1
|
Stopa V, Dafou D, Karagianni K, Nossent AY, Farrugia R, Devaux Y, Sopic M. Epitranscriptomics in atherosclerosis: Unraveling RNA modifications, editing and splicing and their implications in vascular disease. Vascul Pharmacol 2025; 159:107496. [PMID: 40239855 DOI: 10.1016/j.vph.2025.107496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/08/2025] [Accepted: 04/12/2025] [Indexed: 04/18/2025]
Abstract
Atherosclerosis remains a leading cause of morbidity and mortality worldwide, driven by complex molecular mechanisms involving gene regulation and post-transcriptional processes. Emerging evidence highlights the critical role of epitranscriptomics, the study of chemical modifications occurring on RNA molecules, in atherosclerosis development. Epitranscriptomics provides a new layer of regulation in vascular health, influencing cellular functions in endothelial cells, smooth muscle cells, and macrophages, thereby shedding light on the pathogenesis of atherosclerosis and presenting new opportunities for novel therapeutic targets. This review provides a comprehensive overview of the epitranscriptomic landscape, focusing on key RNA modifications such as N6-methyladenosine (m6A), 5-methylcytosine (m5C), pseudouridine (Ψ), RNA editing mechanisms including A-to-I and C-to-U editing and RNA isoforms. The functional implications of these modifications in RNA stability, alternative splicing, and microRNA biology are discussed, with a focus on their roles in inflammatory signaling, lipid metabolism, and vascular cell adaptation within atherosclerotic plaques. We also highlight how these modifications influence the generation of RNA isoforms, potentially altering cellular phenotypes and contributing to disease progression. Despite the promise of epitranscriptomics, significant challenges remain, including the technical limitations in detecting RNA modifications in complex tissues and the need for deeper mechanistic insights into their causal roles in atherosclerotic pathogenesis. Integrating epitranscriptomics with other omics approaches, such as genomics, proteomics, and metabolomics, holds the potential to provide a more holistic understanding of the disease.
Collapse
Affiliation(s)
- Victoria Stopa
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Dimitra Dafou
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Korina Karagianni
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - A Yaël Nossent
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Rosienne Farrugia
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, Malta
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg.
| | - Miron Sopic
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg; Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
2
|
Majidiani H, Musavi M, Momtazi-Borojeni AA. New Roles of Artemisinins in Atherosclerosis Progression. Phytother Res 2025; 39:1847-1857. [PMID: 40200587 DOI: 10.1002/ptr.8483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 10/27/2024] [Accepted: 02/11/2025] [Indexed: 04/10/2025]
Abstract
Artemisinin is a natural compound derived from the Chinese plant Artemisia annua , which was officially approved by the FDA for its antimalarial effects. In recent years, a growing body of studies has shown the novel function of artemisinin in atherosclerosis therapy. In vivo studies have shown that artemisinin can inhibit the progression of atherosclerosis plaque. In the present review, the evidence showing the inhibitory effects of artemisinin on the progression of atherosclerosis plaque and its underlying mechanisms is discussed. Mechanistically, artemisinin and its derivatives act by modulating various atherosclerosis-mediating risk factors, including hyperlipidemia, inflammation, oxidative stress, and malfunctioning vascular smooth muscle cells (VSMCs). Notably, artesunate, but not artemisinin, can attenuate the plasma levels of TG, TC, VLDL-C, and LDL-c, along with a substantial decline in arterial lipid deposition through enhancing the LDPL activity via inducing the KFL2/NRF2/TCF7L2 axis. Artemisinin was found to ameliorate the atherosclerosis plaque inflammation by reducing monocyte adhesion and subsequent transmigration to the intima, via inhibiting the expression of ICAM-1 and VCAM-1, diminishing NLRP3 inflammasome activation, and reducing the expression of inflammatory factors such as IL-1β, IL-18, TNF-α, MCP-1, and TGF-β1 mechanistically and mainly via suppressing the by NF-κB activity. Artemisinin could exert antioxidant effects through activating the PI3K/Akt/eNOS signaling pathway and suppressing the ROS-mediated NF-κB signal pathway. Artemisinin could also improve the VSMC function in the atherosclerosis plaque. These findings can suggest artemisinin as a new therapeutic agent for treating atherosclerosis; however, future clinical trials are warranted to validate its therapeutic efficiency in patients with atherosclerosis.
Collapse
Affiliation(s)
- Hamidreza Majidiani
- Department of Basic Medical Sciences, Faculty of Medicine, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Maryam Musavi
- Department of Medical Biotechnology, School of Medicine, Neyshabur University of Medical Sciences, Faculty of Medicine,Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Amir Abbas Momtazi-Borojeni
- Department of Medical Biotechnology, School of Medicine, Neyshabur University of Medical Sciences, Faculty of Medicine,Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
3
|
You LL, Luo XB, Zhou WQ, Zhang RC, Li ZH, Xu JX, Ran J, Xu J. Aerobic exercise modulates aortic chondrogenesis and calcification via 5-methoxytryptophan and P38MAPK in atherosclerotic rats. Exp Gerontol 2025; 202:112722. [PMID: 40024450 DOI: 10.1016/j.exger.2025.112722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND 5-Methoxytryptophan (5-MTP), a new endothelial factor with vasoprotective and anti-inflammatory effects, reduces aortic chondrogenesis and calcification during atherosclerosis. The aim of this study was to investigate the effects of aerobic exercise on aortic chondrogenesis and calcification during atherosclerosis in rats. To investigate the effect of aerobic exercise on the expression of 5-MTP/P38 MAPK signaling pathway. To lay a theoretical foundation for the therapeutic effect of exercise in rat atherosclerosis model. METHODS Establishment of a rat model of atherosclerosis using a high-fat diet combined with intraperitoneal injection of vitamin D3 (VD3). The aerobic exercise group underwent moderate-intensity aerobic exercise on an exercise treadmill for 8 weeks, while the atherosclerosis model group and the control group did not exercise. After exercise, blood and aortic samples were collected from all rats to evaluate the levels of serum triglyceride (TG), cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDLC), aortic chondrogenesis, calcification, 5-MTP level, collagen II, P38MAPK, pp38 MAPK, and IL-6 protein content. RESULTS (1)8 weeks of aerobic exercise significantly reduced aortic chondrogenesis, area of calcification, serum LDL-C, TC levels, atherosclerotic index and serum IL-6 levels in rats (p < 0.01), and lowered TG levels (p < 0.05);(2)8 weeks of aerobic exercise significantly increased aortic 5-MTP levels (p < 0.01) and decreased the content of aortic pp38MAPK, collagen II and IL-6 proteins significantly (p < 0.01). The pp38MAPK/P38MAPK ratio was also decreased (p < 0.01). CONCLUSION 8 weeks of aerobic exercise training improved dyslipidemia and reduced aortic chondrogenesis and calcification formation in AS rats. The mechanism may be related to increasing aortic 5-MTP levels and inhibiting the P38MAPK/ IL-6 signaling pathway.
Collapse
Affiliation(s)
| | - Xiao-Bing Luo
- Sichuan Orthopedic Hospital, Chengdu, Sichuan 610041, China.
| | - Wen-Qi Zhou
- Sichuan Orthopedic Hospital, Chengdu, Sichuan 610041, China.
| | - Rui-Chi Zhang
- Chengdu Sport University, School of Sports Medicine and Health, Chengdu, Sichuan 610041, China
| | - Zhong-Hao Li
- Chengdu Sport University, School of Sports Medicine and Health, Chengdu, Sichuan 610041, China
| | - Jia-Xin Xu
- Chengdu Sport University, School of Sports Medicine and Health, Chengdu, Sichuan 610041, China
| | - Jing Ran
- Sichuan Orthopedic Hospital, Chengdu, Sichuan 610041, China
| | - Jie Xu
- Sichuan Orthopedic Hospital, Chengdu, Sichuan 610041, China
| |
Collapse
|
4
|
Lu Y, Liang X, Song J, Guan Y, Yang L, Shen R, Niu Y, Guo Z, Zhu N. Niclosamide modulates phenotypic switch and inflammatory responses in human pulmonary arterial smooth muscle cells. Mol Cell Biochem 2025; 480:1583-1593. [PMID: 38980591 DOI: 10.1007/s11010-024-05061-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 06/29/2024] [Indexed: 07/10/2024]
Abstract
Excessive proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs) represent key steps of pulmonary vascular remodeling, leading to the development of pulmonary arterial hypertension (PAH) and right ventricular failure. Niclosamide (NCL), an FDA-approved anthelmintic, has been shown to regulate cell proliferation, migration, invasion, and apoptosis through a variety of signaling pathways. However, its role on modulating the phenotypic switch and inflammatory responses in PASMCs remains unclear. In this study, cell proliferation assay showed that NCL inhibited PDGF-BB induced proliferation of human PASMCs in a dose-dependent manner. Western blot analysis further confirmed a notable reduction in the expression of cyclin D1 and PCNA proteins. Subsequently, flow cytometry analysis demonstrated that NCL induced an increased percentage of cells in the G1 phase while promoting apoptosis in PASMCs. Moreover, both scratch wound assay and transwell assay confirmed that NCL decreased PDGF-BB-induced migration of PASMCs. Mechanistically, western blot revealed that pretreatment of PASMCs with NCL markedly restored the protein levels of SMA, SM22, and calponin, while reducing phosphorylation of P38/STAT3 signaling in the presence of PDGF-BB. Interestingly, macrophages adhesion assay showed that NCL markedly reduced recruitment of Calcein-AM labeled RAW264.7 by TNFα-stimulated PASMCs. Western blot revealed that NCL suppressed TNFα-induced expression of both of VCAM-1 and ICAM-1 proteins. Furthermore, pretreatment of PASMCs with NCL significantly inhibited NLRP3 inflammasome activity through reducing NLRP3, AIM2, mature interleukin-1β (IL-β), and cleaved Caspase-1 proteins expression. Together, these results suggested versatile effects of NCL on controlling of proliferation, migration, and inflammatory responses in PASMCs through modulating different pathways, indicating that repurposing of NCL may emerge as a highly effective drug for PAH treatment.
Collapse
Affiliation(s)
- Yuwen Lu
- Department of Cardiology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Xiaogan Liang
- Department of Cardiology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Jingwen Song
- Department of Cardiology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Yugen Guan
- Department of Cardiology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Liang Yang
- Department of Cardiology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Rongrong Shen
- Department of Cardiology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Yunpu Niu
- Department of Cardiology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Zhifu Guo
- Department of Cardiology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China.
| | - Ni Zhu
- Department of Cardiology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China.
| |
Collapse
|
5
|
Halmos B, La Rose AM, Methorst D, Groenen AG, Nakládal D, Bazioti V, Koster MH, Kloosterhuis NJ, van Buiten A, Schouten EM, Huijkman NC, Langelaar-Makkinje M, Bongiovanni L, De Neck SM, de Bruin A, Buikema H, Deelman LE, van den Heuvel MC, Kuipers F, de Jong IJ, Sluimer JC, Jørgensen HF, Henning RH, Westerterp M. SMC Abca1 and Abcg1 Deficiency Enhances Urinary Bladder Distension but Not Atherosclerosis. Circ Res 2025; 136:491-507. [PMID: 39931819 PMCID: PMC11867804 DOI: 10.1161/circresaha.124.325103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND Smooth muscle cells (SMCs) regulate blood flow distribution via vasoconstriction mediated by α-ARs (α-adrenergic receptors). Plasma membrane cholesterol accumulation affects α1-AR signaling and promotes loss of SMC contractile markers in vitro. ABCA1 and ABCG1 (ATP-binding cassette transporter A1 and G1) mediate cholesterol efflux to HDL (high-density lipoprotein). ABCA1/ABCG1 show high expression in medial and low expression in intimal SMCs of atherosclerotic plaques. The role of ABCA1 and ABCG1 in SMC-mediated vasoconstriction and atherogenesis remains poorly understood. METHODS We generated mice with SMC-specific Abca1/Abcg1 deficiency on the low-density lipoprotein receptor-deficient (Ldlr-/-) background by crossbreeding Abca1fl/flAbcg1fl/flLdlr-/- mice with Myh11CreERT2 transgenic mice. To induce SMC cholesterol accumulation and atherogenesis, we fed Myh11CreERT2Abca1fl/flAbcg1fl/flLdlr-/-, Myh11CreERT2Abca1fl/flLdlr-/-, Myh11CreERT2Abcg1fl/flLdlr-/-, and Myh11CreERT2Ldlr-/- mice Western-type diet for 16 weeks. RESULTS Combined SMC-Abca1/Abcg1 deficiency increased vasoconstriction in aortic rings induced by the α1-AR agonist phenylephrine. Unexpectedly, SMC-Abca1/Abcg1 deficiency induced urinary bladder distension by >20-fold. This was reversed by the α1-AR antagonist tamsulosin, indicating its dependence on bladder neck SMC constriction. Moreover, SMC-Abca1/Abcg1 deficiency decreased contractile markers and increased macrophage and fibroblast markers in bladder SMCs, indicating SMC transdifferentiation. This was accompanied by free cholesterol accumulation and increased endoplasmic reticulum stress. SMC-Abca1/Abcg1 deficiency did not induce thoracic aorta SMC transdifferentiation, presumably due to increased cholesteryl ester accumulation and no endoplasmic reticulum stress in thoracic aorta SMCs. Surprisingly, SMC-Abca1/Abcg1 deficiency did not affect atherosclerotic lesion size or composition in the aortic root or brachiocephalic artery. CONCLUSIONS We uncover a new role of SMC cholesterol efflux pathways in suppressing α1-AR-mediated vasoconstriction and bladder SMC transdifferentiation, decreasing urinary bladder distension. Our data may provide a mechanistic link for the association between urinary bladder distension and diabetes in humans, particularly because diabetes is associated with decreased cholesterol efflux. SMC-Abca1/Abcg1 deficiency did not affect atherosclerotic lesion size or plaque composition, presumably due to low expression of Abca1/Abcg1 in intimal SMCs.
Collapse
MESH Headings
- Animals
- ATP Binding Cassette Transporter, Subfamily G, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 1/deficiency
- ATP Binding Cassette Transporter, Subfamily G, Member 1/metabolism
- ATP Binding Cassette Transporter 1/genetics
- ATP Binding Cassette Transporter 1/deficiency
- ATP Binding Cassette Transporter 1/metabolism
- Atherosclerosis/metabolism
- Atherosclerosis/genetics
- Atherosclerosis/pathology
- Atherosclerosis/physiopathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Mice
- Mice, Knockout
- Urinary Bladder/metabolism
- Urinary Bladder/pathology
- Urinary Bladder/physiopathology
- Cholesterol/metabolism
- Vasoconstriction
- Male
- Mice, Inbred C57BL
- Mice, Transgenic
- Receptors, LDL/genetics
- Receptors, LDL/deficiency
Collapse
Affiliation(s)
- Benedek Halmos
- Department of Pediatrics (B.H., A.M.L.R., D.M., A.G.G., V.B., M.H.K., N.J.K., N.C.A.H., M.L.-M., L.B., S.M.D.N., A.d.B., F.K., M.W.), University Medical Center Groningen, University of Groningen, the Netherlands
| | - Anouk M. La Rose
- Department of Pediatrics (B.H., A.M.L.R., D.M., A.G.G., V.B., M.H.K., N.J.K., N.C.A.H., M.L.-M., L.B., S.M.D.N., A.d.B., F.K., M.W.), University Medical Center Groningen, University of Groningen, the Netherlands
| | - Daisey Methorst
- Department of Pediatrics (B.H., A.M.L.R., D.M., A.G.G., V.B., M.H.K., N.J.K., N.C.A.H., M.L.-M., L.B., S.M.D.N., A.d.B., F.K., M.W.), University Medical Center Groningen, University of Groningen, the Netherlands
| | - Anouk G. Groenen
- Department of Pediatrics (B.H., A.M.L.R., D.M., A.G.G., V.B., M.H.K., N.J.K., N.C.A.H., M.L.-M., L.B., S.M.D.N., A.d.B., F.K., M.W.), University Medical Center Groningen, University of Groningen, the Netherlands
| | - Dalibor Nakládal
- Department of Clinical Pharmacy and Pharmacology (D.N., A.v.B., H.B., L.E.D., R.H.H.), University Medical Center Groningen, University of Groningen, the Netherlands
- Comenius University Science Park, Bratislava, Slovakia (D.N.)
