1
|
Albericio G, Higuera M, Araque P, Sánchez C, Herrero D, García-Brenes MA, Formentini L, Torán JL, Mora C, Bernad A. Development of a Bmi1+ Cardiac Mouse Progenitor Immortalized Model to Unravel the Relationship with Its Protective Vascular Endothelial Niche. Int J Mol Sci 2024; 25:8815. [PMID: 39201501 PMCID: PMC11354400 DOI: 10.3390/ijms25168815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
The adult mammalian heart has been demonstrated to be endowed with low but real turnover capacity, especially for cardiomyocytes, the key functional cell type. The source, however, of that turnover capacity remains controversial. In this regard, we have defined and characterized a resident multipotent cardiac mouse progenitor population, Bmi1+DR (for Bmi1+ Damage-Responsive cells). Bmi1+DR is one of the cell types with the lowest ROS (Reactive Oxygen Species) levels in the adult heart, being particularly characterized by their close relationship with cardiac vessels, most probably involved in the regulation of proliferation/maintenance of Bmi1+DR. This was proposed to work as their endothelial niche. Due to the scarcity of Bmi1+DR cells in the adult mouse heart, we have generated an immortalization/dis-immortalization model using Simian Vacuolating Virus 40-Large Antigen T (SV40-T) to facilitate their in vitro characterization. We have obtained a heterogeneous population of immortalized Bmi1+DR cells (Bmi1+DRIMM) that was validated attending to different criteria, also showing a comparable sensitivity to strong oxidative damage. Then, we concluded that the Bmi1-DRIMM population is an appropriate model for primary Bmi1+DR in vitro studies. The co-culture of Bmi1+DRIMM cells with endothelial cells protects them against oxidative damage, showing a moderate depletion in non-canonical autophagy and also contributing with a modest metabolic regulation.
Collapse
Affiliation(s)
- Guillermo Albericio
- Cardiac Stem Cells Lab, Immunology and Oncology Department, National Center for Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain; (G.A.); (M.H.); (P.A.); (J.L.T.)
- Molecular Biology Department, National Center for Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Marina Higuera
- Cardiac Stem Cells Lab, Immunology and Oncology Department, National Center for Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain; (G.A.); (M.H.); (P.A.); (J.L.T.)
| | - Paula Araque
- Cardiac Stem Cells Lab, Immunology and Oncology Department, National Center for Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain; (G.A.); (M.H.); (P.A.); (J.L.T.)
| | - Cristina Sánchez
- Molecular Biology Department, Molecular Biology Center Severo Ochoa (CBMSO), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Diego Herrero
- Cardiac Stem Cells Lab, Immunology and Oncology Department, National Center for Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain; (G.A.); (M.H.); (P.A.); (J.L.T.)
| | - Miguel A. García-Brenes
- Cardiac Stem Cells Lab, Immunology and Oncology Department, National Center for Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain; (G.A.); (M.H.); (P.A.); (J.L.T.)
| | - Laura Formentini
- Molecular Biology Department, Molecular Biology Center Severo Ochoa (CBMSO), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - José Luis Torán
- Cardiac Stem Cells Lab, Immunology and Oncology Department, National Center for Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain; (G.A.); (M.H.); (P.A.); (J.L.T.)
| | - Carmen Mora
- Cardiac Stem Cells Lab, Immunology and Oncology Department, National Center for Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain; (G.A.); (M.H.); (P.A.); (J.L.T.)
| | - Antonio Bernad
- Cardiac Stem Cells Lab, Immunology and Oncology Department, National Center for Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain; (G.A.); (M.H.); (P.A.); (J.L.T.)
| |
Collapse
|
2
|
Ye Q, Zhang J, Zhang C, Yi B, Kazama K, Liu W, Sun X, Liu Y, Sun J. Endothelial PRMT5 plays a crucial role in angiogenesis after acute ischemic injury. JCI Insight 2022; 7:e152481. [PMID: 35531958 PMCID: PMC9090242 DOI: 10.1172/jci.insight.152481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 04/06/2022] [Indexed: 11/17/2022] Open
Abstract
Arginine methylation mediated by protein arginine methyltransferases (PRMTs) has been shown to be an important posttranslational mechanism involved in various biological processes. Herein, we sought to investigate whether PRMT5, a major type II enzyme, is involved in pathological angiogenesis and, if so, to elucidate the molecular mechanism involved. Our results show that PRMT5 expression is significantly upregulated in ischemic tissues and hypoxic endothelial cells (ECs). Endothelial-specific Prmt5-KO mice were generated to define the role of PRMT5 in hindlimb ischemia-induced angiogenesis. We found that these mice exhibited impaired recovery of blood perfusion and motor function of the lower limbs, an impairment that was accompanied by decreased vascular density and increased necrosis as compared with their WT littermates. Furthermore, both pharmacological and genetic inhibition of PRMT5 significantly attenuated EC proliferation, migration, tube formation, and aortic ring sprouting. Mechanistically, we showed that inhibition of PRMT5 markedly attenuated hypoxia-induced factor 1-α (HIF-1α) protein stability and vascular endothelial growth factor-induced (VEGF-induced) signaling pathways in ECs. Our results provide compelling evidence demonstrating a crucial role of PRMT5 in hypoxia-induced angiogenesis and suggest that inhibition of PRMT5 may provide novel therapeutic strategies for the treatment of abnormal angiogenesis-related diseases, such as cancer and diabetic retinopathy.
Collapse
Affiliation(s)
- Qing Ye
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jian Zhang
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Zhang
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Bing Yi
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Kyosuke Kazama
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Wennan Liu
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Xiaobo Sun
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Yan Liu
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianxin Sun
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Liu X, Xia F, Wu X, Tang Y, Wang L, Sun Q, Xue M, Chang W, Liu L, Guo F, Yang Y, Qiu H. Isolation of Primary Mouse Pulmonary Microvascular Endothelial Cells and Generation of an Immortalized Cell Line to Obtain Sufficient Extracellular Vesicles. Front Immunol 2021; 12:759176. [PMID: 34956190 PMCID: PMC8692730 DOI: 10.3389/fimmu.2021.759176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Pulmonary microvascular endothelial cells (PMECs) and the extracellular vesicles (EVs) derived from PMECs participate in maintaining pulmonary homeostasis and mediating the inflammatory response. However, obtaining a high-purity population of PMECs and their EVs from mouse is still notoriously difficult. Herein we provide a method to isolate primary mouse PMECs (pMPMECs) and to transduce SV40 lentivirus into pMPMECs to establish an immortalized cell line (iMPMECs), which provides sufficient quantities of EVs for further studies. pMPMECs and iMPMECs can be identified using morphologic criteria, a phenotypic expression profile (e.g., CD31, CD144, G. simplicifolia lectin binding), and functional properties (e.g., Dil-acetylated low-density protein uptake, Matrigel angiogenesis). Furthermore, pMPMEC-EVs and iMPMEC-EVs can be identified and compared. The characteristics of pMPMEC-EVs and iMPMEC-EVs are ascertained by transmission electron microscopy, nanoparticle tracking analysis, and specific protein markers. iMPMECs produce far more EVs than pMPMECs, while their particle size distribution is similar. Our detailed protocol to isolate and immortalize MPMECs will provide researchers with an in vitro model to investigate the specific roles of EVs in pulmonary physiology and diseases.
Collapse
Affiliation(s)
- Xu Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Feiping Xia
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xiao Wu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Ying Tang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Lu Wang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Qin Sun
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Ming Xue
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Wei Chang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Ling Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Fengmei Guo
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yi Yang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Haibo Qiu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
4
|
Rocco R, Cambindo Botto AE, Muñoz MJ, Reingruber H, Wainstok R, Cochón A, Gazzaniga S. Early redox homeostasis disruption contributes to the differential cytotoxicity of imiquimod on transformed and normal endothelial cells. Exp Dermatol 2021; 31:608-614. [PMID: 34758172 DOI: 10.1111/exd.14499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 11/01/2021] [Accepted: 11/06/2021] [Indexed: 11/28/2022]
Abstract
The off-label use of imiquimod (IQ) for hemangioma treatment has shown clinical benefits. We have previously reported a selective direct IQ-cytotoxic effect on transformed (H5V) vs. normal (1G11) endothelial cells (EC). In the present study, we investigated the mechanism underlying this selective cytotoxicity in terms of TLR7/8 receptor expression, NF-κB signalling and time-dependent modifications of oxidative stress parameters (ROS: reactive oxygen species, catalase and superoxide dismutase activities, GSH/GSSG and lipid peroxidation). TLR7/8 level was extremely low in both cell lines, and IQ did not upregulate TLR7/8 expression or activate NF-κB signalling. IQ significantly induced ROS in H5V after 2 h and strongly affected antioxidant defenses. After 12 h, enzyme activities were restored to baseline levels but a robust drop in GSH/GSSG persisted together with increased lipid peroxidation levels and a marked mitochondrial dysfunction. Although in normal IQ-treated EC some oxidative stress parameters were affected after 4 h, mitochondrial health and GSH/GSSG ratio remained notably unaffected after 12 h. Therefore, the early alterations (0-2 h) in transformed EC breached redox homeostasis as strongly as to enhance their susceptibility to IQ. This interesting facet of IQ as redox disruptor could broaden its therapeutic potential for other skin malignancies, alone or in adjuvant schemes.
Collapse
Affiliation(s)
- Rodrigo Rocco
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Adrián E Cambindo Botto
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Manuel J Muñoz
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina.,Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Milan, Italy.,Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Hernán Reingruber
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Rosa Wainstok
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Adriana Cochón
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Silvina Gazzaniga
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
5
|
Steele H, Song B, Willicut A, Grimes HL, Herro R. Isolation of primary immune cells from fibrotic skin, esophageal, and gut tissue. J Immunol Methods 2021; 497:113107. [PMID: 34352237 DOI: 10.1016/j.jim.2021.113107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/12/2021] [Accepted: 07/24/2021] [Indexed: 11/15/2022]
Abstract
Understanding the interplay between immune and structural cells is important for studying fibrosis and inflammation; however, primary immune cell isolation from organs that are typically enriched in stromal cells, like the lung, esophagus, or gut, proves to be an ongoing challenge. In fibrotic conditions, this challenge becomes even greater as infiltrating cells become trapped in the robust extracellular matrix (ECM). This protocol details a method to isolate cells at high yield from stroma-rich organs that can be used for further analyses via flow cytometry, stimulation, or culturing. Validation of this method is confirmed by flow cytometry data assessing immune cell populations of interest. This protocol can be completed in approximately 5-6 h.
Collapse
Affiliation(s)
- Hope Steele
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Immunology Graduate Program, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Baobao Song
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Immunology Graduate Program, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ashley Willicut
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - H Leighton Grimes
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Rana Herro
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
6
|
Savorani C, Malinverno M, Seccia R, Maderna C, Giannotta M, Terreran L, Mastrapasqua E, Campaner S, Dejana E, Giampietro C. A dual role of YAP in driving TGFβ-mediated endothelial-to-mesenchymal transition. J Cell Sci 2021; 134:271139. [PMID: 34338295 PMCID: PMC8353525 DOI: 10.1242/jcs.251371] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Endothelial-to-mesenchymal transition (EndMT) is the biological process through which endothelial cells transdifferentiate into mesenchymal cells. During embryo development, EndMT regulates endocardial cushion formation via TGFβ/BMP signaling. In adults, EndMT is mainly activated during pathological conditions. Hence, it is necessary to characterize molecular regulators cooperating with TGFβ signaling in driving EndMT, to identify potential novel therapeutic targets to treat these pathologies. Here, we studied YAP, a transcriptional co-regulator involved in several biological processes, including epithelial-to-mesenchymal transition (EMT). As EndMT is the endothelial-specific form of EMT, and YAP (herein referring to YAP1) and TGFβ signaling cross-talk in other contexts, we hypothesized that YAP contributes to EndMT by modulating TGFβ signaling. We demonstrate that YAP is required to trigger TGFβ-induced EndMT response, specifically contributing to SMAD3-driven EndMT early gene transcription. We provide novel evidence that YAP acts as SMAD3 transcriptional co-factor and prevents GSK3β-mediated SMAD3 phosphorylation, thus protecting SMAD3 from degradation. YAP is therefore emerging as a possible candidate target to inhibit pathological TGFβ-induced EndMT at early stages. Summary: A new crucial role for YAP as a co-activator of early pathological TGFβ-mediated endothelial-to-mesenchymal transition program and characterization of the underlying molecular mechanism.
Collapse
Affiliation(s)
- Cecilia Savorani
- Institute of Molecular Oncology (IFOM), The Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute of Molecular Oncology, Milan 20139, Italy
| | - Matteo Malinverno
- Institute of Molecular Oncology (IFOM), The Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute of Molecular Oncology, Milan 20139, Italy
| | - Roberta Seccia
- Institute of Molecular Oncology (IFOM), The Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute of Molecular Oncology, Milan 20139, Italy
| | - Claudio Maderna
- Institute of Molecular Oncology (IFOM), The Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute of Molecular Oncology, Milan 20139, Italy
| | - Monica Giannotta
- Institute of Molecular Oncology (IFOM), The Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute of Molecular Oncology, Milan 20139, Italy
| | - Linda Terreran
- Institute of Molecular Oncology (IFOM), The Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute of Molecular Oncology, Milan 20139, Italy
| | - Eleonora Mastrapasqua
- Institute of Molecular Oncology (IFOM), The Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute of Molecular Oncology, Milan 20139, Italy
| | - Stefano Campaner
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan 20139, Italy
| | - Elisabetta Dejana
- Institute of Molecular Oncology (IFOM), The Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute of Molecular Oncology, Milan 20139, Italy.,Department of Immunology, Genetics and Pathology, Vascular Biology, Uppsala University, Uppsala 751 85, Sweden
| | - Costanza Giampietro
- Institute of Molecular Oncology (IFOM), The Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute of Molecular Oncology, Milan 20139, Italy.,Swiss Federal Laboratories for Materials Science and Technology (EMPA), Dübendorf 8600, Switzerland.,Department of Mechanical and Process Engineering, ETH Zurich, Zurich 8092, Switzerland
| |
Collapse
|
7
|
Xie M, Park D, Sica GL, Deng X. Bcl2-induced DNA replication stress promotes lung carcinogenesis in response to space radiation. Carcinogenesis 2021; 41:1565-1575. [PMID: 32157295 DOI: 10.1093/carcin/bgaa021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/18/2020] [Accepted: 03/05/2020] [Indexed: 11/12/2022] Open
Abstract
Space radiation is characterized by high-linear energy transfer (LET) ionizing radiation. The relationships between the early biological effects of space radiation and the probability of cancer in humans are poorly understood. Bcl2 not only functions as a potent antiapoptotic molecule but also as an oncogenic protein that induces DNA replication stress. To test the role and mechanism of Bcl2 in high-LET space radiation-induced lung carcinogenesis, we created lung-targeting Bcl2 transgenic C57BL/6 mice using the CC10 promoter to drive Bcl2 expression selectively in lung tissues. Intriguingly, lung-targeting transgenic Bcl2 inhibits ribonucleotide reductase activity, reduces dNTP pool size and retards DNA replication fork progression in mouse bronchial epithelial cells. After exposure of mice to space radiation derived from 56iron, 28silicon or protons, the incidence of lung cancer was significantly higher in lung-targeting Bcl2 transgenic mice than in wild-type mice, indicating that Bcl2-induced DNA replication stress promotes lung carcinogenesis in response to space radiation. The findings provide some evidence for the relative effectiveness of space radiation and Bcl-2 at inducing lung cancer in mice.
