1
|
Ahmadizad Firouzjaei A, Aghaee-Bakhtiari SH. Integrating cuproptosis and immunosenescence: A novel therapeutic strategy in cancer treatment. Biochem Biophys Rep 2025; 42:101983. [PMID: 40224540 PMCID: PMC11986980 DOI: 10.1016/j.bbrep.2025.101983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/01/2025] [Accepted: 03/17/2025] [Indexed: 04/15/2025] Open
Abstract
Recent advancements in our understanding of cell death mechanisms have progressed beyond traditional apoptosis to encompass various forms of regulated cell death, notably cuproptosis. This copper-dependent cell death occurs when copper interacts with lipoylated enzymes in the tricarboxylic acid cycle, leading to protein aggregation and subsequent cell death. Alongside this, immunosenescence the gradual decline in immune function due to aging has emerged as a significant factor in cancer progression and response to treatment. Innovative strategies that integrate cuproptosis and immunosenescence are showing considerable promise in cancer therapy. By leveraging the altered copper metabolism in cancer cells, cuproptosis can selectively induce cell death, effectively targeting and eliminating tumors. Simultaneously, addressing immunosenescence can rejuvenate the aging immune system, enhancing its capacity to identify and destroy cancer cells. This dual approach creates a synergistic effect, optimizing therapeutic efficacy by directly attacking tumor cells while revitalizing the immune response. Such integration bolsters the defense against cancer progression and recurrence and holds great potential for advancing cancer treatment modalities and improving patient outcomes. This paper delves into the interactions between cuproptosis and immunosenescence, emphasizing their implications for developing innovative cancer therapies.
Collapse
Affiliation(s)
- Ali Ahmadizad Firouzjaei
- Bioinformatics Research Center, Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Hamid Aghaee-Bakhtiari
- Bioinformatics Research Center, Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology and Nanotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Permar SR, Schleiss MR, Plotkin SA. A vaccine against cytomegalovirus: how close are we? J Clin Invest 2025; 135:e182317. [PMID: 39744948 DOI: 10.1172/jci182317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
The pursuit of a vaccine against the human cytomegalovirus (HCMV) has been ongoing for more than 50 years. HCMV is the leading infectious cause of birth defects, including damage to the brain, and is a common cause of complications in organ transplantation. The complex biology of HCMV has made vaccine development difficult, but a recent meeting sponsored by the National Institute of Allergy and Infectious Diseases in September of 2023 brought together experts from academia, industry, and federal agencies to discuss progress in the field. The meeting reviewed the status of candidate HCMV vaccines under study and the challenges in clinical trial design in demonstrating efficacy against congenital CMV infection or the reduction of HCMV disease following solid organ transplantation or hematopoietic stem cell transplantation. Discussion in the meeting revealed that, with the numerous candidate vaccines that are under study, it is clear that a safe and effective HCMV vaccine is within reach. Meeting attendees achieved a consensus opinion that even a partially effective vaccine would have a major effect on the global health consequences of HCMV infection.
Collapse
Affiliation(s)
- Sallie R Permar
- Department of Pediatrics, Weill Cornell Medical Center, New York, New York, USA
| | - Mark R Schleiss
- Division of Pediatric Infectious Diseases and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Stanley A Plotkin
- Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Vaxconsult, Doylestown, Pennsylvania, USA
| |
Collapse
|
3
|
Razonable RR. Pathogen-specific cell-mediated immunity to guide the management of cytomegalovirus in solid organ transplantation: state of the art clinical review. Expert Rev Clin Immunol 2024; 20:1367-1380. [PMID: 39039915 DOI: 10.1080/1744666x.2024.2384060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/21/2024] [Indexed: 07/24/2024]
Abstract
INTRODUCTION Cytomegalovirus (CMV) is a common opportunistic infection after solid organ transplantation, with significant impact on morbidity and long-term survival. Despite advances in diagnostics and therapeutics, the management of CMV remains very challenging. AREAS COVERED This article reviews emerging data on the clinical utility of laboratory assays that quantify cell-mediated immune responses to CMV. Observational studies have consistently demonstrated that a deficiency in pathogen-specific cell-mediated immunity is correlated with a heightened risk of primary, reactivation or recurrent CMV after transplantation. A limited number of interventional studies have recently investigated cell-mediated immune assays in guiding the prevention and treatment of CMV infection after solid organ transplantation. EXPERT OPINION The pathogenesis and outcome of CMV after solid organ transplantion reflect the interplay between viral replication and CMV-specific immune reconstitution. Research in CMV-specific cell-mediated immunity paved way for the development of several laboratory assays that may assist clinicians in predicting the risk of CMV after transplantation, individualize the approach to CMV disease prevention, guide the need and duration of treatment of CMV infection, and predict the risk of relapse after treatment. More interventional studies are needed to further solidify the role of cell-mediated immune assays in various clinical situations after transplantation.
Collapse
Affiliation(s)
- Raymund R Razonable
- Division of Public Health, Infectious Diseases and Occupational Medicine, and the William J von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
4
|
Cuesta-Martín de la Cámara R, Torices-Pajares A, Miguel-Berenguel L, Reche-Yebra K, Frauca-Remacha E, Hierro-Llanillo L, Muñoz-Bartolo G, Lledín-Barbacho MD, Gutiérrez-Arroyo A, Martínez-Feito A, López-Granados E, Sánchez-Zapardiel E. Epstein-Barr virus-specific T-cell response in pediatric liver transplant recipients: a cross-sectional study by multiparametric flow cytometry. Front Immunol 2024; 15:1479472. [PMID: 39512353 PMCID: PMC11540634 DOI: 10.3389/fimmu.2024.1479472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/07/2024] [Indexed: 11/15/2024] Open
Abstract
Background Epstein-Barr virus (EBV) specific T-cell response measurement can help adjust immunosuppression in transplant patients with persistent infections. We aim to define T-cell responses against EBV in a cohort of pediatric liver-transplant patients. Methods Thirty-eight immunosuppressed pediatric liver-transplant patients (IP) and 25 EBV-seropositive healthy-adult controls (HC) were included in our cross-sectional study. Based on their EBV serological (S) and viral load (VL) status, patients were categorized into IP-SNEG, IP-SPOSVLNEG and IP-SPOSVLPOS groups. T-cell response was assessed at two timepoints by stimulating cells with EBV peptides (PepTivator®) and performing intracellular-cytokine and activation-induced marker staining. Background subtraction was used to determine EBV-specific T-lymphocyte frequency. Results Polyfunctional CD8+ T cells indicated previous EBV contact (IP-SNEG 0.00% vs IP-SPOS 0.04% and HC 0.02%; p=0.001 and p=0.01, respectively). Polyfunctional CD8+CD107a+IFNɣ+IL2-TNFα- profile was increased in serology-positive (IP-SNEG 0.01% vs IP-SPOS 0.13% and HC 0.03%; p=0.01 and p=0.50, respectively) and viral-load positive (IP-SPOSVLPOS 0.43% vs IP-SPOSVLNEG 0.07% and HC 0.03%; p=0.03 and p=0.001, respectively) patients. Central-memory cells were increased among serology-positive adults (IP-SNEG 0.00% vs IP-SPOS 0.13% and HC 4.33%; p=0.58 and p=0.002, respectively). At the second timepoint, IP-SNEG patients remained negative (first visit 0.01% vs second visit 0.00%, p=0.44). On the other hand, IP-SPOSVLPOS patients had cleared viral loads and, subsequently, decreased polyfunctional CD8+CD107a+IFNɣ+IL2-TNFα- cells (first visit 0.43% vs second visit 0.10%, p=0.81). Conclusion Polyfunctional CD8+ EBV-specific T-cell response allows detecting EBV previous contact in liver-transplant children. %CD8+CD107a+IFNɣ+IL2-TNFα- is increased in patients with positive viral loads. Central memory CD4+ T-cell population more effectively determines prior EBV-exposure in adults.
Collapse
Affiliation(s)
- Ricardo Cuesta-Martín de la Cámara
- Clinical Immunology Department, University Hospital La Paz, Madrid, Spain
- Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
- Medicine and surgery Department, Autonomous University of Madrid, Madrid, Spain
| | - Andrea Torices-Pajares
- Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | | | - Keren Reche-Yebra
- Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Esteban Frauca-Remacha
- Paediatric Hepatology Department, University Hospital La Paz, Madrid, Spain
- European Reference Network (ERN) RARE LIVER, Madrid, Spain
- European Reference Network (ERN) TransplantChild, Madrid, Spain
| | - Loreto Hierro-Llanillo
- Paediatric Hepatology Department, University Hospital La Paz, Madrid, Spain
- European Reference Network (ERN) RARE LIVER, Madrid, Spain
- European Reference Network (ERN) TransplantChild, Madrid, Spain
| | - Gema Muñoz-Bartolo
- Paediatric Hepatology Department, University Hospital La Paz, Madrid, Spain
- European Reference Network (ERN) RARE LIVER, Madrid, Spain
- European Reference Network (ERN) TransplantChild, Madrid, Spain
| | - María Dolores Lledín-Barbacho
- Paediatric Hepatology Department, University Hospital La Paz, Madrid, Spain
- European Reference Network (ERN) RARE LIVER, Madrid, Spain
- European Reference Network (ERN) TransplantChild, Madrid, Spain
| | | | - Ana Martínez-Feito
- Clinical Immunology Department, University Hospital La Paz, Madrid, Spain
| | - Eduardo López-Granados
- Clinical Immunology Department, University Hospital La Paz, Madrid, Spain
- Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
- European Reference Network (ERN) TransplantChild, Madrid, Spain
- Centre for Biomedical Network Research on rare diseases (CIBERER U767), Madrid, Spain
| | - Elena Sánchez-Zapardiel
- Clinical Immunology Department, University Hospital La Paz, Madrid, Spain
- Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
- European Reference Network (ERN) TransplantChild, Madrid, Spain
| |
Collapse
|
5
|
Zamora D, Dasgupta S, Stevens-Ayers T, Edmison B, Winston DJ, Razonable RR, Mehta AK, Lyon GM, Boeckh M, Singh N, Koelle DM, Limaye AP. Cytomegalovirus immunity in high-risk liver transplant recipients following preemptive antiviral therapy versus prophylaxis. JCI Insight 2024; 9:e180115. [PMID: 39099206 PMCID: PMC11457861 DOI: 10.1172/jci.insight.180115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024] Open
Abstract
CMV-specific T cells, NK cells, and neutralizing antibodies (nAbs) were assessed in a randomized trial of CMV prevention with preemptive antiviral therapy (PET) versus prophylactic antiviral therapy (PRO) in donor-seropositive/recipient-seronegative (D+R-) liver transplant recipients (LTxR) at 100 days (end of intervention) and at 6 and 12 months after transplant. The PET group had significantly increased numbers of circulating polyfunctional T cells, NK cells, and nAbs compared with the PRO group at day 100, and several CMV immune parameters remained significantly higher by 12 months after transplant. Among PET recipients, preceding CMV viremia (vs. no preceding viremia) was associated with significantly higher levels of most CMV immune parameters at day 100. Higher numbers of CMV-specific polyfunctional T cells and NKG2C+ NK cells at day 100 were associated with a decreased incidence of CMV disease in multivariable Cox regression. The strongest associations with protection against CMV disease were with increased numbers of CMV-specific polyfunctional CD4+ T cells, CD3negCD56dimCD57negNKG2Cpos cells, and CD3negCD56dimCD57posNKG2Cpos NK cells. Our results suggest that PET is superior to PRO for CMV disease prevention by allowing low-level CMV replication and associated antigen exposure that is promptly controlled by antiviral therapy and facilitates enhanced CMV protective immunity in D+R- LTxR.
Collapse
Affiliation(s)
- Danniel Zamora
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Sayan Dasgupta
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Terry Stevens-Ayers
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Bradley Edmison
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Drew J. Winston
- Division of Infectious Diseases, UCLA Medical Center, Los Angeles, California, USA
| | - Raymund R. Razonable
- Division of Public Health, Infectious Diseases, and Occupational Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Aneesh K. Mehta
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
| | - G. Marshall Lyon
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Michael Boeckh
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Nina Singh
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Transplant Infectious Diseases, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| | - David M. Koelle
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Global Health and
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Benaroya Research Institute, Seattle, Washington, USA
| | - Ajit P. Limaye
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| |
Collapse
|
6
|
Zhang Y, Zhang M, Wu H, Wu X, Zheng H, Feng J, Wang M, Wang J, Luo L, Xiao H, Qiao C, Li X, Zheng Y, Huang W, Wang Y, Wang Y, Feng J, Chen G. Afucosylated anti-EBOV antibody MIL77-3 engages sGP to elicit NK cytotoxicity. J Virol 2024; 98:e0068524. [PMID: 39162435 PMCID: PMC11406966 DOI: 10.1128/jvi.00685-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 06/24/2024] [Indexed: 08/21/2024] Open
Abstract
MIL77-3 is one component of antibody cocktail that is produced in our lab and represents an effective regimen for animals suffering from Zaire Ebolavirus (EBOV) infection. MIL77-3 is engineered to increase its affinity for the FcγRIIIa (CD16a) by deleting the fucose in the framework region. The potential effects of this modification on host immune responses, however, remain largely unknown. Herein, we demonstrated that MIL77-3 recognized secreted glycoproptein (sGP), produced by EBOV, and formed the immunocomplex to potently augment antibody-dependent cytotoxicity of human peripheral blood-derived natural killer cells (pNKs), including CD56dim and CD56bright subpopulations, in contrast to the counterparts (Mab114, rEBOV548, fucosylated MIL77-3). Intriguingly, this effect was not observed when NK92-CD16a cell line was utilized and restored by the addition of beads-coupled or membrane-anchored sGP in combination with MIL77-3. Furthermore, sGP bound to unrecognized receptors on T cells contaminated in pNKs rather than NK92-CD16a cells. Administration of beads-coupled sGP/MIL77-3 complex in mice elicited NK activation. Overall, this work reveals an immune-stimulating function of sGP/MIL77-3 complex by triggering cytotoxic activity of NK cells, highlighting the necessity to evaluate the potential impact of MIL77-3 on host immune reaction in clinical trials. IMPORTANCE Zaire Ebolavirus (EBOV) is highly lethal and causes sporadic outbreaks. The passive administration of monoclonal antibodies (mAbs) represents a promising treatment regimen against EBOV. Mounting evidence has shown that the efficacy of a subset of therapeutic mAbs in vivo is intimately associated with its capacity to trigger NK activity, supporting glycomodification of Fc region of anti-EBOV mAbs as a putative strategy to enhance Fc-mediated immune effector function as well as protection in vivo. Our work here uncovers the potential harmful influence of this modification on host immune responses, especially for mAbs with cross-reactivity to secreted glycoproptein (sGP) (e.g., MIL77-3), and highlights it is necessary to evaluate the NK-stimulating activity of a fucosylated mAb engaged with sGP when a new candidate is developed.