- 5th Department of Internal Medicine, Faculty of Medicine, Comenius University Bratislava, Slovakia (D.N.)
| | - Venetia Bazioti
- Department of Pediatrics (B.H., A.M.L.R., D.M., A.G.G., V.B., M.H.K., N.J.K., N.C.A.H., M.L.-M., L.B., S.M.D.N., A.d.B., F.K., M.W.), University Medical Center Groningen, University of Groningen, the Netherlands
| | - Mirjam H. Koster
- Department of Pediatrics (B.H., A.M.L.R., D.M., A.G.G., V.B., M.H.K., N.J.K., N.C.A.H., M.L.-M., L.B., S.M.D.N., A.d.B., F.K., M.W.), University Medical Center Groningen, University of Groningen, the Netherlands
| | - Niels J. Kloosterhuis
- Department of Pediatrics (B.H., A.M.L.R., D.M., A.G.G., V.B., M.H.K., N.J.K., N.C.A.H., M.L.-M., L.B., S.M.D.N., A.d.B., F.K., M.W.), University Medical Center Groningen, University of Groningen, the Netherlands
| | - Azuwerus van Buiten
- Department of Clinical Pharmacy and Pharmacology (D.N., A.v.B., H.B., L.E.D., R.H.H.), University Medical Center Groningen, University of Groningen, the Netherlands
| | - Elisabeth M. Schouten
- Department of Cardiology (E.M.S.), University Medical Center Groningen, University of Groningen, the Netherlands
| | - Nicolette C.A. Huijkman
- Department of Pediatrics (B.H., A.M.L.R., D.M., A.G.G., V.B., M.H.K., N.J.K., N.C.A.H., M.L.-M., L.B., S.M.D.N., A.d.B., F.K., M.W.), University Medical Center Groningen, University of Groningen, the Netherlands
| | - Miriam Langelaar-Makkinje
- Department of Pediatrics (B.H., A.M.L.R., D.M., A.G.G., V.B., M.H.K., N.J.K., N.C.A.H., M.L.-M., L.B., S.M.D.N., A.d.B., F.K., M.W.), University Medical Center Groningen, University of Groningen, the Netherlands
| | - Laura Bongiovanni
- Department of Pediatrics (B.H., A.M.L.R., D.M., A.G.G., V.B., M.H.K., N.J.K., N.C.A.H., M.L.-M., L.B., S.M.D.N., A.d.B., F.K., M.W.), University Medical Center Groningen, University of Groningen, the Netherlands
- Department of Biomolecular Health Sciences, Dutch Molecular Pathology Center, University of Utrecht, the Netherlands (L.B., S.M.D.N., A.d.B.)
- Department of Veterinary Medicine, University of Teramo, Italy (L.B.)
| | - Simon M. De Neck
- Department of Pediatrics (B.H., A.M.L.R., D.M., A.G.G., V.B., M.H.K., N.J.K., N.C.A.H., M.L.-M., L.B., S.M.D.N., A.d.B., F.K., M.W.), University Medical Center Groningen, University of Groningen, the Netherlands
- Department of Biomolecular Health Sciences, Dutch Molecular Pathology Center, University of Utrecht, the Netherlands (L.B., S.M.D.N., A.d.B.)
| | - Alain de Bruin
- Department of Pediatrics (B.H., A.M.L.R., D.M., A.G.G., V.B., M.H.K., N.J.K., N.C.A.H., M.L.-M., L.B., S.M.D.N., A.d.B., F.K., M.W.), University Medical Center Groningen, University of Groningen, the Netherlands
- Department of Biomolecular Health Sciences, Dutch Molecular Pathology Center, University of Utrecht, the Netherlands (L.B., S.M.D.N., A.d.B.)
| | - Hendrik Buikema
- Department of Clinical Pharmacy and Pharmacology (D.N., A.v.B., H.B., L.E.D., R.H.H.), University Medical Center Groningen, University of Groningen, the Netherlands
| | - Leo E. Deelman
- Department of Clinical Pharmacy and Pharmacology (D.N., A.v.B., H.B., L.E.D., R.H.H.), University Medical Center Groningen, University of Groningen, the Netherlands
| | - Marius C. van den Heuvel
- Department of Pathology (M.C.v.d.H.), University Medical Center Groningen, University of Groningen, the Netherlands
| | - Folkert Kuipers
- Department of Pediatrics (B.H., A.M.L.R., D.M., A.G.G., V.B., M.H.K., N.J.K., N.C.A.H., M.L.-M., L.B., S.M.D.N., A.d.B., F.K., M.W.), University Medical Center Groningen, University of Groningen, the Netherlands
- Department of Laboratory Medicine (F.K.), University Medical Center Groningen, University of Groningen, the Netherlands
| | - Igle Jan de Jong
- Department of Urology (I.J.d.J.), University Medical Center Groningen, University of Groningen, the Netherlands
| | - Judith C. Sluimer
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, the Netherlands (J.C.S.)
- Department of Medical Clinic II for Kidney and Hypertension Diseases, Rheumatological and Immunological Diseases, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Germany (J.C.S.)
- British Heart Foundation (BHF) Centre for Cardiovascular Sciences, University of Edinburgh, United Kingdom (J.C.S.)
| | - Helle F. Jørgensen
- Section of Cardiorespiratory Medicine, Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, United Kingdom (H.F.J.)
| | - Robert H. Henning
- Department of Clinical Pharmacy and Pharmacology (D.N., A.v.B., H.B., L.E.D., R.H.H.), University Medical Center Groningen, University of Groningen, the Netherlands
| | - Marit Westerterp
- Department of Pediatrics (B.H., A.M.L.R., D.M., A.G.G., V.B., M.H.K., N.J.K., N.C.A.H., M.L.-M., L.B., S.M.D.N., A.d.B., F.K., M.W.), University Medical Center Groningen, University of Groningen, the Netherlands
| |
Collapse
|
6
|
Choi HY, Ruel I, Choi S, Iatan I, Choi S, Lee JY, Genest J. Low-Dose Docetaxel Is Effective in Reducing Atherogenic Lipids and Atherosclerosis. Int J Mol Sci 2025; 26:1484. [PMID: 40003949 PMCID: PMC11855627 DOI: 10.3390/ijms26041484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/04/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
High-density lipoprotein (HDL) particles form during cellular cholesterol removal, positioning HDL biogenesis as a potential strategy to combat atherosclerosis. We identified desmocollin 1 (DSC1) as a negative regulator of HDL biogenesis and discovered that docetaxel (DTX) effectively inhibits DSC1 activity. This study assessed the efficacy of DTX in reducing atherosclerosis in ApoE-/- mice. After two weeks on a high-fat diet, mice were divided into baseline, vehicle-treated, and DTX-treated groups. Baseline mice were sacrificed at the end of the two weeks, while the other groups received a vehicle or DTX (1 μg/μL) via subcutaneously implanted osmotic pumps delivering 0.15 μL/h for six weeks, with the high-fat diet continued. The controlled drug delivery system maintained stable DTX blood concentrations (2.7-4.3 nM) over six weeks without hematologic toxicity. DTX treatment significantly reduced circulating atherogenic lipids, including triglycerides, non-esterified fatty acids, low-density lipoprotein cholesterol, and total cholesterol, while increasing the HDL cholesterol/total cholesterol ratio. These improvements were associated with significant reductions in atherosclerotic lesions in the aortic sinus and arch. Notably, these effects occurred without altering circulating inflammatory cytokine levels. These results demonstrate that DTX effectively reduces dyslipidemia-induced atherosclerosis. Its HDL-biogenic and anti-atherosclerotic effects establish DTX as a promising candidate for developing HDL-directed therapies for atherosclerosis.
Collapse
Affiliation(s)
- Hong Y. Choi
- Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada; (I.R.); (S.C.); (I.I.); (S.C.); (J.G.)
| | - Isabelle Ruel
- Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada; (I.R.); (S.C.); (I.I.); (S.C.); (J.G.)
| | - Shiwon Choi
- Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada; (I.R.); (S.C.); (I.I.); (S.C.); (J.G.)
| | - Iulia Iatan
- Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada; (I.R.); (S.C.); (I.I.); (S.C.); (J.G.)
| | - Senna Choi
- Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada; (I.R.); (S.C.); (I.I.); (S.C.); (J.G.)
| | - Jyh-Yeuan Lee
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Jacques Genest
- Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada; (I.R.); (S.C.); (I.I.); (S.C.); (J.G.)
| |
Collapse
|
7
|
Zhang W, Li M, Zhang M, Yan G, Tang C. The role of tribbles homolog 2 in cell proliferation. Cell Commun Signal 2025; 23:5. [PMID: 39762856 PMCID: PMC11702054 DOI: 10.1186/s12964-024-01985-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Tribbles homolog 2 (TRIB2), a pseudoserine/threonine kinase, is a member of the TRIB family. TRIB2 primarily regulates cell proliferation through its scaffold or adaptor effect on promoting the degradation of target proteins by E3 ligase-dependent ubiquitination and regulating mitogen-activated protein kinase (MAPK) and protein kinase B (AKT) signaling pathways. TRIB2 is not only involved in the physiological proliferation of cells (granulosa cells, myoblasts, naive T cells, and thymocytes) during normal development but also in the pathological proliferation of vascular smooth muscle cells and a variety of cancer cells (lung cancer cells, liver cancer cells, leukemia cells, pancreatic cancer cells, gastric cancer cells, prostate cancer cells, thyroid cancer cells, cervical cancer cells, melanoma cells, colorectal cancer cells, ovarian cancer cells and osteosarcoma cells) under disease conditions. Its expression level and functional role predominantly hinge on the specific tissue and cell type it targets. This review elucidates the specific mechanisms of TRIB2 in physiological and pathological cell proliferation from the perspective of different kinds of cells.
Collapse
Affiliation(s)
- Wenkang Zhang
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China
| | - Mingkang Li
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China
| | - Minhao Zhang
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Gaoliang Yan
- School of Medicine, Southeast University, Nanjing, Jiangsu, China.
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China.
| | - Chengchun Tang
- School of Medicine, Southeast University, Nanjing, Jiangsu, China.
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
8
|
Lin WY, Dong YL, Lin Y, Sunchuri D, Guo ZL. Potential role of G protein‑coupled receptor 124 in cardiovascular and cerebrovascular disease (Review). Exp Ther Med 2025; 29:2. [PMID: 39534284 PMCID: PMC11552082 DOI: 10.3892/etm.2024.12752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
G protein-coupled receptor 124 (GPR124) has a key role in regulating the proliferation and differentiation of endothelial cells, activating inflammatory bodies and promoting angiogenesis and other processes, thus affecting various pathological and physiological processes in the body. GPR124 is vital for promoting the development of the nervous system and maintaining the stability of the blood-brain barrier, and is also associated with cardiovascular and cerebrovascular diseases and cancer. This article will elaborate on the biological information regarding GPR124 published in recent years and its possible related signaling pathways in the field of diseases and provide a reference for further revealing the role of GPR124 in the occurrence and development of diseases.
Collapse
Affiliation(s)
- Wan-Yun Lin
- Health Management Center, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- School of Dentistry, Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Yu-Lei Dong
- Health Management Center, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- School of Dentistry, Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Yang Lin
- School of Dentistry, Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Diwas Sunchuri
- School of International Education, Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Zhu-Ling Guo
- Health Management Center, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- School of Dentistry, Hainan Medical University, Haikou, Hainan 570100, P.R. China
| |
Collapse
|
9
|
Shao R, Chen R, Zheng Q, Yao M, Li K, Cao Y, Jiang L. Oxidative stress disrupts vascular microenvironmental homeostasis affecting the development of atherosclerosis. Cell Biol Int 2024; 48:1781-1801. [PMID: 39370593 DOI: 10.1002/cbin.12239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/20/2024] [Accepted: 06/10/2024] [Indexed: 10/08/2024]
Abstract
Atherosclerosis is primarily an inflammatory reaction of the cardiovascular system caused by endothelial damage, leading to progressive thickening and hardening of the vessel walls, as well as extensive necrosis and fibrosis of the surrounding tissues, the most necessary pathological process causing cardiovascular disease. When the body responds to harmful internal and external stimuli, excess oxygen free radicals are produced causing oxidative stress to occur in cells and tissues. Simultaneously, the activation of inflammatory immunological processes is followed by an elevation in oxygen free radicals, which directly initiates the release of cytokines and chemokines, resulting in a detrimental cycle of vascular homeostasis abnormalities. Oxidative stress contributes to the harm inflicted upon vascular endothelial cells and the decrease in nitric oxide levels. Nitric oxide is crucial for maintaining vascular homeostasis and is implicated in the development of atherosclerosis. This study examines the influence of oxidative stress on the formation of atherosclerosis, which is facilitated by the vascular milieu. It also provides an overview of the pertinent targets and pharmaceutical approaches for treating this condition.
Collapse
Affiliation(s)
- Ruifei Shao
- Medical School, Center for Translational Research in Clinical Medicine, Kunming University of Science and Technology, Kunming, China
| | - Rui Chen
- Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Qiang Zheng
- Medical School, Center for Translational Research in Clinical Medicine, Kunming University of Science and Technology, Kunming, China
| | - Mengyu Yao
- Medical School, Center for Translational Research in Clinical Medicine, Kunming University of Science and Technology, Kunming, China
| | - Kunlin Li
- Department of General Surgery II, The First People's Hospital of Yunnan Province, Kunming, China
| | - Yu Cao
- Yunnan Key Laboratory of Innovative Application of Traditional Chinese Medicine, Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Lihong Jiang
- Medical School, Center for Translational Research in Clinical Medicine, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory of Innovative Application of Traditional Chinese Medicine, Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
10
|
Ma CN, Shi SR, Zhang XY, Xin GS, Zou X, Li WL, Guo SD. Targeting PDGF/PDGFR Signaling Pathway by microRNA, lncRNA, and circRNA for Therapy of Vascular Diseases: A Narrow Review. Biomolecules 2024; 14:1446. [PMID: 39595622 PMCID: PMC11592287 DOI: 10.3390/biom14111446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Despite the significant progress in diagnostic and therapeutic strategies, vascular diseases, such as cardiovascular diseases (CVDs) and respiratory diseases, still cannot be successfully eliminated. Vascular cells play a key role in maintaining vascular homeostasis. Notably, a variety of cells produce and secrete platelet-derived growth factors (PDGFs), which promote mitosis and induce the division, proliferation, and migration of vascular cells including vascular smooth muscle cells (SMCs), aortic SMCs, endothelial cells, and airway SMCs. Therefore, PDGF/PDGR receptor signaling pathways play vital roles in regulating the homeostasis of blood vessels and the onset and development of CVDs, such as atherosclerosis, and respiratory diseases including asthma and pulmonary arterial hypertension. Recently, accumulating evidence has demonstrated that microRNA, long-chain non-coding RNA, and circular RNA are involved in the regulation of PDGF/PDGFR signaling pathways through competitive interactions with target mRNAs, contributing to the occurrence and development of the above-mentioned diseases. These novel findings are useful for laboratory research and clinical studies. The aim of this article is to conclude the recent progresses in this field, particular the mechanisms of action of these non-coding RNAs in regulating vascular remodeling, providing potential strategies for the diagnosis, prevention, and treatment of vascular-dysfunction-related diseases, particularly CVDs and respiratory diseases.
Collapse
Affiliation(s)
- Chao-Nan Ma
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (C.-N.M.); (S.-R.S.); (X.-Y.Z.)
| | - Shan-Rui Shi
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (C.-N.M.); (S.-R.S.); (X.-Y.Z.)
| | - Xue-Ying Zhang
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (C.-N.M.); (S.-R.S.); (X.-Y.Z.)
| | - Guo-Song Xin
- School of Pharmacy, Engineering Research Center for Medicine, Harbin University of Commerce, Harbin 150076, China; (G.-S.X.); (X.Z.)
| | - Xiang Zou
- School of Pharmacy, Engineering Research Center for Medicine, Harbin University of Commerce, Harbin 150076, China; (G.-S.X.); (X.Z.)
| | - Wen-Lan Li
- School of Pharmacy, Engineering Research Center for Medicine, Harbin University of Commerce, Harbin 150076, China; (G.-S.X.); (X.Z.)
| | - Shou-Dong Guo
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (C.-N.M.); (S.-R.S.); (X.-Y.Z.)
- School of Pharmacy, Engineering Research Center for Medicine, Harbin University of Commerce, Harbin 150076, China; (G.-S.X.); (X.Z.)
| |
Collapse
|
11
|
Tu W, Feng M, Zhou Q, Wang Y, Wan M, Gong D, Li J, Du Y. GATA2‑miR‑374a axis promotes vascular smooth muscle cells proliferation, migration via targeting circTADA2A/RORA axis. Exp Ther Med 2024; 28:357. [PMID: 39071901 PMCID: PMC11273358 DOI: 10.3892/etm.2024.12646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/22/2024] [Indexed: 07/30/2024] Open
Abstract
Evidence has shown that microRNAs (miRNAs/miRs) play key roles in biological functions of vascular smooth muscle cells (VSMCs). However, the role of miR-374a in VSMCs remains to be elucidated. The present study aimed to explore the influence of miR-374a on VSMCs and its molecular mechanism. The expression level of miR-374a was measured by reverse transcription-quantitative (RT-q) PCR. MTT and Transwell assay were employed to assess the role of miR-374a in proliferation and migration of VSMCs. To order to determine miR-374a targets, a dual-luciferase reporter assay was conducted, which was further verified by rescue experiments. Chromatin Immunoprecipitation Assay and JASPAR databases were applied to explore the regulatory association between GATA binding protein 2 (GATA2) and miR-374a. Western blotting or RT-qPCR were employed to detect the protein expression levels of GATA2 or RAR-related orphan receptor A (RORA). The present study found that miR-374a was elevated in VSMCs following treatment with platelet-derived growth factor-BB (PDGF-BB) compared with that in control group. In addition, the results demonstrated that a higher expression of a miR-374a could promote proliferation and migration of VSMCs while miR-374a inhibitor suppressed the PDGF-BB-induced proliferation and migration of VSMCs in vitro. Furthermore, circTADA2A bound to miR-374a and then upregulated RORA expression, which resulted in inhibition in VSMCs proliferation and migration. On the other hand, the result indicated that GATA2 overexpression could augment the proliferation, migration of PDGF-bb-induced VSMCs, which could be rescued by miR-374a inhibitor. The findings suggested that the GATA2/circTADA2A-miR-374a axis promoted the proliferation and migration of VSMCs by targeting RORA, which were closely related to atherosclerosis (AS). Thus the results might offer a new therapeutic target for AS.
