1
|
Mitchell JL, Buranapraditkun S, Gantner P, Takata H, Dietze K, N'guessan KF, Pollara J, Nohara J, Muir R, Kroon E, Pinyakorn S, Tulmethakaan N, Manasnayakorn S, Chottanapund S, Thantiworasit P, Prueksakaew P, Ratnaratorn N, Puttamaswin S, Nuntapinit B, Fox L, Haddad EK, Paquin-Proulx D, Phanuphak P, Sacdalan CP, Phanuphak N, Ananworanich J, Hsu D, Vasan S, Ferrari G, Chomont N, Trautmann L, on behalf of RV254 and RV304 Study Groups. Activation of CXCR3 + Tfh cells and B cells in lymph nodes during acute HIV-1 infection correlates with HIV-specific antibody development. J Virol 2025; 99:e0153224. [PMID: 39932316 PMCID: PMC11915809 DOI: 10.1128/jvi.01532-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/17/2025] [Indexed: 03/19/2025] Open
Abstract
Lymph node T follicular helper (Tfh) cells and germinal center (GC) B cells are critical to generate potent antibodies but are rarely possible to study in humans. To understand how Tfh/GC B-cell interactions during acute HIV-1 infection (AHI) impact the generation of HIV-specific antibodies, we performed a unique cross-sectional analysis of inguinal lymph node biopsies taken prior to antiretroviral therapy (ART) initiation in AHI. Although total Tfh and GC B cell frequencies did not change during AHI, increased frequencies of proliferating Th1-like CXCR3+ Tfh, CXCR3+ non-GC B cells, and total CXCR3+ GC B cells correlated with gp120-specific IgG antibody levels in AHI. Frequencies of proliferating CXCR3+ Tfh in AHI also correlated with gp120-specific IgG antibody levels after 48 weeks of ART, antibody-dependent cellular cytotoxicity, antibody-dependent cellular phagocytosis, and increased antibody binding to infected cells after ART. Importantly, while beneficial for antibody development, CXCR3+ Tfh cells were also infected by HIV-1 at higher frequencies than their CXCR3- counterparts and may contribute to the initial dissemination of HIV-1 in follicles. Together, these data suggest that activation of CXCR3+ Tfh cells is associated with induction of the germinal center response and subsequent antibody development, making these cells an important target for future therapeutic interventions. IMPORTANCE Early initiation of antiretroviral therapy (ART) is important to limit the seeding of the long-lasting HIV-1 reservoir; however, it also precludes the development of HIV-specific antibodies that can help control the virus if ART is stopped. Antibody development occurs within germinal centers in the lymph node and requires activation of both antigen-specific B cells and T follicular helper cells (Tfh), a specialized CD4+ cell that provides B cell help. To understand how early ART initiation may prohibit antibody development, we analyzed the frequencies and activation status of Tfh and B cells in lymph node biopsies collected in the different stages of acute HIV-1 infection. Our data suggest that decreased antibody development after early ART initiation may be due to limited germinal center development at the time of treatment and that new interventions that target activation of CXCR3+ Tfh may be beneficial to increase long-term HIV-specific antibody levels.
Collapse
Affiliation(s)
- Julie L. Mitchell
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Supranee Buranapraditkun
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Vaccine Research and Development, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Thai Pediatric Gastroenterology, Hepatology and Immunology (TPGHAI) Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pierre Gantner
- Centre de Recherche du CHUM (CRCHUM) and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Québec, Canada
| | - Hiroshi Takata
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Kenneth Dietze
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Kombo F. N'guessan
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Justin Pollara
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Junsuke Nohara
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Roshell Muir
- Division of Infectious Diseases & HIV Medicine, Department of Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Suteeraporn Pinyakorn
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | | | - Sopark Manasnayakorn
- Department of Surgery, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Pattarawat Thantiworasit
- Center of Excellence in Vaccine Research and Development, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | | | | | - Bessara Nuntapinit
- Armed Forces Research Institute of Medical Sciences in Bangkok, Bangkok, Thailand
| | - Lawrence Fox
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Elias K. Haddad
- Division of Infectious Diseases & HIV Medicine, Department of Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Dominic Paquin-Proulx
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | | | - Carlo P. Sacdalan
- SEARCH Research Foundation, Bangkok, Thailand
- Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Jintanat Ananworanich
- Department of Global Health, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Global Health and Development, Amsterdam, the Netherlands
| | - Denise Hsu
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Sandhya Vasan
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Guido Ferrari
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Nicolas Chomont
- Centre de Recherche du CHUM (CRCHUM) and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Québec, Canada
| | - Lydie Trautmann
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - on behalf of RV254 and RV304 Study Groups
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Vaccine Research and Development, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Thai Pediatric Gastroenterology, Hepatology and Immunology (TPGHAI) Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Centre de Recherche du CHUM (CRCHUM) and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Québec, Canada
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
- Division of Infectious Diseases & HIV Medicine, Department of Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
- SEARCH Research Foundation, Bangkok, Thailand
- Department of Surgery, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Armed Forces Research Institute of Medical Sciences in Bangkok, Bangkok, Thailand
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Institute of HIV Research and Innovation (IHRI), Bangkok, Thailand
- Department of Global Health, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Global Health and Development, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Yamamoto H, Matano T. SIV-specific neutralizing antibody induction following selection of a PI3K drive-attenuated nef variant. eLife 2025; 12:RP88849. [PMID: 40029304 PMCID: PMC11875539 DOI: 10.7554/elife.88849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025] Open
Abstract
HIV and simian immunodeficiency virus (SIV) infections are known for impaired neutralizing antibody (NAb) responses. While sequential virus-host B cell interaction appears to be basally required for NAb induction, driver molecular signatures predisposing to NAb induction still remain largely unknown. Here we describe SIV-specific NAb induction following a virus-host interplay decreasing aberrant viral drive of phosphoinositide 3-kinase (PI3K). Screening of seventy difficult-to-neutralize SIVmac239-infected macaques found nine NAb-inducing animals, with seven selecting for a specific CD8+ T-cell escape mutation in viral nef before NAb induction. This Nef-G63E mutation reduced excess Nef interaction-mediated drive of B-cell maturation-limiting PI3K/mammalian target of rapamycin complex 2 (mTORC2). In vivo imaging cytometry depicted preferential Nef perturbation of cognate Envelope-specific B cells, suggestive of polarized contact-dependent Nef transfer and corroborating cognate B-cell maturation post-mutant selection up to NAb induction. Results collectively exemplify a NAb induction pattern extrinsically reciprocal to human PI3K gain-of-function antibody-dysregulating disease and indicate that harnessing the PI3K/mTORC2 axis may facilitate NAb induction against difficult-to-neutralize viruses including HIV/SIV.
Collapse
Grants
- JP24fk0410066 Japan Agency for Medical Research and Development
- JP21jk0210002 Japan Agency for Medical Research and Development
- 24K21287 Ministry of Education, Culture, Sports, Science and Technology
- 21H02745 Ministry of Education, Culture, Sports, Science and Technology
- JP22wm0325006 Japan Agency for Medical Research and Development
- JP19fm0208017 Japan Agency for Medical Research and Development
- JP20fk0410022 Japan Agency for Medical Research and Development
- JP18fk0410003 Japan Agency for Medical Research and Development
- JP20fk0410011 Japan Agency for Medical Research and Development
- JP20fk0108125 Japan Agency for Medical Research and Development
- JP20jm0110012 Japan Agency for Medical Research and Development
- JP21fk0410035 Japan Agency for Medical Research and Development
- 17H02185 Ministry of Education, Culture, Sports, Science and Technology
- 18K07157 Ministry of Education, Culture, Sports, Science and Technology
- Takeda Science Foundation
- Imai Memorial Trust for AIDS Research
- Mitsui Sumitomo Insurance Welfare Foundation
Collapse
Affiliation(s)
- Hiroyuki Yamamoto
- AIDS Research Center, National Institute of Infectious DiseasesTokyoJapan
- Department of Biomedicine, University Hospital BaselBaselSwitzerland
- Joint Research Center for Human Retrovirus Infection, Kumamoto UniversityKumamotoJapan
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious DiseasesTokyoJapan
- Joint Research Center for Human Retrovirus Infection, Kumamoto UniversityKumamotoJapan
- The Institute of Medical Science, The University of TokyoTokyoJapan
| |
Collapse
|
3
|
Miller IG, Mahant AM, Jenks JA, Semmes EC, Rochat E, Herbek SL, Andy C, Rodgers NS, Pollara J, Gerber LM, Herold BC, Permar SR. Influence of Distinct Maternal Cytomegalovirus-Specific Neutralizing and Fc Receptor-Binding Responses on Congenital Cytomegalovirus Transmission in HIV-Exposed Neonates. Viruses 2025; 17:325. [PMID: 40143253 PMCID: PMC11946089 DOI: 10.3390/v17030325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 03/28/2025] Open
Abstract
Congenital cytomegalovirus (cCMV) is the most common infectious cause of birth defects worldwide, affecting approximately 1 in every 200 live-born infants globally. Recent work has identified potential immune correlates of protection against cCMV transmission including maternal and placentally transferred antibody levels and their function, which may inform the development of maternal active (vaccine) and passive (mono/polyclonal antibody) immunizations. However, these correlates need to also be assessed in diverse cohorts, including women living with HIV who have increased risk of cCMV transmission. Using a case-control design, we investigated whether the magnitude, specificity, function and placental transfer of maternal IgG responses are associated with protection against and/or risk of cCMV transmission in HIV/HCMV co-infection. Within 3 historical cohorts of pregnant women with HIV/HCMV co-infection, we identified 16 cCMV transmitting cases that were matched to 29 cCMV non-transmitting controls. Using a systems serology approach, we found that normalized HCMV-specific IgG binding to FcγR1α was higher in non-transmitting dyads, whereas HCMV-neutralizing antibody responses were higher in transmitting dyads. These findings suggest that engagement of FcγR1α by HCMV-specific IgG may help confer protection against cCMV transmission. Building upon previous research, our study reinforces the critical role of validating maternal humoral immune correlates of cCMV transmission risk across diverse seropositive cohorts, providing essential insights to inform and accelerate the development of effective HCMV vaccines.
Collapse
Affiliation(s)
- Itzayana G. Miller
- Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA; (I.G.M.); (S.L.H.)
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Aakash Mahant Mahant
- Department of Microbiology-Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (A.M.M.); (B.C.H.)
| | - Jennifer A. Jenks
- Human Vaccine Institute, Duke University, Durham, NC 27710, USA; (J.A.J.); (E.C.S.); (E.R.); (J.P.)
- Medical Scientist Training Program, Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| | - Eleanor C. Semmes
- Human Vaccine Institute, Duke University, Durham, NC 27710, USA; (J.A.J.); (E.C.S.); (E.R.); (J.P.)
- Medical Scientist Training Program, Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| | - Eric Rochat
- Human Vaccine Institute, Duke University, Durham, NC 27710, USA; (J.A.J.); (E.C.S.); (E.R.); (J.P.)
| | - Savannah L. Herbek
- Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA; (I.G.M.); (S.L.H.)
| | - Caroline Andy
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY 10065, USA; (C.A.); (L.M.G.)
| | - Nicole S. Rodgers
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA;
| | - Justin Pollara
- Human Vaccine Institute, Duke University, Durham, NC 27710, USA; (J.A.J.); (E.C.S.); (E.R.); (J.P.)
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA;
| | - Linda M. Gerber
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY 10065, USA; (C.A.); (L.M.G.)
| | - Betsy C. Herold
- Department of Microbiology-Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (A.M.M.); (B.C.H.)
- Department of Pediatrics, Children’s Hospital at Montefiore, Bronx, NY 10461, USA
| | - Sallie R. Permar
- Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA; (I.G.M.); (S.L.H.)
| |
Collapse
|
4
|
Wang L, Vulesevic B, Vigano M, As’sadiq A, Kang K, Fernandez C, Samarani S, Anis AH, Ahmad A, Costiniuk CT. The Impact of HIV on B Cell Compartment and Its Implications for COVID-19 Vaccinations in People with HIV. Vaccines (Basel) 2024; 12:1372. [PMID: 39772034 PMCID: PMC11679862 DOI: 10.3390/vaccines12121372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/28/2024] [Accepted: 11/30/2024] [Indexed: 01/11/2025] Open
Abstract
HIV causes intense polyclonal activation of B cells, resulting in increased numbers of spontaneously antibody-secreting cells in the circulation and hypergammaglobulinemia. It is accompanied by significant perturbations in various B cell subsets, such as increased frequencies of immature/transitional B cells, activated memory B cells, atypical memory B cells, short-lived plasmablasts and regulatory B cells, as well as by decreased frequencies of resting memory and resting naïve B cells. Furthermore, both memory and antigen-inexperienced naïve B cells show exhausted and immune-senescent phenotypes. HIV also drives the expansion and functional impairment of CD4+ T follicular helper cells, which provide help to B cells, crucial for the generation of germinal center reactions and production of long-lived plasma and memory B cells. By suppressing viral replication, anti-retroviral therapy reverses the virus-induced perturbations and functional defects, albeit inadequately. Due to HIV's lingering impact on B cells, immune senescence and residual chronic inflammation, people with HIV (PWH), especially immune non-responders, are immunocompromised and mount suboptimal antibody responses to vaccination for SARS-CoV-2. Here, we review how functionally and phenotypically distinct B cell subsets are induced in response to a vaccine and an infection and how HIV infection and anti-retroviral therapy (ART) impact them. We also review the role played by HIV-induced defects and perturbations in B cells in the induction of humoral immune responses to currently used anti-SARS-CoV-2 vaccines in PWH on ART. We also outline different strategies that could potentially enhance the vaccine-induced antibody responses in PWH. The review will provide guidance and impetus for further research to improve the immunogenicity of these vaccines in this human population.
Collapse
Affiliation(s)
- Lixing Wang
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada; (L.W.); (C.F.)
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada (M.V.); (A.A.); (K.K.); (S.S.)
| | - Branka Vulesevic
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada (M.V.); (A.A.); (K.K.); (S.S.)
| | - MariaLuisa Vigano
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada (M.V.); (A.A.); (K.K.); (S.S.)
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0G4, Canada
| | - Alia As’sadiq
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada (M.V.); (A.A.); (K.K.); (S.S.)
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0G4, Canada
| | - Kristina Kang
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada (M.V.); (A.A.); (K.K.); (S.S.)
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0G4, Canada
| | - Cristina Fernandez
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada; (L.W.); (C.F.)
| | - Suzanne Samarani
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada (M.V.); (A.A.); (K.K.); (S.S.)
| | - Aslam H. Anis
- Centre for Advancing Health Outcomes Centre for Health Evaluation and Outcome Sciences, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada;
| | - Ali Ahmad
- Centre de Recherche, Hôpital Ste Justine, Montréal, QC H3T 1C5, Canada;
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | - Cecilia T. Costiniuk
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada (M.V.); (A.A.); (K.K.); (S.S.)