Collapse
Affiliation(s)
- Maohua Xie
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Dongkyoo Park
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Gabriel L Sica
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Xingming Deng
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA, USA
| |
Collapse
|
8
|
Li H, Wang Y, Liu J, Chen X, Duan Y, Wang X, Shen Y, Kuang Y, Zhuang T, Tomlinson B, Chan P, Yu Z, Cheng Y, Zhang L, Liu Z, Zhang Y, Zhao Z, Zhang Q, Liu J. Endothelial Klf2-Foxp1-TGFβ signal mediates the inhibitory effects of simvastatin on maladaptive cardiac remodeling. Am J Cancer Res 2021; 11:1609-1625. [PMID: 33408770 PMCID: PMC7778601 DOI: 10.7150/thno.48153] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/15/2020] [Indexed: 12/18/2022] Open
Abstract
Aims: Pathological cardiac fibrosis and hypertrophy are common features of left ventricular remodeling that often progress to heart failure (HF). Endothelial cells (ECs) are the most abundant non-myocyte cells in adult mouse heart. Simvastatin, a strong inducer of Krüppel-like Factor 2 (Klf2) in ECs, ameliorates pressure overload induced maladaptive cardiac remodeling and dysfunction. This study aims to explore the detailed molecular mechanisms of the anti-remodeling effects of simvastatin. Methods and Results: RGD-magnetic-nanoparticles were used to endothelial specific delivery of siRNA and we found absence of simvastatin's protective effect on pressure overload induced maladaptive cardiac remodeling and dysfunction after in vivo inhibition of EC-Klf2. Mechanism studies showed that EC-Klf2 inhibition reversed the simvastatin-mediated reduction of fibroblast proliferation and myofibroblast formation, as well as cardiomyocyte size and cardiac hypertrophic genes, which suggested that EC-Klf2 might mediate the anti-fibrotic and anti-hypertrophy effects of simvastatin. Similar effects were observed after Klf2 inhibition in cultured ECs. Moreover, Klf2 regulated its direct target gene TGFβ1 in ECs and mediated the protective effects of simvastatin, and inhibition of EC-Klf2 increased the expression of EC-TGFβ1 leading to simvastatin losing its protective effects. Also, EC-Klf2 was found to regulate EC-Foxp1 and loss of EC-Foxp1 attenuated the protective effects of simvastatin similar to EC-Klf2 inhibition. Conclusions: We conclude that cardiac microvasculature ECs are important in the modulation of pressure overload induced maladaptive cardiac remodeling and dysfunction, and the endothelial Klf2-TGFβ1 or Klf2-Foxp1-TGFβ1 pathway mediates the preventive effects of simvastatin. This study demonstrates a novel mechanism of the non-cholesterol lowering effects of simvastatin for HF prevention.
Collapse
|
9
|
Francisco DMF, Marchetti L, Rodríguez-Lorenzo S, Frías-Anaya E, Figueiredo RM, Winter P, Romero IA, de Vries HE, Engelhardt B, Bruggmann R. Advancing brain barriers RNA sequencing: guidelines from experimental design to publication. Fluids Barriers CNS 2020; 17:51. [PMID: 32811511 PMCID: PMC7433166 DOI: 10.1186/s12987-020-00207-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/06/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND RNA sequencing (RNA-Seq) in its varied forms has become an indispensable tool for analyzing differential gene expression and thus characterization of specific tissues. Aiming to understand the brain barriers genetic signature, RNA seq has also been introduced in brain barriers research. This has led to availability of both, bulk and single-cell RNA-Seq datasets over the last few years. If appropriately performed, the RNA-Seq studies provide powerful datasets that allow for significant deepening of knowledge on the molecular mechanisms that establish the brain barriers. However, RNA-Seq studies comprise complex workflows that require to consider many options and variables before, during and after the proper sequencing process. MAIN BODY In the current manuscript, we build on the interdisciplinary experience of the European PhD Training Network BtRAIN ( https://www.btrain-2020.eu/ ) where bioinformaticians and brain barriers researchers collaborated to analyze and establish RNA-Seq datasets on vertebrate brain barriers. The obstacles BtRAIN has identified in this process have been integrated into the present manuscript. It provides guidelines along the entire workflow of brain barriers RNA-Seq studies starting from the overall experimental design to interpretation of results. Focusing on the vertebrate endothelial blood-brain barrier (BBB) and epithelial blood-cerebrospinal-fluid barrier (BCSFB) of the choroid plexus, we provide a step-by-step description of the workflow, highlighting the decisions to be made at each step of the workflow and explaining the strengths and weaknesses of individual choices made. Finally, we propose recommendations for accurate data interpretation and on the information to be included into a publication to ensure appropriate accessibility of the data and reproducibility of the observations by the scientific community. CONCLUSION Next generation transcriptomic profiling of the brain barriers provides a novel resource for understanding the development, function and pathology of these barrier cells, which is essential for understanding CNS homeostasis and disease. Continuous advancement and sophistication of RNA-Seq will require interdisciplinary approaches between brain barrier researchers and bioinformaticians as successfully performed in BtRAIN. The present guidelines are built on the BtRAIN interdisciplinary experience and aim to facilitate collaboration of brain barriers researchers with bioinformaticians to advance RNA-Seq study design in the brain barriers community.
Collapse
Affiliation(s)
- David M F Francisco
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Luca Marchetti
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Sabela Rodríguez-Lorenzo
- MS Center Amsterdam, Amsterdam Neuroscience, Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Eduardo Frías-Anaya
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Ricardo M Figueiredo
- GenXPro GmbH, Frankfurt/Main, Germany
- Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | | | - Ignacio Andres Romero
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Helga E de Vries
- MS Center Amsterdam, Amsterdam Neuroscience, Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland.
| |
Collapse
|
10
|
Liang C, Yang KY, Chan VW, Li X, Fung TH, Wu Y, Tian XY, Huang Y, Qin L, Lau JY, Lui KO. CD8 + T-cell plasticity regulates vascular regeneration in type-2 diabetes. Theranostics 2020; 10:4217-4232. [PMID: 32226549 PMCID: PMC7086373 DOI: 10.7150/thno.40663] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/02/2020] [Indexed: 12/13/2022] Open
Abstract
In this study, we observe that the ischemic tissues of type-2 diabetic (T2D) patients and mice have significantly more CD8+ T-cells than that of their normoglycemic counterparts, respectively. However, the role of CD8+ T-cells in the pathogenesis of diabetic vascular complication has been less studied. Methods: We employed loss-of-function studies in mouse models using the non-lytic anti-CD8 antibody that blocks tissue infiltration of CD8+ T-cells into the injured tissue. We also performed genome-wide, single-cell RNA-sequencing of CD8+ T-cells to uncover their role in the pathogenesis of diabetic vascular diseases. Results: The vascular density is negatively correlated with the number of CD8+ T-cells in the ischemic tissues of patients and mice after injury. CD8+ T-cells or their supernatant can directly impair human and murine angiogenesis. Compared to normoglycemic mice that can regenerate their blood vessels after injury, T2D mice fail in this regeneration. Treatment with the CD8 checkpoint blocking antibody increases the proliferation and function of endothelial cells in both Leprdb/db mice and diet-induced diabetic Cdh5-Cre;Rosa-YFP lineage-tracing mice after ischemic injury. Furthermore, single-cell transcriptomic profiling reveals that CD8+ T-cells of T2D mice showed a de novo cell fate change from the angiogenic, tissue-resident memory cells towards the effector and effector memory cells after injury. Functional revascularization by CD8 checkpoint blockade is mediated through unleashing such a poised lineage commitment of CD8+ T-cells from T2D mice. Conclusion: Our results reveal that CD8+ T-cell plasticity regulates vascular regeneration; and give clinically relevant insights into the potential development of immunotherapy targeting vascular diseases associated with obesity and diabetes.
Collapse
|
11
|
Dorca-Arévalo J, Dorca E, Torrejón-Escribano B, Blanch M, Martín-Satué M, Blasi J. Lung endothelial cells are sensitive to epsilon toxin from Clostridium perfringens. Vet Res 2020; 51:27. [PMID: 32093740 PMCID: PMC7041264 DOI: 10.1186/s13567-020-00748-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/22/2020] [Indexed: 11/12/2022] Open
Abstract
The pore-forming protein epsilon toxin (Etx) from Clostridium perfringens produces acute perivascular edema affecting several organs, especially the brain and lungs. Despite the toxin evident effect on microvasculature and endothelial cells, the underlying molecular and cellular mechanisms remain obscure. Moreover, no Etx-sensitive endothelial cell model has been identified to date. Here, we characterize the mouse lung endothelial cell line 1G11 as an Etx-sensitive cell line and compare it with the well-characterized Etx-sensitive Madin-Darby canine kidney epithelial cell line. Several experimental approaches, including morphological and cytotoxic assays, clearly demonstrate that the 1G11 cell line is highly sensitive to Etx and show the specific binding, oligomerization, and pore-forming activity of the toxin in these cells. Recently, the myelin and lymphocyte (MAL) protein has been postulated as a putative receptor for Etx. Here, we show the presence of Mal mRNA in the 1G11 cell line and the presence of the MAL protein in the endothelium of some mouse lung vessels, supporting the hypothesis that this protein is a key element in the Etx intoxication pathway. The existence of an Etx-sensitive cell line of endothelial origin would help shed light on the cellular and molecular mechanisms underlying Etx-induced edema and its consequences.
Collapse
Affiliation(s)
- Jonatan Dorca-Arévalo
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Campus of Bellvitge, University of Barcelona, Hospitalet de Llobregat, Barcelona, Spain. .,Biomedical Research Institute of Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain. .,Institute of Neurosciences, University of Barcelona, 08035, Barcelona, Spain.
| | - Eduard Dorca
- Pathology Service, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Benjamín Torrejón-Escribano
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Campus of Bellvitge, University of Barcelona, Hospitalet de Llobregat, Barcelona, Spain.,Centres Científics i Tecnològics, Universitat de Barcelona, Campus Bellvitge, Barcelona, Spain
| | - Marta Blanch
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Campus of Bellvitge, University of Barcelona, Hospitalet de Llobregat, Barcelona, Spain.,Biomedical Research Institute of Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, 08035, Barcelona, Spain
| | - Mireia Martín-Satué
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Campus of Bellvitge, University of Barcelona, Hospitalet de Llobregat, Barcelona, Spain.,Biomedical Research Institute of Bellvitge (IDIBELL), Oncobell Program, CIBERONC, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Juan Blasi
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Campus of Bellvitge, University of Barcelona, Hospitalet de Llobregat, Barcelona, Spain.,Biomedical Research Institute of Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, 08035, Barcelona, Spain
| |
Collapse
|
12
|
Herrero D, Cañón S, Albericio G, Carmona RM, Aguilar S, Mañes S, Bernad A. Age-related oxidative stress confines damage-responsive Bmi1 + cells to perivascular regions in the murine adult heart. Redox Biol 2019; 22:101156. [PMID: 30851670 PMCID: PMC6407305 DOI: 10.1016/j.redox.2019.101156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/23/2019] [Accepted: 02/27/2019] [Indexed: 12/12/2022] Open
Abstract
Adult progenitor cells reside in specialized microenvironments which maintain their undifferentiated cell state and trigger regenerative responses following injury. Although these environments are well described in several tissues, the cellular components that comprise the cardiac environment where progenitor cells are located remain unknown. Here we use Bmi1CreERT and Bmi1GFP mice as genetic tools to trace cardiac damage-responsive cells throughout the mouse lifespan. In adolescent mice, Bmi1+ damage-responsive cells are broadly distributed throughout the myocardium. In adult mice, however, Bmi1+ cells are confined predominately in perivascular areas with low levels of reactive oxygen species (ROS) and their number decline in an age-dependent manner. In vitro co-culture experiments with endothelial cells supported a regulatory role of the endothelium in damage-responsive cell behavior. Accordingly, in vivo genetic decrease of ROS levels in adult heart disengaged Bmi1+ cells from the cardiovascular network, recapitulating an adolescent-like Bmi1 expression profile. Thus, we identify cardiac perivascular regions as low-stress microenvironments that favor the maintenance of adult damage-responsive cells. Bmi1+ cardiac damage-responsive cells are sheltered in areas with low ROS levels. Aging-related oxidative damage confines cardiac Bmi1+ cells to perivascular regions. Microvasculature-derived signals regulate adult Bmi1+ damage-responsive cell behavior. Genetic ROS levels manipulation modifies the percentage and identity of Bmi1+ cells.
