1
|
Sarkar S, Han JX, Azzopardi K, Dhar P, Saeed MA, Day S, Ranganathan S, Sutton P. Protease-activated receptor 1 in the pathogenesis of cystic fibrosis. BMJ Open Respir Res 2025; 12:e002960. [PMID: 39832889 PMCID: PMC12004468 DOI: 10.1136/bmjresp-2024-002960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/26/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND The most common cause of death in those with cystic fibrosis (CF) is respiratory failure due to bronchiectasis resulting from repeated cycles of respiratory infection and inflammation. Protease-activated receptor 1 (PAR1) is a cell surface receptor activated by serine proteases including neutrophil elastase, which is recognised as a potent modulator of inflammation. While PAR1 is known to play an important role in regulating inflammation, nothing is known about any potential role of this receptor in CF pathogenesis. METHODS PAR1 (PAR1-/- ) and intestinal-corrected CFTR (Cftr-/- ) deficient mice were crossed to generate double knock-out (DKO) mutants lacking both PAR1 and CFTR, as well as matching sibling single mutant and wildtype (WT) littermate controls. Mice were weighed weekly to 15 weeks of age; then, the lungs and intestines were examined. RESULTS Cftr-deficient mice gained body weight at a significantly slower rate than WT controls and presented with no lung inflammation, but had increased weights of their ilea and proximal colons. DKO mice (lacking both CFTR and PAR1) gained body weight at a similar rate to Cftr-/- mice but only gained weight in their proximal colons. Weight gain in the ilea of Cftr-/- but not DKO mice was associated with increased ileal levels in the pro-inflammatory cytokine interleukin (IL)-6. CONCLUSIONS This study provides the first evidence of PAR1 contributing to the pathological effects of Cftr deficiency in the intestine and suggests a possible effect of PAR1 on the regulation of IL-6 in CF pathogenesis.
Collapse
Affiliation(s)
- Sohinee Sarkar
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Jia-Xi Han
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Kristy Azzopardi
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Poshmaal Dhar
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Muhammad A Saeed
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, USA
| | - Sophie Day
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Sarath Ranganathan
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Philip Sutton
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
2
|
Vergnolle N. Thrombin stories in the gut. Biochimie 2024; 226:107-112. [PMID: 38521125 DOI: 10.1016/j.biochi.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 03/25/2024]
Abstract
Many studies have demonstrated the involvement of proteases in gut physiology and pathophysiology over the recent years. Among them, thrombin has appeared for a long time as an old player only involved in blood clotting upon tissue injury. The fact that thrombin receptors (Protease-Activated Receptors-1 and -4) are expressed and functional in almost all cell types of the gut, contributing to barrier, immune or motility functions, suggested that thrombin could actually be at the crossroad of intestinal physiology. Recent work has unraveled the constitutive release of active thrombin by intestinal epithelial cells, opening new research avenues on the role of thrombin in the gut. These roles are considered in the present review, as well as the regulation of thrombin in the gut. The potential of thrombin as a target for treatments of intestinal pathologies is also discussed here.
Collapse
Affiliation(s)
- Nathalie Vergnolle
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), CS60039, Toulouse, Cedex 03, 31024, France; Department of Physiology & Pharmacology, University of Calgary Cumming School of Medicine, 3330 Hospital Drive NW, Calgary, Ab T2N 4N1, Canada.
| |
Collapse
|
3
|
Guignard S, Saifeddine M, Mihara K, Motahhary M, Savignac M, Guiraud L, Sagnat D, Sebbag M, Khou S, Rolland C, Edir A, Bournet B, Buscail L, Buscail E, Alric L, Camare C, Ambli M, Vergnolle N, Hollenberg MD, Deraison C, Bonnart C. Chymotrypsin activity signals to intestinal epithelium by protease-activated receptor-dependent mechanisms. Br J Pharmacol 2024; 181:2725-2749. [PMID: 38637276 DOI: 10.1111/bph.16341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 01/04/2024] [Accepted: 01/30/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND AND PURPOSE Chymotrypsin is a pancreatic protease secreted into the lumen of the small intestine to digest food proteins. We hypothesized that chymotrypsin activity may be found close to epithelial cells and that chymotrypsin signals to them via protease-activated receptors (PARs). We deciphered molecular pharmacological mechanisms and gene expression regulation for chymotrypsin signalling in intestinal epithelial cells. EXPERIMENTAL APPROACH The presence and activity of chymotrypsin were evaluated by Western blot and enzymatic activity tests in the luminal and mucosal compartments of murine and human gut samples. The ability of chymotrypsin to cleave the extracellular domain of PAR1 or PAR2 was assessed using cell lines expressing N-terminally tagged receptors. The cleavage site of chymotrypsin on PAR1 and PAR2 was determined by HPLC-MS analysis. The chymotrypsin signalling mechanism was investigated in CMT93 intestinal epithelial cells by calcium mobilization assays and Western blot analyses of (ERK1/2) phosphorylation. The transcriptional consequences of chymotrypsin signalling were analysed on colonic organoids. KEY RESULTS We found that chymotrypsin was present and active in the vicinity of the colonic epithelium. Molecular pharmacological studies have shown that chymotrypsin cleaves both PAR1 and PAR2 receptors. Chymotrypsin activated calcium and ERK1/2 signalling pathways through PAR2, and this pathway promoted interleukin-10 (IL-10) up-regulation in colonic organoids. In contrast, chymotrypsin disarmed PAR1, preventing further activation by its canonical agonist, thrombin. CONCLUSION AND IMPLICATIONS Our results highlight the ability of chymotrypsin to signal to intestinal epithelial cells via PARs, which may have important physiological consequences in gut homeostasis.
Collapse
Affiliation(s)
- Simon Guignard
- IRSD, University of Toulouse, INSERM, INRAE, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Mahmoud Saifeddine
- Department of Physiology and Pharmacology, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
- Department of Medicine, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Koichiro Mihara
- Department of Physiology and Pharmacology, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
- Department of Medicine, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Majid Motahhary
- Department of Physiology and Pharmacology, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
- Department of Medicine, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Magali Savignac
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERM UMR1291-Centre National de la Recherche Scientifique UMR5051, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Laura Guiraud
- IRSD, University of Toulouse, INSERM, INRAE, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - David Sagnat
- IRSD, University of Toulouse, INSERM, INRAE, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Mireille Sebbag
- IRSD, University of Toulouse, INSERM, INRAE, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Sokchea Khou
- IRSD, University of Toulouse, INSERM, INRAE, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Corinne Rolland
- IRSD, University of Toulouse, INSERM, INRAE, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Anissa Edir
- IRSD, University of Toulouse, INSERM, INRAE, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Barbara Bournet
- Department of Gastroenterology, Toulouse University Hospital, Toulouse, France
| | - Louis Buscail
- Department of Gastroenterology, Toulouse University Hospital, Toulouse, France
| | - Etienne Buscail
- IRSD, University of Toulouse, INSERM, INRAE, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
- Department of Digestive Surgery, Toulouse University Hospital, Toulouse, France
| | - Laurent Alric
- Department of Internal Medicine and Digestive Diseases, Rangueil, Toulouse III University Hospital, University of Toulouse, Toulouse, France
| | - Caroline Camare
- Department of Clinical Biochemistry, Toulouse University Hospital, Toulouse, France
- University of Toulouse, UMR1297, INSERM/Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Mouna Ambli
- IRSD, University of Toulouse, INSERM, INRAE, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Nathalie Vergnolle
- IRSD, University of Toulouse, INSERM, INRAE, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
- Department of Physiology and Pharmacology, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Morley D Hollenberg
- Department of Physiology and Pharmacology, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
- Department of Medicine, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Céline Deraison
- IRSD, University of Toulouse, INSERM, INRAE, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Chrystelle Bonnart
- IRSD, University of Toulouse, INSERM, INRAE, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| |
Collapse
|
4
|
Shan W, Ding J, Xu J, Du Q, Chen C, Liao Q, Yang X, Lou J, Jin Z, Chen M, Xie R. Estrogen regulates duodenal glucose absorption by affecting estrogen receptor-α on glucose transporters. Mol Cell Endocrinol 2023:112028. [PMID: 37769868 DOI: 10.1016/j.mce.2023.112028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 10/03/2023]
Abstract
The mechanisms of estrogen in glucose metabolism are well established; however, its role in glucose absorption remains unclear. In this study, we investigated the effects of estrogen on glucose absorption in humans, mice, and SCBN intestinal epithelial cells. We first observed a correlation between estrogen and blood glucose in young women and found that glucose tolerance was significantly less in the premenstrual phase than in the preovulatory phase. Similarly, with decreased serum estradiol levels in ovariectomized mice, estrogen receptors alpha (ERα) and beta (ERβ) in the duodenum were reduced, and weight and abdominal fat increased significantly. The expression of sodium/glucose cotransporter 1 (SGLT1) and glucose transporter 2 (GLUT2) and glucose absorption in the duodenum decreased significantly. Estrogen significantly upregulated SGLT1 and GLUT2 expression in SCBN cells. Silencing of ERα, but not ERβ, reversed this trend, suggesting that ERα may be key to estrogen-regulating glucose transporters. A mechanistic study revealed that downstream, estrogen regulates the protein kinase C (PKC) pathway. Overall, our findings indicate that estrogen promotes glucose absorption, and estrogen and ERα deficiency can inhibit SGLT1 and GLUT2 expression through the PKC signaling pathway, thereby reducing glucose absorption.
Collapse
Affiliation(s)
- Weixi Shan
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563003, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, Guizhou, 563003, China
| | - Jianhong Ding
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563003, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, Guizhou, 563003, China
| | - Jingyu Xu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563003, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, Guizhou, 563003, China
| | - Qian Du
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563003, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, Guizhou, 563003, China
| | - Changmei Chen
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563003, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, Guizhou, 563003, China
| | - Qiushi Liao
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563003, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, Guizhou, 563003, China
| | - Xiaoxu Yang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563003, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, Guizhou, 563003, China
| | - Jun Lou
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563003, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, Guizhou, 563003, China
| | - Zhe Jin
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563003, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, Guizhou, 563003, China
| | - Mingkai Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, China.
| | - Rui Xie
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563003, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, Guizhou, 563003, China.
| |
Collapse
|
5
|
Deraison C, Bonnart C, Langella P, Roget K, Vergnolle N. Elafin and its precursor trappin-2: What is their therapeutic potential for intestinal diseases? Br J Pharmacol 2023; 180:144-160. [PMID: 36355635 PMCID: PMC10098471 DOI: 10.1111/bph.15985] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 04/22/2022] [Accepted: 05/07/2022] [Indexed: 11/12/2022] Open
Abstract
Elafin and its precursor trappin-2 are known for their contribution to the physiological mucosal shield against luminal microbes. Such a contribution seems to be particularly relevant in the gut, where the exposure of host tissues to heavy loads of microbes is constant and contributes to mucosa-associated pathologies. The expression of trappin-2/elafin has been shown to be differentially regulated in diseases associated with gut inflammation. Accumulating evidence has demonstrated the protective effects of trappin-2/elafin in gut intestinal disorders associated with acute or chronic inflammation, or with gluten sensitization disorders. The protective effects of trappin-2/elafin in the gut are discussed in terms of their pleiotropic modes of action: acting as protease inhibitors, transglutaminase substrates, antimicrobial peptides or as a regulator of pro-inflammatory transcription factors. Further, the question of the therapeutic potential of trappin-2/elafin delivery at the intestinal mucosa surface is raised. Whether trappin-2/elafin mucosal delivery should be considered to ensure intestinal tissue repair is also discussed.