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0G4, Canada
- Division of Infectious Diseases and Chronic Viral Illnesses Service, McGill University Health Centre, Montreal QC H4A 3J1, Canada
| |
Collapse
|
5
|
Barger LN, El Naggar OS, Ha B, Romano G. Melanoma in people living with HIV: Immune landscape dynamics and the role of immuno- and antiviral therapies. Cancer Metastasis Rev 2024; 44:9. [PMID: 39609320 PMCID: PMC11604825 DOI: 10.1007/s10555-024-10230-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024]
Abstract
The intersection of HIV and melanoma presents a complex and unique challenge, marked by distinct patterns in incidence, mortality, and treatment response. Higher mortality rates among people with HIV who develop melanoma underscore an urgent need to identify the factors influencing these outcomes. Investigating immune system dynamics, the effects of anti-retroviral drugs, and the evolving landscape of cancer immunotherapy in this population holds promise for new insights, though significant uncertainties remain. Over the past 25 years, melanoma research has demonstrated that a robust immune response is critical for effective treatment. In the context of chronic HIV infection, viral reservoirs enable the virus to persist despite anti-retroviral therapy and foster dysregulated myeloid and T cell compartments. The resulting chronic inflammation weakens the immune system and damages tissues, potentially creating "cold" tumor microenvironments that are less responsive to therapy. In this challenging context, animal models become invaluable for uncovering underlying biological mechanisms. While these models do not fully replicate human HIV infection, they provide essential insights into critical questions and inform the development of tailored treatments for this patient population. Clinically, increasing trial participation and creating a centralized, accessible repository for HIV and cancer samples and data are vital. Achieving these goals requires institutions to address barriers to research participation among people with HIV, focusing on patient-centered initiatives that leverage biomedical research to improve their outcomes and extend their lives.
Collapse
Affiliation(s)
- Lindsay N Barger
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Olivia S El Naggar
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Binh Ha
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Gabriele Romano
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA.
- Immune Cell Regulation & Targeting Program, Sidney Kimmel Comprehensive Cancer Center Consortium, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Cossarini F, Shang J, Krek A, Al-Taie Z, Hou R, Canales-Herrerias P, Tokuyama M, Tankelevich M, Tillowitz A, Jha D, Livanos AE, Leyre L, Uzzan M, Martinez-Delgado G, Taylor MD, Sharma K, Bourgonje AR, Cruz M, Ioannou G, Dawson T, D'Souza D, Kim-Schulze S, Akm A, Aberg JA, Chen BK, Kwon DS, Gnjatic S, Polydorides AD, Cerutti A, Argmann C, Vujkovic-Cvijin I, Suarez-Fariñas M, Petralia F, Faith JJ, Mehandru S. Gastrointestinal germinal center B cell depletion and reduction in IgA + plasma cells in HIV-1 infection. Sci Immunol 2024; 9:eado0090. [PMID: 39454027 PMCID: PMC11557871 DOI: 10.1126/sciimmunol.ado0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 09/25/2024] [Indexed: 10/27/2024]
Abstract
Gastrointestinal (GI) B cells and plasma cells (PCs) are critical to mucosal homeostasis and the host response to HIV-1 infection. Here, high-resolution mapping of human B cells and PCs sampled from the colon and ileum during both viremic and suppressed HIV-1 infection identified a reduction in germinal center (GC) B cells and follicular dendritic cells (FDCs) during HIV-1 viremia. Immunoglobulin A-positive (IgA+) PCs are the major cellular output of intestinal GCs and were significantly reduced during viremic HIV-1 infection. PC-associated transcriptional perturbations, including type I interferon signaling, persisted in antiretroviral therapy (ART)-treated individuals, suggesting ongoing disruption of the intestinal immune milieu during ART. GI humoral immune perturbations were associated with changes in the intestinal microbiome composition and systemic inflammation. These findings highlight a key immune defect in the GI mucosa due to HIV-1 viremia.
Collapse
Affiliation(s)
- Francesca Cossarini
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joan Shang
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Azra Krek
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zainab Al-Taie
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ruixue Hou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pablo Canales-Herrerias
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Minami Tokuyama
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Tankelevich
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adam Tillowitz
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Divya Jha
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexandra E. Livanos
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Louise Leyre
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mathieu Uzzan
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Gastroenterology Department, Hôpital Henri Mondor, APHP, Créteil, France
| | - Gustavo Martinez-Delgado
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew D. Taylor
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Keshav Sharma
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Arno R. Bourgonje
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Cruz
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Giorgio Ioannou
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Travis Dawson
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Darwin D'Souza
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Seunghee Kim-Schulze
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ahmed Akm
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Judith A. Aberg
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benjamin K. Chen
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Douglas S. Kwon
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Sacha Gnjatic
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexandros D. Polydorides
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrea Cerutti
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Translational Clinical Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Carmen Argmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ivan Vujkovic-Cvijin
- F. Widjaja IBD Institute, Division of Gastroenterology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mayte Suarez-Fariñas
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Francesca Petralia
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeremiah J. Faith
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Saurabh Mehandru
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
7
|
Kabakibo TS, Arnold E, Padhan K, Lemieux A, Ortega-Delgado GG, Routy JP, Shoukry N, Dubé M, Kaufmann DE. Artificial antigen-presenting cell system reveals CD28's role in modulating T cell functions during human immunodeficiency virus infection. iScience 2024; 27:110947. [PMID: 39381752 PMCID: PMC11460474 DOI: 10.1016/j.isci.2024.110947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/16/2024] [Accepted: 09/10/2024] [Indexed: 10/10/2024] Open
Abstract
T cell immune dysfunction is a prominent feature of chronic HIV infection. To evaluate non-specific dysfunction, a method involving both generic activation and T cell receptor (TCR) stimulation is necessary. We created a tunable artificial antigen-presenting cell (aAPC) system. This system consists of lipid bilayers on cytometry-compatible silica microbeads (5 μm). When only anti-CD3 is incorporated, T cell activation is limited. Introducing anti-CD28 agonists significantly elevates the cytokine expression and upregulation of activation-induced markers. CD28 co-stimulation modulates the response profile, preferentially promoting IL-2 expression relative to other cytokines. aAPCs-stimulated CD4+ and CD8+ T cells from untreated HIV-infected individuals exhibit altered effector functions and diminished CD28 dependence. These functions are skewed toward TNFα, IFNγ and CD107a, with reduced IL-2. Antiretroviral therapy partially normalizes this distorted profile in CD4+ T cells, but not in CD8+ T cells. Our findings show T cell intrinsic biases that may contribute to persistent systemic T cell dysfunction associated with HIV pathogenesis.
Collapse
Affiliation(s)
- Tayma Shaaban Kabakibo
- Research Centre of the Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Université de Montréal, Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Edwige Arnold
- Research Centre of the Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Université de Montréal, Montréal, QC, Canada
| | - Kartika Padhan
- Research Centre of the Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Audrée Lemieux
- Research Centre of the Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Université de Montréal, Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | | | - Jean-Pierre Routy
- Chronic Viral Illnesses Service and Division of Hematology, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montreal, QC, Canada
| | - Naglaa Shoukry
- Research Centre of the Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Université de Montréal, Montréal, QC, Canada
- Département de Médecine, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Mathieu Dubé
- Research Centre of the Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Daniel E. Kaufmann
- Research Centre of the Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Université de Montréal, Montréal, QC, Canada
- Département de Médecine, Université de Montréal, Montréal, QC H2X 0A9, Canada
- Division of Infectious Diseases, Department of Medicine, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
8
|
Cossarini F, Shang J, Krek A, Al-Taie Z, Hou R, Canales-Herrerias P, Tokuyama M, Tankelevich M, Tillowiz A, Jha D, Livanos AE, Leyre L, Uzzan M, Martinez-Delgado G, Taylor MD, Sharma K, Bourgonje AR, Cruz M, Ioannou G, Dawson T, D'Souza D, Kim-Schulze S, Akm A, Aberg JA, Chen BK, Kwon DS, Gnjatic S, Polydorides AD, Cerutti A, Argmann C, Vujkovic-Cvijin I, Suarez-Fariñas M, Petralia F, Faith JJ, Mehandru S. Gastrointestinal germinal center B cell depletion and reduction in IgA + plasma cells in HIV-1 infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.17.590425. [PMID: 38826293 PMCID: PMC11142040 DOI: 10.1101/2024.05.17.590425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Gastrointestinal (GI) B cells and plasma cells (PCs) are critical to mucosal homeostasis and the host response to HIV-1 infection. Here, high resolution mapping of human B cells and PCs sampled from the colon and ileum during both viremic and suppressed HIV-1 infection identified a reduction in germinal center (GC) B cells and follicular dendritic cells (FDCs) during HIV-1 viremia. IgA + PCs are the major cellular output of intestinal GCs and were significantly reduced during viremic HIV-1 infection. PC-associated transcriptional perturbations, including type I interferon signaling, persisted in antiretroviral therapy (ART)-treated individuals, suggesting ongoing disruption of the intestinal immune milieu during ART. GI humoral immune perturbations were associated with changes in the intestinal microbiome composition and systemic inflammation. These findings highlight a key immune defect in the GI mucosa due to HIV-1 viremia. One Sentence Summary Intestinal germinal center B cell reduction in HIV-1 infection linked to reduced IgA + plasma cells and systemic inflammation.
Collapse
|
9
|
Zhang Y, Chen A, Li D, Yuan Q, Zhu A, Deng J, Wang Y, Liu J, Liang C, Li W, Fang Q, Xie J, Zhang X, Zhang X, Zhang Y, Chen R, Pan T, Zhang H, He X. Development of T follicular helper cell-independent nanoparticle vaccines for SARS-CoV-2 or HIV-1 by targeting ICOSL. NPJ Vaccines 2024; 9:176. [PMID: 39341822 PMCID: PMC11438966 DOI: 10.1038/s41541-024-00971-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024] Open
Abstract
T helper cells, particularly T follicular helper (TFH) cells, are essential for the neutralizing antibody production elicited by pathogens or vaccines. However, in immunocompromised individuals, the inefficient support from TFH cells could lead to limited protection after vaccine inoculation. Here we showed that the conjugation of inducible T cell costimulatory (ICOS) onto the nanoparticle, together with immunogen, significantly enhanced the immune response of the vaccines specific for SARS-CoV-2 or human immunodeficiency virus type-1 (HIV-1) in TFH-deficient mice. Further studies indicated that ICOSL on B cells was triggered by ICOS binding, subsequently activated the PKCβ signaling pathway, and enhanced the survival and proliferation of B cells. Our findings revealed that the stimulation of ICOS-ICOSL interaction by adding ICOS on the nanoparticle vaccine significantly substitutes the function of TFH cells to support B cell response, which is significant for the immunocompromised people, such as the elderly or HIV-1-infected individuals.
Collapse
Affiliation(s)
- Yongli Zhang
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Achun Chen
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Daiying Li
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Quyu Yuan
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Airu Zhu
- Guangzhou Laboratory, Bio-island, Guangzhou, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jieyi Deng
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yalin Wang
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jie Liu
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chaofeng Liang
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wenjie Li
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qiannan Fang
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jiatong Xie
- Shenzhen College of International Education, No. 3 Antuoshan 6th Road, Futian District, Shenzhen, China
| | - Xiantao Zhang
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xu Zhang
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yiwen Zhang
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ran Chen
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ting Pan
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Center for Infection and Immunity Study, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Hui Zhang
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangzhou Laboratory, Bio-island, Guangzhou, China
| | - Xin He
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
10
|
Moysi E, Sharma AA, O’Dell S, Georgakis S, Del Rio Estrada PM, Torres-Ruiz F, Navarro MG, Villalobos YAL, Rios SA, Reyes-Teran G, Beddall MH, Ko SH, Belinky F, Orfanakis M, de Leval L, Enriquez AB, Buckner CM, Moir S, Doria-Rose N, Boritz E, Mascola JR, Sekaly RP, Koup RA, Petrovas C. Neutralization activity in chronic HIV infection is characterized by a distinct programming of follicular helper CD4 T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.605954. [PMID: 39131331 PMCID: PMC11312598 DOI: 10.1101/2024.07.31.605954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
A subset of people living with HIV (PLWH) can produce broadly neutralizing antibodies (bNAbs) against HIV, but the lymph node (LN) dynamics that promote the generation of these antibodies are poorly understood. Here, we explored LN-associated histological, immunological, and virological mechanisms of bNAb generation in a cohort of anti-retroviral therapy (ART)-naïve PLWH. We found that participants who produce bNAbs, termed neutralizers, have a superior LN-associated B cell follicle architecture compared with PLWH who do not. The latter was associated with a significantly higher in situ prevalence of Bcl-6hi follicular helper CD4 T cells (TFH), expressing a molecular program that favors their differentiation and stemness, and significantly reduced IL-10 follicular suppressor CD4 T cells. Furthermore, our data reveal possible molecular targets mediating TFH- B cell interactions in neutralizers. Together, we identify cellular and molecular mechanisms that contribute to the development of bNAbs in PLWH.
