1
|
Wang Y, Yu B, Luo Y, Zheng P, Mao X, Huang Z, Yu J, Luo J, Yan H, Wu A, He J. Interferon-λ3 alleviates intestinal epithelium injury induced by porcine rotavirus in mice. Int J Biol Macromol 2023; 240:124431. [PMID: 37060970 DOI: 10.1016/j.ijbiomac.2023.124431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/15/2023] [Accepted: 04/09/2023] [Indexed: 04/17/2023]
Abstract
Interferons are a group of glycoproteins that are expressed in various cell types in their inflammatory responses to infections. In this study, we explored the protective effects of porcine interferon-λ3 (PIFN-λ3) on intestinal inflammation and injury in mice induced by porcine rotavirus (PRV). BALB/c mice were administrated by PIFN-λ3 or phosphate buffer solution (PBS) for three days prior to PRV infection. We show that PRV infection caused acute inflammatory responses in mice, as indicated by increases in serum concentrations of inflammatory cytokines such as the interlukin-1β (IL-1β), interlukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) (P < 0.05). However, PIFN-λ3 administration not only decreased their concentrations but also elevated the concentrations of immunoglobulin (Ig) M and IgG in the PRV challenged mice (P < 0.05). PRV infection significantly decreased the jejunal villus height and the ratio of villus height to crypt depth (V/C); however, PIFN-λ3 treatment significantly elevated the villus height and the abundance of tight junction protein ZO-1 in the jejunum (P < 0.05). Moreover, PIFN-λ3 decreased the replication of PRV in the jejunal epithelium, but significantly increased the abundance of sIgA and the activities of maltase and sucrase in the PRV-challenged mice (P < 0.05). Interestingly, PIFN-λ3 elevated the expression levels of sodium/glucose cotransporter 1 (SGLT1) and mucin 2 (MUC2) in the PRV-challenged mice (P < 0.05). Moreover, PIFN-λ3 significantly increased the expression levels of IL-10, signal transducer and activator of transcription 1 (STAT1), and critical interferon-stimulated genes such as the 2'-5' oligoadenylate synthetase-like 1 (OASL1), interferon-induced protein with tetratricopeptide repeats 1 (IFIT1) and radical S-adenosyl methionine domain containing 2 (RSAD2) in the jejunum upon PRV infection (P < 0.05). The anti-virus and anti-inflammatory effect of PIFN-λ3 should make it an attractive candidate to prevent various pathogen-induced bowel diseases.
Collapse
Affiliation(s)
- Yuhan Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan Province 611130, PR China; Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan Province 611130, PR China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan Province 611130, PR China; Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan Province 611130, PR China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan Province 611130, PR China; Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan Province 611130, PR China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan Province 611130, PR China; Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan Province 611130, PR China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan Province 611130, PR China; Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan Province 611130, PR China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan Province 611130, PR China; Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan Province 611130, PR China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan Province 611130, PR China; Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan Province 611130, PR China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan Province 611130, PR China; Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan Province 611130, PR China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan Province 611130, PR China; Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan Province 611130, PR China
| | - Aimin Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan Province 611130, PR China; Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan Province 611130, PR China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan Province 611130, PR China; Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan Province 611130, PR China.
| |
Collapse
|
2
|
Kopper JJ. Equine Rotaviral Diarrhea. Vet Clin North Am Equine Pract 2023; 39:47-54. [PMID: 36737285 DOI: 10.1016/j.cveq.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Equine rotavirus is one of the most common causes of infectious diarrhea in foals. Although the infection itself is self-limiting, the resulting diarrhea is due to multiple mechanisms and can be severe, requiring supportive care including fluid and electrolyte support. Prompt diagnosis is important for treatment and biosecurity decisions and can be achieved by several means. Prevention, while imperfect, currently relies on vaccination of pregnant mares before parturition, ingestion of adequate colostrum from vaccinated mares and biosecurity measures.
Collapse
Affiliation(s)
- Jamie J Kopper
- Iowa State University, College of Veterinary Medicine, 1809 Christensen Drive, Ames Iowa 50010, USA.
| |
Collapse
|
3
|
The anti-rotavirus effect of baicalin via the gluconeogenesis-related p-JNK-PDK1-AKT-SIK2 signaling pathway. Eur J Pharmacol 2021; 897:173927. [PMID: 33567320 DOI: 10.1016/j.ejphar.2021.173927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/24/2021] [Accepted: 01/29/2021] [Indexed: 02/08/2023]
Abstract
Rotavirus (RV) infection is a leading cause of severe, dehydrating gastroenteritis in children < 5 years of age, and by now, the prevention and treatment of RV are still the major public health problems due to a lack of specific clinical drugs. Thus, the aims of this study are to explore the anti-RV effect of baicalin and its influence on glucose metabolism. Here, we demonstrated for the first time that baicalin had an anti-RV attachment effect with the strongest effect at a concentration of 100 μM, and also inhibited the replication of RV at concentrations of 100, 125, 150, 175, and 200 μM. Moreover, baicalin helped to overcome the weight loss and reduced the diarrhea rate and score with the best therapeutic effect at a concentration of 0.3 mg/g in RV-infected neonatal mice. Interestingly, baicalin decreased glucose consumption in RV-infected Caco-2 cells with the optimal concentration of 125 μM. Next, metabolomic analysis indicated that there were 68 differentially expressed metabolites, including an increase in pyruvic acid, asparagine, histidine and serine, and a decrease in dihydroxyacetone phosphate, which suggested that the underlying signaling pathway was gluconeogenesis. Further studies demonstrated that baicalin inhibited gluconeogenesis via improving glucose 6-phosphatase (G-6-Pase) and phosphoenolpyruvate carboxylase (PEPCK). Moreover, baicalin upregulated the potential gluconeogenesis proteins named salt inducible kinase 2, pyruvate dehydrogenase kinase 1, AKT serine/threonine kinase 1 and down-regulated phosphorylated c-Jun NH2-terminal kinase, which are associated with G-6-Pase and PEPCK expressions. Therefore, baicalin improved the gluconeogenesis disruption caused by RV.
Collapse
|
4
|
Sarron E, Pérot M, Barbezier N, Delayre-Orthez C, Gay-Quéheillard J, Anton PM. Early exposure to food contaminants reshapes maturation of the human brain-gut-microbiota axis. World J Gastroenterol 2020; 26:3145-3169. [PMID: 32684732 PMCID: PMC7336325 DOI: 10.3748/wjg.v26.i23.3145] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/12/2020] [Accepted: 05/30/2020] [Indexed: 02/06/2023] Open
Abstract
Early childhood growth and development is conditioned by the consecutive events belonging to perinatal programming. This critical window of life will be very sensitive to any event altering programming of the main body functions. Programming of gut function, which is starting right after conception, relates to a very well-established series of cellular and molecular events associating all types of cells present in this organ, including neurons, endocrine and immune cells. At birth, this machinery continues to settle with the establishment of extra connection between enteric and other systemic systems and is partially under the control of gut microbiota activity, itself being under the densification and the diversification of microorganisms' population. As thus, any environmental factor interfering on this pre-established program may have a strong incidence on body functions. For all these reasons, pregnant women, fetuses and infants will be particularly susceptible to environmental factors and especially food contaminants. In this review, we will summarize the actual understanding of the consequences of repeated low-level exposure to major food contaminants on gut homeostasis settlement and on brain/gut axis communication considering the pivotal role played by the gut microbiota during the fetal and postnatal stages and the presumed consequences of these food toxicants on the individuals especially in relation with the risks of developing later in life non-communicable chronic diseases.
