1
|
Chen J, Ma C, Li J, Niu X, Fan Y. Collagen-mediated cardiovascular calcification. Int J Biol Macromol 2025; 301:140225. [PMID: 39864707 DOI: 10.1016/j.ijbiomac.2025.140225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/09/2025] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
Cardiovascular calcification is a pathological process commonly observed in the elderly. Based on the location of the calcification, cardiovascular calcification can be classified into two main types: vascular calcification and valvular calcification. Collagen plays a critical role in the development of cardiovascular calcification lesions. The content and type of collagen are the result of a dynamic balance between synthesis and degradation. Unregulated processes can lead to adverse outcomes. During cardiovascular calcification, collagen not only serves as a scaffold for ectopic mineral deposition but also acts as a signal transduction pathway that mediates calcification by guiding the aggregation and nucleation of matrix vesicles and promoting the proliferation, migration and phenotypic changes of cells involved in the lesion. This review provides an overview of collagen subtypes in the cardiovascular system under physiological conditions and discusses their distribution. Additionally, we introduce pathological changes and mechanisms of collagen in blood vessels and heart valves. Then, the formation process and characteristic stages of cardiovascular calcification are described. Finally, we highlight the role of collagen in cardiovascular calcification, explore strategied for mediating calcification, and suggest potential directions for future research.
Collapse
Affiliation(s)
- Junlin Chen
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering); School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Chunyang Ma
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering); School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Jinyu Li
- Department of Orthopedic, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100007, China.
| | - Xufeng Niu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering); School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering); School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China; School of Engineering Medicine, Beihang University, Beijing 100083, China.
| |
Collapse
|
2
|
Zou X, Liu Q, Guan Q, Zhao M, Zhu X, Pan Y, Liu L, Gao Z. Muscle Fiber Characteristics and Transcriptome Analysis in Slow- and Fast-Growing Megalobrama amblycephala. Genes (Basel) 2024; 15:179. [PMID: 38397169 PMCID: PMC10888202 DOI: 10.3390/genes15020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Growth is an important trait in aquaculture that is influenced by various factors, among which genetic regulation plays a crucial role. Megalobrama amblycephala, one of the most important freshwater species in China, exhibits wide variations in body mass among individuals of the same age within the same pool. But the molecular mechanisms underlying wide variation in body mass remain unclear. Here, we performed muscle histological and transcriptome analysis of muscle tissues from Fast-Growing (FG) and Slow-Growing (SG) M. amblycephala at the age of 4 months old (4 mo) and 10 months old (10 mo) to elucidate its muscle development and growth mechanism. The muscle histological analysis showed smaller diameter and higher total number of muscle fibers in FG compared to SG at 4 mo, while larger diameter and total number of muscle fibers were detected in FG at 10 mo. The transcriptome analysis of muscle tissue detected 1171 differentially expressed genes (DEGs) between FG and SG at 4 mo, and 718 DEGs between FG and SG at 10 mo. Furthermore, 44 DEGs were consistently up-regulated in FG at both 4 mo and 10 mo. Up-regulated DEGs in FG at 4 mo were mainly enriched in the pathways related to cell proliferation, while down-regulated DEGs were significantly enriched in cell fusion and muscle contraction. Up-regulated DEGs in FG at 10 mo were mainly enriched in the pathways related to cell proliferation and protein synthesis. Therefore, these results provide novel insights into the molecular mechanism of M. amblycephala muscle growth at different stages, and will be of great guiding significance to promote the fast growth of M. amblycephala.
Collapse
Affiliation(s)
- Xue Zou
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (Q.L.); (Q.G.); (M.Z.); (Z.G.)
| | - Qi Liu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (Q.L.); (Q.G.); (M.Z.); (Z.G.)
| | - Qianqian Guan
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (Q.L.); (Q.G.); (M.Z.); (Z.G.)
| | - Ming Zhao
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (Q.L.); (Q.G.); (M.Z.); (Z.G.)
| | - Xin Zhu
- Department of Bioengineering and Environmental Science, Changsha University, Changsha 410003, China; (X.Z.)
| | - Yaxiong Pan
- Department of Bioengineering and Environmental Science, Changsha University, Changsha 410003, China; (X.Z.)
| | - Lusha Liu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (Q.L.); (Q.G.); (M.Z.); (Z.G.)
| | - Zexia Gao
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (Q.L.); (Q.G.); (M.Z.); (Z.G.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Engineering Technology Research Center for Fish Breeding and Culture in Hubei Province, Wuhan 430070, China
| |
Collapse
|
3
|
Yan B, Liu L, Zhao L, Hinz U, Luo Y, An X, Gladkich J, de la Torre C, Huang Z, Schrapel D, Gross W, Fortunato F, Schaefer M, Gaida MM, Herr I. Tumor and stroma COL8A1 secretion induces autocrine and paracrine progression signaling in pancreatic ductal adenocarcinoma. Matrix Biol 2022; 114:84-107. [PMID: 36375776 DOI: 10.1016/j.matbio.2022.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
Several collagen subtypes are involved in pancreatic ductal adenocarcinoma (PDAC) desmoplasia, which constrains therapeutic efficacy. We evaluated collagen type VIII alpha 1 chain (COL8A1), whose function in PDAC is currently unknown. We identified COL8A1 expression in 7 examined PDAC cell lines by microarray analysis, western blotting, and RT‒qPCR. Higher COL8A1 expression occurred in 2 gemcitabine-resistant PDAC cell lines; pancreas tissue (n=15) from LSL-KrasG12D/+; p48-Cre mice with advanced PDAC predisposition; and PDAC parenchyma and stroma of a patient tissue microarray (n=82). Bioinformatic analysis confirmed higher COL8A1 expression in PDAC patient tissue available from TCGA (n=183), GTEx (n=167), and GEO (n=261) databases. siRNA or lentiviral sh-mediated COL8A1 inhibition in PDAC cells reduced migration, invasion and gemcitabine resistance and resulted in lower cytidine deaminase and thymidine kinase 2 expression and was rescued by COL8A1-secreting cancer-associated fibroblasts (CAFs). The activation of COL8A1 expression involved cJun/AP-1, as demonstrated by CHIP assay and siRNA inhibition. Downstream of COL8A1, activation of ITGB1 and DDR1 receptors and PI3K/AKT and NF-κB signaling occurred, as detected by expression, adhesion and EMSA binding studies. Orthotopic transplantation of PDAC cells with downregulated COL8A1 expression resulted in reduced tumor xenograft growth and lower gemcitabine resistance but was prevented by cotransplantation of COL8A1-secreting CAFs. Most importantly, COL8A1 expression in PDAC patient tissues from our clinic (n=84) correlated with clinicopathological data, and we confirmed these findings by the use of patient data (n=177) from the TCGA database. These findings highlight COL8A1 expression in tumor and stromal cells as a new biomarker for PDAC progression.
Collapse
Affiliation(s)
- Bin Yan
- Department of General, Visceral and Transplantation Surgery, Section Surgical Research, University of Heidelberg, Im Neuenheimer Feld 365, Heidelberg 69120, Germany
| | - Li Liu
- Department of General, Visceral and Transplantation Surgery, Section Surgical Research, University of Heidelberg, Im Neuenheimer Feld 365, Heidelberg 69120, Germany
| | - Lian Zhao
- Department of General, Visceral and Transplantation Surgery, Section Surgical Research, University of Heidelberg, Im Neuenheimer Feld 365, Heidelberg 69120, Germany
| | - Ulf Hinz
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Yiqiao Luo
- Department of General, Visceral and Transplantation Surgery, Section Surgical Research, University of Heidelberg, Im Neuenheimer Feld 365, Heidelberg 69120, Germany
| | - Xuefeng An
- Department of General, Visceral and Transplantation Surgery, Section Surgical Research, University of Heidelberg, Im Neuenheimer Feld 365, Heidelberg 69120, Germany
| | - Jury Gladkich
- Department of General, Visceral and Transplantation Surgery, Section Surgical Research, University of Heidelberg, Im Neuenheimer Feld 365, Heidelberg 69120, Germany
| | - Carolina de la Torre
- NGS Core Facility, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Zhenhua Huang
- Department of General, Visceral and Transplantation Surgery, Section Surgical Research, University of Heidelberg, Im Neuenheimer Feld 365, Heidelberg 69120, Germany
| | - Daniel Schrapel
- Department of General, Visceral and Transplantation Surgery, Section Surgical Research, University of Heidelberg, Im Neuenheimer Feld 365, Heidelberg 69120, Germany
| | - Wolfgang Gross
- Department of General, Visceral and Transplantation Surgery, Section Surgical Research, University of Heidelberg, Im Neuenheimer Feld 365, Heidelberg 69120, Germany
| | - Franco Fortunato
- Department of General, Visceral and Transplantation Surgery, Section Surgical Research, University of Heidelberg, Im Neuenheimer Feld 365, Heidelberg 69120, Germany
| | - Michael Schaefer
- Department of General, Visceral and Transplantation Surgery, Section Surgical Research, University of Heidelberg, Im Neuenheimer Feld 365, Heidelberg 69120, Germany
| | - Matthias M Gaida
- Institute of Pathology, University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany; TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg University gGmbH, Mainz, Germany
| | - Ingrid Herr
- Department of General, Visceral and Transplantation Surgery, Section Surgical Research, University of Heidelberg, Im Neuenheimer Feld 365, Heidelberg 69120, Germany.
| |
Collapse
|
4
|
Andrographolide Attenuates Established Pulmonary Hypertension via Rescue of Vascular Remodeling. Biomolecules 2021; 11:biom11121801. [PMID: 34944445 PMCID: PMC8699233 DOI: 10.3390/biom11121801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/13/2021] [Accepted: 11/23/2021] [Indexed: 12/01/2022] Open
Abstract
Pulmonary hypertension (PH) is characterized by vascular remodeling caused by marked proliferation of pulmonary artery smooth muscle cells (PASMCs). Andrographolide (ANDRO) is a potent anti-inflammatory agent which possesses antioxidant, and has anticarcinogenic activity. The present study examined potential therapeutic effects of ANDRO on PH in both chronic hypoxia and Sugen5416/hypoxia mouse PH models. Effects of ANDRO were also studied in cultured human PASMCs isolated from either healthy donors or PH patients. In vivo, ANDRO decreased distal pulmonary arteries (PAs) remodeling, mean PA pressure and right ventricular hypertrophy in chronic hypoxia- and Sugen/hypoxia-induced PH in mice. ANDRO reduced cell viability, proliferation and migration, but increased cell apoptosis in the PASMCs isolated from PH patients. ANDRO also reversed the dysfunctional bone morphogenetic protein receptor type-2 (BMPR2) signaling, suppressed [Ca2+]i elevation, reactive oxygen species (ROS) generation, and the upregulated expression of IL-6 and IL-8, ET-1 and VEGF in PASMCs from PH patients. Moreover, ANDRO significantly attenuated the activation of TLR4/NF-κB, ERK- and JNK-MAPK signaling pathways and reversed the inhibition of p38-MAPK in PASMCs of PH patients. Further, ANDRO blocked hypoxia-triggered ROS generation by suppressing NADPH oxidase (NOX) activation and augmenting nuclear factor erythroid 2-related factor 2 (Nrf2) expression both in vitro and in vivo. Conventional pulmonary vasodilators have limited efficacy for the treatment of severe PH. We demonstrated that ANDRO may reverse pulmonary vascular remodeling through modulation of NOX/Nrf2-mediated oxidative stress and NF-κB-mediated inflammation. Our findings suggest that ANDRO may have therapeutic value in the treatment of PH.