Collapse
Affiliation(s)
- Eirini Moysi
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Ashish A. Sharma
- Pathology Advanced Translational Research Unit, Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Sijy O’Dell
- Virology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Spiros Georgakis
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Perla Mariana Del Rio Estrada
- Pathology Advanced Translational Research Unit, Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City, Mexico
| | - Fernanda Torres-Ruiz
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City, Mexico
| | - Mauricio González Navarro
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City, Mexico, Subdireccion de Otorrinolaringologia, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”
| | - Yara Andrea Luna Villalobos
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City, Mexico
| | - Santiago Avila Rios
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City, Mexico
| | - Gustavo Reyes-Teran
- Institutos Nacionales de Salud y Hospitales de Alta Especialidad, Secretaría de Salud de México, Mexico City, Mexico
| | - Margaret H. Beddall
- ImmunoTechnology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Sung-Hee Ko
- Virus Persistence and Dynamics Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Frida Belinky
- Virus Persistence and Dynamics Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Michail Orfanakis
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Laurence de Leval
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ana B. Enriquez
- Pathology Advanced Translational Research Unit, Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Susan Moir
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD, USA
| | - Nicole Doria-Rose
- Virology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Eli Boritz
- Virus Persistence and Dynamics Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - John R. Mascola
- Virology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
- ModeX Therapeutics, Weston, MA, USA
| | - Rafick-Pierre Sekaly
- Pathology Advanced Translational Research Unit, Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Richard A. Koup
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Constantinos Petrovas
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
11
|
Hetemäki I, Sarkkinen J, Heikkilä N, Drechsel K, Mäyränpää MI, Färkkilä A, Laakso S, Mäkitie O, Arstila TP, Kekäläinen E. Dysregulated germinal center reaction with expanded T follicular helper cells in autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy lymph nodes. J Allergy Clin Immunol 2024; 153:1445-1455. [PMID: 38128835 DOI: 10.1016/j.jaci.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/30/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED, also called APS-1) is an inborn error of immunity with clear signs of B-cell autoimmunity such as neutralizing anti-IFN antibodies. In APECED, mutations in the AIRE gene impair thymic negative selection of T cells. The resulting T-cell alterations may then cause dysregulation of B-cell responses. However, no analysis of interactions of T and B cells in the germinal centers (GCs) in patients' secondary lymphatic tissues has been reported. OBJECTIVE This study examined the relationship between B cells and follicular T helper cells (TfH) in peripheral blood and lymph node (LN) GCs in patients with APECED. METHODS Immunophenotyping of peripheral blood B cells and TfH was performed for 24 patients with APECED. Highly multiplexed fluorescent immunohistochemical staining was performed on 7 LN biopsy samples from the patients to study spatial interactions of lymphocytes in the GCs at the single-cell level. RESULTS The patients' peripheral B-cell phenotype revealed skewing toward a mature B-cell phenotype with marked loss of transitional and naive B cells. The frequency of circulating TfH cells was diminished in the patients, while in the LNs the TfH population was expanded. In LNs the overall frequency of Treg cells and interactions of Treg cells with nonfollicular T cells were reduced, suggesting that aberrant Treg cell function might fail to restrain TfH differentiation. CONCLUSIONS GC reactions are disrupted in APECED as a result of defective T-cell control.
Collapse
Affiliation(s)
- Iivo Hetemäki
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| | - Joona Sarkkinen
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Nelli Heikkilä
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Karen Drechsel
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mikko I Mäyränpää
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anniina Färkkilä
- Research Program in Systems Oncology, FIMM & HiLIFE University of Helsinki, Helsinki, Finland; iCAN Digital Precision Cancer Medicine, Helsinki, Finland; Department of Obstetrics and Gynecology, University Hospital, Helsinki, Finland
| | - Saila Laakso
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
| | - Outi Mäkitie
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland; Department of Molecular Medicine, Karolinska Institutet, and Clinical Genetics, Karolinska University Hospital, Stockholm, Stockholm, Sweden
| | - T Petteri Arstila
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Eliisa Kekäläinen
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
12
|
Xie L, Fang J, Yu J, Zhang W, He Z, Ye L, Wang H. The role of CD4 + T cells in tumor and chronic viral immune responses. MedComm (Beijing) 2023; 4:e390. [PMID: 37829505 PMCID: PMC10565399 DOI: 10.1002/mco2.390] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023] Open
Abstract
Immunotherapies are mainly aimed to promote a CD8+ T cell response rather than a CD4+ T cell response as cytotoxic T lymphocytes (CTLs) can directly kill target cells. Recently, CD4+ T cells have received more attention due to their diverse roles in tumors and chronic viral infections. In antitumor and antichronic viral responses, CD4+ T cells relay help signals through dendritic cells to indirectly regulate CD8+ T cell response, interact with B cells or macrophages to indirectly modulate humoral immunity or macrophage polarization, and inhibit tumor blood vessel formation. Additionally, CD4+ T cells can also exhibit direct cytotoxicity toward target cells. However, regulatory T cells exhibit immunosuppression and CD4+ T cells become exhausted, which promote tumor progression and chronic viral persistence. Finally, we also outline immunotherapies based on CD4+ T cells, including adoptive cell transfer, vaccines, and immune checkpoint blockade. Overall, this review summarizes diverse roles of CD4+ T cells in the antitumor or protumor and chronic viral responses, and also highlights the immunotherapies based on CD4+ T cells, giving a better understanding of their roles in tumors and chronic viral infections.
Collapse
Affiliation(s)
- Luoyingzi Xie
- Institute of Hepatopancreatobiliary SurgeryChongqing General HospitalChongqingChina
- The Institute of ImmunologyThird Military Medical University (Army Medical University)ChongqingChina
| | - Jingyi Fang
- The Institute of ImmunologyThird Military Medical University (Army Medical University)ChongqingChina
| | - Juncheng Yu
- Department of Thoracic SurgeryXinqiao Hospital Third Military Medical University (Army Medical University)ChongqingChina
| | - Weinan Zhang
- Department of Plastic & Cosmetic SurgeryArmy Medical Center of PLAAmy Medical UniversityChongqingChina
| | - Zhiqiang He
- Department of Plastic & Cosmetic SurgeryArmy Medical Center of PLAAmy Medical UniversityChongqingChina
| | - Lilin Ye
- The Institute of ImmunologyThird Military Medical University (Army Medical University)ChongqingChina
| | - Huaizhi Wang
- Institute of Hepatopancreatobiliary SurgeryChongqing General HospitalChongqingChina
| |
Collapse
|
13
|
Harker JA, Greene TT, Barnett BE, Bao P, Dolgoter A, Zuniga EI. IL-6 and IL-27 play both distinct and redundant roles in regulating CD4 T-cell responses during chronic viral infection. Front Immunol 2023; 14:1221562. [PMID: 37583704 PMCID: PMC10424726 DOI: 10.3389/fimmu.2023.1221562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/10/2023] [Indexed: 08/17/2023] Open
Abstract
The IL-6 cytokine family signals through the common signal transduction molecule gp130 combined with a cytokine-specific receptor. Gp130 signaling on CD4 T cells is vital in controlling chronic infection of mice with lymphocytic choriomeningitis virus clone 13 (LCMV Cl13), but the precise role of individual members of the IL-6 cytokine family is not fully understood. Transcriptional analysis highlighted the importance of gp130 signaling in promoting key processes in CD4 T cells after LCMV Cl13 infection, particularly genes associated with T follicular helper (Tfh) cell differentiation and IL-21 production. Further, Il27r-/-Il6ra-/- mice failed to generate antibody or CD8 T-cell immunity and to control LCMV Cl13. Transcriptomics and phenotypic analyses of Il27r-/-Il6ra-/- Tfh cells revealed that IL-6R and IL-27R signaling was required to activate key pathways within CD4 T cells. IL-6 and IL-27 signaling has distinct and overlapping roles, with IL-6 regulating Tfh differentiation, IL-27 regulating CD4 T cell survival, and both redundantly promoting IL-21.
Collapse
Affiliation(s)
- James A. Harker
- Division of Molecular Biology, Department of Biological Sciences, University of California San Diego, La Jolla, CA, United States
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Trever T. Greene
- Division of Molecular Biology, Department of Biological Sciences, University of California San Diego, La Jolla, CA, United States
| | - Burton E. Barnett
- Division of Molecular Biology, Department of Biological Sciences, University of California San Diego, La Jolla, CA, United States
| | - Phuc Bao
- Division of Molecular Biology, Department of Biological Sciences, University of California San Diego, La Jolla, CA, United States
| | - Aleksandr Dolgoter
- Division of Molecular Biology, Department of Biological Sciences, University of California San Diego, La Jolla, CA, United States
| | - Elina I. Zuniga
- Division of Molecular Biology, Department of Biological Sciences, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
14
|
Sengupta S, Zhang J, Reed MC, Yu J, Kim A, Boronina TN, Board NL, Wrabl JO, Shenderov K, Welsh RA, Yang W, Timmons AE, Hoh R, Cole RN, Deeks SG, Siliciano JD, Siliciano RF, Sadegh-Nasseri S. A cell-free antigen processing system informs HIV-1 epitope selection and vaccine design. J Exp Med 2023; 220:e20221654. [PMID: 37058141 PMCID: PMC10114365 DOI: 10.1084/jem.20221654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/01/2023] [Accepted: 03/23/2023] [Indexed: 04/15/2023] Open
Abstract
Distinct CD4+ T cell epitopes have been associated with spontaneous control of HIV-1 replication, but analysis of antigen-dependent factors that influence epitope selection is lacking. To examine these factors, we used a cell-free antigen processing system that incorporates soluble HLA-DR (DR1), HLA-DM (DM), cathepsins, and full-length protein antigens for epitope identification by LC-MS/MS. HIV-1 Gag, Pol, Env, Vif, Tat, Rev, and Nef were examined using this system. We identified 35 novel epitopes, including glycopeptides. Epitopes from smaller HIV-1 proteins mapped to regions of low protein stability and higher solvent accessibility. HIV-1 antigens associated with limited CD4+ T cell responses were processed efficiently, while some protective epitopes were inefficiently processed. 55% of epitopes obtained from cell-free processing induced memory CD4+ T cell responses in HIV-1+ donors, including eight of 19 novel epitopes tested. Thus, an in vitro processing system utilizing the components of Class II processing reveals factors influencing epitope selection of HIV-1 and represents an approach to understanding epitope selection from non-HIV-1 antigens.
Collapse
Affiliation(s)
- Srona Sengupta
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Graduate Program in Immunology and Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Josephine Zhang
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Madison C. Reed
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeanna Yu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aeryon Kim
- Department of Inflammation and Oncology and Genome Analysis Unit, Amgen Research, Amgen Inc., South San Francisco, CA, USA
| | - Tatiana N. Boronina
- Department of Biological Chemistry, Mass Spectrometry and Proteomics Facility, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nathan L. Board
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James O. Wrabl
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Kevin Shenderov
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robin A. Welsh
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Weiming Yang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew E. Timmons
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rebecca Hoh
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Robert N. Cole
- Department of Biological Chemistry, Mass Spectrometry and Proteomics Facility, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Steven G. Deeks
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Janet D. Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert F. Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Baltimore, MD, USA
| | | |
Collapse
|
15
|
Nguyen NX, Richens AW, Sircy LM, Allard DE, Kolawole EM, Evavold BD, Bettini M, Hale JS. Immunogen-Specific Strengths and Limitations of the Activation-Induced Marker Assay for Assessing Murine Antigen-Specific CD4+ T Cell Responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:916-925. [PMID: 36883856 PMCID: PMC10038905 DOI: 10.4049/jimmunol.2200638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/31/2023] [Indexed: 03/09/2023]
Abstract
The activation-induced marker (AIM) assay is a cytokine-independent technique to identify Ag-specific T cells based on the upregulated expression of activation markers after Ag restimulation. The method offers an alternative to intracellular cytokine staining in immunological studies, in which limited cytokine production makes the cell subsets of interest difficult to detect. Studies of lymphocytes in human and nonhuman primates have used the AIM assay to detect Ag-specific CD4+ and CD8+ T cells. However, there is a lack of validation of the strengths and limitations of the assay in murine (Mus musculus) models of infection and vaccination. In this study, we analyzed immune responses of TCR-transgenic CD4+ T cells, including lymphocytic choriomeningitis virus-specific SMARTA, OVA-specific OT-II, and diabetogenic BDC2.5-transgenic T cells, and measured the ability of the AIM assay to effectively identify these cells to upregulate AIM markers OX40 and CD25 following culture with cognate Ag. Our findings indicate that the AIM assay is effective for identifying the relative frequency of protein immunization-induced effector and memory CD4+ T cells, whereas the AIM assay had reduced ability to identify specific cells induced by viral infection, particularly during chronic lymphocytic choriomeningitis virus infection. Evaluation of polyclonal CD4+ T cell responses to acute viral infection demonstrated that the AIM assay can detect a proportion of both high- and low-affinity cells. Together, our findings indicate that the AIM assay can be an effective tool for relative quantification of murine Ag-specific CD4+ T cells to protein vaccination, while demonstrating its limitations during conditions of acute and chronic infection.
Collapse
Affiliation(s)
- Nguyen X Nguyen
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
| | - Andrew W Richens
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
| | - Linda M Sircy
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
| | - Denise E Allard
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
| | - Elizabeth M Kolawole
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
| | - Brian D Evavold
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
| | - Maria Bettini
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
| | - J Scott Hale
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
| |
Collapse
|
16
|
Bonilla H, Peluso MJ, Rodgers K, Aberg JA, Patterson TF, Tamburro R, Baizer L, Goldman JD, Rouphael N, Deitchman A, Fine J, Fontelo P, Kim AY, Shaw G, Stratford J, Ceger P, Costantine MM, Fisher L, O’Brien L, Maughan C, Quigley JG, Gabbay V, Mohandas S, Williams D, McComsey GA. Therapeutic trials for long COVID-19: A call to action from the interventions taskforce of the RECOVER initiative. Front Immunol 2023; 14:1129459. [PMID: 36969241 PMCID: PMC10034329 DOI: 10.3389/fimmu.2023.1129459] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/06/2023] [Indexed: 03/11/2023] Open
Abstract
Although most individuals recover from acute SARS-CoV-2 infection, a significant number continue to suffer from Post-Acute Sequelae of SARS-CoV-2 (PASC), including the unexplained symptoms that are frequently referred to as long COVID, which could last for weeks, months, or even years after the acute phase of illness. The National Institutes of Health is currently funding large multi-center research programs as part of its Researching COVID to Enhance Recover (RECOVER) initiative to understand why some individuals do not recover fully from COVID-19. Several ongoing pathobiology studies have provided clues to potential mechanisms contributing to this condition. These include persistence of SARS-CoV-2 antigen and/or genetic material, immune dysregulation, reactivation of other latent viral infections, microvascular dysfunction, and gut dysbiosis, among others. Although our understanding of the causes of long COVID remains incomplete, these early pathophysiologic studies suggest biological pathways that could be targeted in therapeutic trials that aim to ameliorate symptoms. Repurposed medicines and novel therapeutics deserve formal testing in clinical trial settings prior to adoption. While we endorse clinical trials, especially those that prioritize inclusion of the diverse populations most affected by COVID-19 and long COVID, we discourage off-label experimentation in uncontrolled and/or unsupervised settings. Here, we review ongoing, planned, and potential future therapeutic interventions for long COVID based on the current understanding of the pathobiological processes underlying this condition. We focus on clinical, pharmacological, and feasibility data, with the goal of informing future interventional research studies.