Collapse
Affiliation(s)
- Elodie Sarron
- Transformations and Agroressources (EA 7519), Institut Polytechnique UniLaSalle, Université d'Artois, Beauvais 60026, France
| | - Maxime Pérot
- Transformations and Agroressources (EA 7519), Institut Polytechnique UniLaSalle, Université d'Artois, Beauvais 60026, France
| | - Nicolas Barbezier
- Transformations and Agroressources (EA 7519), Institut Polytechnique UniLaSalle, Université d'Artois, Beauvais 60026, France
| | - Carine Delayre-Orthez
- Transformations and Agroressources (EA 7519), Institut Polytechnique UniLaSalle, Université d'Artois, Beauvais 60026, France
| | - Jérôme Gay-Quéheillard
- Périnatalité et risques Toxiques, UMR-I-01, Université de Picardie Jules Verne, Amiens 80000, France
| | - Pauline M Anton
- Transformations and Agroressources (EA 7519), Institut Polytechnique UniLaSalle, Université d'Artois, Beauvais 60026, France
| |
Collapse
|
5
|
Mao X, Gu C, Ren M, Chen D, Yu B, He J, Yu J, Zheng P, Luo J, Luo Y, Wang J, Tian G, Yang Q. l-Isoleucine Administration Alleviates Rotavirus Infection and Immune Response in the Weaned Piglet Model. Front Immunol 2018; 9:1654. [PMID: 30061901 PMCID: PMC6054962 DOI: 10.3389/fimmu.2018.01654] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/04/2018] [Indexed: 01/25/2023] Open
Abstract
Rotavirus (RV) infection is one of the main pathogenic causes of severe gastroenteritis and diarrhea in infants and young animals. This study aimed to determine how dietary l-isoleucine supplementation improves the growth performance and immune response in weaned piglets with RV infection. In cell culture experiment, after IPEC-J2 and 3D4/31 cells were treated by 8 mM l-isoleucine for 24 h, the gene expressions of β-defensins and pattern recognition receptors (PRR) signaling pathway were significantly increased. Then, in the in vivo experiment, 28 crossbred weaned pigs were randomly divided into two groups fed with basal diet with or without l-isoleucine for 18 days. On the 15th day, the oral RV gavage was executed in the half of piglets. Average daily feed intake and gain of piglets were impaired by RV infection (P < 0.05). RV infection also induced severe diarrhea and the increasing serum urea nitrogen concentration (P < 0.05), and decreased CD4+ lymphocyte and CD4+/CD8+ ratio of peripheral blood (P < 0.05). However, dietary l-isoleucine supplementation attenuated diarrhea and decreasing growth performance (P < 0.05), decreased the NSP4 concentration in ileal mucosa, and enhanced the productions and/or expressions of immunoglobulins, RV antibody, cytokines, and β-defensins in serum, ileum, and/or mesenteric lymph nodes of weaned piglets (P < 0.05), which could be relative with activation of PRR signaling pathway and the related signaling pathway (P < 0.05) in the weaned pigs orally infused by RV. These results indicate that dietary l-isoleucine could improve the growth performance and immune function, which could be derived from l-isoleucine treatment improving the innate and adaptive immune responses via activation of PRR signaling pathway in RV-infected piglets. It is possible that l-isoleucine can be used in the therapy of RV infection in infants and young animals.
Collapse
Affiliation(s)
- Xiangbing Mao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chinese Ministry of Education, Chengdu, China
| | - Changsong Gu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chinese Ministry of Education, Chengdu, China
| | - Man Ren
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
| | - Daiwen Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chinese Ministry of Education, Chengdu, China
| | - Bing Yu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chinese Ministry of Education, Chengdu, China
| | - Jun He
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chinese Ministry of Education, Chengdu, China
| | - Jie Yu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chinese Ministry of Education, Chengdu, China
| | - Ping Zheng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chinese Ministry of Education, Chengdu, China
| | - Junqiu Luo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chinese Ministry of Education, Chengdu, China
| | - Yuheng Luo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chinese Ministry of Education, Chengdu, China
| | - Jianping Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chinese Ministry of Education, Chengdu, China
| | - Gang Tian
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chinese Ministry of Education, Chengdu, China
| | - Qing Yang
- Department of Animal Science, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
6
|
Yin L, Menon R, Gupta R, Vaught L, Okunieff P, Vidyasagar S. Glucose enhances rotavirus enterotoxin-induced intestinal chloride secretion. Pflugers Arch 2017; 469:1093-1105. [PMID: 28488023 DOI: 10.1007/s00424-017-1987-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/20/2017] [Accepted: 04/24/2017] [Indexed: 12/19/2022]
Abstract
Rotavirus causes severe diarrhea in small children and is typically treated using glucose-containing oral rehydration solutions; however, glucose may have a detrimental impact on these patients, because it increases chloride secretion and presumably water loss. The rotavirus enterotoxin nonstructural protein 4 (NSP4) directly inhibits glucose-mediated sodium absorption. We examined the effects of NSP4 and glucose on sodium and chloride transport in mouse small intestines and Caco-2 cells. Mouse small intestines and Caco-2 cells were incubated with NSP4114-135 in the presence/absence of glucose. Absorption and secretion of sodium and chloride, fluid movement, peak amplitude of intracellular calcium fluorescence, and expression of Ano1 and sodium-glucose cotransporter 1 were assessed. NHE3 activity increased, and chloride secretory activity decreased with age. Net chloride secretion increased, and net sodium absorption decreased in the intestines of 3-week-old mice compared to 8-week-old mice with NSP4. Glucose increased NSP4-stimulated chloride secretion. Glucose increased NSP4-stimulated increase in short-circuit current measurements (I sc) and net chloride secretion. Ano1 cells with siRNA knockdown showed a significant difference in I sc in the presence of NSP4 and glucose without a significant difference in peak calcium fluorescence intracellular when compared to non-silencing (N.S.) cells. The failure of glucose to stimulate significant sodium absorption was likely due to the inhibition of sodium-hydrogen exchange and sodium-glucose cotransport by NSP4. Since glucose enhances intestinal chloride secretion and fails to increase sodium absorption in the presence of NSP4, glucose-based oral rehydration solutions may not be ideal for the management of rotaviral diarrhea.