Collapse
Affiliation(s)
- Yuting Zhang
- Institute of Pharmacology and Toxicology, Beijing, China
| | - Min Zhang
- Institute of Pharmacology and Toxicology, Beijing, China
| | - Haiyan Wu
- Institute of Pharmacology and Toxicology, Beijing, China
| | - Xiaonan Wu
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, China
| | - Hang Zheng
- Institute of Pharmacology and Toxicology, Beijing, China
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Junjuan Feng
- Institute of Pharmacology and Toxicology, Beijing, China
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Mianjing Wang
- Institute of Pharmacology and Toxicology, Beijing, China
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Jing Wang
- Institute of Pharmacology and Toxicology, Beijing, China
| | - Longlong Luo
- Institute of Pharmacology and Toxicology, Beijing, China
| | - He Xiao
- Institute of Pharmacology and Toxicology, Beijing, China
| | - Chunxia Qiao
- Institute of Pharmacology and Toxicology, Beijing, China
| | - Xinying Li
- Institute of Pharmacology and Toxicology, Beijing, China
| | - Yuanqiang Zheng
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Weijin Huang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Youchun Wang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Yi Wang
- Department of Hematology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jiannan Feng
- Institute of Pharmacology and Toxicology, Beijing, China
| | - Guojiang Chen
- Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
7
|
Harnois MJ, Barfield R, Dennis M, Rodgers N, Pollara J, Spies CS, Snyder LD, Chan C, Jackson AM, Palmer SM, Permar SR. Evaluating longitudinal cytomegalovirus-specific humoral immune responses and association with DNAemia risk in seropositive lung transplant recipients. JHLT OPEN 2024; 5:100113. [PMID: 40143922 PMCID: PMC11935385 DOI: 10.1016/j.jhlto.2024.100113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Background Cytomegalovirus (CMV) is the most common viral infection among lung transplant recipients and is associated with chronic lung allograft dysfunction. There is a need for better therapeutics as well as biomarkers to enable effective stratification of CMV seropositive patient risk for developing CMV DNAemia to inform prophylaxis duration. Methods CMV-specific immunoglobulin G (IgG) binding and functional responses were evaluated in a discovery cohort of longitudinal plasma samples from 51 CMV seropositive human lung transplant recipients, collected as part of the clinical trials in organ transplantation (CTOT)-20 and CTOT-22 consortium studies. Pre-transplant plasma from an additional 43 CMV seropositive lung transplant recipients was evaluated as a validation cohort. Results In the discovery cohort with longitudinal samples, pre-transplant plasma IgG binding to CMV surface glycoproteins glycoprotein H (gH)/glycoprotein L (gL), gH/gL/glycoprotein O (gO), and pentameric complex, as well as neutralization of CMV in epithelial cells, is associated with increased risk of CMV DNAemia post-prophylaxis. However, these results were not confirmed by the validation cohort. Conclusions While quantification of pre-transplant CMV-specific antibody responses showed association with DNAemia in the discovery cohort, additional clinical variables and/or known risk factors for CMV, such as patient CMV-specific T-cell responses, may need to be considered in combination with humoral immunity to effectively stratify risk of CMV DNAemia.
Collapse
Affiliation(s)
- Melissa J. Harnois
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Richard Barfield
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, North Carolina
- Center for Human Systems Immunology, Duke University Medical Center, Durham, North Carolina
| | - Maria Dennis
- Department of Pediatrics, Weill Cornell Medicine, New York, New York
| | - Nicole Rodgers
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Justin Pollara
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Connor S. Spies
- Division of Pulmonary, Allergy and Critical Care, Duke University School of Medicine, Durham, North Carolina
| | - Laurie D. Snyder
- Division of Pulmonary, Allergy and Critical Care, Duke University School of Medicine, Durham, North Carolina
| | - Cliburn Chan
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, North Carolina
- Center for Human Systems Immunology, Duke University Medical Center, Durham, North Carolina
| | - Annette M. Jackson
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Scott M. Palmer
- Division of Pulmonary, Allergy and Critical Care, Duke University School of Medicine, Durham, North Carolina
| | - Sallie R. Permar
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina
- Department of Pediatrics, Weill Cornell Medicine, New York, New York
| |
Collapse
|
8
|
Ye X, Shih DJH, Ku Z, Hong J, Barrett DF, Rupp RE, Zhang N, Fu TM, Zheng WJ, An Z. Transcriptional signature of durable effector T cells elicited by a replication defective HCMV vaccine. NPJ Vaccines 2024; 9:70. [PMID: 38561339 PMCID: PMC10984989 DOI: 10.1038/s41541-024-00860-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Human cytomegalovirus (HCMV) is a leading infectious cause of birth defects and the most common opportunistic infection that causes life-threatening diseases post-transplantation; however, an effective vaccine remains elusive. V160 is a live-attenuated replication defective HCMV vaccine that showed a 42.4% efficacy against primary HCMV infection among seronegative women in a phase 2b clinical trial. Here, we integrated the multicolor flow cytometry, longitudinal T cell receptor (TCR) sequencing, and single-cell RNA/TCR sequencing approaches to characterize the magnitude, phenotype, and functional quality of human T cell responses to V160. We demonstrated that V160 de novo induces IE-1 and pp65 specific durable polyfunctional effector CD8 T cells that are comparable to those induced by natural HCMV infection. We identified a variety of V160-responsive T cell clones which exhibit distinctive "transient" and "durable" expansion kinetics, and revealed a transcriptional signature that marks durable CD8 T cells post-vaccination. Our study enhances the understanding of human T-cell immune responses to V160 vaccination.
Collapse
Affiliation(s)
- Xiaohua Ye
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Infectious Disease Research, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - David J H Shih
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, USA
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Zhiqiang Ku
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Junping Hong
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Diane F Barrett
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Richard E Rupp
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Tong-Ming Fu
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - W Jim Zheng
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
9
|
Benede N, Tincho MB, Walters A, Subbiah V, Ngomti A, Baguma R, Butters C, Hahnle L, Mennen M, Skelem S, Adriaanse M, Facey-Thomas H, Scott C, Day J, Spracklen TF, van Graan S, Balla SR, Moyo-Gwete T, Moore PL, MacGinty R, Botha M, Workman L, Johnson M, Goldblatt D, Zar HJ, Ntusi NA, Zühlke L, Webb K, Riou C, Burgers WA, Keeton RS. Distinct T cell polyfunctional profile in SARS-CoV-2 seronegative children associated with endemic human coronavirus cross-reactivity. iScience 2024; 27:108728. [PMID: 38235336 PMCID: PMC10792240 DOI: 10.1016/j.isci.2023.108728] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/19/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
SARS-CoV-2 infection in children typically results in asymptomatic or mild disease. There is a paucity of studies on SARS-CoV-2 antiviral immunity in African children. We investigated SARS-CoV-2-specific T cell responses in 71 unvaccinated asymptomatic South African children who were seropositive or seronegative for SARS-CoV-2. SARS-CoV-2-specific CD4+ T cell responses were detectable in 83% of seropositive and 60% of seronegative children. Although the magnitude of the CD4+ T cell response did not differ significantly between the two groups, their functional profiles were distinct, with SARS-CoV-2 seropositive children exhibiting a higher proportion of polyfunctional T cells compared to their seronegative counterparts. The frequency of SARS-CoV-2-specific CD4+ T cells in seronegative children was associated with the endemic human coronavirus (HCoV) HKU1 IgG response. Overall, the presence of SARS-CoV-2-responding T cells in seronegative children may result from cross-reactivity to endemic coronaviruses and could contribute to the relative protection from disease observed in SARS-CoV-2-infected children.
Collapse
Affiliation(s)
- Ntombi Benede
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Marius B. Tincho
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Avril Walters
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Vennesa Subbiah
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Amkele Ngomti
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Richard Baguma
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Claire Butters
- Division of Paediatric Rheumatology, Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, University of Cape Town, Observatory, South Africa
| | - Lina Hahnle
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Observatory, South Africa
| | - Mathilda Mennen
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Observatory, South Africa
| | - Sango Skelem
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Observatory, South Africa
| | - Marguerite Adriaanse
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Observatory, South Africa
| | - Heidi Facey-Thomas
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - Christiaan Scott
- Division of Paediatric Rheumatology, Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, University of Cape Town, Observatory, South Africa
| | - Jonathan Day
- Division of Paediatric Rheumatology, Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, University of Cape Town, Observatory, South Africa
| | - Timothy F. Spracklen
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
- Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
- South African Medical Research Council, Francie Van Zijl Drive, Parow Cape Town, South Africa
| | - Strauss van Graan
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Sashkia R. Balla
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Thandeka Moyo-Gwete
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Penny L. Moore
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Rae MacGinty
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
- Medical Research Council (MRC) Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Maresa Botha
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
- Medical Research Council (MRC) Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Lesley Workman
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
- Medical Research Council (MRC) Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Marina Johnson
- Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, UK
| | - David Goldblatt
- Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, UK
| | - Heather J. Zar
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
- Medical Research Council (MRC) Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, South Africa
| | - Ntobeko A.B. Ntusi
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Observatory, South Africa
- Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, South Africa
| | - Liesl Zühlke
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
- Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
- South African Medical Research Council, Francie Van Zijl Drive, Parow Cape Town, South Africa
| | - Kate Webb
- Division of Paediatric Rheumatology, Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, University of Cape Town, Observatory, South Africa
- Crick African Network, The Francis Crick Institute, London, UK
| | - Catherine Riou
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, South Africa
| | - Wendy A. Burgers
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, South Africa
| | - Roanne S. Keeton
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| |
Collapse
|
10
|
Maecker HT. Multiparameter Flow Cytometry Monitoring of T Cell Responses. Methods Mol Biol 2024; 2807:325-342. [PMID: 38743238 DOI: 10.1007/978-1-0716-3862-0_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Multiparameter flow cytometry is a common tool for assessing responses of T, B, and other cells to pathogens or vaccines. Such responses are likely to be important for predicting the efficacy of an HIV vaccine, despite the elusive findings in HIV vaccine trials to date. Fortunately, flow cytometry has evolved to be capable of readily measuring 30-40 parameters, providing the ability to dissect detailed phenotypes and functions that may be correlated with disease protection. Nevertheless, technical hurdles remain, and standardization of assays is still largely lacking. Here an optimized protocol for antigen-specific T cell monitoring is presented, with specific variations for particular markers. It covers the analysis of multiple cytokines, cell surface proteins, and other functional markers such as CD107, CD154, CD137, etc. References are given to published panels of 8-28 colors.
Collapse
Affiliation(s)
- Holden T Maecker
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
11
|
Doss KM, Heldman MR, Limaye AP. Updates in Cytomegalovirus Prevention and Treatment in Solid Organ Transplantation. Infect Dis Clin North Am 2023:S0891-5520(23)00083-1. [PMID: 37989636 PMCID: PMC11102935 DOI: 10.1016/j.idc.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
The authors summarize recent updates in the prevention and management of cytomegalovirus (CMV) in solid organ transplant (SOT) recipients with a focus on CMV seronegative recipients of organs from seropositive donors (CMV D+/R-) who are at highest risk of CMV infection and disease. They discuss advantages of preemptive therapy for CMV disease prevention in CMV D+/R- liver transplant recipients, letermovir for CMV prophylaxis, and updates in the development of monoclonal antibodies and vaccines as immune-based preventative strategies. They review the roles of maribavir and virus-specific T cells for management of resistant or refractory CMV infection in SOT recipients.
Collapse
Affiliation(s)
- Kathleen M Doss
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Madeleine R Heldman
- Division of Infectious Diseases, Department of Medicine, Duke University, Durham, NC, USA
| | - Ajit P Limaye
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
12
|
Møller DL, Sørensen SS, Rezahosseini O, Rasmussen DB, Arentoft NS, Loft JA, Perch M, Gustafsson F, Lundgren J, Scheike T, Knudsen JD, Ostrowski SR, Rasmussen A, Nielsen SD. Prediction of herpes virus infections after solid organ transplantation: a prospective study of immune function. Front Immunol 2023; 14:1183703. [PMID: 37465673 PMCID: PMC10351284 DOI: 10.3389/fimmu.2023.1183703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/24/2023] [Indexed: 07/20/2023] Open
Abstract
Introduction Herpes virus infections are a major concern after solid organ transplantation and linked to the immune function of the recipient. We aimed to determine the incidence of positive herpes virus (cytomegalovirus (CMV), Epstein-Barr virus (EBV), herpes simplex virus type 1/2 (HSV-1/2), and varicella zoster virus (VZV)) PCR tests during the first year post-transplantation and assess whether a model including immune function pre-transplantation and three months post-transplantation could predict a subsequent positive herpes virus PCR. Methods All participants were preemptively screened for CMV, and EBV IgG-negative participants were screened for EBV during the first year post-transplantation. Herpes virus PCR tests for all included herpes viruses (CMV, EBV, HSV-1/2, and VZV) were retrieved from the Danish Microbiology database containing nationwide PCR results from both hospitals and outpatient clinics. Immune function was assessed by whole blood stimulation with A) LPS, B) R848, C) Poly I:C, and D) a blank control. Cytokine concentrations (TNF-α, IL-1β, IL-6, IL-8, IL-10, IL-12p40, IL-17A, IFN-α, and IFN-γ) were measured using Luminex. Results We included 123 liver (54%), kidney (26%), and lung (20%) transplant recipients. The cumulative incidence of positive herpes virus PCR tests was 36.6% (95% CI: 28.1-45.1) during the first year post-transplantation. The final prediction model included recipient age, type of transplantation, CMV serostatus, and change in Poly I:C-induced IL-12p40 from pre-transplantation to three months post-transplantation. The prediction model had an AUC of 77% (95% CI: 61-92). Risk scores were extracted from the prediction model, and the participants were divided into three risk groups. Participants with a risk score <5 (28% of the cohort), 5-10 (45% of the cohort), and >10 (27% of the cohort) had a cumulative incidence of having a positive herpes virus PCR test at 5.8%, 25%, and 73%, respectively (p < 0.001). Conclusion In conclusion, the incidence of positive herpes virus PCR tests was high, and a risk model including immune function allowed the prediction of positive herpes virus PCR and may be used to identify recipients at higher risk.
