1
|
Costa KA, Lacerda DR, Silveira ALM, Martins LB, Oliveira MC, Rezende BM, Menezes-Garcia Z, Mügge FLB, Silva AM, Teixeira MM, Rouault C, Pinho V, Marcelin G, Clément K, Ferreira AVM. PAF signaling plays a role in obesity-induced adipose tissue remodeling. Int J Obes (Lond) 2022; 46:68-76. [PMID: 34493775 DOI: 10.1038/s41366-021-00961-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 08/16/2021] [Accepted: 08/26/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND/OBJECTIVES Platelet-activating factor receptor (PAFR) activation controls adipose tissue (AT) expansion in animal models. Our objective was twofold: (i) to check whether PAFR signaling is involved in human obesity and (ii) investigate the PAF pathway role in hematopoietic or non-hematopoietic cells to control adipocyte size. MATERIALS/SUBJECTS AND METHODS Clinical parameters and adipose tissue gene expression were evaluated in subjects with obesity. Bone marrow (BM) transplantation from wild-type (WT) or PAFR-/- mice was performed to obtain chimeric PAFR-deficient mice predominantly in hematopoietic or non-hematopoietic-derived cells. A high carbohydrate diet (HC) was used to induce AT remodeling and evaluate in which cell compartment PAFR signaling modulates it. Also, 3T3-L1 cells were treated with PAF to evaluate fat accumulation and the expression of genes related to it. RESULTS PAFR expression in omental AT from humans with obesity was negatively correlated to different corpulence parameters and more expressed in the stromal vascular fraction than adipocytes. Total PAFR-/- increased adiposity compared with WT independent of diet-induced obesity. Differently, WT mice receiving PAFR-/--BM exhibited similar adiposity gain as WT chimeras. PAFR-/- mice receiving WT-BM showed comparable augmentation in adiposity as total PAFR-/- mice, demonstrating that PAFR signaling modulates adipose tissue expansion through non-hematopoietic cells. Indeed, the PAF treatment in 3T3-L1 adipocytes reduced fat accumulation and expression of adipogenic genes. CONCLUSIONS Therefore, decreased PAFR signaling may favor an AT accumulation in humans and animal models. Importantly, PAFR signaling, mainly in non-hematopoietic cells, especially in adipocytes, appears to play a significant role in regulating diet-induced AT expansion.
Collapse
Affiliation(s)
- Kátia A Costa
- Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Débora R Lacerda
- Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ana L M Silveira
- Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Laís B Martins
- Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marina C Oliveira
- Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Barbara M Rezende
- Department of Basic Nursing, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Zélia Menezes-Garcia
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda L B Mügge
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Aristóbolo M Silva
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mauro M Teixeira
- Immunopharmacology, Department of Immunology and Biochemistry, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Christine Rouault
- Sorbonne Université, INSERM, Nutrition and obesities: systemic approaches (Nutriomics), Paris, France.,Assistance Publique Hôpitaux de Paris, Nutrition Departments, CRNH Ile de France, Pitié-Salpêtrière Hospital, Paris, France
| | - Vanessa Pinho
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Geneviève Marcelin
- Sorbonne Université, INSERM, Nutrition and obesities: systemic approaches (Nutriomics), Paris, France.,Assistance Publique Hôpitaux de Paris, Nutrition Departments, CRNH Ile de France, Pitié-Salpêtrière Hospital, Paris, France
| | - Karine Clément
- Sorbonne Université, INSERM, Nutrition and obesities: systemic approaches (Nutriomics), Paris, France.,Assistance Publique Hôpitaux de Paris, Nutrition Departments, CRNH Ile de France, Pitié-Salpêtrière Hospital, Paris, France
| | - Adaliene V M Ferreira
- Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
2
|
Yang S, Wang YL, Lyu Y, Jiang Y, Xiang J, Ji S, Kang S, Lyu X, He C, Li P, Liu B, Wu C. mGWAS identification of six novel single nucleotide polymorphism loci with strong correlation to gastric cancer. Cancer Metab 2021; 9:34. [PMID: 34565479 PMCID: PMC8474935 DOI: 10.1186/s40170-021-00269-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 09/08/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Metabolite genome-wide association studies (mGWAS) are key for understanding the genetic regulation of metabolites in complex diseases including cancers. Although mGWAS has revealed hundreds of metabolomics quantitative trait loci (mQTLs) in the general population, data relating to gastric cancer (GC) are still incomplete. METHODS We identified mQTLs associated with GC by analyzing genome-wide and metabolome-wide datasets generated from 233 GC patients and 233 healthy controls. RESULTS Twenty-two metabolites were statistically different between GC cases and healthy controls, and all of them were associated with the risk of gastric cancer. mGWAS analyses further revealed that 9 single nucleotide polymorphisms (SNPs) were significantly associated with 3 metabolites. Of these 9 SNPs, 6 loci were never reported in the previous mGWAS studies. Surprisingly, 4 of 9 SNPs were significantly enriched in genes involved in the T cell receptor signaling pathway. CONCLUSIONS Our study unveiled several novel GC metabolite and genetic biomarkers, which may be implicated in the prevention and diagnosis of gastric cancer.
Collapse
Affiliation(s)
- Shuangfeng Yang
- School of Public Health, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Environment Factors and Cancer, Fuzhou, China
| | - Yuan-Liang Wang
- School of Public Health, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Environment Factors and Cancer, Fuzhou, China
| | - Yanping Lyu
- School of Public Health, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Environment Factors and Cancer, Fuzhou, China
| | - Yu Jiang
- School of Public Health, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Environment Factors and Cancer, Fuzhou, China
| | - Jianjun Xiang
- School of Public Health, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Environment Factors and Cancer, Fuzhou, China
| | - Shumi Ji
- School of Public Health, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Environment Factors and Cancer, Fuzhou, China
| | - Shuling Kang
- School of Public Health, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Environment Factors and Cancer, Fuzhou, China
| | - Xuejie Lyu
- School of Public Health, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Environment Factors and Cancer, Fuzhou, China
| | - Chenzhou He
- School of Public Health, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Environment Factors and Cancer, Fuzhou, China
| | - Peixin Li
- School of Public Health, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Environment Factors and Cancer, Fuzhou, China
| | - Baoying Liu
- School of Public Health, Fujian Medical University, Fuzhou, China.
- Fujian Provincial Key Laboratory of Environment Factors and Cancer, Fuzhou, China.
| | - Chuancheng Wu
- School of Public Health, Fujian Medical University, Fuzhou, China.
- Fujian Provincial Key Laboratory of Environment Factors and Cancer, Fuzhou, China.
| |
Collapse
|
3
|
Zhou L, Wang J, Liang J, Hou H, Li J, Li J, Cao Y, Li J, Zhang K. Psoriatic mesenchymal stem cells stimulate the angiogenesis of human umbilical vein endothelial cells in vitro. Microvasc Res 2021; 136:104151. [PMID: 33662409 DOI: 10.1016/j.mvr.2021.104151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/09/2021] [Accepted: 02/23/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To investigate the regulation of psoriatic dermal mesenchymal stem cells (p-DMSCs) in the expression of vascular growth factor (VEGF), and migration and angiogenesis of human umbilical vein endothelial cells (HUVECs) in vitro. METHODS A co-culture model of HUVECs and dermal mesenchymal stem cells (DMSCs)was used in this study. After 7-day co-culture, changes in expression levels of VEGF mRNA and protein in HUVECs were assessed using RT-PCR and Western Blotting, respectively. Migration and tubular formation of HUVECs were also assessed following co-culture of DMSCs and HUVECs. RESULTS In comparison to either HUVECs alone or co-culture of n-DMSCs and HUVECs, co-culture of HUVECs and p-DMSCs significantly increased expression levels of both VEGF mRNA (p < 0.01 vs. HUVECs alone) and protein in HUVECs (p < 0.001 vs. both HUVECs alone and HUVECs co-cultured with n-DMSCs). Moreover, p-DMSCs stimulated HUVEC migration and vascular formation (p < 0.05 vs. both HUVECs alone and co-culture of n-DMSCs and HUVECs). CONCLUSION Psoriatic DMSCs can upregulate VEGF expression, and stimulate migration and angiogenesis of HUVECs, suggesting a pathogenic role of p-DMSCs in psoriasis.
Collapse
Affiliation(s)
- Ling Zhou
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan 030009, China
| | - Juanjuan Wang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan 030009, China
| | - Jiannan Liang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan 030009, China
| | - Hui Hou
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan 030009, China
| | - Jiao Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan 030009, China
| | - Juan Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan 030009, China
| | - Yue Cao
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan 030009, China
| | - Junqin Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan 030009, China
| | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan 030009, China.
| |
Collapse
|
4
|
Hujanen R, Almahmoudi R, Karinen S, Nwaru BI, Salo T, Salem A. Vasculogenic Mimicry: A Promising Prognosticator in Head and Neck Squamous Cell Carcinoma and Esophageal Cancer? A Systematic Review and Meta-Analysis. Cells 2020; 9:cells9020507. [PMID: 32102317 PMCID: PMC7072765 DOI: 10.3390/cells9020507] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 12/24/2022] Open
Abstract
Vasculogenic mimicry (VM) is an intratumoral microcirculation pattern formed by aggressive cancer cells, which mediates tumor growth. In this study, we compiled the evidence from studies evaluating whether positive VM status can serve as a prognostic factor to patients with squamous cell carcinoma of the head and neck (HNSCC) or esophagus (ESCC). Comprehensive systematic searches were conducted using Cochrane Library, Ovid Medline, PubMed, and Scopus databases. We appraised the quality of studies and the potential for bias, and performed random-effect meta-analysis to assess the prognostic impact of VM on the overall survival (OS). Seven studies with 990 patients were eligible, where VM was detected in 34.24% of patients. Positive-VM was strongly associated with poor OS (hazard ratio = 0.50; 95% confidence interval: 0.38-0.64), which remained consistent following the subgroup analysis of the studies. Furthermore, VM was associated with more metastasis to local lymph nodes and more advanced stages of HNSCC and ESCC. In conclusion, this study provides clear evidence showing that VM could serve as a promising prognosticator for patients with either HNSCC or ESCC. Further studies are warranted to assess how VM can be implemented as a reliable staging element in clinical practice and whether it could provide a new target for therapeutic intervention.