Collapse
|
5
|
Mohabeer AL, Kroetsch JT, McFadden M, Khosraviani N, Broekelmann TJ, Hou G, Zhang H, Zhou YQ, Wang M, Gramolini AO, Mecham RP, Heximer SP, Bolz SS, Bendeck MP. Deletion of type VIII collagen reduces blood pressure, increases carotid artery functional distensibility and promotes elastin deposition. Matrix Biol Plus 2021; 12:100085. [PMID: 34693248 PMCID: PMC8517381 DOI: 10.1016/j.mbplus.2021.100085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/14/2021] [Accepted: 09/21/2021] [Indexed: 11/19/2022] Open
Abstract
Arterial stiffening is a significant predictor of cardiovascular disease development and mortality. In elastic arteries, stiffening refers to the loss and fragmentation of elastic fibers, with a progressive increase in collagen fibers. Type VIII collagen (Col-8) is highly expressed developmentally, and then once again dramatically upregulated in aged and diseased vessels characterized by arterial stiffening. Yet its biophysical impact on the vessel wall remains unknown. The purpose of this study was to test the hypothesis that Col-8 functions as a matrix scaffold to maintain vessel integrity during extracellular matrix (ECM) development. These changes are predicted to persist into the adult vasculature, and we have tested this in our investigation. Through our in vivo and in vitro studies, we have determined a novel interaction between Col-8 and elastin. Mice deficient in Col-8 (Col8-/-) had reduced baseline blood pressure and increased arterial compliance, indicating an enhanced Windkessel effect in conducting arteries. Differences in both the ECM composition and VSMC activity resulted in Col8-/- carotid arteries that displayed increased crosslinked elastin and functional distensibility, but enhanced catecholamine-induced VSMC contractility. In vitro studies revealed that the absence of Col-8 dramatically increased tropoelastin mRNA and elastic fiber deposition in the ECM, which was decreased with exogenous Col-8 treatment. These findings suggest a causative role for Col-8 in reducing mRNA levels of tropoelastin and the presence of elastic fibers in the matrix. Moreover, we also found that Col-8 and elastin have opposing effects on VSMC phenotype, the former promoting a synthetic phenotype, whereas the latter confers quiescence. These studies further our understanding of Col-8 function and open a promising new area of investigation related to elastin biology.
Collapse
Affiliation(s)
- Amanda L. Mohabeer
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey T. Kroetsch
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Ontario, Canada
- Toronto Centre for Microvascular Medicine at TBEP, University of Toronto, Toronto, Ontario, Canada
| | - Meghan McFadden
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Ontario, Canada
| | - Negin Khosraviani
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Ontario, Canada
| | - Thomas J. Broekelmann
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Guangpei Hou
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Ontario, Canada
| | - Hangjun Zhang
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Ontario, Canada
| | - Yu-Qing Zhou
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Ontario, Canada
| | - Minyao Wang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Ontario, Canada
| | - Anthony O. Gramolini
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Ontario, Canada
| | - Robert P. Mecham
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Scott P. Heximer
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Ontario, Canada
| | - Steffen-Sebastian Bolz
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Ontario, Canada
- Toronto Centre for Microvascular Medicine at TBEP, University of Toronto, Toronto, Ontario, Canada
| | - Michelle P. Bendeck
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Ontario, Canada
- Corresponding author at: TBEP, University of Toronto, 661 University Ave, Rm. 1432, Toronto, ON M5G 1M1, Canada.
| |
Collapse
|
6
|
Identification of Estrogen Signaling in a Prioritization Study of Intraocular Pressure-Associated Genes. Int J Mol Sci 2021; 22:ijms221910288. [PMID: 34638643 PMCID: PMC8508848 DOI: 10.3390/ijms221910288] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 12/12/2022] Open
Abstract
Elevated intraocular pressure (IOP) is the only modifiable risk factor for primary open-angle glaucoma (POAG). Herein we sought to prioritize a set of previously identified IOP-associated genes using novel and previously published datasets. We identified several genes for future study, including several involved in cytoskeletal/extracellular matrix reorganization, cell adhesion, angiogenesis, and TGF-β signaling. Our differential correlation analysis of IOP-associated genes identified 295 pairs of 201 genes with differential correlation. Pathway analysis identified β-estradiol as the top upstream regulator of these genes with ESR1 mediating 25 interactions. Several genes (i.e., EFEMP1, FOXC1, and SPTBN1) regulated by β-estradiol/ESR1 were highly expressed in non-glaucomatous human trabecular meshwork (TM) or Schlemm’s canal (SC) cells and specifically expressed in TM/SC cell clusters defined by single-cell RNA-sequencing. We confirmed ESR1 gene and protein expression in human TM cells and TM/SC tissue with quantitative real-time PCR and immunofluorescence, respectively. 17β-estradiol was identified in bovine, porcine, and human aqueous humor (AH) using ELISA. In conclusion, we have identified estrogen receptor signaling as a key modulator of several IOP-associated genes. The expression of ESR1 and these IOP-associated genes in TM/SC tissue and the presence of 17β-estradiol in AH supports a role for estrogen signaling in IOP regulation.
Collapse
|
7
|
Takeda H, Nagai S, Ikeda D, Kaneko S, Tsuji T, Fujita N. Collagen profiling of ligamentum flavum in patients with lumbar spinal canal stenosis. J Orthop Sci 2021; 26:560-565. [PMID: 32753253 DOI: 10.1016/j.jos.2020.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/30/2020] [Accepted: 06/24/2020] [Indexed: 01/15/2023]
Abstract
BACKGROUND Although several causes of ligamentum flavum (LF) hypertrophy have been identified, the pathomechanisms underlying LF hypertrophy are not fully understood. Because collagen fibers are essential for the maintenance of LF tissues, characterization of the collagen composition of hypertrophied LF may help to elucidate the pathology of lumbar spinal canal stenosis (LCS). This study aimed to determine the association between the collagen composition and LF hypertrophy. METHODS LF tissues were collected from 23 patients who underwent spinal decompression surgery for lumbar disorders. The cross-sectional area of LF was measured using the axial images of lumbar MRI. The expression of each collagen in human surgical samples was evaluated by real-time RT-PCR and immunohistochemical analysis. To investigate the impact of inflammatory cytokines on the expression of each collagen, we treated primary human LF cells with TNF-α or IL-1β. RESULTS Real-time RT-PCR analysis and immunohistochemistry showed that of the 28 types of collagen, collagen type I, III, V, VI, VIII were highly expressed regardless of LF hypertrophy. In addition, we found the moderate correlation between the cross-sectional area of LF and the mRNA expression level of collagen type I, III, and VI. In vitro analysis showed that the mRNA expression of collagen type I, III, V, VI, and VIII was up-regulated by treatment with TNF-α and with IL-1β. CONCLUSION Our results suggested that collagen type I, III, V, VI, and VIII were the main components of the LF extracellular matrix and that collagen type I, III, and VI may serve as useful markers of LF hypertrophy. These findings may contribute to the future development of diagnostic and treatment modalities for LF hypertrophy and even LCS.
Collapse
Affiliation(s)
- Hiroki Takeda
- Department of Orthopaedic Surgery, School of Medicine, Fujita Health University, Aichi, Japan; Department of Spine and Spinal Cord, Fujita Health University, Aichi, Japan
| | - Sota Nagai
- Department of Orthopaedic Surgery, School of Medicine, Fujita Health University, Aichi, Japan
| | - Daiki Ikeda
- Department of Orthopaedic Surgery, School of Medicine, Fujita Health University, Aichi, Japan
| | - Shinjiro Kaneko
- Department of Spine and Spinal Cord, Fujita Health University, Aichi, Japan
| | - Takashi Tsuji
- Department of Orthopaedic Surgery, National Hospital Organization Tokyo Medical Center, Tokyo, Japan.
| | - Nobuyuki Fujita
- Department of Orthopaedic Surgery, School of Medicine, Fujita Health University, Aichi, Japan.
| |
Collapse
|
8
|
Bao H, Li ZT, Xu LH, Su TY, Han Y, Bao M, Liu Z, Fan YJ, Lou Y, Chen Y, Jiang ZL, Gong XB, Qi YX. Platelet-Derived Extracellular Vesicles Increase Col8a1 Secretion and Vascular Stiffness in Intimal Injury. Front Cell Dev Biol 2021; 9:641763. [PMID: 33738288 PMCID: PMC7960786 DOI: 10.3389/fcell.2021.641763] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/09/2021] [Indexed: 12/31/2022] Open
Abstract
The arterial mechanical microenvironment, including stiffness, is a crucial pathophysiological feature of vascular remodeling, such as neointimal hyperplasia after carotid endarterectomy and balloon dilatation surgeries. In this study, we examined changes in neointimal stiffness in a Sprague-Dawley rat carotid artery intimal injury model and revealed that extracellular matrix (ECM) secretion and vascular stiffness were increased. Once the endothelial layer is damaged in vivo, activated platelets adhere to the intima and may secrete platelet-derived extracellular vesicles (pEVs) and communicate with vascular smooth muscle cells (VSMCs). In vitro, pEVs stimulated VSMCs to promote collagen secretion and cell adhesion. MRNA sequencing analysis of a carotid artery intimal injury model showed that ECM factors, including col8a1, col8a2, col12a1, and elastin, were upregulated. Subsequently, ingenuity pathway analysis (IPA) was used to examine the possible signaling pathways involved in the formation of ECM, of which the Akt pathway played a central role. In vitro, pEVs activated Akt signaling through the PIP3 pathway and induced the production of Col8a1. MicroRNA (miR) sequencing of pEVs released from activated platelets revealed that 14 of the top 30 miRs in pEVs targeted PTEN, which could promote the activation of the Akt pathway. Further research showed that the most abundant miR targeting PTEN was miR-92a-3p, which promoted Col8a1 expression. Interestingly, knockdown of Col8a1 expression in vivo abrogated the increase in carotid artery stiffness and simultaneously increased the degree of neointimal hyperplasia. Our results revealed that pEVs may deliver miR-92a-3p to VSMCs to induce the production and secretion of Col8a1 via the PTEN/PIP3/Akt pathway, subsequently increasing vascular stiffness. Therefore, pEVs and key molecules may be potential therapeutic targets for treating neointimal hyperplasia.