Collapse
Affiliation(s)
- Dina Leth Møller
- Viro-immunology Research Unit, Department of Infectious Diseases 8632, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Søren Schwartz Sørensen
- Department of Nephrology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Omid Rezahosseini
- Viro-immunology Research Unit, Department of Infectious Diseases 8632, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Daniel Bräuner Rasmussen
- Viro-immunology Research Unit, Department of Infectious Diseases 8632, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Nicoline Stender Arentoft
- Viro-immunology Research Unit, Department of Infectious Diseases 8632, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Josefine Amalie Loft
- Viro-immunology Research Unit, Department of Infectious Diseases 8632, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Michael Perch
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Cardiology, Section for Lung Transplantation, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Finn Gustafsson
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jens Lundgren
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Centre of Excellence for Health, Immunity, and Infections, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Scheike
- Department of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - Jenny Dahl Knudsen
- Department of Clinical Microbiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Sisse Rye Ostrowski
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Allan Rasmussen
- Department of Surgical Gastroenterology and Transplantation, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Susanne Dam Nielsen
- Viro-immunology Research Unit, Department of Infectious Diseases 8632, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Surgical Gastroenterology and Transplantation, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Ye Q, Wang J, Chen M, Nie W, Zhang H, Su X, Ling L, Liu X, Liu L, Wang C, Gao Y. Interferon-gamma FlowSpot assay for the measurement of the T-cell response to cytomegalovirus. Heliyon 2023; 9:e16792. [PMID: 37360105 PMCID: PMC10285093 DOI: 10.1016/j.heliyon.2023.e16792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/15/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
Objectives We describe a new method, FlowSpot, to assess CMV-specific T-cell response by quantification of interferon-gamma (IFN-γ). CMV-specific, T-cell-released IFN-γ was captured by flow beads and measured via flow cytometry. In the present study, we used FlowSpot to assess CMV-specific T-cell response in healthy individuals. The FlowSpot results were compared with those of serological analysis and enzyme-linked immunospot (ELISpot) assay. Methods Experimental results and parameter analysis were investigated by using serological, ELISpot, and FlowSpot assays. Results The levels of IFN-γ, which is released from CMV-specific T-cells, were measured, and the results and parameter analysis showed a good correlation between FlowSpot and ELISpot. However, FlowSpot was more sensitive and better reflected the strength of IFN-γ secretion than did ELISpot. Conclusions Compared to ELISpot, FlowSpot has a high sensitivity and is cost and time effective. Thus, this method can be used in wider clinical and scientific applications.
Collapse
Affiliation(s)
- Qianyu Ye
- Organ Transplantation Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiali Wang
- Department of Nephrology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | | | - Weijian Nie
- Organ Transplantation Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huanxi Zhang
- Organ Transplantation Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaojun Su
- Organ Transplantation Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liuting Ling
- Organ Transplantation Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | | | - Longshan Liu
- Organ Transplantation Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Changxi Wang
- Organ Transplantation Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yifang Gao
- Organ Transplantation Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
14
|
Benede NSB, Tincho MB, Walters A, Subbiah V, Ngomti A, Baguma R, Butters C, Mennen M, Skelem S, Adriaanse M, van Graan S, Balla SR, Moyo-Gwete T, Moore PL, Botha M, Workman L, Zar HJ, Ntusi NAB, Zühlke L, Webb K, Riou C, Burgers WA, Keeton RS. Distinct T cell functional profiles in SARS-CoV-2 seropositive and seronegative children associated with endemic human coronavirus cross-reactivity. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.16.23290059. [PMID: 37292954 PMCID: PMC10246143 DOI: 10.1101/2023.05.16.23290059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
SARS-CoV-2 infection in children typically results in asymptomatic or mild disease. There is a paucity of studies on antiviral immunity in African children. We investigated SARS-CoV-2-specific T cell responses in 71 unvaccinated asymptomatic South African children who were seropositive or seronegative for SARS-CoV-2. SARS-CoV-2-specific CD4+ T cell responses were detectable in 83% of seropositive and 60% of seronegative children. Although the magnitude of the CD4+ T cell response did not differ significantly between the two groups, their functional profiles were distinct, with SARS-CoV-2 seropositive children exhibiting a higher proportion of polyfunctional T cells compared to their seronegative counterparts. The frequency of SARS-CoV-2-specific CD4+ T cells in seronegative children was associated with the endemic human coronavirus (HCoV) HKU1 IgG response. Overall, the presence of SARS-CoV-2-responding T cells in seronegative children may result from cross-reactivity to endemic coronaviruses and could contribute to the relative protection from disease observed in SARS-CoV-2-infected children.
Collapse
Affiliation(s)
- Ntombi S. B. Benede
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Marius B. Tincho
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Avril Walters
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Vennesa Subbiah
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Amkele Ngomti
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Richard Baguma
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Claire Butters
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
| | - Mathilda Mennen
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Observatory, South Africa
| | - Sango Skelem
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Observatory, South Africa
| | - Marguerite Adriaanse
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Observatory, South Africa
| | - Strauss van Graan
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Sashkia R. Balla
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Thandeka Moyo-Gwete
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Penny L. Moore
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Maresa Botha
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
- Medical Research Council (MRC) Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Lesley Workman
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
- Medical Research Council (MRC) Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Heather J. Zar
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
- Medical Research Council (MRC) Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, South Africa
| | - Ntobeko A. B. Ntusi
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Observatory, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, South Africa
- Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
| | - Liesl Zühlke
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
- Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
- South African Medical Research Council, Francie Van Zijl Drive, Parow Cape Town, South Africa
| | - Kate Webb
- South African Medical Research Council, Francie Van Zijl Drive, Parow Cape Town, South Africa
- Crick African Network, The Francis Crick Institute, London, United Kingdom
| | - Catherine Riou
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, South Africa
| | - Wendy A. Burgers
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, South Africa
| | - Roanne S. Keeton
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| |
Collapse
|
15
|
Dasari V, Beckett K, Horsefield S, Ambalathingal G, Khanna R. A bivalent CMV vaccine formulated with human compatible TLR9 agonist CpG1018 elicits potent cellular and humoral immunity in HLA expressing mice. PLoS Pathog 2022; 18:e1010403. [PMID: 35737741 PMCID: PMC9223316 DOI: 10.1371/journal.ppat.1010403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/26/2022] [Indexed: 11/30/2022] Open
Abstract
There is now convincing evidence that the successful development of an effective CMV vaccine will require improved formulation and adjuvant selection that is capable of inducing both humoral and cellular immune responses. Here, we have designed a novel bivalent subunit vaccine formulation based on CMV-encoded oligomeric glycoprotein B (gB) and polyepitope protein in combination with human compatible TLR9 agonist CpG1018. The polyepitope protein includes multiple minimal HLA class I-restricted CD8+ T cell epitopes from different antigens of CMV. This subunit vaccine generated durable anti-viral antibodies, CMV-specific CD4+ and CD8+ T cell responses in multiple HLA expressing mice. Antibody responses included broad TH1 isotypes (IgG2a, IgG2b and IgG3) and potently neutralized CMV infection in fibroblasts and epithelial cells. Furthermore, polyfunctional antigen-specific T cell immunity and antiviral antibody responses showed long-term memory maintenance. These observations argue that this novel vaccine strategy, if applied to humans, could facilitate the generation of robust humoral and cellular immune responses which may be more effective in preventing CMV-associated complications in various clinical settings. Human Cytomegalovirus (CMV) is a significant human pathogen. Generally, in healthy people CMV causes mild symptomatic disease, but during pregnancy CMV can transmit from mother to foetus (1 out of every 200 live births worldwide) and lead to sensorineural hearing loss, vision impairment and central nervous system damage. In transplant patients, CMV can cause serious complications leading to organ rejection and even death. Currently, there is no licensed vaccine available to prevent CMV-associated complications in pregnant women and transplant patients. Here, we have developed a novel bivalent CMV vaccine formulation consisting of recombinant CMVpoly and gB proteins in combination with human compatible adjuvant CpG1018. Preclinical immunogenicity evaluation in multiple HLA expressing mice demonstrated that bivalent CMV vaccine formulation consistently generated robust CMV-specific neutralising antibodies, CD4+ and CD8+ T cell responses. More importantly, long-term follow-up analysis showed that the CMV vaccine can induce durable CMV-specific humoral and cellular immune responses. Our results support further development of this bivalent subunit CMV vaccine to test safety, immunogenicity and efficacy in humans.
Collapse
Affiliation(s)
- Vijayendra Dasari
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Tumour Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- * E-mail: (VD); (RK)
| | - Kirrilee Beckett
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Tumour Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Shane Horsefield
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Tumour Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - George Ambalathingal
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Tumour Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Rajiv Khanna
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Tumour Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- * E-mail: (VD); (RK)
| |
Collapse
|
16
|
Pongsakornkullachart K, Chayakulkeeree M, Vongwiwatana A, Kantakamalakul W, Skulratanasak P, Phoompoung P. QuantiFERON-Cytomegalovirus Assay for Prediction of Cytomegalovirus Viremia in Kidney Transplant Recipients: Study From High Cytomegalovirus Seroprevalence Country. Front Cell Infect Microbiol 2022; 12:893232. [PMID: 35646728 PMCID: PMC9135039 DOI: 10.3389/fcimb.2022.893232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/19/2022] [Indexed: 11/18/2022] Open
Abstract
Background Early studies showed the utility of pretransplant QuantiFERON-Cytomegalovirus (QF-CMV) assays for CMV-disease prediction post kidney transplant (KT). However, recent data are conflicting. Methods This prospective cohort study enrolled adult patients undergoing KT between July 2017 and May 2019. Patients with antithymocyte globulin therapy or negative pretransplant CMV IgG were excluded. QF-CMV assays were performed on transplantation day and one month thereafter, and CMV viral loads were obtained 1, 3, and 6 months posttransplantation. The primary outcome was CMV viremia within 6 months. The QF-CMV assay–posttransplant CMV viremia association was analyzed. Results Fifty-five patients were enrolled (male, 58.2%; mean (SD) age, 46.5 (10.2) years). Fifty-two (94.5%) received CMV-seropositive donor kidneys. Over 6 months, 29 patients developed CMV viremia (52.7%), with 14 (25.5%) having significant viremia requiring antiviral therapy. The CMV-viremia incidence of patients with nonreactive and reactive baseline QF-CMV assays did not differ significantly (55.3% and 47.1%; p = 0.573). Among patients with reactive pretransplant QF-CMV assays, there was a trend toward a lower incidence of CMV viremia for those who were persistently reactive at 1 month after KTs, although there was no statistically significant difference (50% vs 83%; p = 0.132). Conclusions Our study could not support the use of single-timepoint pretransplant or 1-month posttransplant QF-CMV assays as a predictor for posttransplant CMV viremia in CMV seropositive KT recipients. Investigation of the association between dynamic QF-CMV-status changes and CMV-viremia incidence are needed.
Collapse
Affiliation(s)
| | - Methee Chayakulkeeree
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Attapong Vongwiwatana
- Division of Nephrology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wannee Kantakamalakul
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Peenida Skulratanasak
- Division of Nephrology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pakpoom Phoompoung
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- *Correspondence: Pakpoom Phoompoung, ;
| |
Collapse
|
17
|
Utility of Cytomegalovirus Cell-Mediated Immunity Assays in Solid Organ Transplantation. J Clin Microbiol 2022; 60:e0171621. [PMID: 35543099 DOI: 10.1128/jcm.01716-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cytomegalovirus (CMV) is one of the most important viral complications after solid organ transplantation (SOT). Current preventive and management strategies rely primarily on serologic and viral load testing and remain suboptimal. To address these issues, multiple techniques to measure CMV-specific cell-mediated immunity (CMI) have been developed and evaluated in clinical studies over the past two decades. These assays show significant promise for the personalization of CMV management. For example, CMI assays can be used to help determine the optimal duration of antiviral prophylaxis or whether antiviral therapy is indicated in patients with low levels of CMV reactivation. However, despite numerous studies showing potential utility, these assays are not yet in widespread routine clinical use. Barriers to adoption include variations in test complexity, standardization, and thresholds for positivity and insufficient interventional clinical trials. Here, we provide an updated assessment of commonly available tests and the clinical utility of CMV-specific CMI testing in SOT recipients.
Collapse
|
18
|
Olin A, Acevedo N, Lakshmikanth T, Chen Y, Johansson C, Alm J, Scheynius A, Brodin P. Longitudinal analyses of development of the immune system during the first five years of life in relation to lifestyle. Allergy 2022; 77:1583-1595. [PMID: 35094423 DOI: 10.1111/all.15232] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/24/2021] [Accepted: 12/22/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Changes in immune cell composition during the immunological window within the first years after birth are not fully understood, especially the effect that different lifestyles might have on immune cell functionality. METHODS Peripheral blood mononuclear cells from mothers and their children at birth and at two anvd five years were analyzed by mass cytometry. Immune cell composition and functionality was analyzed according to family lifestyle (anthroposophic and non-anthroposophic). RESULTS We found no significant differences in the proportions of major immune lineages between anthroposophic and non-anthroposophic children at each time point, but there were clear changes over time in the proportions of mononuclear leukocytes, especially in B-cells and T lymphocytes. Phenotypic distances between cord blood and maternal blood were high at birth but decreased sharply the first two years, indicating strong phenotypic convergence with maternal cells. We found that children exhibited similar stimulation responses at birth, but subsequently segregated into two discrete functional trajectories. Trajectory 1 was associated with a decrease in tumor necrosis factor alpha (TNFa) production by CD4+ T- and NK-cells, while Trajectory 2 depicted an increase in the production of IL-2 and interferon gamma (INFg) by T-cells. In both trajectories, there was an increase in IL-17A production by T-cells resulting in prominent differences at five years of age. CONCLUSIONS This exploratory study suggests that leukocyte frequencies and cell phenotypes change with age in the same way across all children, while functional development follows one of two discrete trajectories that largely segregate by family lifestyle, supporting the hypothesis that early environmental exposures imprint immune cell function which may contribute to IgE sensitization. Our results also support that the first two years are critical for the environmental exposures to imprint the immune cells. Further studies with larger sample sizes are required to validate our findings.