Collapse
Affiliation(s)
- Hector Bonilla
- Department of Medicine and Infectious Diseases, Stanford University, Palo Alto, CA, United States
| | - Michael J. Peluso
- Department of Medicine and Infectious Diseases, University of California, San Francisco, San Francisco, CA, United States
| | - Kathleen Rodgers
- Center for Innovations in Brain Science, University of Arizona, Tucson, AZ, United States
| | - Judith A. Aberg
- Department of Medicine, Infectious Diseases, Icahn School of Medicine at Mount Sinai, Chief, Division of Infectious Disease, New York, NY, United States
| | - Thomas F. Patterson
- Department of Medicine, Infectious Diseases, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Robert Tamburro
- Division of Intramural Research, National Institute of Health, Bethesda, MD, United States
| | - Lawrence Baizer
- National Heart Lung and Blood Institute, Division of Lung Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jason D. Goldman
- Department of Medicine, Organ Transplant and Liver Center, Swedish Medical Center, Seattle, WA, United States
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, United States
| | - Nadine Rouphael
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, United States
| | - Amelia Deitchman
- Department of Clinical Pharmacy, University of California, San Francisco, San Francisco, CA, United States
| | - Jeffrey Fine
- Department of Rehabilitation Medicine at New York University (NYU) Grossman School of Medicine, Physical Medicine and Rehabilitation Service, New York University (NYU), New York University Medical Center, New York, NY, United States
| | - Paul Fontelo
- Applied Clinical Informatics Branch, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States
| | - Arthur Y. Kim
- Department of Medicine at Harvard Medical School, Division of Infectious Disease, Boston, MA, United States
| | - Gwendolyn Shaw
- Research Triangle Institute (RTI), International, Durham, NC, United States
| | - Jeran Stratford
- Research Triangle Institute (RTI), International, Durham, NC, United States
| | - Patricia Ceger
- Research Triangle Institute (RTI), International, Durham, NC, United States
| | - Maged M. Costantine
- Department of Obstetrics and Gynecology, The Ohio State University, Columbus, OH, United States
| | - Liza Fisher
- Long COVID Families, Houston, TX, United States
| | - Lisa O’Brien
- Utah Covid-19 Long Haulers, Salt Lake City, UT, United States
| | | | - John G. Quigley
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Vilma Gabbay
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, United States
| | - Sindhu Mohandas
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - David Williams
- Department of Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Grace A. McComsey
- Department of Pediatrics and Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
17
|
Salvatore B, Resop RS, Gordon BR, Epeldegui M, Martinez-Maza O, Comin-Anduix B, Lam A, Wu TT, Uittenbogaart CH. Characterization of T Follicular Helper Cells and T Follicular Regulatory Cells in HIV-Infected and Sero-Negative Individuals. Cells 2023; 12:cells12020296. [PMID: 36672230 PMCID: PMC9856637 DOI: 10.3390/cells12020296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 01/03/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
Humoral immune response is important in fighting pathogens by the production of specific antibodies by B cells. In germinal centers, T follicular helper (TFH) cells provide important help to B-cell antibody production but also contribute to HIV persistence. T follicular regulatory (TFR) cells, which inhibit the function of TFH cells, express similar surface markers. Since FOXP3 is the only marker that distinguishes TFR from TFH cells it is unknown whether the increase in TFH cells observed in HIV infection and HIV persistence may be partly due to an increase in TFR cells. Using multicolor flow cytometry to detect TFH and TFR cells in cryopreserved peripheral blood mononuclear cells from HIV-infected and non-infected participants in the UCLA Multicenter AIDS Cohort Study (MACS), we identified CD3+CXCR5+CD4+CD8-BCL6+ peripheral blood TFH (pTFH) cells and CD3+CXCR5+CD4+CD8-FOXP3+ peripheral blood TFR (pTFR) cells. Unlike TFR cells in germinal centers, pTFR cells do not express B cell lymphoma 6 (BCL6), a TFH cell master transcriptional regulator. Our major findings are that the frequency of pTFH cells, but not pTFR cells was higher in HIV-infected participants of the MACS and that pTFH cells expressed less CCR5 in HIV-infected MACS participants. Constitutive expression of CCR5 in TFR cells supports their potential to contribute to HIV persistence.
Collapse
Affiliation(s)
- Bradley Salvatore
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Rachel S. Resop
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
- UCLA AIDS Institute, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Brent R. Gordon
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
- UCLA AIDS Institute, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Marta Epeldegui
- UCLA AIDS Institute, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Department of Obstetrics and Gynecology, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center (JCCC), University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Otoniel Martinez-Maza
- UCLA AIDS Institute, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Department of Obstetrics and Gynecology, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center (JCCC), University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Begoña Comin-Anduix
- Jonsson Comprehensive Cancer Center (JCCC), University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Department of Surgical-Oncology, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Alex Lam
- Department of Molecular Pharmacology, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Ting-Ting Wu
- UCLA AIDS Institute, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center (JCCC), University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Department of Molecular Pharmacology, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Christel H. Uittenbogaart
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
- UCLA AIDS Institute, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center (JCCC), University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Department of Pediatrics, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Correspondence:
| |
Collapse
|
18
|
A Retrospective Study of the Safety and Immunogenicity of MVC-COV1901 Vaccine for People Living with HIV. Vaccines (Basel) 2022; 11:vaccines11010018. [PMID: 36679862 PMCID: PMC9863561 DOI: 10.3390/vaccines11010018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND This study aimed to assess the safety and immunogenicity of MVC-COV1901, a recombinant COVID-19 protein vaccine, containing S-2P protein adjuvanted with CpG 1018 and aluminum hydroxide, for people living with HIV (PWH). METHODS A total of 57 PWH of ≥20 years of age who are on stable antiretroviral therapy were compared with 882 HIV-negative participants. Participants received two doses of MVC-COV1901 28 days apart. RESULTS No vaccine-related serious adverse events (SAEs) were recorded. Seroconversion rates (SCRs) of 100% and 99.8% were achieved in PWH and comparators, respectively, 28 days after the second dose. After adjusting for sex, age, BMI category, and comorbidity, the adjusted GMT ratio of comparator/PWH was 3.2 (95% CI 2.5-4). A higher CD4/CD8 ratio was associated with a higher GMT (R = 0.27, p = 0.039). MVC-COV1901 has shown robust safety but elicited weaker immune responses in PWH. CONCLUSIONS Further investigations may be needed to determine whether PWH require distinct immunization strategies with improved immunogenicity. The main study is registered at ClinicalTrials.gov (NCT04695652).
Collapse
|
19
|
Zhang W, Zhou M, Chen C, Wu S, Wang L, Xia B, Liu J, Ma X, Pan T, Zhang H, Li L, Liu B. Identification of CD98 as a Novel Biomarker for HIV-1 Permissiveness and Latent Infection. mBio 2022; 13:e0249622. [PMID: 36214569 PMCID: PMC9765422 DOI: 10.1128/mbio.02496-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 09/21/2022] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) can integrate viral DNA into host cell chromosomes to establish a long-term stable latent reservoir, which is a major obstacle to cure HIV-1 infection. The characteristics of the HIV-1 latent reservoir have not been fully understood. Here, we identified 126 upregulated plasma membrane proteins in HIV-1 latently infected cells by a label-free liquid chromatography-tandem mass spectrometry analysis. The higher levels of CD98 expression in multiple HIV-1 latently infected cell lines and primary CD4+ T cells compared to uninfected cells were further confirmed by quantitative reverse transcription PCR (RT-qPCR) and flow cytometry analyses. In addition, CD98high CD4+ T cells displayed hyper-permissiveness to HIV-1 infection and possessed distinct immune phenotypic profiles associated with Th17 and peripheral follicular T helper (pTFH) characteristics. Notably, the CD98high resting memory CD4+ T cells harbored significantly higher cell-associated viral RNA and intact provirus than CD98low counterparts in HIV-1-infected individuals receiving combined antiretroviral therapy. Furthermore, CD98high CD4+ T cells exhibited a robust proliferative capacity and significantly contributed to the clonal expansion of the HIV-1 latent reservoir. Our study demonstrates that CD98 can be used as a novel biomarker of HIV-1 latently infected cells to indicate the effect of various strategies to reduce the viral reservoir. IMPORTANCE Identification of cellular biomarkers is the crucial challenge to eradicate the HIV-1 latent reservoir. In our study, we identified CD98 as a novel plasma membrane biomarker for HIV-1 permissiveness and latent infection. Importantly, CD98high CD4+ T cells exhibited a hyper-permissiveness to HIV-1 infection and significantly contributed to the clonal expansion of the HIV-1 latent reservoir. CD98 could be targeted to develop therapeutic strategies to reduce the HIV-1 latent reservoir in further research.
Collapse
Affiliation(s)
- Wanying Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Infectious Diseases Center, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Mo Zhou
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Cancan Chen
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shiyu Wu
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lilin Wang
- Shenzhen Blood Center, Shenzhen, Guangdong, China
| | - Baijin Xia
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jun Liu
- Qianyang Biomedical Research Institute, Guangzhou, Guangdong, China
| | - Xiancai Ma
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ting Pan
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hui Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Linghua Li
- Infectious Diseases Center, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Bingfeng Liu
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
20
|
Ollerton MT, Folkvord JM, Peachman KK, Shashikumar S, Morrison EB, Jagodzinski LL, Peel SA, Khreiss M, D’Aquila RT, Casares S, Rao M, Connick E. HIV-1 infected humanized DRAGA mice develop HIV-specific antibodies despite lack of canonical germinal centers in secondary lymphoid tissues. Front Immunol 2022; 13:1047277. [PMID: 36505432 PMCID: PMC9732419 DOI: 10.3389/fimmu.2022.1047277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022] Open
Abstract
A major barrier in the use of humanized mice as models of HIV-1 (HIV) infection is the inadequate generation of virus-specific antibody responses. Humanized DRAGA (hDRAGA) mice generate antigen-specific class switched antibodies to several pathogens, but whether they do so in HIV infection and the extent to which their secondary lymphoid tissues (sLT) support germinal center responses is unknown. hDRAGA mice were evaluated for their ability to support HIV replication, generate virus-specific antibody responses, develop splenocyte subsets, and organize sLT architecture. hDRAGA mice supported persistent HIV replication and developed modest levels of gp41-specific human IgM and IgG. Spleens from uninfected and HIV infected hDRAGA mice contained differentiated B and CD4+ T cell subsets including germinal center (GC) B cells and T follicular helper cells (TFH); relative expansions of TFH and CD8+ T cells, but not GC B cells, occurred in HIV-infected hDRAGA mice compared to uninfected animals. Immunofluorescent staining of spleen and mesenteric lymph node sections demonstrated atypical morphology. Most CD4+ and CD8+ T cells resided within CD20hi areas. CD20hi areas lacked canonical germinal centers, as defined by staining for IgD-Ki67+cells. No human follicular dendritic cells (FDC) were detected. Mouse FDC were distributed broadly throughout both CD20hi and CD20lo regions of sLT. HIV RNA particles were detected by in situ hybridization within CD20+ areas and some co-localized with mouse FDC. Viral RNA+ cells were more concentrated within CD20hi compared to CD20lo areas of sLT, but differences were diminished in spleen and eliminated in mesenteric lymph nodes when adjusted for CD4+ cell frequency. Thus, hDRAGA mice recapitulated multiple aspects of HIV pathogenesis including HIV replication, relative expansions in TFH and CD8+ T cells, and modest HIV-specific antibody production. Nevertheless, classical germinal center morphology in sLT was not observed, which may account for the inefficient expansion of GC B cells and generation of low titer human antibody responses to HIV-1 in this model.
Collapse
Affiliation(s)
| | - Joy M. Folkvord
- Department of Medicine, University of Arizona, Tucson, AZ, United States
| | - Kristina K. Peachman
- Laboratory of Adjuvant and Antigen Research, United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Soumya Shashikumar
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, MD, United States
| | - Elaine B. Morrison
- Laboratory of Adjuvant and Antigen Research, United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Linda L. Jagodzinski
- Diagnostics and Countermeasure Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Sheila A. Peel
- Diagnostics and Countermeasure Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Mohammad Khreiss
- Department of Surgery, University of Arizona, Tucson, AZ, United States
| | - Richard T. D’Aquila
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Sofia Casares
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, MD, United States
| | - Mangala Rao
- Laboratory of Adjuvant and Antigen Research, United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Elizabeth Connick
- Department of Medicine, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
21
|
Limited impact of fingolimod treatment during the initial weeks of ART in SIV-infected rhesus macaques. Nat Commun 2022; 13:5055. [PMID: 36030289 PMCID: PMC9420154 DOI: 10.1038/s41467-022-32698-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/12/2022] [Indexed: 11/24/2022] Open
Abstract
Antiretroviral therapy (ART) is not curative due to the persistence of a reservoir of HIV-infected cells, particularly in tissues such as lymph nodes, with the potential to cause viral rebound after treatment cessation. In this study, fingolimod (FTY720), a lysophospholipid sphingosine-1-phosphate receptor modulator is administered to SIV-infected rhesus macaques at initiation of ART to block the egress from lymphoid tissues of natural killer and T-cells, thereby promoting proximity between cytolytic cells and infected CD4+ T-cells. When compared with the ART-only controls, FTY720 treatment during the initial weeks of ART induces a profound lymphopenia and increases frequencies of CD8+ T-cells expressing perforin in lymph nodes, but not their killing capacity; FTY720 also increases frequencies of cytolytic NK cells in lymph nodes. This increase of cytolytic cells, however, does not limit measures of viral persistence during ART, including intact proviral genomes. After ART interruption, a subset of animals that initially receives FTY720 displays a modest delay in viral rebound, with reduced plasma viremia and frequencies of infected T follicular helper cells. Further research is needed to optimize the potential utility of FTY720 when coupled with strategies that boost the antiviral function of T-cells in lymphoid tissues.
Collapse
|
22
|
Baiyegunhi OO, Mann J, Khaba T, Nkosi T, Mbatha A, Ogunshola F, Chasara C, Ismail N, Ngubane T, Jajbhay I, Pansegrouw J, Dong KL, Walker BD, Ndung'u T, Ndhlovu ZM. CD8 lymphocytes mitigate HIV-1 persistence in lymph node follicular helper T cells during hyperacute-treated infection. Nat Commun 2022; 13:4041. [PMID: 35831418 PMCID: PMC9279299 DOI: 10.1038/s41467-022-31692-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 06/29/2022] [Indexed: 11/09/2022] Open
Abstract
HIV persistence in tissue sites despite ART is a major barrier to HIV cure. Detailed studies of HIV-infected cells and immune responses in native lymph node tissue environment is critical for gaining insight into immune mechanisms impacting HIV persistence and clearance in tissue sanctuary sites. We compared HIV persistence and HIV-specific T cell responses in lymph node biopsies obtained from 14 individuals who initiated therapy in Fiebig stages I/II, 5 persons treated in Fiebig stages III-V and 17 late treated individuals who initiated ART in Fiebig VI and beyond. Using multicolor immunofluorescence staining and in situ hybridization, we detect HIV RNA and/or protein in 12 of 14 Fiebig I/II treated persons on suppressive therapy for 1 to 55 months, and in late treated persons with persistent antigens. CXCR3+ T follicular helper cells harbor the greatest amounts of gag mRNA transcripts. Notably, HIV-specific CD8+ T cells responses are associated with lower HIV antigen burden, suggesting that these responses may contribute to HIV suppression in lymph nodes during therapy. These results reveal HIV persistence despite the initiation of ART in hyperacute infection and highlight the contribution of virus-specific responses to HIV suppression in tissue sanctuaries during suppressive ART.