Collapse
Affiliation(s)
- Han Bao
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Hydrodynamics (Ministry of Education), Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zi-Tong Li
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Lei-Han Xu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Tong-Yue Su
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Yue Han
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Min Bao
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ze Liu
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yang-Jing Fan
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Lou
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Chen
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zong-Lai Jiang
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Bo Gong
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Hydrodynamics (Ministry of Education), Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ying-Xin Qi
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| |
Collapse
|
9
|
Murphy PA, Jailkhani N, Nicholas SA, Del Rosario AM, Balsbaugh JL, Begum S, Kimble A, Hynes RO. Alternative Splicing of FN (Fibronectin) Regulates the Composition of the Arterial Wall Under Low Flow. Arterioscler Thromb Vasc Biol 2021; 41:e18-e32. [PMID: 33207933 PMCID: PMC8428803 DOI: 10.1161/atvbaha.120.314013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 10/23/2020] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Exposure of the arterial endothelium to low and disturbed flow is a risk factor for the erosion and rupture of atherosclerotic plaques and aneurysms. Circulating and locally produced proteins are known to contribute to an altered composition of the extracellular matrix at the site of lesions, and to contribute to inflammatory processes within the lesions. We have previously shown that alternative splicing of FN (fibronectin) protects against flow-induced hemorrhage. However, the impact of alternative splicing of FN on extracellular matrix composition remains unknown. Approach and Results: Here, we perform quantitative proteomic analysis of the matrisome of murine carotid arteries in mice deficient in the production of FN splice isoforms containing alternative exons EIIIA and EIIIB (FN-EIIIAB null) after exposure to low and disturbed flow in vivo. We also examine serum-derived and endothelial-cell contributions to the matrisome in a simplified in vitro system. We found flow-induced differences in the carotid artery matrisome that were impaired in FN-EIIIAB null mice. One of the most interesting differences was reduced recruitment of FBLN1 (fibulin-1), abundant in blood and not locally produced in the intima. This defect was validated in our in vitro assay, where FBLN1 recruitment from serum was impaired by the absence of these alternatively spliced segments. CONCLUSIONS Our results reveal the extent of the dynamic alterations in the matrisome in the acute response to low and disturbed flow and show how changes in the splicing of FN, a common response in vascular inflammation and remodeling, can affect matrix composition.
Collapse
Affiliation(s)
- Patrick A. Murphy
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139
- UCONN Health, Farmington, CT 06030
| | - Noor Jailkhani
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139
| | | | | | | | - Shahinoor Begum
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139
- Howard Hughes Medical Institute, Chevy Chase, MD 20815
| | | | - Richard O. Hynes
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139
- Howard Hughes Medical Institute, Chevy Chase, MD 20815
| |
Collapse
|
10
|
Abstract
: Hypertension is a worldwide known cause of morbidity and mortality in the elderly and is a major risk factor for cardiovascular complications such as stroke, myocardial infarction, renal complications and heart failure. Although the mechanisms of hypertension remain largely unknown, a recent new concept is that aortic stiffening is a cause of hypertension in middle-aged and older individuals, which highlighted the importance of aortic stiffening in the development of age-related hypertension. Understanding the pathogenesis of aortic stiffness therefore became one of the important approaches to preventing and controlling hypertension. This review discusses the recent progress of the potential causes of aortic stiffening and its implication on the pathogenesis of hypertension, in terms of aging, inflammation, metabolic syndromes, neuroendocrine and the interaction among these causes.
Collapse
Affiliation(s)
- John O. ONUH
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, USA, 30303
| | - Hongyu QIU
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, USA, 30303
| |
Collapse
|
11
|
Zhang L, Jiang X, Li Y, Fan Q, Li H, Jin L, Li L, Jin Y, Zhang T, Mao Y, Hua D. Clinical Correlation of Wnt2 and COL8A1 With Colon Adenocarcinoma Prognosis. Front Oncol 2020; 10:1504. [PMID: 32983993 PMCID: PMC7484937 DOI: 10.3389/fonc.2020.01504] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022] Open
Abstract
Wnt2 mRNA is widely expressed in various tumor tissues. Wnt2 overexpression promotes tumor growth, migration, invasion, and metastasis. However, its underlying molecular action mechanisms and clinical implications in colon adenocarcinoma (COAD) remain unclear. mRNA expression data, obtained from tissue samples, and pathophysiological data of 368 COAD patients were obtained from the Cancer Genome Atlas (TCGA) database. Further, Pearson's correlation analysis was performed to explore the correlation between the expression levels of Wnt2 and other genes in the human genome. Subsequently, a protein-protein interaction (PPI) network was constructed for hub gene identification. Overall survival and significance were determined by Kaplan-Meier analysis, and the log-rank test was used to further identify genes with prognostic significance in COAD from GEO datasets (GSE17538 and GSE39582). Subsequently, 158 tissue samples from Affiliated Hospital of Jiangnan University were used for expression verification. Gene set enrichment analysis (GSEA) was performed on high and low Wnt2 expression datasets to identify potential signaling pathways activated in COAD. In all, 10 hub genes associated with Wnt2 were screened by Pearson's correlation analysis and PPI network, with Wnt2 and COL8A1 having significantly poor prognosis by Kaplan-Meier analysis and log-rank test. Furthermore, high expressions of COL8A1 and Wnt2 were associated with poor survival both in TCGA and GEO cohorts. We further found a correlation between the expressions of Wnt2 and COL8A1 in COAD as per immunohistochemical analysis. To further elucidate the underlying molecular mechanisms of Wnt2 in COAD, we searched for pathways enriched in Wnt2 overexpressing datasets by GSEA. Our findings revealed that high Wnt2 levels were significantly associated with extracellular matrix receptor and focal adhesion pathways. Wnt2 expression correlated with COL8A1 expression in COAD; patients with high Wnt2 and COL8A1 expressions had worse survival outcomes. Pathways identified in this study prompt the molecular role of Wnt2 in COAD and provide directions to further elucidate the involved molecular mechanisms in COAD.
Collapse
Affiliation(s)
- Lihua Zhang
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China.,School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China.,Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining, China
| | - Xin Jiang
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China.,Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Yan Li
- Department of Pharmacy, Maternal and Child Health Hospital of Zaozhuang, Zaozhuang, China
| | - Qianqian Fan
- Department of Gynecology, Maternal and Child Health Hospital of Zaozhuang, Zaozhuang, China
| | - Hongjuan Li
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Linfang Jin
- Department of Pathology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Liqi Li
- Department of Thyroid Breast Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yufen Jin
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China.,Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Ting Zhang
- Institute of Cancer, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yong Mao
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China.,Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Dong Hua
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China.,School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China.,Wuxi Medical College, Jiangnan University, Wuxi, China
| |
Collapse
|
12
|
Wadey K, Lopes J, Bendeck M, George S. Role of smooth muscle cells in coronary artery bypass grafting failure. Cardiovasc Res 2019; 114:601-610. [PMID: 29373656 DOI: 10.1093/cvr/cvy021] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 01/22/2018] [Indexed: 01/30/2023] Open
Abstract
Atherosclerosis is the underlying pathology of many cardiovascular diseases. The formation and rupture of atherosclerotic plaques in the coronary arteries results in angina and myocardial infarction. Venous coronary artery bypass grafts are designed to reduce the consequences of atherosclerosis in the coronary arteries by diverting blood flow around the atherosclerotic plaques. However, vein grafts suffer a high failure rate due to intimal thickening that occurs as a result of vascular cell injury and activation and can act as 'a soil' for subsequent atherosclerotic plaque formation. A clinically-proven method for the reduction of vein graft intimal thickening and subsequent major adverse clinical events is currently not available. Consequently, a greater understanding of the underlying mechanisms of intimal thickening may be beneficial for the design of future therapies for vein graft failure. Vein grafting induces inflammation and endothelial cell damage and dysfunction, that promotes vascular smooth muscle cell (VSMC) migration, and proliferation. Injury to the wall of the vein as a result of grafting leads to the production of chemoattractants, remodelling of the extracellular matrix and cell-cell contacts; which all contribute to the induction of VSMC migration and proliferation. This review focuses on the role of altered behaviour of VSMCs in the vein graft and some of the factors which critically lead to intimal thickening that pre-disposes the vein graft to further atherosclerosis and re-occurrence of symptoms in the patient.
Collapse
Affiliation(s)
- Kerry Wadey
- Bristol Medical School, Research Floor Level 7, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| | - Joshua Lopes
- Translational Biology and Engineering Program, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Michelle Bendeck
- Translational Biology and Engineering Program, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Sarah George
- Bristol Medical School, Research Floor Level 7, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| |
Collapse
|
13
|
Staiculescu MC, Cocciolone AJ, Procknow JD, Kim J, Wagenseil JE. Comparative gene array analyses of severe elastic fiber defects in late embryonic and newborn mouse aorta. Physiol Genomics 2018; 50:988-1001. [PMID: 30312140 PMCID: PMC6293116 DOI: 10.1152/physiolgenomics.00080.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 01/17/2023] Open
Abstract
Elastic fibers provide reversible elasticity to the large arteries and are assembled during development when hemodynamic forces are increasing. Mutations in elastic fiber genes are associated with cardiovascular disease. Mice lacking expression of the elastic fiber genes elastin ( Eln-/-), fibulin-4 ( Efemp2-/-), or lysyl oxidase ( Lox-/-) die at birth with severe cardiovascular malformations. All three genetic knockout models have elastic fiber defects, aortic wall thickening, and arterial tortuosity. However, Eln-/- mice develop arterial stenoses, while Efemp2-/- and Lox-/- mice develop ascending aortic aneurysms. We performed comparative gene array analyses of these three genetic models for two vascular locations and developmental stages to determine differentially expressed genes and pathways that may explain the common and divergent phenotypes. We first examined arterial morphology and wall structure in newborn mice to confirm that the lack of elastin, fibulin-4, or lysyl oxidase expression provided the expected phenotypes. We then compared gene expression levels for each genetic model by three-way ANOVA for genotype, vascular location, and developmental stage. We found three genes upregulated by genotype in all three models, Col8a1, Igfbp2, and Thbs1, indicative of a common response to severe elastic fiber defects in developing mouse aorta. Genes that are differentially regulated by vascular location or developmental stage in all three models suggest mechanisms for location or stage-specific disease pathology. Comparison of signaling pathways enriched in all three models shows upregulation of integrins and matrix proteins involved in early wound healing, but not of mature matrix molecules such as elastic fiber proteins or fibrillar collagens.
Collapse
Affiliation(s)
| | - Austin J Cocciolone
- Department of Biomedical Engineering, Washington University , St. Louis, Missouri
| | - Jesse D Procknow
- Department of Mechanical Engineering and Materials Science, Washington University , St. Louis, Missouri
| | - Jungsil Kim
- Department of Mechanical Engineering and Materials Science, Washington University , St. Louis, Missouri
| | - Jessica E Wagenseil
- Department of Mechanical Engineering and Materials Science, Washington University , St. Louis, Missouri
| |
Collapse
|
14
|
Li X, Wang Z, Tong H, Yan Y, Li S. Effects of COL8A1 on the proliferation of muscle-derived satellite cells. Cell Biol Int 2018; 42:1132-1140. [PMID: 29696735 DOI: 10.1002/cbin.10979] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 04/21/2018] [Indexed: 11/10/2022]
Abstract
Collagen type VIII alpha 1 chain (COL8A1) is a component of the extracellular matrix. Our previous studies suggested that COL8A1 is associated with the proliferation of muscle-derived satellite cells (MDSCs). Additionally, it has been demonstrated that COL8A1 promotes the proliferation of smooth muscle cells and liver cancer cells. Therefore, we predicted that COL8A1 is associated with the proliferation of bovine MDSCs, which have potential applications in research. In this study, we constructed vectors to activate and repress COL8A1 in bovine MDSCs using the CRISPR/Cas9 technique and determined the effects of COL8A1 modulation by EdU labeling, Western blotting, and dual-luciferase reporter assays. The results showed that activation of COL8A1 increased the number of EdU-positive cells and expression of the proliferation markers cyclin B1 (CCNB1) and P-AKT. The expression of P-Akt was unchanged after addition of LY294002 (a protein kinase inhibitor capable of blocking the signal transduction pathway of the phosphoinositide 3-kinase). In contrast, repression of COL8A1 reduced the number of EdU-positive cells and expression of CCNB1 and P-AKT. We also observed upregulation and downregulation of COL8A1 following the overexpression and repression of EGR1, respectively. The dual-luciferase reporter assay revealed that EGR1 regulates the promoter activity of COL8A1. To our knowledge, this is the first study demonstrating that EGR1 positively regulates the expression of COL8A1, which in turn promotes the proliferation of bovine MDSCs via the PI3 K/AKT signaling pathway.