Collapse
Affiliation(s)
- Axel Olin
- Science for Life Laboratory Department of Women’s and Children's Health Karolinska Institutet Stockholm Sweden
| | - Nathalie Acevedo
- Department of Clinical Science and Education Karolinska Institutet Stockholm Sweden
- Sachs' Children and Youth Hospital Södersjukhuset Stockholm Sweden
- Institute for Immunological Research University of Cartagena Cartagena Colombia
| | - Tadepally Lakshmikanth
- Science for Life Laboratory Department of Women’s and Children's Health Karolinska Institutet Stockholm Sweden
| | - Yang Chen
- Science for Life Laboratory Department of Women’s and Children's Health Karolinska Institutet Stockholm Sweden
| | - Catharina Johansson
- Department of Clinical Science and Education Karolinska Institutet Stockholm Sweden
- Sachs' Children and Youth Hospital Södersjukhuset Stockholm Sweden
| | - Johan Alm
- Department of Clinical Science and Education Karolinska Institutet Stockholm Sweden
- Sachs' Children and Youth Hospital Södersjukhuset Stockholm Sweden
| | - Annika Scheynius
- Department of Clinical Science and Education Karolinska Institutet Stockholm Sweden
- Sachs' Children and Youth Hospital Södersjukhuset Stockholm Sweden
- Science for Life Laboratory Karolinska Institutet Stockholm Sweden
| | - Petter Brodin
- Science for Life Laboratory Department of Women’s and Children's Health Karolinska Institutet Stockholm Sweden
- Department of Newborn Medicine Karolinska University Hospital Stockholm Sweden
| |
Collapse
|
19
|
Zhang W, Li H, Bream JH, Nilles TL, Leng SX, Margolick JB. Longitudinal association of cytokine-producing CMV-specific T cells with frailty in HIV-infected and -uninfected men who have sex with men. Immun Ageing 2022; 19:13. [PMID: 35255947 PMCID: PMC8900335 DOI: 10.1186/s12979-022-00270-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/13/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Chronic cytomegalovirus (CMV) infection has been postulated as a driver of chronic inflammation that has been associated with frailty and other age-related conditions in both HIV-infected (HIV+) and -uninfected (HIV-) people. METHODS To study the T cell response to CMV as a predictor of onset and maintenance of frailty, baseline CMV-specific T cell responses of 42 men (20 HIV-, 22 HIV+; 21 frail, 21 nonfrail) in the Multicenter AIDS Cohort Study (MACS) were assessed by flow cytometric analysis of cytokine production (IFN-γ, TNF-⍺, and IL-2) in response to overlapping peptide pools spanning 19 CMV open reading frames. The Fried frailty phenotype was assessed at baseline and semiannually thereafter. Times to transition into or out of frailty were compared by tertiles of percentages of cytokine-producing T cells using Kaplan-Meier estimators and the exact log-rank test. RESULTS Over a median follow-up of 6.5 (interquartile range: 2) years, faster onset of frailty was significantly predicted by higher (HIV- men) or lower (HIV+ men) percentages of CD4 T cells producing only IFN-γ (IFN-γ-single-producing (SP)), and by lower percentages of IFN-γ-, TNF-⍺-, and IL-2-triple-producing CD8 T cells (HIV- men). Greater maintenance of frailty was significantly predicted by lower percentages of both these T cell subsets in HIV- men, and by lower percentages of IFN-γ-SP CD4 T cells in HIV+ men. The antigenic specificity of IFN-γ-SP CD4 T cells was different between HIV- and HIV+ nonfrail men, as were the correlations between these cells and serum inflammatory markers. CONCLUSIONS In this pilot study, percentages of CMV-specific T cells predicted the onset and maintenance of frailty in HIV- and HIV+ men. Predictive responses differed by HIV status, which may relate to differential control of CMV reactivation and inflammation by anti-CMV T cell responses.
Collapse
Affiliation(s)
- Weiying Zhang
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St., Rm E5153, Baltimore, MD, 21205, USA
| | - Huifen Li
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jay H Bream
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St., Rm E5153, Baltimore, MD, 21205, USA
- Graduate Program in Immunology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Tricia L Nilles
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St., Rm E5153, Baltimore, MD, 21205, USA
| | - Sean X Leng
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St., Rm E5153, Baltimore, MD, 21205, USA
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Johns Hopkins Center on Aging and Immune Remodeling, Baltimore, MD, USA
| | - Joseph B Margolick
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St., Rm E5153, Baltimore, MD, 21205, USA.
| |
Collapse
|
20
|
Li Y, Zhou T, Cheng X, Li D, Zhao M, Zheng WV. microRNA-378a-3p regulates the progression of hepatocellular carcinoma by regulating PD-L1 and STAT3. Bioengineered 2022; 13:4730-4743. [PMID: 35184646 PMCID: PMC8973785 DOI: 10.1080/21655979.2022.2031408] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Programmed death ligand 1 (PD-L1) plays an essential role in the development or progression of hepatocellular carcinoma (HCC). MicroRNAs (miRNAs) are small RNA molecules that regulate gene expression during normal and pathophysiological events. Here, we explored the functions and detailed mechanisms of miR-378a-3p and PD-L1 in HCC progression. First, miR-378a-3p was selected by analyzing miRNA levels in two HCC Gene Expression Omnibus datasets. We found that miR-378a-3p levels exhibited a downward trend in HCC and were negatively correlated with PD-L1 levels. Additionally, a dual luciferase assay predicted that miR-378a-3p directly targets PD-L1. Moreover, the transfection of miR-378a-3p mimics into Li-7 and HuH-7 cells effectively decreased the PD-L1 mRNA and protein expression levels, and inhibited Treg differentiation in co-culture models by modulating the expression levels of certain cytokines. Furthermore, the overexpression of miR-378a-3p hindered cell proliferation and migration but facilitated apoptosis by repressing STAT3 signaling in HCC cells. In conclusion, miR-378a-3p appears to inhibit HCC tumorigenesis by regulating PD-L1 and STAT3 levels. Thus, miR-378a-3p may be a potential target for HCC therapy.
Collapse
Affiliation(s)
- Yaqin Li
- Department of Infectious Disease, Peking University Shenzhen Hospital, Shenzhen, Guangdong, P.R. China
| | - Tao Zhou
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong, P.R. China
| | - Xianyi Cheng
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong, P.R. China
| | - Dezhi Li
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong, P.R. China
| | - Meng Zhao
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Wei V. Zheng
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong, P.R. China
| |
Collapse
|
21
|
Cytomegalovirus and other herpesviruses after hematopoietic cell and solid organ transplantation: From antiviral drugs to virus-specific T cells. Transpl Immunol 2022; 71:101539. [PMID: 35051589 DOI: 10.1016/j.trim.2022.101539] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 12/13/2022]
Abstract
Herpesviruses can either cause primary infection or may get reactivated after both hematopoietic cell and solid organ transplantations. In general, viral infections increase post-transplant morbidity and mortality. Prophylactic, preemptive, or therapeutically administered antiviral drugs may be associated with serious side effects and may induce viral resistance. Virus-specific T cells represent a valuable addition to antiviral treatment, with high rates of response and minimal side effects. Even low numbers of virus-specific T cells manufactured by direct selection methods can reconstitute virus-specific immunity after transplantation and control viral replication. Virus-specific T cells belong to the advanced therapy medicinal products, and their production is regulated by appropriate legislation; also, strict safety regulations are required to minimize their side effects.
Collapse
|
22
|
Research Highlights. Transplantation 2021. [DOI: 10.1097/tp.0000000000004023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Carvalho-Gomes Â, Cubells A, Pallarés C, Corpas-Burgos F, Berenguer M, Aguilera V, López-Labrador FX. Cytomegalovirus specific polyfunctional T-cell responses expressing CD107a predict control of CMV infection after liver transplantation. Cell Immunol 2021; 371:104455. [PMID: 34864514 DOI: 10.1016/j.cellimm.2021.104455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/16/2021] [Accepted: 11/04/2021] [Indexed: 11/03/2022]
Abstract
Cytomegalovirus (CMV) viral load after liver transplantation (LT) is controlled by cell mediated immune responses (CMI). Quantification of CMV-specific T-cells may identify patients who control CMV spontaneously and avoid expensive and potentially toxic antiviral therapies. Prospective post-LT clinical, virological and immunological monitoring was carried out up to 1-year post-LT in a cohort of adult recipients. The CMV-specific T-cell response was characterized using flow cytometry intracellular cytokine staining in 49 LT recipients-R (79.6% R+, 20.4% R-). CMV infection occurred in 24 patients (18 D+/R+ and 6 D+/R-). Only patients with undetectable polyfunctional CMV-specific CD4+ T-cells developed CMV infection. Predictive models showed that polyfunctional CMV-specific CD4+ T-cells pre-existing before LT are protective for CMV reactivation posttransplantation. Quantitation of CD4+ T-cell responses to CMV may be a useful marker for spontaneous control of viral replication to tailor antiviral prophylaxis after LT.
Collapse
Affiliation(s)
- Ângela Carvalho-Gomes
- Liver Transplantation and Hepatology Laboratory, Hepatology, HBP Surgery and Transplant Unit, Instituto Investigación Sanitaria La Fe, Hospital U. y P. La Fe, València, Spain; CIBERehd, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, Spain.
| | - Almudena Cubells
- Liver Transplantation and Hepatology Laboratory, Hepatology, HBP Surgery and Transplant Unit, Instituto Investigación Sanitaria La Fe, Hospital U. y P. La Fe, València, Spain; CIBERehd, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, Spain
| | - Carmina Pallarés
- Liver Transplantation and Hepatology Laboratory, Hepatology, HBP Surgery and Transplant Unit, Instituto Investigación Sanitaria La Fe, Hospital U. y P. La Fe, València, Spain; CIBERehd, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, Spain
| | - Francisca Corpas-Burgos
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO-Public Health), Av. Catalunya, 21, 46020 Valencia, Spain; CIBEResp, Instituto de Salud Carlos III, Madrid, Spain
| | - Marina Berenguer
- Liver Transplantation and Hepatology Laboratory, Hepatology, HBP Surgery and Transplant Unit, Instituto Investigación Sanitaria La Fe, Hospital U. y P. La Fe, València, Spain; CIBERehd, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, Spain; Liver Transplantation and Hepatology Unit, Hospital Universitario y Politécnico La Fe, València, Spain; Department of Medicine, University of Valencia Medical School, Valencia, Spain
| | - Victoria Aguilera
- Liver Transplantation and Hepatology Laboratory, Hepatology, HBP Surgery and Transplant Unit, Instituto Investigación Sanitaria La Fe, Hospital U. y P. La Fe, València, Spain; CIBERehd, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, Spain; Liver Transplantation and Hepatology Unit, Hospital Universitario y Politécnico La Fe, València, Spain
| | - F Xavier López-Labrador
- CIBEResp, Instituto de Salud Carlos III, Madrid, Spain; Virology Laboratory, Genomics and Health Area, Centro Superior de Salud Pública, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO-Public Health), Conselleria de Sanitat, València, Spain
| |
Collapse
|
24
|
Higdon LE, Schaffert S, Cohen RH, Montez-Rath ME, Lucia M, Saligrama N, Margulies KB, Martinez OM, Tan JC, Davis MM, Khatri P, Maltzman JS. Functional Consequences of Memory Inflation after Solid Organ Transplantation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:2086-2095. [PMID: 34551963 PMCID: PMC8492533 DOI: 10.4049/jimmunol.2100405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/04/2021] [Indexed: 11/19/2022]
Abstract
CMV is a major infectious complication following solid organ transplantation. Reactivation of CMV leads to memory inflation, a process in which CD8 T cells expand over time. Memory inflation is associated with specific changes in T cell function, including increased oligoclonality, decreased cytokine production, and terminal differentiation. To address whether memory inflation during the first year after transplantation in human subjects alters T cell differentiation and function, we employed single-cell-matched TCRαβ and targeted gene expression sequencing. Expanded T cell clones exhibited a terminally differentiated, immunosenescent, and polyfunctional phenotype whereas rare clones were less differentiated. Clonal expansion occurring between pre- and 3 mo posttransplant was accompanied by enhancement of polyfunctionality. In contrast, polyfunctionality and differentiation state were largely maintained between 3 and 12 mo posttransplant. Highly expanded clones had a higher degree of polyfunctionality than rare clones. Thus, CMV-responsive CD8 T cells differentiated during the pre- to posttransplant period then maintained their differentiation state and functional capacity despite posttransplant clonal expansion.
Collapse
Affiliation(s)
- Lauren E Higdon
- Department of Medicine/Nephrology, Stanford University, Palo Alto, CA
| | - Steven Schaffert
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA
- Department of Medicine/Biomedical Informatics, Stanford University, Stanford, CA; and
| | - Rachel H Cohen
- Department of Medicine/Nephrology, Stanford University, Palo Alto, CA
| | | | - Marc Lucia
- Department of Surgery, Stanford University, Stanford, CA
| | - Naresha Saligrama
- Department of Microbiology and Immunology, Stanford University, Stanford CA
| | - Kenneth B Margulies
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | - Jane C Tan
- Department of Medicine/Nephrology, Stanford University, Palo Alto, CA
| | - Mark M Davis
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA; and
| | - Purvesh Khatri
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA
- Department of Medicine/Biomedical Informatics, Stanford University, Stanford, CA; and
| | - Jonathan S Maltzman
- Department of Medicine/Nephrology, Stanford University, Palo Alto, CA;
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA
| |
Collapse
|
25
|
AuYeung AWK, Mould RC, Stegelmeier AA, van Vloten JP, Karimi K, Woods JP, Petrik JJ, Wood GA, Bridle BW. Mechanisms that allow vaccination against an oncolytic vesicular stomatitis virus-encoded transgene to enhance safety without abrogating oncolysis. Sci Rep 2021; 11:15290. [PMID: 34315959 PMCID: PMC8316323 DOI: 10.1038/s41598-021-94483-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/09/2021] [Indexed: 11/26/2022] Open
Abstract
Vaccination can prevent viral infections via virus-specific T cells, among other mechanisms. A goal of oncolytic virotherapy is replication of oncolytic viruses (OVs) in tumors, so pre-existing T cell immunity against an OV-encoded transgene would seem counterproductive. We developed a treatment for melanomas by pre-vaccinating against an oncolytic vesicular stomatitis virus (VSV)-encoded tumor antigen. Surprisingly, when the VSV-vectored booster vaccine was administered at the peak of the primary effector T cell response, oncolysis was not abrogated. We sought to determine how oncolysis was retained during a robust T cell response against the VSV-encoded transgene product. A murine melanoma model was used to identify two mechanisms that enable this phenomenon. First, tumor-infiltrating T cells had reduced cytopathic potential due to immunosuppression. Second, virus-induced lymphopenia acutely removed virus-specific T cells from tumors. These mechanisms provide a window of opportunity for replication of oncolytic VSV and rationale for a paradigm change in oncolytic virotherapy, whereby immune responses could be intentionally induced against a VSV-encoded melanoma-associated antigen to improve safety without abrogating oncolysis.