Collapse
Affiliation(s)
- Roosa Hujanen
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014 Helsinki, Finland
| | - Rabeia Almahmoudi
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014 Helsinki, Finland
| | - Sini Karinen
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014 Helsinki, Finland
| | - Bright I. Nwaru
- Krefting Research Centre, Institute of Medicine, University of Gothenburg, 40530 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, Institute of Medicine, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Tuula Salo
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014 Helsinki, Finland
- Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, 00014 Helsinki, Finland
- Cancer and Translational Medicine Research Unit, University of Oulu, 90014 Oulu, Finland
- Medical Research Centre, Oulu University Hospital, 90220 Oulu, Finland
- Helsinki University Hospital (HUS), 00029 Helsinki, Finland
| | - Abdelhakim Salem
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014 Helsinki, Finland
- Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, 00014 Helsinki, Finland
- Correspondence:
| |
Collapse
|
5
|
Dupont É, Wang B, Mamelak AJ, Howell BG, Shivji G, Zhuang L, Dimitriadou V, Falardeau P, Sauder DN. Modulation of the Contact Hypersensitivity Response by Æ-941 (Neovastat), a Novel Antiangiogenic Agent. J Cutan Med Surg 2016. [DOI: 10.1177/120347540300700304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background: Æ-941 (Neovastat) is an angiogenesis inhibitor noted to have antiinflammatory properties. Objective: We tested Neovastat in a contact hypersensitivity (CHS) model to determine the mechanism of action of its antiinflammatory effects. Methods: Neovastat was orally administered (200 mg/kg/day) during the sensitization and challenge phases of a murine CHS assay and inflammatory responses were measured. Subsequent assays were performed on mice treated with Neovastat or Cortisone (120 mg/kg/day, IP) and differential mRNA expression of several pro- and antiinflammatory cytokines was quantified using RT-PCR. Results: Neovastat decreased inflammation by 39% when administered during sensitization but did not alter the CHS response when given during the challenge phase. Neovastat significantly induced IL-10 expression in skin and skin-draining lymph nodes (49% and 45%, respectively) and decreased IFNγ expression in the lymph nodes (35%). Conclusion: Antiinflammatory effects of Neovastat observed in CHS could be linked to modulation of cytokines early in the sensitization phase.
Collapse
Affiliation(s)
- É. Dupont
- Eterna Laboratories, Quebec, Quebec, Canada
| | - B. Wang
- Department of Dermatology, Johns Hopkins University, Johns Hopkins Outpatient Center, Baltimore, Maryland Online publication: 10 February 2003
| | - A. J. Mamelak
- Department of Dermatology, Johns Hopkins University, Johns Hopkins Outpatient Center, Baltimore, Maryland Online publication: 10 February 2003
| | - B. G. Howell
- Department of Dermatology, Johns Hopkins University, Johns Hopkins Outpatient Center, Baltimore, Maryland Online publication: 10 February 2003
| | - G. Shivji
- Department of Dermatology, Johns Hopkins University, Johns Hopkins Outpatient Center, Baltimore, Maryland Online publication: 10 February 2003
| | - L. Zhuang
- Department of Dermatology, Johns Hopkins University, Johns Hopkins Outpatient Center, Baltimore, Maryland Online publication: 10 February 2003
| | | | | | - D. N. Sauder
- Department of Dermatology, Johns Hopkins University, Johns Hopkins Outpatient Center, Baltimore, Maryland Online publication: 10 February 2003
| |
Collapse
|
6
|
Anandi VL, Ashiq KA, Nitheesh K, Lahiri M. Platelet-activating factor promotes motility in breast cancer cells and disrupts non-transformed breast acinar structures. Oncol Rep 2015; 35:179-88. [PMID: 26531049 DOI: 10.3892/or.2015.4387] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/04/2015] [Indexed: 11/06/2022] Open
Abstract
A plethora of studies have demonstrated that chronic inflammatory microenvironment influences the genesis and progression of tumors. Such microenvironments are enriched with various lipid mediators. Platelet activating factor (PAF, 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine) is one such lipid mediator that is secreted by different immune cell types during inflammation and by breast cancer cells upon stimulation with growth factors. Overexpression of PAF-receptor has also been observed in many other cancers. Here we report the possible roles of PAF in tumor initiation and progression. MCF10A, a non-transformed and non-malignant mammary epithelial cell line, when grown as 3D 'on-top' cultures form spheroids that have a distinct hollow lumen surrounded by a monolayer of epithelial cells. Exposure of these spheroids to PAF resulted in the formation of large deformed acinar structures with disrupted lumen, implying transformation. We then examined the response of transformed cells such as MDA-MB 231 to stimulation with PAF. We observed collective cell migration as well as motility at the single cell level on PAF induction, suggesting its role during metastasis. This increase in collective cell migration is mediated via PI3-kinase and/or JNK pathway and is independent of the MAP-kinase pathway. Taken together this study signifies a novel role of PAF in inducing transformation of non-tumorigenic cells and the vital role in promotion of breast cancer cell migration.
Collapse
Affiliation(s)
- V Libi Anandi
- Indian Institute of Science Education and Research, Pashan, Pune, Maharashtra 411008, India
| | - K A Ashiq
- Indian Institute of Science Education and Research, Pashan, Pune, Maharashtra 411008, India
| | - K Nitheesh
- Indian Institute of Science Education and Research, Pashan, Pune, Maharashtra 411008, India
| | - M Lahiri
- Indian Institute of Science Education and Research, Pashan, Pune, Maharashtra 411008, India
| |
Collapse
|
7
|
Moschos MM, Chatziralli IP, Stamatakis G, Papakonstantinou VD, Tsatsos M, Demopoulos CA. In Vitro Effects of Anti-Glaucomatous Eye Drops on Platelet-Activating Factor and its Metabolism. Semin Ophthalmol 2015; 32:198-203. [PMID: 26270771 DOI: 10.3109/08820538.2015.1053622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE The purpose of this study is to determine the effect of various commonly used antiglaucoma eye drops on inflammatory mediators such as the platelet activating factor (PAF). METHODS Various intraocular pressure (IOP) lowering drops were tested to examine their inhibitory effect on PAF. Multiple eye drops were tested in washed rabbit platelets (WRPs) in order to determine the interaction between these eye drops and the inhibition of PAF in the PAF-induced platelet aggregation model. In addition, we examined the eyedrops' effect on PAF-metabolism, through in vitro analysis on PAF basic metabolic enzymes (PAF-CPT, lyso PAF-AT, and PAF-AH). RESULTS Latanoprost (Xalatan) was found to be the most potent in inhibiting PAF, suggesting that it is the most effective in decreasing IOP amongst the eye drops tested. Conversely, dorzolamide hydrochloride-timolol (Cosopt) exhibited the least anti-PAF action. CONCLUSIONS This is the first study examine the relationship between PAF activity and glaucoma medication. Potency in PAF inhibition may be related to drop efficacy.
Collapse
Affiliation(s)
- Marilita M Moschos
- a Laboratory of Electrophysiology, 1st Department of Ophthalmology , University of Athens , Athens , Greece
| | - Irini P Chatziralli
- a Laboratory of Electrophysiology, 1st Department of Ophthalmology , University of Athens , Athens , Greece
| | - George Stamatakis
- b Laboratory of Biochemistry, Faculty of Chemistry , University of Athens , Athens , Greece , and
| | | | - Michael Tsatsos
- c Cambridge University Hospitals NHS Foundation Trust , Cambridge , UK
| | | |
Collapse
|
8
|
Lee CM, Jung WK, Na G, Lee DS, Park SG, Seo SK, Yang JW, Yea SS, Lee YM, Park WS, Choi IW. Inhibitory effects of the platelet-activating factor receptor antagonists, CV-3988 and Ginkgolide B, on alkali burn-induced corneal neovascularization. Cutan Ocul Toxicol 2014; 34:53-60. [PMID: 24754407 DOI: 10.3109/15569527.2014.903573] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Platelet-activating factor (PAF) has been found in various ocular tissues; the activity of PAF depends on the binding to its specific receptor, PAF-receptor. We investigated the therapeutic effects of PAF-receptor antagonists (CV-3988 and Ginkgolide B) on alkali burn-induced corneal neovascularization (CNV). METHODS CNV was induced by applying a 0.2 N sodium hydroxide (3 µl, NaOH) solution directly on mice corneas. CV-3988 (1 mM/10 µl) and Ginkgolide B (1 mM/10 µl) were administered topically on the corneas three times daily for three consecutive days. CNV was evaluated under a slit-lamp microscope. Corneas were processed for histological, immunohistochemical and reverse transcription polymerase chain reaction analysis. Human umbilical vein endothelial cells were used for the migration and tube formation assay. RESULTS Application of CV-3988 and Ginkgolide B inhibited CNV caused by alkali burn. CV-3988 and Ginkgolide B attenuated the expression of PAF-receptor mRNA. Alkali injury induced a massively increased intraocular mRNA expression of an angiogenic factor in cornea tissues, whereas these increments were attenuated by the application of CV-3988 and Ginkgolide B. CONCLUSIONS CV-3988 and Ginkgolide B reversed opacity and neovascularization in alkali burn-induced corneas. Our findings suggest that CV-3988 and Ginkgolide B may be therapeutically useful in the treatment of CNV and inflammation.
Collapse
Affiliation(s)
- Chang-Min Lee
- Department of Internal Medicine, Pulmonary and Critical Care Medicine , New Haven, CT , USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Moschos MM, Chatziralli IP, Stamatakis G, Papakonstantinou VD, Demopoulos CA. In vitroeffects of vitamin supplements on platelet-activating factor and its metabolism in age-related macular degeneration. Cutan Ocul Toxicol 2013; 33:235-41. [DOI: 10.3109/15569527.2013.835818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
A Novel Platelet-Activating Factor Receptor Antagonist Inhibits Choroidal Neovascularization and Subretinal Fibrosis. PLoS One 2013; 8:e68173. [PMID: 23826375 PMCID: PMC3694891 DOI: 10.1371/journal.pone.0068173] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 05/28/2013] [Indexed: 11/19/2022] Open
Abstract
Choroidal neovascularization (CNV) is a critical pathogenesis in age-related macular degeneration (AMD), the most common cause of blindness in developed countries. To date, the precise molecular and cellular mechanisms underlying CNV have not been elucidated. Platelet-activating factor (PAF) has been previously implicated in angiogenesis; however, the roles of PAF and its receptor (PAF-R) in CNV have not been addressed. The present study reveals several important findings concerning the relationship of the PAF-R signaling with CNV. PAF-R was detected in a mouse model of laser-induced CNV and was upregulated during CNV development. Experimental CNV was suppressed by administering WEB2086, a novel PAF-R antagonist. WEB2086-dependent suppression of CNV occurred via the inhibition of macrophage infiltration and the expression of proangiogenic (vascular endothelial growth factor) and proinflammatory molecules (monocyte chemotactic protein-1 and IL-6) in the retinal pigment epithelium-choroid complex. Additionally, WEB2086-induced PAF-R blockage suppresses experimentally induced subretinal fibrosis, which resembles the fibrotic subretinal scarring observed in neovascular AMD. As optimal treatment modalities for neovascular AMD would target the multiple mechanisms of AMD-associated vision loss, including neovascularization, inflammation and fibrosis, our results suggest PAF-R as an attractive molecular target in the treatment of AMD.