Collapse
Affiliation(s)
- Xiaofan Li
- Laboratory of Cellular and Developmental Biology, Life Science College, North-east Agricultural University, Harbin, 150030, China
| | - Zhao Wang
- Laboratory of Cellular and Developmental Biology, Life Science College, North-east Agricultural University, Harbin, 150030, China
| | - Huili Tong
- Laboratory of Cellular and Developmental Biology, Life Science College, North-east Agricultural University, Harbin, 150030, China
| | - Yunqin Yan
- Laboratory of Cellular and Developmental Biology, Life Science College, North-east Agricultural University, Harbin, 150030, China
| | - Shufeng Li
- Laboratory of Cellular and Developmental Biology, Life Science College, North-east Agricultural University, Harbin, 150030, China
| |
Collapse
|
15
|
The arterial microenvironment: the where and why of atherosclerosis. Biochem J 2017; 473:1281-95. [PMID: 27208212 DOI: 10.1042/bj20150844] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 02/15/2016] [Indexed: 12/11/2022]
Abstract
The formation of atherosclerotic plaques in the large and medium sized arteries is classically driven by systemic factors, such as elevated cholesterol and blood pressure. However, work over the past several decades has established that atherosclerotic plaque development involves a complex coordination of both systemic and local cues that ultimately determine where plaques form and how plaques progress. Although current therapeutics for atherosclerotic cardiovascular disease primarily target the systemic risk factors, a large array of studies suggest that the local microenvironment, including arterial mechanics, matrix remodelling and lipid deposition, plays a vital role in regulating the local susceptibility to plaque development through the regulation of vascular cell function. Additionally, these microenvironmental stimuli are capable of tuning other aspects of the microenvironment through collective adaptation. In this review, we will discuss the components of the arterial microenvironment, how these components cross-talk to shape the local microenvironment, and the effect of microenvironmental stimuli on vascular cell function during atherosclerotic plaque formation.
Collapse
|
16
|
Integrin signaling in atherosclerosis. Cell Mol Life Sci 2017; 74:2263-2282. [PMID: 28246700 DOI: 10.1007/s00018-017-2490-4] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/24/2017] [Accepted: 02/15/2017] [Indexed: 02/07/2023]
Abstract
Atherosclerosis, a chronic lipid-driven inflammatory disease affecting large arteries, represents the primary cause of cardiovascular disease in the world. The local remodeling of the vessel intima during atherosclerosis involves the modulation of vascular cell phenotype, alteration of cell migration and proliferation, and propagation of local extracellular matrix remodeling. All of these responses represent targets of the integrin family of cell adhesion receptors. As such, alterations in integrin signaling affect multiple aspects of atherosclerosis, from the earliest induction of inflammation to the development of advanced fibrotic plaques. Integrin signaling has been shown to regulate endothelial phenotype, facilitate leukocyte homing, affect leukocyte function, and drive smooth muscle fibroproliferative remodeling. In addition, integrin signaling in platelets contributes to the thrombotic complications that typically drive the clinical manifestation of cardiovascular disease. In this review, we examine the current literature on integrin regulation of atherosclerotic plaque development and the suitability of integrins as potential therapeutic targets to limit cardiovascular disease and its complications.
Collapse
|
17
|
Piccinini AM, Zuliani-Alvarez L, Lim JMP, Midwood KS. Distinct microenvironmental cues stimulate divergent TLR4-mediated signaling pathways in macrophages. Sci Signal 2016; 9:ra86. [PMID: 27577261 DOI: 10.1126/scisignal.aaf3596] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Macrophages exhibit a phenotypic plasticity that enables them to orchestrate specific immune responses to distinct threats. The microbial product lipopolysaccharide (LPS) and the extracellular matrix glycoprotein tenascin-C are released during bacterial infection and tissue injury, respectively, and both activate Toll-like receptor 4 (TLR4). We found that these two TLR4 ligands stimulated distinct signaling pathways in macrophages, resulting in cells with divergent phenotypes. Although macrophages activated by LPS or tenascin-C displayed some common features, including activation of nuclear factor κB and mitogen-activated protein kinase signaling and cytokine synthesis, each ligand stimulated the production of different subsets of cytokines and generated different phosphoproteomic signatures. Moreover, tenascin-C promoted the generation of macrophages that exhibited increased synthesis and phosphorylation of extracellular matrix components, whereas LPS stimulated the production of macrophages that exhibited an enhanced capacity to degrade the matrix. These data reveal how the activation of one pattern recognition receptor by different microenvironmental cues generates macrophage with distinct phenotypes.
Collapse
Affiliation(s)
- Anna M Piccinini
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Headington, Oxford OX3 7FY, U.K
| | - Lorena Zuliani-Alvarez
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Headington, Oxford OX3 7FY, U.K
| | - Jenny M P Lim
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Headington, Oxford OX3 7FY, U.K
| | - Kim S Midwood
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Headington, Oxford OX3 7FY, U.K.
| |
Collapse
|
18
|
Louzao-Martinez L, Vink A, Harakalova M, Asselbergs FW, Verhaar MC, Cheng C. Characteristic adaptations of the extracellular matrix in dilated cardiomyopathy. Int J Cardiol 2016; 220:634-46. [PMID: 27391006 DOI: 10.1016/j.ijcard.2016.06.253] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 05/31/2016] [Accepted: 06/26/2016] [Indexed: 12/20/2022]
Abstract
Dilated cardiomyopathy (DCM) is a relatively common heart muscle disease characterized by the dilation and thinning of the left ventricle accompanied with left ventricular systolic dysfunction. Myocardial fibrosis is a major feature in DCM and therefore it is inevitable that corresponding extracellular matrix (ECM) changes are involved in DCM onset and progression. Increasing our understanding of how ECM adaptations are involved in DCM could be important for the development of future interventions. This review article discusses the molecular adaptations in ECM composition and structure that have been reported in both animal and human studies of DCM. Furthermore, we provide a transcriptome-based catalogue of ECM genes that are associated with DCM, generated by using NCBI Gene Expression Omnibus database sets for DCM. Based on this in silico analysis, many novel ECM components involved in DCM are identified and discussed in this review. With the information gathered, we propose putative pathways of ECM adaptations in onset and progression of DCM.
Collapse
Affiliation(s)
- Laura Louzao-Martinez
- Department of Nephrology and Hypertension, Division of Internal Medicine and Dermatology, University Medical Center Utrecht, The Netherlands; Netherlands Heart Institute, University Medical Center Utrecht, The Netherlands
| | - Aryan Vink
- Department of Pathology, University Medical Center Utrecht, The Netherlands
| | - Magdalena Harakalova
- Netherlands Heart Institute, University Medical Center Utrecht, The Netherlands; Department of Pathology, University Medical Center Utrecht, The Netherlands; Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, The Netherlands
| | - Folkert W Asselbergs
- Netherlands Heart Institute, University Medical Center Utrecht, The Netherlands; Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, The Netherlands; Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, United Kingdom
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, Division of Internal Medicine and Dermatology, University Medical Center Utrecht, The Netherlands
| | - Caroline Cheng
- Department of Nephrology and Hypertension, Division of Internal Medicine and Dermatology, University Medical Center Utrecht, The Netherlands; Department of Cardiology, Thoraxcenter, Division of Experimental Cardiology, Erasmus University Medical Center Rotterdam, The Netherlands.
| |
Collapse
|
19
|
Shen AL, Moran SA, Glover EA, Drinkwater NR, Swearingen RE, Teixeira LB, Bradfield CA. Association of a Chromosomal Rearrangement Event with Mouse Posterior Polymorphous Corneal Dystrophy and Alterations in Csrp2bp, Dzank1, and Ovol2 Gene Expression. PLoS One 2016; 11:e0157577. [PMID: 27310661 PMCID: PMC4910986 DOI: 10.1371/journal.pone.0157577] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 06/01/2016] [Indexed: 12/26/2022] Open
Abstract
We have previously described a mouse model of human posterior polymorphous corneal dystrophy (PPCD) and localized the causative mutation to a 6.2 Mbp region of chromosome 2, termed Ppcd1. We now show that the gene rearrangement linked to mouse Ppcd1 is a 3.9 Mbp chromosomal inversion flanked by 81 Kbp and 542 bp deletions. This recombination event leads to deletion of Csrp2bp Exons 8 through 11, Dzank1 Exons 20 and 21, and the pseudogene Znf133. In addition, we identified translocation of novel downstream sequences to positions adjacent to Csrp2bp Exon 7 and Dzank1 Exon 20. Twelve novel fusion transcripts involving Csrp2bp or Dzank1 linked to downstream sequences have been identified. Eight are expressed at detectable levels in PPCD1 but not wildtype eyes. Upregulation of two Csrp2bp fusion transcripts, as well as upregulation of the adjacent gene, Ovol2, was observed. Absence of the PPCD1 phenotype in animals haploinsufficient for Csrp2bp or both Csrp2bp and Dzank1 rules out haploinsufficiency of these genes as a cause of mouse PPCD1. Complementation experiments confirm that PPCD1 embryonic lethality is due to disruption of Csrp2bp expression. The ocular expression pattern of Csrp2bp is consistent with a role for this protein in corneal development and pathogenesis of PPCD1.
Collapse
Affiliation(s)
- Anna L. Shen
- The McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States of America
- McPherson Eye Research Institute, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail: (CAB); (ALS)
| | - Susan A. Moran
- The McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Edward A. Glover
- The McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Norman R. Drinkwater
- The McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Rebecca E. Swearingen
- The McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Leandro B. Teixeira
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States of America
- McPherson Eye Research Institute, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Christopher A. Bradfield
- The McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States of America
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, United States of America
- McPherson Eye Research Institute, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail: (CAB); (ALS)
| |
Collapse
|
20
|
|
21
|
Vastatin, an Endogenous Antiangiogenesis Polypeptide That Is Lost in Hepatocellular Carcinoma, Effectively Inhibits Tumor Metastasis. Mol Ther 2016; 24:1358-68. [PMID: 26961408 DOI: 10.1038/mt.2016.56] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 01/30/2016] [Indexed: 12/23/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a hypervascular cancer without effective treatment. Here we report that polypeptide of NC1 domain of type VIII collagen (Vastatin) is an endogenous polypeptide expressed in normal liver tissue but lost in the liver of most HCC patients (73.1%). Its expression level is negatively associated with tumor size (P = 0.035) and metastasis (P = 0.016) in HCC patients. To evaluate its potential use as a therapeutic, we constructed a recombinant adeno-associated virus carrying Vastatin (rAAV-Vastatin) to treat HCC in an orthotopic Buffalo rat model. rAAV-Vastatin treatment significantly prolonged the median survival, inhibited tumor growth, and completely prevented metastasis in HCC-bearing rats by decreasing microvessel density and increasing tumor necrosis. No detectable toxicity in nontumor-bearing mice was observed. To investigate its molecular mechanisms, we performed DNA microarray, western blotting assays, and bioinformatic analysis to determine its effect on global gene expression patterns and signal transduction pathways. Our results indicated that rAAV-Vastatin significantly reduced the expressions of Pck1, JAG2, and c-Fos, thus inhibiting the cellular metabolism, Notch and AP-1 signaling pathways, respectively. Hence, we demonstrated for the first time that Vastatin is a novel, safe, and effective antiangiogenic therapeutic and a potential biomarker for HCC.