Collapse
Affiliation(s)
- Diego Herrero
- Cardiac Stem Cells Group, Department of Immunology and Oncology, National Center for Biotechnology (CNB-CSIC), 28049, Madrid, Spain
| | - Susana Cañón
- Cardiac Stem Cells Group, Department of Immunology and Oncology, National Center for Biotechnology (CNB-CSIC), 28049, Madrid, Spain
| | - Guillermo Albericio
- Cardiac Stem Cells Group, Department of Immunology and Oncology, National Center for Biotechnology (CNB-CSIC), 28049, Madrid, Spain
| | - Rosa María Carmona
- Cardiac Stem Cells Group, Department of Immunology and Oncology, National Center for Biotechnology (CNB-CSIC), 28049, Madrid, Spain
| | - Susana Aguilar
- Cardiac Stem Cells Group, Department of Immunology and Oncology, National Center for Biotechnology (CNB-CSIC), 28049, Madrid, Spain
| | - Santos Mañes
- Signaling Networks in Inflammation and Cancer Group, Department of Immunology and Oncology, National Center for Biotechnology (CNB-CSIC), 28049, Madrid, Spain
| | - Antonio Bernad
- Cardiac Stem Cells Group, Department of Immunology and Oncology, National Center for Biotechnology (CNB-CSIC), 28049, Madrid, Spain.
| |
Collapse
|
13
|
Bitar MS. Diabetes Impairs Angiogenesis and Induces Endothelial Cell Senescence by Up-Regulating Thrombospondin-CD47-Dependent Signaling. Int J Mol Sci 2019; 20:ijms20030673. [PMID: 30720765 PMCID: PMC6386981 DOI: 10.3390/ijms20030673] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/03/2019] [Accepted: 01/06/2019] [Indexed: 02/07/2023] Open
Abstract
Endothelial dysfunction, impaired angiogenesis and cellular senescence in type 2 diabetes constitute dominant risk factors for chronic non-healing wounds and other cardiovascular disorders. Studying these phenomena in the context of diabetes and the TSP1-CD-47 signaling dictated the use of the in vitro wound endothelial cultured system and an in vivo PVA sponge model of angiogenesis. Herein we report that diabetes impaired the in vivo sponge angiogenic capacity by decreasing cell proliferation, fibrovascular invasion and capillary density. In contrast, a heightened state of oxidative stress and elevated expression of TSP1 and CD47 both at the mRNA and protein levels were evident in this diabetic sponge model of wound healing. An in vitro culturing system involving wound endothelial cells confirmed the increase in ROS generation and the up-regulation of TSP1-CD47 signaling as a function of diabetes. We also provided evidence that diabetic wound endothelial cells (W-ECs) exhibited a characteristic feature that is consistent with cellular senescence. Indeed, enhanced SA-β-gal activity, cell cycle arrest, increased cell cycle inhibitors (CKIs) p53, p21 and p16 and decreased cell cycle promoters including Cyclin D1 and CDK4/6 were all demonstrated in these cells. The functional consequence of this cascade of events was illustrated by a marked reduction in diabetic endothelial cell proliferation, migration and tube formation. A genetic-based strategy in diabetic W-ECs using CD47 siRNA significantly ameliorated in these cells the excessiveness in oxidative stress, attenuation in angiogenic potential and more importantly the inhibition in cell cycle progression and its companion cellular senescence. To this end, the current data provide evidence linking the overexpression of TSP1-CD47 signaling in diabetes to a number of parameters associated with endothelial dysfunction including impaired angiogenesis, cellular senescence and a heightened state of oxidative stress. Moreover, it may also point to TSP1-CD47 as a potential therapeutic target in the treatment of the aforementioned pathologies.
Collapse
Affiliation(s)
- Milad S Bitar
- Department of Pharmacology& Toxicology, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait.
| |
Collapse
|
14
|
Osmanagic-Myers S, Kiss A, Manakanatas C, Hamza O, Sedlmayer F, Szabo PL, Fischer I, Fichtinger P, Podesser BK, Eriksson M, Foisner R. Endothelial progerin expression causes cardiovascular pathology through an impaired mechanoresponse. J Clin Invest 2019; 129:531-545. [PMID: 30422822 PMCID: PMC6355303 DOI: 10.1172/jci121297] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 11/06/2018] [Indexed: 01/09/2023] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a premature aging disorder characterized by accelerated cardiovascular disease with extensive fibrosis. It is caused by a mutation in LMNA leading to expression of truncated prelamin A (progerin) in the nucleus. To investigate the contribution of the endothelium to cardiovascular HGPS pathology, we generated an endothelium-specific HGPS mouse model with selective endothelial progerin expression. Transgenic mice develop interstitial myocardial and perivascular fibrosis and left ventricular hypertrophy associated with diastolic dysfunction and premature death. Endothelial cells show impaired shear stress response and reduced levels of endothelial nitric oxide synthase (eNOS) and NO. On the molecular level, progerin impairs nucleocytoskeletal coupling in endothelial cells through changes in mechanoresponsive components at the nuclear envelope, increased F-actin/G-actin ratios, and deregulation of mechanoresponsive myocardin-related transcription factor-A (MRTFA). MRTFA binds to the Nos3 promoter and reduces eNOS expression, thereby mediating a profibrotic paracrine response in fibroblasts. MRTFA inhibition rescues eNOS levels and ameliorates the profibrotic effect of endothelial cells in vitro. Although this murine model lacks the key anatomical feature of vascular smooth muscle cell loss seen in HGPS patients, our data show that progerin-induced impairment of mechanosignaling in endothelial cells contributes to excessive fibrosis and cardiovascular disease in HGPS patients.
Collapse
Affiliation(s)
- Selma Osmanagic-Myers
- Max F. Perutz Laboratories (MFPL), Department of Medical Biochemistry, Medical University of Vienna and University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
- Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Attila Kiss
- Ludwig Boltzmann Cluster for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Christina Manakanatas
- Max F. Perutz Laboratories (MFPL), Department of Medical Biochemistry, Medical University of Vienna and University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
- Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Ouafa Hamza
- Ludwig Boltzmann Cluster for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Franziska Sedlmayer
- Max F. Perutz Laboratories (MFPL), Department of Medical Biochemistry, Medical University of Vienna and University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Petra L. Szabo
- Ludwig Boltzmann Cluster for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Irmgard Fischer
- Max F. Perutz Laboratories (MFPL), Department of Medical Biochemistry, Medical University of Vienna and University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Petra Fichtinger
- Max F. Perutz Laboratories (MFPL), Department of Medical Biochemistry, Medical University of Vienna and University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Bruno K. Podesser
- Ludwig Boltzmann Cluster for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Maria Eriksson
- Department of Biosciences and Nutrition, Karolinska Institutet, NEO, Huddinge, Sweden
| | - Roland Foisner
- Max F. Perutz Laboratories (MFPL), Department of Medical Biochemistry, Medical University of Vienna and University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| |
Collapse
|
15
|
Kim S, Lee KS, Choi S, Kim J, Lee DK, Park M, Park W, Kim TH, Hwang JY, Won MH, Lee H, Ryoo S, Ha KS, Kwon YG, Kim YM. NF-κB-responsive miRNA-31-5p elicits endothelial dysfunction associated with preeclampsia via down-regulation of endothelial nitric-oxide synthase. J Biol Chem 2018; 293:18989-19000. [PMID: 30279269 DOI: 10.1074/jbc.ra118.005197] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/06/2018] [Indexed: 11/06/2022] Open
Abstract
Inflammatory cytokines, including tumor necrosis factor-α (TNFα), were elevated in patients with cardiovascular diseases and are also considered as crucial factors in the pathogenesis of preeclampsia; however, the underlying pathogenic mechanism has not been clearly elucidated. This study provides novel evidence that TNFα leads to endothelial dysfunction associated with hypertension and vascular remodeling in preeclampsia through down-regulation of endothelial nitric-oxide synthase (eNOS) by NF-κB-dependent biogenesis of microRNA (miR)-31-5p, which targets eNOS mRNA. In this study, we found that miR-31-5p was up-regulated in sera from patients with preeclampsia and in human endothelial cells treated with TNFα. TNFα-mediated induction of miR-31-5p was blocked by an NF-κB inhibitor and NF-κB p65 knockdown but not by mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase inhibitors, indicating that NF-κB is essential for biogenesis of miR-31-5p. The treatment of human endothelial cells with TNFα or miR-31-5p mimics decreased endothelial nitric-oxide synthase (eNOS) mRNA stability without affecting eNOS promoter activity, resulting in inhibition of eNOS expression and NO/cGMP production through blocking of the functional activity of the eNOS mRNA 3'-UTR. Moreover, TNFα and miR-31-5p mimic evoked endothelial dysfunction associated with defects in angiogenesis, trophoblastic invasion, and vasorelaxation in an ex vivo cultured model of human placental arterial vessels, which are typical features of preeclampsia. These results suggest that NF-κB-responsive miR-31-5p elicits endothelial dysfunction, hypertension, and vascular remodeling via post-transcriptional down-regulation of eNOS and is a molecular risk factor in the pathogenesis and development of preeclampsia.
Collapse
Affiliation(s)
- Suji Kim
- From the Departments of Molecular and Cellular Biochemistry
| | - Kyu-Sun Lee
- From the Departments of Molecular and Cellular Biochemistry
| | - Seunghwan Choi
- From the Departments of Molecular and Cellular Biochemistry
| | - Joohwan Kim
- From the Departments of Molecular and Cellular Biochemistry
| | - Dong-Keon Lee
- From the Departments of Molecular and Cellular Biochemistry
| | - Minsik Park
- From the Departments of Molecular and Cellular Biochemistry
| | - Wonjin Park
- From the Departments of Molecular and Cellular Biochemistry
| | - Tae-Hoon Kim
- From the Departments of Molecular and Cellular Biochemistry
| | | | - Moo-Ho Won
- Neurobiology, Kangwon National University School of Medicine, Chuncheon, Gangwon-do 24341
| | - Hansoo Lee
- the Department of Biology, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, and
| | - Sungwoo Ryoo
- the Department of Biology, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, and
| | - Kwon-Soo Ha
- From the Departments of Molecular and Cellular Biochemistry
| | - Young-Guen Kwon
- the Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
| | | |
Collapse
|
16
|
Mira E, Carmona-Rodríguez L, Pérez-Villamil B, Casas J, Fernández-Aceñero MJ, Martínez-Rey D, Martín-González P, Heras-Murillo I, Paz-Cabezas M, Tardáguila M, Oury TD, Martín-Puig S, Lacalle RA, Fabriás G, Díaz-Rubio E, Mañes S. SOD3 improves the tumor response to chemotherapy by stabilizing endothelial HIF-2α. Nat Commun 2018; 9:575. [PMID: 29422508 PMCID: PMC5805714 DOI: 10.1038/s41467-018-03079-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 01/18/2018] [Indexed: 02/08/2023] Open
Abstract
One drawback of chemotherapy is poor drug delivery to tumor cells, due in part to hyperpermeability of the tumor vasculature. Extracellular superoxide dismutase (SOD3) is an antioxidant enzyme usually repressed in the tumor milieu. Here we show that specific SOD3 re-expression in tumor-associated endothelial cells (ECs) increases doxorubicin (Doxo) delivery into and chemotherapeutic effect on tumors. Enhanced SOD3 activity fostered perivascular nitric oxide accumulation and reduced vessel leakage by inducing vascular endothelial cadherin (VEC) transcription. SOD3 reduced HIF prolyl hydroxylase domain protein activity, which increased hypoxia-inducible factor-2α (HIF-2α) stability and enhanced its binding to a specific VEC promoter region. EC-specific HIF-2α ablation prevented both the SOD3-mediated increase in VEC transcription and the enhanced Doxo effect. SOD3, VEC, and HIF-2α levels correlated positively in primary colorectal cancers, which suggests a similar interconnection of these proteins in human malignancy.
Collapse
Affiliation(s)
- Emilia Mira
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Darwin, 3, Madrid, 28049, Spain
| | - Lorena Carmona-Rodríguez
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Darwin, 3, Madrid, 28049, Spain
| | - Beatriz Pérez-Villamil
- Genomics and Microarray Laboratory, Medical Oncology & Surgical Pathology Departments, Instituto de Investigación Sanitaria San Carlos Hospital Clínico San Carlos, Univ. Complutense de Madrid, CIBERONC, Profesor Martín Lagos, S/N, Madrid, 28040, Spain
| | - Josefina Casas
- Department of Biomedicinal Chemistry, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, Barcelona, 08034, Spain
| | - María Jesús Fernández-Aceñero
- Genomics and Microarray Laboratory, Medical Oncology & Surgical Pathology Departments, Instituto de Investigación Sanitaria San Carlos Hospital Clínico San Carlos, Univ. Complutense de Madrid, CIBERONC, Profesor Martín Lagos, S/N, Madrid, 28040, Spain
| | - Diego Martínez-Rey
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Darwin, 3, Madrid, 28049, Spain
| | - Paula Martín-González
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Darwin, 3, Madrid, 28049, Spain
| | - Ignacio Heras-Murillo
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Darwin, 3, Madrid, 28049, Spain
| | - Mateo Paz-Cabezas
- Genomics and Microarray Laboratory, Medical Oncology & Surgical Pathology Departments, Instituto de Investigación Sanitaria San Carlos Hospital Clínico San Carlos, Univ. Complutense de Madrid, CIBERONC, Profesor Martín Lagos, S/N, Madrid, 28040, Spain
| | - Manuel Tardáguila
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Darwin, 3, Madrid, 28049, Spain
- Genetics Institute, University of Florida, 2033 Mowry Road, Gainesville, FL, 32610, USA
| | - Tim D Oury
- Department of Pathology, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA, 15261, USA
| | - Silvia Martín-Puig
- Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares, Calle de Melchor Fernández Almagro, 3, Madrid, 28029, Spain
| | - Rosa Ana Lacalle
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Darwin, 3, Madrid, 28049, Spain
| | - Gemma Fabriás
- Department of Biomedicinal Chemistry, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, Barcelona, 08034, Spain
| | - Eduardo Díaz-Rubio
- Genomics and Microarray Laboratory, Medical Oncology & Surgical Pathology Departments, Instituto de Investigación Sanitaria San Carlos Hospital Clínico San Carlos, Univ. Complutense de Madrid, CIBERONC, Profesor Martín Lagos, S/N, Madrid, 28040, Spain
| | - Santos Mañes
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Darwin, 3, Madrid, 28049, Spain.
| |
Collapse
|
17
|
Rocco R, Alegre N, Pozner R, Wainstok R, Gazzaniga S. Selective hemangioma cell dysfunction and apoptosis triggered by in vitro treatment with imiquimod. Toxicol Lett 2018; 288:82-88. [PMID: 29410238 DOI: 10.1016/j.toxlet.2018.01.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 11/16/2017] [Accepted: 01/19/2018] [Indexed: 02/02/2023]
Abstract
Infantile hemangiomas are the most common benign tumors of infancy, characterized by unregulated angiogenesis and endothelial cells with high mitotic rate. Although spontaneous regression occurs, sometimes treatment is required and alternatives to corticosteroids should be considered to reduce side effects. Imiquimod is an imidazoquinoline, approved for some skin pathologies other than hemangioma. It is proposed that the effectiveness of imiquimod comes from the activation of immune cells at tumor microenvironment. However, the possibility to selectively kill different cell types and to directly impede angiogenesis has been scarcely explored in vitro for endothelial cells. In this work we showed a dramatic cytotoxicity on hemangioma cell, with a significant lower IC50 value in hemangioma compared to normal endothelial cells and melanoma (employed as a non-endothelial tumor cell line). Nuclear morphometric and flow-cytometry assays revealed imiquimod-induced apoptosis on hemangioma and melanoma cells but a small percentage of senescence on normal endothelial cells. At sub-lethal conditions, cell migration, a key step in angiogenesis turned out to be inhibited in a tumor-selective manner along with actin cytoskeleton disorganization on hemangioma cells. Altogether, these findings pointed out the selective cytotoxic effects of imiquimod on transformed endothelial cells, evidencing the potential for imiquimod to be a therapeutic alternative to reduce extensive superficial hemangioma lesions.