Collapse
Affiliation(s)
- Omolara O Baiyegunhi
- Africa Health Research Institute (AHRI), Durban, South Africa
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Jaclyn Mann
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Trevor Khaba
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Thandeka Nkosi
- Africa Health Research Institute (AHRI), Durban, South Africa
| | - Anele Mbatha
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Funsho Ogunshola
- Africa Health Research Institute (AHRI), Durban, South Africa
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, USA
| | | | - Nasreen Ismail
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Thandekile Ngubane
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | | | | | - Krista L Dong
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, USA
| | - Bruce D Walker
- Africa Health Research Institute (AHRI), Durban, South Africa
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, USA
- Institute for Medical Sciences and Engineering and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Thumbi Ndung'u
- Africa Health Research Institute (AHRI), Durban, South Africa
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, USA
- Max Planck Institute for Infection Biology, Berlin, Germany
- Division of Infection and Immunity, University College London, London, UK
| | - Zaza M Ndhlovu
- Africa Health Research Institute (AHRI), Durban, South Africa.
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa.
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, USA.
| |
Collapse
|
23
|
Mahlobo B, Laher F, Smidt W, Ogunshola F, Khaba T, Nkosi T, Mbatha A, Ngubane T, Dong K, Jajbhay I, Pansegrouw J, Ndhlovu ZM. The impact of HIV infection on the frequencies, function, spatial localization and heterogeneity of T follicular regulatory cells (TFRs) within human lymph nodes. BMC Immunol 2022; 23:34. [PMID: 35778692 PMCID: PMC9250173 DOI: 10.1186/s12865-022-00508-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/10/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND HIV eradication efforts have been unsuccessful partly due to virus persistence in immune sanctuary sites such as germinal centres within lymph node (LN) tissues. Recent evidence suggests that LNs harbour a novel subset of regulatory T cells, termed follicular regulatory T cells (TFRs), but their role in HIV pathogenesis is not fully elucidated. RESULTS Paired excisional LN and peripheral blood samples obtained from 20 HIV-uninfected and 31 HIV-infected treated and 7 chronic untreated, were used to determine if and how HIV infection modulate frequencies, function and spatial localization of TFRs within LN tissues. Imaging studies showed that most TFRs are localized in extra-follicular regions. Co-culture assays showed TFRs suppression of TFH help to B cells. Importantly, epigenetic and transcriptional studies identified DPP4 and FCRL3 as novel phenotypic markers that define four functionally distinct TFR subpopulations in human LNs regardless of HIV status. Imaging studies confirmed the regulatory phenotype of DPP4+TFRs. CONCLUSION Together these studies describe TFRs dynamic changes during HIV infection and reveal previously underappreciated TFR heterogeneity within human LNs.
Collapse
Affiliation(s)
- Bongiwe Mahlobo
- Africa Health Research Institute (AHRI), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Faatima Laher
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Werner Smidt
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Funsho Ogunshola
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, Harvard University, Cambridge, MA, USA
| | - Trevor Khaba
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Thandeka Nkosi
- Africa Health Research Institute (AHRI), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Anele Mbatha
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Thandekile Ngubane
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Krista Dong
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, Harvard University, Cambridge, MA, USA
| | - Ismail Jajbhay
- KwaZulu-Natal Department of Health, Prince Mshiyeni Memorial Hospital, Durban, South Africa
| | - Johan Pansegrouw
- KwaZulu-Natal Department of Health, Prince Mshiyeni Memorial Hospital, Durban, South Africa
| | - Zaza M Ndhlovu
- Africa Health Research Institute (AHRI), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
24
|
Cords L, Knapp M, Woost R, Schulte S, Kummer S, Ackermann C, Beisel C, Peine S, Johansson AM, Kwok WWH, Günther T, Fischer N, Wittner M, Addo MM, Huber S, Schulze zur Wiesch J. High and Sustained Ex Vivo Frequency but Altered Phenotype of SARS-CoV-2-Specific CD4 + T-Cells in an Anti-CD20-Treated Patient with Prolonged COVID-19. Viruses 2022; 14:1265. [PMID: 35746736 PMCID: PMC9228841 DOI: 10.3390/v14061265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 02/06/2023] Open
Abstract
Here, we longitudinally assessed the ex vivo frequency and phenotype of SARS-CoV-2 membrane protein (aa145-164) epitope-specific CD4+ T-cells of an anti-CD20-treated patient with prolonged viral positivity in direct comparison to an immunocompetent patient through an MHC class II DRB1*11:01 Tetramer analysis. We detected a high and stable SARS-CoV-2 membrane-specific CD4+ T-cell response in both patients, with higher frequencies of virus-specific CD4+ T-cells in the B-cell-depleted patient. However, we found an altered virus-specific CD4+ T-cell memory phenotype in the B-cell-depleted patient that was skewed towards late differentiated memory T-cells, as well as reduced frequencies of SARS-CoV-2-specific CD4+ T-cells with CD45RA- CXCR5+ PD-1+ circulating T follicular helper cell (cTFH) phenotype. Furthermore, we observed a delayed contraction of CD127- virus-specific effector cells. The expression of the co-inhibitory receptors TIGIT and LAG-3 fluctuated on the virus-specific CD4+ T-cells of the patient, but were associated with the inflammation markers IL-6 and CRP. Our findings indicate that, despite B-cell depletion and a lack of B-cell-T-cell interaction, a robust virus-specific CD4+ T-cell response can be primed that helps to control the viral replication, but which is not sufficient to fully abrogate the infection.
Collapse
Affiliation(s)
- Leon Cords
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.C.); (M.K.); (R.W.); (S.S.); (S.K.); (C.A.); (C.B.); (M.W.); (M.M.A.); (S.H.)
| | - Maximilian Knapp
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.C.); (M.K.); (R.W.); (S.S.); (S.K.); (C.A.); (C.B.); (M.W.); (M.M.A.); (S.H.)
| | - Robin Woost
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.C.); (M.K.); (R.W.); (S.S.); (S.K.); (C.A.); (C.B.); (M.W.); (M.M.A.); (S.H.)
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 20246 Hamburg, Germany;
| | - Sophia Schulte
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.C.); (M.K.); (R.W.); (S.S.); (S.K.); (C.A.); (C.B.); (M.W.); (M.M.A.); (S.H.)
| | - Silke Kummer
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.C.); (M.K.); (R.W.); (S.S.); (S.K.); (C.A.); (C.B.); (M.W.); (M.M.A.); (S.H.)
| | - Christin Ackermann
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.C.); (M.K.); (R.W.); (S.S.); (S.K.); (C.A.); (C.B.); (M.W.); (M.M.A.); (S.H.)
| | - Claudia Beisel
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.C.); (M.K.); (R.W.); (S.S.); (S.K.); (C.A.); (C.B.); (M.W.); (M.M.A.); (S.H.)
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 20246 Hamburg, Germany;
| | - Sven Peine
- Institute of Transfusion Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | | | - William Wai-Hung Kwok
- Benaroya Research Institute at Virginia Mason, Seattle, WA 98101, USA; (A.M.J.); (W.W.-H.K.)
| | - Thomas Günther
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany;
| | - Nicole Fischer
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 20246 Hamburg, Germany;
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany;
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Melanie Wittner
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.C.); (M.K.); (R.W.); (S.S.); (S.K.); (C.A.); (C.B.); (M.W.); (M.M.A.); (S.H.)
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 20246 Hamburg, Germany;
| | - Marylyn Martina Addo
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.C.); (M.K.); (R.W.); (S.S.); (S.K.); (C.A.); (C.B.); (M.W.); (M.M.A.); (S.H.)
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 20246 Hamburg, Germany;
| | - Samuel Huber
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.C.); (M.K.); (R.W.); (S.S.); (S.K.); (C.A.); (C.B.); (M.W.); (M.M.A.); (S.H.)
| | - Julian Schulze zur Wiesch
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.C.); (M.K.); (R.W.); (S.S.); (S.K.); (C.A.); (C.B.); (M.W.); (M.M.A.); (S.H.)
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 20246 Hamburg, Germany;
| |
Collapse
|
25
|
Giannone D, Vecchione MB, Czernikier A, Polo ML, Gonzalez Polo V, Cruces L, Ghiglione Y, Balinotti S, Longueira Y, Turk G, Laufer N, Quiroga MF. SARS-CoV-2 humoral and cellular immune responses in COVID-19 convalescent individuals with HIV. J Infect 2022; 85:334-363. [PMID: 35636532 PMCID: PMC9135637 DOI: 10.1016/j.jinf.2022.05.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/21/2022] [Indexed: 02/01/2023]
Affiliation(s)
- Denise Giannone
- Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET - Universidad de Buenos Aires, Paraguay 2155 Piso 11, Buenos Aires C1121ABG, Argentina
| | - María Belén Vecchione
- Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET - Universidad de Buenos Aires, Paraguay 2155 Piso 11, Buenos Aires C1121ABG, Argentina
| | - Alejandro Czernikier
- Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET - Universidad de Buenos Aires, Paraguay 2155 Piso 11, Buenos Aires C1121ABG, Argentina
| | - María Laura Polo
- Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET - Universidad de Buenos Aires, Paraguay 2155 Piso 11, Buenos Aires C1121ABG, Argentina
| | - Virginia Gonzalez Polo
- Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET - Universidad de Buenos Aires, Paraguay 2155 Piso 11, Buenos Aires C1121ABG, Argentina
| | - Leonel Cruces
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET - Universidad de Buenos Aires, Paraguay 2155 Piso 11, Buenos Aires C1121ABG, Argentina
| | - Yanina Ghiglione
- Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET - Universidad de Buenos Aires, Paraguay 2155 Piso 11, Buenos Aires C1121ABG, Argentina
| | | | | | - Yesica Longueira
- Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET - Universidad de Buenos Aires, Paraguay 2155 Piso 11, Buenos Aires C1121ABG, Argentina
| | - Gabriela Turk
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET - Universidad de Buenos Aires, Paraguay 2155 Piso 11, Buenos Aires C1121ABG, Argentina; Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Natalia Laufer
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET - Universidad de Buenos Aires, Paraguay 2155 Piso 11, Buenos Aires C1121ABG, Argentina; Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maria Florencia Quiroga
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET - Universidad de Buenos Aires, Paraguay 2155 Piso 11, Buenos Aires C1121ABG, Argentina; Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
26
|
He C, Malone MJ, Wendel BS, Ma KY, Del Alcazar D, Weiner DB, De Jager PL, Del Río-Estrada PM, Ablanedo-Terrazas Y, Reyes-Terán G, Su LF, Jiang N. Transcriptome and TCR Repertoire Measurements of CXCR3 + T Follicular Helper Cells Within HIV-Infected Human Lymph Nodes. Front Immunol 2022; 13:859070. [PMID: 35619703 PMCID: PMC9128546 DOI: 10.3389/fimmu.2022.859070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/06/2022] [Indexed: 12/15/2022] Open
Abstract
Follicular-helper T cells (TFH) are an essential arm of the adaptive immune system. Although TFH were first discovered through their ability to contribute to antibody affinity maturation through co-stimulatory interactions with B cells, new light has been shed on their ability to remain a complex and functionally plastic cell type. Due to a lack sample availability, however, many studies have been limited to characterizing TFH in mice or non-canonical tissue types, such as peripheral blood. Such constraints have resulted in a limited, and sometimes contradictory, understanding of this fundamental cell type. One subset of TFH receiving attention in chronic infection are CXCR3-expressing TFH cells (CXCR3+TFH) due to their abnormal accumulation in secondary lymphoid tissues. Their function and clonal relationship with other TFH subsets in lymphoid tissues during infection, however, remains largely unclear. We thus systematically investigated this and other subsets of TFH within untreated HIV-infected human lymph nodes using Mass CyTOF and a combination of RNA and TCR repertoire sequencing. We show an inflation of the CXCR3+TFH compartment during HIV infection that correlates with a lower HIV burden. Deeper analysis into this population revealed a functional shift of CXCR3+TFH away from germinal center TFH (GC-TFH), including the altered expression of several important transcription factors and cytokines. CXCR3+TFH also upregulated cell migration transcriptional programs and were clonally related to peripheral TFH populations. In combination, these data suggest that CXCR3+TFH have a greater tendency to enter circulation than their CXCR3- counterparts, potentially functioning through distinct modalities that may lead to enhanced defense.
Collapse
Affiliation(s)
- Chenfeng He
- Department of Biomedical Engineering, Cockrell School of Engineering, University of Texas at Austin, Austin, TX, United States
| | - Michael J. Malone
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States,Interdisciplinary Life Sciences Graduate Program, University of Texas at Austin, Austin, TX, United States
| | - Ben S. Wendel
- Department of Biomedical Engineering, Cockrell School of Engineering, University of Texas at Austin, Austin, TX, United States,McKetta Department of Chemical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Ke-Yue Ma
- Interdisciplinary Life Sciences Graduate Program, University of Texas at Austin, Austin, TX, United States
| | - Daniel Del Alcazar
- Department of Medicine, Division of Rheumatology, Perelman School of Medicine, Institute for Immunology, University of Pennsylvania, Philadelphia, PA, United States,Corporal Michael J Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - David B. Weiner
- Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA, United States
| | - Philip L. De Jager
- Columbia University Medical Center, Center for Translational and Computational Neuroimmunology, New York, NY, United States
| | - Perla M. Del Río-Estrada
- Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Ciudad de México, Mexico
| | - Yuria Ablanedo-Terrazas
- Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Ciudad de México, Mexico
| | - Gustavo Reyes-Terán
- Comisión Coordinadora de Institutos Nacional de Salud y Hospitales de Alta Especialidad, Secretaría de Salud, Ciudad de México, Mexico
| | - Laura F. Su
- Department of Medicine, Division of Rheumatology, Perelman School of Medicine, Institute for Immunology, University of Pennsylvania, Philadelphia, PA, United States,Corporal Michael J Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States,*Correspondence: Ning Jiang, ; Laura F. Su,
| | - Ning Jiang
- Department of Biomedical Engineering, Cockrell School of Engineering, University of Texas at Austin, Austin, TX, United States,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States,Interdisciplinary Life Sciences Graduate Program, University of Texas at Austin, Austin, TX, United States,Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States,*Correspondence: Ning Jiang, ; Laura F. Su,
| |
Collapse
|
27
|
Harper J, Ribeiro SP, Chan CN, Aid M, Deleage C, Micci L, Pino M, Cervasi B, Raghunathan G, Rimmer E, Ayanoglu G, Wu G, Shenvi N, Barnard RJ, Del Prete GQ, Busman-Sahay K, Silvestri G, Kulpa DA, Bosinger SE, Easley KA, Howell BJ, Gorman D, Hazuda DJ, Estes JD, Sekaly RP, Paiardini M. Interleukin-10 contributes to reservoir establishment and persistence in SIV-infected macaques treated with antiretroviral therapy. J Clin Invest 2022; 132:e155251. [PMID: 35230978 PMCID: PMC9012284 DOI: 10.1172/jci155251] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/23/2022] [Indexed: 11/24/2022] Open
Abstract
Interleukin-10 (IL-10) is an immunosuppressive cytokine that signals through STAT3 to regulate T follicular helper (Tfh) cell differentiation and germinal center formation. In SIV-infected macaques, levels of IL-10 in plasma and lymph nodes (LNs) were induced by infection and not normalized with antiretroviral therapy (ART). During chronic infection, plasma IL-10 and transcriptomic signatures of IL-10 signaling were correlated with the cell-associated SIV-DNA content within LN CD4+ memory subsets, including Tfh cells, and predicted the frequency of CD4+ Tfh cells and their cell-associated SIV-DNA content during ART, respectively. In ART-treated rhesus macaques, cells harboring SIV-DNA by DNAscope were preferentially found in the LN B cell follicle in proximity to IL-10. Finally, we demonstrated that the in vivo neutralization of soluble IL-10 in ART-treated, SIV-infected macaques reduced B cell follicle maintenance and, by extension, LN memory CD4+ T cells, including Tfh cells and those expressing PD-1 and CTLA-4. Thus, these data support a role for IL-10 in maintaining a pool of target cells in lymphoid tissue that serve as a niche for viral persistence. Targeting IL-10 signaling to impair CD4+ T cell survival and improve antiviral immune responses may represent a novel approach to limit viral persistence in ART-suppressed people living with HIV.