Collapse
|
22
|
|
23
|
Kim J, Procknow JD, Yanagisawa H, Wagenseil JE. Differences in genetic signaling, and not mechanical properties of the wall, are linked to ascending aortic aneurysms in fibulin-4 knockout mice. Am J Physiol Heart Circ Physiol 2015; 309:H103-13. [PMID: 25934097 PMCID: PMC4491524 DOI: 10.1152/ajpheart.00178.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/30/2015] [Indexed: 12/21/2022]
Abstract
Fibulin-4 is an extracellular matrix protein that is essential for proper assembly of arterial elastic fibers. Mutations in fibulin-4 cause cutis laxa with thoracic aortic aneurysms (TAAs). Sixty percent of TAAs occur in the ascending aorta (AA). Newborn mice lacking fibulin-4 (Fbln4(-/-)) have aneurysms in the AA, but narrowing in the descending aorta (DA), and are a unique model to investigate locational differences in aneurysm susceptibility. We measured mechanical behavior and gene expression of AA and DA segments in newborn Fbln4(-/-) and Fbln4(+/+) mice. Fbln4(-/-) AA has increased diameters compared with Fbln4(+/+) AA and Fbln4(-/-) DA at most applied pressures, confirming genotypic and locational specificity of the aneurysm phenotype. When diameter compliance and tangent modulus were calculated from the mechanical data, we found few significant differences between genotypes, suggesting that the mechanical response to incremental diameter changes is similar, despite the fragmented elastic fibers in Fbln4(-/-) aortas. Fbln4(-/-) aortas showed a trend toward increased circumferential stretch, which may be transmitted to smooth muscle cells (SMCs) in the wall. Gene expression data suggest activation of pathways for SMC proliferation and inflammation in Fbln4(-/-) aortas compared with Fbln4(+/+). Additional genes in both pathways, as well as matrix metalloprotease-8 (Mmp8), are upregulated specifically in Fbln4(-/-) AA compared with Fbln4(+/+) AA and Fbln4(-/-) DA. Mmp8 is a neutrophil collagenase that targets type 1 collagen, and upregulation may be necessary to allow diameter expansion in Fbln4(-/-) AA. Our results provide molecular and mechanical targets for further investigation in aneurysm pathogenesis.
Collapse
MESH Headings
- Acute-Phase Proteins/genetics
- Acute-Phase Proteins/metabolism
- Animals
- Animals, Newborn
- Aorta/metabolism
- Aorta/physiopathology
- Aorta/ultrastructure
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/physiopathology
- Aorta, Thoracic/ultrastructure
- Aortic Aneurysm, Thoracic/genetics
- Calcium-Binding Proteins
- Collagen Type VIII/genetics
- Collagen Type VIII/metabolism
- Cyclooxygenase 2/genetics
- Cyclooxygenase 2/metabolism
- Elastic Modulus
- Epiregulin/genetics
- Epiregulin/metabolism
- Extracellular Matrix Proteins/genetics
- Gene Expression Profiling
- Heparin-binding EGF-like Growth Factor/genetics
- Heparin-binding EGF-like Growth Factor/metabolism
- Matrix Metalloproteinase 8/genetics
- Matrix Metalloproteinase 8/metabolism
- Mice
- Mice, Knockout
- Microscopy, Electron
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/ultrastructure
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- RNA, Messenger/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, G-Protein-Coupled
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Serpins/genetics
- Serpins/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Jungsil Kim
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, Missouri
| | - Jesse D Procknow
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, Missouri
| | - Hiromi Yanagisawa
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas; and Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan
| | - Jessica E Wagenseil
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, Missouri;
| |
Collapse
|
24
|
Skrbic B, Engebretsen KVT, Strand ME, Lunde IG, Herum KM, Marstein HS, Sjaastad I, Lunde PK, Carlson CR, Christensen G, Bjørnstad JL, Tønnessen T. Lack of collagen VIII reduces fibrosis and promotes early mortality and cardiac dilatation in pressure overload in mice. Cardiovasc Res 2015; 106:32-42. [PMID: 25694587 DOI: 10.1093/cvr/cvv041] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIMS In pressure overload, left ventricular (LV) dilatation is a key step in transition to heart failure (HF). We recently found that collagen VIII (colVIII), a non-fibrillar collagen and extracellular matrix constituent, was reduced in hearts of mice with HF and correlated to degree of dilatation. A reduction in colVIII might be involved in LV dilatation, and we here examined the role of reduced colVIII in pressure overload-induced remodelling using colVIII knock-out (col8KO) mice. METHODS AND RESULTS Col8KO mice exhibited increased mortality 3-9 days after aortic banding (AB) and increased LV dilatation from day one after AB, compared with wild type (WT). LV dilatation remained increased over 56 days. Forty-eight hours after AB, LV expression of main structural collagens (I and III) was three-fold increased in WT mice, but these collagens were unaltered in the LV of col8KO mice together with reduced expression of the pro-fibrotic cytokine TGF-β, SMAD2 signalling, and the myofibroblast markers Pxn, α-SMA, and SM22. Six weeks after AB, LV collagen mRNA expression and protein were increased in col8KO mice, although less pronounced than in WT. In vitro, neonatal cardiac fibroblasts from col8KO mice showed lower expression of TGF-β, Pxn, α-SMA, and SM22 and reduced migratory ability possibly due to increased RhoA activity and reduced MMP2 expression. Stimulation with recombinant colVIIIα1 increased TGF-β expression and fibroblast migration. CONCLUSION Lack of colVIII reduces myofibroblast differentiation and fibrosis and promotes early mortality and LV dilatation in response to pressure overload in mice.
Collapse
Affiliation(s)
- Biljana Skrbic
- Department of Cardiothoracic Surgery, Oslo University Hospital Ullevål, Kirkeveien 166, Oslo 0407, Norway Faculty of Medicine, University of Oslo, Oslo, Norway KG Jebsen Centre for Cardiac Research and Center for Heart Failure Research, University of Oslo, Oslo, Norway Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Kristin V T Engebretsen
- Department of Cardiothoracic Surgery, Oslo University Hospital Ullevål, Kirkeveien 166, Oslo 0407, Norway Faculty of Medicine, University of Oslo, Oslo, Norway KG Jebsen Centre for Cardiac Research and Center for Heart Failure Research, University of Oslo, Oslo, Norway Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Mari E Strand
- KG Jebsen Centre for Cardiac Research and Center for Heart Failure Research, University of Oslo, Oslo, Norway Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Ida G Lunde
- KG Jebsen Centre for Cardiac Research and Center for Heart Failure Research, University of Oslo, Oslo, Norway Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway Department of Genetics, Harvard` Medical School, Boston, MA, USA
| | - Kate M Herum
- KG Jebsen Centre for Cardiac Research and Center for Heart Failure Research, University of Oslo, Oslo, Norway Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Henriette S Marstein
- Department of Cardiothoracic Surgery, Oslo University Hospital Ullevål, Kirkeveien 166, Oslo 0407, Norway KG Jebsen Centre for Cardiac Research and Center for Heart Failure Research, University of Oslo, Oslo, Norway Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Ivar Sjaastad
- Faculty of Medicine, University of Oslo, Oslo, Norway KG Jebsen Centre for Cardiac Research and Center for Heart Failure Research, University of Oslo, Oslo, Norway Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Per K Lunde
- KG Jebsen Centre for Cardiac Research and Center for Heart Failure Research, University of Oslo, Oslo, Norway Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Cathrine R Carlson
- KG Jebsen Centre for Cardiac Research and Center for Heart Failure Research, University of Oslo, Oslo, Norway Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Geir Christensen
- Faculty of Medicine, University of Oslo, Oslo, Norway KG Jebsen Centre for Cardiac Research and Center for Heart Failure Research, University of Oslo, Oslo, Norway Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Johannes L Bjørnstad
- Department of Cardiothoracic Surgery, Oslo University Hospital Ullevål, Kirkeveien 166, Oslo 0407, Norway KG Jebsen Centre for Cardiac Research and Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Theis Tønnessen
- Department of Cardiothoracic Surgery, Oslo University Hospital Ullevål, Kirkeveien 166, Oslo 0407, Norway Faculty of Medicine, University of Oslo, Oslo, Norway KG Jebsen Centre for Cardiac Research and Center for Heart Failure Research, University of Oslo, Oslo, Norway
| |
Collapse
|
25
|
Abstract
The extracellular matrix (ECM) is an essential component of the human body that is responsible for the proper function of various organs. Changes in the ECM have been implicated in the pathogenesis of several cardiovascular conditions including atherosclerosis, restenosis, and heart failure. Matrix components, such as collagens and noncollagenous proteins, influence the function and activity of vascular cells, particularly vascular smooth muscle cells and macrophages. Matrix proteins have been shown to be implicated in the development of atherosclerotic complications, such as plaque rupture, aneurysm formation, and calcification. ECM proteins control ECM remodeling through feedback signaling to matrix metalloproteinases (MMPs), which are the key players of ECM remodeling in both normal and pathological conditions. The production of MMPs is closely related to the development of an inflammatory response and is subjected to significant changes at different stages of atherosclerosis. Indeed, blood levels of circulating MMPs may be useful for the assessment of the inflammatory activity in atherosclerosis and the prediction of cardiovascular risk. The availability of a wide variety of low-molecular MMP inhibitors that can be conjugated with various labels provides a good perspective for specific targeting of MMPs and implementation of imaging techniques to visualize MMP activity in atherosclerotic plaques and, most interestingly, to monitor responses to antiatheroslerosis therapies. Finally, because of the crucial role of ECM in cardiovascular repair, the regenerative potential of ECM could be successfully used in constructing engineered scaffolds and vessels that mimic properties of the natural ECM and consist of the native ECM components or composite biomaterials. These scaffolds possess a great promise in vascular tissue engineering.
Collapse
|
26
|
Zhu TX, Lan B, Meng LY, Yang YL, Li RX, Li EM, Zheng SY, Xu LY. ECM-related gene expression profile in vascular smooth muscle cells from human saphenous vein and internal thoracic artery. J Cardiothorac Surg 2013; 8:155. [PMID: 23773607 PMCID: PMC3700845 DOI: 10.1186/1749-8090-8-155] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 05/20/2013] [Indexed: 11/16/2022] Open
Abstract
Abstract Currently, Saphenous vein (SV) and internal thoracic artery (ITA) are still the most common graft materials in Coronary Artery Bypass Grafting (CABG) whereas SV graft have a lower long-term patency than ITA. Vascular smooth muscle cells (VSMCs) phenotype conversion, proliferation and migration may play a key role in mechanism of vein graft restenosis. To explore differential gene expression profile in VSMCs from SV and ITA will help to further elucidate the mechanism of VSMCs in vein graft restenosis after CABG and to provide new thread of gene therapy. Methods VSMCs from paired SV and ITA were cultured for experiments of Affymetrix microarrays and verification using FQ RT-PCR, while the database for annotation, visualization and integrated discovery bioinformatics resources (DAVID 2.0) was utilized for bioinformatics analysis of differential gene expression profile between SV VSMCs and ITA VSMCs. RNA of tunica media from SV and ITA segments were extracted for FQ RT-PCR to display differential expression of PLAT Results 54,613 probe sets were examined by gene microarray experiments. In SV VSMCs, 1,075 genes were up-regulated and 406 of them were higher than two-fold; 1,399 genes were down-regulated and 424 of them were lower than two-fold as compare with ITA VSMCs.14 ECM-related genes differentially expressed were verificated and listed as following: COL4A4, COL11A1, FN1, TNC, THBS, FBLN, MMP3, MMP9, TIMP3, WNT5A, SGCD were higher whereas COL14A1, ELN, PLAT lower in SV VSMCs than ITA VSMCs. In addition, PLAT was lower in tunica media from SV segments than ITA. Conclusion VSMCs from SV and ITA have distinct phenotypes characteristics. Both promoting and inhibiting migration ECM-related genes were higher in VSMCs from SV as compared with ITA, suggesting that VSMCs from SV have more potential migrating capability whereas less PLAT both in SV VSMCs and vascular tissue,implying that SV may prone to be restenosis after CABG.