Collapse
Affiliation(s)
- Rodrigo Rocco
- Laboratorio de Biología Tumoral, Dpto. de Química Biológica IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nadia Alegre
- Laboratorio de Biología Tumoral, Dpto. de Química Biológica IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Roberto Pozner
- Institute of Experimental Medicine (IMEX) -CONICET, National Academy of Medicine, Buenos Aires, Argentina
| | - Rosa Wainstok
- Laboratorio de Biología Tumoral, Dpto. de Química Biológica IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Silvina Gazzaniga
- Laboratorio de Biología Tumoral, Dpto. de Química Biológica IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
18
|
Yoder MC. Endothelial stem and progenitor cells (stem cells): (2017 Grover Conference Series). Pulm Circ 2018; 8:2045893217743950. [PMID: 29099663 PMCID: PMC5731724 DOI: 10.1177/2045893217743950] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 10/31/2017] [Indexed: 12/11/2022] Open
Abstract
The capacity of existing blood vessels to give rise to new blood vessels via endothelial cell sprouting is called angiogenesis and is a well-studied biologic process. In contrast, little is known about the mechanisms for endothelial cell replacement or regeneration within established blood vessels. Since clear definitions exist for identifying cells with stem and progenitor cell properties in many tissues and organs of the body, several groups have begun to accumulate evidence that endothelial stem and progenitor cells exist within the endothelial intima of existing blood vessels. This paper will review stem and progenitor cell definitions and highlight several recent papers purporting to have identified resident vascular endothelial stem and progenitor cells.
Collapse
Affiliation(s)
- Mervin C. Yoder
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
19
|
Abstract
Isolation and culture of endothelial cells (ECs) is a useful tool to study the cellular processes involved in vascular development and vascular maturation. In this chapter, we describe a method to isolate and culture endothelial cells from placentae. This method takes advantage of two transgenes: ROSA26 mT/mG , which drives the expression of GFP upon Cre-mediated recombination, and Tie2-Cre, which expresses Cre driven by the Tie2 promoter in endothelial progenitors and their descendants. GFP-expressing endothelial cells are isolated through fluorescence-activated cell sorting (FACS). The sorted cells express the endothelial marker CD31. This method can be used to study the morphological and physiological properties of placental endothelial cells in mice carrying mutations affecting vascular development.
Collapse
Affiliation(s)
- Lijun Chi
- Translational Medicine, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
| | - Paul Delgado-Olguin
- Translational Medicine, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario, M5G0A4, Canada. .,Department of Molecular Genetics, University of Toronto, 1 King's College Cir, Toronto, ON, M5S 1A8, Canada. .,Heart & Stroke/Richard Lewar Centres of Excellence in Cardiovascular Research, 6 Queen's Park Cres W, Toronto, ON, M5S3H2, Canada.
| |
Collapse
|
20
|
Proposal of a Novel Natural Biomaterial, the Scleral Ossicle, for the Development of Vascularized Bone Tissue In Vitro. Biomedicines 2017; 6:biomedicines6010003. [PMID: 29295590 PMCID: PMC5874660 DOI: 10.3390/biomedicines6010003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/11/2017] [Accepted: 12/18/2017] [Indexed: 11/17/2022] Open
Abstract
Recovering of significant skeletal defects could be partially abortive due to the perturbations that affect the regenerative process when defects reach a critical size, thus resulting in a non-healed bone. The current standard treatments include allografting, autografting, and other bone implant techniques. However, although they are commonly used in orthopedic surgery, these treatments have some limitations concerning their costs and their side effects such as potential infections or malunions. On this account, the need for suitable constructs to fill the gap in wide fractures is still urgent. As an innovative solution, scleral ossicles (SOs) can be put forward as natural scaffolds for bone repair. SOs are peculiar bony plates forming a ring at the scleral-corneal border of the eyeball of lower vertebrates. In the preliminary phases of the study, these ossicles were structurally and functionally characterized. The morphological characterization was performed by SEM analysis, MicroCT analysis and optical profilometry. Then, UV sterilization was carried out to obtain a clean support, without neither contaminations nor modifications of the bone architecture. Subsequently, the SO biocompatibility was tested in culture with different cell lines, focusing the attention to the differentiation capability of endothelial and osteoblastic cells on the SO surface. The results obtained by the above mentioned analysis strongly suggest that SOs can be used as bio-scaffolds for functionalization processes, useful in regenerative medicine.
Collapse
|
21
|
Mazzotti C, Gagliostro V, Bosisio D, Del Prete A, Tiberio L, Thelen M, Sozzani S. The Atypical Receptor CCRL2 (C-C Chemokine Receptor-Like 2) Does Not Act As a Decoy Receptor in Endothelial Cells. Front Immunol 2017; 8:1233. [PMID: 29056935 PMCID: PMC5635198 DOI: 10.3389/fimmu.2017.01233] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/19/2017] [Indexed: 11/26/2022] Open
Abstract
C-C chemokine receptor-like 2 (CCRL2) is a non-signaling seven-transmembrane domain (7-TMD) receptor related to the atypical chemokine receptor (ACKR) family. ACKRs bind chemokines but do not activate G protein-dependent signaling or cell functions. ACKRs were shown to regulate immune functions in vivo by their ability to scavenge chemokines from the local environment. This study was performed to investigate whether CCRL2 shares two of the main characteristics of ACKRs, namely the ability to internalize and scavenge the ligands. Cell membrane analysis of CCRL2-transfected cells revealed a weak, constitutive, ligand-independent internalization, and recycling of CCRL2, with a kinetics that was slower than those observed with ACKR3, a prototypic ACKR, or other chemotactic signaling receptors [i.e., chemokine-like receptor 1 and C-X-C motif chemokine receptor 2]. Intracellularly, CCRL2 colocalized with early endosome antigen 1-positive and Rab5-positive vesicles and with recycling compartments mainly characterized by Rab11-positive vesicles. CCRL2-transfected cells and activated mouse blood endothelial cells, that endogenously express CCRL2, were used to investigate the scavenging ability of CCRL2. These experiments confirmed the ability of CCRL2 to bind chemerin, the only recognized ligand, but excluded the ability of CCRL2 to perform scavenging. Collectively, these results identify unique functional properties for this member of the non-signaling 7-TMD receptor family.
Collapse
Affiliation(s)
- Chiara Mazzotti
- Laboratory of Experimental Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Vincenzo Gagliostro
- Laboratory of Experimental Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Daniela Bosisio
- Laboratory of Experimental Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Annalisa Del Prete
- Laboratory of Experimental Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,Humanitas Clinical and Research Centre, Rozzano, Italy
| | - Laura Tiberio
- Laboratory of Experimental Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marcus Thelen
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Silvano Sozzani
- Laboratory of Experimental Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,Humanitas Clinical and Research Centre, Rozzano, Italy
| |
Collapse
|
22
|
Moore TL, Hauser D, Gruber T, Rothen-Rutishauser B, Lattuada M, Petri-Fink A, Lyck R. Cellular Shuttles: Monocytes/Macrophages Exhibit Transendothelial Transport of Nanoparticles under Physiological Flow. ACS APPLIED MATERIALS & INTERFACES 2017; 9:18501-18511. [PMID: 28517937 DOI: 10.1021/acsami.7b03479] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A major hurdle in the development of biomedical nanoparticles (NP) is understanding how they interact with complex biological systems and navigate biological barriers to arrive at pathological targets. It is becoming increasingly evident that merely controlling particle physicochemical properties may not be sufficient to mediate particle biodistribution in dynamic environments. Thus, researchers are increasingly turning toward more complex but likewise more physiological in vitro systems to study particle--cell/particle-system interactions. An emerging paradigm is to utilize naturally migratory cells to act as so-called "Trojan horses" or cellular shuttles. We report here the use of monocytes/macrophages to transport NP across a confluent endothelial cell layer using a microfluidic in vitro model. With a custom-built flow chamber, we showed that physiological shear stress, when compared to low flow or static conditions, increased NP uptake by macrophages. We further provided a mathematical explanation for the effect of flow on NP uptake, namely that the physical exposure times of NP to cells is dictated by shear stress (i.e., flow rate) and results in increased particle uptake under flow. This study was extended to a multicellular, hydrodynamic in vitro model. Because monocytes are cells that naturally translocate across biological barriers, we utilized a monocyte/macrophage cell line as cellular NP transporters across an endothelial layer. In this exploratory study, we showed that monocyte/macrophage cells adhere to an endothelial layer and dynamically interact with the endothelial cells. The monocytes/macrophages took up NP and diapedesed across the endothelial layer with NP accumulating within the cellular uropod. These data illustrate that monocytes/macrophages may therefore act as active shuttles to deliver particles across endothelial barriers.
Collapse
Affiliation(s)
| | | | - Thomas Gruber
- Theodor Kocher Institute, Universität Bern , 3000 Bern, Switzerland
| | | | | | | | - Ruth Lyck
- Theodor Kocher Institute, Universität Bern , 3000 Bern, Switzerland
| |
Collapse
|
23
|
Kim J, Lee KS, Kim JH, Lee DK, Park M, Choi S, Park W, Kim S, Choi YK, Hwang JY, Choe J, Won MH, Jeoung D, Lee H, Ryoo S, Ha KS, Kwon YG, Kim YM. Aspirin prevents TNF-α-induced endothelial cell dysfunction by regulating the NF-κB-dependent miR-155/eNOS pathway: Role of a miR-155/eNOS axis in preeclampsia. Free Radic Biol Med 2017; 104:185-198. [PMID: 28087411 DOI: 10.1016/j.freeradbiomed.2017.01.010] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 12/28/2016] [Accepted: 01/06/2017] [Indexed: 12/13/2022]
Abstract
Preeclampsia is an inflammatory disease with endothelial cell dysfunction that occurs via decreased endothelial nitric oxide synthase/nitric oxide (eNOS/NO) activity. Aspirin reduces the incidence of hypertensive pregnancy complications. However, the underlying mechanism has not been clearly explained. Here, we found that tumor necrosis factor (TNF)-α, microRNA (miR)-155, and eNOS levels as well as endothelial redox phenotype were differentially regulated in preeclamptic patients, implying the involvement of TNF-α- and redox signal-mediated miR-155 biogenesis and eNOS downregulation in the pathogenesis of preeclampsia. Aspirin prevented the TNF-α-mediated increase in miR-155 biogenesis and decreases in eNOS expression and NO/cGMP production in cultured human umbilical vein endothelial cells (HUVECs). Similar effects of aspirin were also observed in HUVECs treated with H2O2. The preventive effects of aspirin was associated with the inhibition of nuclear factor-κB (NF-κB)-dependent MIR155HG (miR-155 host gene) expression. Aspirin recovered the TNF-α-mediated decrease in wild-type, but not mutant, eNOS 3'-untranslated region reporter activity, whose effect was blocked by miR-155 mimic. Moreover, aspirin prevented TNF-α-mediated endothelial cell dysfunction associated with impaired vasorelaxation, angiogenesis, and trophoblast invasion, and the preventive effects were blocked by miR-155 mimic or an eNOS inhibitor. Aspirin rescued TNF-α-mediated eNOS downregulation coupled with endothelial dysfunction by inhibiting NF-κB-dependent transcriptional miR-155 biogenesis. Thus, the redox-sensitive NF-κB/miR-155/eNOS axis may be crucial in the pathogenesis of vascular disorders including preeclampsia.