Collapse
|
11
|
Kim HA, Kim KJ, Yoon SY, Lee HK, Im SY. Glutamine inhibits platelet-activating factor-mediated pulmonary tumour metastasis. Eur J Cancer 2012; 48:1730-8. [DOI: 10.1016/j.ejca.2011.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 06/17/2011] [Accepted: 07/19/2011] [Indexed: 01/01/2023]
|
12
|
Schäfer-Somi S, Sabitzer S, Klein D, Reinbacher E, Kanca H, Beceriklisoy HB, Aksoy OA, Kucukaslan I, Macun HC, Aslan S. Vascular Endothelial (VEGF) and Epithelial Growth Factor (EGF) as Well as Platelet-Activating Factor (PAF) and Receptors are Expressed in the Early Pregnant Canine Uterus. Reprod Domest Anim 2012; 48:20-6. [DOI: 10.1111/j.1439-0531.2012.02019.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Soluble HSPB1 regulates VEGF-mediated angiogenesis through their direct interaction. Angiogenesis 2012; 15:229-42. [PMID: 22350794 DOI: 10.1007/s10456-012-9255-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2011] [Accepted: 02/07/2012] [Indexed: 12/28/2022]
Abstract
Endothelial cell function is critical for angiogenic balance in both physiological and pathological conditions, such as wound healing and cancer, respectively. We report here that soluble heat shock protein beta-1 (HSPB1) is released primarily from endothelial cells (ECs), and plays a key role in regulating angiogenic balance via direct interaction with vascular endothelial growth factor (VEGF). VEGF-mediated phosphorylation of intracellular HSPB1 inhibited the secretion of HSPB1 and their binding activity in ECs. Interestingly, co-culture of tumor ECs with tumor cells decreased HSPB1 secretion from tumor ECs, suggesting that inhibition of HSPB1 secretion allows VEGF to promote angiogenesis. Additionally, neutralization of HSPB1 in a primary mouse sarcoma model promoted tumor growth, indicating the anti-angiogenic role of soluble HSPB1. Overexpression of HSPB1 by HSPB1 adenovirus was sufficient to suppress lung metastases of CT26 colon carcinoma in vivo, while neutralization of HSPB1 promoted in vivo wound healing. While VEGF-induced regulation of angiogenesis has been studied extensively, these findings illustrate the key contribution of HSPB1-VEGF interactions in the balance between physiological and pathological angiogenesis.
Collapse
|
14
|
Rechka A, Neagoe PE, Gratton JP, Sirois MG. Identification of VEGF receptor-2 tyrosine phosphorylation sites involved in VEGF-mediated endothelial platelet-activating factor synthesis. Can J Physiol Pharmacol 2010; 88:968-76. [DOI: 10.1139/y10-064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Vascular endothelial growth factor (VEGF)-mediated inflammation requires the synthesis of acute platelet-activating factor (PAF) by endothelial cells (ECs). We previously reported that VEGF-mediated PAF synthesis involves the activation of the homodimeric tyrosine kinase receptor VEGFR-2/R-2, leading to the recruitment of p38 and p42/p44 mitogen-activated protein kinases (MAPKs) and activation of secreted group V phospholipase A2 (sPLA2-V). We have also reported that VEGF-A165-mediated prostacyclin (PGI2) synthesis requires VEGFR-1/R-2 heterodimeric receptor activation. Selective activation of VEGF receptors can coordinate the synthesis of pro-PAF and anti-PGI2 inflammatory factors. It is unknown which VEGFR-2 tyrosine phosphorylation site(s) contribute(s) to PAF synthesis. Bovine aortic endothelial cells (BAECs) were transfected with pcDNA vectors encoding for native VEGF receptor-2 (VEGFR-2) cDNA or VEGFR-2 cDNA containing tyrosine phosphorylation sites mutated into phenylalanine residues (Y801F, Y1059F, Y1175F, Y1214F); an empty pcDNA vector was used as a negative control. Treatment of pcDNA-transfected BAECs with VEGF (10−9 mol/L) for 15 min increased PAF synthesis by 180%. In BAECs transfected with pcDNA vectors encoding mutated Y801F, Y1059F, Y1175F, or Y1214F VEGFR-2 cDNA, we observed a marked reduction of VEGF-mediated PAF synthesis by 38%, 46%, 69%, and 31%, respectively, compared with BAECs transfected with pcDNA vector encoding VEGFR-2 cDNA. Our data provide a novel insight as to the mechanisms by which VEGF promotes PAF synthesis.
Collapse
Affiliation(s)
- Abdennebi Rechka
- Research Centre, Montreal Heart Institute, 5000 Belanger Street, Montreal, QC H1T 1C8, Canada
- Institut de recherches cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
- Department of Pharmacology, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Paul-Eduard Neagoe
- Research Centre, Montreal Heart Institute, 5000 Belanger Street, Montreal, QC H1T 1C8, Canada
- Institut de recherches cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
- Department of Pharmacology, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Jean-Philippe Gratton
- Research Centre, Montreal Heart Institute, 5000 Belanger Street, Montreal, QC H1T 1C8, Canada
- Institut de recherches cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
- Department of Pharmacology, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Martin G. Sirois
- Research Centre, Montreal Heart Institute, 5000 Belanger Street, Montreal, QC H1T 1C8, Canada
- Institut de recherches cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
- Department of Pharmacology, Université de Montréal, Montreal, QC H3C 3J7, Canada
| |
Collapse
|
15
|
Lyons JM, Schwimer JE, Anthony CT, Thomson JL, Cundiff JD, Casey DT, Maccini C, Kucera P, Wang YZ, Boudreaux JP, Woltering EA. The Role of VEGF Pathways in Human Physiologic and Pathologic Angiogenesis. J Surg Res 2010; 159:517-27. [DOI: 10.1016/j.jss.2008.12.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 12/03/2008] [Accepted: 12/10/2008] [Indexed: 10/21/2022]
|
16
|
Pathogenic hantaviruses direct the adherence of quiescent platelets to infected endothelial cells. J Virol 2010; 84:4832-9. [PMID: 20181715 DOI: 10.1128/jvi.02405-09] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Hantavirus infections are noted for their ability to infect endothelial cells, cause acute thrombocytopenia, and trigger 2 vascular-permeability-based diseases. However, hantavirus infections are not lytic, and the mechanisms by which hantaviruses cause capillary permeability and thrombocytopenia are only partially understood. The role of beta(3) integrins in hemostasis and the inactivation of beta(3) integrin receptors by pathogenic hantaviruses suggest the involvement of hantaviruses in altered platelet and endothelial cell functions that regulate permeability. Here, we determined that pathogenic hantaviruses bind to quiescent platelets via a beta(3) integrin-dependent mechanism. This suggests that platelets may contribute to hantavirus dissemination within infected patients and provides a means by which hantavirus binding to beta(3) integrin receptors prevents platelet activation. The ability of hantaviruses to bind platelets further suggested that cell-associated hantaviruses might recruit platelets to the endothelial cell surface. Our findings indicate that Andes virus (ANDV)- or Hantaan virus (HTNV)-infected endothelial cells specifically direct the adherence of calcein-labeled platelets. In contrast, cells comparably infected with nonpathogenic Tula virus (TULV) failed to recruit platelets to the endothelial cell surface. Platelet adherence was dependent on endothelial cell beta(3) integrins and neutralized by the addition of the anti-beta(3) Fab fragment, c7E3, or specific ANDV- or HTNV-neutralizing antibodies. These findings indicate that pathogenic hantaviruses displayed on the surface of infected endothelial cells bind platelets and that a platelet layer covers the surface of infected endothelial cells. This fundamentally changes the appearance of endothelial cells and has the potential to alter cellular immune responses, platelet activation, and endothelial cell functions that affect vascular permeability. Hantavirus-directed platelet quiescence and recruitment to vast endothelial cell beds further suggests mechanisms by which hantaviruses may cause thrombocytopenia and induce hypoxia. These findings are fundamental to our understanding of pathogenic-hantavirus regulation of endothelial cell responses that contribute to vascular permeability.
Collapse
|
17
|
Ryeom S, Baek KH, Rioth MJ, Lynch RC, Zaslavsky A, Birsner A, Yoon SS, McKeon F. Targeted deletion of the calcineurin inhibitor DSCR1 suppresses tumor growth. Cancer Cell 2008; 13:420-31. [PMID: 18455125 DOI: 10.1016/j.ccr.2008.02.018] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 12/31/2007] [Accepted: 02/26/2008] [Indexed: 11/21/2022]
Abstract
The NF-AT transcription factors regulated by the phosphatase calcineurin play a role in breast cancer metastasis-promoting tumor cell invasion. Metastasis is a multistep process requiring angiogenesis and endothelial activation. NF-AT is also expressed in endothelial cells, and calcineurin-NF-AT signaling is an important downstream effector of the proangiogenic cytokine VEGF. One isoform of the endogenous calcineurin regulator, Down syndrome candidate region-1 (DSCR1.Ex4), suppresses calcineurin-NFAT signaling blocking endothelial proliferation. However, overexpression of the other DSCR1 isoform (DSCR1.Ex1) may promote angiogenesis. We report that targeted deletion of both isoforms leads to hyperactivated calcineurin and precocious endothelial apoptosis, inhibiting formation of an effective tumor vasculature and suppressing tumorigenesis. Treatment with the specific pharmacological calcineurin inhibitor cyclosporin A rescues this endothelial defect in DSCR1(-/-) mice, restoring tumor growth.
Collapse
Affiliation(s)
- Sandra Ryeom
- Vascular Biology Program, Department of Surgery, Children's Hospital, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Tiemann U. The role of platelet-activating factor in the mammalian female reproductive tract. Reprod Domest Anim 2008; 43:647-55. [PMID: 18363604 DOI: 10.1111/j.1439-0531.2007.00959.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Platelet-activating factor (PAF) is a potent lipid mediator produced by various cell types of mammals and is involved in an inflammatory-like process with increased vascular permeability. Platelet-activating factor exerts its actions through the activation of specific PAF receptors (PAF-R) found in cells and tissues of the female reproductive tract. The aim of this article was summarized briefly in the current research on the role of PAF in female reproductive functions. Platelet-activating factor has been implicated in processes of ovulation, implantation and parturition because of its angiogenic and growth factor properties. This factor is influenced by ovarian steroid hormones in bringing about changes in the uterus and is a candidate molecule for initial embryo-maternal dialogue. Tissue concentrations of PAF are regulated by the equilibrium between biosynthesis and degradation by PAF-acetylhydrolase (PAF-AH). Antagonists of PAF interfere with ovulation and implantation. Platelet-activating factor, its receptor, and PAF-AH activity play an important role in the maintenance of pregnancy.
Collapse
Affiliation(s)
- U Tiemann
- Department of Reproductive Biology, Research Institute for the Biology of Farm Animals, Dummerstorf, Germany.
| |
Collapse
|
19
|
Doublier S, Ceretto M, Lupia E, Bravo S, Bussolati B, Camussi G. The proangiogenic phenotype of tumor-derived endothelial cells is reverted by the overexpression of platelet-activating factor acetylhydrolase. Clin Cancer Res 2007; 13:5710-8. [PMID: 17908960 DOI: 10.1158/1078-0432.ccr-07-0412] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE We previously reported that human tumor-derived endothelial cells (TEC) have an angiogenic phenotype related to the autocrine production of several angiogenic factors. The purpose of the present study was to evaluate whether an enhanced synthesis of platelet-activating factor (PAF) might contribute to the proangiogenic characteristics of TEC and whether its inactivation might inhibit angiogenesis. EXPERIMENTAL DESIGN To address the potential role of PAF in the proangiogenic characteristics of TEC, we engineered TEC to stably overexpress human plasma PAF-acetylhydrolase (PAF-AH), the major PAF-inactivating enzyme, and we evaluated in vitro and in vivo angiogenesis. RESULTS TECs were able to synthesize a significantly enhanced amount of PAF compared with normal human microvascular endothelial cells when stimulated with thrombin, vascular endothelial growth factor, or soluble CD154. Transfection of TEC with PAF-AH (TEC-PAF-AH) significantly inhibited apoptosis resistance and spontaneous motility of TEC. In addition, PAF and vascular endothelial growth factor stimulation enhanced the motility and adhesion of TEC but not of TEC-PAF-AH. In vitro, TEC-PAF-AH lost the characteristic ability of TEC to form vessel-like structures when plated on Matrigel. Finally, when cells were injected s.c. within Matrigel in severe combined immunodeficiency mice or coimplanted with a renal carcinoma cell line, the overexpression of PAF-AH induced a significant reduction of functional vessel formation. CONCLUSIONS These results suggest that inactivation of PAF, produced by TEC, by the overexpression of plasma PAF-AH affects survival, migration, and the angiogenic response of TEC both in vitro and in vivo.
