly agricultural pest management through biotechnology and biological insecticides. RESULTS Here, we report a chromosome-level assembled genome of A. suturalis by integrating Illumina short reads, PacBio, 10x Chromium, and Hi-C mapping technologies. The resulting 1.29 Gb assembly contains twelve chromosomal pseudomolecules with an N50 of 1.4 and 120.6 Mb for the contigs and scaffolds, respectively, and carries 20,010 protein-coding genes. The considerable size of the A. suturalis genome is predominantly attributed to a high amount of retrotransposons, especially long interspersed nuclear elements (LINEs). Transcriptomic and phylogenetic analyses suggest that A. suturalis-specific candidate effectors, and expansion and expression of gene families associated with omnivory, insecticide resistance and reproductive characteristics, such as digestion, detoxification, chemosensory receptors and long-distance migration likely contribute to its strong environmental adaptability and ability to damage crops. Additionally, 19 highly credible effector candidates were identified and transiently overexpressed in Nicotiana benthamiana for functional assays and potential targeting for insect resistance genetic engineering. CONCLUSIONS The high-quality genome of A. suturalis provides an important genomic landscape for further investigations into the mechanisms of omnivory, insecticide resistance and survival adaptation, and for the development of integrated management strategies.
Collapse
Affiliation(s)
- Zhongping Xu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Guanying Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jing Luo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Mingju Zhu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lisong Hu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan, China
| | - Sijia Liang
- Academy of Industry Innovation and Development, Huanghuai University, Zhumadian, Henan, China
| | - Bo Li
- Xinjiang Key Laboratory of Crop Biotechnology, Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Wulumuqi, Xinjiang, China
| | - Xingxing Huang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ying Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Guangyu Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Can Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yi Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Daojun Yuan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Taiyu Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lizhen Chen
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China.
| | - Weihua Ma
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Wei Gao
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Science, Henan University, Kaifeng, Henan, China
| | - Keith Lindsey
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Fang Ding
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
3
|
Genome-Wide Analysis of the Amino Acid Auxin Permease (AAAP) Gene Family and Identification of an AAAP Gene Associated with the Growth and Reproduction of the Brown Planthopper, Nilaparvata lugens (Stål). INSECTS 2021; 12:insects12080746. [PMID: 34442311 PMCID: PMC8397168 DOI: 10.3390/insects12080746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/04/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022]
Abstract
Amino acids play a vital role in several biological processes in organisms and are mainly acquired through diet by most insects. The amino acid auxin permease (AAAP) transporter family is an important amino acid transporter gene family in insects for the transportation of amino acids into and out of cells across the plasma membrane. Here, we identified 21 putative AAAP family members in the genome of the brown planthopper (BPH), Nilaparvata lugens, a devastating pest that feeds only on the phloem sap of rice plants. Molecular characteristic analysis indicated large variations in protein features and amino acid sequences among the predicted AAAP family members in BPH. Phylogenetic analysis clustered these AAAP transporters into three subgroups, with the members in the same group sharing a similar pattern of conserved motif distribution. Through ortholog gene recognition and spatiotemporal gene expression analysis, the AAAP gene NlAAAP07, which was predicted to regulate BPH larval growth and female fecundity, was identified. RNA interference (RNAi)-mediated suppression of NlAAAP07 significantly postponed the duration of 3rd instar nymphs developing into adults from 7.4 days to 9.0 days, and decreased the oviposition amount and egg hatching rate of females by 30.7% and 11.0%, respectively. Our results provide a foundation for further functional analysis of AAAP transporters in BPH.
Collapse
|
4
|
Yue L, Guan Z, Zhong M, Zhao L, Pang R, Liu K. Genome-Wide Identification and Characterization of Amino Acid Polyamine Organocation Transporter Family Genes Reveal Their Role in Fecundity Regulation in a Brown Planthopper Species ( Nilaparvata lugens). Front Physiol 2021; 12:708639. [PMID: 34335311 PMCID: PMC8316623 DOI: 10.3389/fphys.2021.708639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
The brown planthopper (BPH), Nilaparvata lugens Stål (Hemiptera:Delphacidae), is one of the most destructive pests of rice worldwide. As a sap-feeding insect, the BPH is incapable of synthesizing several amino acids which are essential for normal growth and development. Therefore, the insects have to acquire these amino acids from dietary sources or their endosymbionts, in which amino acid transporters (AATs) play a crucial role by enabling the movement of amino acids into and out of insect cells. In this study, a common amino acid transporter gene family of amino acid/polyamine/organocation (APC) was identified in BPHs and analyzed. Based on a homology search and conserved functional domain recognition, 20 putative APC transporters were identified in the BPH genome. Molecular trait analysis showed that the verified BPH APC family members were highly variable in protein features, conserved motif distribution patterns, and exon/intron organization. Phylogenetic analysis of five hemipteran species revealed an evolutionary pattern of interfamily conservation and lineage-specific expansion of this gene family. Moreover, stage- and tissue-specific expression analysis revealed diverse expression patterns in the 20 BPH APC transporter genes. Lastly, a potential BPH fecundity regulatory gene of NlAPC09 was identified and shown to participate in the fecundity regulation through the use of quantitative polymerase chain reaction (qPCR) and RNA inference experiments. Our results provide a basis for further functional investigations of APC transporters in BPH.