Collapse
Affiliation(s)
- Amanda W K AuYeung
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Robert C Mould
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Ashley A Stegelmeier
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Jacob P van Vloten
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Khalil Karimi
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - J Paul Woods
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - James J Petrik
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Geoffrey A Wood
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Byram W Bridle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada. .,Department of Pathobiology, Ontario Veterinary College, University of Guelph, Rm. 4834, Bldg. 89, 50 Stone Rd. E., Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
26
|
Rapaka RR, Cross AS, McArthur MA. Using Adjuvants to Drive T Cell Responses for Next-Generation Infectious Disease Vaccines. Vaccines (Basel) 2021; 9:vaccines9080820. [PMID: 34451945 PMCID: PMC8402546 DOI: 10.3390/vaccines9080820] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
Using adjuvants to drive features of T cell responses to vaccine antigens is an important technological challenge in the design of new and improved vaccines against infections. Properties such as T helper cell function, T cell memory, and CD8+ T cell cytotoxicity may play critical roles in optimal and long-lived immunity through vaccination. Directly manipulating specific immune activation or antigen delivery pathways with adjuvants may selectively augment desired T cell responses in vaccination and may improve the effectiveness and durability of vaccine responses in humans. In this review we outline recently studied adjuvants in their potential for antigen presenting cell and T cell programming during vaccination, with an emphasis on what has been observed in studies in humans as available.
Collapse
|
27
|
Del Valle A, Acosta-Rivero N, Laborde RJ, Cruz-Leal Y, Cabezas S, Luzardo MC, Alvarez C, Labrada M, Rodríguez A, Rodríguez GL, Raymond J, Nogueira CV, Grubaugh D, Fernández LE, Higgins D, Lanio ME. Sticholysin II shows similar immunostimulatory properties to LLO stimulating dendritic cells and MHC-I restricted T cell responses of heterologous antigen. Toxicon 2021; 200:38-47. [PMID: 34237340 DOI: 10.1016/j.toxicon.2021.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 06/22/2021] [Accepted: 06/30/2021] [Indexed: 10/20/2022]
Abstract
Induction of CD8+ T cell responses against tumor cells and intracellular pathogens is an important goal of modern vaccinology. One approach of translational interest is the use of liposomes encapsulating pore-forming proteins (PFPs), such as Listeriolysin O (LLO), which has shown efficacy at priming strong and sustained CD8+ T cell responses. Recently, we have demonstrated that Sticholysin II (StII), a PFP from the sea anemone Stichodactyla helianthus, co-encapsulated into liposomes with ovalbumin (OVA) was able to stimulate, antigen presenting cells, antigen-specific CD8+ T cells and anti-tumor activity in mice. In the present study, we aimed to compare StII and LLO in terms of their abilities to stimulate dendritic cells and to induce major histocompatibility complex (MHC) class I restricted T cell responses against OVA. Interestingly, StII exhibited similar abilities to LLO in vitro of inducing dendritic cells maturation, as measured by increased expression of CD40, CD80, CD86 and MHC-class II molecules, and of stimulating OVA cross-presentation to a CD8+ T cell line. Remarkably, using an ex vivo Enzyme-Linked ImmunoSpot Assay (ELISPOT) to monitor gamma interferon (INF-γ) producing effector memory CD8+ T cells, liposomal formulations containing either StII or LLO induced comparable frequencies of OVA-specific INF-γ producing CD8+ T cells in mice that were sustained in time. However, StII-containing liposomes stimulated antigen-specific memory CD8+ T cells with a higher potential to secrete IFN-γ than liposomes encapsulating LLO. This StII immunostimulatory property further supports its use for the rational design of T cell vaccines against cancers and intracellular pathogens. In summary, this study indicates that StII has immunostimulatory properties similar to LLO, despite being evolutionarily distant PFPs.
Collapse
Affiliation(s)
- A Del Valle
- Center for Protein Studies, Faculty of Biology, Havana University (UH) and Lab UH-CIM, Cuba
| | - N Acosta-Rivero
- Center for Protein Studies, Faculty of Biology, Havana University (UH) and Lab UH-CIM, Cuba.
| | - R J Laborde
- Center for Protein Studies, Faculty of Biology, Havana University (UH) and Lab UH-CIM, Cuba
| | - Y Cruz-Leal
- Center for Protein Studies, Faculty of Biology, Havana University (UH) and Lab UH-CIM, Cuba
| | - S Cabezas
- Center for Protein Studies, Faculty of Biology, Havana University (UH) and Lab UH-CIM, Cuba
| | - M C Luzardo
- Center for Protein Studies, Faculty of Biology, Havana University (UH) and Lab UH-CIM, Cuba
| | - C Alvarez
- Center for Protein Studies, Faculty of Biology, Havana University (UH) and Lab UH-CIM, Cuba
| | - M Labrada
- Center of Molecular Immunology (CIM), Playa, La Habana, Cuba
| | - A Rodríguez
- Center of Molecular Immunology (CIM), Playa, La Habana, Cuba
| | - G L Rodríguez
- Center of Molecular Immunology (CIM), Playa, La Habana, Cuba
| | - J Raymond
- Center of Molecular Immunology (CIM), Playa, La Habana, Cuba
| | | | - D Grubaugh
- Harvard Medical School, Harvard University, USA
| | - L E Fernández
- Center of Molecular Immunology (CIM), Playa, La Habana, Cuba
| | - D Higgins
- Harvard Medical School, Harvard University, USA
| | - M E Lanio
- Center for Protein Studies, Faculty of Biology, Havana University (UH) and Lab UH-CIM, Cuba.
| |
Collapse
|
28
|
Han JM, Song HY, Seo HS, Byun EH, Lim ST, Kim WS, Byun EB. Immunoregulatory properties of a crude extraction fraction rich in polysaccharide from Chrysanthemum zawadskii Herbich var. latilobum and its potential role as a vaccine adjuvant. Int Immunopharmacol 2021; 95:107513. [PMID: 33756223 DOI: 10.1016/j.intimp.2021.107513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/28/2021] [Accepted: 02/14/2021] [Indexed: 02/07/2023]
Abstract
The objective of the current study was to demonstrate the immunostimulatory effects of a polysaccharide isolated from Chrysanthemum zawadskii Herbich var. latilobum leaves (CP) and evaluate its potential as a vaccine adjuvant. Results showed that CP induced maturation of the dendritic cells (DCs). In addition, CP-treated DCs activated naïve T cells to polarized CD4+ and CD8+ T cells and substantially induced the production of IFN-γ and IL-2 in vitro. Furthermore, CP initiated the maturation of DCs via the activation of MAPK and NF-κB signaling pathways. Interestingly, systemic administration of CP-treated DCs pulsed with ovalbumin (OVA) peptides significantly enhanced the immune response in vivo, which included the generation of antigen (OVA)-specific polyfunctional T cells, increased cytotoxic T lymphocyte activity, induction of Th1-mediated humoral immunity, and suppression of tumor growth. Taken together, our study highlighted the immunoregulatory activity of CP as well as its potential as a candidate vaccine adjuvant.
Collapse
Affiliation(s)
- Jeong Moo Han
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185, Republic of Korea; Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Ha-Yeon Song
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185, Republic of Korea; Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Ho Seong Seo
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185, Republic of Korea
| | - Eui-Hong Byun
- Department of Food Science and Technology, Kongju National University, Yesan 340-800, Republic of Korea
| | - Seung-Taik Lim
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Woo Sik Kim
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do 56212, Republic of Korea
| | - Eui-Baek Byun
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185, Republic of Korea.
| |
Collapse
|
29
|
Gilfillan CB, Hebeisen M, Rufer N, Speiser DE. Constant regulation for stable CD8 T-cell functional avidity and its possible implications for cancer immunotherapy. Eur J Immunol 2021; 51:1348-1360. [PMID: 33704770 PMCID: PMC8252569 DOI: 10.1002/eji.202049016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/16/2020] [Accepted: 03/05/2021] [Indexed: 12/30/2022]
Abstract
The functional avidity (FA) of cytotoxic CD8 T cells impacts strongly on their functional capabilities and correlates with protection from infection and cancer. FA depends on TCR affinity, downstream signaling strength, and TCR affinity-independent parameters of the immune synapse, such as costimulatory and inhibitory receptors. The functional impact of coreceptors on FA remains to be fully elucidated. Despite its importance, FA is infrequently assessed and incompletely understood. There is currently no consensus as to whether FA can be enhanced by optimized vaccine dose or boosting schedule. Recent findings suggest that FA is remarkably stable in vivo, possibly due to continued signaling modulation of critical receptors in the immune synapse. In this review, we provide an overview of the current knowledge and hypothesize that in vivo, codominant T cells constantly "equalize" their FA for similar function. We present a new model of constant FA regulation, and discuss practical implications for T-cell-based cancer immunotherapy.
Collapse
Affiliation(s)
- Connie B. Gilfillan
- Department of OncologyUniversity Hospital and University of LausanneLausanneSwitzerland
| | - Michael Hebeisen
- Department of OncologyUniversity Hospital and University of LausanneLausanneSwitzerland
| | - Nathalie Rufer
- Department of OncologyUniversity Hospital and University of LausanneLausanneSwitzerland
| | - Daniel E. Speiser
- Department of OncologyUniversity Hospital and University of LausanneLausanneSwitzerland
| |
Collapse
|
30
|
Prakash K, Chandorkar A, Saharia KK. Utility of CMV-Specific Immune Monitoring for the Management of CMV in Solid Organ Transplant Recipients: A Clinical Update. Diagnostics (Basel) 2021; 11:875. [PMID: 34068377 PMCID: PMC8153332 DOI: 10.3390/diagnostics11050875] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
Cytomegalovirus (CMV) is one of the most important opportunistic infections in solid organ transplant (SOT) recipients. However, current techniques used to predict risk for CMV infection fall short. CMV-specific cell mediated immunity (CMI) plays an important role in protecting against CMV infection. There is evidence that assays measuring CMV-CMI might better identify SOT recipients at risk of complications from CMV compared to anti-CMV IgG, which is our current standard of care. Here, we review recently published studies that utilize CMV-CMI, at various points before and after transplantation, to help predict risk and guide the management of CMV infection following organ transplantation. The evidence supports the use of these novel assays to help identify SOT recipients at increased risk and highlights the need for larger prospective trials evaluating these modalities in this high-risk population.
Collapse
Affiliation(s)
- Katya Prakash
- Division of Infectious Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Aditya Chandorkar
- Division of Infectious Diseases and International Medicine, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Kapil K. Saharia
- Division of Infectious Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| |
Collapse
|
31
|
Amini L, Wagner DL, Rössler U, Zarrinrad G, Wagner LF, Vollmer T, Wendering DJ, Kornak U, Volk HD, Reinke P, Schmueck-Henneresse M. CRISPR-Cas9-Edited Tacrolimus-Resistant Antiviral T Cells for Advanced Adoptive Immunotherapy in Transplant Recipients. Mol Ther 2021; 29:32-46. [PMID: 32956624 PMCID: PMC7791012 DOI: 10.1016/j.ymthe.2020.09.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023] Open
Abstract
Viral infections, such as with cytomegalovirus (CMV), remain a major risk factor for mortality and morbidity of transplant recipients because of their requirement for lifelong immunosuppression (IS). Antiviral drugs often cause toxicity and sometimes fail to control disease. Thus, regeneration of the antiviral immune response by adoptive antiviral T cell therapy is an attractive alternative. Our recent data, however, show only short-term efficacy in some solid organ recipients, possibly because of malfunction in transferred T cells caused by ongoing IS. We developed a vector-free clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9-based good manufacturing practice (GMP)-compliant protocol that efficiently targets and knocks out the gene for the adaptor protein FK506-binding protein 12 (FKBP12), required for the immunosuppressive function of tacrolimus. This was achieved by transient delivery of ribonucleoprotein complexes into CMV-specific T cells by electroporation. We confirmed the tacrolimus resistance of our gene-edited T cell products in vitro and demonstrated performance comparable with non-tacrolimus-treated unmodified T cells. The alternative calcineurin inhibitor cyclosporine A can be administered as a safety switch to shut down tacrolimus-resistant T cell activity in case of adverse effects. Furthermore, we performed safety assessments as a prerequisite for translation to first-in-human applications.
Collapse
Affiliation(s)
- Leila Amini
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (B-CRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Dimitrios Laurin Wagner
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (B-CRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Uta Rössler
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (B-CRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Ghazaleh Zarrinrad
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (B-CRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Einstein Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Livia Felicitas Wagner
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Tino Vollmer
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (B-CRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Désirée Jacqueline Wendering
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (B-CRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Uwe Kornak
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (B-CRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Hans-Dieter Volk
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (B-CRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Petra Reinke
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (B-CRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Michael Schmueck-Henneresse
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (B-CRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany.
| |
Collapse
|
32
|
Limaye AP, Babu TM, Boeckh M. Progress and Challenges in the Prevention, Diagnosis, and Management of Cytomegalovirus Infection in Transplantation. Clin Microbiol Rev 2020; 34:34/1/e00043-19. [PMID: 33115722 PMCID: PMC7920732 DOI: 10.1128/cmr.00043-19] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hosts with compromised or naive immune systems, such as individuals living with HIV/AIDS, transplant recipients, and fetuses, are at the highest risk for complications from cytomegalovirus (CMV) infection. Despite substantial progress in prevention, diagnostics, and treatment, CMV continues to negatively impact both solid-organ transplant (SOT) and hematologic cell transplant (HCT) recipients. In this article, we summarize important developments in the field over the past 10 years and highlight new approaches and remaining challenges to the optimal control of CMV infection and disease in transplant settings.
Collapse
Affiliation(s)
- Ajit P Limaye
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Tara M Babu
- Division of Infectious Diseases, University of Rochester Medical Center, Rochester, New York, USA
- Department of Infectious Diseases, Overlake Medical Center, Bellevue, Washington, USA
| | - Michael Boeckh
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| |
Collapse
|
33
|
Rapaka RR, Wahid R, Fresnay S, Booth JS, Darton TC, Jones C, Waddington CS, Levine MM, Pollard AJ, Sztein MB. Human Salmonella Typhi exposure generates differential multifunctional cross-reactive T-cell memory responses against Salmonella Paratyphi and invasive nontyphoidal Salmonella. Clin Transl Immunology 2020; 9:e1178. [PMID: 33005416 PMCID: PMC7512505 DOI: 10.1002/cti2.1178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 12/19/2022] Open
Abstract
Objective There are no vaccines for most of the major invasive Salmonella strains causing severe infection in humans. We evaluated the specificity of adaptive T memory cell responses generated after Salmonella Typhi exposure in humans against other major invasive Salmonella strains sharing capacity for dissemination. Methods T memory cells from eleven volunteers who underwent controlled oral challenge with wtS. Typhi were characterised by flow cytometry for cross‐reactive cellular cytokine/chemokine effector responses or evidence of degranulation upon stimulation with autologous B‐lymphoblastoid cells infected with either S. Typhi, Salmonella Paratyphi A (PA), S. Paratyphi B (PB) or an invasive nontyphoidal Salmonella strain of the S. Typhimurium serovar (iNTSTy). Results Blood T‐cell effector memory (TEM) responses after exposure to S. Typhi in humans evolve late, peaking weeks after infection in most volunteers. Induced multifunctional CD4+ Th1 and CD8+ TEM cells elicited after S. Typhi challenge were cross‐reactive with PA, PB and iNTSTy. The magnitude of multifunctional CD4+ TEM cell responses to S. Typhi correlated with induction of cross‐reactive multifunctional CD8+ TEM cells against PA, PB and iNTSTy. Highly multifunctional subsets and T central memory and T effector memory cells that re‐express CD45 (TEMRA) demonstrated less heterologous T‐cell cross‐reactivity, and multifunctional Th17 elicited after S. Typhi challenge was not cross‐reactive against other invasive Salmonella. Conclusion Gaps in cross‐reactive immune effector functions in human T‐cell memory compartments were highly dependent on invasive Salmonella strain, underscoring the importance of strain‐dependent vaccination in the design of T‐cell‐based vaccines for invasive Salmonella.