Collapse
Affiliation(s)
- Sophie Doublier
- Department of Internal Medicine, Centre for Molecular Biotechnology, University of Turin, Turin, Italy
| | | | | | | | | | | |
Collapse
|
20
|
Ferreira MAND, Barcelos LS, Teixeira MM, Bakhle YS, Andrade SP. Tumor growth, angiogenesis and inflammation in mice lacking receptors for platelet activating factor (PAF). Life Sci 2007; 81:210-7. [PMID: 17588613 DOI: 10.1016/j.lfs.2007.05.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2007] [Revised: 04/24/2007] [Accepted: 05/02/2007] [Indexed: 11/28/2022]
Abstract
Tumor growth is associated with angiogenesis and inflammation and the endogenous lipid, platelet activating factor (PAF), is a pro-inflammatory and pro-angiogenic mediator. We therefore measured tumor growth, angiogenesis and inflammation in normal (WT) mice and those lacking the receptor for PAF, through gene deletion (PAFR-KO). Growth of solid tumors derived from colon 26 cells was not altered but that from Ehrlich cells was markedly (5-fold) increased in the PAFR-KO mice, relative to the WT strain. Angiogenesis, as tumor content of VEGF or hemoglobin, was increased in both tumors from the mutant strain. Inflammation, as neutrophil and macrophage accumulation and chemokine (CXCL2 and CCL2) content of tumors, was decreased or unchanged in the tumors implying an overall decrease in the inflammatory response in the PAFR-KO strain. We also assessed growth of the Ehrlich tumor in its ascites form, after i.p. injection. Here growth (ascites volume) was inhibited by about 30%, but neutrophil and macrophage numbers were increased in the ascites fluid from the PAFR-KO mice. Angiogenesis in the peritoneal wall, which is not invaded by the tumor cells, was increased but leukocyte infiltration decreased in the mutant strain. Our results show, unexpectedly, that tumor-induced angiogenesis was increased in mice lacking response to PAF, from which we infer that in normal (WT) mice, PAF is anti-angiogenic. Further, although growth was still associated with angiogenesis in PAFR-KO mice, growth was not correlated with inflammation (leukocyte accumulation).
Collapse
Affiliation(s)
- M A N D Ferreira
- Department of Physiology , General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antonio Carlos 6627, Cx Post 468, Campus Pampulha, CEP 31270-901, Belo Horizonte/MG, Brazil
| | | | | | | | | |
Collapse
|
21
|
Opposite effects of WEB2086 on angiogenesis in atheromas and ischemic hindlimb of apoE gene deficient mice. Chin Med J (Engl) 2007. [DOI: 10.1097/00029330-200705020-00007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
22
|
Ko HM, Kang JH, Jung B, Kim HA, Park SJ, Kim KJ, Kang YR, Lee HK, Im SY. Critical role for matrix metalloproteinase-9 in platelet-activating factor-induced experimental tumor metastasis. Int J Cancer 2007; 120:1277-83. [PMID: 17187368 DOI: 10.1002/ijc.22450] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In this study, the roles of matrix metalloproteinase (MMP)-2 and MMP-9 in platelet-activating factor (PAF)-induced experimental pulmonary metastasis of the murine melanoma cell, B16F10, were investigated. An injection of PAF resulted in increases in mRNA expression, protein levels and the activities of both MMP-2 and MMP-9 in the lungs. The overall expression of MMP-9 was stronger than that of MMP-2. The increased MMP-9 expression was inhibited by both NF-kappaB and AP-1 inhibitors, whereas the increased MMP-2 expression was inhibited by only AP-1 inhibitors. Immunohistochemical analysis revealed that MMP-9 was expressed in bronchial epithelial cells as well as in the walls of blood vessels, whereas MMP-2 expression was observed only in bronchial epithelial cells. PAF significantly enhanced the pulmonary metastasis of B16F10, which was inhibited by both NF-kappaB and c-jun inhibitors. MMP-9 inhibitor, but not that of MMP-2, completely inhibited PAF-induced B16F10 metastasis. These data indicate that MMP-9, the expression of which was regulated by NF-kappaB and AP-1, plays a critical role in PAF-induced enhancement of pulmonary melanoma metastasis.
Collapse
Affiliation(s)
- Hyun-Mi Ko
- Department of Biological Sciences, College of Natural Sciences, Chonnam National University, Kwangju 500-757, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Brkovic A, Sirois MG. Vascular permeability induced by VEGF family members in vivo: role of endogenous PAF and NO synthesis. J Cell Biochem 2007; 100:727-37. [PMID: 17115409 DOI: 10.1002/jcb.21124] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We previously reported that vascular endothelial growth factor (VEGF) increases vascular permeability through the synthesis of endothelial platelet-activating factor (PAF), while others reported the contribution of nitric oxide (NO). Herein, we addressed the contribution of VEGF receptors and the role played by PAF and NO in VEGF-induced plasma protein extravasation. Using a modified Miles assay, intradermal injection in mice ears of VEGF-A(165), VEGF-A(121), and VEGF-C (1 microM) which activate VEGFR-2 (Flk-1) receptor increased vascular permeability, whereas a treatment with VEGFR-1 (Flt-1) analogs; PlGF and VEGF-B (1 microM) had no such effect. Pretreatment of mice with PAF receptor antagonist (LAU8080) or endothelial nitric oxide synthase (eNOS) inhibitor (L-NAME) abrogated protein extravasation mediated by VEGF-A(165). As opposed to PAF (0.01-1 microM), treatment with acetylcholine (ACh; up to 100 microM; inducer of NO synthesis) or sodium nitroprusside (SNP; up to 1 microM; NO donor) did not induce protein leakage. Simultaneous pretreatment of mice with eNOS and protein kinase A (PKA) inhibitors restored VEGF-A(165) vascular hyperpermeability suggesting that endogenous NO synthesis leads to PKA inhibition, which support maintenance of vascular integrity. Our data demonstrate that VEGF analogs increase vascular permeability through VEGFR-2 activation, and that both endogenous PAF and NO synthesis contribute to VEGF-A(165)-mediated vascular permeability. However, PAF but not NO directly increases vascular permeability per se, thereby, suggesting that PAF is a direct inflammatory mediator, whereas NO serves as a cofactor in VEGF-A(165) proinflammatory activities.
Collapse
Affiliation(s)
- Alexandre Brkovic
- Research Center, Montreal Heart Institute, Department of Pharmacology, Université de Montréal, Montreal, QC, Canada
| | | |
Collapse
|
24
|
Denizot Y, De Armas R, Caire F, Pommepuy I, Truffinet V, Labrousse F. Platelet-activating factor and human meningiomas. Neuropathol Appl Neurobiol 2006; 32:674-8. [PMID: 17083481 DOI: 10.1111/j.1365-2990.2006.00775.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Meningiomas are common primary intracranial tumours. Platelet-activating factor (PAF) is an inflammatory and angiogenic lipid mediator involved in several types of cancer. The presence of PAF receptor (PAF-R) transcripts, the levels of PAF, the phospholipase A2 activity (PLA2, the enzymatic activity implicated in PAF formation) and the PAF acetylhydrolase activity (AHA, the PAF degrading enzyme) were investigated in 49 human meningiomas. PAF-R transcripts, PAF, PLA2 and AHA were detected in meningiomas. However, their levels did not correlate with biological parameters such as the tumour grade, the presence of associated oedema, necrosis, mitotic index as well as intensity of the neovascularization and chronic inflammatory response. In conclusion, PAF is present in meningiomas where it might act on tumour growth by altering the local angiogenic and/or cytokine networks as previously suggested for human breast and colorectal cancer.
Collapse
|
25
|
Fallani A, Calorini L, Mannini A, Gabellieri S, Mugnai G, Ruggieri S. Platelet-activating factor (PAF) is the effector of IFNγ-stimulated invasiveness and motility in a B16 melanoma line. Prostaglandins Other Lipid Mediat 2006; 81:171-7. [PMID: 17085325 DOI: 10.1016/j.prostaglandins.2006.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Revised: 09/07/2006] [Accepted: 09/07/2006] [Indexed: 10/24/2022]
Abstract
In this study, we investigated whether PAF synthesized by F10-M3 cells (a clone of B16-F10 melanoma line) mediates the increased capacity of these cells to penetrate into Matrigel upon stimulation with IFN gamma. The determination of PAF synthesized by IFN gamma-stimulated tumor cells revealed that 70% of newly synthesized PAF was released into growth media, while the remaining 30% was associated with the cell bodies. An experimental protocol based on the use of WEB 2086, a PAF receptorial antagonist, was designed to explore which of the two fractions of PAF synthesized by IFN gamma-stimulated F10-M3 cells (released into the growth medium or associated with the cell bodies) is essential to their capacity to migrate through Matrigel. We found that the PAF secreted into growth medium is the fraction responsible for the enhanced invasiveness of melanoma cells stimulated with IFN gamma. We also investigated whether motility of melanoma cells is stimulated by IFN gamma, and, if so, whether PAF is involved in this effect. We found that WEB 2086 prevented the remodeling of stress fibers, examined as an index of cell motility, that we observed in F10-M3 cells stimulated with IFN gamma. Furthermore, the observation that PAF receptor is expressed in IFN gamma-stimulated melanoma cells suggests that the invasive phenotype (e.g. migration through a reconstituted basement membrane and motility) promoted by PAF is based on an autocrine mechanism. On the whole, these results might indicate that PAF contributes to the expression of properties typical of an invasive phenotype in tumor cells stimulated with cytokines.
Collapse
Affiliation(s)
- Anna Fallani
- Department of Experimental Pathology and Oncology, University of Florence, Viale GB Morgagni, 50, 50134 Florence, Italy
| | | | | | | | | | | |
Collapse
|
26
|
Marchand C, Favier J, Sirois MG. Role of MSK1 in the signaling pathway leading to VEGF-mediated PAF synthesis in endothelial cells. J Cell Biochem 2006; 98:1095-105. [PMID: 16479592 DOI: 10.1002/jcb.20840] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Vascular endothelial growth factor (VEGF) inflammatory effects require acute platelet-activating factor (PAF) synthesis by endothelial cells (EC). We previously reported that VEGF-mediated PAF synthesis involves the activation of VEGF receptor-2/Neuropilin-1 complex, which is leading to the activation of p38 and p42/44 mitogen-activated protein kinases (MAPKs) and group V secretory phospholipase A(2) (sPLA(2)-V). As the mechanisms regulating sPLA(2)-V remain unknown, we addressed the role of the mitogen- and stress-activated protein kinase-1 (MSK1), which can be rapidly and transiently activated by p38 or p42/44 MAPKs. In native bovine aortic endothelial cells (BAEC), we observed a constitutive protein interaction of MSK1 with p38, p42/44 MAPKs, and sPLA(2)-V. These protein interactions were maintained in BAEC transfected either with the empty vector pCDNA3.1, wild-type MSK1 (MSK1-WT) or N-terminal dead kinase MSK1 mutant (MSK1-D195A). However, in BAEC expressing C-terminal dead kinase MSK1 mutant (MSK1-D565A), the interaction between MSK1 and sPLA(2)-V was reduced by 82% and 90% under basal and VEGF-treated conditions as compared to native BAEC. Treatment with VEGF for 15 min increased basal PAF synthesis in native BAEC, pCDNA3.1, MSK1-WT, and MSK1-D195A by 166%, 139%, 125%, and 82%, respectively. In contrast, PAF synthesis was prevented in cells expressing MSK1-D565A mutant. These results demonstrate the essential role of the C-terminal domain of MSK1 for its constitutive interaction with sPLA(2)-V, which appears essential to support VEGF-mediated PAF synthesis.