Collapse
Affiliation(s)
- Tian-xiang Zhu
- Department of Cardiovascular Surgery, Cardiovascular Institute, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, Guangdong Province 515031, China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Lopes J, Adiguzel E, Gu S, Liu SL, Hou G, Heximer S, Assoian RK, Bendeck MP. Type VIII collagen mediates vessel wall remodeling after arterial injury and fibrous cap formation in atherosclerosis. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:2241-53. [PMID: 23567639 DOI: 10.1016/j.ajpath.2013.02.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 01/25/2013] [Accepted: 02/12/2013] [Indexed: 12/15/2022]
Abstract
Collagens in the atherosclerotic plaque signal regulation of cell behavior and provide tensile strength to the fibrous cap. Type VIII collagen, a short-chain collagen, is up-regulated in atherosclerosis; however, little is known about its functions in vivo. We studied the response to arterial injury and the development of atherosclerosis in type VIII collagen knockout mice (Col8(-/-) mice). After wire injury of the femoral artery, Col8(-/-) mice had decreased vessel wall thickening and outward remodeling when compared with Col8(+/+) mice. We discovered that apolipoprotein E (ApoE) is an endogenous repressor of the Col8a1 chain, and, therefore, in ApoE knockout mice, type VIII collagen was up-regulated. Deficiency of type VIII collagen in ApoE(-/-) mice (Col8(-/-);ApoE(-/-)) resulted in development of plaques with thin fibrous caps because of decreased smooth muscle cell migration and proliferation and reduced accumulation of fibrillar type I collagen. In contrast, macrophage accumulation was not affected, and the plaques had large lipid-rich necrotic cores. We conclude that in atherosclerosis, type VIII collagen is up-regulated in the absence of ApoE and functions to increase smooth muscle cell proliferation and migration. This is an important mechanism for formation of a thick fibrous cap to protect the atherosclerotic plaque from rupture.
Collapse
Affiliation(s)
- Joshua Lopes
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Lu J, Ji J, Meng H, Wang D, Jiang B, Liu L, Randell E, Adeli K, Meng QH. The protective effect and underlying mechanism of metformin on neointima formation in fructose-induced insulin resistant rats. Cardiovasc Diabetol 2013; 12:58. [PMID: 23561047 PMCID: PMC3642024 DOI: 10.1186/1475-2840-12-58] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 04/02/2013] [Indexed: 12/02/2022] Open
Abstract
Background Insulin resistance is strongly associated with the development of type 2 diabetes and cardiovascular disease. However, the underlying mechanisms linking insulin resistance and the development of atherosclerosis have not been fully elucidated. Moreover, the protective effect of antihyperglycemic agent, metformin, is not fully understood. This study investigated the protective effects and underlying mechanisms of metformin in balloon-injury induced stenosis in insulin resistant rats. Methods After 4 weeks high fructose diet, rats received balloon catheter injury on carotid arteries and were sacrificed at 1 and 4 weeks post injury. Biochemical, histological, and molecular changes were investigated. Results Plasma levels of glucose, insulin, total cholesterol, triglyceride, free fatty acids, and methylglyoxal were highly increased in fructose-induced insulin resistant rats and treatment with metformin significantly improved this metabolic profile. The neointimal formation of the carotid arteries was enhanced, and treatment with metformin markedly attenuated neointimal hyperplasia. A significant reduction in BrdU-positive cells in the neointima was observed in the metformin-treated group (P < 0.01). Insulin signaling pathways were inhibited in insulin resistant rats while treatment with metformin enhanced the expression of insulin signaling pathways. Increased expression of JNK and NFKB was suppressed following metformin treatment. Vasoreactivity was impaired while treatment with metformin attenuated phenylephrine-induced vasoconstriction and enhanced methacholine-induced vasorelaxation of the balloon injured carotid arteries in insulin resistant rats. Conclusion The balloon-injury induced neointimal formation of the carotid arteries is enhanced by insulin resistance. Treatment with metformin significantly attenuates neointimal hyperplasia through inhibition of smooth muscle cell proliferation, migration, and inflammation as well as by improvement of the insulin signaling pathway.
Collapse
Affiliation(s)
- Jianxin Lu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine, Wenzhou Medical College, Wenzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Adiguzel E, Hou G, Sabatini PJB, Bendeck MP. Type VIII collagen signals via β1 integrin and RhoA to regulate MMP-2 expression and smooth muscle cell migration. Matrix Biol 2013; 32:332-41. [PMID: 23523587 DOI: 10.1016/j.matbio.2013.03.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 03/05/2013] [Accepted: 03/10/2013] [Indexed: 11/25/2022]
Abstract
The extracellular matrix signals and regulates the behavior of vascular cells during the pathogenesis of atherosclerosis. Type VIII collagen, a short chain collagen, is scarcely present in normal arteries, but is dramatically upregulated in atherosclerosis and after other types of vascular injury. Cell culture studies have revealed that this protein supports smooth muscle cell (SMC) adhesion and stimulates migration, however little is known about the signaling or the mechanisms by which this occurs. SMCs isolated from wild-type C57BL/6 and type VIII collagen deficient mice were studied using assays to measure chemotactic and haptotactic migration, and remodeling and contraction of 3-dimensional type I collagen gels. Col8(-/-) SMCs exhibited impairments in migration, and a strongly adhesive phenotype with prominent stress fibers, stable microtubules and pronounced central basal focal adhesions. The addition of exogenous type VIII collagen to the Col8(-/-) SMCs rescued the impairments in migration, and restored cytoskeletal architecture so that it was similar to Col8(+/+) cells. We measured elevated levels of active GTP-RhoA in the Col8(-/-) cells, and this too was reversed by treatment with exogenous type VIII collagen. We showed that type VIII collagen normally suppresses RhoA activation through a beta-1 integrin dependent mechanism. MMP-2 levels were reduced in the Col8(-/-) SMCs, and knockdown of MMP-2 in Col8(+/+) SMCs partially recapitulated the decreases in migration and 3D gel contraction seen in Col8(-/-) cells, showing that type VIII collagen-stimulated migration was dependent on MMP-2. Inhibition of Rho restored MMP-2 activity in the Col8(-/-) cells, and partially rescued migration, demonstrating that the elevations in RhoA activity were responsible for the suppression of migration of these cells. In conclusion, we have shown that type VIII collagen signals through beta-1 integrin receptors to suppress RhoA, allowing optimal configuration of the cytoskeleton, and the stimulation of MMP-2-dependent cell migration.
Collapse
Affiliation(s)
- Eser Adiguzel
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario M5S 1A8, Canada.
| | | | | | | |
Collapse
|
30
|
Skrbic B, Bjørnstad JL, Marstein HS, Carlson CR, Sjaastad I, Nygård S, Bjørnstad S, Christensen G, Tønnessen T. Differential regulation of extracellular matrix constituents in myocardial remodeling with and without heart failure following pressure overload. Matrix Biol 2013; 32:133-42. [PMID: 23220517 DOI: 10.1016/j.matbio.2012.11.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 11/09/2012] [Accepted: 11/28/2012] [Indexed: 11/26/2022]
|
31
|
Fibromodulin Deficiency Reduces Low-Density Lipoprotein Accumulation in Atherosclerotic Plaques in Apolipoprotein E–Null Mice. Arterioscler Thromb Vasc Biol 2013. [DOI: 10.1161/atvbaha.112.300723] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Ma ZH, Ma JH, Jia L, Zhao YF. Effect of enhanced expression of COL8A1 on lymphatic metastasis of hepatocellular carcinoma in mice. Exp Ther Med 2012; 4:621-626. [PMID: 23170115 PMCID: PMC3501407 DOI: 10.3892/etm.2012.652] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 07/25/2012] [Indexed: 11/25/2022] Open
Abstract
The present study aimed to investigate the influence of COL8A1 expression on cell invasiveness, drug sensitivity and tumorigenicity of hepatocellular carcinoma Hepa1-6 cells with low metastatic potential. COL8A1-1-pEGFP-N2 and pEGFP-N2 were transfected into experimental and control group cells. The COL8A1 expression in transfected Hepa1-6 cells was analyzed with RT-PCR and western blot analysis. The invasive potential of transfected Hepa1-6 cells was tested in invasion experiments in vitro and the tumorigenic ability of the transfected Hepa1-6 cells was tested in mouse tumors in vivo. Hepa1-6 cell proliferation and D-limonene sensitivity was analyzed using the MTT method. Expression of COL8A1 in the Hepa1-6/COL8A1 group showed a significant increase when compared with the untransfected cells of the Hepa1-6 control group and empty-plasmid transfected cells from the Hepa1-6/mock control group. Enhanced COL8A1 expression increased cell proliferation and matrix adhesion ability via invasion and tumorigenesis in vivo while the sensitivity to D-limonene was concurrently inhibited. The expression of COL8A1 in hepatocarcinoma cells was correlated with increased tumor cell proliferation, invasion, in vivo tumorigenicity and reduced antitumor drug sensitivity, and may provide novel targets for tumor therapy.
Collapse
Affiliation(s)
- Zhen-Hai Ma
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027
| | | | | | | |
Collapse
|
33
|
Evans JF, Fernando A, Ragolia L. Functional melanocortin-2 receptors are expressed by mouse aorta-derived mesenchymal progenitor cells. Mol Cell Endocrinol 2012; 355:60-70. [PMID: 22306084 PMCID: PMC3485690 DOI: 10.1016/j.mce.2012.01.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 12/21/2011] [Accepted: 01/19/2012] [Indexed: 01/03/2023]
Abstract
A local melanocortin system is active during tissue injury and inflammation. Thus far this system has been described as autocrine in nature where local production of pro-opiomelanocortin (POMC) peptides by leukocytes feeds back on melanocortin receptor (MC-R) expressing immune cells to quell inflammatory cytokine production. Here we present evidence that POMC peptides may generate extracellular matrix (ECM) changes by inducing matrix production by cells of the mesenchymal lineage through activation of the MC2-R. Using immunoblot, we determined that mouse aorta-derived mesenchymal progenitor cells express both MC2-R and MC3-R. These progenitors respond to treatment with ACTH by increasing collagen matrix synthesis as assessed by picrosirius red stain and (3)H-proline incorporation. ACTH also induces transient increases in intracellular calcium ([Ca(2+)](i)) as assessed using the fluorescent Ca(2+) indicator, fura-2. The ACTH-induced changes in [Ca(2+)](i) are consistent with MC2-R signaling and consist of both an intracellular release and an extracellular influx of Ca(2+). Both mouse aortic mesenchymal progenitors and mouse macrophage cells express POMC and the prohormone convertase 1/3 (PC1/3) indicating they have the potential to contribute to the local production of POMC peptides. These data demonstrate functional MC2-R expression in mouse aorta-derived mesenchymal progenitors and implicate both macrophage and mesenchymal cells as relevant sources of local POMC peptides.