Collapse
Affiliation(s)
- Wenxian Tu
- Department of Neurology, Wuhan Brain Hospital, General Hospital of the YANGTZE River Shipping, Wuhan, Hubei 430030, P.R. China
| | - Meina Feng
- Department of Neurology, Wuhan Brain Hospital, General Hospital of the YANGTZE River Shipping, Wuhan, Hubei 430030, P.R. China
| | - Qin Zhou
- Department of Neurology, Wuhan Brain Hospital, General Hospital of the YANGTZE River Shipping, Wuhan, Hubei 430030, P.R. China
| | - Yunfeng Wang
- Department of Neurology, Wuhan Brain Hospital, General Hospital of the YANGTZE River Shipping, Wuhan, Hubei 430030, P.R. China
| | - Mingye Wan
- Department of Neurology, Wuhan Brain Hospital, General Hospital of the YANGTZE River Shipping, Wuhan, Hubei 430030, P.R. China
| | - Danqun Gong
- Department of Neurology, Wuhan Brain Hospital, General Hospital of the YANGTZE River Shipping, Wuhan, Hubei 430030, P.R. China
| | - Jin Li
- Department of Neurology, Wuhan Brain Hospital, General Hospital of the YANGTZE River Shipping, Wuhan, Hubei 430030, P.R. China
| | - Yuanmin Du
- Department of Neurology, Wuhan Brain Hospital, General Hospital of the YANGTZE River Shipping, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
12
|
Kim JH, Song JW, Kim YH, Kim HJ, Kim RH, Park YH, Nam HS, Kang DO, Yoo H, Park K, Kim JW. Multimodal Imaging-Assisted Intravascular Theranostic Photoactivation on Atherosclerotic Plaque. Circ Res 2024; 135:e114-e132. [PMID: 38989585 DOI: 10.1161/circresaha.123.323970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Atherosclerosis is a chronic inflammatory disease causing a fatal plaque rupture, and its key aspect is a failure to resolve inflammation. We hypothesize that macrophage-targeted near-infrared fluorescence emitting photoactivation could simultaneously assess macrophage/lipid-rich plaques in vivo and facilitate inflammation resolution. METHODS We fabricated a Dectin-1-targeted photoactivatable theranostic agent through the chemical conjugation of the near-infrared fluorescence-emitting photosensitizer chlorin e6 and the Dectin-1 ligand laminarin (laminarin-chlorin e6 [LAM-Ce6]). Intravascular photoactivation by a customized fiber-based diffuser after administration of LAM-Ce6 effectively reduced inflammation in the targeted plaques of atherosclerotic rabbits in vivo as serially assessed by dual-modal optical coherence tomography-near-infrared fluorescence structural-molecular catheter imaging after 4 weeks. RESULTS The number of apoptotic macrophages peaked at 1 day after laser irradiation and then resolved until 4 weeks. Autophagy was strongly augmented 1 hour after the light therapy, with the formation of autophagolysosomes. LAM-Ce6 photoactivation increased the terminal deoxynucleotidyl transferase dUTP (deoxyuridine triphosphate) nick end labeling/RAM11 (rabbit monocyte/macrophage antibody)- and MerTK (c-Mer tyrosine kinase)-positive cells in the plaques, suggesting enhanced efferocytosis. In line with inflammation resolution, photoactivation reduced the plaque burden through fibrotic replacement via the TGF (transforming growth factor)-β/CTGF (connective tissue growth factor) pathway. CONCLUSIONS Optical coherence tomography-near-infrared fluorescence imaging-guided macrophage Dectin-1-targetable photoactivation could induce the transition of macrophage/lipid-rich plaques into collagen-rich lesions through autophagy-mediated inflammation resolution and TGF-β-dependent fibrotic replacement. This novel strategy offers a new opportunity for the catheter-based theranostic strategy.
Collapse
Affiliation(s)
- Jin Hyuk Kim
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea (J.H.K., J.W.K.)
- Multimodal Imaging and Theranostic Laboratory, Cardiovascular Center, Korea University Guro Hospital (J.H.K., J.W.S., H.J.K., R.H.K., Y.H.P., D.O.K., J.W.K.)
| | - Joon Woo Song
- Multimodal Imaging and Theranostic Laboratory, Cardiovascular Center, Korea University Guro Hospital (J.H.K., J.W.S., H.J.K., R.H.K., Y.H.P., D.O.K., J.W.K.)
| | - Yeon Hoon Kim
- Department of Mechanical Engineering, KAIST, Daejeon, Korea (Y.H.K., H.S.N., H.Y.)
| | - Hyun Jung Kim
- Multimodal Imaging and Theranostic Laboratory, Cardiovascular Center, Korea University Guro Hospital (J.H.K., J.W.S., H.J.K., R.H.K., Y.H.P., D.O.K., J.W.K.)
| | - Ryeong Hyun Kim
- Multimodal Imaging and Theranostic Laboratory, Cardiovascular Center, Korea University Guro Hospital (J.H.K., J.W.S., H.J.K., R.H.K., Y.H.P., D.O.K., J.W.K.)
| | - Ye Hee Park
- Multimodal Imaging and Theranostic Laboratory, Cardiovascular Center, Korea University Guro Hospital (J.H.K., J.W.S., H.J.K., R.H.K., Y.H.P., D.O.K., J.W.K.)
| | - Hyeong Soo Nam
- Department of Mechanical Engineering, KAIST, Daejeon, Korea (Y.H.K., H.S.N., H.Y.)
| | - Dong Oh Kang
- Multimodal Imaging and Theranostic Laboratory, Cardiovascular Center, Korea University Guro Hospital (J.H.K., J.W.S., H.J.K., R.H.K., Y.H.P., D.O.K., J.W.K.)
| | - Hongki Yoo
- Department of Mechanical Engineering, KAIST, Daejeon, Korea (Y.H.K., H.S.N., H.Y.)
| | - Kyeongsoon Park
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Gyeonggi, Korea (K.P.)
| | - Jin Won Kim
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea (J.H.K., J.W.K.)
- Multimodal Imaging and Theranostic Laboratory, Cardiovascular Center, Korea University Guro Hospital (J.H.K., J.W.S., H.J.K., R.H.K., Y.H.P., D.O.K., J.W.K.)
| |
Collapse
|
13
|
Haron NA, Ishak MF, Yazid MD, Vijakumaran U, Ibrahim R, Raja Sabudin RZA, Alauddin H, Md Ali NA, Haron H, Ismail MI, Abdul Rahman MR, Sulaiman N. Exploring the Potential of Saphenous Vein Grafts Ex Vivo: A Model for Intimal Hyperplasia and Re-Endothelialization. J Clin Med 2024; 13:4774. [PMID: 39200916 PMCID: PMC11355503 DOI: 10.3390/jcm13164774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/31/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024] Open
Abstract
Coronary artery bypass grafting (CABG) utilizing saphenous vein grafts (SVGs) stands as a fundamental approach to surgically treating coronary artery disease. However, the long-term success of CABG is often compromised by the development of intimal hyperplasia (IH) and subsequent graft failure. Understanding the mechanisms underlying this pathophysiology is crucial for improving graft patency and patient outcomes. Objectives: This study aims to explore the potential of an ex vivo model utilizing SVG to investigate IH and re-endothelialization. Methods: A thorough histological examination of 15 surplus SVG procured from CABG procedures at Hospital Canselor Tuanku Muhriz, Malaysia, was conducted to establish their baseline characteristics. Results: SVGs exhibited a mean diameter of 2.65 ± 0.93 mm with pre-existing IH averaging 0.42 ± 0.13 mm in thickness, alongside an observable lack of luminal endothelial cell lining. Analysis of extracellular matrix components, including collagen, elastin, and glycosaminoglycans, at baseline and after 7 days of ex vivo culture revealed no significant changes in collagen but demonstrated increased percentages of elastin and glycosaminoglycans. Despite unsuccessful attempts at re-endothelialization with blood outgrowth endothelial cells, the established ex vivo SVG IH model underscores the multifaceted nature of graft functionality and patency, characterized by IH presence, endothelial impairment, and extracellular matrix alterations post-CABG. Conclusions: The optimized ex vivo IH model provides a valuable platform for delving into the underlying mechanisms of IH formation and re-endothelialization of SVG. Further refinements are warranted, yet this model holds promise for future research aimed at enhancing graft durability and outcomes for CAD patients undergoing CABG.
Collapse
Affiliation(s)
- Nur A’tiqah Haron
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia (U.V.)
| | - Mohamad Fikeri Ishak
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia (U.V.)
| | - Muhammad Dain Yazid
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia (U.V.)
| | - Ubashini Vijakumaran
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia (U.V.)
| | - Roszita Ibrahim
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Raja Zahratul Azma Raja Sabudin
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
- Department of Diagnostic Laboratory Services, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Hafiza Alauddin
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
- Department of Diagnostic Laboratory Services, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Nur Ayub Md Ali
- Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
- Heart and Lung Centre, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Hairulfaizi Haron
- Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
- Heart and Lung Centre, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Muhammad Ishamuddin Ismail
- Heart and Lung Centre, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Mohd Ramzisham Abdul Rahman
- Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
- Heart and Lung Centre, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Nadiah Sulaiman
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia (U.V.)
| |
Collapse
|
14
|
Jan N, Bostanudin MF, Moutraji SA, Kremesh S, Kamal Z, Hanif MF. Unleashing the biomimetic targeting potential of platelet-derived nanocarriers on atherosclerosis. Colloids Surf B Biointerfaces 2024; 240:113979. [PMID: 38823339 DOI: 10.1016/j.colsurfb.2024.113979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/26/2024] [Accepted: 05/17/2024] [Indexed: 06/03/2024]
Abstract
Atherosclerosis, the primary mechanism underlying the development of many cardiovascular illnesses, continues to be one of the leading causes of mortality worldwide. Platelet (PLT), which are essential for maintaining body homeostasis, have been strongly linked to the onset of atherosclerosis at various stages due to their inherent tendency to bind to atherosclerotic lesions and show an affinity for plaques. Therefore, mimicking PLT's innate adhesive features may be necessary to effectively target plaques. PLT-derived nanocarriers have emerged as a promising biomimetic targeting strategy for treating atherosclerosis due to their numerous advantages. These advantages include excellent biocompatibility, minimal macrophage phagocytosis, prolonged circulation time, targeting capability for impaired vascular sites, and suitability as carriers for anti-atherosclerotic drugs. Herein, we discuss the role of PLT in atherogenesis and propose the design of nanocarriers based on PLT-membrane coating and PLT-derived vesicles. These nanocarriers can target multiple biological elements relevant to plaque development. The review also emphasizes the current challenges and future research directions for the effective utilization of PLT-derived nanocarriers in treating atherosclerosis.
Collapse
Affiliation(s)
- Nasrullah Jan
- Department of Pharmacy, The University of Chenab, Gujrat 50700, Punjab, Pakistan.
| | - Mohammad F Bostanudin
- College of Pharmacy, Al Ain University, Abu Dhabi 112612, United Arab Emirates; AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi 112612, United Arab Emirates
| | - Sedq A Moutraji
- College of Pharmacy, Al Ain University, Abu Dhabi 112612, United Arab Emirates; AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi 112612, United Arab Emirates
| | - Sedra Kremesh
- College of Pharmacy, Al Ain University, Abu Dhabi 112612, United Arab Emirates; AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi 112612, United Arab Emirates
| | - Zul Kamal
- Department of Pharmacy, Shaheed Benazir Bhutto University, Dir Upper 18000, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Farhan Hanif
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan; Bahawalpur College of Pharmacy, BMDC Complex Bahawalpur 63100, Punjab, Pakistan
| |
Collapse
|
15
|
Faro DC, Di Pino FL, Monte IP. Inflammation, Oxidative Stress, and Endothelial Dysfunction in the Pathogenesis of Vascular Damage: Unraveling Novel Cardiovascular Risk Factors in Fabry Disease. Int J Mol Sci 2024; 25:8273. [PMID: 39125842 PMCID: PMC11312754 DOI: 10.3390/ijms25158273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Anderson-Fabry disease (AFD), a genetic disorder caused by mutations in the α-galactosidase-A (GLA) gene, disrupts lysosomal function, leading to vascular complications. The accumulation of globotriaosylceramide (Gb3) in arterial walls triggers upregulation of adhesion molecules, decreases endothelial nitric oxide synthesis, and induces reactive oxygen species production. This cascade results in fibrotic thickening, endothelial dysfunction, hypercontractility, vasospasm, and a pro-thrombotic phenotype. AFD patients display increased intima-media thickness (IMT) and reduced flow-mediated dilation (FMD), indicating heightened cardiovascular risk. Nailfold capillaroscopy (NFC) shows promise in diagnosing and monitoring microcirculatory disorders in AFD, though it remains underexplored. Morphological evidence of AFD as a storage disorder can be demonstrated through electron microscopy and immunodetection of Gb3. Secondary pathophysiological disturbances at cellular, tissue, and organ levels contribute to the clinical manifestations, with prominent lysosomal inclusions observed in vascular, cardiac, renal, and neuronal cells. Chronic accumulation of Gb3 represents a state of ongoing toxicity, leading to increased cell turnover, particularly in vascular endothelial cells. AFD-related vascular pathology includes increased renin-angiotensin system activation, endothelial dysfunction, and smooth muscle cell proliferation, resulting in IMT increase. Furthermore, microvascular alterations, such as atypical capillaries observed through NFC, suggest early microvascular involvement. This review aims to unravel the complex interplay between inflammation, oxidative stress, and endothelial dysfunction in AFD, highlighting the potential connections between metabolic disturbances, oxidative stress, inflammation, and fibrosis in vascular and cardiac complications. By exploring novel cardiovascular risk factors and potential diagnostic tools, we can advance our understanding of these mechanisms, which extend beyond sphingolipid accumulation to include other significant contributors to disease pathogenesis. This comprehensive approach can pave the way for innovative therapeutic strategies and improved patient outcomes.
Collapse
Affiliation(s)
| | | | - Ines Paola Monte
- Department of General Surgery and Medical-Surgical Specialties (CHIRMED), University of Catania, Via S. Sofia 78, 95100 Catania, Italy; (D.C.F.); (F.L.D.P.)
| |
Collapse
|
16
|
Shokri N, Ghasempour G, Soleimani AA, Elahimanesh M, Najafi M. NF-kB affects migration of vascular smooth muscle cells after treatment with heparin and ibrutinib. Biochem Biophys Rep 2024; 38:101685. [PMID: 38524279 PMCID: PMC10957380 DOI: 10.1016/j.bbrep.2024.101685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/10/2024] [Accepted: 03/09/2024] [Indexed: 03/26/2024] Open
Abstract
The migration of vascular smooth muscle cells (VSMCs) is one of the most important events in the remodeling of atherosclerosis plaque. The aim of study was to investigate the role of Heparin in the VSMC migration and its association with the NF-kB, collagen 1 and collagen 3 expression levels. Moreover, the incorporation of Heparin was studied in the VSMC cultures including Betulinic acid and Ibrutinib. Twelve cell groups were cultured and treated with the Heparin, Betulinic acid and Ibrutinib based on the viability and toxicity in 24-h and 48-h periods. The gene and protein expression levels were measured by RT-qPCR and western blotting techniques. The VSMC migration was determined by scratch test. In contrast with Ibrutinib (2 μM), Heparin (30 IU) increased significantly (P < 0.05) the NF-kB gene and protein expression levels and the VSMC migration during the exposure periods. Heparin (15 IU and 30 IU) also increased the collagen 1 gene expression level in the 48-h period while Heparin (5 IU and 15 IU) increased the collagen 3 gene expression levels in both periods. Incorporating Heparin into the cultures including Betulinic acid and Ibrutinib affected the collagen 1 and collagen 3 expression levels. The data suggested that the cell migration relates to NF-kB in the VSMCs treated with Heparin and Ibrutinib. Furthermore, the Heparin doses (5 IU and 15 IU) were safe for VSMCs based on the NF-kB, and collagen 3 expression levels.
Collapse
Affiliation(s)
- Nafiseh Shokri
- Clinical Biochemistry Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghasem Ghasempour
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illnosis, USA
| | - Ali Akbar Soleimani
- Clinical Biochemistry Department, Faculty of Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Elahimanesh
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Najafi
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Rodrigues LDS, Felix TF, Minutentag IW, Reis PP, Bertanha M. Deciphering Key microRNA Regulated Pathways in Tissue-Engineered Blood Vessels: Implications for Vascular Scaffold Production. Int J Mol Sci 2024; 25:6762. [PMID: 38928467 PMCID: PMC11203763 DOI: 10.3390/ijms25126762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
MicroRNAs (miRNAs) are non-coding RNAs involved in the regulation of gene expression associated with cell differentiation, proliferation, adhesion, and important biological functions such as inflammation. miRNAs play roles associated with the pathogenesis of chronic degenerative disorders including cardiovascular diseases. Understanding the influence of miRNAs and their target genes can effectively streamline the identification of key biologically active pathways that are important in the development of vascular grafts through the tissue engineering of blood vessels. To determine miRNA expression levels and identify miRNA target genes and pathways with biological roles in scaffolds that have been repopulated with adipose-derived stem cells (ASCs) generated through tissue engineering for the construction of blood vessels. miRNA quantification assays were performed in triplicate to determine miRNA expression in a total of 20 samples: five controls (natural inferior vena cava), five scaffolds recellularized with ASCs and differentiated into the endothelium (luminal layer), five samples of complete scaffolds seeded with ASCs differentiated into the endothelium (luminal layer) and smooth muscle (extraluminal layer), and five samples of ASC without cell differentiation. Several differentially expressed miRNAs were identified and predicted to modulate target genes with roles in key pathways associated with angiogenesis, vascular system control, and endothelial and smooth muscle regulation, including migration, proliferation, and growth. These findings underscore the involvement of these pathways in the regulatory mechanisms that are essential for vascular scaffold production through tissue engineering. Our research contributes to the knowledge of miRNA-regulated mechanisms, which may impact the design of vascular substitutes, and provide valuable insights for enhancing clinical practice. The molecular pathways regulated by miRNAs in tissue engineering of blood vessels (TEBV) allowed us to elucidate the main phenomena involved in cellular differentiation to constitute a blood vessel, with the main pathways being essential for angiogenesis, cellular differentiation, and differentiation into vascular smooth muscle.