Collapse
Affiliation(s)
- Catherine Marchand
- Research Center, Montreal Heart Institute, Université de Montréal, 5000 Belanger Street, Montreal, Quebec, Canada
| | | | | |
Collapse
|
27
|
Abstract
Heme-oxygenase-1 (HO-1) is an inducible cytoprotective molecule that displays antioxidant, antiapoptotic, and antiinflammatory effects. In addition, HO-1 appears to have a complex role in angiogenesis. Recent in vivo studies report that vascular endothelial growth factor (VEGF) regulates HO-1 expression and activity in vascular endothelial cells (ECs) and that inhibition of HO-1 abrogates VEGF-induced endothelial activation and subsequent angiogenesis, while promoting VEGF-induced monocyte recruitment and inflammatory angiogenesis. HO-1 may also regulate the synthesis and activity of VEGF, resulting in a positive-feedback loop. In contrast, HO-1 activity has the opposite effect on lipopolysaccharide-driven inflammatory angiogenesis, inhibiting leukocyte invasion and preventing subsequent angiogenesis. In this review, we summarize the current understanding of the role of HO-1 in angiogenesis. We conclude that further investigation, using targeted molecular approaches specifically to alter HO-1 activity, are required to develop our understanding of the role of HO-1 and its products, carbon monoxide, biliverdin, bilirubin, and free iron in angiogenesis. We propose that during chronic inflammation, HO-1 has two roles, first an antiinflammatory action inhibiting leukocyte infiltration, and second, promotion of VEGF-driven noninflammatory angiogenesis, which facilitates tissue repair. Additional studies will help determine whether modulating the activity of HO-1 and/or its products has therapeutic potential in chronic inflammatory dise.
Collapse
Affiliation(s)
- Benedetta Bussolati
- Department of Biology and Clinical Science, University of Torino, Ospedale S. Giovanni Battista, Italy
| | | |
Collapse
|
28
|
Mathonnet M, Descottes B, Valleix D, Truffinet V, Labrousse F, Denizot Y. Platelet-activating factor in cirrhotic liver and hepatocellular carcinoma. World J Gastroenterol 2006; 12:2773-8. [PMID: 16718768 PMCID: PMC4130990 DOI: 10.3748/wjg.v12.i17.2773] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: Platelet-activating factor (PAF) is a pro-inflammatory and angiogenic lipid mediator. Here we aimed to investigate levels of PAF, lyso-PAF (the PAF precursor), phospholipase A2 (PLA2, the enzymatic activity generating lyso-PAF), acetylhydrolase activity (AHA, the PAF degrading enzyme) and PAF receptor (PAF-R) transcripts in cirrhotic liver and hepatocellular carcinoma (HCC).
METHODS: Twenty-nine patients with HCC were enrolled in this study. Cirrhosis was present in fourteen patients and seven had no liver disease. Tissue PAF levels were investigated by a platelet-aggregation assay. Lyso-PAF was assessed after its chemical acetylation into PAF. AHA was determined by degradation of [3H]-PAF. PLA2 levels were assessed by EIA. PAF-R transcripts were investigated using RT-PCR.
RESULTS: Elevated amounts of PAF and PAF-R transcripts 1 (leukocyte-type) were found in cirrhotic tissues as compared with non-cirrhotic ones. Higher amounts of PAF and PAF-R transcripts 1 and 2 (tissue-type) were found in HCC tissues as compared with non-tumor tissues. PLA2, lyso-PAF and AHA levels were not changed in cirrhotic tissues and HCC.
CONCLUSION: While the role of PAF is currently unknown in liver physiology, this study suggests its potential involvement in the inflammatory network found in the cirrhotic liver and in the angiogenic response during HCC.
Collapse
Affiliation(s)
- Muriel Mathonnet
- Service de Chirurgie Digestive, Endcrinienne et Générale, CHU Dupuytren, 2 avenue Luther King, 87042 Limoges, France
| | | | | | | | | | | |
Collapse
|
29
|
Maliba R, Lapointe S, Neagoe PE, Brkovic A, Sirois MG. Angiopoietins-1 and -2 are both capable of mediating endothelial PAF synthesis: intracellular signalling pathways. Cell Signal 2006; 18:1947-57. [PMID: 16617006 DOI: 10.1016/j.cellsig.2006.02.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Revised: 02/27/2006] [Accepted: 02/28/2006] [Indexed: 10/24/2022]
Abstract
Vascular endothelial growth factor (VEGF) is the only angiogenic growth factor capable of inducing an inflammatory response and we have recently demonstrated that its inflammatory effect is mediated by the endothelial synthesis of platelet-activating factor (PAF). Recently discovered, Ang1 and Ang2, upon binding to Tie2 receptor, modulate vascular permeability and integrity, contributing to angiogenesis. Ang1 was initially identified as a Tie2 agonist whereas Ang2 can behave as a context-dependent Tie2 agonist or antagonist. We sought to determine if Ang1 and/or Ang2 could modulate PAF synthesis in bovine aortic endothelial cells (BAEC) and if so, through which intracellular signalling pathways. Herein, we report that Ang1 and Ang2 (1 nM) are both capable of mediating a rapid Tie2 phosphorylation and a rapid, progressive and sustained endothelial PAF synthesis maximal within 4 h (1695% and 851% increase, respectively). Angiopoietin-mediated endothelial PAF synthesis requires the activation of the p38 and p42/44 MAPKs, PI3K intracellular signalling pathways, and a secreted phospholipase A(2) (sPLA(2)-V). Furthermore, angiopoietin-mediated PAF synthesis is partly driven by a relocalization of endogenous VEGF to the cell surface membrane. Our results demonstrate that the angiopoietins constitute another class of angiogenic factors capable of mediating PAF synthesis which may contribute to proinflammatory activities.
Collapse
Affiliation(s)
- Ricardo Maliba
- Montreal Heart Institute and Department of Pharmacology, Université de Montréal, 5000 Belanger Street, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
30
|
Biancone L, Cantaluppi V, Romanazzi GM, Russo S, Figliolini F, Beltramo S, Scalabrino E, Deregibus MC, Romagnoli R, Franchello A, Salizzoni M, Perin PC, Ricordi C, Segoloni GP, Camussi G. Platelet-Activating Factor Synthesis and Response on Pancreatic Islet Endothelial Cells: Relevance for Islet Transplantation. Transplantation 2006; 81:511-8. [PMID: 16495796 DOI: 10.1097/01.tp.0000200306.51689.f2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Recent data suggest that donor intraislet endothelial cells may survive islet transplantation and participate to the events that influence islet engraftment. However, the mechanisms that regulate islet endothelial behavior in this setting are poorly known. METHODS We obtained immortalized human (hIECs) and mouse (mIECs) islet endothelial cells by transfection with SV40-T-large antigen and studied the synthesis and response to Platelet-activating factor (PAF), a multipotent phospholipid that acts as endothelial mediator of both inflammation and angiogenesis. RESULTS HIECs showed typical endothelial markers such as expression of vWF, CD31, and CD105, uptake of acetylated-LDL and binding to ULE-A lectin. Moreover, they expressed nestin, the PAF-receptor and possess surface fenestrations and in vitro angiogenic ability of forming tubular structures on Matrigel. Likewise, mIECs showed expression of vWF, CD31, nestin, PAF-receptor and CD105, and uptake of acetylated-LDL. HIECs and mIECs rapidly produced PAF under stimulation with thrombin in a dose-dependent way. Exogenous PAF or thrombin-induced PAF synthesis increased leukocyte adhesion to hIECS and mIECs and cell motility of both endothelial cell lines. Moreover, PAF or thrombin-induced PAF synthesis accelerated in vitro formation of vessel-like tubular structures when hIECs are seeded on Matrigel. Notably, gene-microarray analysis detected up-regulation of beta3 integrin gene on hIECs stimulated with PAF, that was confirmed at the protein level. CONCLUSIONS Based on the novel development of immortalized islet endothelium, these results suggest that PAF may have a dual role that links inflammation to angiogenesis in the early events of islet transplantation.
Collapse
Affiliation(s)
- Luigi Biancone
- Department of Internal Medicine and Research Center for Experimental Medicine (CeRMS), University of Torino, Torino, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Bussolati B, Grange C, Bruno S, Buttiglieri S, Deregibus MC, Tei L, Aime S, Camussi G. Neural-cell adhesion molecule (NCAM) expression by immature and tumor-derived endothelial cells favors cell organization into capillary-like structures. Exp Cell Res 2006; 312:913-24. [PMID: 16406048 DOI: 10.1016/j.yexcr.2005.12.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Revised: 11/15/2005] [Accepted: 12/05/2005] [Indexed: 12/26/2022]
Abstract
The neural cell adhesion molecule (NCAM) is widely expressed during embryogenesis, down-regulated in the course of differentiation to be re-expressed during progression of some tumors. We here found that renal tumor-derived endothelial cells (TEC) but not normal endothelial cells (HMEC) expressed NCAM. In TEC, NCAM expression was regulated by the renal embryonic transcription factor PAX2, as transfection with PAX2 antisense abrogated NCAM expression. NCAM stimulation with an agonistic synthetic NCAM peptide enhanced apoptosis resistance and increased ability of TEC to organize in vessel-like structures. The angiogenic effect of NCAM peptide was, at least in part, mediated by the association of NCAM and FGFR1. HMEC transiently acquired NCAM when organized in vessel-like structures after VEGF stimulation or when transfected with PAX2 gene. During the process of VEGF-induced endothelial differentiation of renal stem cells and of circulating endothelial progenitors, NCAM was transiently expressed to disappear at complete endothelial maturation. Targeting NCAM with a saporin-conjugated peptide induced a cytotoxic effect on TEC but not on HMEC. In conclusion, we identified a new role of NCAM in tumor neo-angiogenesis relevant for endothelial cell organization into capillary-like structures. In addition, we found that NCAM expression was associated with an immature phenotype of endothelial cells.