Collapse
Affiliation(s)
- Liangjie Yin
- Department of Radiation Oncology, University of Florida Health Cancer Center, Cancer and Genomic Research Complex, 2033 Mowry Rd., Box 103633, Gainesville, FL, 32610, USA
| | - Rejeesh Menon
- Department of Radiation Oncology, University of Florida Health Cancer Center, Cancer and Genomic Research Complex, 2033 Mowry Rd., Box 103633, Gainesville, FL, 32610, USA
| | - Reshu Gupta
- Department of Radiation Oncology, University of Florida Health Cancer Center, Cancer and Genomic Research Complex, 2033 Mowry Rd., Box 103633, Gainesville, FL, 32610, USA
| | - Lauren Vaught
- Department of Radiation Oncology, University of Florida Health Cancer Center, Cancer and Genomic Research Complex, 2033 Mowry Rd., Box 103633, Gainesville, FL, 32610, USA
| | - Paul Okunieff
- Department of Radiation Oncology, University of Florida Health Cancer Center, Cancer and Genomic Research Complex, 2033 Mowry Rd., Box 103633, Gainesville, FL, 32610, USA
| | - Sadasivan Vidyasagar
- Department of Radiation Oncology, University of Florida Health Cancer Center, Cancer and Genomic Research Complex, 2033 Mowry Rd., Box 103633, Gainesville, FL, 32610, USA.
| |
Collapse
|
7
|
Dai L, Hu WW, Xia L, Xia M, Yang Q. Transmissible Gastroenteritis Virus Infection Enhances SGLT1 and GLUT2 Expression to Increase Glucose Uptake. PLoS One 2016; 11:e0165585. [PMID: 27851758 PMCID: PMC5112927 DOI: 10.1371/journal.pone.0165585] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 10/16/2016] [Indexed: 11/25/2022] Open
Abstract
Transmissible gastroenteritis virus (TGEV) is a coronavirus that causes villus atrophy, followed by crypt hyperplasia, reduces the activities of intestinal digestive enzymes, and disrupts the absorption of intestinal nutrients. In vivo, TGEV primarily targets and infects intestinal epithelial cells, which play an important role in glucose absorption via the apical and basolateral transporters Na+-dependent glucose transporter 1 (SGLT1) and facilitative glucose transporter 2 (GLUT2), respectively. In this study, we therefore sought to evaluate the effects of TGEV infection on glucose uptake and SGLT1 and GLUT2 expression. Our data demonstrate that infection with TGEV resulted in increased glucose uptake and augmented expression of EGFR, SGLT1 and GLUT2. Moreover, inhibition studies showed that EGFR modulated glucose uptake in control and TGEV infected cells. Finally, high glucose absorption was subsequently found to promote TGEV replication.
Collapse
Affiliation(s)
- Lei Dai
- Veterinary College, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, PR China
| | - Wei Wei Hu
- Veterinary College, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, PR China
| | - Lu Xia
- Veterinary College, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, PR China
| | - Mi Xia
- Veterinary College, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, PR China
| | - Qian Yang
- Veterinary College, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, PR China
- * E-mail:
| |
Collapse
|
8
|
Pathogen-induced secretory diarrhea and its prevention. Eur J Clin Microbiol Infect Dis 2016; 35:1721-1739. [DOI: 10.1007/s10096-016-2726-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/05/2016] [Indexed: 12/19/2022]
|
9
|
Bailey KE, Gilkerson JR, Browning GF. Equine rotaviruses--current understanding and continuing challenges. Vet Microbiol 2013; 167:135-44. [PMID: 23932076 PMCID: PMC7117381 DOI: 10.1016/j.vetmic.2013.07.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 07/04/2013] [Accepted: 07/07/2013] [Indexed: 11/20/2022]
Abstract
Equine rotaviruses were first detected in foals over 30 years ago and remain a major cause of infectious diarrhoea in foals. During this time, there has been substantial progress in the development of sensitive methods to detect rotaviruses in foals, enabling surveillance of the genotypes present in various horse populations. However, there has been limited epidemiological investigation into the significance of these circulating genotypes, their correlation with disease and the use of vaccination in these animal populations. Our knowledge of the pathogenesis of rotavirus infection in foals is based on a limited number of studies on a small number of foals and, therefore, most of our understanding in this area has been extrapolated from studies in other species. Questions such as the concentrations of rotavirus particles shed in the faeces of infected foals, both with and without diarrhoea, and factors determining the presence or absence of clinical disease remain to be investigated, as does the relative and absolute efficacy of currently available vaccines. The answer to these questions may help direct research into the development of more effective control measures.
Collapse
Affiliation(s)
- Kirsten E Bailey
- Centre for Equine Infectious Diseases, Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | | |
Collapse
|
10
|
Abstract
Viral diseases of rabbits have been used historically to study oncogenesis (e.g. rabbit fibroma virus, cottontail rabbit papillomavirus) and biologically to control feral rabbit populations (e.g. myxoma virus). However, clinicians seeing pet rabbits in North America infrequently encounter viral diseases although myxomatosis may be seen occasionally. The situation is different in Europe and Australia, where myxomatosis and rabbit hemorrhagic disease are endemic. Advances in epidemiology and virology have led to detection of other lapine viruses that are now recognized as agents of emerging infectious diseases. Rabbit caliciviruses, related to rabbit hemorrhagic disease, are generally avirulent, but lethal variants are being identified in Europe and North America. Enteric viruses including lapine rotavirus, rabbit enteric coronavirus and rabbit astrovirus are being acknowledged as contributors to the multifactorial enteritis complex of juvenile rabbits. Three avirulent leporid herpesviruses are found in domestic rabbits. A fourth highly pathogenic virus designated leporid herpesvirus 4 has been described in Canada and Alaska. This review considers viruses affecting rabbits by their clinical significance. Viruses of major and minor clinical significance are described, and viruses of laboratory significance are mentioned.
Collapse
Affiliation(s)
- Peter J. Kerr
- CSIRO Entomology, GPO Box 1700, Canberra, ACT 2601, Australia
| | - Thomas M. Donnelly
- The Kenneth S. Warren Institute, 712 Kitchawan Road, Ossining, NY 10562, USA
| |
Collapse
|
11
|
Affiliation(s)
- Julie DeCubellis
- Department of Zoological Companion Animal Medicine, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA
| | | |
Collapse
|
12
|
Abstract
OBJECTIVES Few methods exist to noninvasively study in vivo gastrointestinal motility in animal models of enteric infections. None have been used on mouse pups, which often display more severe symptoms during enteric infections than adult mice. This study sought to determine whether digital fluoroscopy could be used to evaluate gastrointestinal motility in mouse pups as well as adult mice. MATERIALS AND METHODS Fluoroscopic imaging studies were performed on normal 6- to 8-week-old adult mice and 12-day-old pups to develop protocols for evaluating gastric and intestinal wall movements and changes in stomach sizes. These protocols were then applied to evaluate motility in an established rotavirus mouse model. Imaging studies were performed on adult mice at 0, 2, and 4 days postinfection and on 12-day-old pups at 2 days postinfection. RESULTS Fluoroscopic studies revealed postnatal differences of gastric peristalsis and rates of intestinal contractions between normal mouse pups and adult mice. Studies of the rotavirus mouse model revealed that differences in gastric function occur between rotavirus-infected and control mouse pups, but no discernible difference occurs between infected and control adult mice. In contrast, there were no detectable differences in rates of intestinal wall movements between control pups with normal stools and infected pups with loose stools. CONCLUSIONS These results demonstrate that fluoroscopy can evaluate in vivo motility in mouse pups and by doing so provide findings that are clinically relevant to the study of enteric infections in young.