Collapse
MESH Headings
- Adrenocorticotropic Hormone/pharmacology
- Animals
- Aorta/cytology
- Aorta/drug effects
- Aorta/metabolism
- Azo Compounds
- Calcium/metabolism
- Cells, Cultured
- Collagen/genetics
- Collagen/metabolism
- Extracellular Matrix/drug effects
- Fura-2
- Gene Expression/drug effects
- Macrophages/cytology
- Macrophages/drug effects
- Macrophages/metabolism
- Mesenchymal Stem Cells/cytology
- Mesenchymal Stem Cells/drug effects
- Mesenchymal Stem Cells/metabolism
- Mice
- Mice, Inbred C57BL
- Pro-Opiomelanocortin/genetics
- Pro-Opiomelanocortin/metabolism
- Proprotein Convertase 1/genetics
- Proprotein Convertase 1/metabolism
- Rats
- Rats, Inbred WKY
- Receptor, Melanocortin, Type 2/genetics
- Receptor, Melanocortin, Type 2/metabolism
- Receptor, Melanocortin, Type 3/genetics
- Receptor, Melanocortin, Type 3/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Jodi F. Evans
- Biomedical Research Core, Winthrop University Hospital, 222 Station Plaza North, Mineola, NY 11501
- Stony Brook University School of Medicine, Stony Brook, NY 11794
| | - Anne Fernando
- Biomedical Research Core, Winthrop University Hospital, 222 Station Plaza North, Mineola, NY 11501
| | - Louis Ragolia
- Biomedical Research Core, Winthrop University Hospital, 222 Station Plaza North, Mineola, NY 11501
- Stony Brook University School of Medicine, Stony Brook, NY 11794
| |
Collapse
|
34
|
Umezawa M, Kudo S, Yanagita S, Shinkai Y, Niki R, Oyabu T, Takeda K, Ihara T, Sugamata M. Maternal exposure to carbon black nanoparticle increases collagen type VIII expression in the kidney of offspring. J Toxicol Sci 2011; 36:461-8. [PMID: 21804310 DOI: 10.2131/jts.36.461] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The potential health risks of inhaling nanomaterials are of great concern because of their high specific activity and their unique property of translocation. Earlier studies showed that exposure to nanoparticles through the airway affects both respiratory and extrapulmonary organs. When pregnant mice were exposed to nanoparticles, the respiratory system, the central nervous system and the reproductive system of their offspring were affected. The aim of this study was to assess the effect of maternal exposure to nanoparticles on the offspring, particularly on the kidney. Pregnant ICR mice were exposed to a total of 100 µg of carbon black nanoparticle on the fifth and the ninth days of pregnancy. Samples of blood and kidney tissue were collected from 3-week-old and 12-week-old male offspring mice. Collagen expression was examined by quantitative RT-PCR and immunohistochemistry. Serum levels of creatinine and blood urea nitrogen were examined. Exposure of pregnant ICR mice to carbon black resulted in increased expression of Collagen, type VIII, a1 (Col8a1) in the tubular cells in the kidney of 12-week-old offspring mice but not in 3-week-old ones. The levels of serum creatinine and blood urea nitrogen, indices of renal function, were not different between the groups. These observations were similar to those of tubulointerstitial fibrosis in diabetic nephropathy. These results suggest that maternal exposure to carbon black nanoparticle induces renal abnormalities similar to tubulointerstitial fibrosis in diabetic nephropathy are induced in the kidney of offspring.
Collapse
|
35
|
Mannelqvist M, Stefansson IM, Bredholt G, Hellem Bø T, Oyan AM, Jonassen I, Kalland KH, Salvesen HB, Akslen LA. Gene expression patterns related to vascular invasion and aggressive features in endometrial cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:861-71. [PMID: 21281818 DOI: 10.1016/j.ajpath.2010.10.040] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 08/31/2010] [Accepted: 10/13/2010] [Indexed: 01/09/2023]
Abstract
The presence of tumor cells entering vascular channels is a prognostic marker for many cancers, including endometrial carcinoma. Vascular invasion is considered to be an early step in the metastatic process and important for the progress of malignant tumors. Here, we investigated the gene expression patterns related to vascular involvement in 57 primary endometrial cancers, using DNA microarray and quantitative PCR techniques. A vascular invasion signature of 18 genes was significantly associated with patient survival and clinicopathological phenotype. Vascular involvement was also related to gene sets for epithelial-mesenchymal transition, wound response, endothelial cells, and vascular endothelial growth factor (VEGF) activity. With immunohistochemical validation, both collagen 8 and matrix metalloproteinase 3 (MMP3) were associated with vascular invasion, whereas ANGPTL4 and IL-8 were associated with patient survival. Our findings indicate that vascular involvement within primary tumors is associated with gene expression profiles related to angiogenesis and epithelial-mesenchymal transition. These data could contribute to an improved understanding of potential targets for metastatic spread and may provide clinically important information for better management of endometrial cancer.
Collapse
Affiliation(s)
- Monica Mannelqvist
- Section for Pathology, The Gade Institute, University of Bergen, Bergen, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Bjornstad JL, Sjaastad I, Nygard S, Hasic A, Ahmed MS, Attramadal H, Finsen AV, Christensen G, Tonnessen T. Collagen isoform shift during the early phase of reverse left ventricular remodelling after relief of pressure overload. Eur Heart J 2010; 32:236-45. [DOI: 10.1093/eurheartj/ehq166] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
37
|
Hopfer U, Hopfer H, Meyer-Schwesinger C, Loeffler I, Fukai N, Olsen BR, Stahl RAK, Wolf G. Lack of type VIII collagen in mice ameliorates diabetic nephropathy. Diabetes 2009; 58:1672-81. [PMID: 19401424 PMCID: PMC2699847 DOI: 10.2337/db08-0183] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Key features of diabetic nephropathy include the accumulation of extracellular matrix proteins. In recent studies, increased expression of type VIII collagen in the glomeruli and tubulointerstitium of diabetic kidneys has been noted. The objectives of this study were to assess whether type VIII collagen affects the development of diabetic nephropathy and to determine type VIII collagen-dependent pathways in diabetic nephropathy in the mouse model of streptozotocin (STZ)-induced diabetes. RESEARCH DESIGN AND METHODS Diabetes was induced by STZ injections in collagen VIII-deficient or wild-type mice. Functional and histological analyses were performed 40 days after induction of diabetes. Type VIII collagen expression was assessed by Northern blots, immunohistochemistry, and real-time PCR. Proliferation of primary mesangial cells was measured by thymidine incorporation and direct cell counting. Expression of phosphorylated extracellular signal-regulated kinase (ERK1/2) and p27(Kip1) was assessed by Western blots. Finally, Col8a1 was stably overexpressed in mesangial cells. RESULTS Diabetic wild-type mice showed a strong renal induction of type VIII collagen. Diabetic Col8a1(-)/Col8a2(-) animals revealed reduced mesangial expansion and cellularity and extracellular matrix expansion compared with the wild type. These were associated with less albuminuria. High-glucose medium as well as various cytokines induced Col8a1 in cultured mesangial cells. Col8a1(-)/Col8a2(-) mesangial cells revealed decreased proliferation, less phosphorylation of Erk1/2, and increased p27(Kip1) expression. Overexpression of Col8a1 in mesangial cells induced proliferation. CONCLUSIONS Lack of type VIII collagen confers renoprotection in diabetic nephropathy. One possible mechanism is that type VIII collagen permits and/or fosters mesangial cell proliferation in early diabetic nephropathy.
Collapse
Affiliation(s)
- Ulrike Hopfer
- Department of Medicine, University of Hamburg, Hamburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Adiguzel E, Ahmad PJ, Franco C, Bendeck MP. Collagens in the progression and complications of atherosclerosis. Vasc Med 2009; 14:73-89. [PMID: 19144782 DOI: 10.1177/1358863x08094801] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Collagens constitute a major portion of the extracellular matrix in the atherosclerotic plaque, where they contribute to the strength and integrity of the fibrous cap, and also modulate cellular responses via specific receptors and signaling pathways. This review focuses on the diverse roles that collagens play in atherosclerosis; regulating the infiltration and differentiation of smooth muscle cells and macrophages; controlling matrix remodeling through feedback signaling to proteinases; and influencing the development of atherosclerotic complications such as plaque rupture, aneurysm formation and calcification. Expanding our understanding of the pathways involved in cell-matrix interactions will provide new therapeutic targets and strategies for the diagnosis and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Eser Adiguzel
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
39
|
Cherepanova OA, Pidkovka NA, Sarmento OF, Yoshida T, Gan Q, Adiguzel E, Bendeck MP, Berliner J, Leitinger N, Owens GK. Oxidized phospholipids induce type VIII collagen expression and vascular smooth muscle cell migration. Circ Res 2009; 104:609-18. [PMID: 19168440 DOI: 10.1161/circresaha.108.186064] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Phenotypic switching of vascular smooth muscle cells (VSMCs) is known to play a critical role in the development of atherosclerosis. However, the factors present within lesions that mediate VSMC phenotypic switching are unclear. Oxidized phospholipids (OxPLs), including 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphorylcholine (POVPC), are active components of minimally modified low density lipoprotein and have been previously shown to induce multiple proatherogenic events in endothelial cells and macrophages, but their effects on VSMCs have been largely unexplored until recently. We previously showed that OxPLs induced phenotypic switching of VSMCs, including suppression of SMC differentiation marker genes. The goal of the present studies was to test the hypothesis that OxPLs alter extracellular matrix production and VSMC migration. Results showed that POVPC activated expression of several extracellular matrix proteins in VSMC. POVPC increased expression of type VIII collagen alpha1 chain (Col8a1) mRNA in cultured VSMCs and in vivo in rat carotid arteries by 9-fold and 4-fold, respectively. POVPC-induced activation of Col8a1 gene expression was reduced by small interfering RNA-mediated suppression of Krüppel-like factor 4 (Klf4) and Sp1, and was abolished in Klf4-knockout VSMCs. POVPC increased Klf4 binding to the Col8a1 gene promoter both in vivo in rat carotid arteries and in cultured VSMCs based on chromatin immunoprecipitation assays. Moreover, POVPC-induced VSMC migration was markedly reduced in Klf4- or type VIII collagen-knockout VSMCs. Given evidence that OxPLs are present within atherosclerotic lesions, it is interesting to suggest that OxPL-induced changes in VSMC phenotype may contribute to the pathogenesis of atherosclerosis at least in part through changes in extracellular matrix composition.