Collapse
Affiliation(s)
- Benedetta Bussolati
- Cattedra di Nefrologia, Dipartimento di Medicina Interna and Centro Ricerca Medicina Sperimentale (CeRMS), University of Torino, Ospedale Maggiore S. Giovanni Battista, Corso Dogliotti 14, 10126 Torino, Italy
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Gu Y, Burlison SA, Wang Y. PAF levels and PAF-AH activities in placentas from normal and preeclamptic pregnancies. Placenta 2005; 27:744-9. [PMID: 16122793 DOI: 10.1016/j.placenta.2005.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Revised: 05/10/2005] [Accepted: 06/10/2005] [Indexed: 11/28/2022]
Abstract
OBJECTIVE The aim of this study was to determine: (1) platelet-activating factor (PAF) levels and PAF-acetylhydrolase (PAF-AH) activities in normal and preeclamptic placentas; (2) lipid peroxide production by placental tissues stimulated with PAF. METHODS Placentas were obtained immediately after delivery from normal and preeclamptic pregnancies. Tissue pieces were snap frozen in liquid nitrogen and stored at -70 degrees C. One gram of tissue from each placenta was used for PAF extraction and for total RNA isolation. PAF was measured by PAF [3H] scintillation proximity assay (SPA) system. Trophoblast PAF-AH activity was determined by enzyme-linked immunosorbent assay (ELISA). mRNA expression for PAF receptor was assessed by RNase protection assay (RPA). Normal placental explants were incubated with PAF at concentrations of 1 and 10 microg/ml for 48 h. Lipid peroxide productions of 8-isoprostane and malondialdehyde (MDA) were measured by ELISA and thiobarbituric acid reaction, respectively. Data were presented as mean+/-SE and analyzed by nonparametric Mann-Whitney U test and ANOVA. A p level less than 0.05 was considered statistically significant. RESULTS (1) The mean tissue level for PAF was elevated, but not statistically different, in preeclamptic (n=7) than in normal (n=8) placentas, 6.45+/-1.05 versus 4.47+/-0.60 ng/g, p=0.42. (2) PAF-AH activity was higher in trophoblasts from preeclamptic (n=7) placentas than that in trophoblasts from normal (n=8) placentas, 0.69+/-0.16 versus 0.38+/-0.03 micromol/min/microg protein, p<0.05. (3) The relative mRNA expression for PAF receptor was not different between normal (0.70+/-0.08) and preeclamptic (0.76+/-0.13) placental tissues, p=0.60. (4) Productions of 8-isoprostane and MDA were not increased in tissues with PAF in culture, 8-isoprostane: 0.37+/-0.09 ng/mg (control) versus 0.32+/-0.09 ng/mg (1 microg/ml) and 0.37+/-0.07 ng/mg (10 microg/ml), p>0.5; MDA: 0.62+/-0.05 nmol/mg (control) versus 0.68+/-0.04 nmol/mg (1 microg/ml) and 0.69+/-0.03 nmol/mg (10 microg/ml), p>0.5. CONCLUSIONS Increased PAF-AH activity in trophoblasts may be a compensatory effect to control PAF level in the preeclamptic placenta. The co-existence of PAF-AH and PAF receptor in trophoblasts suggests an autocrine regulation of PAF in these cells to limit PAF and its metabolites within the placenta.
Collapse
Affiliation(s)
- Y Gu
- Department of Obstetrics and Gynecology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | | | | |
Collapse
|
33
|
Denizot Y, Chianéa T, Labrousse F, Truffinet V, Delage M, Mathonnet M. Platelet-activating factor and human thyroid cancer. Eur J Endocrinol 2005; 153:31-40. [PMID: 15994743 DOI: 10.1530/eje.1.01947] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Platelet-activating factor (PAF) is a pro-inflammatory and angiogenic lipid mediator involved in several types of cancer in humans. The levels of PAF, lyso-PAF (the PAF precursor), phospholipase A2 activity (PLA2, the enzymatic activity implicated in lyso-PAF formation) and acetylhydrolase activity (AHA, the PAF-degrading enzyme) were investigated in various diseased thyroid tissues. SUBJECTS Control and diseased tissue of patients with a hyperplastic goitre (n = 14), a benign adenoma (n = 12) and a papillary thyroid carcinoma (n = 15) were investigated. RESULTS PAF receptor transcripts were found in the human thyroid tissue. PAF, lyso-PAF, PLA2 and AHA were present in control thyroid tissues, their levels being significantly correlated with each other, suggesting tiny regulations of the PAF metabolic pathways inside the thyroid gland. PAF, lyso-PAF, PLA2 and AHA levels remained unchanged in diseased tissues of patients with a hyperplastic goitre, a benign adenoma and a papillary thyroid carcinoma. No difference was found between PAF, lyso-PAF, PLA2 and AHA levels with respect to the TNM tumour status and the histological sub-type of papillary thyroid carcinoma. No correlation was found between tissue PAF levels and those of vascular endothelial growth factor and basic fibroblast growth factor, two angiogenic growth factors involved in thyroid cancer and that mediate their effect through PAF release in breast and colorectal cancer. CONCLUSION PAF, PAF receptor transcripts and the enzymatic activities implicated in PAF production and degradation are present in the thyroid gland. While the physiological role of PAF is presently unknown in thyroid physiology, this study highlights no evidence for a potentially important role of PAF during human thyroid cancer, a result that markedly differs from breast and colorectal ones.
Collapse
Affiliation(s)
- Yves Denizot
- UMR CNRS 6101, Faculté de Médecine, Limoges, France.
| | | | | | | | | | | |
Collapse
|
34
|
Denizot Y, Descottes B, Truffinet V, Valleix D, Labrousse F, Mathonnet M. Platelet-activating factor and liver metastasis of colorectal cancer. Int J Cancer 2005; 113:503-5. [PMID: 15455343 DOI: 10.1002/ijc.20585] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
35
|
Angeli V, Llodrá J, Rong JX, Satoh K, Ishii S, Shimizu T, Fisher EA, Randolph GJ. Dyslipidemia associated with atherosclerotic disease systemically alters dendritic cell mobilization. Immunity 2004; 21:561-74. [PMID: 15485633 DOI: 10.1016/j.immuni.2004.09.003] [Citation(s) in RCA: 203] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2004] [Revised: 09/10/2004] [Accepted: 09/15/2004] [Indexed: 11/19/2022]
Abstract
High LDL and/or low HDL are risk factors for atherosclerosis and are also a common clinical feature in systemic lupus erythematosus, rheumatoid arthritis, and psoriasis. Here, we show that changes in lipid profiles that reflect atherosclerotic disease led to activation of skin murine dendritic cells (DCs) locally, promoted dermal inflammation, and induced lymph node hypertrophy. Paradoxically, DC migration to lymph nodes was impaired, suppressing immunologic priming. Impaired migration resulted from inhibitory signals generated by platelet-activating factor (PAF) or oxidized LDL that acts as a PAF mimetic. Normal DC migration and priming was restored by HDL or HDL-associated PAF acetylhydrolase (PAFAH), which mediates inactivation of PAF and oxidized LDL. Thus, atherosclerotic changes can sequester activated DCs in the periphery where they may aggravate local inflammation even as they poorly carry out functions that require their migration to lymph nodes. In this context, HDL and PAFAH maintain a normally functional DC compartment.
Collapse
Affiliation(s)
- Véronique Angeli
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Watanabe H, Mamelak AJ, Wang B, Howell BG, Freed I, Esche C, Nakayama M, Nagasaki G, Hicklin DJ, Kerbel RS, Sauder DN. Anti-vascular endothelial growth factor receptor-2 (Flk-1/KDR) antibody suppresses contact hypersensitivity. Exp Dermatol 2004; 13:671-81. [PMID: 15500639 DOI: 10.1111/j.0906-6705.2004.00240.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The angiogenic mediator vascular endothelial growth factor (VEGF) and its receptors (VEGFRs) have been studied extensively in neoplastic disease and some inflammatory conditions. Contact hypersensitivity (CHS) is a prototypic Langerhans' cell-dependent, T-helper (Th) 1 cell-mediated inflammatory skin disease that is now also thought to involve angiogenic mediators. The purpose of our study was to examine the role of angiogenesis and VEGF in CHS. We demonstrated that VEGF production is up-regulated in murine skin after challenge with dinitrofluorobenzene. Administration of a monoclonal antibody directed against the VEGFR-2 (DC101) resulted in a 28.8% decrease in CHS response (P < 0.001). Examination of the DC101-treated mouse skin 24 h after challenge revealed decreases in dermal inflammatory cellular infiltrates and total vessel area. Furthermore, mRNA and protein of the Th1-type cytokine interferon (IFN)-gamma was significantly down-regulated in skin of DC101-treated animals 24 h after challenge. The results of the study demonstrate that VEGFR-2 blockade significantly reduces vascular enlargement and edema formation and effects IFN-gamma expression in the skin during challenge in CHS. Our findings suggest that DC101 could function by reducing inflammatory cell migration and hence IFN-gamma expression during the CHS response.
Collapse
Affiliation(s)
- Hideaki Watanabe
- Department of Dermatology, Johns Hopkins University, Baltimore, MD 21287-0900, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ferreira MAND, Barcelos LS, Campos PP, Vasconcelos AC, Teixeira MM, Andrade SP. Sponge-induced angiogenesis and inflammation in PAF receptor-deficient mice (PAFR-KO). Br J Pharmacol 2004; 141:1185-92. [PMID: 15023865 PMCID: PMC1574894 DOI: 10.1038/sj.bjp.0705731] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Accepted: 12/04/2003] [Indexed: 11/09/2022] Open
Abstract
1. To determine biological functions of platelet-activating factor (PAF) in chronic inflammation, we have investigated the kinetics of angiogenesis, inflammatory cells recruitment and cytokine production in sponge-induced granuloma in wild type and PAF receptor-deficient mice (PAFR-KO). 2. Angiogenesis as determined by morphometric analysis and hemoglobin content was significantly higher in the implants of PAFR-KO mice at all time points. Treatment with PAF receptor antagonist UK74505 (30 mg kg(-1)) also increased angiogenesis in sponge implants. 3. Neutrophils and macrophages accumulation, as determined by myeloperoxidase and N-acetylglucosaminidase activities in the supernatant of implanted sponges were markedly decreased in PAFR-KO mice. Surprisingly, the levels of the proinflammatory chemokines, keratinocyte-derived chemokine and chemokine monocyte chemoattractant protein 1 were higher in the implants of the transgenic animals. 4. We have shown that angiogenesis was stimulated in PAFR-KO mice whereas inflammation was decreased, indicating that PAF is an endogenous regulator of new blood vessels formation in the inflammatory microenvironment induced by the sponge implant.