Collapse
|
13
|
Nighot PK, Moeser A, Ali RA, Blikslager AT, Koci MD. Astrovirus infection induces sodium malabsorption and redistributes sodium hydrogen exchanger expression. Virology 2010; 401:146-54. [PMID: 20219227 DOI: 10.1016/j.virol.2010.02.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 11/03/2009] [Accepted: 02/03/2010] [Indexed: 01/04/2023]
Abstract
Astroviruses are known to be a leading cause of diarrhea in infants and the immunocompromised; however, our understanding of this endemic pathogen is limited. Histological analyses of astrovirus pathogenesis demonstrate clinical disease is not associated with changes to intestinal architecture, inflammation, or cell death. Recent studies in vitro have suggested that astroviruses induce actin rearrangement leading to loss of barrier function. The current study used the type-2 turkey astrovirus (TAstV-2) and turkey poult model of astrovirus disease to examine how astrovirus infection affects the ultrastructure and electrophysiology of the intestinal epithelium. These data demonstrate that infection results in changes to the epithelial ultrastructure, rearrangement of F-actin, decreased absorption of sodium, as well as redistribution of the sodium/hydrogen exchanger 3 (NHE3) from the membrane to the cytoplasm. Collectively, these data suggest astrovirus infection induces sodium malabsorption, possibly through redistribution of specific sodium transporters, which results in the development of an osmotic diarrhea.
Collapse
Affiliation(s)
- Prashant K Nighot
- Department of Clinical Sciences, North Carolina State University, Raleigh, NC, USA
| | | | | | | | | |
Collapse
|
14
|
Hodges K, Gill R. Infectious diarrhea: Cellular and molecular mechanisms. Gut Microbes 2010; 1:4-21. [PMID: 21327112 PMCID: PMC3035144 DOI: 10.4161/gmic.1.1.11036] [Citation(s) in RCA: 182] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 12/15/2009] [Accepted: 12/28/2009] [Indexed: 02/03/2023] Open
Abstract
Diarrhea caused by enteric infections is a major factor in morbidity and mortality worldwide. An estimated 2-4 billion episodes of infectious diarrhea occur each year and are especially prevalent in infants. This review highlights the cellular and molecular mechanisms underlying diarrhea associated with the three classes of infectious agents, i.e., bacteria, viruses and parasites. Several bacterial pathogens have been chosen as model organisms, including Vibrio cholerae as a classical example of secretory diarrhea, Clostridium difficile and Shigella species as agents of inflammatory diarrhea and selected strains of pathogenic Escherichia coli (E. coli) to discuss the recent advances in alteration of epithelial ion absorption. Many of the recent studies addressing epithelial ion transport and barrier function have been carried out using viruses and parasites. Here, we focus on the rapidly developing field of viral diarrhea including rotavirus, norovirus and astrovirus infections. Finally we discuss Giardia lamblia and Entamoeba histolytica as examples of parasitic diarrhea. Parasites have a greater complexity than the other pathogens and are capable of creating molecules similar to those produced by the host, such as serotonin and PGE(2). The underlying mechanisms of infectious diarrhea discussed include alterations in ion transport and tight junctions as well as the virulence factors, which alter these processes either through direct effects or indirectly through inflammation and neurotransmitters.
Collapse
|
15
|
Navaneethan U, Giannella RA. Mechanisms of infectious diarrhea. ACTA ACUST UNITED AC 2008; 5:637-47. [PMID: 18813221 DOI: 10.1038/ncpgasthep1264] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Accepted: 08/20/2008] [Indexed: 11/09/2022]
Abstract
Infectious diarrhea is an important public health problem worldwide. Research has provided new insights into the mechanisms of diarrhea caused by various pathogens that are classified as noninflammatory, inflammatory or invasive. These three groups of organisms cause two diarrheal syndromes--noninflammatory diarrhea and inflammatory diarrhea. The noninflammatory diarrheas are caused by enterotoxin-producing organisms such as Vibrio cholerae and enterotoxigenic Escherichia coli, or by viruses that adhere to the mucosa and disrupt the absorptive and/or secretory processes of the enterocyte without causing acute inflammation or mucosal destruction. Inflammatory diarrhea is caused by two groups of organisms--cytotoxin-producing, noninvasive bacteria (e.g. enteroaggregative Escherichia coli, enterohemorrhagic Escherichia coli and Clostridium difficile), or by invasive organisms (e.g. Salmonella spp., Shigella spp., Campylobacter spp., Entamoeba histolytica). The cytotoxin-producing organisms adhere to the mucosa, activate cytokines and stimulate the intestinal mucosa to release inflammatory mediators. Invasive organisms, which can also produce cytotoxins, invade the intestinal mucosa to induce an acute inflammatory reaction, involving the activation of cytokines and inflammatory mediators. Regardless of the underlying mechanism they use, these various types of pathogen have all successfully evolved to evade and modulate the host defense systems. The mechanisms by which the different pathogens invade the host and cause infectious diarrhea are the topic of this Review.
Collapse
Affiliation(s)
- Udayakumar Navaneethan
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0595, USA
| | | |
Collapse
|
16
|
Abstract
The rotavirus is the major cause of infantile gastroenteritis. The virus infects the mature enterocytes of the villus tip of the small intestine and induces a watery diarrhea. Diarrhea can occur in the absence of histological changes in the intestine, and, conversely, the histological changes can be asymptomatic. Rotavirus decreases the activities of digestive enzymes at the apical brush border membrane and inhibits Na+ -solute cotransport systems. Accumulation of carbohydrates in the intestinal lumen as well as malabsorption of nutrients and a concomitant inhibition of water absorption can lead to a malabsorptive component of diarrhea. Since the discovery of the NSP4 enterotoxin, several hypotheses have been proposed in favour of an additional secretion component in the pathogenesis of diarrhea. Rotavirus induces a moderate net chloride secretion at the onset of the diarrhea. The mechanisms appear to different from those used by bacterial enterotoxin that cause pure secretory diarrhea. Rotavirus stimulated C1- reabsorption in villi, and failed to stimulate C1- secretion in crypt. Intestinal villi could secrete chloride as a result of rotavirus infection. The chloride secretory response is regulated by a dependant calcium signalling pathway induced by NSP4. The overall response is weak, suggesting that NSP4 may exert both secretory and subsequent antisecretory actions, hence limiting C1- secretion.