Collapse
Affiliation(s)
- Céline Deraison
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Chrystelle Bonnart
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Philippe Langella
- Université Paris-Saclay, AgroParisTech, Micalis Institute, INRAE, Jouy-en-Josas, France
| | | | - Nathalie Vergnolle
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France.,Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
6
|
Mirakhur M, Diener M. Proteinase-activated receptors regulate intestinal functions in a segment-dependent manner in rats. Eur J Pharmacol 2022; 933:175264. [PMID: 36100127 DOI: 10.1016/j.ejphar.2022.175264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 11/03/2022]
Abstract
Proteinases released e.g. during inflammatory or allergic responses affect gastrointestinal functions via proteinase-activated receptors such as PAR1 and PAR2. As the gastrointestinal tract exerts pronounced gradients along its longitudinal axis, the present study focuses on the effect of PAR1 and PAR2 agonists on electrogenic ion transport (measured as short-circuit current; Isc), tissue conductance (Gt) and contractility of the longitudinal muscle layer of rats. In Ussing chamber experiments, the PAR1 agonist TFLLR-NH2, which mimics the tethered ligand liberated after cleavage of the receptor, evoked only a modest increase in Isc (<0.5 μEq·h-1·cm-2) in small intestine, but a strong increase (3-4 μEq·h-1·cm-2) in colon. Pretreatment with tetrodotoxin reduced the response of the colonic segments to the level of the small intestine. Thrombin, the natural activator of PAR1, was much less effective suggesting biased activation by this peptidase. A similar gradient along the longitudinal axis of the intestine was observed with trypsin, the endogenous activator of PAR2. Divergent actions of PAR1 activation by enzymatic cleavage or a mimetic peptide were also observed when recording isometric contractions of longitudinal muscle. For example, in the jejunum TFLLR-NH2 concentration-dependently induced a contractile response, whereas thrombin showed only inconsistent effects. The PAR2 activator AC264613 induced a concentration-dependent decrease in muscle tone combined with an inhibition of phasic spontaneous contractions. PCR experiments and immunohistochemical stainings confirmed the expression of PAR1 and PAR2. The data implies that PAR1 and PAR2 functions vary depending on the intestinal segment.
Collapse
Affiliation(s)
- Maanvee Mirakhur
- Institute for Veterinary Physiology and Biochemistry, Justus-Liebig-University Giessen, Germany
| | - Martin Diener
- Institute for Veterinary Physiology and Biochemistry, Justus-Liebig-University Giessen, Germany.
| |
Collapse
|
7
|
Fekete E, Allain T, Amat CB, Mihara K, Saifeddine M, Hollenberg MD, Chadee K, Buret AG. Giardia duodenalis cysteine proteases cleave proteinase-activated receptor-2 to regulate intestinal goblet cell mucin gene expression. Int J Parasitol 2022; 52:285-292. [DOI: 10.1016/j.ijpara.2021.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 12/17/2022]
|
8
|
Motta JP, Deraison C, Le Grand S, Le Grand B, Vergnolle N. PAR-1 Antagonism to Promote Gut Mucosa Healing in Crohn's Disease Patients: A New Avenue for CVT120165. Inflamm Bowel Dis 2021; 27:S33-S37. [PMID: 34791291 DOI: 10.1093/ibd/izab244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Indexed: 12/17/2022]
Abstract
A new paradigm has been added for the treatment of inflammatory bowel diseases such as Crohn's disease and ulcerative colitis. In addition to resolving symptoms and inflammatory cell activation, the objective of tissue repair and mucosal healing is also now considered a primary goal. In the search of mediators that would be responsible for delayed mucosal healing, protease-activated receptor-1 (PAR-1) has emerged as a most interesting target. Indeed, in Crohn's disease, the endogenous PAR-1 agonist thrombin is drastically activated. Activation of PAR-1 is known to be associated with epithelial dysfunctions that hamper mucosal homeostasis. This review gathers the scientific evidences of a potential role for PAR-1 in mucosal damage and mucosal dysfunctions associated with chronic intestinal inflammation. The potential clinical benefits of PAR-1 antagonism to promote mucosal repair in CD patients are discussed. Targeted local delivery of a PAR-1 antagonist molecule such as CVT120165, a formulated version of the FDA-approved PAR-1 antagonist vorapaxar, at the mucosa of Crohn's disease patients could be proposed as a new indication for IBD that could be rapidly tested in clinical trials.
Collapse
Affiliation(s)
- Jean-Paul Motta
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRA, ENVT, UPS, U1220, CHU Purpan, CS60039, Toulouse, France.,CVasThera, Arobase Castres-Mazamet, Castres, France
| | - Celine Deraison
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRA, ENVT, UPS, U1220, CHU Purpan, CS60039, Toulouse, France
| | | | | | - Nathalie Vergnolle
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRA, ENVT, UPS, U1220, CHU Purpan, CS60039, Toulouse, France.,Departments of Physiology & Pharmacology, and Medicine, University of Calgary Cumming School of Medicine, 3330 Hospital Drive NW, Calgary, Alberta, Canada
| |
Collapse
|
9
|
Zhang F, Wan H, Chu F, Lu C, Chen J, Dong H. Small intestinal glucose and sodium absorption through calcium-induced calcium release and store-operated Ca 2+ entry mechanisms. Br J Pharmacol 2020; 178:346-362. [PMID: 33080043 DOI: 10.1111/bph.15287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 08/27/2020] [Accepted: 10/06/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Luminal glucose enhances intestinal Ca2+ absorption through apical Cav 1.3 channels necessary for GLUT2-mediated glucose absorption. As these reciprocal mechanisms are not well understood, we investigated the regulatory mechanisms of intestinal [Ca2+ ]cyt and SGLT1-mediated Na+ -glucose co-transports. EXPERIMENTAL APPROACH Glucose absorption and channel expression were examined in mouse upper jejunal epithelium using an Ussing chamber, immunocytochemistry and Ca2+ and Na+ imaging in single intestinal epithelial cells. KEY RESULTS Glucose induced jejunal Isc via Na+ -glucose cotransporter 1 (SGLT1) operated more efficiently in the presence of extracellular Ca2+ . A crosstalk between luminal Ca2+ entry via plasma Cav 1.3 channels and the ER Ca2+ release through ryanodine receptor (RYR) activation in small intestinal epithelial cell (IEC) or Ca2+ -induced Ca2+ release (CICR) mechanism was involve in Ca2+ -mediated jejunal glucose absorption. The ER Ca2+ release through RyR triggered basolateral Ca2+ entry or store-operated Ca2+ entry (SOCE) mechanism and the subsequent Ca2+ entry via Na+ /Ca2+ exchanger 1 (NCX1) were found to be critical in Na+ -glucose cotransporter-mediated glucose absorption. Blocking RyR, SOCE and NCX1 inhibited glucose induced [Na+ ]cyt and [Ca2+ ]cyt in single IEC and protein expression and co-localization of STIM1/Orai1, RyR1 and NCX1 were detected in IEC and jejunal mucosa. CONCLUSION AND IMPLICATIONS Luminal Ca2+ influx through Cav 1.3 triggers the CICR through RyR1 to deplete the ER Ca2+ , which induces the basolateral STIM1/Orai1-mediated SOCE mechanism and the subsequent Ca2+ entry via NCX1 to regulate intestinal glucose uptake via Ca2+ signalling. Targeting these mechanisms in IEC may help to modulate blood glucose and sodium in the metabolic disease.
Collapse
Affiliation(s)
- Fenglian Zhang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hanxing Wan
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Fenglan Chu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Cheng Lu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Jun Chen
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hui Dong
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China.,Department of Medicine, School of Medicine, University of California, San Diego, CA, USA
| |
Collapse
|
10
|
Pontarollo G, Mann A, Brandão I, Malinarich F, Schöpf M, Reinhardt C. Protease-activated receptor signaling in intestinal permeability regulation. FEBS J 2019; 287:645-658. [PMID: 31495063 DOI: 10.1111/febs.15055] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/01/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022]
Abstract
Protease-activated receptors (PARs) are a unique class of G-protein-coupled transmembrane receptors, which revolutionized the perception of proteases from degradative enzymes to context-specific signaling factors. Although PARs are traditionally known to affect several vascular responses, recent investigations have started to pinpoint the functional role of PAR signaling in the gastrointestinal (GI) tract. This organ is exposed to the highest number of proteases, either from the gut lumen or from the mucosa. Luminal proteases include the host's digestive enzymes and the proteases released by the commensal microbiota, while mucosal proteases entail extravascular clotting factors and the enzymes released from resident and infiltrating immune cells. Active proteases and, in case of a disrupted gut barrier, even entire microorganisms are capable to translocate the intestinal epithelium, particularly under inflammatory conditions. Especially PAR-1 and PAR-2, expressed throughout the GI tract, impact gut permeability regulation, a major factor affecting intestinal physiology and metabolic inflammation. In addition, PARs are critically involved in the onset of inflammatory bowel diseases, irritable bowel syndrome, and tumor progression. Due to the number of proteases involved and the multiple cell types affected, selective regulation of intestinal PARs represents an interesting therapeutic strategy. The analysis of tissue/cell-specific knockout animal models will be of crucial importance to unravel the intrinsic complexity of this signaling network. Here, we provide an overview on the implication of PARs in intestinal permeability regulation under physiologic and disease conditions.
Collapse
Affiliation(s)
- Giulia Pontarollo
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg University of Mainz, Germany
| | - Amrit Mann
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg University of Mainz, Germany
| | - Inês Brandão
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg University of Mainz, Germany.,Centro de Apoio Tecnológico Agro Alimentar (CATAA), Zona Industrial de Castelo Branco, Portugal
| | - Frano Malinarich
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg University of Mainz, Germany
| | - Marie Schöpf
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg University of Mainz, Germany
| | - Christoph Reinhardt
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg University of Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Mainz, Germany
| |
Collapse
|
11
|
Du C, Liu J, Wan H, Dong H, Zhao X. Functional Role of Basolateral ClC-2 Channels in the Regulation of Duodenal Anion Secretion in Mice. Dig Dis Sci 2019; 64:2527-2537. [PMID: 30874987 DOI: 10.1007/s10620-019-05578-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/05/2019] [Indexed: 12/09/2022]
Abstract
BACKGROUND Although ClC-2 channels are important in colonic Cl- secretion, it is unclear about their roles in small intestinal anion secretion. Therefore, we sought to examine whether ClC-2 channels play important roles in anion secretion, particularly duodenal bicarbonate secretion (DBS). METHODS Duodenal mucosae from mice were stripped of seromuscular layers and mounted in Ussing chambers. Both duodenal short-circuit current (Isc) and HCO3- secretion in vitro were simultaneously recorded. DBS in vivo was measured by a CO2-sensitive electrode. RESULTS Lubiprostone, a selective ClC-2 activator, concentration-dependently increased both duodenal Isc and DBS only when applied basolaterally, but not when applied apically. Removal of extracellular Cl- abolished lubiprostone-induced duodenal Isc, but did not alter HCO3- secretion even in the presence of DIDS, a Cl-/HCO3- exchanger inhibitor. However, further addition of glibenclamide, a CFTR channel blocker, abolished lubiprostone-evoked HCO3- secretion. Moreover, lubiprostone-induced HCO3- secretion was impaired in CFTR-/- mice compared to wild-type littermates. Luminal perfusion of duodenal lumen with lubiprostone did not alter basal DBS in vivo, but lubiprostone (i.p.) was able to induce DBS, which was also significantly inhibited by Cd2+, a ClC-2 channel blocker. [Ca2+]cyt level, Ca2+-activated K+ channel- and cAMP-mediated duodenal Isc, and HCO3- secretion were unchanged by lubiprostone. CONCLUSIONS We have provided the first evidence for the novel functional role of basolateral ClC-2 channels in the regulation of duodenal anion secretion.