Collapse
Affiliation(s)
- Joohwan Kim
- Departments of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Gangwon-do 24341, South Korea
| | - Kyu-Sun Lee
- Departments of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Gangwon-do 24341, South Korea
| | - Ji-Hee Kim
- Departments of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Gangwon-do 24341, South Korea
| | - Dong-Keon Lee
- Departments of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Gangwon-do 24341, South Korea
| | - Minsik Park
- Departments of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Gangwon-do 24341, South Korea
| | - Seunghwan Choi
- Departments of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Gangwon-do 24341, South Korea
| | - Wonjin Park
- Departments of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Gangwon-do 24341, South Korea
| | - Suji Kim
- Departments of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Gangwon-do 24341, South Korea
| | - Yoon Kyung Choi
- Departments of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Gangwon-do 24341, South Korea
| | - Jong Yun Hwang
- Departments of Obstetrics and Gynecology, Kangwon National University School of Medicine, Chuncheon, Gangwon-do 24341, South Korea
| | - Jongseon Choe
- Departments of Immunology, Kangwon National University School of Medicine, Chuncheon, Gangwon-do 24341, South Korea
| | - Moo-Ho Won
- Departments of Neurobiology, Kangwon National University School of Medicine, Chuncheon, Gangwon-do 24341, South Korea
| | - Dooil Jeoung
- Departments of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, South Korea
| | - Hansoo Lee
- Departments of Biology, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, South Korea
| | - Sungwoo Ryoo
- Departments of Biology, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, South Korea
| | - Kwon-Soo Ha
- Departments of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Gangwon-do 24341, South Korea
| | - Young-Guen Kwon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
| | - Young-Myeong Kim
- Departments of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Gangwon-do 24341, South Korea.
| |
Collapse
|
24
|
Yamamoto H, Rundqvist H, Branco C, Johnson RS. Autocrine VEGF Isoforms Differentially Regulate Endothelial Cell Behavior. Front Cell Dev Biol 2016; 4:99. [PMID: 27709112 PMCID: PMC5030275 DOI: 10.3389/fcell.2016.00099] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/26/2016] [Indexed: 01/06/2023] Open
Abstract
Vascular endothelial growth factor A (VEGF) is involved in all the essential biology of endothelial cells, from proliferation to vessel function, by mediating intercellular interactions and monolayer integrity. It is expressed as three major alternative spliced variants. In mice, these are VEGF120, VEGF164, and VEGF188, each with different affinities for extracellular matrices and cell surfaces, depending on the inclusion of heparin-binding sites, encoded by exons 6 and 7. To determine the role of each VEGF isoform in endothelial homeostasis, we compared phenotypes of primary endothelial cells isolated from lungs of mice expressing single VEGF isoforms in normoxic and hypoxic conditions. The differential expression and distribution of VEGF isoforms affect endothelial cell functions, such as proliferation, adhesion, migration, and integrity, which are dependent on the stability of and affinity to VEGF receptor 2 (VEGFR2). We found a correlation between autocrine VEGF164 and VEGFR2 stability, which is also associated with increased expression of proteins involved in cell adhesion. Endothelial cells expressing only VEGF188, which localizes to extracellular matrices or cell surfaces, presented a mesenchymal morphology and weakened monolayer integrity. Cells expressing only VEGF120 lacked stable VEGFR2 and dysfunctional downstream processes, rendering the cells unviable. Endothelial cells expressing these different isoforms in isolation also had differing rates of apoptosis, proliferation, and signaling via nitric oxide (NO) synthesis. These data indicate that autocrine signaling of each VEGF isoform has unique functions on endothelial homeostasis and response to hypoxia, due to both distinct VEGF distribution and VEGFR2 stability, which appears to be, at least partly, affected by differential NO production. This study demonstrates that each autocrine VEGF isoform has a distinct effect on downstream functions, namely VEGFR2-regulated endothelial cell homeostasis in normoxia and hypoxia.
Collapse
Affiliation(s)
- Hideki Yamamoto
- Department of Physiology, Development and Neuroscience, University of CambridgeCambridge, UK
| | - Helene Rundqvist
- Department of Cell and Molecular Biology, Karolinska InstitutetStockholm, Sweden
| | - Cristina Branco
- Department of Physiology, Development and Neuroscience, University of CambridgeCambridge, UK
| | - Randall S. Johnson
- Department of Physiology, Development and Neuroscience, University of CambridgeCambridge, UK
- Department of Cell and Molecular Biology, Karolinska InstitutetStockholm, Sweden
| |
Collapse
|
25
|
Blood pressure regulation by CD4 + lymphocytes expressing choline acetyltransferase. Nat Biotechnol 2016; 34:1066-1071. [PMID: 27617738 PMCID: PMC5513182 DOI: 10.1038/nbt.3663] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/04/2016] [Indexed: 12/12/2022]
Abstract
Blood pressure regulation is known to be maintained by a neuro-endocrine circuit, but whether immune cells contribute to blood pressure homeostasis has not been determined. We previously showed that CD4+ T lymphocytes that express choline acetyltransferase (ChAT), which catalyzes the synthesis of the vasorelaxant acetylcholine, relay neural signals. Here we show that these CD4+CD44hiCD62Llo T helper cells by gene expression are a distinct T-cell population defined by ChAT (CD4 TChAT). Mice lacking ChAT expression in CD4+ cells have elevated arterial blood pressure, compared to littermate controls. Jurkat T cells overexpressing ChAT (JTChAT) decreased blood pressure when infused into mice. Co-incubation of JTChAT and endothelial cells increased endothelial cell levels of phosphorylated endothelial nitric oxide synthase, and of nitrates and nitrites in conditioned media, indicating increased release of the potent vasorelaxant nitric oxide. The isolation and characterization of CD4 TChAT cells will enable analysis of the role of these cells in hypotension and hypertension, and may suggest novel therapeutic strategies by targeting cell-mediated vasorelaxation.
Collapse
|
26
|
Pathological Ace2-to-Ace enzyme switch in the stressed heart is transcriptionally controlled by the endothelial Brg1-FoxM1 complex. Proc Natl Acad Sci U S A 2016; 113:E5628-35. [PMID: 27601681 DOI: 10.1073/pnas.1525078113] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Genes encoding angiotensin-converting enzymes (Ace and Ace2) are essential for heart function regulation. Cardiac stress enhances Ace, but suppresses Ace2, expression in the heart, leading to a net production of angiotensin II that promotes cardiac hypertrophy and fibrosis. The regulatory mechanism that underlies the Ace2-to-Ace pathological switch, however, is unknown. Here we report that the Brahma-related gene-1 (Brg1) chromatin remodeler and forkhead box M1 (FoxM1) transcription factor cooperate within cardiac (coronary) endothelial cells of pathologically stressed hearts to trigger the Ace2-to-Ace enzyme switch, angiotensin I-to-II conversion, and cardiac hypertrophy. In mice, cardiac stress activates the expression of Brg1 and FoxM1 in endothelial cells. Once activated, Brg1 and FoxM1 form a protein complex on Ace and Ace2 promoters to concurrently activate Ace and repress Ace2, tipping the balance to Ace2 expression with enhanced angiotensin II production, leading to cardiac hypertrophy and fibrosis. Disruption of endothelial Brg1 or FoxM1 or chemical inhibition of FoxM1 abolishes the stress-induced Ace2-to-Ace switch and protects the heart from pathological hypertrophy. In human hypertrophic hearts, BRG1 and FOXM1 expression is also activated in endothelial cells; their expression levels correlate strongly with the ACE/ACE2 ratio, suggesting a conserved mechanism. Our studies demonstrate a molecular interaction of Brg1 and FoxM1 and an endothelial mechanism of modulating Ace/Ace2 ratio for heart failure therapy.
Collapse
|
27
|
Sorokina EM, Dodia C, Zhou S, Tao JQ, Gao L, Raabe T, Feinstein SI, Fisher AB. Mutation of Serine 32 to Threonine in Peroxiredoxin 6 Preserves Its Structure and Enzymatic Function but Abolishes Its Trafficking to Lamellar Bodies. J Biol Chem 2016; 291:9268-80. [PMID: 26921317 DOI: 10.1074/jbc.m115.698894] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Indexed: 11/06/2022] Open
Abstract
Peroxiredoxin 6 (Prdx6), a bifunctional protein with phospholipase A2 (aiPLA2) and GSH peroxidase activities, protects lungs from oxidative stress and participates in lung surfactant phospholipid turnover. Prdx6 has been localized to both cytosol and lamellar bodies (LB) in lung epithelium, and its organellar targeting sequence has been identified. We propose that Prdx6 LB targeting facilitates its role in the metabolism of lung surfactant phosphatidylcholine (PC). Ser-32 has been identified as the active site in Prdx6 for aiPLA2 activity, and this activity was abolished by the mutation of serine 32 to alanine (S32A). However, aiPLA2 activity was unaffected by mutation of serine 32 in Prdx6 to threonine (S32T). Prdx6 protein expression and aiPLA2 activity were normal in the whole lung of a "knock-in" mouse model carrying an S32T mutation in the Prdx6 gene but were absent from isolated LB. Analyses by proximity ligation assay in lung sections demonstrated the inability of S32T Prdx6 to bind to the chaperone protein, 14-3-3ϵ, that is required for LB targeting. The content of total phospholipid, PC, and disaturated PC in lung tissue homogenate, bronchoalveolar lavage fluid, and lung LB was increased significantly in Prdx6-S32T mutant lungs, whereas degradation of internalized [(3)H]dipalmitoyl-PC was significantly decreased. Thus, Thr can substitute for Ser for the enzymatic activities of Prdx6 but not for its targeting to LB. These results confirm an important role for LB Prdx6 in the degradation and remodeling of lung surfactant phosphatidylcholine.
Collapse
Affiliation(s)
- Elena M Sorokina
- From the Institute for Environmental Medicine, Department of Physiology, and
| | - Chandra Dodia
- From the Institute for Environmental Medicine, Department of Physiology, and
| | - Suiping Zhou
- From the Institute for Environmental Medicine, Department of Physiology, and
| | - Jian-Qin Tao
- From the Institute for Environmental Medicine, Department of Physiology, and
| | - Ling Gao
- From the Institute for Environmental Medicine, Department of Physiology, and
| | - Tobias Raabe
- Penn Gene Targeting Core and Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Sheldon I Feinstein
- From the Institute for Environmental Medicine, Department of Physiology, and
| | - Aron B Fisher
- From the Institute for Environmental Medicine, Department of Physiology, and
| |
Collapse
|
28
|
Mouse mesenchymal stem cells inhibit high endothelial cell activation and lymphocyte homing to lymph nodes by releasing TIMP-1. Leukemia 2016; 30:1143-54. [PMID: 26898191 PMCID: PMC4858586 DOI: 10.1038/leu.2016.33] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 12/02/2015] [Accepted: 02/01/2016] [Indexed: 12/31/2022]
Abstract
Mesenchymal stem cells (MSC) represent a promising therapeutic approach in many diseases in view of their potent immunomodulatory properties, which are only partially understood. Here, we show that the endothelium is a specific and key target of MSC during immunity and inflammation. In mice, MSC inhibit activation and proliferation of endothelial cells in remote inflamed lymph nodes (LNs), affect elongation and arborization of high endothelial venules (HEVs) and inhibit T-cell homing. The proteomic analysis of the MSC secretome identified the tissue inhibitor of metalloproteinase-1 (TIMP-1) as a potential effector molecule responsible for the anti-angiogenic properties of MSC. Both in vitro and in vivo, TIMP-1 activity is responsible for the anti-angiogenic effects of MSC, and increasing TIMP-1 concentrations delivered by an Adeno Associated Virus (AAV) vector recapitulates the effects of MSC transplantation on draining LNs. Thus, this study discovers a new and highly efficient general mechanism through which MSC tune down immunity and inflammation, identifies TIMP-1 as a novel biomarker of MSC-based therapy and opens the gate to new therapeutic approaches of inflammatory diseases.
Collapse
|
29
|
Zhang W, Freichel M, van der Hoeven F, Nawroth PP, Katus H, Kälble F, Zitron E, Schwenger V. Novel Endothelial Cell-Specific AQP1 Knockout Mice Confirm the Crucial Role of Endothelial AQP1 in Ultrafiltration during Peritoneal Dialysis. PLoS One 2016; 11:e0145513. [PMID: 26760974 PMCID: PMC4711985 DOI: 10.1371/journal.pone.0145513] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/05/2015] [Indexed: 11/25/2022] Open
Abstract
The water channel aquaporin-1 (AQP1) mediates about 50% ultrafiltration during a 2-hour hypertonic dwell in global AQP1 knockout (AQP1-/-) mice. Although AQP1 is widely expressed in various cell types including mesothelial cells, the ultrafiltration has been assumed to be mediated via endothelial AQP1 of the peritoneum. The partial embryonic lethality and reduced body weight in AQP1-/- mice may reflect potential confounding phenotypic effects evoked by ubiquitous AQP1 deletion, which may interfere with functional analysis of endothelial AQP1. Using a Cre/loxP approach, we generated and characterised endothelial cell- and time-specific AQP1 knockout (AQP1fl/fl; Cdh5-Cre+) mice. Compared to controls, AQP1fl/fl; Cdh5-Cre+ mice showed no difference in an initial clinical and biological analysis at baseline, including body weight and survival. During a 1-hour 3.86% mini-peritoneal equilibration test (mini-PET), AQP1fl/fl; Cdh5-Cre+ mice exhibited strongly decreased indices for AQP1-related transcellular water transport (43.0% in net ultrafiltration, 93.0% in sodium sieving and 57.9% in free water transport) compared to controls. The transport rates for small solutes of urea and glucose were not significantly altered. Our data provide the first direct experimental evidence for the functional relevance of endothelial AQP1 to the fluid transport in peritoneal dialysis and thereby further validate essential predictions of the three-pore model of peritoneal transport.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
- * E-mail:
| | - Marc Freichel
- Institute of Pharmacology, University of Heidelberg, Heidelberg, Germany
| | | | - Peter Paul Nawroth
- Department of Endocrinology and Metabolism, University of Heidelberg, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Hugo Katus
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Florian Kälble
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Edgar Zitron
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Vedat Schwenger
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
- Department of Nephrology, Klinikum Stuttgart, Stuttgart, Germany
| |
Collapse
|
30
|
Kudelka MR, Antonopoulos A, Wang Y, Duong DM, Song X, Seyfried NT, Dell A, Haslam SM, Cummings RD, Ju T. Cellular O-Glycome Reporter/Amplification to explore O-glycans of living cells. Nat Methods 2016; 13:81-6. [PMID: 26619014 PMCID: PMC4697867 DOI: 10.1038/nmeth.3675] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/26/2015] [Indexed: 12/27/2022]
Abstract
Protein O-glycosylation has key roles in many biological processes, but the repertoire of O-glycans synthesized by cells is difficult to determine. Here we describe an approach termed Cellular O-Glycome Reporter/Amplification (CORA), a sensitive method used to amplify and profile mucin-type O-glycans synthesized by living cells. Cells convert added peracetylated benzyl-α-N-acetylgalactosamine to a large variety of modified O-glycan derivatives that are secreted from cells, allowing for easy purification for analysis by HPLC and mass spectrometry (MS). Relative to conventional O-glycan analyses, CORA resulted in an ∼100-1,000-fold increase in sensitivity and identified a more complex repertoire of O-glycans in more than a dozen cell types from Homo sapiens and Mus musculus. Furthermore, when coupled with computational modeling, CORA can be used for predictions about the diversity of the human O-glycome and offers new opportunities to identify novel glycan biomarkers for human diseases.