Collapse
Affiliation(s)
- Lei Yue
- Innovative Institute for Plant Health, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Ziying Guan
- Innovative Institute for Plant Health, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Mingzhao Zhong
- Innovative Institute for Plant Health, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Luyao Zhao
- Innovative Institute for Plant Health, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Rui Pang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Kai Liu
- Innovative Institute for Plant Health, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
5
|
Ye X, Xiong S, Teng Z, Yang Y, Wang J, Yu K, Wu H, Mei Y, Yan Z, Cheng S, Yin C, Wang F, Yao H, Fang Q, Song Q, Werren JH, Ye G, Li F. Amino acid synthesis loss in parasitoid wasps and other hymenopterans. eLife 2020; 9:e59795. [PMID: 33074103 PMCID: PMC7593089 DOI: 10.7554/elife.59795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/17/2020] [Indexed: 11/17/2022] Open
Abstract
Insects utilize diverse food resources which can affect the evolution of their genomic repertoire, including leading to gene losses in different nutrient pathways. Here, we investigate gene loss in amino acid synthesis pathways, with special attention to hymenopterans and parasitoid wasps. Using comparative genomics, we find that synthesis capability for tryptophan, phenylalanine, tyrosine, and histidine was lost in holometabolous insects prior to hymenopteran divergence, while valine, leucine, and isoleucine were lost in the common ancestor of Hymenoptera. Subsequently, multiple loss events of lysine synthesis occurred independently in the Parasitoida and Aculeata. Experiments in the parasitoid Cotesia chilonis confirm that it has lost the ability to synthesize eight amino acids. Our findings provide insights into amino acid synthesis evolution, and specifically can be used to inform the design of parasitoid artificial diets for pest control.
Collapse
Affiliation(s)
- Xinhai Ye
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
- Department of Biology, University of RochesterRochesterUnited States
| | - Shijiao Xiong
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Ziwen Teng
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Yi Yang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Jiale Wang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Kaili Yu
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Huizi Wu
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Yang Mei
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Zhichao Yan
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Sammy Cheng
- Department of Biology, University of RochesterRochesterUnited States
| | - Chuanlin Yin
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Fang Wang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Hongwei Yao
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Qi Fang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Qisheng Song
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, University of MissouriColumbiaUnited States
| | - John H Werren
- Department of Biology, University of RochesterRochesterUnited States
| | - Gongyin Ye
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Fei Li
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang UniversityHangzhouChina
| |
Collapse
|
6
|
Nepomuceno DB, Paim RMM, Araújo RN, Pereira MH, Pessoa GCD, Koerich LB, Sant'Anna MRV, Gontijo NF. The role of LuloPAT amino acid/proton symporters in midgut alkalinization in the sandfly Lutzomyia longipalpis (Diptera - Psychodidae). JOURNAL OF INSECT PHYSIOLOGY 2020; 120:103973. [PMID: 31715141 DOI: 10.1016/j.jinsphys.2019.103973] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 06/10/2023]
Abstract
In Lutzomyia longipalpis females, which are the main vectors of Leishmania infantum in the Americas, hematophagy is crucial for ovary development. The control of pH in the midgut during blood digestion is important to the functioning of the digestive enzymes, which release amino acids in the luminal compartment that are then transported through the enterocytes to the hemolymph for delivery to the ovary and other organs. In the present work, we investigated transport systems known as LuloPATs that are present in the midgut of L. longipalpis but not in other organs. These transporters achieve symport of amino acids with H+ ions, and one of them (LuloPAT1) is orthologous to a transporter described in Aedes aegypti. According to our results, the transcription levels of LuloPAT1 increased significantly immediately after a blood meal. Based on the variation of the fluorescence of fluorescein with the pH of the medium, we developed a technique that shows the acidification of the cytoplasm of gut cells when amino acids are cotransported with H+ from the lumen into the enterocytes. In our experiments, the midguts of the sandflies were dissected and opened longitudinally so that added amino acids could enter the enterocytes via the lumen (PAT carriers are apical). LuloPAT1 transporters are part of a complex of mechanisms that act synergistically to promote gut alkalinization as soon as blood intake by the vector occurs. In dissected but not longitudinally opened midguts, added amino acids could only enter through the basolateral region of enterocytes. However, alkalinization of the lumen was observed because the entry of some amino acids into the cytoplasm of enterocytes triggers a luminal alkalinization mechanism independent of LuloPATs. These findings provide new perspectives that will enable the characterization of the set of signaling pathways involved in pH regulation within the L. longipalpis midgut.
Collapse
Affiliation(s)
- Denise Barguil Nepomuceno
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia/ICB, Universidade Federal de Minas Gerais, Caixa Postal 486, 31270-901 Belo Horizonte, MG, Brazil
| | - Rafaela Magalhães Macedo Paim
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia/ICB, Universidade Federal de Minas Gerais, Caixa Postal 486, 31270-901 Belo Horizonte, MG, Brazil
| | - Ricardo Nascimento Araújo
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia/ICB, Universidade Federal de Minas Gerais, Caixa Postal 486, 31270-901 Belo Horizonte, MG, Brazil
| | - Marcos Horácio Pereira
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia/ICB, Universidade Federal de Minas Gerais, Caixa Postal 486, 31270-901 Belo Horizonte, MG, Brazil.
| | - Grasielle Caldas D'Ávila Pessoa
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia/ICB, Universidade Federal de Minas Gerais, Caixa Postal 486, 31270-901 Belo Horizonte, MG, Brazil
| | - Leonardo Barbosa Koerich
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia/ICB, Universidade Federal de Minas Gerais, Caixa Postal 486, 31270-901 Belo Horizonte, MG, Brazil
| | - Mauricio Roberto Viana Sant'Anna
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia/ICB, Universidade Federal de Minas Gerais, Caixa Postal 486, 31270-901 Belo Horizonte, MG, Brazil
| | - Nelder Figueiredo Gontijo
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia/ICB, Universidade Federal de Minas Gerais, Caixa Postal 486, 31270-901 Belo Horizonte, MG, Brazil.