Collapse
Affiliation(s)
- Chao Du
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Jingjing Liu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Hanxing Wan
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Hui Dong
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China. .,Department of Medicine, School of Medicine, University of California, San Diego, CA, 92093, USA.
| | - Xiaoyan Zhao
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
12
|
Du C, Chen S, Wan H, Chen L, Li L, Guo H, Tuo B, Dong H. Different functional roles for K + channel subtypes in regulating small intestinal glucose and ion transport. Biol Open 2019; 8:bio.042200. [PMID: 31243019 PMCID: PMC6679390 DOI: 10.1242/bio.042200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Although K+ channels are important in mediating the driving force for colonic ion transport, their role in small intestinal transport is poorly understood. To investigate this, small intestinal short circuit currents (Isc ) and HCO3 - secretion were measured in mice, and intracellular pH (pHi) was measured in small intestinal epithelial SCBN cells. The expression and location of Kv subtypes were verified by RT-PCR, western blotting and immunohistochemistry. Diabetic mice were also used to investigate the role of Kv subtypes in regulating intestinal glucose absorption. We found that KV7.1 is not involved in duodenal ion transport, while KCa3.1 selectively regulates duodenal Isc and HCO3 - secretion in a Ca2+-mediated but not cAMP-mediated manner. Blockade of KCa3.1 increased the rate of HCO3 - fluxes via cystic fibrosis transmembrane conductance regulator (CFTR) channels in SCBN cells. Jejunal Isc was significantly stimulated by glucose, but markedly inhibited by 4-aminopyridine (4-AP) and tetraethylammonium (TEA). Moreover, both Kv1.1 and Kv1.3 were expressed in jejunal mucosae. Finally, 4-AP significantly attenuated weight gain of normal and diabetic mice, and both 4-AP and TEA significantly lowered blood glucose of diabetic mice. This study not only examines the contribution of various K+ channel subtypes to small intestinal epithelial ion transport and glucose absorption, but also proposes a novel concept for developing specific K+ channel blockers to reduce weight gain and lower blood glucose in diabetes mellitus.
Collapse
Affiliation(s)
- Chao Du
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.,Department of Gastroenterology and Hepatology, Chengdu Military General Hospital, Sichuan Province, Chengdu 610000, China
| | - Siyuan Chen
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Hanxing Wan
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Lihong Chen
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, and Digestive Disease Institute of Guizhou Province, Zunyi 563003, China
| | - Lingyu Li
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, and Digestive Disease Institute of Guizhou Province, Zunyi 563003, China
| | - Hong Guo
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, and Digestive Disease Institute of Guizhou Province, Zunyi 563003, China
| | - Hui Dong
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China .,Department of Medicine, School of Medicine, University of California, San Diego, CA 92093, USA
| |
Collapse
|
13
|
Zhang F, Wan H, Yang X, He J, Lu C, Yang S, Tuo B, Dong H. Molecular mechanisms of caffeine-mediated intestinal epithelial ion transports. Br J Pharmacol 2019; 176:1700-1716. [PMID: 30808064 DOI: 10.1111/bph.14640] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 01/10/2019] [Accepted: 01/31/2019] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE As little is known about the effect of caffeine, one of the most widely consumed substances worldwide, on intestinal function, we aimed to study its action on intestinal anion secretion and the underlying molecular mechanisms. EXPERIMENTAL APPROACH Anion secretion and channel expression were examined in mouse duodenal epithelium by Ussing chambers and immunocytochemistry. Ca2+ imaging was also performed in intestinal epithelial cells (IECs). KEY RESULTS Caffeine (10 mM) markedly increased mouse duodenal short-circuit current (Isc ), which was attenuated by a removal of either Cl- or HCO3 - , Ca2+ -free serosal solutions and selective blockers of store-operated Ca2+ channels (SOC/Ca2+ release-activated Ca2+ channels), and knockdown of Orai1 channels on the serosal side of duodenal tissues. Caffeine induced SOC entry in IEC, which was inhibited by ruthenium red and selective blockers of SOC. Caffeine-stimulated duodenal Isc was inhibited by the endoplasmic reticulum Ca2+ chelator (N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine), selective blockers (ruthenium red and dantrolene) of ryanodine receptors (RyR), and of Ca2+ -activated Cl- channels (niflumic acid and T16A). There was synergism between cAMP and Ca2+ signalling, in which cAMP/PKA promoted caffeine/Ca2+ -mediated anion secretion. Expression of STIM1 and Orai1 was detected in mouse duodenal mucosa and human IECs. The Orai1 proteins were primarily co-located with the basolateral marker Na+ , K+ -ATPase. CONCLUSIONS AND IMPLICATIONS Caffeine stimulated intestinal anion secretion mainly through the RyR/Orai1/Ca2+ signalling pathway. There is synergism between cAMP/PKA and caffeine/Ca2+ -mediated anion secretion. Our findings suggest that a caffeine-mediated RyR/Orai1/Ca2+ pathway could provide novel potential drug targets to control intestinal anion secretion.
Collapse
Affiliation(s)
- Fenglian Zhang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Hanxing Wan
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xin Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Jialin He
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Cheng Lu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Shiming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, and Digestive Disease Institute of Guizhou Province, Zunyi, China
| | - Hui Dong
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Department of Medicine, School of Medicine, University of California, San Diego, California, USA
| |
Collapse
|
14
|
Edwinson AL, Grover M. Measurement of novel intestinal secretory and barrier pathways and effects of proteases. Neurogastroenterol Motil 2019; 31:e13547. [PMID: 30843358 PMCID: PMC6407641 DOI: 10.1111/nmo.13547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 12/02/2018] [Accepted: 12/17/2018] [Indexed: 02/08/2023]
Abstract
The epithelial lining of the gastrointestinal (GI) tract in conjunction with the enteric nervous system (ENS) plays an important role in mediating solute absorption and secretion. A dysregulated ionic movement across the epithelium can result in GI diseases that manifest as either watery diarrhea or constipation. Hirschsprung disease is an example of an ENS disorder characterized by absence of enteric ganglia in distal gut resulting in obstructive phenotype. Receptor rearranged during transfection (RET) gene variants are the most commonly recognized genetic associations with Hirschsprung disease. In this issue of Neurogastroenterology and Motility, Russell et al demonstrate that RET mediates colonic ion transport through modulation of cholinergic nerves. They go on to show inhibition of RET can attenuate accelerated transit in a rat model. Normalizing secretory and absorptive defects has been an attractive therapeutic strategy. In addition to the intrinsic regulation of secretory processes, luminal mediators like bile acids, short-chain fatty acids, and proteases can affect both secretion and barrier function of the intestinal epithelium. Elevated levels of proteases have been identified in a wide range of GI diseases including irritable bowel syndrome. Proteases are known to cause visceral hypersensitivity and barrier disruption in vitro and in animal models. The goals of this review are to describe fundamental concepts related to intestinal epithelial secretion, the utility of Ussing chambers to measure ionic mechanisms and to discuss examples of novel signaling pathways; namely the RET signaling cascade in secretomotor neurons and effects of luminal proteases on barrier and ionic secretion.
Collapse
Affiliation(s)
- Adam L. Edwinson
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Madhusudan Grover
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA,Correspondence: Madhusudan Grover, MD, Assistant Professor of Medicine and Physiology, Enteric NeuroScience Program, Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA, Tel: 507-284-2478, Fax: 507-266-0350,
| |
Collapse
|
15
|
Heuberger DM, Schuepbach RA. Protease-activated receptors (PARs): mechanisms of action and potential therapeutic modulators in PAR-driven inflammatory diseases. Thromb J 2019; 17:4. [PMID: 30976204 PMCID: PMC6440139 DOI: 10.1186/s12959-019-0194-8] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/08/2019] [Indexed: 12/29/2022] Open
Abstract
Inflammatory diseases have become increasingly prevalent with industrialization. To address this, numerous anti-inflammatory agents and molecular targets have been considered in clinical trials. Among molecular targets, protease-activated receptors (PARs) are abundantly recognized for their roles in the development of chronic inflammatory diseases. In particular, several inflammatory effects are directly mediated by the sensing of proteolytic activity by PARs. PARs belong to the seven transmembrane domain G protein-coupled receptor family, but are unique in their lack of physiologically soluble ligands. In contrast with classical receptors, PARs are activated by N-terminal proteolytic cleavage. Upon removal of specific N-terminal peptides, the resulting N-termini serve as tethered activation ligands that interact with the extracellular loop 2 domain and initiate receptor signaling. In the classical pathway, activated receptors mediate signaling by recruiting G proteins. However, activation of PARs alternatively lead to the transactivation of and signaling through receptors such as co-localized PARs, ion channels, and toll-like receptors. In this review we consider PARs and their modulators as potential therapeutic agents, and summarize the current understanding of PAR functions from clinical and in vitro studies of PAR-related inflammation.
Collapse
Affiliation(s)
- Dorothea M Heuberger
- Institute of Intensive Care Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Surgical Research Division, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Reto A Schuepbach
- Institute of Intensive Care Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
16
|
Sébert M, Sola-Tapias N, Mas E, Barreau F, Ferrand A. Protease-Activated Receptors in the Intestine: Focus on Inflammation and Cancer. Front Endocrinol (Lausanne) 2019; 10:717. [PMID: 31708870 PMCID: PMC6821688 DOI: 10.3389/fendo.2019.00717] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022] Open
Abstract
Protease-activated receptors (PARs) belong to the G protein-coupled receptor (GPCR) family. Compared to other GPCRs, the specificity of the four PARs is the lack of physiologically soluble ligands able to induce their activation. Indeed, PARs are physiologically activated after proteolytic cleavage of their N-terminal domain by proteases. The resulting N-terminal end becomes a tethered activation ligand that interact with the extracellular loop 2 domain and thus induce PAR signal. PARs expression is ubiquitous and these receptors have been largely described in chronic inflammatory diseases and cancer. In this review, after describing their discovery, structure, mechanisms of activation, we then focus on the roles of PARs in the intestine and the two main diseases affecting the organ, namely inflammatory bowel diseases and cancer.
Collapse
|
17
|
Bayer SB, Gearry RB, Drummond LN. Putative mechanisms of kiwifruit on maintenance of normal gastrointestinal function. Crit Rev Food Sci Nutr 2017; 58:2432-2452. [PMID: 28557573 DOI: 10.1080/10408398.2017.1327841] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Kiwifruits are recognized as providing relief from constipation and symptoms of constipation-predominant irritable bowel syndrome (IBS-C). However, the underlying mechanisms, specifically in regards to gastrointestinal transit time and motility, are still not completely understood. This review provides an overview on the physiological and pathophysiological processes underlying constipation and IBS-C, the composition of kiwifruit, and recent advances in the research of kiwifruit and abdominal comfort. In addition, gaps in the research are highlighted and scientific studies of other foods with known effects on the gastrointestinal tract are consulted to find likely mechanisms of action. While the effects of kiwifruit fiber are well documented, observed increases in gastrointestinal motility caused by kiwifruit are not fully characterized. There are a number of identified mechanisms that may be activated by kiwifruit compounds, such as the induction of motility via protease-activated signaling, modulation of microflora, changes in colonic methane status, bile flux, or mediation of inflammatory processes.
Collapse
Affiliation(s)
- Simone Birgit Bayer
- a Department of Pathology , Center for Free Radical Research, University of Otago , 2 Riccarton Avenue, PO Box 4345, Christchurch , New Zealand
| | - Richard Blair Gearry
- b Department of Medicine , University of Otago , 2 Riccarton Avenue, PO Box 4345, Christchurch , New Zealand
| | - Lynley Ngaio Drummond
- c Drummond Food Science Advisory Ltd. , 1137 Drain Road, Killinchy RD 2, Leeston , New Zealand
| |
Collapse
|
18
|
Ankaferd Blood Stopper induces apoptosis and regulates PAR1 and EPCR expression in human leukemia cells. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2015. [DOI: 10.1016/j.ejmhg.2014.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
19
|
Xie R, Dong X, Wong C, Vallon V, Tang B, Sun J, Yang S, Dong H. Molecular mechanisms of calcium-sensing receptor-mediated calcium signaling in the modulation of epithelial ion transport and bicarbonate secretion. J Biol Chem 2014; 289:34642-53. [PMID: 25331955 DOI: 10.1074/jbc.m114.592774] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Epithelial ion transport is mainly under the control of intracellular cAMP and Ca(2+) signaling. Although the molecular mechanisms of cAMP-induced epithelial ion secretion are well defined, those induced by Ca(2+) signaling remain poorly understood. Because calcium-sensing receptor (CaSR) activation results in an increase in cytosolic Ca(2+) ([Ca(2+)]cyt) but a decrease in cAMP levels, it is a suitable receptor for elucidating the mechanisms of [Ca(2+)]cyt-mediated epithelial ion transport and duodenal bicarbonate secretion (DBS). CaSR proteins have been detected in mouse duodenal mucosae and human intestinal epithelial cells. Spermine and Gd(3+), two CaSR activators, markedly stimulated DBS without altering duodenal short circuit currents in wild-type mice but did not affect DBS and duodenal short circuit currents in cystic fibrosis transmembrane conductance regulator (CFTR) knockout mice. Clotrimazole, a selective blocker of intermediate conductance Ca(2+)-activated K(+) channels but not chromanol 293B, a selective blocker of cAMP-activated K(+) channels (KCNQ1), significantly inhibited CaSR activator-induced DBS, which was similar in wild-type and KCNQ1 knockout mice. HCO3 (-) fluxes across epithelial cells were activated by a CFTR activator, but blocked by a CFTR inhibitor. CaSR activators induced HCO3 (-) fluxes, which were inhibited by a receptor-operated channel (ROC) blocker. Moreover, CaSR activators dose-dependently raised cellular [Ca(2+)]cyt, which was abolished in Ca(2+)-free solutions and inhibited markedly by selective CaSR antagonist calhex 231, and ROC blocker in both animal and human intestinal epithelial cells. Taken together, CaSR activation triggers Ca(2+)-dependent DBS, likely through the ROC, intermediate conductance Ca(2+)-activated K(+) channels, and CFTR channels. This study not only reveals that [Ca(2+)]cyt signaling is critical to modulate DBS but also provides novel insights into the molecular mechanisms of CaSR-mediated Ca(2+)-induced DBS.