Collapse
Affiliation(s)
- Lenize da Silva Rodrigues
- Department of Surgery and Orthopedics, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil;
- Applied Biotechnology Laboratory, Clinical Hospital of Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
- Experimental Research Unit, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (T.F.F.); (I.W.M.); (P.P.R.)
| | - Tainara Francini Felix
- Experimental Research Unit, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (T.F.F.); (I.W.M.); (P.P.R.)
| | - Iael Weissberg Minutentag
- Experimental Research Unit, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (T.F.F.); (I.W.M.); (P.P.R.)
| | - Patricia Pintor Reis
- Experimental Research Unit, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (T.F.F.); (I.W.M.); (P.P.R.)
| | - Matheus Bertanha
- Department of Surgery and Orthopedics, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil;
- Applied Biotechnology Laboratory, Clinical Hospital of Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
- Experimental Research Unit, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (T.F.F.); (I.W.M.); (P.P.R.)
| |
Collapse
|
18
|
Weekes A, Wasielewska JM, Pinto N, Jenkins J, Patel J, Li Z, Klein TJ, Meinert C. Harnessing the Regenerative Potential of Fetal Mesenchymal Stem Cells and Endothelial Colony-Forming Cells in the Biofabrication of Tissue-Engineered Vascular Grafts (TEVGs). J Tissue Eng Regen Med 2024; 2024:8707377. [PMID: 40225752 PMCID: PMC11919237 DOI: 10.1155/2024/8707377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/08/2024] [Indexed: 04/15/2025]
Abstract
Tissue engineering is a promising approach for the production of small-diameter vascular grafts; however, there are limited data directly comparing the suitability of applicable cell types for vessel biofabrication. Here, we investigated the potential of adult smooth muscle cells (SMCs), placental mesenchymal stem cells (MSCs), placental endothelial colony-forming cells (ECFCs), and a combination of MSCs and ECFCs on highly porous biocompatible poly(ɛ-caprolactone) (PCL) scaffolds produced via melt electrowriting (MEW) for the biofabrication of tissue-engineered vascular grafts (TEVGs). Cellular attachment, proliferation, and deposition of essential extracellular matrix (ECM) components were analysed in vitro over four weeks. TEVGs cultured with MSCs accumulated the highest levels of collagenous components within a dense ECM, while SMCs and the coculture were more sparsely populated, ascertained via histological and immunofluorescence imaging, and biochemical assessment. Scanning electron microscopy (SEM) enabled visualisation of morphological differences in cell attachment and growth, with MSCs and SMCs infiltrating and covering scaffolds completely within the 28-day culture period. Coverage and matrix deposition by ECFCs was limited. However, ECFCs lined the ECM formed by MSCs in coculture, visualised via immunostaining. Thus, of cells investigated, placental MSCs were identified as the preferred cell source for the fabrication of tissue-engineered constructs, exhibiting extensive population of porous polymer scaffolds and production of ECM components; with the inclusion of ECFCs for luminal endothelialisation, an encouraging outcome warranting further consideration in future studies. In combination, these findings represent a substantial step toward the development of the next generation of small-diameter vascular grafts in the management of cardiovascular disease.
Collapse
Affiliation(s)
- Angus Weekes
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Herston Biofabrication Institute, Metro North Hospital and Health Services, Herston, QLD, Australia
| | - Joanna M. Wasielewska
- Herston Biofabrication Institute, Metro North Hospital and Health Services, Herston, QLD, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Nigel Pinto
- Herston Biofabrication Institute, Metro North Hospital and Health Services, Herston, QLD, Australia
- Department of Vascular Surgery, The Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Jason Jenkins
- Herston Biofabrication Institute, Metro North Hospital and Health Services, Herston, QLD, Australia
- Department of Vascular Surgery, The Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Jatin Patel
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Woolloongabba, QLD, Australia
| | - Zhiyong Li
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Travis J. Klein
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Christoph Meinert
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Herston Biofabrication Institute, Metro North Hospital and Health Services, Herston, QLD, Australia
| |
Collapse
|
19
|
McVey DG, Andreadi C, Gong P, Stanczyk PJ, Solomon CU, Turner L, Yan L, Chen R, Cao J, Nelson CP, Thompson JR, Yu H, Webb TR, Samani NJ, Ye S. Genetic influence on vascular smooth muscle cell apoptosis. Cell Death Dis 2024; 15:402. [PMID: 38851795 PMCID: PMC11162461 DOI: 10.1038/s41419-024-06799-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
Vascular smooth muscle cell (VSMC) proliferation, migration, and apoptosis play important roles in many physiological processes and pathological conditions. To identify genetic influences on VSMC behavior, we measured these traits and undertook genome-wide association studies in primary umbilical artery-derived VSMCs from >2000 individuals. Although there were no genome-wide significant associations for VSMC proliferation or migration, genetic variants at two genomic loci (7p15.3 and 7q32.3) showed highly significant associations with VSMC apoptosis (P = 1.95 × 10-13 and P = 7.47 × 10-9, respectively). The lead variant at the 7p51.3 locus was associated with increased expression of the GSDME and PALS2 genes in VSMCs. Knockdown of GSDME or PALS2 in VSMCs attenuated apoptotic cell death. A protein co-immunoprecipitation assay indicated that GSDME complexed with PALS2. PALS2 knockdown attenuated activated caspase-3 and GSDME fragmentation, whilst GSDME knockdown also reduced activated caspase-3. These findings provide new insights into the genetic regulation of VSMC apoptosis, with potential utility for therapeutic development.
Collapse
Affiliation(s)
- David G McVey
- Department of Cardiovascular Sciences and National Institute for Health Research Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Catherine Andreadi
- Department of Cardiovascular Sciences and National Institute for Health Research Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Peng Gong
- Department of Cardiovascular Sciences and National Institute for Health Research Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Paulina J Stanczyk
- Department of Cardiovascular Sciences and National Institute for Health Research Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Charles U Solomon
- Department of Cardiovascular Sciences and National Institute for Health Research Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Lenka Turner
- Department of Cardiovascular Sciences and National Institute for Health Research Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Liu Yan
- Cardiovascular-Metabolic Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of, Singapore, Singapore
| | - Runji Chen
- Shantou University Medical College, Shantou, China
| | - Junjun Cao
- Shantou University Medical College, Shantou, China
| | - Christopher P Nelson
- Department of Cardiovascular Sciences and National Institute for Health Research Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - John R Thompson
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Haojie Yu
- Cardiovascular-Metabolic Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of, Singapore, Singapore
| | - Tom R Webb
- Department of Cardiovascular Sciences and National Institute for Health Research Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Nilesh J Samani
- Department of Cardiovascular Sciences and National Institute for Health Research Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Shu Ye
- Department of Cardiovascular Sciences and National Institute for Health Research Leicester Biomedical Research Centre, University of Leicester, Leicester, UK.
- Cardiovascular-Metabolic Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of, Singapore, Singapore.
- Shantou University Medical College, Shantou, China.
| |
Collapse
|
20
|
Ma Y, Harris J, Li P, Jiang C, Sun H, Cao H. An Integrative Transcriptome Subtraction Strategy to Identify Human lncRNAs That Specifically Play a Role in Activation of Human Hepatic Stellate Cells. Noncoding RNA 2024; 10:34. [PMID: 38921831 PMCID: PMC11206700 DOI: 10.3390/ncrna10030034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024] Open
Abstract
Fibrotic liver features excessive deposition of extracellular matrix (ECM), primarily produced from "activated" hepatic stellate cells (HSCs). While targeting human HSCs (hHSCs) in fibrosis therapeutics shows promise, the overall understanding of hHSC activation remains limited, in part because it is very challenging to define the role of human long non-coding RNAs (lncRNAs) in hHSC activation. To address this challenge, we identified another cell type that acts via a diverse gene network to promote fibrogenesis. Then, we identified the lncRNAs that were differentially regulated in activated hHSCs and the other profibrotic cell. Next, we conducted concurrent analysis to identify those lncRNAs that were specifically involved in fibrogenesis. We tested and confirmed that transdifferentiation of vascular smooth muscle cells (VSMCs) represents such a process. By overlapping TGFβ-regulated lncRNAs in multiple sets of hHSCs and VSMCs, we identified a highly selected list of lncRNA candidates that could specifically play a role in hHSC activation. We experimentally characterized one human lncRNA, named CARMN, which was significantly regulated by TGFβ in all conditions above. CARMN knockdown significantly reduced the expression levels of a panel of marker genes for hHSC activation, as well as the levels of ECM deposition and hHSC migration. Conversely, gain of function of CARMN using CRISPR activation (CRISPR-a) yielded the completely opposite effects. Taken together, our work addresses a bottleneck in identifying human lncRNAs that specifically play a role in hHSC activation and provides a framework to effectively select human lncRNAs with significant pathophysiological role.
Collapse
Affiliation(s)
| | | | | | | | | | - Haiming Cao
- Cardiovascular Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
21
|
Xu F, Chen H, Zhou C, Zang T, Wang R, Shen S, Li C, Yu Y, Pei Z, Shen L, Qian J, Ge J. Targeting deubiquitinase OTUB1 protects vascular smooth muscle cells in atherosclerosis by modulating PDGFRβ. Front Med 2024; 18:465-483. [PMID: 38644399 DOI: 10.1007/s11684-024-1056-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/04/2023] [Indexed: 04/23/2024]
Abstract
Atherosclerosis is a chronic artery disease that causes various types of cardiovascular dysfunction. Vascular smooth muscle cells (VSMCs), the main components of atherosclerotic plaque, switch from contractile to synthetic phenotypes during atherogenesis. Ubiquitylation is crucial in regulating VSMC phenotypes in atherosclerosis, and it can be reversely regulated by deubiquitinases. However, the specific effects of deubiquitinases on atherosclerosis have not been thoroughly elucidated. In this study, RNAi screening in human aortic smooth muscle cells was performed to explore the effects of OTU family deubiquitinases, which revealed that silencing OTUB1 inhibited PDGF-BB-stimulated VSMC phenotype switch. Further in vivo studies using Apoe-/- mice revealed that knockdown of OTUB1 in VSMCs alleviated atherosclerosis plaque burden in the advanced stage and led to a stable plaque phenotype. Moreover, VSMC proliferation and migration upon PDGF-BB stimulation could be inhibited by silencing OTUB1 in vitro. Unbiased RNA-sequencing data indicated that knocking down OTUB1 influenced VSMC differentiation, adhesion, and proliferation. Mass spectrometry of ubiquitinated protein confirmed that proteins related to cell growth and migration were differentially ubiquitylated. Mechanistically, we found that OTUB1 recognized the K707 residue ubiquitylation of PDGFRβ with its catalytic triad, thereby reducing the K48-linked ubiquitylation of PDGFRβ. Inhibiting OTUB1 in VSMCs could promote PDGFRβ degradation via the ubiquitin-proteasome pathway, so it was beneficial in preventing VSMCs' phenotype switch. These findings revealed that knocking down OTUB1 ameliorated VSMCs' phenotype switch and atherosclerosis progression, indicating that OTUB1 could be a valuable translational therapeutic target in the future.
Collapse
Affiliation(s)
- Fei Xu
- Department of Cardiology and Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine & Shanghai Clinical Research Center for Interventional Medicine (19MC1910300), Shanghai, 200032, China
| | - Han Chen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine & Shanghai Clinical Research Center for Interventional Medicine (19MC1910300), Shanghai, 200032, China
| | - Changyi Zhou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine & Shanghai Clinical Research Center for Interventional Medicine (19MC1910300), Shanghai, 200032, China
| | - Tongtong Zang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine & Shanghai Clinical Research Center for Interventional Medicine (19MC1910300), Shanghai, 200032, China
| | - Rui Wang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine & Shanghai Clinical Research Center for Interventional Medicine (19MC1910300), Shanghai, 200032, China
| | - Shutong Shen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine & Shanghai Clinical Research Center for Interventional Medicine (19MC1910300), Shanghai, 200032, China
| | - Chaofu Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine & Shanghai Clinical Research Center for Interventional Medicine (19MC1910300), Shanghai, 200032, China
| | - Yue Yu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine & Shanghai Clinical Research Center for Interventional Medicine (19MC1910300), Shanghai, 200032, China
| | - Zhiqiang Pei
- Department of Cardiology, Zhongshan Hospital, Fudan University, Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine & Shanghai Clinical Research Center for Interventional Medicine (19MC1910300), Shanghai, 200032, China
| | - Li Shen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, 200032, China.
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine & Shanghai Clinical Research Center for Interventional Medicine (19MC1910300), Shanghai, 200032, China.
| | - Juying Qian
- Department of Cardiology, Zhongshan Hospital, Fudan University, Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, 200032, China.
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine & Shanghai Clinical Research Center for Interventional Medicine (19MC1910300), Shanghai, 200032, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, 200032, China.
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine & Shanghai Clinical Research Center for Interventional Medicine (19MC1910300), Shanghai, 200032, China.
| |
Collapse
|
22
|
Lin Y, Xie R, Yu T. Photodynamic Therapy for Atherosclerosis: Past, Present, and Future. Pharmaceutics 2024; 16:729. [PMID: 38931851 PMCID: PMC11206729 DOI: 10.3390/pharmaceutics16060729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
This review paper examines the evolution of photodynamic therapy (PDT) as a novel, minimally invasive strategy for treating atherosclerosis, a leading global health concern. Atherosclerosis is characterized by the accumulation of lipids and inflammation within arterial walls, leading to significant morbidity and mortality through cardiovascular diseases such as myocardial infarction and stroke. Traditional therapeutic approaches have primarily focused on modulating risk factors such as hypertension and hyperlipidemia, with emerging evidence highlighting the pivotal role of inflammation. PDT, leveraging a photosensitizer, specific-wavelength light, and oxygen, offers targeted treatment by inducing cell death in diseased tissues while sparing healthy ones. This specificity, combined with advancements in nanoparticle technology for improved delivery, positions PDT as a promising alternative to traditional interventions. The review explores the mechanistic basis of PDT, its efficacy in preclinical studies, and the potential for enhancing plaque stability and reducing macrophage density within plaques. It also addresses the need for further research to optimize treatment parameters, mitigate adverse effects, and validate long-term outcomes. By detailing past developments, current progress, and future directions, this paper aims to highlight PDT's potential in revolutionizing atherosclerosis treatment, bridging the gap from experimental research to clinical application.
Collapse
Affiliation(s)
- Yanqing Lin
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China;
| | - Ruosen Xie
- Wisconsin Institute for Discovery, University of Wisconsin–Madison, Madison, WI 53705, USA;
| | - Tao Yu
- Department of Cardiac Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| |
Collapse
|
23
|
Ha BJ, Kang SM, Choi BM, Cheong JH, Ryu JI, Won YD, Han MH. Stroke recurrence and osteoporotic conditions in postmenopausal patients with atherosclerotic ischemic stroke. Heliyon 2024; 10:e30196. [PMID: 38720741 PMCID: PMC11076908 DOI: 10.1016/j.heliyon.2024.e30196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
Recurrence after stroke is common, and associated with a high mortality rate. Degradation of the elastic tissue in the arterial wall has been shown to aggravate atherosclerosis in blood vessels. Considering that type 1 collagen is present in both bone and vascular smooth muscle cells, we explored whether osteoporotic conditions affect the likelihood of stroke recurrence in postmenopausal women following atherosclerotic ischemic stroke. To determine actual bone mineral density (BMD), the Hounsfield unit values in the frontal skull were evaluated using brain computed tomography (CT) scans taken at admission. A multivariate Cox regression analysis was also performed to examine if osteoporosis could independently predict stroke recurrence in postmenopausal patients with large artery atherosclerosis (LAA) or small vessel occlusion (SVO) stroke. This study included 2130 consecutive patients (both males and females aged 50 and older) with acute LAA or SVO strokes. After adjusting for all covariates, hypothetical osteoporosis was identified as an independent predictor of stroke recurrence in female patients ≥50 years with acute LAA or SVO stroke (hazard ratio, 1.84; 95 % confidence interval, 1.05 to 3.24; p = 0.034). Our findings showed that osteoporosis could potentially affect the recurrence of ischemic stroke in postmenopausal patients with LAA or SVO stroke.