Collapse
Affiliation(s)
- Justin Harper
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Susan P. Ribeiro
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Chi Ngai Chan
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Malika Aid
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Claire Deleage
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, National Cancer Institute, NIH, Frederick, Maryland, USA
| | - Luca Micci
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Discovery Oncology, Merck & Co., Inc., Boston, Massachusetts, USA
| | - Maria Pino
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Barbara Cervasi
- Flow Cytometry Core, Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
| | | | - Eric Rimmer
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., South San Francisco, California, USA
| | - Gulesi Ayanoglu
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., South San Francisco, California, USA
| | - Guoxin Wu
- Department of Infectious Disease, Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Neeta Shenvi
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Richard J.O. Barnard
- Department of Infectious Disease, Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Gregory Q. Del Prete
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, National Cancer Institute, NIH, Frederick, Maryland, USA
| | - Kathleen Busman-Sahay
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Guido Silvestri
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Deanna A. Kulpa
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Steven E. Bosinger
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kirk A. Easley
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Bonnie J. Howell
- Department of Infectious Disease, Merck & Co., Inc., West Point, Pennsylvania, USA
| | | | - Daria J. Hazuda
- Department of Infectious Disease, Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Jacob D. Estes
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | | | - Mirko Paiardini
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
28
|
Mayberry CL, Logan NA, Wilson JJ, Chang CH. Providing a Helping Hand: Metabolic Regulation of T Follicular Helper Cells and Their Association With Disease. Front Immunol 2022; 13:864949. [PMID: 35493515 PMCID: PMC9047778 DOI: 10.3389/fimmu.2022.864949] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/25/2022] [Indexed: 01/02/2023] Open
Abstract
T follicular helper (Tfh) cells provide support to B cells upon arrival in the germinal center, and thus are critical for the generation of a robust adaptive immune response. Tfh express specific transcription factors and cellular receptors including Bcl6, CXCR5, PD-1, and ICOS, which are critical for homing and overall function. Generally, the induction of an immune response is tightly regulated. However, deviation during this process can result in harmful autoimmunity or the inability to successfully clear pathogens. Recently, it has been shown that Tfh differentiation, activation, and proliferation may be linked with the cellular metabolic state. In this review we will highlight recent discoveries in Tfh differentiation and explore how these cells contribute to functional immunity in disease, including autoimmune-related disorders, cancer, and of particular emphasis, during infection.
Collapse
Affiliation(s)
| | | | | | - Chih-Hao Chang
- The Jackson Laboratory, Bar Harbor, ME, United States
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
- *Correspondence: Chih-Hao Chang,
| |
Collapse
|
29
|
Molinos-Albert LM, Lorin V, Monceaux V, Orr S, Essat A, Dufloo J, Schwartz O, Rouzioux C, Meyer L, Hocqueloux L, Sáez-Cirión A, Mouquet H, Prazuck T, Dieuleveult BD, Bani-Sadr F, Hentzien M, Berger JL, Kmiec I, Pichancourt G, Nasri S, Hittinger G, Lambry V, Beauey AC, Pialoux G, Palacios C, Siguier M, Adda A, Foucoin J, Weiss L, Karmochkine M, Meghadecha M, Ptak M, Salmon-Ceron D, Blanche P, Piétri MP, Molina JM, Taulera O, Lascoux-Combe C, Ponscarme D, Bertaut JD, Makhloufi D, Godinot M, Artizzu V, Yazdanpanah Y, Matheron S, Godard C, Julia Z, Bernard L, Bastides F, Bourgault O, Jacomet C, Goncalves E, Meybeck A, Huleux T, Cornavin P, Debab Y, Théron D, Miailhes P, Cotte L, Pailhes S, Ogoudjobi S, Viard JP, Dulucq MJ, Bodard L, Churaqui F, Guimard T, Laine L. Transient viral exposure drives functionally-coordinated humoral immune responses in HIV-1 post-treatment controllers. Nat Commun 2022; 13:1944. [PMID: 35410989 PMCID: PMC9001681 DOI: 10.1038/s41467-022-29511-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 03/21/2022] [Indexed: 12/11/2022] Open
Abstract
AbstractHIV-1 post-treatment controllers are rare individuals controlling HIV-1 infection for years after antiretroviral therapy interruption. Identification of immune correlates of control in post-treatment controllers could aid in designing effective HIV-1 vaccine and remission strategies. Here, we perform comprehensive immunoprofiling of the humoral response to HIV-1 in long-term post-treatment controllers. Global multivariate analyses combining clinico-virological and humoral immune data reveal distinct profiles in post-treatment controllers experiencing transient viremic episodes off therapy compared to those stably aviremic. Virally-exposed post-treatment controllers display stronger HIV-1 humoral responses, and develop more frequently Env-specific memory B cells and cross-neutralizing antibodies. Both are linked to short viremic exposures, which are also accompanied by an increase in blood atypical memory B cells and activated subsets of circulating follicular helper T cells. Still, most humoral immune variables only correlate with Th2-like circulating follicular helper T cells. Thus, post-treatment controllers form a heterogeneous group with two distinct viral behaviours and associated immune signatures. Post-treatment controllers stably aviremic present “silent” humoral profiles, while those virally-exposed develop functionally robust HIV-specific B-cell and antibody responses, which may participate in controlling infection.
Collapse
|
30
|
Lu X, Zhang X, Cheung AKL, Moog C, Xia H, Li Z, Wang R, Ji Y, Xia W, Liu Z, Yuan L, Wang X, Wu H, Zhang T, Su B. Abnormal Shift in B Memory Cell Profile Is Associated With the Expansion of Circulating T Follicular Helper Cells via ICOS Signaling During Acute HIV-1 Infection. Front Immunol 2022; 13:837921. [PMID: 35222430 PMCID: PMC8867039 DOI: 10.3389/fimmu.2022.837921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Interactions between T follicular helper (Tfh) cells and germinal center B cells are essential for the differentiation of B cells and specific antibody responses against HIV-1 infection. However, the extent to which HIV-1 infection affects the dynamic interplay between these two cell populations in the bloodstream remains unclear. In this study, the dynamics of circulating Tfh (cTfh) and B cells and their relationship in individuals with acute and chronic HIV-1 infection were investigated. Twenty-five study subjects were enrolled from the Beijing PRIMO clinical cohort, a prospective cohort of HIV-1-negative men who have sex with men (MSM) for the identification of cases of acute HIV-1 infection (AHI) at Beijing Youan Hospital, Capital Medical University. Individuals with AHI were selected at random. Matched samples were also collected and analyzed from the same patients with chronic HIV-1 infection. None of the study subjects received antiretroviral therapy during acute or chronic infection. Multicolor flow cytometry was used for the immunophenotypic and functional characterization of cTfh cell and B cell subsets. AHI resulted in increased proportions in bulk cTfh, ICOS+cTfh or IL-21+ICOS+cTfh cells. In both acute and chronic infections, activated memory (AM), tissue-like memory (TLM), and plasmablast (PB) B cell levels were increased whilst resting memory (RM) and naïve mature (NM) B cell levels were decreased. Classical memory (CM) B cells were unaffected during infection. Association analyses showed that the levels of ICOS+cTfh and IL-21+ICOS+cTfh cells were negatively correlated with those of AM, CM, RM cells, and positively correlated with those of NM cells in AHI but not chronic HIV-1 infection stage (CHI). Moreover, the frequency of IL-21+ICOS+cTfh cells was also positively correlated with plasma HIV-1 viral load, and had an opposite association trend with CD4+T cell count in AHI. Our data suggests that HIV-1 infection drives the expansion of cTfh cells, which in turn leads to perturbations of B cell differentiation through ICOS signaling during acute infection stage. These findings provide insight on the role of ICOS in the regulation of cTfh/B cell interaction during AHI and may potentially guide the design of effective strategies for restoring anti-HIV-1 immunity in the infected patients.
Collapse
Affiliation(s)
- Xiaofan Lu
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xin Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Allen Ka Loon Cheung
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Christiane Moog
- Laboratoire d'ImmunoRhumatologie Moléculaire, plateforme GENOMAX, INSERM UMR_S 1109, Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Faculté de Médecine, Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Huan Xia
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Zhen Li
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Rui Wang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yunxia Ji
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Wei Xia
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Zhiying Liu
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Lin Yuan
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xiuwen Wang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Hao Wu
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Tong Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
31
|
George AF, Luo X, Neidleman J, Hoh R, Vohra P, Thomas R, Shin MG, Lee MJ, Blish CA, Deeks S, Greene WC, Lee SA, Roan NR. Deep Phenotypic Analysis of Blood and Lymphoid T and NK Cells From HIV+ Controllers and ART-Suppressed Individuals. Front Immunol 2022; 13:803417. [PMID: 35154118 PMCID: PMC8829545 DOI: 10.3389/fimmu.2022.803417] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/04/2022] [Indexed: 12/03/2022] Open
Abstract
T and natural killer (NK) cells are effector cells with key roles in anti-HIV immunity, including in lymphoid tissues, the major site of HIV persistence. However, little is known about the features of these effector cells from people living with HIV (PLWH), particularly from those who initiated antiretroviral therapy (ART) during acute infection. Our study design was to use 42-parameter CyTOF to conduct deep phenotyping of paired blood- and lymph node (LN)-derived T and NK cells from three groups of HIV+ aviremic individuals: elite controllers (N = 5), and ART-suppressed individuals who had started therapy during chronic (N = 6) vs. acute infection (N = 8), the latter of which is associated with better outcomes. We found that acute-treated individuals are enriched for specific subsets of T and NK cells, including blood-derived CD56-CD16+ NK cells previously associated with HIV control, and LN-derived CD4+ T follicular helper cells with heightened expansion potential. An in-depth comparison of the features of the cells from blood vs. LNs of individuals from our cohort revealed that T cells from blood were more activated than those from LNs. By contrast, LNs were enriched for follicle-homing CXCR5+ CD8+ T cells, which expressed increased levels of inhibitory receptors and markers of survival and proliferation as compared to their CXCR5- counterparts. In addition, a subset of memory-like CD56brightTCF1+ NK cells was enriched in LNs relative to blood. These results together suggest unique T and NK cell features in acute-treated individuals, and highlight the importance of examining effector cells not only in blood but also the lymphoid tissue compartment, where the reservoir mostly persists, and where these cells take on distinct phenotypic features.
Collapse
Affiliation(s)
- Ashley F. George
- Gladstone Institute of Virology, San Francisco, CA, United States,Department of Urology, University of California San Francisco, San Francisco, CA, United States
| | - Xiaoyu Luo
- Gladstone Institute of Virology, San Francisco, CA, United States
| | - Jason Neidleman
- Gladstone Institute of Virology, San Francisco, CA, United States,Department of Urology, University of California San Francisco, San Francisco, CA, United States
| | - Rebecca Hoh
- Division of HIV, Infectious Diseases and Global Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Poonam Vohra
- Department of Pathology, University of California San Francisco, San Francisco, CA, United States
| | - Reuben Thomas
- Gladstone Institutes, San Francisco, CA, United States
| | | | - Madeline J. Lee
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States,Program in Immunology, Stanford School of Medicine, Stanford, CA, United States
| | - Catherine A. Blish
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States,Program in Immunology, Stanford School of Medicine, Stanford, CA, United States
| | - Steven G. Deeks
- Division of HIV, Infectious Diseases and Global Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Warner C. Greene
- Gladstone Institute of Virology, San Francisco, CA, United States,Departments of Medicine, and Microbiology & Immunology, University of California San Francisco, San Francisco, CA, United States
| | - Sulggi A. Lee
- Zuckerberg San Francisco General Hospital and the University of California San Francisco, San Francisco, CA, United States,*Correspondence: Sulggi A. Lee, ; Nadia R. Roan,
| | - Nadia R. Roan
- Gladstone Institute of Virology, San Francisco, CA, United States,Department of Urology, University of California San Francisco, San Francisco, CA, United States,*Correspondence: Sulggi A. Lee, ; Nadia R. Roan,
| |
Collapse
|
32
|
Jeger-Madiot R, Vaineau R, Heredia M, Tchitchek N, Bertrand L, Pereira M, Konza O, Gouritin B, Hoareau-Coudert B, Corneau A, Blanc C, Savier E, Buffet P, Six A, Klatzmann D, Moris A, Graff-Dubois S. Naive and memory CD4 + T cell subsets can contribute to the generation of human Tfh cells. iScience 2022; 25:103566. [PMID: 34984326 PMCID: PMC8693005 DOI: 10.1016/j.isci.2021.103566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/07/2021] [Accepted: 12/01/2021] [Indexed: 11/28/2022] Open
Abstract
CD4+ T follicular helper cells (Tfh) promote B cell maturation and antibody production in secondary lymphoid organs. By using an innovative culture system based on splenocyte stimulation, we studied the dynamics of naive and memory CD4+ T cells during the generation of a Tfh cell response. We found that both naive and memory CD4+ T cells can acquire phenotypic and functional features of Tfh cells. Moreover, we show here that the transition of memory as well as naive CD4+ T cells into the Tfh cell profile is supported by the expression of pro-Tfh genes, including transcription factors known to orchestrate Tfh cell development. Using this culture system, we provide pieces of evidence that HIV infection differentially alters these newly identified pathways of Tfh cell generation. Such diversity in pathways of Tfh cell generation offers a new framework for the understanding of Tfh cell responses in physiological and pathological contexts.