Collapse
Affiliation(s)
- Rui Xie
- From the Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China, the Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, Zunyi 563003, China, and
| | - Xiao Dong
- the Department of Medicine, University of California, San Diego, La Jolla, California 92093
| | - Chase Wong
- the Department of Medicine, University of California, San Diego, La Jolla, California 92093
| | - Volker Vallon
- the Department of Medicine, University of California, San Diego, La Jolla, California 92093, the Veterans Affairs San Diego Healthcare System, La Jolla, California 92161
| | - Bo Tang
- From the Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Jun Sun
- the Departments of Biochemistry, Internal Medicine (GI), and Microbiology/Immunology, Rush University, Chicago, Illinois 60612
| | - Shiming Yang
- From the Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China,
| | - Hui Dong
- From the Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China, the Department of Medicine, University of California, San Diego, La Jolla, California 92093,
| |
Collapse
|
20
|
Zhu W, Bi M, Liu Y, Wang Y, Pan F, Qiu L, Guo A, Lv H, Yao P, Zhang N, Wang P. Thrombin promotes airway remodeling via protease-activated receptor-1 and transforming growth factor-β1 in ovalbumin-allergic rats. Inhal Toxicol 2014; 25:577-86. [PMID: 23937416 DOI: 10.3109/08958378.2013.813995] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Protease-activated receptor-1 (PAR-1) is widely distributed in platelets and involved in coagulation cascade activated by thrombin. In this study, we intend to explore the role of PAR-1 in the process of thrombin-inducing transforming growth factor-β1 (TGF-β1) to promote airway remodeling in ovalbumin (OVA)-allergic rats. MATERIALS AND METHODS A rat model of chronic asthma was set up by systemic sensitization and repeated challenge to OVA. The doses of thrombin, recombinant hirudin, PAR-1 inhibitor ER-112780-06 varied for different groups. We evaluated the bronchoalveolar lavage fluid (BALF) concentration of thrombin in these groups. The protein and gene expression of PAR-1 was assessed and the expression of TGF-β1 was also detected. RESULTS The PAR-1 mRNA level and the protein level were higher in the airway of asthmatic rats than those of normal rats, and were significantly increased by thrombin treatment but decreased by thrombin-inhibitor treatment. Airway remodeling was strengthened by thrombin but weakened by thrombin inhibitor and PAR-1 antagonist. Expression of TGF-β1 protein in asthmatic rats was significantly increased by thrombin treatment and decreased by thrombin-inhibitor treatment and PAR-1 antagonist treatment. CONCLUSION The expression of PAR-1 is regulated by thrombin that induces the expression of TGF-β1 to promote airway remodeling via PAR-1 in OVA-allergic rats.
Collapse
Affiliation(s)
- Weiwei Zhu
- Department of Pediatrics, Jinan Central Hospital Affiliated to Shandong Univeristy, Jinan, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ikehara O, Hayashi H, Waguri T, Kaji I, Karaki SI, Kuwahara A, Suzuki Y. Luminal trypsin induces enteric nerve-mediated anion secretion in the mouse cecum. J Physiol Sci 2014; 64:119-28. [PMID: 24421180 PMCID: PMC10717537 DOI: 10.1007/s12576-013-0302-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 12/10/2013] [Indexed: 02/08/2023]
Abstract
Proteases play a diverse role in health and disease. An excessive concentration of proteases has been found in the feces of patients with inflammatory bowel disease or irritable bowel syndrome and been implicated in the pathogenesis of such disorders. This study examined the effect of the serine protease, trypsin, on intestinal epithelial anion secretion when added to the luminal side. A mucosal-submucosal sheet of the mouse cecum was mounted in Ussing chambers, and the short-circuit current (I sc) was measured. Trypsin added to the mucosal (luminal) side increased I sc with an ED50 value of approximately 10 μM. This I sc increase was suppressed by removing Cl(-) from the bathing solution. The I sc increase induced by 10-100 μM trypsin was substantially suppressed by tetrodotoxin, and partially inhibited by a neurokinin-1 receptor antagonist, but not by a muscarinic or nicotinic ACh-receptor antagonist. The trypsin-induced I sc increase was also significantly inhibited by a 5-hydroxytryptamine-3 receptor (5-HT3) antagonist and substantially suppressed by the simultaneous addition of both 5-HT3 and 5-HT4 receptor antagonists. We conclude that luminal trypsin activates the enteric reflex to induce anion secretion, 5-HT and substance P playing important mediating roles in this secreto-motor reflex. Luminal proteases may contribute to the cause of diarrhea occurring with some intestinal disorders.
Collapse
Affiliation(s)
- Osamu Ikehara
- Laboratory of Physiology, Department of Food and Nutritional Sciences, University of Shizuoka, Yada 52-1, Surugaku, Shizuoka, 422-8526 Japan
| | - Hisayoshi Hayashi
- Laboratory of Physiology, Department of Food and Nutritional Sciences, University of Shizuoka, Yada 52-1, Surugaku, Shizuoka, 422-8526 Japan
| | - Toshiharu Waguri
- Laboratory of Physiology, Department of Food and Nutritional Sciences, University of Shizuoka, Yada 52-1, Surugaku, Shizuoka, 422-8526 Japan
| | - Izumi Kaji
- Laboratory of Physiology, Department of Environmental Health Sciences, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Yada 52-1, Surugaku, Shizuoka, 422-8526 Japan
| | - Shin-ichiro Karaki
- Laboratory of Physiology, Department of Environmental Health Sciences, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Yada 52-1, Surugaku, Shizuoka, 422-8526 Japan
| | - Atsukazu Kuwahara
- Laboratory of Physiology, Department of Environmental Health Sciences, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Yada 52-1, Surugaku, Shizuoka, 422-8526 Japan
| | - Yuichi Suzuki
- Laboratory of Physiology, Department of Food and Nutritional Sciences, University of Shizuoka, Yada 52-1, Surugaku, Shizuoka, 422-8526 Japan
- Laboratory of Anatomy and Physiology, Department of Health and Nutrition, Sendai Shirayuri Women’s College, Hondacho 6-1, Izumi-ku, Sendai, 981-3107 Japan
| |
Collapse
|
22
|
Kugler EM, Mazzuoli G, Demir IE, Ceyhan GO, Zeller F, Schemann M. Activity of protease-activated receptors in primary cultured human myenteric neurons. Front Neurosci 2012; 6:133. [PMID: 22988431 PMCID: PMC3439632 DOI: 10.3389/fnins.2012.00133] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 08/26/2012] [Indexed: 12/19/2022] Open
Abstract
Activity of the four known protease-activated receptors (PARs) has been well studied in rodent enteric nervous system and results in animal models established an important role for neuronal PAR2. We recently demonstrated that, unlike in rodents, PAR1 is the dominant neuronal protease receptor in the human submucous plexus. With this study we investigated whether this also applies to the human myenteric plexus. We used voltage sensitive dye recordings to detect action potential discharge in primary cultures of human myenteric neurons in response to PAR activating peptides (APs). Application of the PAR1-AP (TFLLR) or PAR4-AP (GYPGQV) evoked spike discharge in 79 or 23% of myenteric neurons, respectively. The PAR1-AP response was mimicked by the endogenous PAR1 activator thrombin and blocked by the PAR1 antagonists SCH79797. Human myenteric neurons did not respond to PAR2-AP. This was not due to culture conditions because all three PAR-APs evoked action potentials in cultured guinea pig myenteric neurons. Consecutive application of PAR-APs revealed coexpression (relative to the population responding to PAR-APs) of PAR1/PAR2 in 51%, PAR1/PAR4 in 43%, and of PAR2/PAR4 in 29% of guinea pig myenteric neurons. Our study provided further evidence for the prominent role of neuronal PAR1 in the human enteric nervous system.
Collapse
Affiliation(s)
- Eva M Kugler
- Human Biology, Technische Universität München Freising, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Adams MN, Ramachandran R, Yau MK, Suen JY, Fairlie DP, Hollenberg MD, Hooper JD. Structure, function and pathophysiology of protease activated receptors. Pharmacol Ther 2011; 130:248-82. [PMID: 21277892 DOI: 10.1016/j.pharmthera.2011.01.003] [Citation(s) in RCA: 280] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 01/03/2011] [Indexed: 12/18/2022]
Abstract
Discovered in the 1990s, protease activated receptors(1) (PARs) are membrane-spanning cell surface proteins that belong to the G protein coupled receptor (GPCR) family. A defining feature of these receptors is their irreversible activation by proteases; mainly serine. Proteolytic agonists remove the PAR extracellular amino terminal pro-domain to expose a new amino terminus, or tethered ligand, that binds intramolecularly to induce intracellular signal transduction via a number of molecular pathways that regulate a variety of cellular responses. By these mechanisms PARs function as cell surface sensors of extracellular and cell surface associated proteases, contributing extensively to regulation of homeostasis, as well as to dysfunctional responses required for progression of a number of diseases. This review examines common and distinguishing structural features of PARs, mechanisms of receptor activation, trafficking and signal termination, and discusses the physiological and pathological roles of these receptors and emerging approaches for modulating PAR-mediated signaling in disease.
Collapse
Affiliation(s)
- Mark N Adams
- Mater Medical Research Institute, Aubigny Place, Raymond Terrace, South Brisbane Qld 4101, Australia
| | | | | | | | | | | | | |
Collapse
|
24
|
Ikehara O, Hayashi H, Watanabe Y, Yamamoto H, Mochizuki T, Hoshino M, Suzuki Y. Proteinase-activated receptors-1 and 2 induce electrogenic Cl- secretion in the mouse cecum by distinct mechanisms. Am J Physiol Gastrointest Liver Physiol 2010; 299:G115-25. [PMID: 20413722 DOI: 10.1152/ajpgi.00281.2009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Proteinase-activated receptors (PAR(1)-PAR(4)) belong to a family of G protein-coupled receptors that are cleaved by proteases. Previous in vitro studies on the mouse large intestine have indicated that PAR(1) and PAR(2) were involved in regulating epithelial ion transport, but that their roles were different between the proximal and distal colon. This present study was done to elucidate the roles of PAR(1) and PAR(2) in regulating anion secretion in the cecum, another segment of the large intestine. A mucosa-submucosal sheet of the mouse cecum was mounted in Ussing chambers, and the short-circuit current (I(sc)) was measured. The addition of a PAR(1)-activating peptide (SFFLRN-NH(2)) to the serosal surface increased I(sc). This increase in I(sc) induced by SFFLRN-NH(2) was partially suppressed by serosal bumetanide and substantially suppressed by mucosal 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) and by the removal of Cl(-) from the bathing solution. The I(sc) increase was also substantially suppressed by serosal tetrodotoxin (TTX) and neurokinin-1 receptor antagonist L-703,606 and was partially inhibited by serosal atropine and hexamethonium. The addition of a PAR(2)-activating peptide (SLIGRL-NH(2)) to the serosal surface also induced an increase in I(sc); this increase was partially suppressed by bumetanide and substantially suppressed by NPPB and by the removal of Cl(-), but not by TTX. The expression of mRNA for PAR(1) and PAR(2) was confirmed in the mucosa as determined by RT-PCR. In conclusion, PAR(1) and PAR(2) both induced Cl(-) secretion in the mouse cecum. This secretion mediated by PAR(1) probably occurred by activation of the receptor on the submucosal secretomotor neurons, resulting mainly in the release of tachykinins and activation of the neurokinin-1 receptor, and partly in the release of ACh and activation of the muscarinic and nicotinic receptors. On the other hand, PAR(2)-mediated Cl(-) secretion probably occurred by activating the receptor on the epithelial cells. A variety of proteases would induce fluid secretion mediated by PAR(1) and PAR(2) in the cecum and thereby support bacterial fermentation and participate in mucosal inflammation.