Collapse
Affiliation(s)
| | | | - Bo Mi Choi
- Department of Neurosurgery, Hanyang University Guri Hospital, 153 Gyeongchun-ro, Guri, 471-701, Gyonggi-do, Republic of Korea
| | - Jin Hwan Cheong
- Department of Neurosurgery, Hanyang University Guri Hospital, 153 Gyeongchun-ro, Guri, 471-701, Gyonggi-do, Republic of Korea
| | - Je Il Ryu
- Department of Neurosurgery, Hanyang University Guri Hospital, 153 Gyeongchun-ro, Guri, 471-701, Gyonggi-do, Republic of Korea
| | - Yu Deok Won
- Department of Neurosurgery, Hanyang University Guri Hospital, 153 Gyeongchun-ro, Guri, 471-701, Gyonggi-do, Republic of Korea
| | - Myung-Hoon Han
- Department of Neurosurgery, Hanyang University Guri Hospital, 153 Gyeongchun-ro, Guri, 471-701, Gyonggi-do, Republic of Korea
| |
Collapse
|
24
|
Park B, Bakbak E, Teoh H, Krishnaraj A, Dennis F, Quan A, Rotstein OD, Butler J, Hess DA, Verma S. GLP-1 receptor agonists and atherosclerosis protection: the vascular endothelium takes center stage. Am J Physiol Heart Circ Physiol 2024; 326:H1159-H1176. [PMID: 38426865 DOI: 10.1152/ajpheart.00574.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Atherosclerotic cardiovascular disease is a chronic condition that often copresents with type 2 diabetes and obesity. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are incretin mimetics endorsed by major professional societies for improving glycemic status and reducing atherosclerotic risk in people living with type 2 diabetes. Although the cardioprotective efficacy of GLP-1RAs and their relationship with traditional risk factors are well established, there is a paucity of publications that have summarized the potentially direct mechanisms through which GLP-1RAs mitigate atherosclerosis. This review aims to narrow this gap by providing comprehensive and in-depth mechanistic insight into the antiatherosclerotic properties of GLP-1RAs demonstrated across large outcome trials. Herein, we describe the landmark cardiovascular outcome trials that triggered widespread excitement around GLP-1RAs as a modern class of cardioprotective agents, followed by a summary of the origins of GLP-1RAs and their mechanisms of action. The effects of GLP-1RAs at each major pathophysiological milestone of atherosclerosis, as observed across clinical trials, animal models, and cell culture studies, are described in detail. Specifically, this review provides recent preclinical and clinical evidence that suggest GLP-1RAs preserve vessel health in part by preventing endothelial dysfunction, achieved primarily through the promotion of angiogenesis and inhibition of oxidative stress. These protective effects are in addition to the broad range of atherosclerotic processes GLP-1RAs target downstream of endothelial dysfunction, which include systemic inflammation, monocyte recruitment, proinflammatory macrophage and foam cell formation, vascular smooth muscle cell proliferation, and plaque development.
Collapse
Affiliation(s)
- Brady Park
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Ehab Bakbak
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Hwee Teoh
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Division of Endocrinology and Metabolism, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Aishwarya Krishnaraj
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Fallon Dennis
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Adrian Quan
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Ori D Rotstein
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Division of General Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Javed Butler
- Baylor Scott and White Research Institute, Dallas, Texas, United States
- Department of Medicine, University of Mississippi, Jackson, Mississippi, United States
| | - David A Hess
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
- Molecular Medicine Research Laboratories, Robarts Research Institute, London, Ontario, Canada
| | - Subodh Verma
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
25
|
Zhang T, Cao RJ, Niu JL, Chen ZH, Mu SQ, Cao T, Pang JX, Dong LH. G6PD maintains the VSMC synthetic phenotype and accelerates vascular neointimal hyperplasia by inhibiting the VDAC1-Bax-mediated mitochondrial apoptosis pathway. Cell Mol Biol Lett 2024; 29:47. [PMID: 38589823 PMCID: PMC11003121 DOI: 10.1186/s11658-024-00566-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/25/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Glucose-6-phosphate dehydrogenase (G6PD) plays an important role in vascular smooth muscle cell (VSMC) phenotypic switching, which is an early pathogenic event in various vascular remodeling diseases (VRDs). However, the underlying mechanism is not fully understood. METHODS An IP‒LC‒MS/MS assay was conducted to identify new binding partners of G6PD involved in the regulation of VSMC phenotypic switching under platelet-derived growth factor-BB (PDGF-BB) stimulation. Co-IP, GST pull-down, and immunofluorescence colocalization were employed to clarify the interaction between G6PD and voltage-dependent anion-selective channel protein 1 (VDAC1). The molecular mechanisms involved were elucidated by examining the interaction between VDAC1 and apoptosis-related biomarkers, as well as the oligomerization state of VDAC1. RESULTS The G6PD level was significantly elevated and positively correlated with the synthetic characteristics of VSMCs induced by PDGF-BB. We identified VDAC1 as a novel G6PD-interacting molecule essential for apoptosis. Specifically, the G6PD-NTD region was found to predominantly contribute to this interaction. G6PD promotes VSMC survival and accelerates vascular neointimal hyperplasia by inhibiting VSMC apoptosis. Mechanistically, G6PD interacts with VDAC1 upon stimulation with PDGF-BB. By competing with Bax for VDAC1 binding, G6PD reduces VDAC1 oligomerization and counteracts VDAC1-Bax-mediated apoptosis, thereby accelerating neointimal hyperplasia. CONCLUSION Our study showed that the G6PD-VDAC1-Bax axis is a vital switch in VSMC apoptosis and is essential for VSMC phenotypic switching and neointimal hyperplasia, providing mechanistic insight into early VRDs.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Cardiovascular Medical Science Center, Key Laboratory of Vascular Biology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Rui-Jie Cao
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Cardiovascular Medical Science Center, Key Laboratory of Vascular Biology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jiang-Ling Niu
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Cardiovascular Medical Science Center, Key Laboratory of Vascular Biology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Zhi-Huan Chen
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Cardiovascular Medical Science Center, Key Laboratory of Vascular Biology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Shi-Qing Mu
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Cardiovascular Medical Science Center, Key Laboratory of Vascular Biology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Tong Cao
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Cardiovascular Medical Science Center, Key Laboratory of Vascular Biology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jie-Xin Pang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Cardiovascular Medical Science Center, Key Laboratory of Vascular Biology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Li-Hua Dong
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Cardiovascular Medical Science Center, Key Laboratory of Vascular Biology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China.
| |
Collapse
|
26
|
Akther F, Sajin D, Moonshi SS, Wu Y, Vazquez-Prada KX, Ta HT. Modeling Foam Cell Formation in A Hydrogel-Based 3D-Intimal Model: A Study of The Role of Multi-Diseases During Early Atherosclerosis. Adv Biol (Weinh) 2024; 8:e2300463. [PMID: 38200677 DOI: 10.1002/adbi.202300463] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/19/2023] [Indexed: 01/12/2024]
Abstract
Monocyte recruitment and transmigration are crucial in atherosclerotic plaque development. The multi-disease complexities aggravate the situation and continue to be a constant concern for understanding atherosclerosis plaque development. Herein, a 3D hydrogel-based model that integrates disease-induced microenvironments is sought to be designed, allowing us to explore the early stages of atherosclerosis, specifically examining monocyte fate in multi-disease complexities. As a proof-of-concept study, murine cells are employed to develop the model. The model is constructed with collagen embedded with murine aortic smooth muscle cells and a murine endothelial monolayer lining. The model achieves in vitro disease complexities using external stimuli such as glucose and lipopolysaccharide (LPS). Hyperglycemia exhibits a significant increase in monocyte adhesion but no enhancement in monocyte transmigration and foam cell conversion compared to euglycemia. Chronic infection achieved by LPS stimulation results in a remarkable augment in initial monocyte attachment and a significant increment in monocyte transmigration and foam cells in all concentrations. Moreover, the model exhibits synergistic sensitivity under multi-disease conditions such as hyperglycemia and infection, enhancing initial monocyte attachment, cell transmigration, and foam cell formation. Additionally, western blot data prove the enhanced levels of inflammatory biomarkers, indicating the model's capability to mimic disease-induced complexities during early atherosclerosis progression.
Collapse
Affiliation(s)
- Fahima Akther
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland, 4111, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Dimple Sajin
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland, 4111, Australia
| | - Shehzahdi S Moonshi
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland, 4111, Australia
| | - Yuao Wu
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland, 4111, Australia
| | - Karla X Vazquez-Prada
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland, 4111, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Hang Thu Ta
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland, 4111, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, 4072, Australia
- School of Environment and Science, Griffith University, Nathan, Queensland, 4111, Australia
| |
Collapse
|
27
|
Gonzalez AL, Dungan MM, Smart CD, Madhur MS, Doran AC. Inflammation Resolution in the Cardiovascular System: Arterial Hypertension, Atherosclerosis, and Ischemic Heart Disease. Antioxid Redox Signal 2024; 40:292-316. [PMID: 37125445 PMCID: PMC11071112 DOI: 10.1089/ars.2023.0284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/12/2023] [Indexed: 05/02/2023]
Abstract
Significance: Chronic inflammation has emerged as a major underlying cause of many prevalent conditions in the Western world, including cardiovascular diseases. Although targeting inflammation has emerged as a promising avenue by which to treat cardiovascular disease, it is also associated with increased risk of infection. Recent Advances: Though previously assumed to be passive, resolution has now been identified as an active process, mediated by unique immunoresolving mediators and mechanisms designed to terminate acute inflammation and promote tissue repair. Recent work has determined that failures of resolution contribute to chronic inflammation and the progression of human disease. Specifically, failure to produce pro-resolving mediators and the impaired clearance of dead cells from inflamed tissue have been identified as major mechanisms by which resolution fails in disease. Critical Issues: Drawing from a rapidly expanding body of experimental and clinical studies, we review here what is known about the role of inflammation resolution in arterial hypertension, atherosclerosis, myocardial infarction, and ischemic heart disease. For each, we discuss the involvement of specialized pro-resolving mediators and pro-reparative cell types, including T regulatory cells, myeloid-derived suppressor cells, and macrophages. Future Directions: Pro-resolving therapies offer the promise of limiting chronic inflammation without impairing host defense. Therefore, it is imperative to better understand the mechanisms underlying resolution to identify therapeutic targets. Antioxid. Redox Signal. 40, 292-316.
Collapse
Affiliation(s)
- Azuah L. Gonzalez
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Matthew M. Dungan
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - C. Duncan Smart
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Meena S. Madhur
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Amanda C. Doran
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
28
|
Ping L, Zhi-Ming L, Bi-Shan Z, Lei Z, Bo Y, Yi-Chun Z, Ming-Jie W. S-propargyl-cysteine promotes the stability of atherosclerotic plaque via maintaining vascular muscle contractile phenotype. Front Cell Dev Biol 2024; 11:1291170. [PMID: 38328305 PMCID: PMC10847265 DOI: 10.3389/fcell.2023.1291170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/22/2023] [Indexed: 02/09/2024] Open
Abstract
Introduction: Plaque rupture in atherosclerosis contributes to various acute cardiovascular events. As a new sulfide-containing donor, S-propargyl-cysteine (SPRC) has been reported to play a beneficial role in cardioprotection, potentially through its anti-inflammatory, anti-oxidative and anti-atherogenic activities. Our previous study observed an increase in eNOS phosphorylation in endothelial cells. However, it remains unclear whether SPRC influences vascular smooth muscle cells (VSMCs) within the plaque and if this effect contributes to plaque stabilization. Methods: An atherosclerotic unstable plaque mouse model was established by subjecting ApoE-/- mice to tandem stenosis of the right carotid artery along with a Western diet. Daily SPRC administration was conducted for 13 weeks. Plaque morphology and stability were assessed using MRI scanning and histopathological staining. In our in vitro studies, we stimulated human artery vascular smooth muscle cells (HAVSMCs) with platelet-derived growth factor-BB (PDGF-BB), both with and without 100 μM SPRC treatment. Cell phenotype was assessed using both Western blot and Real-time PCR. Cell proliferation was assessed using the BrdU cell proliferation kit and immunofluorescence of Ki-67, while cell migration was measured using scratch wound healing and transwell assay. MiR-143-3p overexpression and knockdown experiments were used to investigate whether it mediates the effect of SPRC on VSMC phenotype. Results and Discussion: SPRC treatment reduced plasma lipid levels, increased collagen content and decreased cell apoptosis in atherosclerotic plaques, indicating improved plaque stability. Both in vivo and in vitro studies elucidated the role of SPRC in preserving the contractile phenotype of VSMCs through up-regulation of miR-143-3p expression. Furthermore, SPRC suppressed the pro-proliferation and pro-migration effects of PDGF-BB on HAVSMCs. Overall, these findings suggest that the inhibitory effect of SPRC on phenotype switch from contractile to synthetic VSMCs may contribute to its beneficial role in enhancing plaque stability.
Collapse
Affiliation(s)
- Li Ping
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, The Innovative Research Team of High-level Local Universities in Shanghai, Fudan University, Shanghai, China
| | - Li Zhi-Ming
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, The Innovative Research Team of High-level Local Universities in Shanghai, Fudan University, Shanghai, China
| | - Zhang Bi-Shan
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, The Innovative Research Team of High-level Local Universities in Shanghai, Fudan University, Shanghai, China
| | - Zhu Lei
- Department of Vascular Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu Bo
- Department of Vascular Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhu Yi-Chun
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, The Innovative Research Team of High-level Local Universities in Shanghai, Fudan University, Shanghai, China
| | - Wang Ming-Jie
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, The Innovative Research Team of High-level Local Universities in Shanghai, Fudan University, Shanghai, China
| |
Collapse
|
29
|
Kobayashi Frisk M, Fagman E, Arvidsson D, Ekblom Ö, Börjesson M, Bergström G, Zou D. Eveningness is associated with coronary artery calcification in a middle-aged Swedish population. Sleep Med 2024; 113:370-377. [PMID: 38118325 DOI: 10.1016/j.sleep.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 12/22/2023]
Abstract
Coronary artery calcification (CAC) is an established imaging biomarker of subclinical atherosclerosis, but its relationship to diurnal preference is not well studied. We investigated the association between chronotype and CAC in the Swedish CArdioPulmonary bioImage Study (SCAPIS) pilot cohort. Participants aged 50-64 years were randomly recruited and underwent extensive examination including imaging and accelerometry-assessed physical activity. 771 participants (47.3 % male, 57.6 ± 4.4 years) were included in this cross-sectional analysis. CAC was assessed by non-contrast computed tomography, and a CAC score > 10 was considered significant calcification. Self-assessed chronotype was classified as extreme morning, moderate morning, intermediate, moderate evening, or extreme evening. 10-year risk of first-onset cardiovascular disease was estimated by the Systemic Coronary Risk Evaluation 2 (SCORE2). Significant CAC was present in 29 % of the cohort. CAC prevalence increased from extreme morning to extreme evening type (22 %, 28 %, 29 %, 27 %, 41 % respectively, p = 0.018). In a multivariate logistic regression model controlling for confounders, extreme evening chronotype was independently associated with increased CAC prevalence compared to extreme morning type (OR 1.90, [95%CI 1.04-3.46], p = 0.037). When stratified by SCORE2 risk category (low: <5 %; moderate: 5 to <10 %; high: ≥10 %), significant CAC was most prevalent among extreme evening chronotypes in the low and moderate-risk groups, while chronotype seemed less important in the high-risk group (p = 0.011, p = 0.023, p = 0.86, respectively). Our findings suggest circadian factors may play an important role in atherosclerosis and should be considered in early cardiovascular prevention.
Collapse
Affiliation(s)
- Mio Kobayashi Frisk
- University of Gothenburg, Institute of Medicine, Center for Sleep and Vigilance Disorders, Gothenburg, Sweden.
| | - Erika Fagman
- Sahlgrenska University Hospital, Department of Radiology, Gothenburg, Sweden; University of Gothenburg, Sahlgrenska Academy, Institute of Clinical Sciences, Gothenburg, Sweden
| | - Daniel Arvidsson
- Center for Health and Performance, Department of Food and Nutrition and Sport Science, Faculty of Education, University of Gothenburg, Gothenburg, Sweden
| | - Örjan Ekblom
- Swedish School of Sport and Health Sciences, Department of Physical Activity and Health, Stockholm, Sweden
| | - Mats Börjesson
- Sahlgrenska University Hospital, Östra, Gothenburg, Sweden; University of Gothenburg, Institute of Medicine, Molecular and Clinical Medicine, Gothenburg, Sweden
| | - Göran Bergström
- University of Gothenburg, Institute of Medicine, Molecular and Clinical Medicine, Gothenburg, Sweden; Sahlgrenska University Hospital, Department of Clinical Physiology, Gothenburg, Sweden
| | - Ding Zou
- University of Gothenburg, Institute of Medicine, Center for Sleep and Vigilance Disorders, Gothenburg, Sweden
| |
Collapse
|
30
|
Zhang YM, Wang GH, Xu MJ, Jin G. OGG1 prevents atherosclerosis-induced vascular endothelial cell injury through mediating DNA damage repair. Clin Hemorheol Microcirc 2024; 87:249-261. [PMID: 38363604 DOI: 10.3233/ch-232082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
OBJECTIVE This study was designed to investigate the role of 8-oxoguanine DNA glycosylase 1 (OGG1) in preventing atherosclerosis-induced vascular EC injury, thereby providing a theoretical basis for the exploration of drug targets and treatment methods for atherosclerosis. METHODS Human umbilical vein cell line (EA.hy926) was treated with ox-LDL to construct an in vitro atherosclerotic cell model. pcDNA3.1-OGG1 was transfected into EA.hy926 cells to overexpress OGG1. qRT-PCR, CCK-8 assay, flow cytometry, oil red O staining, ELISA, comet assay and western blot were used to evaluate the OGG1 expression, viability, apoptosis level, lipid droplet content, 8-OHdG level and DNA damage of cells in each group. RESULTS Compared with the Control group, ox-LDL stimulation of endothelial cells significantly decreased cell viability, promoted apoptosis and DNA damage, and increased intracellular levels of 8-OHdG and γH2AX, while decreasing protein levels of PPARγ, FASN, FABP4, RAD51 and POLB. However, overexpression of OGG1 can significantly inhibit ox-LDL damage to endothelial cells, promote lipid metabolism, decrease lipid droplet content, and improve DNA repair function. CONCLUSION Over-expression of OGG1 improves DNA repair. Briefly, OGG1 over-expression enhances the DNA damage repair of ECs by regulating the expression levels of γH2AX, RAD51 and POLB, thereby enhancing cell viability and reducing apoptosis.