Collapse
Affiliation(s)
- M Lorrot
- Service de Pédiatrie Générale, Hôpital Robert Debré 82, Boulevard Sérurier 75019 Paris, France.
| | | |
Collapse
|
17
|
Affiliation(s)
- Adam J Moeser
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | | |
Collapse
|
18
|
Beau I, Cotte-Laffitte J, Géniteau-Legendre M, Estes MK, Servin AL. An NSP4-dependant mechanism by which rotavirus impairs lactase enzymatic activity in brush border of human enterocyte-like Caco-2 cells. Cell Microbiol 2007; 9:2254-66. [PMID: 17506819 DOI: 10.1111/j.1462-5822.2007.00956.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Lactase-phlorizin hydrolase (LPH, EC 3.2.1.23-62) is a brush border membrane (BBM)-associated enzyme in intestinal cells that hydrolyse lactose, the most important sugar in milk. Impairing in lactase activity during rotavirus infection has been described in diseased infants but the mechanism by which the functional lesion occurs remains unknown. We undertook a study to elucidate whether rotavirus impairs the lactase enzymatic activity in BBM of human enterocyte cells. In this study we use cultured human intestinal fully differentiated enterocyte-like Caco-2 cells to demonstrate how the lactase enzymatic activity at BBM is significantly decreased in rhesus monkey rotavirus (RRV)-infected cells. We found that the decrease in enzyme activity is not dependent of the Ca(2+)- and cAMP-dependent signalling events triggered by the virus. The LPH biosynthesis, stability, and expression of the protein at the BBM of infected cells were not modified. We provide evidence that in RRV-infected cells the kinetic of lactase enzymatic activity present at the BBM was modified. Both BBM(control) and BBM(RRV) have identical K(m) values, but hydrolyse the substrate at different rates. Thus, the BBM(RRV) exhibits almost a 1.5-fold decreased V(max) than that of BBM(control) and is therefore enzymatically less active than the latter. Our study demonstrate conclusively that the impairment of lactase enzymatic activity at the BBM of the enterocyte-like Caco-2 cells observed during rotavirus infection results from an inhibitory action of the secreted non-structural rotavirus protein NSP4.
Collapse
Affiliation(s)
- Isabelle Beau
- INSERM, UMR 756, Signalisation et Physiopathologie des Cellules Epithéliales, Châtenay-Malabry, France
| | | | | | | | | |
Collapse
|
19
|
Lorrot M, Vasseur M. How do the rotavirus NSP4 and bacterial enterotoxins lead differently to diarrhea? Virol J 2007; 4:31. [PMID: 17376232 PMCID: PMC1839081 DOI: 10.1186/1743-422x-4-31] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Accepted: 03/21/2007] [Indexed: 01/02/2023] Open
Abstract
Rotavirus is the major cause of infantile gastroenteritis and each year causes 611,000 deaths worldwide. The virus infects the mature enterocytes of the villus tip of the small intestine and induces a watery diarrhea. Diarrhea can occur with no visible tissue damage and, conversely, the histological lesions can be asymptomatic. Rotavirus impairs activities of intestinal disaccharidases and Na+-solute symports coupled with water transport. Maldigestion of carbohydrates and their accumulation in the intestinal lumen as well as malabsorption of nutrients and a concomitant inhibition of water reabsorption can lead to a malabsorption component of diarrhea. Since the discovery of the NSP4 enterotoxin, diverse hypotheses have been proposed in favor of an additional secretion component in the pathogenesis of diarrhea. Rotavirus induces a moderate net chloride secretion at the onset of diarrhea, but the mechanisms appear to be quite different from those used by bacterial enterotoxins that cause pure secretory diarrhea. Rotavirus failed to stimulate Cl- secretion in crypt, whereas it stimulated Cl- reabsorption in villi, questioning, therefore, the origin of net Cl- secretion. A solution to this riddle was that intestinal villi do in fact secrete chloride as a result of rotavirus infection. Also, the overall chloride secretory response is regulated by a phospholipase C-dependent calcium signaling pathway induced by NSP4. However, the overall response is weak, suggesting that NSP4 may exert both secretory and subsequent anti-secretory actions, as did carbachol, hence limiting Cl- secretion. All these characteristics provide the means to make the necessary functional distinction between viral NSP4 and bacterial enterotoxins.
Collapse
Affiliation(s)
- Mathie Lorrot
- Hôpital Robert Debré, Service de Pédiatrie Générale, Paris, F-75019, France
| | - Monique Vasseur
- INSERM, UMR-S756, Université Paris-Sud 11, Faculté de Pharmacie, Châtenay-Malabry, F-92296, France
| |
Collapse
|
20
|
Beau I, Berger A, Servin AL. Rotavirus impairs the biosynthesis of brush-border-associated dipeptidyl peptidase IV in human enterocyte-like Caco-2/TC7 cells. Cell Microbiol 2007; 9:779-89. [PMID: 17081193 DOI: 10.1111/j.1462-5822.2006.00827.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Rotavirus is the leading cause of severe dehydrating diarrhoea in infants and young children worldwide. This virus infects mature enterocytes in the small intestine, and induces structural and functional damage. In the present study, we have identified a new mechanism by which rotavirus impairs a brush border-associated intestinal protein. We show that infection of enterocyte-like Caco-2/TC7 cells by rhesus monkey rotavirus (RRV) impairs the biosynthesis of dipeptidyl peptidase IV (DPP IV), an important hydrolase in the digestion of dietary proline-rich proteins. We show that the enzyme activity of DPP IV was reduced, and that rearrangements of the protein occurred at the apical domain of the RRV-infected cells. Using pulse-chase experiments and cell surface immunoprecipitation, we have demonstrated that RRV infection did not affect the stability or apical targeting of DPP IV, but did induce a dramatic decrease in its biosynthesis. Using quantitative RT-PCR, we showed that RRV had no effect on the level of expression of DPP IV mRNA, suggesting that the observed decrease in the biosynthesis of the protein is related to an effect of the virus at the translational level.
Collapse
Affiliation(s)
- Isabelle Beau
- Institut National de la Santé et de la Recherche Médicale, Université Paris XI, UMR-S 756, Signalisation et Physiopathologie des Cellules Epithéliales, Faculté de Pharmacie, Châtenay-Malabry, F-92296 France
| | | | | |
Collapse
|
21
|
Iovane G, Pisanelli G, Pagnini U. Rotavirus diarrhoea in Buffaloes: epidemiology, pathogenesys and prophilaxis. ITALIAN JOURNAL OF ANIMAL SCIENCE 2007. [DOI: 10.4081/ijas.2007.s2.253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Lorrot M, Vasseur M. Rotavirus NSP4 114-135 peptide has no direct, specific effect on chloride transport in rabbit brush-border membrane. Virol J 2006; 3:94. [PMID: 17101044 PMCID: PMC1657008 DOI: 10.1186/1743-422x-3-94] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Accepted: 11/13/2006] [Indexed: 12/24/2022] Open
Abstract
The direct effect of the rotavirus NSP4114-135 and Norovirus NV464-483 peptides on 36Cl uptake was studied by using villus cell brush border membrane (BBM) isolated from young rabbits. Both peptides inhibited the Cl-/H+ symport activity about equally and partially. The interaction involved one peptide-binding site per carrier unit. Whereas in vitro NSP4114-135 caused nonspecific inhibition of the Cl-/H+ symporter, the situation in vivo is different. Because rotavirus infection in young rabbits accelerated both Cl- influx and Cl- efflux rates across villi BBM without stimulating Cl- transport in crypt BBM, we conclude that the NSP4114-135 peptide, which causes diarrhea in young rodents, did not have any direct, specific effect on either intestinal absorption or secretion of chloride. The lack of direct effect of NSP4 on chloride transport strengthens the hypothesis that NSP4 would trigger signal transduction pathways to enhance net chloride secretion at the onset of rotavirus diarrhea.