Collapse
Affiliation(s)
- Osamu Ikehara
- Laboratory of Physiology, School of Food and Nutritional Sciences, University of Shizuoka, Yada 52-1, Suruga-ku, Shizuoka 422-8526, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Swystun VA, Renaux B, Moreau F, Wen S, Peplowski MA, Hollenberg MD, MacNaughton WK. Serine proteases decrease intestinal epithelial ion permeability by activation of protein kinase Czeta. Am J Physiol Gastrointest Liver Physiol 2009; 297:G60-70. [PMID: 19460843 DOI: 10.1152/ajpgi.00096.2009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Epithelial permeability to ions and larger molecules in the gut is essential for fluid balance, and its dysregulation contributes to intestinal pathology. We investigated the effect of digestive serine proteases on epithelial paracellular permeability. Trypsin, chymotrypsin, and elastase elicited sustained increases in transepithelial resistance (R(TE)) in polarized monolayers of three intestinal epithelial cell lines. This effect was reflected by decreases in paracellular conductances of Na+ and Cl- and a concomitant decrease in permeability to 3,000 molecular weight dextran. The enzyme activities of the proteases were required, yet activators of known protease-activated receptors (PARs) did not reproduce the effect of these proteases on R(TE). PKCzeta isoform-specific inhibitor significantly reduced the trypsin-induced increase in R(TE) whereas PKCzeta activity was increased in cells treated with trypsin and chymotrypsin compared with control cells; this activity was reduced to control levels in the presence of PKCzeta-specific inhibitor. Ca2+ chelators and pharmacological inhibitors of cell signaling support the role for PKCzeta in the protease-induced effect. Finally, we showed that treatment with the serine proteases increased occludin immunostaining and zonula occludin-1 coimmunoprecipitation with occludin in the detergent-insoluble fraction of cell lysates, and these increases were ablated by pretreatment with PKCzeta-specific inhibitor. This finding indicates increased insertion of occludin into the cell junctional complex. These data demonstrate a role for serine proteases in the facilitation of epithelial barrier function through a mechanism that is independent of PARs and is mediated by activation of PKCzeta.
Collapse
Affiliation(s)
- Veronica A Swystun
- Inflammation Research Network, Department of Physiology and Pharmacology, University of Calgary, Calgary T2N 4N1, Canada
| | | | | | | | | | | | | |
Collapse
|
26
|
van der Merwe JQ, Moreau F, MacNaughton WK. Protease-activated receptor-2 stimulates intestinal epithelial chloride transport through activation of PLC and selective PKC isoforms. Am J Physiol Gastrointest Liver Physiol 2009; 296:G1258-66. [PMID: 19359428 DOI: 10.1152/ajpgi.90425.2008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Serine proteases play important physiological roles through their activity at G protein-coupled protease-activated receptors (PARs). We examined the roles that specific phospholipase (PL) C and protein kinase (PK) C (PKC) isoforms play in the regulation of PAR(2)-stimulated chloride secretion in intestinal epithelial cells. Confluent SCBN epithelial monolayers were grown on Snapwell supports and mounted in modified Ussing chambers. Short-circuit current (I(sc)) responses to basolateral application of the selective PAR(2) activating peptide, SLIGRL-NH(2), were monitored as a measure of net electrogenic ion transport caused by PAR(2) activation. SLIGRL-NH(2) induced a transient I(sc) response that was significantly reduced by inhibitors of PLC (U73122), phosphoinositol-PLC (ET-18), phosphatidylcholine-PLC (D609), and phosphatidylinositol 3-kinase (PI3K; LY294002). Immunoblot analysis revealed the phosphorylation of both PLCbeta and PLCgamma following PAR(2) activation. Pretreatment of the cells with inhibitors of PKC (GF 109203X), PKCalpha/betaI (Gö6976), and PKCdelta (rottlerin), but not PKCzeta (selective pseudosubstrate inhibitor), also attenuated this response. Cellular fractionation and immunoblot analysis, as well as confocal immunocytochemistry, revealed increases of PKCbetaI, PKCdelta, and PKCepsilon, but not PKCalpha or PKCzeta, in membrane fractions following PAR(2) activation. Pretreatment of the cells with U73122, ET-18, or D609 inhibited PKC activation. Inhibition of PI3K activity only prevented PKCdelta translocation. Immunoblots revealed that PAR(2) activation induced phosphorylation of both cRaf and ERK1/2 via PKCdelta. Inhibition of PKCbetaI and PI3K had only a partial effect on this response. We conclude that basolateral PAR(2)-induced chloride secretion involves activation of PKCbetaI and PKCdelta via a PLC-dependent mechanism resulting in the stimulation of cRaf and ERK1/2 signaling.
Collapse
|
27
|
Wang H, Zhang R, Wen S, McCafferty DM, Beck PL, MacNaughton WK. Nitric oxide increases Wnt-induced secreted protein-1 (WISP-1/CCN4) expression and function in colitis. J Mol Med (Berl) 2009; 87:435-45. [DOI: 10.1007/s00109-009-0445-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 01/21/2009] [Accepted: 01/26/2009] [Indexed: 11/29/2022]
|
28
|
Dong X, Smoll EJ, Ko KH, Lee J, Chow JY, Kim HD, Insel PA, Dong H. P2Y receptors mediate Ca2+ signaling in duodenocytes and contribute to duodenal mucosal bicarbonate secretion. Am J Physiol Gastrointest Liver Physiol 2009; 296:G424-32. [PMID: 19074643 PMCID: PMC2643905 DOI: 10.1152/ajpgi.90314.2008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Since little is known about the role of P2Y receptors (purinoceptors) in duodenal mucosal bicarbonate secretion (DMBS), we sought to investigate the expression and function of these receptors in duodenal epithelium. Expression of P2Y(2) receptors was detected by RT-PCR in mouse duodenal epithelium and SCBN cells, a duodenal epithelial cell line. UTP, a P2Y(2)-receptor agonist, but not ADP (10 microM), significantly induced murine duodenal short-circuit current and DMBS in vitro; these responses were abolished by suramin (300 microM), a P2Y-receptor antagonist, or 2-aminoethoxydiphenyl borate (2-APB; 100 microM), a store-operated channel blocker. Mucosal or serosal addition of UTP induced a comparable DMBS in wild-type mice, but markedly impaired response occurred in P2Y(2) knockout mice. Acid-stimulated DMBS in vivo was significantly inhibited by suramin (1 mM) or PPADS (30 microM). Both ATP and UTP, but not ADP (1 microM), raised cytoplasmic-free Ca(2+) concentrations ([Ca(2+)](cyt)) with similar potencies in SCBN cells. ATP-induced [Ca(2+)](cyt) was attenuated by U-73122 (10 microM), La(3+) (30 microM), or 2-APB (10 microM), but was not significantly affected by nifedipine (10 microM). UTP (1 microM) induced a [Ca(2+)](cyt) transient in Ca(2+)-free solutions, and restoration of external Ca(2+) (2 mM) raised [Ca(2+)](cyt) due to capacitative Ca(2+) entry. La(3+) (30 microM), SK&F96365 (30 microM), and 2-APB (10 microM) inhibited UTP-induced Ca(2+) entry by 92, 87, and 94%, respectively. Taken together, our results imply that activation of P2Y(2) receptors enhances DMBS via elevation of [Ca(2+)](cyt) that likely results from an initial increase in intracellular Ca(2+) release followed by extracellular Ca(2+) entry via store-operated channel.
Collapse
Affiliation(s)
- Xiao Dong
- Departments of Medicine and Pharmacology, University of California, San Diego, La Jolla, California
| | - Eric James Smoll
- Departments of Medicine and Pharmacology, University of California, San Diego, La Jolla, California
| | - Kwang Hyun Ko
- Departments of Medicine and Pharmacology, University of California, San Diego, La Jolla, California
| | - Jonathan Lee
- Departments of Medicine and Pharmacology, University of California, San Diego, La Jolla, California
| | - Jimmy Yip Chow
- Departments of Medicine and Pharmacology, University of California, San Diego, La Jolla, California
| | - Ho Dong Kim
- Departments of Medicine and Pharmacology, University of California, San Diego, La Jolla, California
| | - Paul A. Insel
- Departments of Medicine and Pharmacology, University of California, San Diego, La Jolla, California
| | - Hui Dong
- Departments of Medicine and Pharmacology, University of California, San Diego, La Jolla, California
| |
Collapse
|
29
|
Coagulation factor Xa signaling: the link between coagulation and inflammatory bowel disease? Trends Pharmacol Sci 2009; 30:8-16. [DOI: 10.1016/j.tips.2008.10.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 10/22/2008] [Accepted: 10/23/2008] [Indexed: 02/06/2023]
|
30
|
Smith A, Contreras C, Ko KH, Chow J, Dong X, Tuo B, Zhang HH, Chen DB, Dong H. Gender-specific protection of estrogen against gastric acid-induced duodenal injury: stimulation of duodenal mucosal bicarbonate secretion. Endocrinology 2008; 149:4554-66. [PMID: 18499763 PMCID: PMC2553385 DOI: 10.1210/en.2007-1597] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Because human duodenal mucosal bicarbonate secretion (DMBS) protects duodenum against acid-peptic injury, we hypothesize that estrogen stimulates DMBS, thereby attributing to the clinically observed lower incidence of duodenal ulcer in premenopausal women than the age-matched men. We found that basal and acid-stimulated DMBS responses were 1.5 and 2.4-fold higher in female than male mice in vivo, respectively. Acid-stimulated DMBS in both genders was abolished by ICI 182,780 and tamoxifen. Estradiol-17beta (E2) and the selective estrogen receptor (ER) agonists of ERalpha [1,3,5-Tris(4-hydroxyphenyl)-4-propyl-1H-pyrazole] and ERbeta [2,3-bis(4-hydroxyphenyl) propionitrile], but not progesterone, rapidly stimulated ER-dependent murine DMBS in vivo. E2 dose dependently stimulated murine DMBS, which was attenuated by a Cl(-)/HCO3(-) anion exchanger inhibitor 4,4'-didsothio- cyanostilbene-2, 2'-disulfonic acid, removal of extracellular Cl(-), and in cystic fibrosis transmembrane conductance regulator knockout female mice. E2 stimulated murine DMBS in vitro in both genders with significantly greater response in female than male mice (female to male ratio = 4.3). ERalpha and ERbeta mRNAs and proteins were detected in murine duodenal epithelium of both genders; however, neither ERalpha nor ERbeta mRNA and protein expression levels differed according to gender. E2 rapidly mobilized intracellular calcium in a duodenal epithelial SCBN cell line that expresses ERalpha and ERbeta, whereas BAPTA-AM abolished E2-stimulated murine DMBS. Thus, our data show that E2 stimulates DMBS via ER dependent mechanisms linked to intracellular calcium, cystic fibrosis transmembrane conductance regulator, and Cl(-)/HCO3(-) anion exchanger. Gender-associated differences in basal, acid- and E2-stimulated DMBS may have offered a reasonable explanation for the clinically observed lower incidence of duodenal ulcer in premenopausal women than age-matched men.