Collapse
Affiliation(s)
- Yi-Ming Zhang
- Health Management Physical Examination Center, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Guo-Hua Wang
- Health Management Physical Examination Center, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Miao-Jun Xu
- Health Management Physical Examination Center, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Gan Jin
- Health Management Physical Examination Center, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| |
Collapse
|
31
|
Nappi F. To Gain Insights into the Pathophysiological Mechanisms of the Thrombo-Inflammatory Process in the Atherosclerotic Plaque. Int J Mol Sci 2023; 25:47. [PMID: 38203218 PMCID: PMC10778759 DOI: 10.3390/ijms25010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/17/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
Thromboinflammation, the interplay between thrombosis and inflammation, is a significant pathway that drives cardiovascular and autoimmune diseases, as well as COVID-19. SARS-CoV-2 causes inflammation and blood clotting issues. Innate immune cells have emerged as key modulators of this process. Neutrophils, the most predominant white blood cells in humans, are strategically positioned to promote thromboinflammation. By releasing decondensed chromatin structures called neutrophil extracellular traps (NETs), neutrophils can initiate an organised cell death pathway. These structures are adorned with histones, cytoplasmic and granular proteins, and have cytotoxic, immunogenic, and prothrombotic effects that can hasten disease progression. Protein arginine deiminase 4 (PAD4) catalyses the citrullination of histones and is involved in the release of extracellular DNA (NETosis). The neutrophil inflammasome is also required for this process. Understanding the link between the immunological function of neutrophils and the procoagulant and proinflammatory activities of monocytes and platelets is important in understanding thromboinflammation. This text discusses how vascular blockages occur in thromboinflammation due to the interaction between neutrophil extracellular traps and ultra-large VWF (von Willebrand Factor). The activity of PAD4 is important for understanding the processes that drive thromboinflammation by linking the immunological function of neutrophils with the procoagulant and proinflammatory activities of monocytes and platelets. This article reviews how vaso-occlusive events in thrombo-inflammation occur through the interaction of neutrophil extracellular traps with von Willebrand factor. It highlights the relevance of PAD4 in neutrophil inflammasome assembly and neutrophil extracellular traps in thrombo-inflammatory diseases such as atherosclerosis and cardiovascular disease. Interaction between platelets, VWF, NETs and inflammasomes is critical for the progression of thromboinflammation in several diseases and was recently shown to be active in COVID-19.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France
| |
Collapse
|
32
|
Balmos IA, Slevin M, Brinzaniuc K, Muresan AV, Suciu H, Molnár GB, Mocian A, Szabó B, Nagy EE, Horváth E. Intraplaque Neovascularization, CD68+ and iNOS2+ Macrophage Infiltrate Intensity Are Associated with Atherothrombosis and Intraplaque Hemorrhage in Severe Carotid Atherosclerosis. Biomedicines 2023; 11:3275. [PMID: 38137496 PMCID: PMC10741508 DOI: 10.3390/biomedicines11123275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/03/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Atherosclerosis is a progressive disease that results from endothelial dysfunction, inflammatory arterial wall disorder and the formation of the atheromatous plaque. This results in carotid artery stenosis and is responsible for atherothrombotic stroke and ischemic injury. Low-grade plaque inflammation determines biological stability and lesion progression. METHODS Sixty-seven cases with active perilesional inflammatory cell infiltrate were selected from a larger cohort of patients undergoing carotid endarterectomy. CD68+, iNOS2+ and Arg1+ macrophages and CD31+ endothelial cells were quantified around the atheroma lipid core using digital morphometry, and expression levels were correlated with determinants of instability: ulceration, thrombosis, plaque hemorrhage, calcification patterns and neovessel formation. RESULTS Patients with intraplaque hemorrhage had greater CD68+ macrophage infiltration (p = 0.003). In 12 cases where iNOS2 predominated over Arg1 positivity, the occurrence of atherothrombotic events was significantly more frequent (p = 0.046). CD31 expression, representing neovessel formation, correlated positively with atherothrombosis (p = 0.020). CONCLUSIONS Intraplaque hemorrhage is often described against the background of an intense inflammatory cell infiltrate. Atherothrombosis is associated with the presence of neovessels and pro-inflammatory macrophages expressing iNOS2. Modulating macrophage polarization may be a successful therapeutic approach to prevent plaque destabilization.
Collapse
Affiliation(s)
- Ioan Alexandru Balmos
- Doctoral School of Medicine and Pharmacy, I.O.S.U.D., George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania; (I.A.B.); (G.B.M.); (A.M.)
- Department of Anatomy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
- Vascular Surgery Clinic, County Emergency Clinical Hospital of Targu Mures, 540136 Targu Mures, Romania
| | - Mark Slevin
- Center for Advanced Medical and Pharmaceutical Research (CCAMF), George Emil Palade University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania;
| | - Klara Brinzaniuc
- Department of Anatomy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Adrian Vasile Muresan
- Vascular Surgery Clinic, County Emergency Clinical Hospital of Targu Mures, 540136 Targu Mures, Romania
- M3 Department of Surgery, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania (B.S.)
| | - Horatiu Suciu
- M3 Department of Surgery, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania (B.S.)
- Emergency Institute for Cardiovascular Diseases and Transplantation, 540142 Targu Mures, Romania
| | - Gyopár Beáta Molnár
- Doctoral School of Medicine and Pharmacy, I.O.S.U.D., George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania; (I.A.B.); (G.B.M.); (A.M.)
- Pathology Service, County Emergency Clinical Hospital of Targu Mures, 50 Gheorghe Marinescu Street, 540136 Targu Mures, Romania;
- Department of Biochemistry and Environmental Chemistry, George Emil Palade University of Medicine, Pharmacy, Sciences, and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Adriana Mocian
- Doctoral School of Medicine and Pharmacy, I.O.S.U.D., George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania; (I.A.B.); (G.B.M.); (A.M.)
- Vascular Surgery Clinic, County Emergency Clinical Hospital of Targu Mures, 540136 Targu Mures, Romania
| | - Béla Szabó
- M3 Department of Surgery, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania (B.S.)
| | - Előd Ernő Nagy
- Department of Biochemistry and Environmental Chemistry, George Emil Palade University of Medicine, Pharmacy, Sciences, and Technology of Targu Mures, 540142 Targu Mures, Romania
- Laboratory of Medical Analysis, Clinical County Hospital Mures, 540394 Targu Mures, Romania
| | - Emőke Horváth
- Pathology Service, County Emergency Clinical Hospital of Targu Mures, 50 Gheorghe Marinescu Street, 540136 Targu Mures, Romania;
- Department of Pathology, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 38 Gheorghe Marinescu Street, 540142 Targu Mures, Romania
| |
Collapse
|
33
|
Arief Waskito B, Sargowo D, Kalsum U, Tjokroprawiro A. Anti-atherosclerotic activity of aqueous extract of Ipomoea batatas (L.) leaves in high-fat diet-induced atherosclerosis model rats. J Basic Clin Physiol Pharmacol 2023; 34:725-734. [PMID: 34986543 DOI: 10.1515/jbcpp-2021-0080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Cardiovascular diseases, especially atherosclerosis, are the leading cause of human mortality in Indonesia. Ipomoea batatas (L.) is a food plant used in Indonesian traditional medicine to treat cardiovascular diseases and related conditions. We assessed the anti-atherosclerotic activity of the aqueous extract of I. batatas leaves in a rat model of high-fat diet-induced atherosclerosis and its mechanism. METHODS The presence of amino acid content in the I. batatas L. purple variant was determined by liquid chromatography high-resolution mass spectrometry (LC-HRMS). Thirty male Wistar rats were divided into five groups (n=6/group), i.e., standard diet group (SD), high-fat diet group (HF), and HF plus I. batatas L. extracts orally (625; 1,250; or 2,500 mg/kg) groups. The numbers of macrophages and aortic wall thickness were analyzed histologically. Immunohistochemical analyses were performed to assess foam cells-oxidized low-density lipoprotein (oxLDL), endothelial nitric oxide synthase (eNOS), and vascular endothelial growth factor (VEGF) expression in the aorta. RESULTS LC-HRMS analysis showed nine amino acid content were identified from I. batatas L. In vivo study revealed that oral administration of I. batatas L. leaf extract alleviated foam cells-oxLDL formation and aortic wall thickness caused by high-fat diet atherosclerosis rats. Further, I. batatas L. leaf extract promoted the number of macrophages and modulated VEGF and eNOS expression in the aorta. CONCLUSIONS I. batatas L. leaf extract shows a positive anti-atherosclerosis effect. Furthermore, the mechanism may promote the macrophages, eNOS, VEGF expressions, and inhibition of foam cells-oxLDL formation and aortic wall thickness with the best dosage at 2,500 mg/kg. This could represent a novel approach to prevent cardiovascular diseases.
Collapse
Affiliation(s)
- Budi Arief Waskito
- Doctoral Program of Medical Science, Faculty of Medicine, Universitas Brawijaya, Malang, East Java, Indonesia
- Department of Internal Medicine, Faculty of Medicine, Wijaya Kusuma University, Surabaya, East Java, Indonesia
| | - Djanggan Sargowo
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Brawijaya, Dr. Saiful Anwar General Hospital, Malang, East Java, Indonesia
| | - Umi Kalsum
- Department of Pharmacology, Faculty of Medicine, Universitas Brawijaya, Malang, East Java, Indonesia
| | - Askandar Tjokroprawiro
- Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo Hospital, Surabaya, East Java, Indonesia
| |
Collapse
|
34
|
Al-Maini M, Maindarkar M, Kitas GD, Khanna NN, Misra DP, Johri AM, Mantella L, Agarwal V, Sharma A, Singh IM, Tsoulfas G, Laird JR, Faa G, Teji J, Turk M, Viskovic K, Ruzsa Z, Mavrogeni S, Rathore V, Miner M, Kalra MK, Isenovic ER, Saba L, Fouda MM, Suri JS. Artificial intelligence-based preventive, personalized and precision medicine for cardiovascular disease/stroke risk assessment in rheumatoid arthritis patients: a narrative review. Rheumatol Int 2023; 43:1965-1982. [PMID: 37648884 DOI: 10.1007/s00296-023-05415-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023]
Abstract
The challenges associated with diagnosing and treating cardiovascular disease (CVD)/Stroke in Rheumatoid arthritis (RA) arise from the delayed onset of symptoms. Existing clinical risk scores are inadequate in predicting cardiac events, and conventional risk factors alone do not accurately classify many individuals at risk. Several CVD biomarkers consider the multiple pathways involved in the development of atherosclerosis, which is the primary cause of CVD/Stroke in RA. To enhance the accuracy of CVD/Stroke risk assessment in the RA framework, a proposed approach involves combining genomic-based biomarkers (GBBM) derived from plasma and/or serum samples with innovative non-invasive radiomic-based biomarkers (RBBM), such as measurements of synovial fluid, plaque area, and plaque burden. This review presents two hypotheses: (i) RBBM and GBBM biomarkers exhibit a significant correlation and can precisely detect the severity of CVD/Stroke in RA patients. (ii) Artificial Intelligence (AI)-based preventive, precision, and personalized (aiP3) CVD/Stroke risk AtheroEdge™ model (AtheroPoint™, CA, USA) that utilizes deep learning (DL) to accurately classify the risk of CVD/stroke in RA framework. The authors conducted a comprehensive search using the PRISMA technique, identifying 153 studies that assessed the features/biomarkers of RBBM and GBBM for CVD/Stroke. The study demonstrates how DL models can be integrated into the AtheroEdge™-aiP3 framework to determine the risk of CVD/Stroke in RA patients. The findings of this review suggest that the combination of RBBM with GBBM introduces a new dimension to the assessment of CVD/Stroke risk in the RA framework. Synovial fluid levels that are higher than normal lead to an increase in the plaque burden. Additionally, the review provides recommendations for novel, unbiased, and pruned DL algorithms that can predict CVD/Stroke risk within a RA framework that is preventive, precise, and personalized.
Collapse
Affiliation(s)
- Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON, L4Z 4C4, Canada
| | - Mahesh Maindarkar
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, 95661, USA
- Asia Pacific Vascular Society, New Delhi, 110001, India
| | - George D Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley, DY1 2HQ, UK
- Arthritis Research UK Epidemiology Unit, Manchester University, Manchester, M13 9PL, UK
| | - Narendra N Khanna
- Asia Pacific Vascular Society, New Delhi, 110001, India
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, 110001, India
| | | | - Amer M Johri
- Division of Cardiology, Department of Medicine, Queen's University, Kingston, Canada
| | - Laura Mantella
- Division of Cardiology, Department of Medicine, University of Toronto, Toronto, Canada
| | - Vikas Agarwal
- Department of Immunology, SGPIMS, Lucknow, 226014, India
| | - Aman Sharma
- Department of Immunology, SGPIMS, Lucknow, 226014, India
| | - Inder M Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, 95661, USA
| | - George Tsoulfas
- Department of Surgery, Aristoteleion University of Thessaloniki, 54124, Thessaloniki, Greece
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA, 94574, USA
| | - Gavino Faa
- Department of Pathology, Azienda Ospedaliero Universitaria, 09124, Cagliari, Italy
| | - Jagjit Teji
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
| | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, 27753, Delmenhorst, Germany
| | - Klaudija Viskovic
- Department of Radiology and Ultrasound, UHID, 10 000, Zagreb, Croatia
| | - Zoltan Ruzsa
- Invasive Cardiology Division, University of Szeged, Szeged, Hungary
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Centre, Athens, Greece
| | - Vijay Rathore
- Nephrology Department, Kaiser Permanente, Sacramento, CA, 95823, USA
| | - Martin Miner
- Men's Health Centre, Miriam Hospital Providence, Providence, RI, 02906, USA
| | - Manudeep K Kalra
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Esma R Isenovic
- Department of Radiobiology and Molecular Genetics, National Institute of the Republic of Serbia, University of Belgrade, 11000, Belgrade, Serbia
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, 40138, Cagliari, Italy
| | - Mostafa M Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID, 83209, USA
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, 95661, USA.
| |
Collapse
|
35
|
Nagesh PT, Nishi H, Rawal S, Zahr T, Miano JM, Sorci-Thomas M, Xu H, Akbar N, Choudhury RP, Misra A, Fisher EA. HDL regulates TGFß-receptor lipid raft partitioning, restoring contractile features of cholesterol-loaded vascular smooth muscle cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.19.562786. [PMID: 37905061 PMCID: PMC10614922 DOI: 10.1101/2023.10.19.562786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Background Cholesterol-loading of mouse aortic vascular smooth muscle cells (mVSMCs) downregulates miR-143/145, a master regulator of the contractile state downstream of TGFβ signaling. In vitro, this results in transitioning from a contractile mVSMC to a macrophage-like state. This process likely occurs in vivo based on studies in mouse and human atherosclerotic plaques. Objectives To test whether cholesterol-loading reduces VSMC TGFβ signaling and if cholesterol efflux will restore signaling and the contractile state in vitro and in vivo. Methods Human coronary artery (h)VSMCs were cholesterol-loaded, then treated with HDL (to promote cholesterol efflux). For in vivo studies, partial conditional deletion of Tgfβr2 in lineage-traced VSMC mice was induced. Mice wild-type for VSMC Tgfβr2 or partially deficient (Tgfβr2+/-) were made hypercholesterolemic to establish atherosclerosis. Mice were then treated with apoA1 (which forms HDL). Results Cholesterol-loading of hVSMCs downregulated TGFβ signaling and contractile gene expression; macrophage markers were induced. TGFβ signaling positively regulated miR-143/145 expression, increasing Acta2 expression and suppressing KLF4. Cholesterol-loading localized TGFβ receptors into lipid rafts, with consequent TGFβ signaling downregulation. Notably, in cholesterol-loaded hVSMCs HDL particles displaced receptors from lipid rafts and increased TGFβ signaling, resulting in enhanced miR-145 expression and decreased KLF4-dependent macrophage features. ApoA1 infusion into Tgfβr2+/- mice restored Acta2 expression and decreased macrophage-marker expression in plaque VSMCs, with evidence of increased TGFβ signaling. Conclusions Cholesterol suppresses TGFβ signaling and the contractile state in hVSMC through partitioning of TGFβ receptors into lipid rafts. These changes can be reversed by promotion of cholesterol efflux, consistent with evidence in vivo.