Collapse
Affiliation(s)
- Rekha R Rapaka
- Center for Vaccine Development and Global Health University of Maryland School of Medicine Baltimore MD USA.,Department of Medicine University of Maryland School of Medicine Baltimore MD USA
| | - Rezwanul Wahid
- Center for Vaccine Development and Global Health University of Maryland School of Medicine Baltimore MD USA.,Department of Pediatrics University of Maryland School of Medicine Baltimore MD USA
| | - Stephanie Fresnay
- Center for Vaccine Development and Global Health University of Maryland School of Medicine Baltimore MD USA.,Department of Pediatrics University of Maryland School of Medicine Baltimore MD USA.,Present address: Stephanie Fresnay GlaxoSmithKline Rockville MD USA
| | - Jayaum S Booth
- Center for Vaccine Development and Global Health University of Maryland School of Medicine Baltimore MD USA.,Department of Pediatrics University of Maryland School of Medicine Baltimore MD USA
| | - Thomas C Darton
- Oxford Vaccine Group Department of Paediatrics University of Oxford and the NIHR Oxford Biomedical Research Centre Oxford UK.,Present address: Thomas C Darton University of Sheffield Medical School Sheffield UK
| | - Claire Jones
- Oxford Vaccine Group Department of Paediatrics University of Oxford and the NIHR Oxford Biomedical Research Centre Oxford UK
| | - Claire S Waddington
- Oxford Vaccine Group Department of Paediatrics University of Oxford and the NIHR Oxford Biomedical Research Centre Oxford UK.,Present address: University of Cambridge Cambridge UK
| | - Myron M Levine
- Center for Vaccine Development and Global Health University of Maryland School of Medicine Baltimore MD USA.,Department of Medicine University of Maryland School of Medicine Baltimore MD USA.,Department of Pediatrics University of Maryland School of Medicine Baltimore MD USA
| | - Andrew J Pollard
- Oxford Vaccine Group Department of Paediatrics University of Oxford and the NIHR Oxford Biomedical Research Centre Oxford UK
| | - Marcelo B Sztein
- Center for Vaccine Development and Global Health University of Maryland School of Medicine Baltimore MD USA.,Department of Medicine University of Maryland School of Medicine Baltimore MD USA.,Department of Pediatrics University of Maryland School of Medicine Baltimore MD USA
| |
Collapse
|
34
|
Healy ZR, Weinhold KJ, Murdoch DM. Transcriptional Profiling of CD8+ CMV-Specific T Cell Functional Subsets Obtained Using a Modified Method for Isolating High-Quality RNA From Fixed and Permeabilized Cells. Front Immunol 2020; 11:1859. [PMID: 32983102 PMCID: PMC7492549 DOI: 10.3389/fimmu.2020.01859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/10/2020] [Indexed: 01/04/2023] Open
Abstract
Previous studies suggest that the presence of antigen-specific polyfunctional T cells is correlated with improved pathogen clearance, disease control, and clinical outcomes; however, the molecular mechanisms responsible for the generation, function, and survival of polyfunctional T cells remain unknown. The study of polyfunctional T cells has been, in part, limited by the need for intracellular cytokine staining (ICS), necessitating fixation and cell membrane permeabilization that leads to unacceptable degradation of RNA. Adopting elements from prior research efforts, we developed and optimized a modified protocol for the isolation of high-quality RNA (i.e., RIN > 7) from primary human T cells following aldehyde-fixation, detergent-based permeabilization, intracellular cytokines staining, and sorting. Additionally, this method also demonstrated utility preserving RNA when staining for transcription factors. This modified protocol utilizes an optimized combination of an RNase inhibitor and high-salt buffer that is cost-effective while maintaining the ability to identify and resolve cell populations for sorting. Overall, this protocol resulted in minimal loss of RNA integrity, quality, and quantity during cytoplasmic staining of cytokines and subsequent flourescence-activated cell sorting. Using this technique, we obtained the transcriptional profiles of functional subsets (i.e., non-functional, monofunctional, bifunctional, polyfunctional) of CMV-specific CD8+T cells. Our analyses demonstrated that these functional subsets are molecularly distinct, and that polyfunctional T cells are uniquely enriched for transcripts involved in viral response, inflammation, cell survival, proliferation, and metabolism when compared to monofunctional cells. Polyfunctional T cells demonstrate reduced activation-induced cell death and increased proliferation after antigen re-challenge. Further in silico analysis of transcriptional data suggested a critical role for STAT5 transcriptional activity in polyfunctional cell activation. Pharmacologic inhibition of STAT5 was associated with a significant reduction in polyfunctional cell cytokine expression and proliferation, demonstrating the requirement of STAT5 activity not only for proliferation and cell survival, but also cytokine expression. Finally, we confirmed this association between CMV-specific CD8+ polyfunctionality with STAT5 signaling also exists in immunosuppressed transplant recipients using single cell transcriptomics, indicating that results from this study may translate to this vulnerable patient population. Collectively, these results shed light on the mechanisms governing polyfunctional T cell function and survival and may ultimately inform multiple areas of immunology, including but not limited to the development of new vaccines, CAR-T cell therapies, and adoptive T cell transfer.
Collapse
Affiliation(s)
- Zachary R Healy
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Duke University Hospital, Durham, NC, United States
| | - Kent J Weinhold
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - David M Murdoch
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Duke University Hospital, Durham, NC, United States
| |
Collapse
|
35
|
Jorgenson MR, Hillis MI, Saddler CM, Smith JA, Parajuli S, Mandelbrot DA. Prediction of cytomegalovirus infection: A single-center experience utilizing a newly available cell-mediated immunity assay by flow cytometry, a risk factor screening tool, and serologically demonstrated immunity. Transpl Infect Dis 2020; 22:e13311. [PMID: 32386076 DOI: 10.1111/tid.13311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/26/2020] [Accepted: 05/02/2020] [Indexed: 12/28/2022]
Abstract
PURPOSE Describe use and predictive potential of an intracellular cytokine staining (ICS) cytomegalovirus cell-mediated immunity (CMV CMI) assay and a risk factor screening tool on CMV reactivation in a real-world clinical setting and compare this to serologically demonstrated immunity by CMV IGG. METHODS Adult transplant patients at our center with the ICS assay resulted between 10/1/2018 and 9/1/2019 were included. Assays were considered positive per manufacturer specifications. RESULTS Twenty-five patients underwent ICS CMV CMI testing at our institution during the study period. The majority were kidney transplant recipients, 76% were D+/R-, and 76% were receiving CMV treatment. The positive predictive value (PPV) of the assay to predict lack of CMV was 87%; 93% when patients with antiviral resistance were excluded and 91% in only those receiving treatment. The presence of ≤2 clinical risk factors on the screening tool had a PPV of 92% in predicting lack of recurrence. In comparison, serologically demonstrated immunity by CMV IGG had a PPV of 62%. CONCLUSIONS In our study representing real-world clinical use, the ICS CMV CMI assay and the risk factor screening tool had predictive potential that was superior to serologically demonstrated immunity. The reliability of the assay seemed to decrease with higher degrees of clinical risk suggesting a multimodal screening approach is warranted.
Collapse
Affiliation(s)
- Margaret R Jorgenson
- Department of Pharmacy, University of Wisconsin Hospital and Clinics, Madison, WI, USA
| | - Mikala I Hillis
- Department of Pharmacy, University of Wisconsin Hospital and Clinics, Madison, WI, USA
| | - Christopher M Saddler
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, University of Wisconsin Hospital and Clinics, Madison, WI, USA
| | - Jeannina A Smith
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, University of Wisconsin Hospital and Clinics, Madison, WI, USA
| | - Sandesh Parajuli
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, University of Wisconsin Hospital and Clinics, Madison, WI, USA
| | - Didier A Mandelbrot
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, University of Wisconsin Hospital and Clinics, Madison, WI, USA
| |
Collapse
|
36
|
Snyder LD, Belperio J, Budev M, Frankel C, Kirchner J, Martinu T, Neely ML, Reynolds JM, Shah P, Singer LG, Todd JL, Tsuang W, Weigt S, Palmer SM. Highlights from the clinical trials in organ transplantation (CTOT)-20 and CTOT-22 Consortium studies in lung transplant. Am J Transplant 2020; 20:1489-1494. [PMID: 32342596 PMCID: PMC7323580 DOI: 10.1111/ajt.15957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/10/2020] [Accepted: 04/17/2020] [Indexed: 01/25/2023]
Abstract
Long-term survival after lung transplant lags behind that of other commonly transplanted organs, reflecting the current incomplete understanding of the mechanisms involved in the development of posttransplant lung injury, rejection, infection, and chronic allograft dysfunction. To address this unmet need, 2 ongoing National Institute of Allergy and Infectious Disease funded studies through the Clinical Trials in Organ Transplant Consortium (CTOT) CTOT-20 and CTOT-22 were dedicated to understanding the clinical factors and biological mechanisms that drive chronic lung allograft dysfunction and those that maintain cytomegalovirus polyfunctional protective immunity. The CTOT-20 and CTOT-22 studies enrolled 800 lung transplant recipients at 5 North American centers over 3 years. Given the number and complexity of subjects included, CTOT-20 and CTOT-22 utilized innovative data transfers and capitalized on patient-entered data collection to minimize site manual data entry. The data were coupled with an extensive biosample collection strategy that included DNA, RNA, plasma, serum, bronchoalveolar lavage fluid, and bronchoalveolar lavage cell pellet. This Special Article describes the CTOT-20 and CTOT-22 protocols, data and biosample strategy, initial results, and lessons learned through study execution.
Collapse
Affiliation(s)
| | | | | | | | - Jerry Kirchner
- Duke Clinical Research institute, Durham, North Carolina
| | | | | | | | - Pali Shah
- Johns Hopkins University, Baltimore, Maryland
| | | | | | | | - Samuel Weigt
- University of California, Los Angeles, California
| | | |
Collapse
|
37
|
Lack of cytomegalovirus (CMV)-specific cell-mediated immune response using QuantiFERON-CMV assay in CMV-seropositive healthy volunteers: fact not artifact. Sci Rep 2020; 10:7194. [PMID: 32346028 PMCID: PMC7188901 DOI: 10.1038/s41598-020-64133-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/08/2020] [Indexed: 12/21/2022] Open
Abstract
The QuantiFERON-CMV (QF) assay measures cell-mediated immunity against cytomegalovirus (CMV-CMI), which is particularly useful in individuals susceptible to CMV infection such as transplant patients. A positive QF result identifies patients that are better protected against CMV infection. However, the significance of a negative QF result in CMV-seropositive individuals needs to be clarified. CMV-CMI was analyzed in healthy subjects using the QF assay, and, in parallel, the Flow-cytometric Assay of Specific Cell-mediated Immune response in Activated whole blood (FASCIA). FASCIA assay measures T-cell proliferation using CMV lysate as stimulus whereas QF assay use a mix of peptides. A total of 93 healthy volunteers were enrolled, and 13/71 CMV-seropositive individuals (18.3%) showed humoral/cellular discordance using QF assay (CMV+ QF-). Interestingly, with FASCIA assay CD4+ and CD8+ T-cell proliferations were lower in CMV+ QF- than in CMV+ QF+ individuals. Furthermore, CMV+ QF- volunteers had a lower level of anti-CMV IgG than CMV+ QF+ subjects. Discordant CMV+ QF- volunteers can be defined as low responder individuals since they show lower CMV-specific humoral and cellular immune responses in comparison to CMV+ QF+ individuals. Immune discordance shows the high heterogeneity of immunity to CMV in healthy subjects.
Collapse
|
38
|
Schwendinger M, Thiry G, De Vos B, Leroux-Roels G, Bruhwyler J, Huygens A, Ganeff C, Buchinger H, Orlinger KK, Pinschewer DD, Monath TP, Lilja AE. A Randomized Dose-Escalating Phase I Trial of a Replication-Deficient Lymphocytic Choriomeningitis Virus Vector-Based Vaccine Against Human Cytomegalovirus. J Infect Dis 2020; 225:1399-1410. [PMID: 32313928 PMCID: PMC9016443 DOI: 10.1093/infdis/jiaa121] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 03/20/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND A vaccine (HB-101) consisting of 2 nonreplicating lymphocytic choriomeningitis virus (LCMV) vectors expressing the human cytomegalovirus antigens glycoprotein B (gB) and the 65-kD phosphoprotein (pp65), respectively, is in development to prevent cytomegalovirus infection. METHODS HB-101 was tested in cytomegalovirus-naive, healthy adults in a randomized, double-blind, placebo-controlled, dose-escalation Phase I trial. Fifty-four subjects received low, medium, or high dose of HB-101 or placebo by intramuscular administration at Month 0, 1, and 3. Safety and immunogenicity were the respective primary and secondary endpoints. Subjects were followed for 12 months after the initial immunization. RESULTS Vaccination was associated with transient mild to moderate adverse events. HB-101 administration induced dose-dependent gB- and pp65-specific cellular responses, dominated by pp65-specific CD8 T cells, a high fraction of which were polyfunctional. Two administrations were sufficient to elicit dose-dependent gB-binding and cytomegalovirus-neutralizing antibodies (Abs). Cytomegalovirus-specific immune responses were boosted after each administration. Only 1 of 42 vaccine recipients mounted a transient LCMV vector-neutralizing Ab response. CONCLUSIONS HB-101 was well tolerated and induced cytomegalovirus-specific polyfunctional CD8 T-cell and neutralizing Ab responses in the majority of subjects. Lack of vector-neutralizing Ab responses should facilitate booster vaccinations. These results justify further clinical evaluation of this vaccine candidate.