Collapse
Affiliation(s)
- Mathie Lorrot
- Hôpital Robert Debré, Service de Pédiatrie Générale, Paris, F-75019, France
| | - Monique Vasseur
- INSERM, UMR 756, Université de Paris XI, Faculté de Pharmacie, Châtenay-Malabry, F-92296, France
| |
Collapse
|
23
|
Lorrot M, Benhamadouche-Casari H, Vasseur M. Mechanisms of net chloride secretion during rotavirus diarrhea in young rabbits: do intestinal villi secrete chloride? Cell Physiol Biochem 2006; 18:103-12. [PMID: 16914895 DOI: 10.1159/000095174] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Rotaviral diarrheal illness is one of the most common infectious diseases in children worldwide, but our understanding of its pathophysiology is limited. This study examines whether the enhanced net chloride secretion during rotavirus infection in young rabbits may occur as a result of hypersecretion in crypt cells that would exceed the substantial Cl(-) reabsorption observed in villi. By using a rapid filtration technique, we evaluated transport of (36)Cl and D-(14)C glucose across brush border membrane (BBM) vesicles purified from villus tip and crypt cells isolated in parallel from the entire small intestine. Rotavirus infection impaired SGLT1-mediated Na(+)-D-glucose symport activity in both villus and crypt cell BBM, hence contributing to the massive water loss along the cryptvillus axis. In the same BBM preparations, rotavirus failed to stimulate the Cl(-) transport activities (Cl(-)/H(+) symport, Cl(-)/anion exchange and voltage-activated Cl(-) conductance) at the crypt level, but not at the villus level, questioning, therefore, the origin of net chloride secretion. We propose that the chloride carrier might function in both normal (absorption) and reversed (secretion) modes in villi, depending on the direction of the chloride electrochemical gradient resulting from rotavirus infection, agreeing with our results that rotavirus accelerated both Cl(-) influx and Cl(-) efflux rates across villi BBM.
Collapse
Affiliation(s)
- Mathie Lorrot
- INSERM UMR 756, Université Paris XI, Faculté de Pharmacie, Châtenay-Malabry, France
| | | | | |
Collapse
|
24
|
Canani RB, De Marco G, Passariello A, Buccigrossi V, Ruotolo S, Bracale I, Porcaro F, Bifulco G, Guarino A. Inhibitory effect of HIV-1 Tat protein on the sodium-D-glucose symporter of human intestinal epithelial cells. AIDS 2006; 20:5-10. [PMID: 16327313 DOI: 10.1097/01.aids.0000198088.85572.68] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The pathophysiology of HIV-1-related intestinal dysfunction is largely unknown. We previously found that the transactivator factor peptide (Tat) produced by HIV-1 induces ion secretion and inhibits cell proliferation in human enterocytes. Because sugar malabsorption is a frequent feature in AIDS patients, we evaluated whether Tat inhibits intestinal glucose absorption. DESIGN AND METHODS We measured Na-D-glucose symporter (SGLT-1) activity and determined its phenotypic expression in Caco-2 cells, in the presence and absence of Tat, in uptake experiments using a non-metabolized radiolabelled glucose analogue, and by western blot analysis, respectively. alpha-Tubulin staining was used to study the effects exerted by Tat on cell structure. RESULTS Tat dose dependently inhibited glucose uptake by human enterocytes. This effect was prevented by anti-Tat polyclonal antibodies and by L-type Ca channels agonist Bay K8644. Western blot analysis of cellular lysates and brush-border membrane preparations showed that Tat induced SGLT-1 missorting. Tat also caused a dramatic decrease in alpha-tubulin staining, which indicates dysruption of the cytoskeleton organization. CONCLUSIONS Tat acutely impairs intestinal glucose absorption through SGLT-1 missorting. This result indicates that Tat is directly involved in AIDS-associated intestinal dysfunction.
Collapse
|
25
|
Affiliation(s)
- Robert F Ramig
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
26
|
Nishinaka D, Kishino F, Matsuura A. Water and electrolyte absorption from hypotonic oral rehydration solution in rat small intestine and colon. Pediatr Int 2004; 46:315-21. [PMID: 15151549 DOI: 10.1111/j.1442-200x.2004.01887.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND The authors evaluated and compared the efficacy of hypotonic oral rehydration solutions (ORS), isotonic ion solutions, and distilled water to elucidate the relation between net water absorption and osmolality, or between electrolyte absorption and their ion concentrations in rat small intestine and colon. METHODS Water and electrolyte absorption from two hypotonic ORS (Solita-T granules No. 2 [STG2]; sodium 60 mEq/L, osmolality 249 mOsm/L, Solita-T granules No. 3 [STG3]; sodium 35 mEq/L, osmolality 199 mOsm/L), two isotonic ion solutions (Aqualight [AL]; sodium 30 mEq/L, osmolality 290 mOsm/L, Pocarisweat [PS]; sodium 21 mEq/L, osmolality 300 mOsm/L), and distilled water, were evaluated by an in vivo perfusion technique with the small intestine and colon of anesthetized rats. RESULTS In the small intestine and colon, two hypotonic ORS significantly promoted net water absorption much greater than did two isotonic ion solutions (P < 0.05). Net sodium absorption from two hypotonic ORS was significantly greater than that from two isotonic ion solutions (P < 0.05). Sodium absorption from all solutions was greater in the colon than in the small intestine. Distilled water did not contribute to give net water absorption in the small intestine, but in the colon, it caused almost equivalent net water absorption to that by two hypotonic ORS. The largest amount of sodium secretion from the small intestine and colon was induced by distilled water. CONCLUSIONS These data indicate that low osmolality is a crucial factor to facilitate water absorption, and the electrolytes, sodium and chloride, can effectively be salvaged in the colon.