| |
Collapse
|
7
|
Division of labor in honey bee gut microbiota for plant polysaccharide digestion. Proc Natl Acad Sci U S A 2019; 116:25909-25916. [PMID: 31776248 DOI: 10.1073/pnas.1916224116] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Bees acquire carbohydrates from nectar and lipids; and amino acids from pollen, which also contains polysaccharides including cellulose, hemicellulose, and pectin. These potential energy sources could be degraded and fermented through microbial enzymatic activity, resulting in short chain fatty acids available to hosts. However, the contributions of individual microbiota members to polysaccharide digestion have remained unclear. Through analysis of bacterial isolate genomes and a metagenome of the honey bee gut microbiota, we identify that Bifidobacterium and Gilliamella are the principal degraders of hemicellulose and pectin. Both Bifidobacterium and Gilliamella show extensive strain-level diversity in gene repertoires linked to polysaccharide digestion. Strains from honey bees possess more such genes than strains from bumble bees. In Bifidobacterium, genes encoding carbohydrate-active enzymes are colocated within loci devoted to polysaccharide utilization, as in Bacteroides from the human gut. Carbohydrate-active enzyme-encoding gene expressions are up-regulated in response to particular hemicelluloses both in vitro and in vivo. Metabolomic analyses document that bees experimentally colonized by different strains generate distinctive gut metabolomic profiles, with enrichment for specific monosaccharides, corresponding to predictions from genomic data. The other 3 core gut species clusters (Snodgrassella and 2 Lactobacillus clusters) possess few or no genes for polysaccharide digestion. Together, these findings indicate that strain composition within individual hosts determines the metabolic capabilities and potentially affects host nutrition. Furthermore, the niche specialization revealed by our study may promote overall community stability in the gut microbiomes of bees.
Collapse
|
8
|
Meleshkevitch EA, Voronov DA, Miller MM, Penneda M, Fox JM, Metzler R, Boudko DY. A novel eukaryotic Na+ methionine selective symporter is essential for mosquito development. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:755-767. [PMID: 23748165 PMCID: PMC3746589 DOI: 10.1016/j.ibmb.2013.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 05/16/2013] [Accepted: 05/21/2013] [Indexed: 05/30/2023]
Abstract
AeNAT5 (NCBI, ABZ81822), an orphan member of the insect-specific Nutrient Amino acid Transporter subfamily of SoLute Carrier family 6 (NAT-SLC6) and the first representative of a novel eukaryotic methionine-selective transport system (M), was cloned from cDNA of the vector mosquito, Aedes aegypti. It has orphan orthologs throughout several mosquito genomes, but not in Drosophila or outside Diptera. It shows the highest apparent affinity to L-Met (K(0.5) = 0.021 mM) and its metabolites Homocysteine and Cysteine (K(0.5) = 0.89 and 2.16 mM), but weakly interact with other substrates. It has a Na(+) - coupled mechanism (K(0.5) Na(+) ∼ 46 mM) with 1AA:1Na(+) stoichiometry that maintains ∼60% activity in Cl(-) - free media. In situ hybridization showed accumof AeNAT5 transcript in the absorptive and secretory epithelia, as well as in specific peripheral neurons and the central ganglia of mosquito larvae. The labeling pattern is distinct from that of the previously characterized AeNAT1. RNAi of AeNAT5 increases larval mortality during ecdysis and dramatically suppresses adult emergence. Our results showed that in addition to previously characterized broad spectra and aromatic amino acid selective transport systems, the mosquito NAT-SLC6 subfamily evolved a unique mechanism for selective absorption of sulfur-containing substrates. We demonstrated specific patterns of alimentary and neuronal transcription of AeNAT5 in mosquito larvae that is collateral with the indispensable function of this transporter in mosquito development.
Collapse
Affiliation(s)
- Ella A. Meleshkevitch
- Department of Physiology and Biophysics of the Rosalind Franklin University, Chicago Medical School, North Chicago, IL 60064, USA
- Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, FL32080, USA
| | - Dmitri A. Voronov
- Institute for Information Transmission Problems, Moscow, 127994, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991, Russia
- Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, FL32080, USA
| | - Melissa M. Miller
- Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, FL32080, USA
| | - Maria Penneda
- Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, FL32080, USA
| | - Jeffrey M. Fox
- Department of Physiology and Biophysics of the Rosalind Franklin University, Chicago Medical School, North Chicago, IL 60064, USA
| | - Ryan Metzler
- Department of Physiology and Biophysics of the Rosalind Franklin University, Chicago Medical School, North Chicago, IL 60064, USA
| | - Dmitri Y. Boudko
- Department of Physiology and Biophysics of the Rosalind Franklin University, Chicago Medical School, North Chicago, IL 60064, USA
- Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, FL32080, USA
| |
Collapse
|
9
|
Barbehenn RV, Niewiadomski J, Kochmanski J, Constabel CP. Limited effect of reactive oxygen species on the composition of susceptible essential amino acids in the midguts of Lymantria dispar caterpillars. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2012; 81:160-177. [PMID: 22961657 DOI: 10.1002/arch.21065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The essential amino acids (EAAs) arginine, histidine, lysine, and methionine, as well as cysteine (semiessential), are believed to be susceptible to reactions with reactive oxygen species (ROS) in biological systems. The decreased availability of these EAAs could harm insect nutrition, since several of them can also be limiting for protein synthesis. However, no in vivo studies have quantified the effect of ROS in the midguts of insect herbivores on EAA composition. This study examined the association between elevated levels of ROS in the midgut fluid of Lymantria dispar caterpillars and the compositions of EAAs (protein-bound + protein-free) in their midgut fluid and frass. Contrary to expectation, the compositions of EAAs were not significantly decreased by ROS in midgut fluid ex vivo when incubated with phenolic compounds. Two in vivo comparisons of low- and high-ROS-producing leaves also showed similar results: there were no significant decreases in the compositions of EAAs in the midgut fluids and/or frass of larvae with elevated levels of ROS in their midguts. In addition, waste nitrogen excretion was not significantly increased from larvae on high-ROS treatments, as would be expected if ROS produced unbalanced EAA compositions. These results suggest that L. dispar larvae are able to tolerate elevated levels of ROS in their midguts without nutritionally significant changes in the compositions of susceptible EAAs in their food.