Collapse
Affiliation(s)
| | - Georges Thiry
- Hookipa Pharma Inc., New York, New York, USA.,Senergues Consult, Saint Etienne de Maurs, France
| | - Beatrice De Vos
- Bejamad bvba, Consultancy Office Pharmaceutical Sciences, Dworp, Belgium
| | - Geert Leroux-Roels
- Center for Vaccinology (CEVAC), Ghent University Hospital, Ghent, Belgium
| | | | | | | | | | | | - Daniel D Pinschewer
- Hookipa Pharma Inc., New York, New York, USA.,University of Basel, Department of Biomedicine - Haus Petersplatz, Basel, Switzerland
| | - Thomas P Monath
- Hookipa Pharma Inc., New York, New York, USA.,Crozet BioPharma LLC, Devens, Massachusetts, USA
| | | |
Collapse
|
39
|
Nelson CS, Jenks JA, Pardi N, Goodwin M, Roark H, Edwards W, McLellan JS, Pollara J, Weissman D, Permar SR. Human Cytomegalovirus Glycoprotein B Nucleoside-Modified mRNA Vaccine Elicits Antibody Responses with Greater Durability and Breadth than MF59-Adjuvanted gB Protein Immunization. J Virol 2020; 94:e00186-20. [PMID: 32051265 PMCID: PMC7163130 DOI: 10.1128/jvi.00186-20] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023] Open
Abstract
A vaccine to prevent maternal acquisition of human cytomegalovirus (HCMV) during pregnancy is a primary strategy to reduce the incidence of congenital disease. The MF59-adjuvanted glycoprotein B (gB) protein subunit vaccine (gB/MF59) is the most efficacious vaccine tested to date for this indication. We previously identified that gB/MF59 vaccination elicited poor neutralizing antibody responses and an immunodominant response against gB antigenic domain 3 (AD-3). Thus, we sought to test novel gB vaccines to improve functional antibody responses and reduce AD-3 immunodominance. Groups of juvenile New Zealand White rabbits were administered 3 sequential doses of the full-length gB protein with an MF59-like squalene-based adjuvant, the gB ectodomain protein (lacking AD-3) with squalene adjuvant, or lipid nanoparticle (LNP)-encapsulated nucleoside-modified mRNA encoding full-length gB. All vaccines were highly immunogenic with similar kinetics and comparable peak gB-binding and functional antibody responses. The AD-3-immunodominant IgG response following human gB/MF59 vaccination was closely mimicked in rabbits. Though gB ectodomain subunit vaccination eliminated targeting of epitopes in AD-3, it did not improve vaccine-elicited neutralizing or nonneutralizing antibody functions. gB nucleoside-modified mRNA-LNP-immunized rabbits exhibited an enhanced durability of vaccine-elicited antibody responses. Furthermore, the gB mRNA-LNP vaccine enhanced the breadth of IgG binding responses against discrete gB peptides. Finally, low-magnitude gB-specific T cell activity was observed in the full-length gB protein and mRNA-LNP groups, though not in ectodomain-vaccinated rabbits. Altogether, these data suggest that the use of gB nucleoside-modified mRNA-LNP vaccines is a viable strategy for improving on the partial efficacy of gB/MF59 vaccination and should be further evaluated in preclinical models.IMPORTANCE Human cytomegalovirus (HCMV) is the most common infectious cause of infant birth defects, resulting in permanent neurological disability for one newborn child every hour in the United States. After more than a half century of research and development, we remain without a clinically licensed vaccine or immunotherapeutic to reduce the burden of HCMV-associated disease. In this study, we sought to improve upon the glycoprotein B protein vaccine (gB/MF59), the most efficacious HCMV vaccine evaluated in a clinical trial, via targeted modifications to either the protein structure or vaccine formulation. Utilization of a novel vaccine platform, nucleoside-modified mRNA formulated in lipid nanoparticles, increased the durability and breadth of vaccine-elicited antibody responses. We propose that an mRNA-based gB vaccine may ultimately prove more efficacious than the gB/MF59 vaccine and should be further evaluated for its ability to elicit antiviral immune factors that can prevent HCMV-associated disease.
Collapse
Affiliation(s)
- Cody S Nelson
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Jennifer A Jenks
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Norbert Pardi
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Matthew Goodwin
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Hunter Roark
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Whitney Edwards
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Jason S McLellan
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - Justin Pollara
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Sallie R Permar
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
40
|
Singh N, Winston DJ, Razonable RR, Lyon GM, Silveira FP, Wagener MM, Stevens-Ayers T, Edmison B, Boeckh M, Limaye AP. Effect of Preemptive Therapy vs Antiviral Prophylaxis on Cytomegalovirus Disease in Seronegative Liver Transplant Recipients With Seropositive Donors: A Randomized Clinical Trial. JAMA 2020; 323:1378-1387. [PMID: 32286644 PMCID: PMC7157180 DOI: 10.1001/jama.2020.3138] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
IMPORTANCE Despite the use of a cytomegalovirus (CMV) prevention strategy of antiviral prophylaxis for high-risk CMV-seronegative liver transplant recipients with seropositive donors, high rates of delayed-onset postprophylaxis CMV disease occur. An alternate approach, preemptive therapy (initiation of antiviral therapy for early asymptomatic CMV viremia detected by surveillance testing), has not previously been directly compared with antiviral prophylaxis in these patients. OBJECTIVE To compare preemptive therapy with antiviral prophylaxis in CMV-seronegative liver transplant recipients with seropositive donors for the prevention of CMV disease. DESIGN, SETTING, AND PARTICIPANTS Randomized clinical trial of preemptive therapy vs antiviral prophylaxis in 205 CMV-seronegative liver transplant recipients with seropositive donors aged older than 18 years. The trial was conducted at 6 academic transplant centers in the United States between October 2012 and June 2017, with last follow-up in June 2018. INTERVENTIONS Patients were randomized 1:1 to receive either preemptive therapy (valganciclovir, 900 mg, twice daily until 2 consecutive negative tests a week apart) for viremia detected by weekly plasma CMV polymerase chain reaction for 100 days (n = 100) or valganciclovir, 900 mg, daily for 100 days as antiviral prophylaxis (n = 105). MAIN OUTCOMES AND MEASURES The primary outcome was incidence of CMV disease by 12 months, defined as CMV syndrome (CMV viremia and clinical or laboratory findings) or end-organ disease. Secondary outcomes included acute allograft rejection, opportunistic infections, graft and patient survival, and neutropenia. RESULTS Among 205 patients who were randomized (mean age, 55 years; 62 women [30%]), all 205 (100%) completed the trial. The incidence of CMV disease was significantly lower with preemptive therapy than antiviral prophylaxis (9% [9/100] vs 19% [20/105]; difference, 10% [95% CI, 0.5% to 19.6%]; P = .04]). The incidence of allograft rejection (28% vs 25%; difference, 3% [95% CI, -9% to 15%]), opportunistic infections (25% vs 27%; difference, 2% [95% CI, -14% to 10%]), graft loss (2% vs 2%; difference, <1% [95% CI, -4% to 4%]), and neutropenia (13% vs 10%; difference, 3% [95% CI, -5% to 12%]) did not differ significantly for the preemptive therapy vs antiviral prophylaxis group, respectively. All-cause mortality at last follow-up was 15% in the preemptive therapy vs 19% in the antiviral prophylaxis group (difference, 4% [95% CI, -14% to 6%]; P = .46). CONCLUSIONS AND RELEVANCE Among CMV-seronegative liver transplant recipients with seropositive donors, the use of preemptive therapy, compared with antiviral prophylaxis, resulted in a lower incidence of CMV disease over 12 months. Further research is needed to replicate these findings and assess long-term outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT01552369.
Collapse
Affiliation(s)
- Nina Singh
- University of Pittsburgh, Pittsburgh, Pennsylvania
- VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| | - Drew J. Winston
- University of California Los Angeles Medical Center, Los Angeles
| | | | | | | | | | | | | | - Michael Boeckh
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | |
Collapse
|
41
|
Nelson CS, Baraniak I, Lilleri D, Reeves MB, Griffiths PD, Permar SR. Immune Correlates of Protection Against Human Cytomegalovirus Acquisition, Replication, and Disease. J Infect Dis 2020; 221:S45-S59. [PMID: 32134477 PMCID: PMC7057792 DOI: 10.1093/infdis/jiz428] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human cytomegalovirus (HCMV) is the most common infectious cause of infant birth defects and an etiology of significant morbidity and mortality in solid organ and hematopoietic stem cell transplant recipients. There is tremendous interest in developing a vaccine or immunotherapeutic to reduce the burden of HCMV-associated disease, yet after nearly a half-century of research and development in this field we remain without such an intervention. Defining immune correlates of protection is a process that enables targeted vaccine/immunotherapeutic discovery and informed evaluation of clinical performance. Outcomes in the HCMV field have previously been measured against a variety of clinical end points, including virus acquisition, systemic replication, and progression to disease. Herein we review immune correlates of protection against each of these end points in turn, showing that control of HCMV likely depends on a combination of innate immune factors, antibodies, and T-cell responses. Furthermore, protective immune responses are heterogeneous, with no single immune parameter predicting protection against all clinical outcomes and stages of HCMV infection. A detailed understanding of protective immune responses for a given clinical end point will inform immunogen selection and guide preclinical and clinical evaluation of vaccines or immunotherapeutics to prevent HCMV-mediated congenital and transplant disease.
Collapse
Affiliation(s)
- Cody S Nelson
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina,Correspondence: Cody S. Nelson, Human Vaccine Institute, Duke University Medical Center, 2 Genome Ct, Durham, NC 27710 ()
| | - Ilona Baraniak
- Institute for Immunity and Transplantation, University College London, London, United Kingdom
| | - Daniele Lilleri
- Laboratory of Genetics, Transplantation, and Cardiovascular Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Matthew B Reeves
- Institute for Immunity and Transplantation, University College London, London, United Kingdom
| | - Paul D Griffiths
- Institute for Immunity and Transplantation, University College London, London, United Kingdom
| | - Sallie R Permar
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
42
|
Haidar G, Boeckh M, Singh N. Cytomegalovirus Infection in Solid Organ and Hematopoietic Cell Transplantation: State of the Evidence. J Infect Dis 2020; 221:S23-S31. [PMID: 32134486 PMCID: PMC7057778 DOI: 10.1093/infdis/jiz454] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This review focuses on recent advances in the field of cytomegalovirus (CMV). The 2 main strategies for CMV prevention are prophylaxis and preemptive therapy. Prophylaxis effectively prevents CMV infection after solid organ transplantation (SOT) but is associated with high rates of neutropenia and delayed-onset postprophylaxis disease. In contrast, preemptive therapy has the advantage of leading to lower rates of CMV disease and robust humoral and T-cell responses. It is widely used in hematopoietic cell transplant recipients but is infrequently utilized after SOT due to logistical considerations, though these may be overcome by novel methods to monitor CMV viremia using self-testing platforms. We review recent developments in CMV immune monitoring, vaccination, and monoclonal antibodies, all of which have the potential to become part of integrated strategies that rely on viral load monitoring and immune responses. We discuss novel therapeutic options for drug-resistant or refractory CMV infection, including maribavir, letermovir, and adoptive T-cell transfer. We also explore the role of donor factors in transmitting CMV after SOT. Finally, we propose a framework with which to approach CMV prevention in the foreseeable future.
Collapse
Affiliation(s)
- Ghady Haidar
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Division of Infectious Diseases, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Michael Boeckh
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Medicine, University of Washington, Seattle, Washington
| | - Nina Singh
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
43
|
Kim T, Lee HJ, Kim SM, Jung JH, Shin S, Kim YH, Sung H, Chong YP, Lee SO, Choi SH, Kim YS, Woo JH, Kim SH, Han DJ. Diagnostic usefulness of the cytomegalovirus (CMV)-specific T cell-based assay for predicting CMV infection after kidney transplant. Korean J Intern Med 2020; 35:438-448. [PMID: 29865778 PMCID: PMC7061014 DOI: 10.3904/kjim.2017.318] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 01/29/2018] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND/AIMS We evaluated the usefulness in kidney transplant (KT) candidates of cytomegalovirus (CMV)-specific enzyme-linked immunospot (ELISPOT) assays for predicting the development of post-transplant CMV infections. METHODS All adult recipients admitted for living-donor KT between March 2014 and March 2015 were prospectively enrolled except donor CMV-seropositive and recipient seronegative (D+/R-) recipients. All the enrolled patients underwent CMV-specific ELISPOT assays before transplant, and a researcher blinded to the results of these assays examined the patients for CMV infection at least 6 months post-transplant. RESULTS Of 133 KT recipients, 44 (33%) developed CMV infections. When we used the cut-off determined by receiver operator characteristic curve, 16 of the 34 patients (47%) with negative pp65-specific ELISPOT results (< 11 spots/200,000 cells) developed CMV infections, whereas 28 of the 99 patients (39%) with positive pp65-specific ELISPOT results at baseline (≥ 11 spots/200,000 cells) developed CMV infections after KT (p = 0.02). Based on the multivariable Cox regression model, negative pp65-specific ELISPOT assay results was an independent risk factor for CMV infection (adjusted hazard ratio [AHR], 1.87; 95% confidence interval [CI], 1.01 to 3.46; p = 0.047) as well as age (AHR, 1.05; 95% CI, 1.01 to 1.08; p = 0.007). CONCLUSION Pre-transplant CMV-specific ELISPOT assay appears to predict the development of CMV infections after KT in recipients at moderate risk such as CMV-seropositive recipients (Clinical Trial Registration Number NCT02025335).