Collapse
Affiliation(s)
- Prashanth Thevkar Nagesh
- Department of Medicine, Division of Cardiology, and Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY, United States of America
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, United States of America
| | - Hitoo Nishi
- Department of Medicine, Division of Cardiology, and Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY, United States of America
| | - Shruti Rawal
- Department of Medicine, Division of Cardiology, and Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY, United States of America
| | - Tarik Zahr
- Department of Medicine, Division of Cardiology, and Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY, United States of America
| | - Joseph M Miano
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - Mary Sorci-Thomas
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Hao Xu
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Naveed Akbar
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom; Oxford University Hospitals, NHS Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Robin P Choudhury
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom; Oxford University Hospitals, NHS Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Ashish Misra
- Heart Research Institute, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, NSW, Australia
| | - Edward A Fisher
- Department of Medicine, Division of Cardiology, and Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY, United States of America
| |
Collapse
|
36
|
Lindziute M, Kaufeld J, Hufendiek K, Volkmann I, Brockmann D, Hosari S, Hohberger B, Christian M, Framme C, Jan T, Hufendiek K. Correlation of retinal vascular characteristics with laboratory and ocular findings in Fabry disease: exploring ocular diagnostic biomarkers. Orphanet J Rare Dis 2023; 18:314. [PMID: 37807078 PMCID: PMC10561444 DOI: 10.1186/s13023-023-02932-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 09/25/2023] [Indexed: 10/10/2023] Open
Abstract
BACKGROUND The goal of this study was to evaluate macular microvascular changes in patients with Fabry disease (FD) using optical coherence tomography angiography (OCTA) and to explore their correlation with laboratory and ocular findings. METHODS A total of 76 eyes (38 patients) and 48 eyes of 24 healthy controls were enrolled in this prospective study. Vessel Area Density (VAD) and Foveal Avascular Zone (FAZ) area were calculated on 2.9 × 2.9 mm OCTA images scanned with the Heidelberg Spectralis II (Heidelberg, Germany). VAD was measured in three layers: Superficial Vascular Plexus (SVP), Intermediate Capillary Plexus (ICP), and Deep Capillary Plexus (DCP). All scans were analyzed with the EA-Tool (Version 1.0), which was coded in MATLAB (The MathWorks Inc, R2017b). FAZ area was manually measured in full-thickness, SVP, ICP and DCP scans. RESULTS Average VAD in SVP, ICP and DCP was higher in Fabry disease patients than in controls (49.4 ± 11.0 vs. 26.5 ± 6.2, 29.6 ± 7.4 vs. 20.2 ± 4.4, 32.3 ± 8.8 vs. 21.7 ± 5.1 respectively, p < 0.001). Patients with cornea verticillata (CV) had a higher VAD in ICP and DCP compared to patients without CV (p < 0.01). Patients with increased lysoGb3 concentration had a higher VAD in DCP when compared to patients with normal lysoGb3 concentration (p < 0.04). There was no difference in VAD in patients with and without vascular tortuosity. However, a significantly higher VAD was observed in patients with vascular tortuosity compared to controls (p < 0.03). CONCLUSIONS Increased lysoGb3 and VAD in DCP could be reliable biomarkers of disease activity. Cornea verticillata could be adopted as a predictive biomarker for VAD changes and disease progression. The combination of cornea verticillata and increased VAD may serve as a diagnostic biomarker for Fabry disease, however due to the discrepancies in VAD values in various studies, further research has to be done to address this claim.
Collapse
Affiliation(s)
- Migle Lindziute
- University Eye Hospital, Hannover Medical School, Hannover, Germany.
| | - Jessica Kaufeld
- Division of Nephrology, Center for Internal Medicine, Hannover Medical School, Hannover, Germany
| | | | - Ingo Volkmann
- University Eye Hospital, Hannover Medical School, Hannover, Germany
| | | | - Sami Hosari
- Department of Surgery, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Bettina Hohberger
- Department of Ophthalmology, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Mardin Christian
- Department of Ophthalmology, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Carsten Framme
- University Eye Hospital, Hannover Medical School, Hannover, Germany
| | - Tode Jan
- University Eye Hospital, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
37
|
Ma W, Wei D, Li X, Shan L, Fan H, Jin H, Song B, Zhang B. CircPCNX Promotes PDGF-BB-Induced Proliferation and Migration of Human Aortic Vascular Smooth Muscle Cells Through Regulating miR-1278/DNMT1 Axis. Cardiovasc Drugs Ther 2023; 37:877-889. [PMID: 35670983 DOI: 10.1007/s10557-022-07342-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Human aortic vascular smooth muscle cells (HA-VSMCs) play vital roles in the pathogenesis of vascular diseases. Circular RNAs (circRNAs) have been reported to regulate the biological functions of HA-VSMCs. In this study, the functions of circRNA pecanex homolog (circPCNX) in platelet-derived growth factor-BB (PDGF-BB)-induced HA-VSMCs were investigated. METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to determine the expression of circPCNX, DNA methyltransferase 1 (DNMT1), and microRNA-1278 (miR-1278). 5'-Ethynyl-2'-deoxyuridine (EdU) assay, flow cytometry analysis, wound healing assay, and transwell assay were used to examine cell proliferation, cell cycle, and migration. Western blot assay was utilized to measure protein levels. RNA immunoprecipitation (RIP) assay, RNA pull down assay, and dual-luciferase reporter assay were adopted to analyze the relationships among circPCNX, miR-1278, and DNMT1. RESULTS CircPCNX was upregulated in PDGF-BB-treated HA-VSMCs in a dose- or time-dependent manner. CircPCNX knockdown alleviated PDGF-BB-induced cell proliferation, cell cycle progression, and migration in HA-VSMCs. CircPCNX knockdown could reverse PDGF-BB-induced HA-VSMC progression by regulating DNMT1. Moreover, circPCNX was identified to regulate DNMT1 expression by sponging miR-1278. Inhibition of miR-1278 reversed circPCNX knockdown-mediated effects on cell proliferation and migration in PDGF-BB-induced HA-VSMCs. MiR-1278 overexpression suppressed PDGF-BB-stimulated HA-VSMC proliferation and migration by targeting DNMT1. CONCLUSION CircPCNX promoted PDGF-BB-induced HA-VSMC proliferation and migration by elevating DNMT1 expression through sponging miR-1278.
Collapse
Affiliation(s)
- Wenbin Ma
- Department of Laboratory Medicine, The First Hospital of Qiqihar/Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, 161005, Heilongjiang, China
| | - Dongmei Wei
- Department of Traditional Chinese Geriatric Medicine, The First Hospital of Qiqihar/Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, 161005, Heilongjiang, China
| | - Xinying Li
- Department of Internal Medicine-Digestive, The First Hospital of Qiqihar/Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, 161005, Heilongjiang, China
| | - Lina Shan
- Department of Internal Medicine-Cardiovascular, The First Hospital of Qiqihar/Affiliated Qiqihar Hospital, Southern Medical University, The Fourth Department of Internal Medicine-Cardiovascular Office, 10th Floor, Building 5, South Hospital of Qiqihar First Hospital, 700 Bukui South Street, Longsha District, Qiqihar, 161005, Heilongjiang, China
| | - Hua Fan
- Department of Laboratory Medicine, The First Hospital of Qiqihar/Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, 161005, Heilongjiang, China
| | - Huixin Jin
- Department of Laboratory Medicine, The First Hospital of Qiqihar/Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, 161005, Heilongjiang, China
| | - Binghui Song
- Department of Internal Medicine-Cardiovascular, The First Hospital of Qiqihar/Affiliated Qiqihar Hospital, Southern Medical University, The Fourth Department of Internal Medicine-Cardiovascular Office, 10th Floor, Building 5, South Hospital of Qiqihar First Hospital, 700 Bukui South Street, Longsha District, Qiqihar, 161005, Heilongjiang, China
| | - Ben Zhang
- Department of Internal Medicine-Cardiovascular, The First Hospital of Qiqihar/Affiliated Qiqihar Hospital, Southern Medical University, The Fourth Department of Internal Medicine-Cardiovascular Office, 10th Floor, Building 5, South Hospital of Qiqihar First Hospital, 700 Bukui South Street, Longsha District, Qiqihar, 161005, Heilongjiang, China.
| |
Collapse
|
38
|
Bazioti V, Halmos B, Westerterp M. T-cell Cholesterol Accumulation, Aging, and Atherosclerosis. Curr Atheroscler Rep 2023; 25:527-534. [PMID: 37395922 PMCID: PMC10471657 DOI: 10.1007/s11883-023-01125-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2023] [Indexed: 07/04/2023]
Abstract
PURPOSE OF REVIEW The majority of leukocytes in advanced human atherosclerotic plaques are T-cells. T-cell subsets exert pro- or anti-atherogenic effects largely via the cytokines they secrete. Tregulatory cells (Tregs) are anti-inflammatory, but may lose these properties during atherosclerosis, proposed to be downstream of cholesterol accumulation. Aged T-cells also accumulate cholesterol. The effects of T-cell cholesterol accumulation on T-cell fate and atherosclerosis are not uniform. RECENT FINDINGS T-cell cholesterol accumulation enhances differentiation into pro-atherogenic cytotoxic T-cells and boosts their killing capacity, depending on the localization and extent of cholesterol accumulation. Excessive cholesterol accumulation induces T-cell exhaustion or T-cell apoptosis, the latter decreasing atherosclerosis but impairing T-cell functionality in terms of killing capacity and proliferation. This may explain the compromised T-cell functionality in aged T-cells and T-cells from CVD patients. The extent of T-cell cholesterol accumulation and its cellular localization determine T-cell fate and downstream effects on atherosclerosis and T-cell functionality.
Collapse
Affiliation(s)
- Venetia Bazioti
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713AV, The Netherlands
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität, 80336, Munich, Germany
| | - Benedek Halmos
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713AV, The Netherlands
| | - Marit Westerterp
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713AV, The Netherlands.
| |
Collapse
|
39
|
Liu H, Zhang J, Xue Z, Chang M, Feng X, Cai Y, Bai L, Wang W, Liu E, Zhao S, Wang R. Deficiency of protein inhibitor of activated STAT3 exacerbates atherosclerosis by modulating VSMC phenotypic switching. Atherosclerosis 2023; 380:117195. [PMID: 37586220 DOI: 10.1016/j.atherosclerosis.2023.117195] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND AND AIMS Phenotypic switching of vascular smooth muscle cells (VSMCs) plays an essential role in the development of atherosclerosis. Protein inhibitor of activated STAT (Pias) regulates VSMCs phenotype via acting as sumo E3 ligase to promote protein sumoylation. Our previous study indicated that Pias3 expression decreased in atherosclerotic lesions. Therefore, this study aimed to explore the role of Pias3 on VSMCs phenotype switching during atherosclerosis. METHODS ApoE-/- and ApoE-/-Pias3-/- double-deficient mice were fed with high-fat/high-cholesterol diet to induce atherosclerosis. Aorta tissues and primary VSMCs were collected to assess plaque formation and VSMCs phenotype. In vitro, Pias3 was overexpressed in A7r5, a VSMCs cell line, by transfection with Pias3 plasmid. Real-time quantitative PCR, immunoblotting, immunoprecipitation, were used to analyze the effect of Pias3 on VSMCs phenotypic switching. RESULTS Pias3 deficiency significantly exacerbated atherosclerotic plaque formation and promoted VSMCs phenotypic switching to a synthetic state within lesion. In vitro, overexpressing Pias3 in VSMCs increased the expression of contractile markers (myosin heavy chain 11, calponin 1), while it decreased the level of synthetic marker (vimentin). Additionally, Pias3 overexpression blocked PDGF-BB-induced VSMCs proliferation and migration. Immunoprecipitation and mass spectrometry results showed that Pias3 enhanced sumoylation and ubiquitination of vimentin, and shortened its half-life. Moreover, the ubiquitination level of vimentin was impaired by 2-D08, a sumoylation inhibitor. This suggests that Pias3 might accelerate the ubiquitination-degradation of vimentin by promoting its sumoylation. CONCLUSIONS These results indicate that Pias3 might ameliorate atherosclerosis progression by suppressing VSMCs phenotypic switching and reducing vimentin protein stability.
Collapse
Affiliation(s)
- Haole Liu
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Jingyi Zhang
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Ziyang Xue
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Mingke Chang
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xinxin Feng
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yifan Cai
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Liang Bai
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Laboratory Animal Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Weirong Wang
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Laboratory Animal Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Enqi Liu
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Laboratory Animal Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Sihai Zhao
- Laboratory Animal Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Rong Wang
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
40
|
Perry RN, Albarracin D, Aherrahrou R, Civelek M. Network Preservation Analysis Reveals Dysregulated Metabolic Pathways in Human Vascular Smooth Muscle Cell Phenotypic Switching. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2023; 16:372-381. [PMID: 37387208 PMCID: PMC10434832 DOI: 10.1161/circgen.122.003781] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/06/2023] [Indexed: 07/01/2023]
Abstract
BACKGROUND Vascular smooth muscle cells are key players involved in atherosclerosis, the underlying cause of coronary artery disease. They can play either beneficial or detrimental roles in lesion pathogenesis, depending on the nature of their phenotypic changes. An in-depth characterization of their gene regulatory networks can help better understand how their dysfunction may impact disease progression. METHODS We conducted a gene expression network preservation analysis in aortic smooth muscle cells isolated from 151 multiethnic heart transplant donors cultured under quiescent or proliferative conditions. RESULTS We identified 86 groups of coexpressed genes (modules) across the 2 conditions and focused on the 18 modules that are least preserved between the phenotypic conditions. Three of these modules were significantly enriched for genes belonging to proliferation, migration, cell adhesion, and cell differentiation pathways, characteristic of phenotypically modulated proliferative vascular smooth muscle cells. The majority of the modules, however, were enriched for metabolic pathways consisting of both nitrogen-related and glycolysis-related processes. Therefore, we explored correlations between nitrogen metabolism-related genes and coronary artery disease-associated genes and found significant correlations, suggesting the involvement of the nitrogen metabolism pathway in coronary artery disease pathogenesis. We also created gene regulatory networks enriched for genes in glycolysis and predicted key regulatory genes driving glycolysis dysregulation. CONCLUSIONS Our work suggests that dysregulation of vascular smooth muscle cell metabolism participates in phenotypic transitioning, which may contribute to disease progression, and suggests that AMT (aminomethyltransferase) and MPI (mannose phosphate isomerase) may play an important role in regulating nitrogen and glycolysis-related metabolism in smooth muscle cells.
Collapse
Affiliation(s)
- R. Noah Perry
- Center for Public Health Genomics (R.N.P., R.A., M.C.), University of Virginia, Charlottesville
- Department of Biomedical Engineering (R.N.P., D.A., M.C.), University of Virginia, Charlottesville
| | - Diana Albarracin
- Department of Biomedical Engineering (R.N.P., D.A., M.C.), University of Virginia, Charlottesville
| | - Redouane Aherrahrou
- Center for Public Health Genomics (R.N.P., R.A., M.C.), University of Virginia, Charlottesville
| | - Mete Civelek
- Center for Public Health Genomics (R.N.P., R.A., M.C.), University of Virginia, Charlottesville
- Department of Biomedical Engineering (R.N.P., D.A., M.C.), University of Virginia, Charlottesville
| |
Collapse
|
41
|
van Dijk RA, Kleemann R, Schaapherder AF, van den Bogaerdt A, Hedin U, Matic L, Lindeman JH. Validating human and mouse tissues commonly used in atherosclerosis research with coronary and aortic reference tissue: similarities but profound differences in disease initiation and plaque stability. JVS Vasc Sci 2023; 4:100118. [PMID: 37810738 PMCID: PMC10551657 DOI: 10.1016/j.jvssci.2023.100118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/14/2023] [Indexed: 10/10/2023] Open
Abstract
Objective Characterization of the atherosclerotic process fully relies on histological evaluation and staging through a consensus grading system. So far, a head-to-head comparison of atherosclerotic process in experimental models and tissue resources commonly applied in atherosclerosis research with the actual human atherosclerotic process is missing. Material and Methods Aspects of the atherosclerotic process present in established murine atherosclerosis models and human carotid endarterectomy specimen were systematically graded using the modified American Heart Association histological classification (Virmani classification). Aspects were aligned with the atherosclerotic process observed in human coronary artery and aortic atherosclerosis reference tissues that were available through biobanks based on human tissue/organ donor material. Results Apart from absent intraplaque hemorrhages in aortic lesions, the histological characteristics of the different stages of human coronary and aortic atherosclerosis are similar. Carotid endarterectomy samples all represent end-stage "fibrous calcified plaque" lesions, although secondary, progressive, and vulnerable lesions with gross morphologies similar to coronary/aortic lesions occasionally present along the primary lesions. For the murine lesions, clear histological parallels were observed for the intermediate lesion types ("pathological intimal thickening," and "early fibroatheroma"). However, none of the murine lesions studied progressed to an equivalent of late fibroatheroma or beyond. Notable contrasts were observed for disease initiation: whereas disease initiation in humans is characterized by a mesenchymal cell influx in the intima, the earliest murine lesions are exclusively intimal, with subendothelial accumulation foam cells. A mesenchymal (and medial) response are absent. In fact, it is concluded that the stage of "adaptive intimal thickening" is absent in all mouse models included in this study. Conclusions The Virmani classification for coronary atherosclerosis can be applied for systematically grading experimental and clinical atherosclerosis. Application of this histological grading tool shows clear parallels for intermediate human and murine atherosclerotic lesions. However, clear contrasts are observed for disease initiation, and late stage atherosclerotic lesions. Carotid endarterectomy all represent end-stage fibrous calcified plaque lesions, although secondary earlier lesions may present in a subset of samples.