Collapse
Affiliation(s)
- Raymond V Barbehenn
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | |
Collapse
|
10
|
Boudko DY. Molecular basis of essential amino acid transport from studies of insect nutrient amino acid transporters of the SLC6 family (NAT-SLC6). JOURNAL OF INSECT PHYSIOLOGY 2012; 58:433-49. [PMID: 22230793 PMCID: PMC3397479 DOI: 10.1016/j.jinsphys.2011.12.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 12/21/2011] [Accepted: 12/23/2011] [Indexed: 05/03/2023]
Abstract
Two protein families that represent major components of essential amino acid transport in insects have been identified. They are annotated as the SLC6 and SLC7 families of transporters according to phylogenetic proximity to characterized amino acid transporters (HUGO nomenclature). Members of these families have been identified as important apical and basolateral parts of transepithelial essential amino acid absorption in the metazoan alimentary canal. Synergistically, they play critical physiological roles as essential substrate providers to diverse metabolic processes, including generic protein synthesis. This review briefly clarifies the requirements for amino acid transport and a variety of amino acid transport mechanisms, including the aforementioned families. Further it focuses on the large group of Nutrient Amino acid Transporters (NATs), which comprise a recently identified subfamily of the Neurotransmitter Sodium Symporter family (NSS or SLC6). The first insect NAT, cloned from the caterpillar gut, has a broad substrate spectrum similar to mammalian B(0) transporters. Several new NAT-SLC6 members have been characterized in an effort to explore mechanisms for the essential amino acid absorption in model dipteran insects. The identification and functional characterization of new B(0)-like and narrow specificity transporters of essential amino acids in fruit fly and mosquitoes leads to a fundamentally important insight: that NATs evolved and act together as the integrated active core of a transport network that mediates active alimentary absorption and systemic distribution of essential amino acids. This role of NATs is projected from the most primitive prokaryotes to the most complex metazoan organisms, and represents an interesting platform for unraveling the molecular evolution of amino acid transport and modeling amino acid transport disorders. The comparative study of NATs elucidates important adaptive differences between essential amino acid transportomes of invertebrate and vertebrate organisms, outlining a new possibility for selective targeting of essential amino acid absorption mechanisms to control medically and economically important arthropods and other invertebrate organisms.
Collapse
Affiliation(s)
- Dmitri Y Boudko
- Department of Physiology and Biophysics of Rosalind Franklin University, Chicago Medical School, North Chicago, IL 60064, USA.
| |
Collapse
|
11
|
Yu HP, Wang ZT, Xiao K, Shao L, Li GQ. The presence of conspecific decoys enhances the attractiveness of an NaCl resource to the yellow-spined locust, Ceracris kiangsu. JOURNAL OF INSECT SCIENCE (ONLINE) 2011; 11:45. [PMID: 21539416 PMCID: PMC3281467 DOI: 10.1673/031.011.0145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2010] [Accepted: 05/20/2010] [Indexed: 05/30/2023]
Abstract
Adults of the yellow-spined bamboo locust, Ceracris kiangsu Tsai (Orthoptera: Oedipodidae), aggregate and gnaw at human urine-contaminated materials, a phenomenon termed puddling. Several urine-borne chemicals, including NaCl, are known to stimulate adult C. kiangsu to consume filter paper. Because in nature C. kiangsu adults may use cues to locate puddling resources, we tested the influence of conspecific decoys (dried C. kiangsu) on foraging and consumption of 3% NaCl-treated filter paper. In a two-choice test experiment in the laboratory, female adults showed no preference for filter papers (not treated with NaCl) with or without decoys. In contrast, C. kiangsu females consumed significantly more NaCl-treated filter paper on which conspecific decoys were attached than those without decoys in both the laboratory and in a bamboo forest. When the bait was changed to 3% NaCl plus the insecticide bisultap, significantly more C. kiangsu were killed in the bamboo forest when decoys were present, however the results were not significant when the experiment was done in the laboratory. Hence, moving towards conspecifics seems to facilitate NaCl resource foraging in C. kiangsu, suggesting that the presence of conspecifics promotes feeding on puddling resources.
Collapse
Affiliation(s)
- Hai-Ping Yu
- Department of Entomology, Key Laboratory of Monitoring and Management of Plant Diseases and Pests, Ministry of Agriculture, Nanjing Agricultural University; Nanjing, China, 210095
- These authors contributed equally to the research
| | - Zhi-Tian Wang
- Department of Entomology, Key Laboratory of Monitoring and Management of Plant Diseases and Pests, Ministry of Agriculture, Nanjing Agricultural University; Nanjing, China, 210095
- These authors contributed equally to the research
| | - Kai Xiao
- Department of Entomology, Key Laboratory of Monitoring and Management of Plant Diseases and Pests, Ministry of Agriculture, Nanjing Agricultural University; Nanjing, China, 210095
| | - Lin Shao
- Department of Entomology, Key Laboratory of Monitoring and Management of Plant Diseases and Pests, Ministry of Agriculture, Nanjing Agricultural University; Nanjing, China, 210095
| | - Guo-Qing Li
- Department of Entomology, Key Laboratory of Monitoring and Management of Plant Diseases and Pests, Ministry of Agriculture, Nanjing Agricultural University; Nanjing, China, 210095
| |
Collapse
|
12
|
Bifano TD, Alegria TG, Terra WR. Transporters involved in glucose and water absorption in the Dysdercus peruvianus (Hemiptera: Pyrrhocoridae) anterior midgut. Comp Biochem Physiol B Biochem Mol Biol 2010; 157:1-9. [DOI: 10.1016/j.cbpb.2010.05.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 05/31/2010] [Accepted: 05/31/2010] [Indexed: 11/24/2022]
|
13
|
Bradley WG. Possible therapy for ALS based on the cyanobacteria/BMAA hypothesis. ACTA ACUST UNITED AC 2010; 10 Suppl 2:118-23. [PMID: 19929743 DOI: 10.3109/17482960903285951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Although the cyanobacteria/BMAA hypothesis of the cause of ALS and other age-related neurodegenerative diseases remains to be proven, it is not too early to ask whether treatment would be possible if the hypothesis were correct. This paper reviews the possible ways that chronic BMAA neurotoxicity could be prevented or treated.