Collapse
Affiliation(s)
- Anders Smith
- Department of Medicine, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Anti-Inflammatory mechanisms of enteric Heligmosomoides polygyrus infection against trinitrobenzene sulfonic acid-induced colitis in a murine model. Infect Immun 2008; 76:4772-82. [PMID: 18644879 DOI: 10.1128/iai.00744-07] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recent studies showed that enteric helminth infection improved symptoms in patients with inflammatory bowel disease as well as in experimental models of colitis. The aim of this study was to determine the mechanism of the protective effect of helminth infection on colitis-induced changes in immune and epithelial cell function. BALB/c mice received an oral infection of Heligmosomoides polygyrus third-stage larvae, were given intrarectal saline or trinitrobenzene sulfonic acid (TNBS) on day 10 postinfection, and were studied 4 days later. Separate groups of mice received intrarectal saline or TNBS on day 10 and were studied on day 14. Muscle-free colonic mucosae were mounted in Ussing chambers to measure mucosal permeability and secretion. Expression of cytokines was assessed by quantitative real-time PCR, and mast cells were visualized by immunohistochemistry. TNBS-induced colitis induced mucosal damage, upregulated Th1 cytokines, and depressed secretory responses. Heligmosomoides polygyrus elevated Th2 cytokine expression, increased mast cell infiltration and mucosal resistance, and also reduced some secretory responses. Prior H. polygyrus infection prevented TNBS-induced upregulation of Th1 cytokines and normalized secretory responses to specific agonists. TNBS-induced colitis did not alter H. polygyrus-induced mast cell infiltration or upregulation of Th2 cytokine expression. The results indicate that the protective mechanism of enteric nematode infection against TNBS-induced colitis involves prevention of Th1 cytokine expression and improved colonic function by a mechanism that may involve mast cell-mediated protection of neural control of secretory function. Similar response patterns could account for the clinical improvement seen in inflammatory bowel disease with helminthic therapy.
Collapse
|
32
|
van der Merwe JQ, Hollenberg MD, MacNaughton WK. EGF receptor transactivation and MAP kinase mediate proteinase-activated receptor-2-induced chloride secretion in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2008; 294:G441-51. [PMID: 18032480 DOI: 10.1152/ajpgi.00303.2007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We examined the stimulus-secretion pathways whereby proteinase-activated receptor 2 (PAR-2) stimulates Cl(-) secretion in intestinal epithelial cells. SCBN and T84 epithelial monolayers grown on Snapwell supports and mounted in modified Ussing chambers were activated by the PAR-2-activating peptides SLIGRL-NH(2) and 2-furoyl-LIGRLO-NH(2). Short-circuit current (I(sc)) was used as a measure of net electrogenic ion transport. Basolateral, but not apical, application of SLIGRL-NH(2) or 2-furoyl-LIGRLO-NH(2) caused a concentration-dependent change in I(sc) that was significantly reduced in Cl(-)-free buffer and by the intracellular Ca(2+) blockers thapsigargin and BAPTA-AM, but not by the Ca(2+) channel blocker verapamil. Inhibitors of PKA (H-89) and CFTR (glibenclamide) also significantly reduced PAR-2-stimulated Cl(-) transport. PAR-2 activation was associated with increases in cAMP and intracellular Ca(2+). Immunoblot analysis revealed increases in phosphorylation of epidermal growth factor (EGF) receptor (EGFR) tyrosine kinase, Src, Pyk2, cRaf, and ERK1/2 in response to PAR-2 activation. Pretreatment with inhibitors of cyclooxygenases (indomethacin), tyrosine kinases (genistein), EGFR (PD-153035), MEK (PD-98059 or U-0126), and Src (PP1) inhibited SLIGRL-NH(2)-induced increases in I(sc). Inhibition of Src, but not matrix metalloproteinases, reduced EGFR phosphorylation. Reduced EGFR phosphorylation paralleled the reduction in PAR-2-stimulated I(sc). We conclude that activation of basolateral, but not apical, PAR-2 induces epithelial Cl(-) secretion via cAMP- and Ca(2+)-dependent mechanisms. The secretory effect involves EGFR transactivation by Src, leading to subsequent ERK1/2 activation and increased cyclooxygenase activity.
Collapse
Affiliation(s)
- Jacques Q van der Merwe
- Inflammation Research Network, Department of Physiology, University of Calgary, Calgary, AB, Canada T2N 4N1
| | | | | |
Collapse
|
33
|
Proteinases and signalling: pathophysiological and therapeutic implications via PARs and more. Br J Pharmacol 2007; 153 Suppl 1:S263-82. [PMID: 18059329 DOI: 10.1038/sj.bjp.0707507] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Proteinases like thrombin, trypsin and tissue kallikreins are now known to regulate cell signaling by cleaving and activating a novel family of G-protein-coupled proteinase-activated receptors (PARs 1-4) via exposure of a tethered receptor-triggering ligand. On their own, short synthetic PAR-selective PAR-activating peptides (PAR-APs) mimicking the tethered ligand sequences can activate PARs 1, 2 and 4 and cause physiological responses both in vitro and in vivo. Using the PAR-APs as sentinel probes in vivo, it has been found that PAR activation can affect the vascular, renal, respiratory, gastrointestinal, musculoskeletal and nervous systems (both central and peripheral nervous system) and can promote cancer metastasis and invasion. In general, responses triggered by PARs 1, 2 and 4 are in keeping with an innate immune inflammatory response, ranging from vasodilatation to intestinal inflammation, increased cytokine production and increased or decreased nociception. Further, PARs have been implicated in a number of disease states, including cancer and inflammation of the cardiovascular, respiratory, musculoskeletal, gastrointestinal and nervous systems. In addition to activating PARs, proteinases can cause hormone-like effects by other signalling mechanisms, like growth factor receptor activation, that may be as important as the activation of PARs. We, therefore, propose that the PARs themselves, their activating serine proteinases and their associated signalling pathways can be considered as attractive targets for therapeutic drug development. Thus, proteinases in general must now be considered as 'hormone-like' messengers that can signal either via PARs or other mechanisms.
Collapse
|
34
|
|
35
|
Gloro R, Ducrotte P, Reimund JM. Protease-activated receptors: potential therapeutic targets in irritable bowel syndrome? Expert Opin Ther Targets 2007; 9:1079-95. [PMID: 16185159 DOI: 10.1517/14728222.9.5.1079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Protease-activated receptors (PARs) are a family of four G-protein-coupled receptors (PAR-1 to PAR-4) activated by the proteolytic cleavage of their N-terminal extracellular domain. This activation first involves the recognition of the extracellular domain by proteases, such as thrombin, but also trypsin or tryptase which are particularly abundant in the gastrointestinal tract, both under physiological circumstances and in several digestive diseases. Activation of PARs, particularly of PAR-1 and -2, modulates intestinal functions, such as gastrointestinal motility, visceral nociception, mucosal inflammatory response, and epithelial functions (intestinal secretion and permeability). As these physiological properties have been shown to be altered in various extents and combinations in different clinical presentations of irritable bowel syndrome, PARs appear as putative targets for future therapeutic intervention in these patients.
Collapse
Affiliation(s)
- Romain Gloro
- Centre Hospitalier Universitaire de Caen, Service d'Hépato-Gastro-Entérologie et Nutrition, Avenue de la Côte de Nacre, 14033 Caen Cedex, France
| | | | | |
Collapse
|
36
|
Smith AJ, Chappell AE, Buret AG, Barrett KE, Dong H. 5-Hydroxytryptamine contributes significantly to a reflex pathway by which the duodenal mucosa protects itself from gastric acid injury. FASEB J 2007; 20:2486-95. [PMID: 17142798 DOI: 10.1096/fj.06-6391com] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although duodenal mucosal bicarbonate secretion (DMBS) is currently accepted as an important defense mechanism against acid-induced duodenal injury, the mechanism and the regulation of DMBS are largely unknown. 5-HT may regulate DMBS, but little is known about its physiological relevance in DMBS and the underlying mechanism(s). Thus, the aims of the present study were to demonstrate the role of 5-HT in acid-stimulated DMBS and to further elucidate the precise mechanisms involved in this process. Luminal acid stimulation significantly increased 5-HT release from the duodenal mucosa (P<0.01). SB204070, a selective 5-HT4 receptor antagonist, dose-dependently reduced luminal acid-stimulated HCO3(-) secretion of mice in vivo. In Ussing chamber studies, 5-HT-induced I(SC) and DMBS were abolished by removal of extracellular Ca2+, and significantly attenuated by pharmacological blockade of the Na+/Ca2+ exchanger (NCX), intermediate Ca2+-activated K+ channels (IK(Ca)), or cystic fibrosis transmembrane conductance regulator (CFTR). 5-HT increased cytoplasmic free calcium ([Ca2+]cyt) in SCBN cells, a duodenal epithelial cell line, and knockdown of NCX1 proteins with a specific siRNA greatly decreased this 5-HT-mediated Ca2+ signaling. Taken together, our data suggest that 5-HT plays a physiological role in acid-stimulated DMBS via a Ca2+ signaling pathway, in which the plasma membrane NCX transporter as well as IK(Ca) and CFTR channels may be involved.
Collapse
Affiliation(s)
- Anders J Smith
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0063, USA
| | | | | | | | | |
Collapse
|
37
|
Chin AC, Flynn AN, Fedwick JP, Buret AG. The role of caspase-3 in lipopolysaccharide-mediated disruption of intestinal epithelial tight junctions. Can J Physiol Pharmacol 2006; 84:1043-50. [PMID: 17218970 DOI: 10.1139/y06-056] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The mechanisms responsible for microbially induced epithelial apoptosis and increased intestinal permeability remain unclear. This study assessed whether purified bacterial lipopolysaccharide (LPS) increases epithelial apoptosis and permeability and whether these changes are dependent on caspase-3 activation. In nontumorigenic epithelial monolayers, Escherichia coli O26:B6 LPS increased apoptosis, as shown by nuclear breakdown, caspase-3 activation, and PARP cleavage, and induced disruption of tight junctional ZO-1. Apical, but not basolateral, exposure to LPS increased epithelial permeability. Addition of a caspase-3 inhibitor abolished the effects of LPS. The findings describe a novel mechanism whereby apical LPS may disrupt epithelial tight junctional ZO-1 and barrier function in a caspase-3-dependent fashion.
Collapse
Affiliation(s)
- Alex C Chin
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | | | | | | |
Collapse
|
38
|
Palmer ML, Lee SY, Maniak PJ, Carlson D, Fahrenkrug SC, O'Grady SM. Protease-activated receptor regulation of Cl- secretion in Calu-3 cells requires prostaglandin release and CFTR activation. Am J Physiol Cell Physiol 2006; 290:C1189-98. [PMID: 16531569 DOI: 10.1152/ajpcell.00464.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human lung epithelial (Calu-3) cells were used to investigate the effects of protease-activated receptor (PAR) stimulation on Cl(-) secretion. Quantitative RT-PCR (QRT-PCR) showed that Calu-3 cells express PAR-1, -2, and -3 receptor mRNAs, with PAR-2 mRNA in greatest abundance. Addition of either thrombin or the PAR-2 agonist peptide SLIGRL to the basolateral solution of monolayers mounted in Ussing chambers produced a rapid increase in short-circuit current (I(sc): thrombin, 21 +/- 2 microA; SLIGRL, 83 +/- 22 microA), which returned to baseline within 5 min after stimulation. Pretreatment of monolayers with the cell-permeant Ca(2+)-chelating agent BAPTA-AM (50 microM) abolished the increase in I(sc) produced by SLIGRL. When monolayers were treated with the cyclooxygenase inhibitor indomethacin (10 microM), nearly complete inhibition of both the thrombin- and SLIGRL-stimulated I(sc) was observed. In addition, basolateral treatment with the PGE(2) receptor antagonist AH-6809 (25 microM) significantly inhibited the effects of SLIGRL on I(sc). QRT-PCR revealed that Calu-3 cells express mRNAs for CFTR, the Ca(2+)-activated KCNN4 K(+) channel, and the KCNQ1 K(+) channel subunit, which, in association with KCNE3, is known to be regulated by cAMP. Stimulation with SLIGRL produced an increase in apical Cl(-) conductance that was blocked in cells expressing short hairpin RNAs designed to target CFTR. These results support the conclusion that PAR stimulation of Cl(-) secretion occurs by an indirect mechanism involving the synthesis and release of prostaglandins. In addition, PAR-stimulated Cl(-) secretion requires activation of CFTR and at least two distinct K(+) channels located in the basolateral membrane.