Collapse
Affiliation(s)
- Matthew R. Kudelka
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Yingchun Wang
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Duc M. Duong
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Xuezheng Song
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Nicholas T. Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Anne Dell
- Department of Life Sciences, Imperial College London, London, UK
| | - Stuart M. Haslam
- Department of Life Sciences, Imperial College London, London, UK
| | - Richard D. Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Tongzhong Ju
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
31
|
Spadoni I, Zagato E, Bertocchi A, Paolinelli R, Hot E, Di Sabatino A, Caprioli F, Bottiglieri L, Oldani A, Viale G, Penna G, Dejana E, Rescigno M. A gut-vascular barrier controls the systemic dissemination of bacteria. Science 2015; 350:830-4. [PMID: 26564856 DOI: 10.1126/science.aad0135] [Citation(s) in RCA: 482] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In healthy individuals, the intestinal microbiota cannot access the liver, spleen, or other peripheral tissues. Some pathogenic bacteria can reach these sites, however, and can induce a systemic immune response. How such compartmentalization is achieved is unknown. We identify a gut-vascular barrier (GVB) in mice and humans that controls the translocation of antigens into the blood stream and prohibits entry of the microbiota. Salmonella typhimurium can penetrate the GVB in a manner dependent on its pathogenicity island (Spi) 2-encoded type III secretion system and on decreased β-catenin-dependent signaling in gut endothelial cells. The GVB is modified in celiac disease patients with elevated serum transaminases, which indicates that GVB dismantling may be responsible for liver damage in these patients. Understanding the GVB may provide new insights into the regulation of the gut-liver axis.
Collapse
Affiliation(s)
- Ilaria Spadoni
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Elena Zagato
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Alice Bertocchi
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Roberta Paolinelli
- The Italian Foundation for Cancer Research (FIRC) Institute of Molecular Oncology (IFOM), Milan, Italy
| | - Edina Hot
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Antonio Di Sabatino
- First Department of Medicine, St. Matteo Hospital, University of Pavia, Pavia, Italy
| | - Flavio Caprioli
- Unità Operativa Gastroenterologia ed Endoscopia, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico di Milano, and Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Milan, Italy
| | - Luca Bottiglieri
- Department of Pathology and Laboratory Medicine, European Institute of Oncology, Milan, Italy
| | - Amanda Oldani
- The Italian Foundation for Cancer Research (FIRC) Institute of Molecular Oncology (IFOM), Milan, Italy
| | - Giuseppe Viale
- Department of Pathology and Laboratory Medicine, European Institute of Oncology, Milan, Italy
| | - Giuseppe Penna
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Elisabetta Dejana
- The Italian Foundation for Cancer Research (FIRC) Institute of Molecular Oncology (IFOM), Milan, Italy. Department of Biosciences, Università degli Studi di Milano, Italy. Department of Genetics, Immunology and Pathology, Uppsala University, Uppsala, Sweden
| | - Maria Rescigno
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy. Department of Biosciences, Università degli Studi di Milano, Italy.
| |
Collapse
|
32
|
Giampietro C, Disanza A, Bravi L, Barrios-Rodiles M, Corada M, Frittoli E, Savorani C, Lampugnani MG, Boggetti B, Niessen C, Wrana JL, Scita G, Dejana E. The actin-binding protein EPS8 binds VE-cadherin and modulates YAP localization and signaling. J Cell Biol 2015; 211:1177-92. [PMID: 26668327 PMCID: PMC4687874 DOI: 10.1083/jcb.201501089] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 11/10/2015] [Indexed: 12/13/2022] Open
Abstract
Vascular endothelial (VE)-cadherin transfers intracellular signals contributing to vascular hemostasis. Signaling through VE-cadherin requires association and activity of different intracellular partners. Yes-associated protein (YAP)/TAZ transcriptional cofactors are important regulators of cell growth and organ size. We show that EPS8, a signaling adapter regulating actin dynamics, is a novel partner of VE-cadherin and is able to modulate YAP activity. By biochemical and imaging approaches, we demonstrate that EPS8 associates with the VE-cadherin complex of remodeling junctions promoting YAP translocation to the nucleus and transcriptional activation. Conversely, in stabilized junctions, 14-3-3-YAP associates with the VE-cadherin complex, whereas Eps8 is excluded. Junctional association of YAP inhibits nuclear translocation and inactivates its transcriptional activity both in vitro and in vivo in Eps8-null mice. The absence of Eps8 also increases vascular permeability in vivo, but did not induce other major vascular defects. Collectively, we identified novel components of the adherens junction complex, and we introduce a novel molecular mechanism through which the VE-cadherin complex controls YAP transcriptional activity.
Collapse
Affiliation(s)
- Costanza Giampietro
- FIRC Institute of Molecular Oncology, 20139 Milan, Italy Dipartimento di Bioscienze, Università degli Studi di Milano, 20122 Milan, Italy
| | - Andrea Disanza
- FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Luca Bravi
- FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Miriam Barrios-Rodiles
- Center for Systems Biology, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Monica Corada
- FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | | | | | - Maria Grazia Lampugnani
- FIRC Institute of Molecular Oncology, 20139 Milan, Italy Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milan, Italy
| | - Barbara Boggetti
- Department of Dermatology, Cologne Excellence Cluster for Stress Responses in Ageing-Associated Diseases, Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| | - Carien Niessen
- Department of Dermatology, Cologne Excellence Cluster for Stress Responses in Ageing-Associated Diseases, Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| | - Jeff L Wrana
- Center for Systems Biology, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Giorgio Scita
- FIRC Institute of Molecular Oncology, 20139 Milan, Italy Dipartimento di Scienze della Salute, Università degli Studi di Milano, 20122 Milan, Italy
| | - Elisabetta Dejana
- FIRC Institute of Molecular Oncology, 20139 Milan, Italy Dipartimento di Bioscienze, Università degli Studi di Milano, 20122 Milan, Italy Department of Immunology, Genetics and Pathology, Uppsala University, 751 05 Uppsala, Sweden
| |
Collapse
|
33
|
Osmanagic-Myers S, Rus S, Wolfram M, Brunner D, Goldmann WH, Bonakdar N, Fischer I, Reipert S, Zuzuarregui A, Walko G, Wiche G. Plectin reinforces vascular integrity by mediating crosstalk between the vimentin and the actin networks. J Cell Sci 2015; 128:4138-50. [PMID: 26519478 PMCID: PMC4712781 DOI: 10.1242/jcs.172056] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 10/01/2015] [Indexed: 12/13/2022] Open
Abstract
Mutations in the cytoskeletal linker protein plectin result in multisystemic diseases affecting skin and muscle with indications of additional vascular system involvement. To study the mechanisms underlying vascular disorders, we established plectin-deficient endothelial cell and mouse models. We show that apart from perturbing the vimentin cytoskeleton of endothelial cells, plectin deficiency leads to severe distortions of adherens junctions (AJs), as well as tight junctions, accompanied by an upregulation of actin stress fibres and increased cellular contractility. Plectin-deficient endothelial cell layers were more leaky and showed reduced mechanical resilience in fluid-shear stress and mechanical stretch experiments. We suggest that the distorted AJs and upregulated actin stress fibres in plectin-deficient cells are rooted in perturbations of the vimentin cytoskeleton, as similar phenotypes could be mimicked in wild-type cells by disruption of vimentin filaments. In vivo studies in endothelium-restricted conditional plectin-knockout mice revealed significant distortions of AJs in stress-prone aortic arch regions and increased pulmonary vascular leakage. Our study opens a new perspective on cytoskeleton-controlled vascular permeability, where a plectin-organized vimentin scaffold keeps actomyosin contractility ‘in-check’ and maintains AJ homeostasis. Summary: Plectin-arranged vimentin scaffolds keep actomyosin contractility ‘in-check’ and maintain cell–cell junction homeostasis, providing a new perspective on cytoskeleton-controlled vascular permeability.
Collapse
Affiliation(s)
- Selma Osmanagic-Myers
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | - Stefanie Rus
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | - Michael Wolfram
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | - Daniela Brunner
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | - Wolfgang H Goldmann
- Department of Physics, Friedrich-Alexander-University of Erlangen-Nuremberg, 91052 Erlangen, Germany
| | - Navid Bonakdar
- Department of Physics, Friedrich-Alexander-University of Erlangen-Nuremberg, 91052 Erlangen, Germany
| | - Irmgard Fischer
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | - Siegfried Reipert
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | - Aurora Zuzuarregui
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | - Gernot Walko
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | - Gerhard Wiche
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| |
Collapse
|
34
|
Ota C, Ishizawa K, Yamada M, Tando Y, He M, Takahashi T, Yamaya M, Yamamoto Y, Yamamoto H, Kure S, Kubo H. Receptor for advanced glycation end products expressed on alveolar epithelial cells is the main target for hyperoxia-induced lung injury. Respir Investig 2015; 54:98-108. [PMID: 26879479 DOI: 10.1016/j.resinv.2015.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/24/2015] [Accepted: 08/26/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND Receptor for advanced glycation end products (RAGE) is abundantly expressed on alveolar epithelial cells (AECs) and participates in innate immune responses such as apoptosis and inflammation. However, it is unclear whether RAGE-mediated apoptosis of AECs is associated with hyperoxia-induced lung injury. METHODS We used wild-type and RAGE-knockout C57BL6/J mice in this study. In addition, we developed bone marrow chimeric mouse models expressing RAGE on hematopoietic or non-hematopoietic cells, including lung parenchymal cells, and compared survival ratios and changes in the permeability of the alveolar-capillary barrier after hyperoxia exposure. Further, we prepared single cell suspensions of lung cells and evaluated the apoptosis of AECs or microvascular endothelial cells (MVECs) by using a combination of antibodies and JC-1 dye. We also examined whether RAGE inhibition decreased hyperoxia-induced apoptosis of human lung epithelial cells in vitro. RESULTS After hyperoxia exposure, mice expressing RAGE on lung cells showed lower survival rate and increased alveolar-capillary permeability than mice expressing RAGE on hematopoietic cells. RAGE-expressing AECs showed significantly higher apoptosis than RAGE-knockout AECs after in vivo hyperoxia exposure. The level of hyperoxia-induced apoptosis was not different in MVECs. However, RAGE-null lung epithelial cells showed lower apoptosis than RAGE-expressing cells in vitro. CONCLUSION These results indicated that RAGE on AECs mainly contributed to hyperoxia-induced lung injury and alveolar-capillary barrier disruption.
Collapse
Affiliation(s)
- Chiharu Ota
- Department of Advanced Preventive Medicine for Infectious Disease, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Kota Ishizawa
- Department of Molecular Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Mitsuhiro Yamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Yukiko Tando
- Department of Advanced Preventive Medicine for Infectious Disease, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Mei He
- Department of Respiratory Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Toru Takahashi
- Department of Advanced Preventive Medicine for Infectious Disease, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Mutsuo Yamaya
- Department of Advanced Preventive Medicine for Infectious Disease, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan.
| | - Hiroshi Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan.
| | - Shigeo Kure
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Hiroshi Kubo
- Department of Advanced Preventive Medicine for Infectious Disease, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
35
|
Lloyd-Griffith C, Duffy GP, O'Brien FJ. Investigating the effect of hypoxic culture on the endothelial differentiation of human amniotic fluid-derived stem cells. J Anat 2015; 227:767-80. [PMID: 25833670 DOI: 10.1111/joa.12283] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2015] [Indexed: 12/14/2022] Open
Abstract
Amniotic fluid-derived stem cells (AFSCs) are a unique stem cell source that may have great potential for use in tissue engineering (TE) due to their pluripotentiality. AFSCs have previously shown angiogenic potential and may present an alternative cell source for endothelial-like cells that could be used in range of applications, including the pre-vascularisation of TE constructs and the treatment of ischaemic diseases. This study investigated the ability of these cells to differentiate down an endothelial lineage with the aim of producing an endothelial-like cell suitable for use in pre-vascularisation. As hypoxia and the associated HIF-1 pathway have been implicated in the induction of angiogenesis in a number of biological processes, it was hypothesised that culture in hypoxic conditions could enhance the endothelial differentiation of AFSCs. The cells were cultured in endothelial cell media supplemented with 50 ng mL(-1) of VEGF, maintained in normoxia, intermittent hypoxia or continuous hypoxia and assessed for markers of endothelial differentiation at day 7 and 14. The results demonstrated that AFSCs subjected to these culture conditions display an endothelial gene expression profile and adopted functional endothelial cell characteristics indicative of early endothelial differentiation. Culture in continuous hypoxia enhanced endothelial gene expression but did not enhance functional endothelial cell characteristics. Overall, AFSCs subjected to endothelial stimuli demonstrated a less mature endothelial gene expression profile and phenotype when compared with HUVECs, the endothelial cell control. However, this study is the first time that the positive effect of an extended period of continuous hypoxic culture on endothelial differentiation in AFSCs has been demonstrated.
Collapse
Affiliation(s)
- Cai Lloyd-Griffith
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland.,Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre, Dublin 2, Ireland
| | - Garry P Duffy
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland.,Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre, Dublin 2, Ireland
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland.,Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre, Dublin 2, Ireland
| |
Collapse
|
36
|
Bhayadia R, Schmidt BMW, Melk A, Hömme M. Senescence-Induced Oxidative Stress Causes Endothelial Dysfunction. J Gerontol A Biol Sci Med Sci 2015; 71:161-9. [PMID: 25735595 DOI: 10.1093/gerona/glv008] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 01/16/2015] [Indexed: 11/14/2022] Open
Abstract
Age is a risk factor for cardiovascular disease, suggesting a causal relationship between age-related changes and vascular damage. Endothelial dysfunction is an early pathophysiological hallmark in the development of cardiovascular disease. Senescence, the cellular equivalent of aging, was proposed to be involved in endothelial dysfunction, but functional data showing a causal relationship are missing.Endothelium-dependent vasodilation was measured in aortic rings ex vivo. We investigated aortas from aged C57Bl/6 mice (24-28 months), in which p16 (INK4a) and p19 (ARF) expression, markers of stress-induced senescence, were significantly induced compared to young controls (4-6 months). To reflect telomere shortening in human aging, we investigated aortas from telomerase deficient (Terc(-/-)) mice of generation 3 (G3). Endothelium-dependent vasodilation in aged wildtype and in Terc(-/-) G3 mice was impaired. A combination of the superoxide dismutase mimetic 1-Oxyl-2,2,6, 6-tetramethyl-4-hydroxypiperidine (TEMPOL) and the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor apocynin significantly improved endothelium-dependent vasodilation in aged wildtype and Terc(-/-) G3 mice compared to untreated controls. We show that both, aging and senescence induced by telomere shortening, cause endothelial dysfunction that can be restored by antioxidants, indicating a role for oxidative stress. The observation that cellular senescence is a direct signalling event leading to endothelial dysfunction holds the potential to develop new targets for the prevention of cardiovascular disease.