Collapse
Affiliation(s)
- Raphaël Jeger-Madiot
- Sorbonne Université, INSERM, UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Paris, France.,Sorbonne Université, INSERM, CNRS, Center for Immunology and Microbial Infections, Paris, France
| | - Romain Vaineau
- Sorbonne Université, INSERM, UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Paris, France
| | - Maud Heredia
- Sorbonne Université, INSERM, UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Paris, France.,Sorbonne Université, INSERM, CNRS, Center for Immunology and Microbial Infections, Paris, France
| | - Nicolas Tchitchek
- Sorbonne Université, INSERM, UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Paris, France
| | - Lisa Bertrand
- Sorbonne Université, INSERM, CNRS, Center for Immunology and Microbial Infections, Paris, France.,Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette, France
| | - Mathias Pereira
- Sorbonne Université, INSERM, CNRS, Center for Immunology and Microbial Infections, Paris, France.,Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette, France
| | - Océane Konza
- Sorbonne Université, INSERM, UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Paris, France
| | - Bruno Gouritin
- Sorbonne Université, INSERM, UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Paris, France
| | | | - Aurélien Corneau
- Sorbonne Université, INSERM UMS037 PASS, Cytometry facility (CyPS), Paris, France
| | - Catherine Blanc
- Sorbonne Université, INSERM UMS037 PASS, Cytometry facility (CyPS), Paris, France
| | - Eric Savier
- Assistance Publique-Hôpitaux de Paris (AP-HP), Pitie-Salpetriere Hospital, Department of Hepato-Biliary and Pancreatic Surgery and Liver Transplantation, Paris, France.,Sorbonne Université, INSERM, St Antoine Research Center CRSA, Paris, France
| | - Pierre Buffet
- Université de Paris, INSERM, UMRS 1134, Biologie Intégrée du Globule Rouge, Paris, France
| | - Adrien Six
- Sorbonne Université, INSERM, UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Paris, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Pitié-Salpêtrière Hospital, Biotherapy and Département Hospitalo-Universitaire Inflammation-Immunopathology-Biotherapy (i2B), Paris, France
| | - David Klatzmann
- Sorbonne Université, INSERM, UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Paris, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Pitié-Salpêtrière Hospital, Biotherapy and Département Hospitalo-Universitaire Inflammation-Immunopathology-Biotherapy (i2B), Paris, France
| | - Arnaud Moris
- Sorbonne Université, INSERM, CNRS, Center for Immunology and Microbial Infections, Paris, France.,Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette, France
| | - Stéphanie Graff-Dubois
- Sorbonne Université, INSERM, UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Paris, France.,Sorbonne Université, INSERM, CNRS, Center for Immunology and Microbial Infections, Paris, France.,Sorbonne Université, INSERM UMS037 PASS, Cytometry facility (CyPS), Paris, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Pitie-Salpetriere Hospital, Department of Hepato-Biliary and Pancreatic Surgery and Liver Transplantation, Paris, France
| |
Collapse
|
33
|
Implications of the accumulation of CXCR5 + NK cells in lymph nodes of HIV-1 infected patients. EBioMedicine 2022; 75:103794. [PMID: 34973625 PMCID: PMC8728057 DOI: 10.1016/j.ebiom.2021.103794] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/20/2022] Open
Abstract
Background B cell follicles are immune-privileged sites where intensive HIV-1 replication and latency occur, preventing a permanent cure. Recent study showed that CXCR5+ NK cells in B cell follicles can inhibit SIV replication in African green monkeys, but this has not been reported in HIV-1 infected patients. Methods Lymphocytes and tissue sections of lymph node were collected from 11 HIV-1 positive antiretroviral therapy (ART)-naive and 19 HIV-1 negative donors. We performed immunofluorescence and RNA-scope to detect the location of CXCR5+ NK cells and its relationship with HIV-1 RNA, and performed flow cytometry and RNA-seq to analyze the frequency, phenotypic and functional characteristics of CXCR5+ NK cells. The CXCL13 expression were detected by immunohistochemistry. Findings CXCR5+ NK cells, which accumulated in LNs from HIV-1 infected individuals, expressed high levels of activating receptors such as NKG2D and NKp44. CXCR5+ NK cells had upregulated expression of CD107a and β-chemokines, which were partially impaired in HIV-1 infection. Importantly, the frequency of CXCR5+NK cells was inversely related to the HIV-1 viral burden in LNs. In addition, CXCL13—the ligand of CXCR5—was upregulated in HIV-1 infected individuals and positively correlated with the frequency of CXCR5+ NK cells. Interpretation During chronic HIV-1 infection, CXCR5+ NK cells accumulated in lymph node, exhibit altered immune characteristics and underlying anti-HIV-1 effect, which may be an effective target for a functional cure of HIV-1.
Collapse
|
34
|
Wong CS, Buckner CM, Lage SL, Pei L, Assis FL, Dahlstrom EW, Anzick SL, Virtaneva K, Rupert A, Davis JL, Zhou T, Laidlaw E, Manion M, Galindo F, Anderson M, Seamon CA, Sneller MC, Lisco A, Deleage C, Pittaluga S, Moir S, Sereti I. Rapid Emergence of T Follicular Helper and Germinal Center B Cells Following Antiretroviral Therapy in Advanced HIV Disease. Front Immunol 2021; 12:752782. [PMID: 34938286 PMCID: PMC8686113 DOI: 10.3389/fimmu.2021.752782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/09/2021] [Indexed: 02/01/2023] Open
Abstract
Low nadir CD4 T-cell counts in HIV+ patients are associated with high morbidity and mortality and lasting immune dysfunction, even after antiretroviral therapy (ART). The early events of immune recovery of T cells and B cells in severely lymphopenic HIV+ patients have not been fully characterized. In a cohort of lymphopenic (CD4 T-cell count < 100/µL) HIV+ patients, we studied mononuclear cells isolated from peripheral blood (PB) and lymph nodes (LN) pre-ART (n = 40) and 6-8 weeks post-ART (n = 30) with evaluation of cellular immunophenotypes; histology on LN sections; functionality of circulating T follicular helper (cTfh) cells; transcriptional and B-cell receptor profile on unfractionated LN and PB samples; and plasma biomarker measurements. A group of 19 healthy controls (HC, n = 19) was used as a comparator. T-cell and B-cell lymphopenia was present in PB pre-ART in HIV+ patients. CD4:CD8 and CD4 T- and B-cell PB subsets partly normalized compared to HC post-ART as viral load decreased. Strikingly in LN, ART led to a rapid decrease in interferon signaling pathways and an increase in Tfh, germinal center and IgD-CD27- B cells, consistent with histological findings of post-ART follicular hyperplasia. However, there was evidence of cTfh cells with decreased helper capacity and of limited B-cell receptor diversification post-ART. In conclusion, we found early signs of immune reconstitution, evidenced by a surge in LN germinal center cells, albeit limited in functionality, in HIV+ patients who initiate ART late in disease.
Collapse
Affiliation(s)
- Chun-Shu Wong
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Clarisa M. Buckner
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Silvia Lucena Lage
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Luxin Pei
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Felipe L. Assis
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Eric W. Dahlstrom
- Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT, United States
| | - Sarah L. Anzick
- Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT, United States
| | - Kimmo Virtaneva
- Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT, United States
| | - Adam Rupert
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Jeremy L. Davis
- Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Ting Zhou
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Elizabeth Laidlaw
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Maura Manion
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Frances Galindo
- Intramural Clinical Management and Operations Branch, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Megan Anderson
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Catherine A. Seamon
- Critical Care Medicine, Clinical Center, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Michael C. Sneller
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Andrea Lisco
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Claire Deleage
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Stefania Pittaluga
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Irini Sereti
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
35
|
Snell LM, Xu W, Abd-Rabbo D, Boukhaled G, Guo M, Macleod BL, Elsaesser HJ, Hezaveh K, Alsahafi N, Lukhele S, Nejat S, Prabhakaran R, Epelman S, McGaha TL, Brooks DG. Dynamic CD4 + T cell heterogeneity defines subset-specific suppression and PD-L1-blockade-driven functional restoration in chronic infection. Nat Immunol 2021; 22:1524-1537. [PMID: 34795443 PMCID: PMC10286806 DOI: 10.1038/s41590-021-01060-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 09/24/2021] [Indexed: 02/08/2023]
Abstract
Inhibiting PD-1:PD-L1 signaling has transformed therapeutic immune restoration. CD4+ T cells sustain immunity in chronic infections and cancer, yet little is known about how PD-1 signaling modulates CD4+ helper T (TH) cell responses or the ability to restore CD4+ TH-mediated immunity by checkpoint blockade. We demonstrate that PD-1:PD-L1 specifically suppressed CD4+ TH1 cell amplification, prevents CD4+ TH1 cytokine production and abolishes CD4+ cytotoxic killing capacity during chronic infection in mice. Inhibiting PD-L1 rapidly restored these functions, while simultaneously amplifying and activating TH1-like T regulatory cells, demonstrating a system-wide CD4-TH1 recalibration. This effect coincided with decreased T cell antigen receptor signaling, and re-directed type I interferon (IFN) signaling networks towards dominant IFN-γ-mediated responses. Mechanistically, PD-L1 blockade specifically targeted defined populations with pre-established, but actively suppressed proliferative potential, with limited impact on minimally cycling TCF-1+ follicular helper T cells, despite high PD-1 expression. Thus, CD4+ T cells require unique differentiation and functional states to be targets of PD-L1-directed suppression and therapeutic restoration.
Collapse
Affiliation(s)
- Laura M Snell
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Wenxi Xu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Diala Abd-Rabbo
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Giselle Boukhaled
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Mengdi Guo
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Bethany L Macleod
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Heidi J Elsaesser
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Kebria Hezaveh
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Nirmin Alsahafi
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Sabelo Lukhele
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Sara Nejat
- Toronto General Hospital Research Institute, University Health Network (UHN), Toronto, ON, Canada
| | | | - Slava Epelman
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network (UHN), Toronto, ON, Canada
- Peter Munk Cardiac Centre, Ted Rogers Centre for Heart Research, Toronto, ON, Canada
| | - Tracy L McGaha
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - David G Brooks
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Department of Immunology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
36
|
Mandala WL, Liu MKP. SARS-CoV-2 and HIV-1: Should HIV-1-Infected Individuals in Sub-Saharan Africa Be Considered a Priority Group for the COVID-19 Vaccines? Front Immunol 2021; 12:797117. [PMID: 34858440 PMCID: PMC8630634 DOI: 10.3389/fimmu.2021.797117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 12/23/2022] Open
Abstract
Since its emergence in 2019 SARS-CoV-2 has proven to have a higher level of morbidity and mortality compared to the other prevailing coronaviruses. Although initially most African countries were spared from the devastating effect of SARS-CoV-2, at present almost every country has been affected. Although no association has been established between being HIV-1-infected and being more vulnerable to contracting COVID-19, HIV-1-infected individuals have a greater risk of developing severe COVID-19 and of COVID-19 related mortality. The rapid development of the various types of COVID-19 vaccines has gone a long way in mitigating the devastating effects of the virus and has controlled its spread. However, global vaccine deployment has been uneven particularly in Africa. The emergence of SARS-CoV-2 variants, such as Beta and Delta, which seem to show some subtle resistance to the existing vaccines, suggests COVID-19 will still be a high-risk infection for years. In this review we report on the current impact of COVID-19 on HIV-1-infected individuals from an immunological perspective and attempt to make a case for prioritising COVID-19 vaccination for those living with HIV-1 in Sub-Saharan Africa (SSA) countries like Malawi as one way of minimising the impact of COVID-19 in these countries.
Collapse
Affiliation(s)
- Wilson Lewis Mandala
- Academy of Medical Sciences, Malawi University of Science and Technology (MUST), Thyolo, Malawi
| | - Michael K. P. Liu
- Centre for Immunology and Vaccinology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| |
Collapse
|
37
|
Koutsakos M, Lee WS, Wheatley AK, Kent SJ, Juno JA. T follicular helper cells in the humoral immune response to SARS-CoV-2 infection and vaccination. J Leukoc Biol 2021; 111:355-365. [PMID: 34730247 PMCID: PMC8667651 DOI: 10.1002/jlb.5mr0821-464r] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Vaccination remains the most effective mechanism to reduce the impact of COVID‐19. Induction of neutralizing antibodies is a strong correlate of protection from infection and severe disease. An understanding of the cellular events that underpin the generation of effective neutralizing antibodies is therefore key to the development of efficacious vaccines that target emerging variants of concern. Analysis of the immune response to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS‐CoV‐2) infection and vaccination has identified circulating T follicular helper cells (cTFH) as a robust correlate of the neutralizing antibody response. Here, we discuss the analysis of cTFH cells and their lymphoid counterparts in human humoral immune responses during COVID‐19, and in response to vaccination with SARS‐CoV‐2 spike. We discuss the phenotypic heterogeneity of cTFH cells and the utility of cTFH subsets as informative biomarkers for development of humoral immunity. We posit that the analysis of the most effective cTFH will be critical to inducing durable immunity to new variants of SARS‐CoV‐2.
Collapse
Affiliation(s)
- Marios Koutsakos
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Wen Shi Lee
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.,Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Jennifer A Juno
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
38
|
Silveira ELV, Hong JJ, Amancha PK, Rogers KA, Ansari AA, Byrareddy SN, Villinger F. Viremia controls Env-specific antibody-secreting cell responses in simian immunodeficiency virus infected macaques pre and post-antiretroviral therapy. AIDS 2021; 35:2085-2094. [PMID: 34148985 PMCID: PMC8490307 DOI: 10.1097/qad.0000000000002998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the kinetics of Env (gp140)-specific antibody-secreting cells (ASCs) during acute and early chronic simian immunodeficiency virus (SIV) infection, and prior to and postantiretroviral therapy (ART) in rhesus macaques. DESIGN AND METHODS At week 0, rhesus macaques were inoculated intravenously with SIVmac239 and the viral loads were allowed to develop. Daily ART was initiated at week 5 post infection until week 18, though the animals were monitored until week 28 for the following parameters: enumeration of SIV gp140-specific ASCs by ELISPOT; quantification of viremia and SIV gp140-specific IgG titres through qRT-PCR and ELISA, respectively; estimation of monocytes, follicular helper T cells (Tfh) and memory B cell frequencies using polychromatic flow cytometry. RESULTS Direct correlations were consistently found between blood SIV gp140-specific ASC responses and viremia or SIV Env-specific IgG titres. In contrast, SIV gp140-specific ASC responses showed inverse correlations with the percentage of total memory B cells in the blood. In lymph nodes, the magnitude of the SIV gp140-specific ASC responses also followed the viral load kinetics. In contrast, the number of SIV gp140-specific ASCs presented did not correlate with frequencies of circulating activated monocyte (CD14+CD16+) or Tfh cells. CONCLUSION Blood and/or lymph node viral loads may regulate the onset and magnitude of SIV gp140-specific ASCs during SIV infection and following ART in rhesus macaques.