Collapse
MESH Headings
- Acetylglucosaminidase
- Administration, Topical
- Animals
- Blood Vessels/growth & development
- Blood Vessels/pathology
- Chemokines/metabolism
- Dihydropyridines/adverse effects
- Dihydropyridines/therapeutic use
- Fibroblasts/pathology
- Granulation Tissue/physiopathology
- Granuloma/chemically induced
- Granuloma/pathology
- Hemoglobins/chemistry
- Imidazoles/adverse effects
- Imidazoles/therapeutic use
- Implants, Experimental/adverse effects
- Inflammation/chemically induced
- Inflammation/physiopathology
- Inflammation/prevention & control
- Macrophages/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Neovascularization, Pathologic/chemically induced
- Neovascularization, Pathologic/physiopathology
- Neovascularization, Pathologic/prevention & control
- Neutrophils/pathology
- Peroxidase
- Platelet Activating Factor/administration & dosage
- Platelet Activating Factor/metabolism
- Platelet Activating Factor/pharmacokinetics
- Platelet Membrane Glycoproteins/antagonists & inhibitors
- Platelet Membrane Glycoproteins/deficiency
- Platelet Membrane Glycoproteins/genetics
- Polyurethanes/administration & dosage
- Polyurethanes/adverse effects
- Polyurethanes/chemistry
- Porifera/chemistry
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/deficiency
- Receptors, G-Protein-Coupled/genetics
- Skin/blood supply
- Skin/pathology
Collapse
Affiliation(s)
- Mônica A N D Ferreira
- Departments of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil
| | - Lucíola S Barcelos
- Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil
| | - Paula P Campos
- Departments of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil
| | - Anilton C Vasconcelos
- Departments of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil
| | - Mauro M Teixeira
- Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil
| | - Silvia P Andrade
- Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil
| |
Collapse
|
38
|
Affiliation(s)
- Marina Ziche
- Department of Molecular Biology, Laboratory of Pharmacology of Angiogenesis, University of Siena, Via A Moroh, 53100 Siena, Italy.
| |
Collapse
|
39
|
Russo S, Bussolati B, Deambrosis I, Mariano F, Camussi G. Platelet-activating factor mediates CD40-dependent angiogenesis and endothelial-smooth muscle cell interaction. THE JOURNAL OF IMMUNOLOGY 2004; 171:5489-97. [PMID: 14607955 DOI: 10.4049/jimmunol.171.10.5489] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The aim of the present study was to investigate whether stimulation of CD40 expressed by endothelial or smooth muscle cells triggers the synthesis of platelet-activating factor (PAF), an inflammatory mediator with angiogenic properties, and whether PAF contributes to CD40-induced neoangiogenesis. The results obtained indicate that the interaction of CD40 with soluble CD154 or with CD154 expressed on the membrane of leukocytes (CD154-transfected J558 cells) or of activated platelets, stimulated the synthesis of PAF by endothelial cells but not by smooth cells. The synthesis of PAF triggered by activated platelets was inhibited by a soluble CD40-murine Ig fusion protein that prevents the interaction between membrane CD40 and CD154. Studies with specific inhibitors and evaluation of protein phosphorylation indicated the involvement in PAF synthesis of two intracellular signaling pathways leading to cytosolic phospholipase A(2) activation: a phospholipase Cgamma-protein kinase C-Raf-p42/p44-mitogen-activated protein kinase (MAPK) and a MAPK kinase-3/6-dependent activation of p38 MAPK. PAF synthesized by endothelial cells after CD40 stimulation was instrumental in the in vitro migration and vessel-like organization of endothelial cells, and in the interaction between endothelial cells and smooth muscle cells, as inferred by the inhibitory effect of two different PAF receptor antagonists, WEB2170 and CV3988. In vivo, blockade of PAF receptors prevented the angiogenic effect triggered by CD40 stimulation in a murine model of s.c. Matrigel implantation. In conclusion, these observations indicate that PAF synthesis induced by stimulation of endothelial CD40 contributes to the formation and organization of new vessels. This may be relevant in the vascular remodeling associated with tumor and inflammatory neoangiogenesis.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/pharmacology
- Azepines/administration & dosage
- CD40 Antigens/immunology
- CD40 Antigens/metabolism
- CD40 Antigens/physiology
- CD40 Ligand/pharmacology
- Cell Communication/immunology
- Cell Movement/immunology
- Cells, Cultured
- Collagen/administration & dosage
- Drug Combinations
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/immunology
- Endothelium, Vascular/metabolism
- Female
- Humans
- Injections, Subcutaneous
- Intracellular Fluid/immunology
- Intracellular Fluid/metabolism
- Laminin/administration & dosage
- Mice
- Mice, Inbred C57BL
- Models, Immunological
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/immunology
- Muscle, Smooth, Vascular/metabolism
- Neovascularization, Physiologic/drug effects
- Neovascularization, Physiologic/immunology
- Platelet Activating Factor/metabolism
- Platelet Activating Factor/physiology
- Platelet Membrane Glycoproteins/antagonists & inhibitors
- Platelet Membrane Glycoproteins/metabolism
- Proteoglycans/administration & dosage
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/metabolism
- Triazoles/administration & dosage
Collapse
Affiliation(s)
- Simona Russo
- Dipartimento di Medicina Interna e di Scienze Cliniche e Biologiche, Università di Torino and Centro Ricerca Medicina Sperimentale, Ospedale San Giovanni Battista, Torino, Italy
| | | | | | | | | |
Collapse
|
40
|
Al-Khaldi A, Eliopoulos N, Martineau D, Lejeune L, Lachapelle K, Galipeau J. Postnatal bone marrow stromal cells elicit a potent VEGF-dependent neoangiogenic response in vivo. Gene Ther 2003; 10:621-9. [PMID: 12692590 DOI: 10.1038/sj.gt.3301934] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bone marrow stromal cells (MSCs) are pluripotent cells capable of differentiation into several tissue types. This present study was performed to determine their functional neoangiogenic potential in vivo. Whole bone marrow was harvested from C57Bl/6 mice, and the adherent cellular fraction was culture expanded for 14 doublings. These MSCs were resuspended in Matrigel and their angiogenic effect assessed in isogenic recipients. At 2 weeks postimplantation, the mean vascular density in Matrigel plugs containing 2 x 10(6) MSCs/ml was 41+/-5.0 blood vessels (BVs)/mm(2) compared to 0.5+/-0.7 for empty Matrigel (P<0.001). In comparison, Matrigel plugs containing either recombinant murine VEGF 165 at 50 ng/ml or bovine bFGF at 1000 ng/ml generated 21+/-5 and 11+/-2.0 BV/mm(2), respectively. Arteriogenesis was observed only in the MSC-containing implants. With the use of LacZ retroviral labeling of ex vivo expanded MSCs, we show that approximately 10% of LacZ(+)MSCs differentiated into CD31(+) and VEGF(+) endothelial cells. More than 99% of the neoangiogenic phenomena arose from recruitment of host-derived LacZ(null) vascular structures. Neutralizing anti-VEGF antibodies inhibited the MSC-initiated angiogenic response in vivo by 85% (P<0.001). In conclusion, MSCs have the ability to effectively recruit and participate in angiogenesis and arteriogenesis de novo and VEGF plays a central role in the observed host-derived angiogenic response. We propose that ex vivo expanded autologous MSCs may serve as cell therapy to promote therapeutic angiogenesis.
Collapse
Affiliation(s)
- A Al-Khaldi
- McGill University Health Center, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
41
|
Gélinas DS, Bernatchez PN, Rollin S, Bazan NG, Sirois MG. Immediate and delayed VEGF-mediated NO synthesis in endothelial cells: role of PI3K, PKC and PLC pathways. Br J Pharmacol 2002; 137:1021-30. [PMID: 12429574 PMCID: PMC1573579 DOI: 10.1038/sj.bjp.0704956] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. The mechanism(s) by which vascular endothelial growth factor (VEGF) induces endothelial nitric oxide synthase (eNOS) activation remain(s) unclear up to a certain extent. Therefore, we sought to evaluate the contribution of numerous pathways in VEGF-induced nitric oxide (NO) synthesis by measuring cGMP production. In addition, as VEGF induces the synthesis of NO and platelet-activating factor (PAF), we wanted to assess if the induction of PAF and NO is contributing to the synthesis of each other. 2. Herein, we show that a treatment of endothelial cells with a phospholipase C (PLC) inhibitor (U73122), a calmodulin antagonist (W-7) or with intracellular calcium chelators (EGTA/AM, BAPTA/AM) prevented VEGF-mediated eNOS Ser(1177)-phosphorylation and NO synthesis measured by cGMP production. 3. Pretreatment with phosphatidylinositol 3-kinase (PI3K) (Wortmannin, LY294002) or protein kinase C (PKC) (GF109203X, Ro318220) inhibitors attenuated eNOS Ser(1177)-phosphorylation mediated by VEGF, but did not alter immediate (0-10 min) cGMP synthesis induced by VEGF, but abrogated by up to 84% the delayed (10-30 min) cGMP synthesis. 4. Pretreatment with PAF synthesis inhibitors or with PAF receptor antagonists did not abrogate neither eNOS Ser(1177)-phosphorylation nor cGMP synthesis mediated by VEGF. 5. In conclusion, VEGF induces an immediate cGMP synthesis through the PLC-Ca2+/CaM pathway, and that the induction of delayed cGMP synthesis implies Akt and PKC activity.
Collapse
Affiliation(s)
- David S Gélinas
- Research Center, Montreal Heart Institute, and Department of Pharmacology, University of Montreal, Montreal (Qc), Canada
| | - Pascal N Bernatchez
- Research Center, Montreal Heart Institute, and Department of Pharmacology, University of Montreal, Montreal (Qc), Canada
| | - Simon Rollin
- Research Center, Montreal Heart Institute, and Department of Pharmacology, University of Montreal, Montreal (Qc), Canada
| | - Nicolas G Bazan
- Neuroscience Center, LSU Health Sciences Center, New Orleans, Louisiana, LA 70112, USA
| | - Martin G Sirois
- Research Center, Montreal Heart Institute, and Department of Pharmacology, University of Montreal, Montreal (Qc), Canada
- Author for correspondence:
| |
Collapse
|
42
|
Fallani A, Grieco B, Barletta E, Mugnai G, Giorgi G, Salvini L, Ruggieri S. Synthesis of platelet-activating factor (PAF) in transformed cell lines of a different origin. Prostaglandins Other Lipid Mediat 2002; 70:209-26. [PMID: 12428690 DOI: 10.1016/s0090-6980(02)00109-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Interest in the possible involvement of the platelet-activating factor (PAF) in tumor growth and invasiveness has been stimulated by the recognition that PAF influences various biological responses relevant to metastatic diffusion, such as angiogenesis, adhesiveness to endothelia and cellular motility. In the present study, we investigated the extent to which PAF is synthesized by a series of human and murine transformed cell lines of a different histotype. Synthesis of PAF was studied by combining the 14C-acetate incorporation into PAF with the quantitative analysis of PAF performed by a procedure based on gas chromatography-mass spectrometry with a negative ion chemical ionization. In the presence of the Ca2+ ionophore A23187, cultures of human melanoma (Hs294T), fibrosarcoma (HT1080) and colon carcinoma (LS180) cell lines synthesized conspicuous amounts of PAF, comparable to those produced by resident peritoneal macrophages. Substantial quantities of PAF were also synthesized by the murine melanoma (F10-M3 cells). PAF synthesis was rather limited in RSV-transformed Balb/c3T3 (B77-3T3) cells and in one of their high metastatic variants (B77-AA6 cells), although it was more abundant in the latter. We also investigated whether certain cytokines, such as TNFalpha and IFNgamma might induce PAF synthesis in our systems of cell lines which we found to express mRNAs encoding receptors for these cytokines. We observed that PAF synthesis was enhanced in human melanoma and colon carcinoma cell lines and in the murine B77-AA6 cells to levels comparable to those obtained with the Ca2+ ionophore. Synthesis of PAF was not inducible by TNFalpha in murine F10-M3 melanoma cells. IFNgamma also stimulated PAF synthesis in human and murine melanoma lines, and in human LS180 colon carcinoma line, but not in the B77-AA6 cells. PAF synthesis was also inducible by exogenous PAF in the human and murine melanoma lines, and in the human LS180 colon carcinoma line, all of which expressed cell surface PAF receptors. PAF synthesis was not inducible by exogenous PAF in the B77-AA6 cells, which do not express PAF receptors.