Collapse
Affiliation(s)
- Olga A Cherepanova
- Department of Molecular Physiology and Biological Physics, University of Virginia, Robert M Berne Cardiovascular Research Center, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Levy D, Larson MG, Benjamin EJ, Newton-Cheh C, Wang TJ, Hwang SJ, Vasan RS, Mitchell GF. Framingham Heart Study 100K Project: genome-wide associations for blood pressure and arterial stiffness. BMC MEDICAL GENETICS 2007; 8 Suppl 1:S3. [PMID: 17903302 PMCID: PMC1995621 DOI: 10.1186/1471-2350-8-s1-s3] [Citation(s) in RCA: 205] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND About one quarter of adults are hypertensive and high blood pressure carries increased risk for heart disease, stroke, kidney disease and death. Increased arterial stiffness is a key factor in the pathogenesis of systolic hypertension and cardiovascular disease. Substantial heritability of blood-pressure (BP) and arterial-stiffness suggests important genetic contributions. METHODS In Framingham Heart Study families, we analyzed genome-wide SNP (Affymetrix 100K GeneChip) associations with systolic (SBP) and diastolic (DBP) BP at a single examination in 1971-1975 (n = 1260), at a recent examination in 1998-2001 (n = 1233), and long-term averaged SBP and DBP from 1971-2001 (n = 1327, mean age 52 years, 54% women) and with arterial stiffness measured by arterial tonometry (carotid-femoral and carotid-brachial pulse wave velocity, forward and reflected pressure wave amplitude, and mean arterial pressure; 1998-2001, n = 644). In primary analyses we used generalized estimating equations in models for an additive genetic effect to test associations between SNPs and phenotypes of interest using multivariable-adjusted residuals. A total of 70,987 autosomal SNPs with minor allele frequency > or = 0.10, genotype call rate > or = 0.80, and Hardy-Weinberg equilibrium p > or = 0.001 were analyzed. We also tested for association of 69 SNPs in six renin-angiotensin-aldosterone pathway genes with BP and arterial stiffness phenotypes as part of a candidate gene search. RESULTS In the primary analyses, none of the associations attained genome-wide significance. For the six BP phenotypes, seven SNPs yielded p values < 10(-5). The lowest p-values for SBP and DBP respectively were rs10493340 (p = 1.7 x 10(-6)) and rs1963982 (p = 3.3 x 10(-6)). For the five tonometry phenotypes, five SNPs had p values < 10(-5); lowest p-values were for reflected wave (rs6063312, p = 2.1 x 10(-6)) and carotid-brachial pulse wave velocity (rs770189, p = 2.5 x 10(-6)) in MEF2C, a regulator of cardiac morphogenesis. We found only weak association of SNPs in the renin-angiotensin-aldosterone pathway with BP or arterial stiffness. CONCLUSION These results of genome-wide association testing for blood pressure and arterial stiffness phenotypes in an unselected community-based sample of adults may aid in the identification of the genetic basis of hypertension and arterial disease, help identify high risk individuals, and guide novel therapies for hypertension. Additional studies are needed to replicate any associations identified in these analyses.
Collapse
Affiliation(s)
- Daniel Levy
- The National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA
- The National Heart, Lung, and Blood Institute, Bethesda, MD, USA
- Boston University School of Medicine, Boston MA, USA
| | - Martin G Larson
- The National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA
- Department of Mathematics, Boston University, Boston, MA, USA
| | - Emelia J Benjamin
- The National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA
- Boston University School of Medicine, Boston MA, USA
- Division of Cardiology, Boston Medical Center, Boston, MA, USA
| | - Christopher Newton-Cheh
- The National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA
- Division of Cardiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Thomas J Wang
- The National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA
- Division of Cardiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Shih-Jen Hwang
- The National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA
- The National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Ramachandran S Vasan
- The National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA
- Boston University School of Medicine, Boston MA, USA
- Division of Cardiology, Boston Medical Center, Boston, MA, USA
| | - Gary F Mitchell
- The National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA
- Cardiovascular Engineering Inc., Waltham, MA, USA
| |
Collapse
|
41
|
Kamiya K, Ryer E, Sakakibara K, Zohlman A, Kent KC, Liu B. Protein kinase C delta activated adhesion regulates vascular smooth muscle cell migration. J Surg Res 2007; 141:91-6. [PMID: 17574042 DOI: 10.1016/j.jss.2007.02.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Revised: 02/08/2007] [Accepted: 02/15/2007] [Indexed: 11/23/2022]
Abstract
BACKGROUND Vascular smooth muscle cell (VSMC) migration, fundamental in the pathophysiology of atherogenesis and restenosis, is a coordinated process governed by the formation and disassembly of focal adhesions. Previous studies have demonstrated that VSMC migration is regulated via a signaling network involving protein kinase C delta (PKCdelta). In these studies, we test the hypothesis that PKCdelta regulates VSMC migration through modulation of cell adhesion. MATERIALS AND METHODS Using primary VSMCs isolated from PKCdelta wild type (+/+) and knock-out (-/-) mice, the effects of PKCdelta on VSMC migration and adhesion were assessed by chemotaxis and cell adhesion. RESULTS In evaluating cell migration, we found a decrease in platelet-derived growth factor-BB (PDGF-BB; 5 ng/mL x 6 h) stimulated migration of PKCdelta-/-VSMCs as compared to PKCdelta+/+VSMCs, by 59.4 +/- 5.9% (P < 0.01). A similar reduction in migration of PKCdelta-/-VSMCs (66.5 +/- 5.7%, P < 0.01) was also observed on collagen-coated (COL) membranes. Next, we examined cell attachment, a critical step of migration. PKCdelta-/-VSMCs exhibited significantly reduced adherence by 50.3 +/- 1.8% (P < 0.01). A similar defect of PKCdelta-/-VSMCs was also observed on the COL surface, 30.7 +/- 2.3% (P < 0.01). Interestingly, PDGF-BB did not stimulate attachment of VSMCs of either genotype. Consistent with these results, Rottlerin (2 microM), a selective inhibitor of PKCdelta, blocked migration and attachment of VSMCs by 56.8 +/- 3.4% (P < 0.01) and 37.7 +/- 1.9% (P < 0.01), respectively. CONCLUSIONS Taken together, our data indicate that PKCdelta activation is necessary for VSMC adhesion, which could, at least in part, contribute to the regulatory function of this kinase in cell migration thus pathogenesis of vascular lesions.
Collapse
Affiliation(s)
- Kentaro Kamiya
- Department of Surgery, Division of Vascular Surgery, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
42
|
Qiu H, Depre C, Ghosh K, Resuello RG, Natividad FF, Rossi F, Peppas A, Shen YT, Vatner DE, Vatner SF. Mechanism of gender-specific differences in aortic stiffness with aging in nonhuman primates. Circulation 2007; 116:669-76. [PMID: 17664374 DOI: 10.1161/circulationaha.107.689208] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Our hypothesis was that the changes in vascular properties responsible for aortic stiffness with aging would be greater in old male monkeys than old female monkeys. METHODS AND RESULTS We analyzed the effects of gender differences in aging on in vivo measurements of aortic pressure and diameter and on extracellular matrix of the thoracic aorta in young adult (age, 6.6+/-0.5 years) versus old adult (age, 21.2+/-0.2 years) monkeys (Macaca fascicularis). Aortic stiffness, as represented by the pressure strain elastic modulus (Ep), increased more in old male monkeys (5.08+/-0.81; P<0.01) than in old females (3.06+/-0.52). In both genders, collagen density was maintained, collagen-bound glycation end products increased, and collagen type 1 decreased. However, elastin density decreased significantly (from 22+/-1.5% to 15+/-1.2%) with aging (P<0.05) only in males. Furthermore, only old males were characterized by a decrease (P<0.05) in collagen type 3 (an isoform that promotes elasticity) and an increase in collagen type 8 (an isoform that promotes the neointimal migration of vascular smooth muscle cells). In contrast to the data in monkeys, collagen types 1 and 3 both increased significantly in aging rats. CONCLUSIONS There are major species differences in the effects of aging on aortic collagen types 1 and 3. Furthermore, because alterations in collagen density, collagen content, hydroxyproline, and collagen advanced glycation end products were similar in both old male and female monkeys, these factors cannot be responsible for the greater increase in stiffness in old males. However, changes in collagen isoforms and the decrease in elastin observed only in old males likely account for the greater increase in aortic stiffness.
Collapse
Affiliation(s)
- Hongyu Qiu
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, 185 S Orange Ave, Newark, NJ 07103, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Smooth muscle cell migration occurs during vascular development, in response to vascular injury, and during atherogenesis. Many proximal signals and signal transduction pathways activated during migration have been identified, as well as components of the cellular machinery that affect cell movement. In this review, a summary of promigratory and antimigratory molecules belonging to diverse chemical and functional families is presented, along with a summary of key signaling events mediating migration. Extracellular molecules that modulate migration include small biogenic amines, peptide growth factors, cytokines, extracellular matrix components, and drugs used in cardiovascular medicine. Promigratory stimuli activate signal transduction cascades that trigger remodeling of the cytoskeleton, change the adhesiveness of the cell to the matrix, and activate motor proteins. This review focuses on the signaling pathways and effector proteins regulated by promigratory and antimigratory molecules. Prominent pathways include phosphatidylinositol 3-kinases, calcium-dependent protein kinases, Rho-activated protein kinase, p21-activated protein kinases, LIM kinase, and mitogen-activated protein kinases. Important downstream targets include myosin II motors, actin capping and severing proteins, formins, profilin, cofilin, and the actin-related protein-2/3 complex. Actin filament remodeling, focal contact remodeling, and molecular motors are coordinated to cause cells to migrate along gradients of chemical cues, matrix adhesiveness, or matrix stiffness. The result is recruitment of cells to areas where the vessel wall is being remodeled. Vessel wall remodeling can be antagonized by common cardiovascular drugs that act in part by inhibiting vascular smooth muscle cell migration. Several therapeutically important drugs act by inhibiting cell cycle progression, which may reduce the population of migrating cells.
Collapse
Affiliation(s)
- William T Gerthoffer
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557, USA.
| |
Collapse
|
44
|
Qiu H, Tian B, Resuello RG, Natividad FF, Peppas A, Shen YT, Vatner DE, Vatner SF, Depre C. Sex-specific regulation of gene expression in the aging monkey aorta. Physiol Genomics 2007; 29:169-80. [PMID: 17456900 DOI: 10.1152/physiolgenomics.00229.2006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although increased vascular stiffness is more prominent in aging males than females, and males are more prone to vascular disease with aging, no study has investigated the genes potentially responsible for sex differences in vascular aging. We tested the hypothesis that the transcriptional adaptation to aging differs in males and females using a monkey model, which is not only physiologically and phylogenetically closer to humans than the more commonly studied rodent models but also is not afflicted with the most common forms of vascular disease that accompany the aging process in humans, e.g., atherosclerosis, hypertension, and diabetes. The transcriptional profile of the aorta was compared by high-density microarrays between young and old males or females ( n = 6/group). About 600 genes were expressed differentially when comparing old versus young animals. Surprisingly, <5% of these genes were shared between males and females. Radical differences between sexes were especially apparent for genes regulating the extracellular matrix, which relates to stiffness. Aging males were also more prone than females to genes switching smooth muscle cells from the “contractile” to “secretory” phenotype. Other sex differences involved genes participating in DNA repair, stress response, and cell signaling. Therefore, major differences of gene regulation exist between males and females in vascular aging, which may underlie the physiological differences characterizing aging arteries in males and females. Furthermore, the analyses in young monkeys demonstrated differences in genes regulating vascular structure, implying that the sex differences in vascular stiffness that develop with aging are programmed at an early age.
Collapse
Affiliation(s)
- Hongyu Qiu
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Newark, New Jersey 07103, USA
| | | | | | | | | | | | | | | | | |
Collapse
|