Collapse
Affiliation(s)
- Walter G Bradley
- Department of Neurology, Miller School of Medicine, University of Miami, 1120 NW 14 Street, Miami, Florida 33136, USA.
| |
Collapse
|
14
|
Harvey WR, Boudko DY, Rheault MR, Okech BA. NHE(VNAT): an H+ V-ATPase electrically coupled to a Na+:nutrient amino acid transporter (NAT) forms an Na+/H+ exchanger (NHE). J Exp Biol 2009; 212:347-57. [PMID: 19151209 PMCID: PMC2727077 DOI: 10.1242/jeb.026047] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2008] [Indexed: 11/20/2022]
Abstract
Glycolysis, the citric acid cycle and other metabolic pathways of living organisms generate potentially toxic acids within all cells. One ubiquitous mechanism for ridding cells of the acids is to expel H(+) in exchange for extracellular Na(+), mediated by electroneutral transporters called Na(+)/H(+) exchangers (NHEs) that are driven by Na(+) concentration gradients. The exchange must be important because the human genome contains 10 NHEs along with two Na(+)/H(+) antiporters (NHAs). By contrast, the genomes of two principal disease vector mosquitoes, Anopheles gambiae and Aedes aegypti, contain only three NHEs along with the two NHAs. This shortfall may be explained by the presence of seven nutrient amino acid transporters (NATs) in the mosquito genomes. NATs transport Na(+) stoichiometrically linked to an amino acid into the cells by a process called symport or co-transport. Three of the mosquito NATs and two caterpillar NATs have previously been investigated after heterologous expression in Xenopus laevis oocytes and were found to be voltage driven (electrophoretic). Moreover, the NATs are present in the same membrane as the H(+) V-ATPase, which generates membrane potentials as high as 120 mV. We review evidence that the H(+) V-ATPase moves H(+) out of the cells and the resulting membrane potential (V(m)) drives Na(+) linked to an amino acid into the cells via a NAT. The H(+) efflux by the V-ATPase and Na(+) influx by the NAT comprise the same ion exchange as that mediated by an NHE; so the V and NAT working together constitute an NHE that we call NHE(VNAT). As the H(+) V-ATPase is widely distributed in mosquito epithelial cells and there are seven NATs in the mosquito genomes, there are potentially seven NHE(VNAT)s that could replace the missing NHEs. We review published evidence in support of this hypothesis and speculate about broader functions of NHE(VNAT)s.
Collapse
Affiliation(s)
- William R Harvey
- Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL 32080, USA.
| | | | | | | |
Collapse
|
15
|
Okech BA, Meleshkevitch EA, Miller MM, Popova LB, Harvey WR, Boudko DY. Synergy and specificity of two Na+-aromatic amino acid symporters in the model alimentary canal of mosquito larvae. J Exp Biol 2008; 211:1594-602. [PMID: 18456887 PMCID: PMC3397476 DOI: 10.1242/jeb.017244] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The nutrient amino acid transporter (NAT) subfamily is the largest subdivision of the sodium neurotransmitter symporter family (SNF; also known as SLC6; HUGO). There are seven members of the NAT population in the African malaria mosquito Anopheles gambiae, two of which, AgNAT6 and AgNAT8, preferably transport indole- and phenyl-branched substrates, respectively. The relative expression and distribution of these aromatic NATs were examined with transporter-specific antibodies in Xenopus oocytes and mosquito larval alimentary canal, representing heterologous and tissue expression systems, respectively. NAT-specific aromatic-substrate-induced currents strongly corresponded with specific accumulation of both transporters in the plasma membrane of oocytes. Immunolabeling revealed elevated expressions of both transporters in specific regions of the larval alimentary canal, including salivary glands, cardia, gastric caeca, posterior midgut and Malpighian tubules. Differences in relative expression densities and spatial distribution of the transporters were prominent in virtually all of these regions, suggesting unique profiles of the aromatic amino acid absorption. For the first time reversal of the location of a transporter between apical and basal membranes was identified in posterior and anterior epithelial domains corresponding with secretory and absorptive epithelial functions, respectively. Both aromatic NATs formed putative homodimers in the larval gut whereas functional monomers were over-expressed heterologously in Xenopus oocytes. The results unequivocally suggest functional synergy between substrate-specific AgNAT6 and AgNAT8 in intracellular absorption of aromatic amino acids. More broadly, they suggest that the specific selectivity, regional expression and polarized membrane docking of NATs represent key adaptive traits shaping functional patterns of essential amino acid absorption in the metazoan alimentary canal and other tissues.