Collapse
Affiliation(s)
- Daisuke Nishinaka
- Shimizu Research Center, Shimizu Pharmaceutical Co. Ltd, Shizuoka, Japan.
| | | | | |
Collapse
|
27
|
Abstract
Rotavirus has been recognised for 30 years as the most common cause of infectious gastroenteritis in infants and young children. By contrast, the role of rotavirus as a pathogen in adults has long been underappreciated. Spread by faecal-oral transmission, rotavirus infection in adults typically manifests with nausea, malaise, headache, abdominal cramping, diarrhoea, and fever. Infection can also be symptomless. Rotavirus infection in immunocompromised adults can have a variable course from symptomless to severe and sustained infection. Common epidemiological settings for rotavirus infection among adults include endemic disease, epidemic outbreak, travel-related infection, and disease resulting from child-to-adult transmission. Limited diagnostic and therapeutic alternatives are available for adults with suspected rotavirus infection. Because symptoms are generally self-limiting, supportive care is the rule. Clinicians caring for adults with gastroenteritis should consider rotavirus in the differential diagnosis. In this review we intend to familiarise clinicians who primarily provide care for adult patients with the salient features of rotavirus pathophysiology, clinical presentation, epidemiology, treatment, and prevention.
Collapse
Affiliation(s)
- Evan J Anderson
- The Division of Infectious Diseases, Northwestern Memorial Hospital and Children's Memorial Hospital, Chicago, IL
| | - Stephen G Weber
- The Department of Medicine, Section of Infectious Diseases, Infection Control Program, University of Chicago Hospitals, Chicago, IL, USA
- Correspondence: Dr Stephen G Weber, Department of Medicine, Section of Infectious Diseases, Infection Control Program, University of Chicago Hospitals, MC 5065, 5841 South Maryland Avenue, Chicago, IL 60637, USA. Tel +1 773 702 6776; fax: +1 773 702 8998
| |
Collapse
|
28
|
Boshuizen JA, Reimerink JHJ, Korteland-van Male AM, van Ham VJJ, Koopmans MPG, Büller HA, Dekker J, Einerhand AWC. Changes in small intestinal homeostasis, morphology, and gene expression during rotavirus infection of infant mice. J Virol 2004; 77:13005-16. [PMID: 14645557 PMCID: PMC296055 DOI: 10.1128/jvi.77.24.13005-13016.2003] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Rotavirus is the most important cause of infantile gastroenteritis. Since in vivo mucosal responses to a rotavirus infection thus far have not been extensively studied, we related viral replication in the murine small intestine to alterations in mucosal structure, epithelial cell homeostasis, cellular kinetics, and differentiation. Seven-day-old suckling BALB/c mice were inoculated with 2 x 10(4) focus-forming units of murine rotavirus and were compared to mock-infected controls. Diarrheal illness and viral shedding were recorded, and small intestinal tissue was evaluated for rotavirus (NSP4 and structural proteins)- and enterocyte-specific (lactase, SGLT1, and L-FABP) mRNA and protein expression. Morphology, apoptosis, proliferation, and migration were evaluated (immuno)histochemically. Diarrhea was observed from days 1 to 5 postinfection, and viral shedding was observed from days 1 to 10. Two peaks of rotavirus replication were observed at 1 and 4 days postinfection. Histological changes were characterized by the accumulation of vacuolated enterocytes. Strikingly, the number of vacuolated cells exceeded the number of cells in which viral replication was detectable. Apoptosis and proliferation were increased from days 1 to 7, resulting in villous atrophy. Epithelial cell turnover was significantly higher (<4 days) than that observed in controls (7 days). Since epithelial renewal occurred within 4 days, the second peak of viral replication was most likely caused by infection of newly synthesized cells. Expression of enterocyte-specific genes was downregulated in infected cells at mRNA and protein levels starting as early as 6 h after infection. In conclusion, we show for the first time that rotavirus infection induces apoptosis in vivo, an increase in epithelial cell turnover, and a shutoff of gene expression in enterocytes showing viral replication. The shutoff of enterocyte-specific gene expression, together with the loss of mature enterocytes through apoptosis and the replacement of these cells by less differentiated dividing cells, likely leads to a defective absorptive function of the intestinal epithelium, which contributes to rotavirus pathogenesis.
Collapse
Affiliation(s)
- Jos A Boshuizen
- Laboratoryof Pediatrics, Pediatric Gastroenterology, and Nutrition, Erasmus MC/ Sophia, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
29
|
N/A. N/A. Shijie Huaren Xiaohua Zazhi 2003; 11:1670-1673. [DOI: 10.11569/wcjd.v11.i11.1670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
30
|
Lorrot M, Martin S, Vasseur M. Rotavirus infection stimulates the Cl- reabsorption process across the intestinal brush-border membrane of young rabbits. J Virol 2003; 77:9305-11. [PMID: 12915546 PMCID: PMC187407 DOI: 10.1128/jvi.77.17.9305-9311.2003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rotavirus is a major cause of infantile gastroenteritis worldwide. However, the mechanisms underlying fluid and electrolyte secretion associated with diarrhea remain largely unknown. We investigated the hypothesis that loss of Cl(-) into the luminal contents during rotavirus infection may be caused by a dysfunction in the chloride absorptive capacity across the intestinal brush-border membrane (BBM). The luminal Cl(-) concentrations in the entire small intestine of young rabbits infected with lapine rotavirus decreased at 1 and 2 days postinfection (dpi), indicating net Cl(-) absorption. At 7 dpi, luminal Cl(-) concentrations were slightly increased, indicating a moderate net Cl(-) secretion. By using a rapid filtration technique, (36)Cl uptake across BBM was quantified by modulating the alkali-metal ion, electrical, chloride, and/or proton gradients. Rotavirus infection caused an identical, 127% +/- 24% increase in all Cl(-) uptake activities (Cl(-)/H(+) symport, Cl(-) conductance, and Cl(-)/anion exchange) observed across the intestinal BBM. The rotavirus activating effects on the symporter started at 1 dpi and persisted up to 7 dpi. Kinetic analyses revealed that rotavirus selectively affected the capacity parameter characterizing the symporter. We report the novel observation that rotavirus infection stimulated the Cl(-) reabsorption process across the intestinal BBM. We propose that the massive Cl(-) reabsorption in villi could partly overwhelm chloride secretion in crypt cells, which possibly increases during rotavirus diarrhea, the resulting imbalance leading to a moderate net chloride secretion.
Collapse
Affiliation(s)
- Mathie Lorrot
- Institut National de la Santé et de la Recherche Médicale, Unité 510, Faculté de Pharmacie, Université de Paris XI, 92296 Châtenay-Malabry, France
| | | | | |
Collapse
|
31
|
Martin S, Lorrot M, El Azher MA, Vasseur M. Ionic strength- and temperature-induced K(Ca) shifts in the uncoating reaction of rotavirus strains RF and SA11: correlation with membrane permeabilization. J Virol 2002; 76:552-9. [PMID: 11752146 PMCID: PMC136821 DOI: 10.1128/jvi.76.2.552-559.2002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The hydrodynamic diameters of native rotavirus particles, bovine RF and simian SA11 strains, were determined by quasielastic light scattering. By using this method and agarose gel electrophoresis, the Ca(2+) dissociation constant, K(Ca), governing the transition from triple-layer particles (TLPs) to double-layer particles (DLPs), was shown to increase, at constant pH, as the temperature and/or the ionic strength of the incubation medium increased. We report the novel observation that, under physiological conditions, K(Ca) values for both RF and SA11 rotaviruses were well above the intracytoplasmic Ca(2+) concentrations of various cells, which may explain why TLP uncoating takes place within vesicles (possibly endosomes) during the entry process. A correlation between TLP uncoating and cell membrane permeabilization was found, as shown by the release of carboxyfluorescein (CF) from CF-loaded intestinal brush-border membrane vesicles. Conditions stabilizing the virion in the TLP form inhibited CF release, whereas conditions favoring the TLP-to-DLP transformation activated this process. We conclude that membrane permeabilization must be preceded by the loss of the outer-capsid proteins from trypsinized TLP and that physiological ionic strength is required for permeabilization to take place. Finally, the paper develops an alternative explanation for the mechanism of rotavirus entry, compatible with the Ca(2+)-dependent endocytic pathway. We propose that there must be an iterative process involving tight coupling in time between the lowering of endosomal Ca(2+) concentration, virion decapsidation, and membrane permeabilization, which would cause the transcriptionally active DLPs to enter the cytoplasm of cells.