Collapse
Affiliation(s)
- Melissa L Palmer
- Department of Physiology, 495 Animal Science/Veterinary Medicine Bldg., 1988 Fitch Ave., University of Minnesota, St. Paul, 55110, USA
| | | | | | | | | | | |
Collapse
|
39
|
Xue M, Campbell D, Sambrook PN, Fukudome K, Jackson CJ. Endothelial protein C receptor and protease-activated receptor-1 mediate induction of a wound-healing phenotype in human keratinocytes by activated protein C. J Invest Dermatol 2006; 125:1279-85. [PMID: 16354200 DOI: 10.1111/j.0022-202x.2005.23952.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Activated protein C (APC) is a natural anticoagulant and inhibitor of inflammation that can stimulate keratinocyte wound repair in vitro and promote wound healing in vivo. The signaling mechanisms, however, are unknown and a keratinocyte receptor for APC has not been identified. Here, we show that cultured human keratinocytes from neonatal foreskins express the endothelial protein C receptor (EPCR). EPCR was also strongly expressed by lower epidermal layers of neonatal foreskin as determined by immunohistochemistry. In cultured keratinocytes, EPCR expression was upregulated by the addition of APC and inhibited by tumor necrosis factor-alpha. Addition of APC stimulated cell proliferation, production of matrix metalloproteinase-2, activation of ERK and p38 kinase signaling pathways, and expression of protease-activated receptor (PAR)-1. A monoclonal antibody, RCR252, which blocks APC binding to EPCR, or a blocking antibody to PAR-1, abolished APC's effects on keratinocytes. In summary, this study demonstrates that EPCR, a major receptor of protein C pathway, is expressed by human keratinocytes, and facilitates APC's function on keratinocytes via activation of PAR-1 pathway. Our findings highlight a possible new role for the protein C pathway in skin physiology and help elucidate the mechanisms of action by which APC promotes wound healing.
Collapse
MESH Headings
- Antigens/genetics
- Antigens/metabolism
- Antigens, CD
- Blood Coagulation Factors/genetics
- Blood Coagulation Factors/metabolism
- Blotting, Western
- Cell Division
- Cell Survival/drug effects
- Cells, Cultured
- Endothelial Protein C Receptor
- Glycoproteins/genetics
- Glycoproteins/metabolism
- Humans
- Infant, Newborn
- Keratinocytes/cytology
- Keratinocytes/drug effects
- Keratinocytes/physiology
- Protein C/pharmacology
- RNA, Messenger/genetics
- Receptor, PAR-1/drug effects
- Receptor, PAR-1/genetics
- Receptor, PAR-1/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Tumor Necrosis Factor-alpha/pharmacology
- Wound Healing/drug effects
- Wound Healing/physiology
Collapse
Affiliation(s)
- Meilang Xue
- Sutton Arthritis Research Laboratory, Institute of Bone and Joint Research, University of Sydney at Royal North Shore Hospital, St Leonards, NSW, Australia.
| | | | | | | | | |
Collapse
|
40
|
Fedwick JP, Lapointe TK, Meddings JB, Sherman PM, Buret AG. Helicobacter pylori activates myosin light-chain kinase to disrupt claudin-4 and claudin-5 and increase epithelial permeability. Infect Immun 2006; 73:7844-52. [PMID: 16299274 PMCID: PMC1307049 DOI: 10.1128/iai.73.12.7844-7852.2005] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Helicobacter pylori is a spiral, gram-negative bacterium that specifically and persistently infects the human stomach. In some individuals, H. pylori-induced chronic gastritis may progress to gastroduodenal ulcers and gastric cancer. Currently, the host-microbe interactions that determine the clinical outcome of infection are not well defined. H. pylori strains capable of disrupting the gastric epithelial barrier may increase the likelihood of developing serious disease. In this study, H. pylori strain SS1 increased gastric, but not small intestinal, permeability in C57BL/6 mice. H. pylori strain SS1 was able to directly increase paracellular permeability, in the absence of host inflammatory cells, by disrupting the tight-junctional proteins occludin, claudin-4, and claudin-5 in confluent nontransformed epithelial cells. H. pylori SS1 also reduced claudin-4 protein levels in human gastric AGS cells. The ability of H. pylori SS1 to increase permeability appeared to be independent of the well-characterized virulence factors vacuolating cytotoxin and CagA protein. H. pylori activated myosin light-chain kinase in epithelial cells to phosphorylate myosin light chain and increase permeability by disrupting claudin-4 and claudin-5. The bacterial factor responsible for increasing epithelial permeability was heat sensitive, membrane bound, and required apical contact with monolayers. In conclusion, disruptions of the tight junctions observed in this study implicate host cell signaling pathways, including the phosphorylation of myosin light chain and the regulation of tight-junctional proteins claudin-4 and claudin-5, in the pathogenesis of H. pylori infection.
Collapse
Affiliation(s)
- Jason P Fedwick
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, Canada T2N 1N4
| | | | | | | | | |
Collapse
|
41
|
Zhao A, Morimoto M, Dawson H, Elfrey JE, Madden KB, Gause WC, Min B, Finkelman FD, Urban JF, Shea-Donohue T. Immune regulation of protease-activated receptor-1 expression in murine small intestine during Nippostrongylus brasiliensis infection. THE JOURNAL OF IMMUNOLOGY 2005; 175:2563-9. [PMID: 16081830 PMCID: PMC2000333 DOI: 10.4049/jimmunol.175.4.2563] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Infection with gastrointestinal nematodes exerts profound effects on both immune and physiological responses of the host. Helminth infection induces a hypercontractility of intestinal smooth muscle that is dependent on the Th2 cytokines, IL-4 and IL-13, and may contribute to worm expulsion. Protease-activated receptors (PARs) are expressed throughout the gut, and activation of PAR-1 was observed in asthma, a Th2-driven pathology. In the current study we investigated the physiologic and immunologic regulation of PAR-1 in the murine small intestine, specifically 1) the effect of PAR-1 agonists on small intestinal smooth muscle contractility, 2) the effects of Nippostrongylus brasiliensis infection on PAR-1 responses, 3) the roles of IL-13 and IL-4 in N. brasiliensis infection-induced alterations in PAR-1 responses, and 4) the STAT6 dependence of these responses. We demonstrate that PAR-1 activation induces contraction of murine intestinal smooth muscle that is enhanced during helminth infection. This hypercontractility is associated with an elevated expression of PAR-1 mRNA and protein. N. brasiliensis-induced changes in PAR-1 function and expression were seen in IL-4-deficient mice, but not in IL-13- or STAT6-deficient mice, indicating the dependence of IL-13 on the STAT6 signaling pathway independent of IL-4.
Collapse
Affiliation(s)
- Aiping Zhao
- Department of Medicine and the Mucosal Biology Research Center, University of Maryland School of Medicine, Baltimore, MD 21201
- Nutritional Requirements and Functions Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705
| | - Motoko Morimoto
- Department of Medicine and the Mucosal Biology Research Center, University of Maryland School of Medicine, Baltimore, MD 21201
- Nutritional Requirements and Functions Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705
| | - Harry Dawson
- Nutritional Requirements and Functions Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705
| | - Justin E. Elfrey
- Department of Medicine and the Mucosal Biology Research Center, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Kathleen B. Madden
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - William C. Gause
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Booki Min
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Fred D. Finkelman
- Departments of Medicine and Pediatrics, University of Cincinnati, Cincinnati, OH 45267 and Cincinnati Veterans Administration Medical Center, Cincinnati, OH 45220
| | - Joseph F. Urban
- Nutritional Requirements and Functions Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705
| | - Terez Shea-Donohue
- Department of Medicine and the Mucosal Biology Research Center, University of Maryland School of Medicine, Baltimore, MD 21201
- Nutritional Requirements and Functions Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705
- Address correspondence and reprint requests to Dr. Terez Shea-Donohue, Mucosal Biology Research Center, University of Maryland School of Medicine, 20 Penn Street, Baltimore, MD 21201. E-mail address:
| |
Collapse
|
42
|
Skinn AC, MacNaughton WK. Nitric oxide inhibits cAMP-dependent CFTR trafficking in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2005; 289:G739-44. [PMID: 15994425 DOI: 10.1152/ajpgi.00425.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nitric oxide is produced during intestinal inflammation and inhibits the epithelial responsiveness to cAMP-dependent secretagogues. The effect is presumably due to inhibition of activation of the CFTR. However, because insertion of CFTR into the epithelial apical membrane is also a cAMP-dependent process, we tested the hypothesis that NO could inhibit cAMP-dependent CFTR trafficking. SCBN intestinal epithelial cells were treated with forskolin to activate adenylate cyclase activity. The cells were fixed at various times and immunostained for CFTR. Some cells were pretreated with the nitric oxide donor PAPA-NONOate, the protein kinase A inhibitor H89, or the microtubule blocker nocodazole. Cross sections of epithelial monolayers were then studied under fluorescence, and the ratio of apical to basolateral CFTR immunoreactivity was determined. Stimulation of adenylate cyclase activity caused an increase in the apical-to-basolateral ratio of CFTR within 30 s. This effect was transient and preceded changes in short-circuit current in SCBN monolayers mounted in Ussing chambers. PAPA-NONOate, H89, and nocodazole all reduced forskolin-stimulated CFTR trafficking. The inhibitory effect of the NO donor was not affected by pretreatment with the guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one. PAPA-NONOate reduced forskolin-stimulated increases in intracellular cAMP. The data suggest that a portion of the inhibitory effect of nitric oxide donors on cAMP-dependent chloride secretion is through the inhibition of cAMP-dependent insertion of CFTR into the apical plasma membrane. These data provide insight into the mechanism of secretory dysfunction in inflammatory diseases of the gut where mucosal nitric oxide is elevated.
Collapse
Affiliation(s)
- Andrew C Skinn
- Dept. of Physiology and Biophysics, University of Calgary, Alberta, Canada T2N 4N1
| | | |
Collapse
|
43
|
Sekiguchi F. [Development of agonists/antagonists for protease-activated receptors (PARs) and the possible therapeutic application to gastrointestinal diseases]. YAKUGAKU ZASSHI 2005; 125:491-8. [PMID: 15930817 DOI: 10.1248/yakushi.125.491] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protease-activated receptors (PARs), a family of G-protein-coupled seven-transmembrane-domain receptors, are activated by proteolytic unmasking of the N-terminal cryptic tethered ligand by certain serine proteases. Among four PAR family members cloned to date, PAR-1, PAR-2, and PAR-4 can also be activated through a non-enzymatic mechanism, which is achieved by direct binding of exogenously applied synthetic peptides based on the tethered ligand sequence, known as PARs-activating peptides, to the body of the receptor. Various peptide mimetics have been synthesized as agonists for PARs with improved potency, selectivity, and stability. Some peptide mimetics and/or nonpeptide compounds have also been developed as antagonists for PAR-1 and PAR-4. PARs are widely distributed in the mammalian body, especially throughout the alimentary systems, and play various roles in physiological/pathophysiological conditions, i.e., modulation of salivary, gastric, or pancreatic glandular exocrine secretion, gastrointestinal smooth muscle motility, gastric mucosal cytoprotection, suppression/facilitation of visceral pain and inflammation, etc. Thus PARs are now considered novel therapeutic targets, and development of selective agonists and/or antagonists for PARs might provide a novel strategy for the treatment of various diseases that are resistant to current therapeutics.