Collapse
Affiliation(s)
- Rogier A. van Dijk
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Robert Kleemann
- The Netherlands Organization for Applied Scientific Research (TNO), Department of Metabolic Health Research, TNO Metabolic Health Research, Leiden, The Netherlands
| | | | | | - Ulf Hedin
- Division of Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, Sweden
| | - Ljubica Matic
- Division of Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, Sweden
| | - Jan H.N. Lindeman
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
42
|
Yang L, Du B, Zhang S, Wang M. FAM3A mediates the phenotypic switch of human aortic smooth muscle cells stimulated with oxidised low-density lipoprotein by influencing the PI3K-AKT pathway. In Vitro Cell Dev Biol Anim 2023; 59:431-442. [PMID: 37474885 DOI: 10.1007/s11626-023-00775-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/26/2023] [Indexed: 07/22/2023]
Abstract
Family with sequence similarity 3 member A (FAM3A) is a multifunctional protein that is related to the pathological process of various disorders. FAM3A is reportedly able to affect the phenotypic change of vascular smooth muscle cells under a hypertensive state. Whether FAM3A mediates the phenotypic switch of vascular smooth muscle cells under an atherosclerotic state remains unaddressed. This work investigated the roles and mechanisms of FAM3A in mediating the phenotypic switch of human aortic smooth muscle cells (HASMCs) stimulated with oxidised low-density lipoprotein (ox-LDL) in vitro. FAM3A expression was elevated in HASMCs following ox-LDL treatment. FAM3A silencing led to a suppressive effect on ox-LDL-provoked proliferation, migration and inflammation of HASMCs, whereas FAM3A overexpression had an opposite effect. Ox-LDL elicited a change in HASMCs from a contractile phenotype to a synthetic phenotype, which was inhibited by FAM3A silencing or enhanced by FAM3A overexpression. Further investigation elucidated that FAM3A silencing repressed and FAM3A overexpression promoted ox-LDL-induced activation of the PI3K-AKT pathway in HASMCs. Reactivation of AKT reversed the suppressive effect of FAM3A silencing on the ox-LDL-induced phenotypic switch of HASMCs. Restraining AKT blocked the promoting effect of FAM3A overexpression on the ox-LDL-induced phenotypic switch of HASMCs. In summary, this work elucidates that FAM3A mediates the ox-LDL-induced phenotypic switch of HASMCs by influencing the PI3K-AKT pathway, indicating a potential role for FAM3A in atherosclerosis.
Collapse
Affiliation(s)
- Lei Yang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an City, Shaanxi Province, 710038, People's Republic of China
| | - Baoshun Du
- Second Department of Neurosurgery, Xinxiang Central Hospital, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Shitao Zhang
- Department of Neurosurgery, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi Province, 710018, People's Republic of China
| | - Maode Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an City, Shaanxi Province, 710038, People's Republic of China.
| |
Collapse
|
43
|
Gou T, Hu M, Xu M, Chen Y, Chen R, Zhou T, Liu J, Guo L, Ao H, Ye Q. Novel wine in an old bottle: Preventive and therapeutic potentials of andrographolide in atherosclerotic cardiovascular diseases. J Pharm Anal 2023; 13:563-589. [PMID: 37440909 PMCID: PMC10334359 DOI: 10.1016/j.jpha.2023.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 07/15/2023] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) frequently results in sudden death and poses a serious threat to public health worldwide. The drugs approved for the prevention and treatment of ASCVD are usually used in combination but are inefficient owing to their side effects and single therapeutic targets. Therefore, the use of natural products in developing drugs for the prevention and treatment of ASCVD has received great scholarly attention. Andrographolide (AG) is a diterpenoid lactone compound extracted from Andrographis paniculata. In addition to its use in conditions such as sore throat, AG can be used to prevent and treat ASCVD. It is different from drugs that are commonly used in the prevention and treatment of ASCVD and can not only treat obesity, diabetes, hyperlipidaemia and ASCVD but also inhibit the pathological process of atherosclerosis (AS) including lipid accumulation, inflammation, oxidative stress and cellular abnormalities by regulating various targets and pathways. However, the pharmacological mechanisms of AG underlying the prevention and treatment of ASCVD have not been corroborated, which may hinder its clinical development and application. Therefore, this review summarizes the physiological and pathological mechanisms underlying the development of ASCVD and the in vivo and in vitro pharmacological effects of AG on the relative risk factors of AS and ASCVD. The findings support the use of the old pharmacological compound ('old bottle') as a novel drug ('novel wine') for the prevention and treatment of ASCVD. Additionally, this review summarizes studies on the availability as well as pharmaceutical and pharmacokinetic properties of AG, aiming to provide more information regarding the clinical application and further research and development of AG.
Collapse
Affiliation(s)
- Tingting Gou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Minghao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Min Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuchen Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Rong Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tao Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Junjing Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Li Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qiang Ye
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
44
|
Mahdinia E, Shokri N, Taheri AT, Asgharzadeh S, Elahimanesh M, Najafi M. Cellular crosstalk in atherosclerotic plaque microenvironment. Cell Commun Signal 2023; 21:125. [PMID: 37254185 DOI: 10.1186/s12964-023-01153-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/28/2023] [Indexed: 06/01/2023] Open
Abstract
Atherosclerosis is an underlying pathology of many vascular diseases as a result of cellular, structural and molecular dysfunctions within the sub-endothelial space. This review deals with the events involved in the formation, growth and remodeling of plaque, including the cell recruitment, cell polarization, and cell fat droplets. It also describes cross talking between endothelial cells, macrophages, and vascular smooth muscle cells, as well as the cellular pathways involved in plaque development in the plaque microenvironment. Finally, it describes the plaque structural components and the role of factors involved in the rupture and erosion of plaques in the vessel. Video Abstract.
Collapse
Affiliation(s)
- Elmira Mahdinia
- Department of Clinical Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nafiseh Shokri
- Department of Clinical Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abdolkarim Talebi Taheri
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Asgharzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Ghazvin University of Medical Sciences, Ghazvin, Iran
| | - Mohammad Elahimanesh
- Department of Clinical Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Najafi
- Department of Clinical Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Microbial Biotechnology Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
45
|
Corbett CB, St Paul A, Leigh T, Kelemen SE, Peluzzo AM, Okune RN, Eguchi S, Haines DS, Autieri MV. Genetic Deletion of FXR1 Reduces Intimal Hyperplasia and Induces Senescence in Vascular Smooth Muscle Cells. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:638-653. [PMID: 37080662 PMCID: PMC10155270 DOI: 10.1016/j.ajpath.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/21/2022] [Accepted: 01/12/2023] [Indexed: 04/22/2023]
Abstract
Vascular smooth muscle cells (VSMC) play a critical role in the development and pathogenesis of intimal hyperplasia indicative of restenosis and other vascular diseases. Fragile-X related protein-1 (FXR1) is a muscle-enhanced RNA binding protein whose expression is increased in injured arteries. Previous studies suggest that FXR1 negatively regulates inflammation, but its causality in vascular disease is unknown. In the current study, RNA-sequencing of FXR1-depleted VSMC identified many transcripts with decreased abundance, most of which were associated with proliferation and cell division. mRNA abundance and stability of a number of these transcripts were decreased in FXR1-depleted hVSMC, as was proliferation (P < 0.05); however, increases in beta-galactosidase (P < 0.05) and γH2AX (P < 0.01), indicative of senescence, were noted. Further analysis showed increased abundance of senescence-associated genes with FXR1 depletion. A novel SMC-specific conditional knockout mouse (FXR1SMC/SMC) was developed for further analysis. In a carotid artery ligation model of intimal hyperplasia, FXR1SMC/SMC mice had significantly reduced neointima formation (P < 0.001) after ligation, as well as increases in senescence drivers p16, p21, and p53 compared with several controls. These results suggest that in addition to destabilization of inflammatory transcripts, FXR1 stabilized cell cycle-related genes in VSMC, and absence of FXR1 led to induction of a senescent phenotype, supporting the hypothesis that FXR1 may mediate vascular disease by regulating stability of proliferative mRNA in VSMC.
Collapse
Affiliation(s)
- Cali B Corbett
- Department of Cardiovascular Sciences, Lemole Center for Integrated Lymphatics Research, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Amanda St Paul
- Department of Cardiovascular Sciences, Lemole Center for Integrated Lymphatics Research, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Tani Leigh
- Department of Cardiovascular Sciences, Lemole Center for Integrated Lymphatics Research, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Sheri E Kelemen
- Department of Cardiovascular Sciences, Lemole Center for Integrated Lymphatics Research, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Amanda M Peluzzo
- Department of Cardiovascular Sciences, Lemole Center for Integrated Lymphatics Research, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Rachael N Okune
- Department of Cardiovascular Sciences, Lemole Center for Integrated Lymphatics Research, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Dale S Haines
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Michael V Autieri
- Department of Cardiovascular Sciences, Lemole Center for Integrated Lymphatics Research, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania.
| |
Collapse
|
46
|
Jeong SJ, Oh GT. Unbalanced Redox With Autophagy in Cardiovascular Disease. J Lipid Atheroscler 2023; 12:132-151. [PMID: 37265853 PMCID: PMC10232220 DOI: 10.12997/jla.2023.12.2.132] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/27/2023] [Accepted: 04/13/2023] [Indexed: 06/03/2023] Open
Abstract
Precise redox balance is essential for the optimum health and physiological function of the human body. Furthermore, an unbalanced redox state is widely believed to be part of numerous diseases, ultimately resulting in death. In this review, we discuss the relationship between redox balance and cardiovascular disease (CVD). In various animal models, excessive oxidative stress has been associated with increased atherosclerotic plaque formation, which is linked to the inflammation status of several cell types. However, various antioxidants can defend against reactive oxidative stress, which is associated with an increased risk of CVD and mortality. The different cardiovascular effects of these antioxidants are presumably due to alterations in the multiple pathways that have been mechanistically linked to accelerated atherosclerotic plaque formation, macrophage activation, and endothelial dysfunction in animal models of CVD, as well as in in vitro cell culture systems. Autophagy is a regulated cell survival mechanism that removes dysfunctional or damaged cellular organelles and recycles the nutrients for the generation of energy. Furthermore, in response to atherogenic stress, such as the generation of reactive oxygen species, oxidized lipids, and inflammatory signaling between cells, autophagy protects against plaque formation. In this review, we characterize the broad spectrum of oxidative stress that influences CVD, summarize the role of autophagy in the content of redox balance-associated pathways in atherosclerosis, and discuss potential therapeutic approaches to target CVD by stimulating autophagy.
Collapse
Affiliation(s)
- Se-Jin Jeong
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Goo Taeg Oh
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences, Ewha Womans University, Seoul, Korea
| |
Collapse
|
47
|
Takaguri A, Ishizaka R, Maki S, Satoh K. The role of tribbles homolog 2 in vascular smooth muscle cell proliferation. Cell Biol Int 2023; 47:787-795. [PMID: 36626273 DOI: 10.1002/cbin.11982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/09/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023]
Abstract
Tribbles homolog 2 (TRIB2) functions as an adapter protein that regulates signal transductions involved in a variety of cellular functions, including tumorigenesis. However, the role of TRIB2 in the proliferation of vascular smooth muscle cells (VSMCs) and the underlying expression mechanisms remain unclear. The present study investigated the role of TRIB2 in VSMC proliferation and revealed that TRIB2 expression increases following vascular injury and platelet-derived growth factor (PDGF)-BB-stimulated VSMCs. We found that pretreatment with diphenyleneiodonium (a nicotinamide adenine dinucleotide phosphate oxidase inhibitor), U0126 (an inhibitor of mitogen-activated protein kinase kinase 1 [MEK1]), or siRNA targeting the gene encoding early growth response 1 (EGR-1) significantly inhibits PDGF-BB-induced TRIB2 expression in VSMCs. Furthermore, TRIB2 knockdown significantly inhibits PDGF-BB-induced proliferation of VSMCs but does not affect the phosphorylation of AKT. However, phosphorylation of ERK1 and expression of proliferating cell nuclear antibody are significantly suppressed in VSMCs by PDGF-BB stimulation. Thus, PDGF-BB-induced TRIB2 expression is mediated by ROS/ERK/EGR-1 pathways and plays a critical role in VSMC proliferation via modulation of ERK activity. We propose TRIB2 as a promising therapeutic target for the prevention of neointima formation and vascular disease.
Collapse
Affiliation(s)
- Akira Takaguri
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Teine-ku, Japan
| | - Rena Ishizaka
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Teine-ku, Japan
| | - Shota Maki
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Teine-ku, Japan
| | - Kumi Satoh
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Teine-ku, Japan
| |
Collapse
|
48
|
Ganguly R, Ngoruh A, Ingty P, Yadav SK, Bhattacharjee A. Identification of an inhibitor for atherosclerotic enzyme NOX-1 to inhibit ROS production. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2023. [DOI: 10.1186/s43094-023-00474-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
Abstract
Background
NOX-1 overexpression has been observed in various studies, persons with diabetes or cardiovascular conditions. NOX-1 orchestrates the disease pathogenesis of various cardiovascular conditions such as atherosclerotic plaque development and is a very crucial biomarker. Therefore, this study was carried out to deduce the three-dimensional modelled structure of NOX-1 using DeepMind AlphaFold-2 to find meaningful insight into the structural biology. Extensive in silico approaches have been used to determine the active pocket, virtually screen large chemical space to identify potential inhibitors. The role of the key amino acid residues was also deduced using alanine scanning mutagenesis contributing to the catalytic process and to the overall stability of NOX-1.
Results
The modelled structure of NOX-1 protein was validated using ERRAT. The ERRAT statistics with 9 amino acids sliding window have shown a confidence score of 96.937%. According to the Ramachandran statistics, 96.60% of the residues lie within the most favoured region, and 2.80% of residues lie in the additionally allowed region, which gives an overall of 99.4% residues in the three quadrants in the plot. GKT-831 which is a referral drug in this study has shown a GOLD interaction score of 62.12 with respect to the lead molecule zinc000059139266 which has shown a higher GOLD score of 78.07. Alanine scanning mutagenesis studies has shown that Phe201, Leu98 and Leu76 are found to be the key interacting residues in hydrophobic interactions. Similarly, Tyr324, Arg287 and Cys73 are major amino acid residues in the hydrogen bond interactions.
Conclusions
NOX-1 overexpression leads to heightened ROS production resulting in catastrophic outcomes. The modelled structure of NOX-1 has a good stereochemistry with respect to Ramachandran plot. The lead molecule zinc000059139266 has shown to have a very high interaction score of 78.07 compared to the referral drug GKT-831 with a score of 62.12. There is an excellent scope for the lead molecule to progress further into in vitro and in vivo studies.
Collapse
|
49
|
Ruan Q, Guan P, Qi W, Li J, Xi M, Xiao L, Zhong S, Ma D, Ni J. Porphyromonas gingivalis regulates atherosclerosis through an immune pathway. Front Immunol 2023; 14:1103592. [PMID: 36999040 PMCID: PMC10043234 DOI: 10.3389/fimmu.2023.1103592] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/01/2023] [Indexed: 03/15/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease, involving a pathological process of endothelial dysfunction, lipid deposition, plaque rupture, and arterial occlusion, and is one of the leading causes of death in the world population. The progression of AS is closely associated with several inflammatory diseases, among which periodontitis has been shown to increase the risk of AS. Porphyromonas gingivalis (P. gingivalis), presenting in large numbers in subgingival plaque biofilms, is the “dominant flora” in periodontitis, and its multiple virulence factors are important in stimulating host immunity. Therefore, it is significant to elucidate the potential mechanism and association between P. gingivalis and AS to prevent and treat AS. By summarizing the existing studies, we found that P. gingivalis promotes the progression of AS through multiple immune pathways. P. gingivalis can escape host immune clearance and, in various forms, circulate with blood and lymph and colonize arterial vessel walls, directly inducing local inflammation in blood vessels. It also induces the production of systemic inflammatory mediators and autoimmune antibodies, disrupts the serum lipid profile, and thus promotes the progression of AS. In this paper, we summarize the recent evidence (including clinical studies and animal studies) on the correlation between P. gingivalis and AS, and describe the specific immune mechanisms by which P. gingivalis promotes AS progression from three aspects (immune escape, blood circulation, and lymphatic circulation), providing new insights into the prevention and treatment of AS by suppressing periodontal pathogenic bacteria.
Collapse
Affiliation(s)
- Qijun Ruan
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Peng Guan
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Weijuan Qi
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Jiatong Li
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Mengying Xi
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Limin Xiao
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Sulan Zhong
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Dandan Ma
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
- *Correspondence: Dandan Ma, ; Jia Ni,
| | - Jia Ni
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
- *Correspondence: Dandan Ma, ; Jia Ni,
| |
Collapse
|
50
|
Guha Ray A, Odum OP, Wiseman D, Weinstock A. The diverse roles of macrophages in metabolic inflammation and its resolution. Front Cell Dev Biol 2023; 11:1147434. [PMID: 36994095 PMCID: PMC10041730 DOI: 10.3389/fcell.2023.1147434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/14/2023] [Indexed: 03/14/2023] Open
Abstract
Macrophages are one of the most functionally diverse immune cells, indispensable to maintain tissue integrity and metabolic health. Macrophages perform a myriad of functions ranging from promoting inflammation, through inflammation resolution to restoring and maintaining tissue homeostasis. Metabolic diseases encompass a growing list of diseases which develop from a mix of genetics and environmental cues leading to metabolic dysregulation and subsequent inflammation. In this review, we summarize the contributions of macrophages to four metabolic conditions-insulin resistance and adipose tissue inflammation, atherosclerosis, non-alcoholic fatty liver disease and neurodegeneration. The role of macrophages is complex, yet they hold great promise as potential therapies to address these growing health concerns.
Collapse
Affiliation(s)
| | | | | | - Ada Weinstock
- Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL, United States
| |
Collapse
|