Collapse
Affiliation(s)
- Sandra Martin
- Institut National de la Santé et de la Recherche Médicale, Unité 510, Faculté de Pharmacie, Université de Paris XI, 92296 Châtenay-Malabry, France
| | | | | | | |
Collapse
|
32
|
Abstract
Rotavirus diarrhea is a major cause of infantile gastroenteritis worldwide. This review is mainly devoted to the effects of Rotavirus on intestinal epithelial transport and to the pathophysiological mechanisms proposed to underlie the intestinal fluid secretion caused by the virus.
Collapse
Affiliation(s)
- O Lundgren
- Department of Physiology, Box 432, S-405 30 Göteborg University, Göteborg, Sweden.
| | | |
Collapse
|
33
|
Blikslager A, Hunt E, Guerrant R, Rhoads M, Argenzio R. Glutamine transporter in crypts compensates for loss of villus absorption in bovine cryptosporidiosis. Am J Physiol Gastrointest Liver Physiol 2001; 281:G645-G653. [PMID: 11518676 DOI: 10.1152/ajpgi.2001.281.3.g645] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cryptosporidium parvum infection represents a significant cause of diarrhea in humans and animals. We studied the effect of luminally applied glutamine and the PG synthesis inhibitor indomethacin on NaCl absorption from infected calf ileum in Ussing chambers. Infected ileum displayed a decrease in both mucosal surface area and NaCl absorption. Indomethacin and glutamine or its stable derivative alanyl-glutamine increased the net absorption of Na(+) in infected tissue in an additive manner and to a greater degree than in controls. Immunohistochemical and Western blot studies showed that in control animals neutral amino acid transport system ASC was present in villus and crypts, whereas in infected animals, ASC was strongly present only on the apical border of crypts. These results are consistent with PGs mediating the altered NaCl and water absorption in this infection. Our findings further illustrate that the combined use of a PG synthesis inhibitor and glutamine can fully stimulate Na(+) and Cl(-) absorption despite the severe villous atrophy, an effect associated with increased expression of a Na(+)-dependent amino acid transporter in infected crypts.
Collapse
Affiliation(s)
- A Blikslager
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh 27606, USA
| | | | | | | | | |
Collapse
|
34
|
Morris AP, Estes MK. Microbes and microbial toxins: paradigms for microbial-mucosal interactions. VIII. Pathological consequences of rotavirus infection and its enterotoxin. Am J Physiol Gastrointest Liver Physiol 2001; 281:G303-10. [PMID: 11447008 DOI: 10.1152/ajpgi.2001.281.2.g303] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Rotaviral infection in neonatal animals and young children leads to acute self-limiting diarrhea, but infected adults are mainly asymptomatic. Recently, significant in-roads have been made into our understanding of this disease: both viral infection and virally manufactured nonstructural protein (NSP)4 evoke intracellular Ca(2+) ([Ca(2+)]i) mobilization in native and transformed gastrointestinal epithelial cells. In neonatal mouse pup mucosa models, [Ca(2+)]i elevation leads to age-dependent halide ion movement across the plasma membrane, transepithelial Cl(-) secretion, and, unlike many microbial enterotoxins, initial cyclic nucleotide independence to secretory diarrhea. Similarities between rotavirus infection and NSP4 function suggest that NSP4 is responsible for these enterotoxigenic effects. NSP4-mediated [Ca(2+)]i mobilization may further facilitate diarrhea by signaling through other Ca(2+)-sensitive cellular processes (cation channels, ion and solute transporters) to potentiate fluid secretion while curtailing fluid absorption. Apart from these direct actions in the mucosa at the onset of diarrhea, innate host-mediated defense mechanisms, triggered by either or both viral replication and NSP4-induced [Ca (2+)]i mobilization, sustain the diarrheal response. This secondary component appears to involve the enteric nervous system and may be cyclic nucleotide dependent. Both phases of diarrhea occur in the absence of significant inflammation. Thus age-dependent rotaviral disease represents an excellent experimental paradigm for understanding a noninflammatory diarrhea.
Collapse
Affiliation(s)
- A P Morris
- Department of Integrative Biology, University of Texas at Houston Medical School, Houston, Texas 77030, USA.
| | | |
Collapse
|
35
|
Halaihel N, Liévin V, Ball JM, Estes MK, Alvarado F, Vasseur M. Direct inhibitory effect of rotavirus NSP4(114-135) peptide on the Na(+)-D-glucose symporter of rabbit intestinal brush border membrane. J Virol 2000; 74:9464-70. [PMID: 11000215 PMCID: PMC112375 DOI: 10.1128/jvi.74.20.9464-9470.2000] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The direct effect of a rotavirus nonstructural glycoprotein, NSP4, and certain related peptides on the sodium-coupled transport of D-glucose and of L-leucine was studied by using intestinal brush border membrane vesicles isolated from young rabbits. Kinetic analyses revealed that the NSP4(114-135) peptide, which causes diarrhea in young rodents, is a specific, fully noncompetitive inhibitor of the Na(+)-D-glucose symporter (SGLT1). This interaction involves three peptide-binding sites per carrier unit. In contrast, the Norwalk virus NV(464-483) and mNSP4(131K) peptides, neither of which causes diarrhea, both behave inertly. The NSP4(114-135) and NV(464-483) peptides inhibited Na(+)-L-leucine symport about equally and partially via a different transport mechanism, in that Na(+) behaves as a nonobligatory activator. The selective and strong inhibition caused by the NSP4(114-135) peptide on SGLT1 in vitro suggests that during rotavirus infection in vivo, NSP4 can be one effector directly causing SGLT1 inhibition. This effect, implying a concomitant inhibition of water reabsorption, is postulated to play a mechanistic role in the pathogenesis of rotavirus diarrhea.
Collapse
Affiliation(s)
- N Halaihel
- Institut National de la Santé et de la Recherche Médicale, Unité 510, Faculté de Pharmacie, Université de Paris XI, 92296 Châtenay-Malabry, France
| | | | | | | | | | | |
Collapse
|