Collapse
Affiliation(s)
| | | | - Melissa M. Miller
- The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Boulevard, St Augustine, FL 3208, USA
| | | | - William R. Harvey
- The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Boulevard, St Augustine, FL 3208, USA
| | | |
Collapse
|
16
|
Jeffers LA, Michael Roe R. The movement of proteins across the insect and tick digestive system. JOURNAL OF INSECT PHYSIOLOGY 2008; 54:319-332. [PMID: 18177888 DOI: 10.1016/j.jinsphys.2007.10.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 10/20/2007] [Accepted: 10/22/2007] [Indexed: 05/25/2023]
Abstract
The movement of intact proteins across the digestive system was shown in a number of different blood-feeding and non-blood-feeding insects in the orders Blattaria, Coleoptera, Diptera, Hemiptera, Lepidoptera, Orthoptera, Neuroptera and Siphonaptera, as well as in two tick families Ixodidae and Argasidae. Protein movement was observed for both normal dietary and xenobiotic proteins, which suggest that the mechanism for transfer is not substrate specific. The number of studies on the mechanism of movement is limited. The research so far suggests that movement can occur by either a transcellular or an intercellular pathway in the ventriculus with most of the research describing the former. Transfer is by continuous diffusion with no evidence of pinocytosis or vesicular transport common in mammalian systems. Proteins can move across the digestive system without modification of their primary or multimeric structure and with retention of their functional characteristics. Accumulation in the hemolymph is the result of the protein degradation rate in the gut and hemolymph and transfer rate across the digestive system and can be highly variable depending on species. Research on the development of delivery systems to enhance protein movement across the insect digestive system is in its infancy. The approaches so far considered with some success include the use of lipophilic-polyethylene glycol (PEG) polymers, the development of fusion proteins with lectins, reduced gut protease activity and the development of amphiphilic peptidic analogs. Additional research on understanding the basic mechanisms of protein delivery across the insect digestive system, the importance of structure activity in this transfer and the development of technology to improve movement across the gut could be highly significant to the future of protein and nucleic acid-based insecticide development as well as traditional chemical insecticidal technologies.
Collapse
Affiliation(s)
- Laura A Jeffers
- Department of Entomology, Dearstyne Entomology Building, North Carolina State University, Raleigh, NC 27695-7647, USA
| | | |
Collapse
|
17
|
Forcella M, Berra E, Giacchini R, Parenti P. Leucine transport in brush border membrane vesicles from freshwater insect larvae. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2006; 63:110-22. [PMID: 17048243 DOI: 10.1002/arch.20147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Leucine transport across brush border membrane vesicles prepared from four insect species common to European freshwater streams has been characterized. The species studied were: Ephemera danica (Ephemeroptera: Ephemeridae), Isoperla grammatica (Plecoptera: Perlodidae), Hydropsyche pellucidula (Trichoptera: Hydropsychidae), and Hybomitra bimaculata (Diptera: Tabanidae). The transport differed among the studied taxa for several features, including pH and sodium dependence, substrate affinity and specificity, and efficiency. In H. pellucidula and E. danica, leucine uptake was higher at pH 7.4 than at more alkaline or acidic pH values, whereas in I. grammatica and H. bimaculata, the uptake was rather constant when pH varied from 5.0 to 7.4, then strongly decreased at pH 8.8. All but E. danica displayed a transient intravescicular leucine accumulation in the presence of sodium, suggesting the existence of a cation-leucine symport mechanism. The sodium dependence ranged according to the following order: H. pellucidula > I. grammatica > H. bimaculata > E. danica. Moreover, in H. pellucidula and I. grammatica, the sodium-dependence was stronger at pH 8.8 than at pH 7.4. In E. danica, leucine uptake was sodium-independent at all pH values. The highest value of V(max) (45.3 pmol.s(-1).mg proteins(-1)) was in E. danica, which, however, displayed the lowest affinity (K(m) 137 muM) when compared to the kinetic parameters of other taxa. The V(max) and K(m) values were: 40 and 52.5, 32.1 and 12.5, and 4.5 and 230 for H. bimaculata, H. pellucidula, and I. grammatica, respectively. The obtained results are discussed within our current knowledge of amino acid transport systems in insects.
Collapse
Affiliation(s)
- Matilde Forcella
- Department of Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | | | | | | |
Collapse
|
18
|
Petanidou T, Van Laere A, N. Ellis W, Smets E. What shapes amino acid and sugar composition in Mediterranean floral nectars? OIKOS 2006. [DOI: 10.1111/j.2006.0030-1299.14487.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Abstract
Plasma membranes from insect midgut cells are separated into apical and basolateral domains. The apical domain is usually modified into microvilli with a molecular structure similar to other animals. Nevertheless, the microvillar structure should differ in some insects to permit the traffic inside them of secretory vesicles that may budd laterally or pinch-off from the tips of microvilli. Other microvillar modifications are associated with proton-pumping or with the interplay with an ensheathing lipid membrane (the perimicrovilllar membrane) observed in the midgut cells of hemipterans (aphids and bugs). The perimicrovillar membranes are thought to be involved in amino acid absorption from diluted diets. The microvillar and perimicrovillar membranes have densities (and protein content) that depend on the insect taxon. The role played by the microvillar and perimicrovillar proteins in insect midgut physiology is reviewed here trying to provide a coherent picture of data and highlighting further research areas.
Collapse
Affiliation(s)
- Walter R Terra
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, 05513-970 São Paulo, SP, Brazil.
| | | | | |
Collapse
|
20
|
Forcella M, Berra E, Giacchini R, Hanozet GM, Parenti P. Changes in leucine transport activity in Chironomus riparius larvae after short-term exposure to potassium dichromate and fenitrothion. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2004; 55:90-101. [PMID: 14745826 DOI: 10.1002/arch.10127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The effect of sublethal concentrations of potassium dichromate and fenitrothion on sodium-leucine cotransport in brush border membrane vesicles from Chironomus riparius larvae has been investigated. Exposure to potassium dichromate and fenitrothion caused a dose- and time-dependent inhibition of leucine uptake. Transport inhibition is easily detectable at doses 100-fold lower than LD50. Kinetic experiments showed that inhibition was mainly caused by a decrease of the Vmax (680 +/- 53 vs. 382 +/- 23 and 555 +/- 27 nmol/15s/mg protein in control and exposed larvae to K2Cr2O7 and fenitrothion, respectively). Inhibition is possibly related to a variation of sodium ions permeability as evidenced by increased membrane lipid peroxidation. Appropriate control experiments ruled out that the observed differences could be due to changes in general features of membrane preparations. Transport inhibition observed in larvae exposed to potassium dichromate was accompanied by changes in ascorbate peroxidase and dehydroascorbate reductase activities, whereas those exposed to fenitrothion displayed an increase in transaminase activity. The possible value of leucine uptake as biochemical biomarker is briefly discussed. Arch. Insect Biochem. Physiol. 55:90-101, 2004.