Collapse
Affiliation(s)
- Anna Fallani
- Department of Experimental Pathology and Oncology, University of Florence, Italy.
| | | | | | | | | | | | | |
Collapse
|
43
|
Bussolati B, Russo S, Deambrosis I, Cantaluppi V, Volpe A, Ferrando U, Camussi G. Expression of CD154 on renal cell carcinomas and effect on cell proliferation, motility and platelet-activating factor synthesis. Int J Cancer 2002; 100:654-61. [PMID: 12209602 DOI: 10.1002/ijc.10545] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
CD40 activation by CD154 may trigger diverse cellular responses, ranging from proliferation and differentiation to growth suppression and cell death, in normal and malignant cells. However, the pathophysiologic role of CD154 expressed by tumor cells remains unclear. We have investigated the expression of the CD40-CD154 system in 24 primary cultures derived from renal cell carcinomas, its correlation with tumor stage and its potential functional significance. We found coexpression of CD40 and CD154 in most of the renal carcinoma cell lines. CD154, but not CD40 expression, significantly correlated with tumor stage. Moreover, renal carcinoma cell lines also released the soluble form of CD154 into the supernatant. CD40 engagement by CD154 did not affect apoptosis or survival. On the contrary, CD154 stimulated cell proliferation, motility and production of PAF, a phospholipid mediator of inflammation with angiogenic properties. Furthermore, the renal carcinoma cell lines expressed PAF-R. Blockade of PAF-R by WEB-2170, a PAF-R antagonist, abolished the CD154-dependent motility, indicating a role for PAF synthesized after CD154 stimulation in renal carcinoma cell motility. In conclusion, this study identifies new functional properties for CD154, which are potentially relevant for the growth and dissemination of renal carcinoma cells.
Collapse
Affiliation(s)
- Benedetta Bussolati
- Laboratorio di Immunopatologia Renale, Dipartimento di Medicina Interna, and Centro Ricerca Medicina Sperimentale, Ospedale S. Giovanni Battista, Corso Dogliotti 14, 10126 Turin, Italy
| | | | | | | | | | | | | |
Collapse
|
44
|
Bernatchez PN, Winstead MV, Dennis EA, Sirois MG. VEGF stimulation of endothelial cell PAF synthesis is mediated by group V 14 kDa secretory phospholipase A2. Br J Pharmacol 2001; 134:197-205. [PMID: 11522612 PMCID: PMC1572915 DOI: 10.1038/sj.bjp.0704215] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. Vascular endothelial growth factor (VEGF) is a potent inducer of inflammation, and we have shown that this latter effect is mediated through endothelial cell (EC) PAF synthesis. Since the phospholipid remodelling pathway enzymes (CoA-independent transacylase, CoA-IT; phospholipase A2, PLA2; and lyso-PAF acetyltransferase, lyso-PAF-AT) may participate in PAF synthesis, we assessed their contribution to VEGF-induced PAF synthesis in bovine aortic EC (BAEC) and human umbilical vein EC (HUVEC). 2. VEGF enhanced BAEC and HUVEC PAF synthesis by up to 28 and 4 fold above basal levels respectively. 3. A pretreatment with a CoA-IT and lyso-PAF-AT inhibitor (Sanguinarin; 500 nM) blocked VEGF-induced PAF synthesis by 95%, a specific CoA-IT inhibitor (SKF45905; 10 - 50 microM) was without effect, confirming the crucial role of the PLA2 and lyso-PAF-AT. 4. Treatment with secreted PLA2 (sPLA2) inhibitors which have been shown to inhibit both groups IIA and V sPLA2 (SB203347; 10 microM and LY311727; 100 microM) blocked EC PAF synthesis by up to 90%, whereas selective inhibition of group IIA sPLA2 (LY311727; 1 microM) had no significant effect. 5. RT - PCR and Western blot analyses demonstrated the presence of group V sPLA2 whereas group IIA sPLA2 was undetected in EC. 6. Treatment with cytosolic and calcium-independent PLA2 inhibitors (Arachidonyl trifluoromethyl ketone, Bromoenol lactone, Methyl arachydonyl fluorophosphate, up to 50 microM) did not prevent but rather potentiated the VEGF effect on EC PAF synthesis. 7. These results provide evidence that with VEGF activation of EC cells, the group V sPLA2 provides substrate for EC PAF formation.
Collapse
Affiliation(s)
- Pascal N Bernatchez
- Research Center, Montreal Heart Institute, and Department of Pharmacology, University of Montreal, Montreal (Qc), Canada
| | - Michelle V Winstead
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, CA, 92093-0601, U.S.A
| | - Edward A Dennis
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, CA, 92093-0601, U.S.A
| | - Martin G Sirois
- Research Center, Montreal Heart Institute, and Department of Pharmacology, University of Montreal, Montreal (Qc), Canada
- Author for correspondence:
| |
Collapse
|
45
|
Del Sorbo L, Arese M, Giraudo E, Tizzani M, Biancone L, Bussolino F, Camussi G. Tat-induced platelet-activating factor synthesis contributes to the angiogenic effect of HIV-1 Tat. Eur J Immunol 2001; 31:376-83. [PMID: 11180101 DOI: 10.1002/1521-4141(200102)31:2<376::aid-immu376>3.0.co;2-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study shows that human umbilical cord vein-derived endothelial cells (HUVEC) stimulated with HIV-1 Tat synthesized platelet-activating factor (PAF), a phospholipid mediator of inflammation that possesses angiogenic properties. The synthesis of PAF by HUVEC stimulated with Tat was dose and time dependent. Moreover, in vitro experiments were performed to evaluate whether migration of HUVEC induced by Tat was dependent on the synthesis of PAF. It was found that the cell motility induced by Tat was inhibited by WEB 2170, a specific PAF receptor antagonist. In vivo, the neoangiogenesis induced by Tat was also inhibited by WEB 2170 in a murine model, in which matrigel subcutaneously injected was used as substratum for angiogenesis. These results suggest that the synthesis of PAF by endothelial cells mediates, at least in part, the angiogenic activity of Tat by promoting the endothelial cell migration.
Collapse
Affiliation(s)
- L Del Sorbo
- Dipartimento di Medicina Interna, Università di Torino, Torino, Italy
| | | | | | | | | | | | | |
Collapse
|
46
|
Bussolati B, Biancone L, Cassoni P, Russo S, Rola-Pleszczynski M, Montrucchio G, Camussi G. PAF produced by human breast cancer cells promotes migration and proliferation of tumor cells and neo-angiogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2000; 157:1713-25. [PMID: 11073830 PMCID: PMC1885724 DOI: 10.1016/s0002-9440(10)64808-0] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Platelet-activating factor (PAF), a phospholipid mediator of inflammation, is present in breast cancer tissue and correlates with microvessel density. In the present study, we investigated the biological significance of PAF synthesized within breast cancer. In vitro, we observed the production of PAF by two estrogen-dependent (MCF7 and T-47D) and an estrogen-independent (MDA-MB231) breast cancer cell lines after stimulation with vascular endothelial growth factor, basic fibroblast growth factor, hepatocyte growth factor, tumor necrosis factor, thrombin but not with estrogen, progesterone, and oxytocin. The sensitivity to agonist stimulation and the amount of PAF synthesized as cell-associated or released varied in different cell lines, being higher in MDA-MB231 cells, which are known to be highly invasive. We further demonstrate, by reverse transcriptase-polymerase chain reaction and cytofluorimetry, that all of the breast cancer cells express the PAF receptor and respond to PAF stimulation in terms of proliferation. Moreover, in MDA-MB231 cells PAF elicited cell motility. In vivo, two structurally different PAF receptor antagonists WEB 2170 and CV 3988 significantly reduced the formation of new vessels in a tumor induced by subcutaneous implantation of MDA-MB231 cells into SCID mice. In conclusion, these results suggest that PAF, produced and released by breast cancer cells, can contribute to tumor development by enhancing cell motility and proliferation and by stimulating the angiogenic response.
Collapse
Affiliation(s)
- B Bussolati
- Department of Internal Medicine, University of Torino, Torino, Italy
| | | | | | | | | | | | | |
Collapse
|
47
|
Montrucchio G, Alloatti G, Camussi G. Role of platelet-activating factor in cardiovascular pathophysiology. Physiol Rev 2000; 80:1669-99. [PMID: 11015622 DOI: 10.1152/physrev.2000.80.4.1669] [Citation(s) in RCA: 268] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Platelet-activating factor (PAF) is a phospholipid mediator that belongs to a family of biologically active, structurally related alkyl phosphoglycerides. PAF acts via a specific receptor that is coupled with a G protein, which activates a phosphatidylinositol-specific phospholipase C. In this review we focus on the aspects that are more relevant for the cell biology of the cardiovascular system. The in vitro studies provided evidence for a role of PAF both as intercellular and intracellular messenger involved in cell-to-cell communication. In the cardiovascular system, PAF may have a role in embryogenesis because it stimulates endothelial cell migration and angiogenesis and may affect cardiac function because it exhibits mechanical and electrophysiological actions on cardiomyocytes. Moreover, PAF may contribute to modulation of blood pressure mainly by affecting the renal vascular circulation. In pathological conditions, PAF has been involved in the hypotension and cardiac dysfunctions occurring in various cardiovascular stress situations such as cardiac anaphylaxis and hemorrhagic, traumatic, and septic shock syndromes. In addition, experimental studies indicate that PAF has a critical role in the development of myocardial ischemia-reperfusion injury. Indeed, PAF cooperates in the recruitment of leukocytes in inflamed tissue by promoting adhesion to the endothelium and extravascular transmigration of leukocytes. The finding that human heart can produce PAF, expresses PAF receptor, and is sensitive to the negative inotropic action of PAF suggests that this mediator may have a role also in human cardiovascular pathophysiology.
Collapse
Affiliation(s)
- G Montrucchio
- Laboratorio di Immunopatologia Renale, Dipartimento di Medicina Interna, Dipartimento di Biologia Animale e dell'Uomo e Istituto Nazionale di Fisica della Materia, Università di Torino, Torino, Italy
| | | | | |
Collapse
|
48
|
Boccellino M, Biancone L, Cantaluppi V, Ye RD, Camussi G. Effect of platelet-activating factor receptor expression on CHO cell motility. J Cell Physiol 2000; 183:254-64. [PMID: 10737901 DOI: 10.1002/(sici)1097-4652(200005)183:2<254::aid-jcp12>3.0.co;2-u] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Tumor cell migration may favor local mass expansion and metastasis dissemination. Several tumors were found to express the receptor for platelet-activating factor (PAF), a potent mediator of leukocyte chemotaxis and endothelial cell migration. However, its functional role on tumor cells is largely unexplored. In the present study, we evaluated the motogenic effect of PAF on Chinese hamster ovarian (CHO) cancer cells transfected with the human PAF-receptor cDNA (CHO PAF-R). By using time-lapse recording, we detected a rapid motogenic response to PAF stimulation on CHO PAF-R, whereas no effect was evident on vector-only transfected cells. Such an effect was observed on scattered cell motility, on cells seeded on a fibronectin- or collagen-coated surface, and on migration of confluent monolayer cells. Cell speed increased at 1 h and was maximal 6-8 h after PAF stimulation on CHO PAF-R. Concomitantly, PAF induced marked changes in cytoskeleton actin distribution with cell contraction, assembling of stress fibers, and polar foci of adhesion. In conclusion, the present study demonstrates that PAF is a potent inducer of tumor cell motility, thus suggesting a role for this mediator in tumor growth and dissemination.
Collapse
Affiliation(s)
- M Boccellino
- Department of Internal Medicine, University of Torino, Torino, Italy
| | | | | | | | | |
Collapse
|