Collapse
Affiliation(s)
- Taeeun Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Division of Infectious Diseases, Department of Internal Medicine, Ulsan University Hospital, Ulsan, Korea
| | - Hyun-Jeong Lee
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sun-Mi Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Joo Hee Jung
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sung Shin
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Young-Hoon Kim
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Heungsup Sung
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yong Pil Chong
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang-Oh Lee
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang-Ho Choi
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yang Soo Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jun Hee Woo
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sung-Han Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Correspondence to Sung-Han Kim, M.D. Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea Tel: +82-2-3010-3305 Fax: +82-2-3010-6970 E-mail:
| | - Duck Jong Han
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
44
|
Mullane KM. Human Cytomegalovirus Prophylaxis and Treatment in Lung Transplantation in the Current Era. CURRENT PULMONOLOGY REPORTS 2020. [DOI: 10.1007/s13665-020-00246-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Clinical experience with a novel assay measuring cytomegalovirus (CMV)-specific CD4+ and CD8+ T-cell immunity by flow cytometry and intracellular cytokine staining to predict clinically significant CMV events. BMC Infect Dis 2020; 20:58. [PMID: 31952516 PMCID: PMC6969482 DOI: 10.1186/s12879-020-4787-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/09/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Cytomegalovirus (CMV) infection is one of the most common opportunistic infections following organ transplantation, despite administration of CMV prophylaxis. CMV-specific T-cell immunity (TCI) has been associated with reduced rates of CMV infection. We describe for the first time clinical experience using the CMV T-Cell Immunity Panel (CMV-TCIP), a commercially available assay which measures CMV-specific CD4+ and CD8+ T-cell responses, to predict clinically significant CMV events. METHODS Adult (> 18-year-old) patients with CMV-TCIP results and ≥ 1 subsequent assessment for CMV DNAemia were included at Brown University and the University of Maryland Medical Center-affiliated hospitals between 4/2017 and 5/2019. A clinically significant CMV event was defined as CMV DNAemia prompting initiation of treatment. We excluded indeterminate results, mostly due to background positivity, allogeneic hematopoetic cell transplant (HCT) recipients, or patients who were continued on antiviral therapy against CMV irrespective of the CMV-TCIP result, because ongoing antiviral therapy could prevent a CMV event. RESULTS We analyzed 44 samples from 37 patients: 31 were solid organ transplant recipients, 4 had hematologic malignancies, 2 had autoimmune disorders. The CMV-protection receiver operating characteristic (ROC) area under the curve (AUC) was significant for %CMV-specific CD4+ (AUC: 0.78, P < 0.001) and borderline for CD8+ (AUC: 0.66, P = 0.064) T-cells. At a cut-off value of 0.22% CMV-specific CD4+ T-cells, positive predictive value (PPV) for protection against CMV was 85% (95%CI 65-96%), and negative predictive value (NPV) was 67% (95%CI 41-87%). CONCLUSIONS The CMV-TCIP, in particular %CMV-specific CD4+ T-cells, showed good diagnostic performance to predict CMV events. The CMV-TCIP may be a useful test in clinical practice, and merits further validation in larger prospective studies.
Collapse
|
46
|
Ambalathingal GR, Francis RS, Corvino D, Srihari S, Aftab BT, Smith C, Khanna R. Proteome-wide analysis of T-cell response to BK polyomavirus in healthy virus carriers and kidney transplant recipients reveals a unique transcriptional and functional profile. Clin Transl Immunology 2020; 9:e01102. [PMID: 31956413 PMCID: PMC6960379 DOI: 10.1002/cti2.1102] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/15/2019] [Accepted: 12/19/2019] [Indexed: 11/29/2022] Open
Abstract
Objectives Cellular immunity against BK polyomavirus (BKV)‐encoded antigens plays a crucial role in long‐term protection against virus‐associated pathogenesis in transplant recipients. However, in‐depth understanding on dynamics of these cellular immune responses is required to develop better immune monitoring and immunotherapeutic strategies. Methods Here, we have conducted a proteome‐wide analysis of BKV‐specific T‐cell responses in a cohort of 53 healthy individuals and 26 kidney transplant recipients to delineate the functional and transcriptional profile of these effector cells and compared these characteristics to T cells directed against cytomegalovirus, which is also known to cause significant morbidity in transplant recipients. Results Profiling of BKV‐specific CD4+ and CD8+ T cells revealed that kidney transplant recipients with high levels of circulating viraemia showed significantly reduced T‐cell reactivity against large T and/or small T antigens when compared to healthy donors. Interestingly, T cells specific for these antigens showed strong cross‐recognition to orthologous JC virus (JCV) peptides, including those exhibiting varying degrees of sequence identity. Ex vivo functional and phenotypic characterisation revealed that the majority of BKV‐specific T cells from renal transplant recipients expressed low levels of the key transcriptional regulators T‐bet and eomesodermin, which was coincident with undetectable expression of granzyme B and perforin. However, in vitro stimulation of T cells with BKV epitopes selectively enhanced the expression of T‐bet, granzyme B and cellular trafficking molecules (CCR4, CD49d and CD103) with minimal change in eomesodermin and perforin. Conclusions These observations provide an important platform for the future development of immune monitoring and adoptive T‐cell therapy strategies for BKV‐associated diseases in transplant recipients, which may also be exploited for similar therapeutic value in JCV‐associated clinical complications.
Collapse
Affiliation(s)
- George R Ambalathingal
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development Tumour Immunology Laboratory QIMR Berghofer Medical Research Institute Herston QLD Australia
| | - Ross S Francis
- Department of Nephrology Princess Alexandra Hospital Woolloongabba QLD Australia.,School of Medicine University of Queensland Brisbane QLD Australia
| | - Dillon Corvino
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development Tumour Immunology Laboratory QIMR Berghofer Medical Research Institute Herston QLD Australia.,School of Medicine University of Queensland Brisbane QLD Australia
| | - Sriganesh Srihari
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development Tumour Immunology Laboratory QIMR Berghofer Medical Research Institute Herston QLD Australia
| | - Blake T Aftab
- Department of Preclinical and Translational Sciences Atara Biotherapeutics Los Angeles CA USA
| | - Corey Smith
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development Tumour Immunology Laboratory QIMR Berghofer Medical Research Institute Herston QLD Australia
| | - Rajiv Khanna
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development Tumour Immunology Laboratory QIMR Berghofer Medical Research Institute Herston QLD Australia.,School of Medicine University of Queensland Brisbane QLD Australia
| |
Collapse
|
47
|
Wijeratne DT, Fernando S, Gomes L, Jeewandara C, Jayarathna G, Perera Y, Wickramanayake S, Wijewickrama A, Ogg GS, Malavige GN. Association of dengue virus-specific polyfunctional T-cell responses with clinical disease severity in acute dengue infection. Immun Inflamm Dis 2019; 7:276-285. [PMID: 31568656 PMCID: PMC6842812 DOI: 10.1002/iid3.271] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/31/2019] [Accepted: 08/27/2019] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION Although the role of dengue virus (DENV)-specific T cells in the pathogenesis of acute dengue infection is emerging, the functionality of virus-specific T cells associated with milder clinical disease has not been well studied. We sought to investigate how the functionality of DENV-NS3 and DENV-NS5 protein-specific T cells differ in patients with dengue fever (DF) and dengue hemorrhagic fever (DHF). METHODS Using intracellular cytokine assays, we assessed the production of interferon γ (IFNγ), tumor necrosis factor-α (TNF-α), macrophage inflammatory protein-1β (MIP-1β), and CD107a expression in adult patients with acute DF (n = 21) and DHF (n = 22). RESULTS Quadruple cytokine-producing, polyfunctional DENV-NS3- and DENV-NS5-specific T cells were more frequent in those with DF when compared to those with DHF. While DENV-NS3- and DENV-NS5-specific T cells in patients with DF expressed IFNγ > TNF-α > MIP-β > CD107a, T cells of those with DHF predominantly expressed CD107a > MIP-1β > IFNγ > TNF-α. Overall production of IFNγ or TNF-α by DENV-NS3- and DENV-NS5-specific T cells was significantly higher in patients with DF. The majority of NS3-specific T cells in patients with DF (78.6%) and DHF (68.9%) were single-cytokine producers; 76.6% of DENV-NS5-specific T cells in those with DF and 77.1% of those with DHF, produced only a single cytokine. However, no significant association was found with polyfunctional T-cell responses and the degree of viraemia. CONCLUSIONS Our results suggest that the functional phenotype of DENV-specific T cells are likely to associate with clinical disease severity.
Collapse
Affiliation(s)
- Dulharie T. Wijeratne
- Centre for Dengue Research, Faculty of Medical SciencesUniversity of Sri JayewardenepuraNugegodaSri Lanka
| | - Samitha Fernando
- Centre for Dengue Research, Faculty of Medical SciencesUniversity of Sri JayewardenepuraNugegodaSri Lanka
| | - Laksiri Gomes
- Centre for Dengue Research, Faculty of Medical SciencesUniversity of Sri JayewardenepuraNugegodaSri Lanka
| | - Chandima Jeewandara
- Centre for Dengue Research, Faculty of Medical SciencesUniversity of Sri JayewardenepuraNugegodaSri Lanka
| | - Geethal Jayarathna
- Centre for Dengue Research, Faculty of Medical SciencesUniversity of Sri JayewardenepuraNugegodaSri Lanka
| | - Yashoda Perera
- Centre for Dengue Research, Faculty of Medical SciencesUniversity of Sri JayewardenepuraNugegodaSri Lanka
| | - Samurdhi Wickramanayake
- Centre for Dengue Research, Faculty of Medical SciencesUniversity of Sri JayewardenepuraNugegodaSri Lanka
| | | | - Graham S. Ogg
- Centre for Dengue Research, Faculty of Medical SciencesUniversity of Sri JayewardenepuraNugegodaSri Lanka
- MRC Human Immunology Unit, Weatherall Institute of Molecular MedicineOxford NIHR Biomedical Research Centre and University of OxfordOxfordUK
| | - Gathsaurie N. Malavige
- Centre for Dengue Research, Faculty of Medical SciencesUniversity of Sri JayewardenepuraNugegodaSri Lanka
- MRC Human Immunology Unit, Weatherall Institute of Molecular MedicineOxford NIHR Biomedical Research Centre and University of OxfordOxfordUK
| |
Collapse
|
48
|
A Randomized Study of Quantiferon CMV-directed Versus Fixed-duration Valganciclovir Prophylaxis to Reduce Late CMV After Lung Transplantation. Transplantation 2019; 103:1005-1013. [PMID: 30247316 DOI: 10.1097/tp.0000000000002454] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND We provide the results of the first interventional study of cytomegalovirus (CMV)-specific immune monitoring to direct the length of antiviral prophylaxis in lung transplantation (LTx). METHODS Patients (n = 118) at risk of CMV infection were randomized 1:2 to either 5 months or variable length valganciclovir prophylaxis (5-11 mo post-LTx), as determined by the QuantiFERON (QFN)-CMV assay. Patients with a negative QFN-CMV assay (< 0.2 IU/mL) received prolonged valganciclovir prophylaxis. RESULTS The primary endpoint that was the incidence of CMV infection in the lung allograft within 18 months of LTx was significantly reduced in the QFN-CMV directed arm (37% versus 58%, P = 0.03). Secondary endpoints that included blood viremia, acute rejection, and chronic lung allograft dysfunction did not differ between the 2 arms. Of the 80/118 patients who ceased antiviral prophylaxis at 5 months, the incidence of viremia (> 600 copies/mL) within the blood was significantly reduced in patients with a positive QFN-CMV assay compared with those without protective immunity (13% versus 67%, P = 0.0003), as was the incidence of severe viremia (> 10 000 copies/mL) (3% versus 50%, P < 0.001). Ceasing antiviral prophylaxis at 11 months in patients with a negative assay was associated with a 25% incidence of late CMV viremia. CONCLUSIONS Cytomegalovirus immune monitoring allows an individualized approach to CMV prophylaxis and reduces late CMV infection within the lung allograft.
Collapse
|
49
|
Deep Profiling of the CD8+ T-cell Compartment Identifies Activated Cell Subsets and Multifunctional Responses Associated With Control of Cytomegalovirus Viremia. Transplantation 2019; 103:613-621. [PMID: 30028417 DOI: 10.1097/tp.0000000000002373] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Human cytomegalovirus (HCMV) is a common opportunistic pathogen in transplant recipients. Patterns of viremia and reactivation are influenced by the host immune response, including CD8 T cells. However, the cellular deficits or phenotypic differences that account for differential outcomes during HCMV viremia are incompletely understood. METHODS Peripheral blood mononuclear cells were collected from 20 transplant recipients (10 viremia controllers and 10 noncontrollers) at onset of HCMV viremia and 4 weeks postonset. We used mass cytometry to perform in-depth characterization of cell surface and intracellular CD8 T cell markers and to compare frequencies of these cells between groups. RESULTS Deep profiling identified 2 central memory T cell subsets at onset and 5 terminally differentiated memory T (TEMRA) cell subsets at 4 weeks that were associated with control of HCMV viremia, in addition to 6 TEMRA subsets at onset and 4 weeks associated with relapsing or remitting HCMV viremia. In general, CD8 T-cell clusters associated with poorly controlled HCMV viremia lacked markers of activation or terminal differentiation including CD38, CD69, CD25, CD57, and HLA-DR. We also measured the production of 8 HCMV-specific effector molecules (TNFα, IFNγ, interleukin 2, granzyme B, perforin, macrophage inflammatory protein 1β, interleukin 10, and CD107a) in CD8 T cells. Viremia controllers had greater diversity of HCMV-specific multifunctional responses at both time points, including significantly higher frequencies of HCMV-specific TNFαIFNγ CD8 T cells at onset. These multifunctional cells had a phenotype consistent with activated TEM/TEMRA cells. CONCLUSIONS Uncontrolled CMV viremia is associated with specific clusters of memory T-cell subsets and lower frequencies of HCMV-specific multifunctional CD8 T cells.
Collapse
|
50
|
Becerra-Artiles A, Cruz J, Leszyk JD, Sidney J, Sette A, Shaffer SA, Stern LJ. Naturally processed HLA-DR3-restricted HHV-6B peptides are recognized broadly with polyfunctional and cytotoxic CD4 T-cell responses. Eur J Immunol 2019; 49:1167-1185. [PMID: 31020640 DOI: 10.1002/eji.201948126] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/13/2019] [Accepted: 04/23/2019] [Indexed: 01/06/2023]
Abstract
Human herpes virus 6B (HHV-6B) is a widespread virus that infects most people early in infancy and establishes a chronic life-long infection with periodic reactivation. CD4 T cells have been implicated in control of HHV-6B, but antigenic targets and functional characteristics of the CD4 T-cell response are poorly understood. We identified 25 naturally processed MHC-II peptides, derived from six different HHV-6B proteins, and showed that they were recognized by CD4 T-cell responses in HLA-matched donors. The peptides were identified by mass spectrometry after elution from HLA-DR molecules isolated from HHV-6B-infected T cells. The peptides showed strong binding to matched HLA alleles and elicited recall T-cell responses in vitro. T-cell lines expanded in vitro were used for functional characterization of the response. Responding cells were mainly CD3+ CD4+ , produced IFN-γ, TNF-α, and low levels of IL-2, alone or in combination, highlighting the presence of polyfunctional T cells in the overall response. Many of the responding cells mobilized CD107a, stored granzyme B, and mediated specific killing of peptide-pulsed target cells. These results highlight a potential role for polyfunctional cytotoxic CD4 T cells in the long-term control of HHV-6B infection.
Collapse
Affiliation(s)
| | - John Cruz
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA
| | - John D Leszyk
- Mass Spectrometry Facility, University of Massachusetts Medical School, Shrewsbury, MA.,Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Immunology, San Diego, CA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, San Diego, CA.,Department of Medicine, University of California, San Diego, CA
| | - Scott A Shaffer
- Mass Spectrometry Facility, University of Massachusetts Medical School, Shrewsbury, MA.,Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA
| | - Lawrence J Stern
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA.,Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|