Collapse
Affiliation(s)
- Matilde Forcella
- Dipartimento di Scienze dell'Ambiente e del Territorio, Università di Milano-Bicocca, Milano, Italy
| | | | | | | | | |
Collapse
|
21
|
Cristofoletti PT, Ribeiro AF, Deraison C, Rahbé Y, Terra WR. Midgut adaptation and digestive enzyme distribution in a phloem feeding insect, the pea aphid Acyrthosiphon pisum. JOURNAL OF INSECT PHYSIOLOGY 2003; 49:11-24. [PMID: 12770012 DOI: 10.1016/s0022-1910(02)00222-6] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Transmission electron micrographs of the pea aphid midgut revealed that its anterior region has cells with an apical complex network of lamellae (apical lamellae) instead of the usual regularly-arranged microvilli. These apical lamellae are linked to one another by trabeculae. Modified perimicrovillar membranes (MPM) are associated with the lamellae and project into the lumen. Trabeculae and MPM become less conspicuous along the midgut. The most active A. pisum digestive enzymes are membrane-bound. An aminopeptidase (APN) is described elsewhere. An alpha-glucosidase (alpha-Glu) has a molecular mass of 72 kDa, pH optimum 6.0 and catalyzes in vitro transglycosylations in the presence of an excess of the substrate sucrose. There is a major cysteine proteinase activity (CP) on protein substrates that has a molecular mass of 40 kDa, pH optimum 5.5, is inhibited by E-64 and chymostatin and is activated by EDTA+cysteine. The enzyme is more active against carbobenzoxy-Phe-Arg-4-methylcoumarin-7-amide (ZFRMCA) than against ZRRMCA. These features identify the purified CP as a cathepsin-L-like cysteine proteinase. Most CP is found in the anterior midgut, whereas alpha-Glu and APN predominate in the posterior midgut. With the aid of antibodies, alpha-Glu and CP were immunolocalized in cell vesicles and MPM, whereas APN was localized in vesicles, apical lamellae and MPM. The data suggest that the anterior midgut is structurally reinforced to resist osmotic pressures and that the transglycosylating alpha-Glu, together with CP and APN are bound to MPM, thus being both distributed over a large surface and prevented from excretion with honeydew. alpha-Glu frees glucose from sucrose without increasing the osmolarity, and CP and APN may process toxins or other proteins occasionally present in phloem.
Collapse
Affiliation(s)
- Plinio T Cristofoletti
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, C.P. 26077, 05513-970 São Paulo, Brazil
| | | | | | | | | |
Collapse
|
22
|
Stevens BR, Feldman DH, Liu Z, Harvey WR. Conserved tyrosine-147 plays a critical role in the ligand-gated current of the epithelial cation/amino acid transporter/channel CAATCH1. J Exp Biol 2002; 205:2545-53. [PMID: 12124378 DOI: 10.1242/jeb.205.16.2545] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYCAATCH1 functions both as an amino-acid-gated cation channel and as a cation-dependent, proline-preferring, nutrient amino acid transporter in which the two functions are thermodynamically uncoupled. This study focuses on the ionic channel aspect, in which a Tyr147 (wild type) to Phe147 (Y147F) site-directed mutation was investigated by steady-state electrophysiological measurements in the Xenopus laevisoocyte expression system. This tyrosine residue is conserved within the third transmembrane domain in members of the Na+:neurotransmitter transporter family (SNF), where it plays a role in binding pharmacological ligands such as cocaine to the serotonin (SERT), dopamine (DAT) and norepinephrine (NET) transporters. Epithelial CAATCH1 is a member of the SNF family. The results show that amino acid ligand-gating selectivity and current magnitudes in Na+- and K+-containing media are differentially altered in CAATCH1 Y147F compared with the wild type. In the absence of amino acid ligands, the channel conductance of Na+,K+ and Li+ that is observed in the wild type was reduced to virtually zero in Y147F. In the wild type, proline binding increased conductance strongly in Na+-containing medium and moderately in K+-containing medium, whereas in Y147F proline failed to elicit any cation currents beyond those of N-methyl-D-glucamine- or water-injected oocytes. In the wild type, methionine binding strongly inhibited inward Na+ currents, whereas in Y147F it strongly stimulated inward currents in both Na+ and K+-containing media. Indeed, in Na+-containing medium, the relative potency ranking for inward current inhibition in the wild type(Met>Leu>Gly>Phe>Thr) was similar to the ranking of ligand-permissive gating of large inward currents in Y147F. In Na+-containing medium, current/voltage relationships elicited by ligands in the wild type were complex and reversing, whereas in Y147F they were linear and inwardly rectifying. In K+-containing medium,current/voltage relationships remained non-linear in Y147F. Both wild-type and Y147F currents were Cl--independent. Together, these data demonstrate a critical role for Tyr147 in ligand-binding selectivity and modulation of the ionic channel conductance in CAATCH1. The results support the argument that inhibition of the CAATCH1 conductance by free methionine shares some properties in common with ligand inhibition of DAT, SERT, NET and the γ-aminobutyric acid transporter (GAT1).