Collapse
Affiliation(s)
- Raj Bhayadia
- Department of Pediatric Nephrology, Hepatology and Metabolic Diseases, Children's Hospital, Hannover Medical School, Hannover D-30625, Germany. REBIRTH Excellence Cluster, Hannover Medical School, Hannover D-30625, Germany
| | | | - Anette Melk
- Department of Pediatric Nephrology, Hepatology and Metabolic Diseases, Children's Hospital, Hannover Medical School, Hannover D-30625, Germany. REBIRTH Excellence Cluster, Hannover Medical School, Hannover D-30625, Germany
| | - Meike Hömme
- Department of Pediatric Nephrology, Hepatology and Metabolic Diseases, Children's Hospital, Hannover Medical School, Hannover D-30625, Germany. REBIRTH Excellence Cluster, Hannover Medical School, Hannover D-30625, Germany
| |
Collapse
|
37
|
Smith-Berdan S, Nguyen A, Hong MA, Forsberg EC. ROBO4-mediated vascular integrity regulates the directionality of hematopoietic stem cell trafficking. Stem Cell Reports 2015; 4:255-68. [PMID: 25640759 PMCID: PMC4325232 DOI: 10.1016/j.stemcr.2014.12.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 12/29/2014] [Accepted: 12/30/2014] [Indexed: 01/06/2023] Open
Abstract
Despite the use of hematopoietic stem cells (HSCs) in clinical therapy for over half a century, the mechanisms that regulate HSC trafficking, engraftment, and life-long persistence after transplantation are unclear. Here, we show that the vascular endothelium regulates HSC trafficking into and out of bone marrow (BM) niches. Surprisingly, we found that instead of acting as barriers to cellular entry, vascular endothelial cells, via the guidance molecule ROBO4, actively promote HSC translocation across vessel walls into the BM space. In contrast, we found that the vasculature inhibits the reverse process, as induced vascular permeability led to a rapid increase in HSCs in the blood stream. Thus, the vascular endothelium reinforces HSC localization to BM niches both by promoting HSC extravasation from blood-to-BM and by forming vascular barriers that prevent BM-to-blood escape. Our results uncouple the mechanisms that regulate the directionality of HSC trafficking and show that the vasculature can be targeted to improve hematopoietic transplantation therapies. Endothelial ROBO4 promotes unidirectional HSC trafficking across vessel walls Sinusoidal endothelial cells mediate HSC extravasation from blood to bone marrow Vascular integrity prevents HSC escape from bone marrow to blood Induced vascular permeability rapidly mobilizes HSCs to the blood stream
Collapse
Affiliation(s)
- Stephanie Smith-Berdan
- Institute for the Biology of Stem Cells, Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Andrew Nguyen
- Institute for the Biology of Stem Cells, Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Matthew A Hong
- Institute for the Biology of Stem Cells, Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - E Camilla Forsberg
- Institute for the Biology of Stem Cells, Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.
| |
Collapse
|
38
|
Choi S, Kim JA, Kim KC, Suh SH. Isolation and in vitro culture of vascular endothelial cells from mice. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2014; 19:35-42. [PMID: 25605995 PMCID: PMC4297760 DOI: 10.4196/kjpp.2015.19.1.35] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 10/29/2014] [Accepted: 10/29/2014] [Indexed: 11/15/2022]
Abstract
In cardiovascular disorders, understanding of endothelial cell (EC) function is essential to elucidate the disease mechanism. Although the mouse model has many advantages for in vivo and in vitro research, efficient procedures for the isolation and propagation of primary mouse EC have been problematic. We describe a high yield process for isolation and in vitro culture of primary EC from mouse arteries (aorta, braches of superior mesenteric artery, and cerebral arteries from the circle of Willis). Mouse arteries were carefully dissected without damage under a light microscope, and small pieces of the vessels were transferred on/in a Matrigel matrix enriched with endothelial growth supplement. Primary cells that proliferated in Matrigel were propagated in advanced DMEM with fetal calf serum or platelet-derived serum, EC growth supplement, and heparin. To improve the purity of the cell culture, we applied shearing stress and anti-fibroblast antibody. EC were characterized by a monolayer cobble stone appearance, positive staining with acetylated low density lipoprotein labeled with 1,1'-dioctadecyl-3,3,3',3'-tetramethyl-indocarbocyanine perchlorate, RT-PCR using primers for von-Willebrand factor, and determination of the protein level endothelial nitric oxide synthase. Our simple, efficient method would facilitate in vitro functional investigations of EC from mouse vessels.
Collapse
Affiliation(s)
- Shinkyu Choi
- Department of Physiology, School of Medicine, Ewha Womans University, Seoul 157-710, Korea
| | - Ji Aee Kim
- Department of Physiology, School of Medicine, Ewha Womans University, Seoul 157-710, Korea
| | - Kwan Chang Kim
- Department of Thoracic & Cardiovascular Surgery and Ewha Womans University Global Top 5 Research Program, School of Medicine, Ewha Womans University, Seoul 157-710, Korea
| | - Suk Hyo Suh
- Department of Physiology, School of Medicine, Ewha Womans University, Seoul 157-710, Korea
| |
Collapse
|
39
|
Bitar MS, Al-Mulla F. Upregulation of CREM/ICER suppresses wound endothelial CRE-HIF-1α-VEGF-dependent signaling and impairs angiogenesis in type 2 diabetes. Dis Model Mech 2014; 8:65-80. [PMID: 25381014 PMCID: PMC4283651 DOI: 10.1242/dmm.017145] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Impaired angiogenesis and endothelial dysfunction in type 2 diabetes constitute dominant risk factors for non-healing wounds and most forms of cardiovascular disease. We propose that diabetes shifts the ‘angiogenic balance’ in favor of an excessive anti-angiogenic phenotype. Herein, we report that diabetes impairs in vivo sponge angiogenic capacity by decreasing VEGF expression and fibrovascular invasion, and reciprocally enhances the formation of angiostatic molecules, such as thrombospondins, NFκB and FasL. Defective in vivo angiogenesis prompted cellular studies in cultured endothelial cells derived from subcutaneous sponge implants (SIECs) of control and Goto-Kakizaki rats. Ensuing data from diabetic SIECs demonstrated a marked upregulation in cAMP-PKA-CREB signaling, possibly stemming from increased expression of adenylyl cyclase isoforms 3 and 8, and decreased expression of PDE3. Mechanistically, we found that oxidative stress and PKA activation in diabetes enhanced CREM/ICER expression. This reduces IRS2 cellular content by inhibiting cAMP response element (CRE) transcriptional activity. Consequently, a decrease in the activity of Akt-mTOR ensued with a concomitant reduction in the total and nuclear protein levels of HIF-1α. Limiting HIF-1α availability for the specific hypoxia response elements in diabetic SIECs elicited a marked reduction in VEGF expression, both at the mRNA and protein levels. These molecular abnormalities were illustrated functionally by a defect in various pro-angiogenic properties, including cell proliferation, migration and tube formation. A genetic-based strategy in diabetic SIECs using siRNAs against CREM/ICER significantly augmented the PKA-dependent VEGF expression. To this end, the current data identify the importance of CREM/ICER as a negative regulator of endothelial function and establish a link between CREM/ICER overexpression and impaired angiogenesis during the course of diabetes. Moreover, it could also point to CREM/ICER as a potential therapeutic target in the treatment of pathological angiogenesis.
Collapse
Affiliation(s)
- Milad S Bitar
- Department of Pharmacology and Toxicology, Kuwait University, Safat 13110, Kuwait.
| | - Fahd Al-Mulla
- Department of Pathology, Kuwait University, Safat 13110, Kuwait
| |
Collapse
|
40
|
Zhao T, Ding X, Du H, Yan C. Myeloid-derived suppressor cells are involved in lysosomal acid lipase deficiency-induced endothelial cell dysfunctions. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 193:1942-53. [PMID: 25000979 PMCID: PMC4119579 DOI: 10.4049/jimmunol.1301941] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The underlying mechanisms that lysosomal acid lipase (LAL) deficiency causes infiltration of myeloid-derived suppressor cells (MDSCs) in multiple organs and subsequent inflammation remain incompletely understood. Endothelial cells (ECs), lining the inner layer of blood vessels, constitute barriers regulating leukocytes transmigration to the site of inflammation. Therefore, we hypothesized that ECs are dysfunctional in LAL-deficient (lal(-/-)) mice. We found that Ly6G(+) cells transmigrated more efficiently across lal(-/-) ECs than wild-type (lal(+/+)) ECs, which were associated with increased levels of PECAM-1 and MCP-1 in lal(-/-) ECs. In addition, lal(-/-) ECs showed enhanced migration and proliferation, decreased apoptosis, but impaired tube formation and angiogenesis. lal(-/-) ECs also suppressed T cell proliferation in vitro. Interestingly, lal(-/-) Ly6G(+) cells promoted in vivo angiogenesis (including a tumor model), EC tube formation, and proliferation. Finally, the mammalian target of rapamycin (mTOR) pathway was activated in lal(-/-) ECs, and inhibition of mTOR reversed EC dysfunctions, including decreasing Ly6G(+) cell transmigration, delaying migration, and relieving suppression of T cell proliferation, which was mediated by decreasing production of reactive oxygen species. Our results indicate that LAL regulates EC functions through interaction with MDSCs and modulation of the mTOR pathway, which may provide a mechanistic basis for targeting MDSCs or mTOR to rejuvenate EC functions in LAL deficiency-related diseases.
Collapse
Affiliation(s)
- Ting Zhao
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Xinchun Ding
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Hong Du
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202; Indiana University Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202; and
| | - Cong Yan
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202; Indiana University Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202; and Center for Immunobiology, Indiana University School of Medicine, Indianapolis, IN 46202
| |
Collapse
|
41
|
Abstract
The isolation of endothelial cells (ECs) from knockout and transgenic mouse lines provides the opportunity to study the endothelial-specific activities of a targeted molecule. As a means of pursuing these types of investigations, the protocols described in this unit provide a reliable method for isolating lung microvascular ECs from mouse neonatal pups that can be serially passaged. These protocols are useful in settings where mouse age is irrelevant and a pure population of pulmonary vascular ECs, uncontaminated by other cells, is needed. When a specific source of ECs is not required, these procedures also represent a reliable means of obtaining murine ECs in general.
Collapse
Affiliation(s)
- Gaoyuan Cao
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, Perelman School of School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | |
Collapse
|
42
|
Shikata F, Sakaue T, Nakashiro KI, Okazaki M, Kurata M, Okamura T, Okura M, Ryugo M, Nakamura Y, Yasugi T, Higashiyama S, Izutani H. Pathophysiology of lung injury induced by common bile duct ligation in mice. PLoS One 2014; 9:e94550. [PMID: 24733017 PMCID: PMC3986091 DOI: 10.1371/journal.pone.0094550] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 03/17/2014] [Indexed: 12/13/2022] Open
Abstract
Background Liver dysfunction and cirrhosis affect vasculature in several organ systems and cause impairment of organ functions, thereby increasing morbidity and mortality. Establishment of a mouse model of hepatopulmonary syndrome (HPS) would provide greater insights into the genetic basis of the disease. Our objectives were to establish a mouse model of lung injury after common bile duct ligation (CBDL) and to investigate pulmonary pathogenesis for application in future therapeutic approaches. Methods Eight-week-old Balb/c mice were subjected to CBDL. Immunohistochemical analyses and real-time quantitative reverse transcriptional polymerase chain reaction were performed on pulmonary tissues. The presence of HPS markers was detected by western blot and microarray analyses. Results We observed extensive proliferation of CD31-positive pulmonary vascular endothelial cells at 2 weeks after CBDL and identified 10 upregulated and 9 down-regulated proteins that were associated with angiogenesis. TNF-α and MMP-9 were highly expressed at 3 weeks after CBDL and were less expressed in the lungs of the control group. Conclusions We constructed a mouse lung injury model by using CBDL. Contrary to our expectation, lung pathology in our mouse model exhibited differences from that of rat models, and the mechanisms responsible for these differences are unknown. This phenomenon may be explained by contrasting processes related to TNF induction of angiogenic signaling pathways in the inflammatory phase. Thus, we suggest that our mouse model can be applied to pulmonary pathological analyses in the inflammatory phase, i.e., to systemic inflammatory response syndrome, acute lung injury, and multiple organ dysfunction syndrome.