Collapse
Affiliation(s)
- Fumiko Sekiguchi
- Division of Physiology and Pathophysiology, School of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan.
| |
Collapse
|
44
|
Suzuki T, Moraes TJ, Vachon E, Ginzberg HH, Huang TT, Matthay MA, Hollenberg MD, Marshall J, McCulloch CAG, Abreu MTH, Chow CW, Downey GP. Proteinase-activated receptor-1 mediates elastase-induced apoptosis of human lung epithelial cells. Am J Respir Cell Mol Biol 2005; 33:231-47. [PMID: 15891109 PMCID: PMC2715314 DOI: 10.1165/rcmb.2005-0109oc] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Apoptosis of distal lung epithelial cells plays a pivotal role in the pathogenesis of acute lung injury. In this context, proteinases, either circulating or leukocyte-derived, may contribute to epithelial apoptosis and lung injury. We hypothesized that apoptosis of lung epithelial cells induced by leukocyte elastase is mediated via the proteinase activated receptor (PAR)-1. Leukocyte elastase, thrombin, and PAR-1-activating peptide, but not the control peptide, induced apoptosis in human airway and alveolar epithelial cells as assessed by increases in cytoplasmic histone-associated DNA fragments and TUNEL staining. These effects were largely prevented by a specific PAR-1 antagonist and by short interfering RNA directed against PAR-1. To ascertain the mechanism of epithelial apoptosis, we determined that PAR-1AP, thrombin, and leukocyte elastase dissipated mitochondrial membrane potential, induced translocation of cytochrome c to the cytosol, enhanced cleavage of caspase-9 and caspase-3, and led to JNK activation and Akt inhibition. In concert, these observations provide strong evidence that leukocyte elastase mediates apoptosis of human lung epithelial cells through PAR-1-dependent modulation of the intrinsic apoptotic pathway via alterations in mitochondrial permeability and by modulation of JNK and Akt.
Collapse
Affiliation(s)
- Tomoko Suzuki
- Division of Respirology, Department of Medicine, University of Toronto and Toronto General Hospital Research Institute, 1 King's College Circle, Toronto, Ontario, M5S 1A8 Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Xie WZ, Leibl M, Clark MR, Dohrmann P, Kunze T, Gieseler F. Activation of the coagulation system in cancerogenesis and metastasation. Biomed Pharmacother 2005; 59:70-5. [PMID: 15795099 DOI: 10.1016/j.biopha.2005.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Indexed: 11/30/2022] Open
Abstract
The activation of the coagulation system in cancer patients is a well-known phenomenon responsible for recurrent clinical problems. A number of fascinating molecular mechanisms have been recognized showing that the tumor not only activates the coagulation system, but vice versa, activated coagulation proteins are able to induce molecular effects in tumor cells. The molecular basis is the expression of defined membrane receptors by tumor cells that are activated, for example, by thrombin. As the liberation of thrombin from prothrombin is one of the key events in coagulation, it's impact upon biological processes, such as cancerogenesis and metastasation, seems to be a regular pathophysiological consequence. These perceptions are not only interesting for the comprehension of cancerogenesis, metastasation, and clinical phenomena, but they also have a high impact upon modern strategies of tumor therapy. Especially, the development of clinically useful coagulation inhibitors, such as modern low molecular weight heparins or melagatran, created the possibility of therapies that combine cell biological approaches with apoptosis-inducing principals such as chemotherapy. Several clinical studies that demonstrate the implication of these strategies have already been published recently. In this article the cell biological basics for these approaches are reviewed.
Collapse
Affiliation(s)
- W Z Xie
- Department of Internal Medicine, Section Hematology/Oncology, University of Kiel, Germany
| | | | | | | | | | | |
Collapse
|
46
|
Steinhoff M, Buddenkotte J, Shpacovitch V, Rattenholl A, Moormann C, Vergnolle N, Luger TA, Hollenberg MD. Proteinase-activated receptors: transducers of proteinase-mediated signaling in inflammation and immune response. Endocr Rev 2005; 26:1-43. [PMID: 15689571 DOI: 10.1210/er.2003-0025] [Citation(s) in RCA: 369] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Serine proteinases such as thrombin, mast cell tryptase, trypsin, or cathepsin G, for example, are highly active mediators with diverse biological activities. So far, proteinases have been considered to act primarily as degradative enzymes in the extracellular space. However, their biological actions in tissues and cells suggest important roles as a part of the body's hormonal communication system during inflammation and immune response. These effects can be attributed to the activation of a new subfamily of G protein-coupled receptors, termed proteinase-activated receptors (PARs). Four members of the PAR family have been cloned so far. Thus, certain proteinases act as signaling molecules that specifically regulate cells by activating PARs. After stimulation, PARs couple to various G proteins and activate signal transduction pathways resulting in the rapid transcription of genes that are involved in inflammation. For example, PARs are widely expressed by cells involved in immune responses and inflammation, regulate endothelial-leukocyte interactions, and modulate the secretion of inflammatory mediators or neuropeptides. Together, the PAR family necessitates a paradigm shift in thinking about hormone action, to include proteinases as key modulators of biological function. Novel compounds that can modulate PAR function may be potent candidates for the treatment of inflammatory or immune diseases.
Collapse
Affiliation(s)
- Martin Steinhoff
- Department of Dermatology and Boltzmann Institute for Immunobiology of the Skin, University of Münster, von-Esmarch-Strasse 58, 48149 Münster, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Buresi MC, Vergnolle N, Sharkey KA, Keenan CM, Andrade-Gordon P, Cirino G, Cirillo D, Hollenberg MD, MacNaughton WK. Activation of proteinase-activated receptor-1 inhibits neurally evoked chloride secretion in the mouse colon in vitro. Am J Physiol Gastrointest Liver Physiol 2005; 288:G337-45. [PMID: 15345469 DOI: 10.1152/ajpgi.00112.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The proteinase-activated thrombin receptor-1 (PAR-1) belongs to a unique family of G protein-coupled receptors activated by proteolytic cleavage. We studied the effect of PAR-1 activation in the regulation of ion transport in mouse colon in vitro. Expression of PAR-1 in mouse colon was assessed by RT-PCR and immunohistochemistry. To study the role of PAR-1 activation in chloride secretion, mouse colon was mounted in Ussing chambers. Changes in short-circuit current (Isc) were measured in tissues exposed to either thrombin, saline, the PAR-1-activating peptide TFLLR-NH2, or the inactive reverse peptide RLLFT-NH2, before electrical field stimulation (EFS). Experiments were repeated in the presence of either a PAR-1 antagonist or in PAR-1-deficient mice to assess receptor specificity. In addition, studies were conducted in the presence of chloride-free buffer or the muscarinic antagonist atropine to assess chloride dependency and the role of cholinergic neurons in the PAR-1-induced effect. PAR-1 mRNA was expressed in full-thickness specimens and mucosal scrapings of mouse colon. PAR-1 immunoreactivity was found on epithelial cells and on neurons in submucosal ganglia where it was colocalized with both VIP and neuropeptide Y. After PAR-1 activation by thrombin or TFLLR-NH2, secretory responses to EFS but not those to forskolin or carbachol were significantly reduced. The reduction in the response to EFS was not observed in the presence of the PAR-1 antagonist, in PAR-1-deficient mice, when chloride was excluded from the bathing medium, or when atropine was present. PAR-1 is expressed in submucosal ganglia in the mouse colon and its activation leads to a decrease in neurally evoked epithelial chloride secretion.
Collapse
Affiliation(s)
- Michelle C Buresi
- Mucosal Inflammation Research Group, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Kawabata A, Kawao N. Physiology and pathophysiology of proteinase-activated receptors (PARs): PARs in the respiratory system: cellular signaling and physiological/pathological roles. J Pharmacol Sci 2005; 97:20-4. [PMID: 15655298 DOI: 10.1254/jphs.fmj04005x4] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Proteinase-activated receptors (PARs), a family of G protein-coupled receptors, are widely distributed in the mammalian body, playing a variety of physiological/pathophysiological roles. In the respiratory systems, PARs, particularly PAR-2 and PAR-1, are expressed in the epithelial and smooth muscle cells. In addition to the G(q/11)-mediated activation of the phospholipase C beta pathway, epithelial PAR activation causes prompt and/or delayed prostanoid formation, leading to airway smooth muscle relaxation and/or modulation of an inflammatory process. PAR-2 present in the epithelium and smooth muscle is considered primarily pro-inflammatory in the respiratory system, although PAR-2 may also be anti-inflammatory under certain conditions. In the lung epithelial cells, PAR-2 can also be activated by exogenous proteinases including house dust mite allergens, in addition to various possible endogenous agonist proteinases. Clinical evidence also suggests possible involvement of PARs, particularly PAR-2, in respiratory diseases. PARs thus appear to play critical roles in the respiratory systems, and the agonists/antagonists for PARs may serve as the novel therapeutic strategy for treatment of certain respiratory diseases including asthma.
Collapse
Affiliation(s)
- Atsufumi Kawabata
- Division of Physiology and Pathophysiology, School of Pharmaceutical Sciences, Kinki University, Higashi-Osaka, Japan.
| | | |
Collapse
|
49
|
Vergnolle N, Cellars L, Mencarelli A, Rizzo G, Swaminathan S, Beck P, Steinhoff M, Andrade-Gordon P, Bunnett NW, Hollenberg MD, Wallace JL, Cirino G, Fiorucci S. A role for proteinase-activated receptor-1 in inflammatory bowel diseases. J Clin Invest 2004; 114:1444-56. [PMID: 15545995 PMCID: PMC526028 DOI: 10.1172/jci21689] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Accepted: 09/14/2004] [Indexed: 02/06/2023] Open
Abstract
Proteinase-activated receptor-1 (PAR1), a G protein-coupled receptor activated by thrombin, is highly expressed in different cell types of the gastrointestinal tract. The activity of thrombin and of other proteinases is significantly increased in the colon of inflammatory bowel disease (IBD) patients. Since PAR1 activation in tissues other than the gut provoked inflammation, we hypothesized that PAR1 activation in the colon is involved in the pathogenesis of IBD. Here, we demonstrate that PAR1 is overexpressed in the colon of IBD patients. In mice, intracolonic administration of PAR1 agonists led to an inflammatory reaction characterized by edema and granulocyte infiltration. This PAR1 activation-induced inflammation was dependent on B and T lymphocytes. Moreover, PAR1 activation exacerbated and prolonged inflammation in a mouse model of IBD induced by the intracolonic administration of trinitrobenzene sulfonic acid (TNBS), while PAR1 antagonism significantly decreased the mortality and severity of colonic inflammation induced by TNBS and dextran sodium sulfate. In these 2 models, colitis development was strongly attenuated by PAR1 deficiency. Taken together, these results imply an important role for PAR1 in the pathogenesis of experimental colitis, supporting the notion that PAR1 inhibition may be beneficial in the context of IBD and possibly in other chronic intestinal inflammatory disorders.
Collapse
Affiliation(s)
- Nathalie Vergnolle
- Department of Pharmacology and Therapeutics, University of Calgary, Calgary, Alberta, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Kawabata A, Nakaya Y, Ishiki T, Kubo S, Kuroda R, Sekiguchi F, Kawao N, Nishikawa H, Kawai K. Receptor-activating peptides for PAR-1 and PAR-2 relax rat gastric artery via multiple mechanisms. Life Sci 2004; 75:2689-702. [PMID: 15369704 DOI: 10.1016/j.lfs.2004.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2004] [Accepted: 07/06/2004] [Indexed: 11/26/2022]
Abstract
Receptor-activating peptides for protease-activated receptors (PARs) 1 or 2 enhance gastric mucosal blood flow (GMBF) and protect against gastric mucosal injury in rats. We thus examined and characterized the effects of PAR-1 and PAR-2 agonists on the isometric tension in isolated rat gastric artery. The agonists for PAR-2 or PAR-1 produced vasodilation in the endothelium-intact arterial rings, which was abolished by removal of the endothelium. The mechanisms underlying the PAR-2- and PAR-1-mediated relaxation involved NO, endothelium-derived hyperpolarizing factor (EDHF) and prostanoids, to distinct extent, as evaluated by use of inhibitors of NO synthase, cyclo-oxygenase and Ca2+-activated K+ channels. The EDHF-dependent relaxation responses were significantly attenuated by gap junction inhibitors. These findings demonstrate that endothelial PAR-1 and PAR-2, upon activation, dilate the gastric artery via NO and prostanoid formation and also EDHF mechanisms including gap junctions, which would enhance GMBF.
Collapse
Affiliation(s)
- Atsufumi Kawabata
- Division of Physiology and Pathophysiology, School of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|