Collapse
Affiliation(s)
- Bruce R Stevens
- The Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL 32652, USA
| | | | | | | |
Collapse
|
23
|
Giordana B, Forcella M, Leonardi MG, Casartelli M, Fiandra L, Hanozet GM, Parenti P. A novel regulatory mechanism for amino acid absorption in lepidopteran larval midgut. JOURNAL OF INSECT PHYSIOLOGY 2002; 48:585-592. [PMID: 12770086 DOI: 10.1016/s0022-1910(02)00080-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A number of methyl and ethyl esters of naturally occurring amino acids exert a potent stimulatory effect on the cotransport system responsible for the absorption of most essential amino acids along the midgut of the silkworm Bombyx mori. L-Leucine methyl ester (Leu-OMe), one of the most effective activators, induces a large increase of the initial rate of leucine uptake in midgut brush border membrane vesicles (BBMV) from the anterior-middle (AM) region, and a small effect in BBMV from the posterior (P) region. Nonetheless, the methyl ester causes in both regions a relevant K(+)-, Deltapsi- and pH-independent increase of the intravesicular accumulation of the amino acid. The activation by Leu-OMe proves that amino acid absorption can be modulated all along the B. mori larval midgut and that the AM region, where the ability to transport and concentrate the substrate is very low, is more susceptible than the P region. Leucine uptake in AM-BMMV can be activated by amino acid methyl esters with definite structural requisites, with the following order of potency: L-leucine>L-phenylglycine>L-methionine>L-phenylalanine>L-norleucinez.Gt;L-isoleucine. The activation is stereospecific and occurs also with some ethyl esters (e.g. leucine and phenylalanine). No activation was observed with esters of amino acids with short hydrophobic or polar side-chains. The activation mechanism here described plays a fundamental role in larval growth since silkworms reared on artificial diets supplemented with leucine or methionine methyl esters reach maximum body weight 12-18 h before control larvae and spin cocoons with a larger shell weight. This novel regulatory mechanism of an amino acid transport protein appears to be widespread among lepidopteran larvae.
Collapse
Affiliation(s)
- Barbara Giordana
- Department of Biology, University of Milano, via Celoria 26, 20133, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
24
|
Parenti P, Forcella M, Pugliese A, Giacchini R, Rossaro B, Hanozet GM. Leucine transport in membrane vesicles from Chironomus riparius larvae displays a mélange of crown-group features. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2001; 48:51-62. [PMID: 11568964 DOI: 10.1002/arch.1057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Leucine uptake into membrane vesicles from larvae of the midge Chironomus riparius was studied. The membrane preparation was highly enriched in typical brush border membrane enzymes and depleted of other membrane contaminants. In the absence of cations, there was a stereospecific uptake of l-leucine, which exhibited saturation kinetics. Parameters were determined both at neutral (Km 33 +/- 5 microM and Vmax 22.6 +/- 6.8 pmol/7s/mg protein) and alkaline (Km 46 +/- 5 microM and Vmax 15.5 +/- 2.5 pmol/7s/mg protein) pH values. At alkaline pH, external sodium increased the affinity for leucine (Km 17 +/- 1 microM) and the maximal uptake rate (Vmax 74.0 +/- 12.5 pmol/7s/mg protein). Stimulation of leucine uptake by external alkaline pH agreed with lumen pH measurements in vivo. Competition experiments indicated that at alkaline pH, the transport system readily accepts most L-amino acids, including branched, unbranched, and alpha-methylated amino acids, histidine and lysine, but has a low affinity for phenylalanine, beta-amino acids, and N-methylated amino acids. At neutral pH, the transport has a decreased affinity for lysine, glycine, and alpha-methylleucine. Taken together, these data are consistent with the presence in midges of two distinct leucine transport systems, which combine characters of the lepidopteran amino acid transport system and of the sodium-dependent system from lower neopterans.
Collapse
Affiliation(s)
- P Parenti
- Department of Environmental Sciences, University of Milan-Bicocca, Milano, Italy.
| | | | | | | | | | | |
Collapse
|
25
|
Boudko DY, Moroz LL, Linser PJ, Trimarchi JR, Smith PJ, Harvey WR. In situ analysis of pH gradients in mosquito larvae using non-invasive, self-referencing, pH-sensitive microelectrodes. J Exp Biol 2001; 204:691-9. [PMID: 11171351 DOI: 10.1242/jeb.204.4.691] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The alkaline environment, pH approximately 11, in the anterior midgut lumen of mosquito larvae is essential for normal nutrition and development. The mechanism of alkalization is, however, unknown. Although evidence from immunohistochemistry, electron microscopy and electrophysiology suggests that a V-ATPase is present in the basal membranes of the epithelial cells, its physiological role in the alkalization process has not been demonstrated. To investigate a possible role of the V-ATPase in lumen alkalization, pH gradients emanating from the hemolymph side of the midgut in semi-intact mosquito larvae were measured using non-invasive, self-referencing, ion-selective microelectrodes (SERIS). Large H+ concentration gradients, with highest concentrations close to the basal membrane (outward [H+] gradients), were found in the anterior midgut, whereas much smaller gradients, with concentrations lowest close to this membrane (inward [H+] gradients), were found in the gastric caeca and posterior midgut. Similar region-specific pH gradients, with consistent anterior-to-posterior profiles, were observed in individuals of two Aedes species, Aedes aegypti from semi-tropical Florida and Aedes canadensis from north-temperate Massachusetts. The gradients remained in a steady state for up to 6 h, the maximum duration of the recordings. Bafilomycin A1 (10(−5), 10(−7)mol × l(−1)) on the hemolymph side greatly diminished the [H+] gradients in the anterior midgut but had no effect on the gradients in the gastric caecum and posterior midgut. These physiological data are consistent with the previous findings noted above. Together, they support the hypothesis that a basal, electrogenic H+ V-ATPase energizes luminal alkalization in the anterior midgut of larval mosquitoes.
Collapse
Affiliation(s)
- D Y Boudko
- The Whitney Laboratory, University of Florida, St Augustine, FL 32086, USA.
| | | | | | | | | | | |
Collapse
|