Collapse
Affiliation(s)
- Fumiaki Shikata
- Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Tomohisa Sakaue
- Department of Cell Growth and Tumor Regulation, Ehime University, Proteo-Science Center, Ehime University, Ehime, Japan
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Koh-ichi Nakashiro
- Department of Oral and Maxillofacial Surgery, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Mikio Okazaki
- Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Mie Kurata
- Department of Pathology, Division of Pathogenomics, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Toru Okamura
- Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Masahiro Okura
- Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Masahiro Ryugo
- Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Yuki Nakamura
- Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Takumi Yasugi
- Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Shigeki Higashiyama
- Department of Cell Growth and Tumor Regulation, Ehime University, Proteo-Science Center, Ehime University, Ehime, Japan
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Hironori Izutani
- Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine, Ehime, Japan
- * E-mail:
| |
Collapse
|
43
|
Wu TH, Chou YW, Chiu PH, Tang MJ, Hu CW, Yeh ML. Validation of the effects of TGF-β1 on tumor recurrence and prognosis through tumor retrieval and cell mechanical properties. Cancer Cell Int 2014; 14:20. [PMID: 24581230 PMCID: PMC3973896 DOI: 10.1186/1475-2867-14-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 02/20/2014] [Indexed: 01/06/2023] Open
Abstract
Background In vivo, the transforming growth factor-beta1 (TGF-β1)-induced epithelial to mesenchymal transition (EMT) occurs in seconds during cancer cells intravasation and extravasation. Although it has been established that cellular stiffness can change as a cancer cell transformed, the precise relationship between TGF-β1-induced mesenchymal stem cell mechanics and cancer prognosis remains unclear. Accordingly, it is hard to define the effects of EMT on cell mechanical properties (CMs), tumor recurrence and metastasis risks. This study bridges physical and pathological disciplines to reconcile single-cell mechanical measurements of tumor cells. Methods and results We developed a microplate measurement system (MMS) and revealed the intrinsic divergent tumor composition of retrieval cells by cell stiffness and adhesion force and flow cytometry analysis. After flow cytometry sorting, we could measure the differences in CMs of the Sca-1+-CD44+ (mesenchymal-stem-cell-type) and the other subgroups. As well as the stiffer and heterogeneous compositions among tumor tissues with higher recurrence risk were depicted by MMS and atomic force microscopy (AFM). An in vitro experiment validated that Lewis lung carcinoma (LLC) cells acquired higher CMs and motility after EMT, but abrogated by SB-505124 inhibition. Concomitantly, the CD31, MMP13 and TGF-β1 enriched micro-environment in the tumor was associated with higher recurrence and distal lung metastasis risks. Furthermore, we report a comprehensive effort to correlate CMs to tumor-prognosis indicators, in which a decreased body weight gain ratio (BWG) and increased tumor weight (TW) were correlated with increased CMs. Conclusions Together, we determined that TGF-β1 was significantly associated with malignant tumor progressing. In terms of clinical applications, local tumor excision followed by MMS analysis offers an opportunity to predict tumor recurrence and metastasis risks.
Collapse
Affiliation(s)
| | | | | | | | | | - Ming-Long Yeh
- Institute of Biomedical Engineering, National Cheng Kung University, No,1 University Road, Tainan City 701, Taiwan.
| |
Collapse
|
44
|
Circulating fibronectin controls tumor growth. Neoplasia 2014; 15:925-38. [PMID: 23908593 DOI: 10.1593/neo.13762] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/21/2013] [Accepted: 05/23/2013] [Indexed: 01/01/2023] Open
Abstract
Fibronectin is ubiquitously expressed in the extracellular matrix, and experimental evidence has shown that it modulates blood vessel formation. The relative contribution of local and circulating fibronectin to blood vessel formation in vivo remains unknown despite evidence for unexpected roles of circulating fibronectin in various diseases. Using transgenic mouse models, we established that circulating fibronectin facilitates the growth of bone metastases by enhancing blood vessel formation and maturation. This effect is more relevant than that of fibronectin produced by endothelial cells and pericytes, which only exert a small additive effect on vessel maturation. Circulating fibronectin enhances its local production in tumors through a positive feedback loop and increases the amount of vascular endothelial growth factor (VEGF) retained in the matrix. Both fibronectin and VEGF then cooperate to stimulate blood vessel formation. Fibronectin content in the tumor correlates with the number of blood vessels and tumor growth in the mouse models. Consistent with these results, examination of three separate arrays from patients with breast and prostate cancers revealed that a high staining intensity for fibronectin in tumors is associated with increased mortality. These results establish that circulating fibronectin modulates blood vessel formation and tumor growth by modifying the amount of and the response to VEGF. Furthermore, determination of the fibronectin content can serve as a prognostic biomarker for breast and prostate cancers and possibly other cancers.
Collapse
|
45
|
Browning E, Wang H, Hong N, Yu K, Buerk DG, DeBolt K, Gonder D, Sorokina EM, Patel P, De Leon DD, Feinstein SI, Fisher AB, Chatterjee S. Mechanotransduction drives post ischemic revascularization through K(ATP) channel closure and production of reactive oxygen species. Antioxid Redox Signal 2014; 20:872-86. [PMID: 23758611 PMCID: PMC3924794 DOI: 10.1089/ars.2012.4971] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
AIMS We reported earlier that ischemia results in the generation of reactive oxygen species (ROS) via the closure of a K(ATP) channel which causes membrane depolarization and NADPH oxidase 2 (NOX2) activation. This study was undertaken to understand the role of ischemia-mediated ROS in signaling. RESULTS Angiogenic potential of pulmonary microvascular endothelial cells (PMVEC) was studied in vitro and in the hind limb in vivo. Flow adapted PMVEC injected into a Matrigel matrix showed significantly higher tube formation than cells grown under static conditions or cells from mice with knockout of K(ATP) channels or the NOX2. Blocking of hypoxia inducible factor-1 alpha (HIF-1α) accumulation completely abrogated the tube formation in wild-type (WT) PMVEC. With ischemia in vivo (femoral artery ligation), revascularization was high in WT mice and was significantly decreased in mice with knockout of K(ATP) channel and in mice orally fed with a K(ATP) channel agonist. In transgenic mice with endothelial-specific NOX2 expression, the revascularization observed was intermediate between that of WT and knockout of K(ATP) channel or NOX2. Increased HIF-1α activation and vascular endothelial growth factor (VEGF) expression was observed in ischemic tissue of WT mice but not in K(ATP) channel and NOX2 null mice. Revascularization could be partially rescued in K(ATP) channel null mice by delivering VEGF into the hind limb. INNOVATION This is the first report of a mechanosensitive ion channel (K(ATP) channel) initiating endothelial signaling that drives revascularization. CONCLUSION The K(ATP) channel responds to the stop of flow and activates signals for revascularization to restore the impeded blood flow.
Collapse
Affiliation(s)
- Elizabeth Browning
- 1 Institute for Environmental Medicine, University of Pennsylvania , Perelman School of Medicine, Philadelphia, Pennsylvania
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Voyvodic PL, Min D, Liu R, Williams E, Chitalia V, Dunn AK, Baker AB. Loss of syndecan-1 induces a pro-inflammatory phenotype in endothelial cells with a dysregulated response to atheroprotective flow. J Biol Chem 2014; 289:9547-59. [PMID: 24554698 DOI: 10.1074/jbc.m113.541573] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Fluid shear stresses are potent regulators of vascular homeostasis and powerful determinants of vascular disease progression. The glycocalyx is a layer of glycoaminoglycans, proteoglycans, and glycoproteins that lines the luminal surface of arteries. The glycocalyx interacts directly with hemodynamic forces from blood flow and, consequently, is a prime candidate for the mechanosensing of fluidic shear stresses. Here, we investigated the role of the glycocalyx component syndecan-1 (sdc-1) in controlling the shear stress-induced signaling and flow-mediated phenotypic modulation in endothelial cells. We found that knock-out of sdc-1 abolished several key early signaling events of endothelial cells in response to shear stress including the phosphorylation of Akt, the formation of a spatial gradient in paxillin phosphorylation, and the activation of RhoA. After exposure to atheroprotective flow, we found that sdc-1 knock-out endothelial cells had a phenotypic shift to an inflammatory/pro-atherosclerotic phenotype in contrast to the atheroprotective phenotype of wild type cells. Consistent with these findings, we found increased leukocyte adhesion to sdc-1 knock-out endothelial cells in vitro that was reduced by re-expression of sdc-1. In vivo, we found increased leukocyte recruitment and vascular permeability/inflammation in sdc-1 knock-out mice. Taken together, our studies support a key role for sdc-1 in endothelial mechanosensing and regulation of endothelial phenotype.
Collapse
Affiliation(s)
- Peter L Voyvodic
- From the Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712 and
| | | | | | | | | | | | | |
Collapse
|
47
|
Gonzalvo-Feo S, Del Prete A, Pruenster M, Salvi V, Wang L, Sironi M, Bierschenk S, Sperandio M, Vecchi A, Sozzani S. Endothelial cell-derived chemerin promotes dendritic cell transmigration. THE JOURNAL OF IMMUNOLOGY 2014; 192:2366-73. [PMID: 24470498 DOI: 10.4049/jimmunol.1302028] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
ChemR23 is a chemotactic receptor expressed by APCs, such as dendritic cells, macrophages, and NK cells. Chemerin, the ChemR23 ligand, was detected by immunohistochemistry, to be associated with inflamed endothelial cells in autoimmune diseases, such as lupus erythematosus, psoriasis, and rheumatoid arthritis. This study reports that blood and lymphatic murine endothelial cells produce chemerin following retinoic acid stimulation. Conversely, proinflammatory cytokines, such as TNF-α, IFN-γ, and LPS, or calcitriol, are not effective. Retinoic acid-stimulated endothelial cells promoted dendritic cell adhesion under shear stress conditions and transmigration in a ChemR23-dependent manner. Activated endothelial cells upregulated the expression of the atypical chemotactic receptor CCRL2/ACKR5, a nonsignaling receptor able to bind and present chemerin to ChemR23(+) dendritic cells. Accordingly, activated endothelial cells expressed chemerin on the plasma membrane and promoted in a more efficient manner chemerin-dependent transmigration of dendritic cells. Finally, chemerin stimulation of myeloid dendritic cells induced the high-affinity binding of VCAM-1/CD106 Fc chimeric protein and promoted VCAM-1-dependent arrest to immobilized ligands under shear stress conditions. In conclusion, this study reports that retinoic acid-activated endothelial cells can promote myeloid and plasmacytoid dendritic cell transmigration across endothelial cell monolayers through the endogenous production of chemerin, the upregulation of CCRL2, and the activation of dendritic cell β1 integrin affinity.
Collapse
|
48
|
Abstract
There is compelling evidence that endothelial cells of the brain and periphery are dysfunctional in Alzheimer's disease. There is evidence for a fundamental defect in, or abnormal aging of, endothelial progenitor cells in atherosclerosis. The possibility that endothelial cell defects are a primary cause for Alzheimer's disease or other dementias can be researched by molecular and cell biology studies as well as cell trafficking studies using recently demonstrated molecular imaging methods. The evidence for abnormal endothelial function and the methods to explore this hypothesis are presented.
Collapse
Affiliation(s)
- Thomas F Budinger
- Lawrence Berkeley National Laboratory, Department of Bioengineering, UC Berkeley, USA
| |
Collapse
|
49
|
Noel J, Wang H, Hong N, Tao JQ, Yu K, Sorokina EM, Debolt K, Heayn M, Rizzo V, Delisser H, Fisher AB, Chatterjee S. PECAM-1 and caveolae form the mechanosensing complex necessary for NOX2 activation and angiogenic signaling with stopped flow in pulmonary endothelium. Am J Physiol Lung Cell Mol Physiol 2013; 305:L805-18. [PMID: 24077950 PMCID: PMC3882530 DOI: 10.1152/ajplung.00123.2013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 09/24/2013] [Indexed: 12/14/2022] Open
Abstract
We showed that stop of flow triggers a mechanosignaling cascade that leads to the generation of reactive oxygen species (ROS); however, a mechanosensor coupled to the cytoskeleton that could potentially transduce flow stimulus has not been identified. We showed a role for KATP channel, caveolae (caveolin-1), and NADPH oxidase 2 (NOX2) in ROS production with stop of flow. Based on reports of a mechanosensory complex that includes platelet endothelial cell adhesion molecule-1 (PECAM-1) and initiates signaling with mechanical force, we hypothesized that PECAM-1 could serve as a mechanosensor in sensing disruption of flow. Using lungs in situ, we observed that ROS production with stop of flow was significantly reduced in PECAM-1(-/-) lungs compared with lungs from wild-type (WT) mice. Lack of PECAM-1 did not affect NOX2 activation machinery or the caveolin-1 expression or caveolae number in the pulmonary endothelium. Stop of flow in vitro triggered an increase in angiogenic potential of WT pulmonary microvascular endothelial cells (PMVEC) but not of PECAM-1(-/-) PMVEC. Obstruction of flow in lungs in vivo showed that the neutrophil infiltration as observed in WT mice was significantly lowered in PECAM-1(-/-) mice. With stop of flow, WT lungs showed higher expression of the angiogenic marker VEGF compared with untreated (sham) and PECAM-1(-/-) lungs. Thus PECAM-1 (and caveolae) are parts of the mechanosensing machinery that generates superoxide with loss of shear; the resultant ROS potentially drives neutrophil influx and acts as an angiogenic signal.
Collapse
Affiliation(s)
- John Noel
- Institute for Environmental Medicine, Univ. of Pennsylvania School of Medicine, 1 John Morgan Bldg., 3620 Hamilton Walk, Philadelphia, PA 19104-6068.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Belleri M, Ronca R, Coltrini D, Nico B, Ribatti D, Poliani PL, Giacomini A, Alessi P, Marchesini S, Santos MB, Bongarzone ER, Presta M. Inhibition of angiogenesis by β-galactosylceramidase deficiency in globoid cell leukodystrophy. ACTA ACUST UNITED AC 2013; 136:2859-75. [PMID: 23983033 DOI: 10.1093/brain/awt215] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Globoid cell leukodystrophy (Krabbe disease) is a neurological disorder of infants caused by genetic deficiency of the lysosomal enzyme β-galactosylceramidase leading to accumulation of the neurotoxic metabolite 1-β-d-galactosylsphingosine (psychosine) in the central nervous system. Angiogenesis plays a pivotal role in the physiology and pathology of the brain. Here, we demonstrate that psychosine has anti-angiogenic properties by causing the disassembling of endothelial cell actin structures at micromolar concentrations as found in the brain of patients with globoid cell leukodystrophy. Accordingly, significant alterations of microvascular endothelium were observed in the post-natal brain of twitcher mice, an authentic model of globoid cell leukodystrophy. Also, twitcher endothelium showed a progressively reduced capacity to respond to pro-angiogenic factors, defect that was corrected after transduction with a lentiviral vector harbouring the murine β-galactosylceramidase complementary DNA. Finally, RNA interference-mediated β-galactosylceramidase gene silencing causes psychosine accumulation in human endothelial cells and hampers their mitogenic and motogenic response to vascular endothelial growth factor. Accordingly, significant alterations were observed in human microvasculature from brain biopsy of a globoid cell leukodystrophy case. Together these data demonstrate that β-galactosylceramidase deficiency induces significant alterations in endothelial neovascular responses that may contribute to central nervous system and systemic damages that occur in globoid cell leukodystrophy.
Collapse
Affiliation(s)
- Mirella Belleri
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|