Collapse
Affiliation(s)
- Eduardo L. V. Silveira
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329 - USA
- Division of Pathology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329 - USA
| | - Jung Joo Hong
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329 - USA
- Division of Pathology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329 - USA
| | - Praveen K. Amancha
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329 - USA
- Division of Pathology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329 - USA
| | - Kenneth A Rogers
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329 - USA
- Division of Pathology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329 - USA
| | - Aftab A. Ansari
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 30322 – USA
| | - Siddappa N. Byrareddy
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 30322 – USA
| | - Francois Villinger
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329 - USA
- Division of Pathology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329 - USA
| |
Collapse
|
39
|
Holder KA, Burt K, Grant MD. TIGIT blockade enhances NK cell activity against autologous HIV-1-infected CD4 + T cells. Clin Transl Immunology 2021; 10:e1348. [PMID: 34707863 PMCID: PMC8527024 DOI: 10.1002/cti2.1348] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/21/2021] [Accepted: 09/27/2021] [Indexed: 12/17/2022] Open
Abstract
Objectives During chronic human immunodeficiency virus (HIV)‐1 infection, inhibitory molecules upregulated on lymphocytes contribute to effector cell dysfunction and immune exhaustion. People living with HIV (PLWH) are at greater risk for age‐related morbidities, an issue magnified by human cytomegalovirus (CMV) coinfection. As CMV infection modifies natural killer (NK) cell properties and NK cells contribute to protection against HIV‐1 infection, we considered the role of T‐cell immunoreceptor with immunoglobulin and intracellular tyrosine inhibitory motif domains (TIGIT) in NK cell‐based HIV‐1 immunotherapy and elimination strategies. Methods We measured TIGIT expression on immune cell subsets of 95 PLWH and assessed its impact on NK cell function, including elimination of autologous CD4+ T cells infected through reactivation of endogenous HIV‐1. Results TIGIT was expressed on CD4+ T cells, CD8+ T cells and NK cells from PLWH. Although TIGIT levels on T cells correlated with HIV‐1 disease progression, the extent of TIGIT expression on NK cells more closely paralleled adaptation to CMV. TIGIT interacts with its predominant ligand, poliovirus receptor (PVR), to inhibit effector cell functions. Circulating CD4+ T cells from PLWH more frequently expressed PVR than HIV‐seronegative controls, and PVR expression was enriched in CD4+ T cells replicating HIV‐1 ex vivo. Treatment with anti‐TIGIT monoclonal antibodies increased NK cell HIV‐1‐specific antibody‐dependent cytotoxicity in vitro and ex vivo. Conclusion Blocking TIGIT may be an effective strategy to invigorate antibody‐dependent NK cell activity against HIV‐1 activated in cellular reservoirs for cure or treatment strategies.
Collapse
Affiliation(s)
- Kayla A Holder
- Immunology and Infectious Diseases Program Division of BioMedical Sciences Faculty of Medicine Memorial University of Newfoundland St. John's NL Canada
| | | | - Michael D Grant
- Immunology and Infectious Diseases Program Division of BioMedical Sciences Faculty of Medicine Memorial University of Newfoundland St. John's NL Canada
| |
Collapse
|
40
|
Dias J, Fabozzi G, March K, Asokan M, Almasri CG, Fintzi J, Promsote W, Nishimura Y, Todd JP, Lifson JD, Martin MA, Gama L, Petrovas C, Pegu A, Mascola JR, Koup RA. Concordance of immunological events between intrarectal and intravenous SHIVAD8-EO infection when assessed by Fiebig-equivalent staging. J Clin Invest 2021; 131:e151632. [PMID: 34623326 PMCID: PMC8409578 DOI: 10.1172/jci151632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/22/2021] [Indexed: 11/17/2022] Open
Abstract
Primary HIV-1 infection can be classified into six Fiebig stages based on virological and serological laboratory testing, whereas simian-HIV (SHIV) infection in nonhuman primates (NHPs) is defined in time post-infection, making it difficult to extrapolate NHP experiments to the clinics. We identified and extensively characterized the Fiebig-equivalent stages in NHPs challenged intrarectally or intravenously with SHIVAD8-EO. During the first month post-challenge, intrarectally challenged monkeys were up to 1 week delayed in progression through stages. However, regardless of the challenge route, stages I-II predominated before, and stages V-VI predominated after, peak viremia. Decrease in lymph node (LN) CD4+ T cell frequency and rise in CD8+ T cells occurred at stage V. LN virus-specific CD8+ T cell responses, dominated by degranulation and TNF, were first detected at stage V and increased at stage VI. A similar late elevation in follicular CXCR5+ CD8+ T cells occurred, consistent with higher plasma CXCL13 levels at these stages. LN SHIVAD8-EO RNA+ cells were present at stage II, but appeared to decline at stage VI when virions accumulated in follicles. Fiebig-equivalent staging of SHIVAD8-EO infection revealed concordance of immunological events between intrarectal and intravenous infection despite different infection progressions, and can inform comparisons of NHP studies with clinical data.
Collapse
Affiliation(s)
- Joana Dias
- Immunology Laboratory, Vaccine Research Center
| | | | - Kylie March
- Tissue Analysis Core, Vaccine Research Center
| | | | | | | | | | | | - John-Paul Todd
- Translational Research Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | | | - Lucio Gama
- Immunology Laboratory, Vaccine Research Center
| | | | | | | | | |
Collapse
|
41
|
Asao H. Interleukin-21 in Viral Infections. Int J Mol Sci 2021; 22:ijms22179521. [PMID: 34502427 PMCID: PMC8430989 DOI: 10.3390/ijms22179521] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022] Open
Abstract
Interleukin (IL)-21 is a cytokine that affects the differentiation and function of lymphoid and myeloid cells and regulates both innate and adaptive immune responses. In addition to regulating the immune response to tumor and viral infections, IL-21 also has a profound effect on the development of autoimmune and inflammatory diseases. IL-21 is produced mainly from CD4+ T cells-in particular, follicular helper T (Tfh) cells-which have a great influence on the regulation of antibody production. It is also an important cytokine for the activation of CD8+ T cells, and its role in recovering the function of CD8+ T cells exhausted by chronic microbial infections and cancer has been clarified. Thus, IL-21 plays an extremely important role in viral infections, especially chronic viral infections. In this review, I will introduce the findings to date on how IL-21 is involved in some typical viral infections and the potential of treating viral diseases with IL-21.
Collapse
Affiliation(s)
- Hironobu Asao
- Department of Immunology, Faculty of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata City 990-9585, Japan
| |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW The persistence of HIV-1-infected cells, despite the introduction of the combinatorial antiretroviral therapy, is a major obstacle to HIV-1 eradication. Understanding the nature of HIV reservoir will lead to novel therapeutic approaches for the functional cure or eradication of the virus. In this review, we will update the recent development in imaging applications toward HIV-1/simian immunodeficiency virus (SIV) viral reservoirs research and highlight some of their limitations. RECENT FINDINGS CD4 T cells are the primary target of HIV-1/SIV and the predominant site for productive and latent reservoirs. This viral reservoir preferentially resides in lymphoid compartments that are difficult to access, which renders sampling and measurements problematical and a hurdle for understanding HIV-1 pathogenicity. Novel noninvasive technologies are needed to circumvent this and urgently help to find a cure for HIV-1. Recent technological advancements have had a significant impact on the development of imaging methodologies allowing the visualization of relevant biomarkers with high resolution and analytical capacity. Such methodologies have provided insights into our understanding of cellular and molecular interactions in health and disease. SUMMARY Imaging of the HIV-1 reservoir can provide significant insights for the nature (cell types), spatial distribution, and the role of the tissue microenvironment for its in vivo dynamics and potentially lead to novel targets for the virus elimination.
Collapse
|
43
|
The Role of Coinfections in the EBV-Host Broken Equilibrium. Viruses 2021; 13:v13071399. [PMID: 34372605 PMCID: PMC8310153 DOI: 10.3390/v13071399] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/29/2021] [Accepted: 07/12/2021] [Indexed: 12/17/2022] Open
Abstract
The Epstein–Barr virus (EBV) is a well-adapted human virus, and its infection is exclusive to our species, generally beginning in the childhood and then persisting throughout the life of most of the affected adults. Although this infection generally remains asymptomatic, EBV can trigger life-threatening conditions under unclear circumstances. The EBV lifecycle is characterized by interactions with other viruses or bacteria, which increases the probability of awakening its pathobiont capacity. For instance, EBV infects B cells with the potential to alter the germinal center reaction (GCR)—an adaptive immune structure wherein mutagenic-driven processes take place. HIV- and Plasmodium falciparum-induced B cell hyperactivation also feeds the GCR. These agents, along with the B cell tropic KSHV, converge in the ontogeny of germinal center (GC) or post-GC lymphomas. EBV oral transmission facilitates interactions with local bacteria and HPV, thereby increasing the risk of periodontal diseases and head and neck carcinomas. It is less clear as to how EBV is localized in the stomach, but together with Helicobacter pylori, they are known to be responsible for gastric cancer. Perhaps this mechanism is reminiscent of the local inflammation that attracts different herpesviruses and enhances graft damage and chances of rejection in transplanted patients. In this review, we discussed the existing evidence suggestive of EBV possessing the potential to synergize or cooperate with these agents to trigger or worsen the disease.
Collapse
|
44
|
Chakhtoura M, Fang M, Cubas R, O’Connor MH, Nichols CN, Richardson B, Talla A, Moir S, Cameron MJ, Tardif V, Haddad EK. Germinal Center T follicular helper (GC-Tfh) cell impairment in chronic HIV infection involves c-Maf signaling. PLoS Pathog 2021; 17:e1009732. [PMID: 34280251 PMCID: PMC8289045 DOI: 10.1371/journal.ppat.1009732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
We have recently demonstrated that the function of T follicular helper (Tfh) cells from lymph nodes (LN) of HIV-infected individuals is impaired. We found that these cells were unable to provide proper help to germinal center (GC)-B cells, as observed by altered and inefficient anti-HIV antibody response and premature death of memory B cells. The underlying molecular mechanisms of this dysfunction remain poorly defined. Herein, we have used a unique transcriptional approach to identify these molecular defects. We consequently determined the transcriptional profiles of LN GC-Tfh cells following their interactions with LN GC-B cells from HIV-infected and HIV-uninfected individuals, rather than analyzing resting ex-vivo GC-Tfh cells. We observed that proliferating GC-Tfh cells from HIV-infected subjects were transcriptionally different than their HIV-uninfected counterparts, and displayed a significant downregulation of immune- and GC-Tfh-associated pathways and genes. Our results strongly demonstrated that MAF (coding for the transcription factor c-Maf) and its upstream signaling pathway mediators (IL6R and STAT3) were significantly downregulated in HIV-infected subjects, which could contribute to the impaired GC-Tfh and GC-B cell functions reported during infection. We further showed that c-Maf function was associated with the adenosine pathway and that the signaling upstream c-Maf could be partially restored by adenosine deaminase -1 (ADA-1) supplementation. Overall, we identified a novel mechanism that contributes to GC-Tfh cell impairment during HIV infection. Understanding how GC-Tfh cell function is altered in HIV is crucial and could provide critical information about the mechanisms leading to the development and maintenance of effective anti-HIV antibodies. Human immunodeficiency virus (HIV) remains a worldwide burden despite available treatments. The virus induces dysregulations in major immune cells and organs including lymph nodes. Germinal center T follicular helper (GC-Tfh) cells are immune cells which induce specific anti-HIV antibodies by helping GC-B cells. In chronic HIV, the interaction between these two cell types is defective, leading to modified and inefficient anti-HIV antibody responses. In this study, we examined the underlying mechanisms of this dysfunction. We observed that proliferating GC-Tfh cells from HIV-infected individuals, displayed distinctive gene expression than those from -uninfected subjects, following GC-B cell interaction. Furthermore, GC-Tfh cells from HIV patients showed a reduction in important immune-related pathway and gene expression. A number of essential GC-Tfh cell genes, such as MAF and its associated genes (IL6R and STAT3), were particularly attenuated in HIV, contributing to the impaired cells function. Moreover, we found an association between MAF function and the key enzyme adenosine deaminase-1 (ADA-1), where supplementation with ADA-1 partially restored the dysfunctional signaling in GC-Tfh cells during chronic infection. Understanding how GC-Tfh cells are altered in HIV is critical to elucidate the mechanisms leading to effective anti-HIV antibodies.
Collapse
Affiliation(s)
- Marita Chakhtoura
- Department of Medicine, Division of Infectious Diseases & HIV Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Mike Fang
- Department of Population and Quantitative Health Services, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Rafael Cubas
- Iovance Biotherapeutics, San Carlos, California, United States of America
| | - Margaret H. O’Connor
- Department of Medicine, Division of Infectious Diseases & HIV Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Molecular and Cellular Biology and Genetics, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Carmen N. Nichols
- Department of Population and Quantitative Health Services, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Brian Richardson
- Department of Population and Quantitative Health Services, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Aarthi Talla
- Allen Institute for Immunology, Seattle, Washington, United States of America
| | - Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mark J. Cameron
- Department of Population and Quantitative Health Services, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Virginie Tardif
- Department of Medicine, Division of Infectious Diseases & HIV Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Sorbonne University, INSERM, Center of Reasearch in Myology (Association Institut de Myologie) UMRS 974, AP-HP, Department of Internal Medicine and Clinical Immunology, DHU I2B, Pitié-Salpêtrière Hospital, Paris, France
- * E-mail: (VT); (EKH)
| | - Elias K. Haddad
- Department of Medicine, Division of Infectious Diseases & HIV Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail: (VT); (EKH)
| |
Collapse
|
45
|
Moysi E, Del Rio Estrada PM, Torres-Ruiz F, Reyes-Terán G, Koup RA, Petrovas C. In Situ Characterization of Human Lymphoid Tissue Immune Cells by Multispectral Confocal Imaging and Quantitative Image Analysis; Implications for HIV Reservoir Characterization. Front Immunol 2021; 12:683396. [PMID: 34177929 PMCID: PMC8221112 DOI: 10.3389/fimmu.2021.683396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/13/2021] [Indexed: 11/13/2022] Open
Abstract
CD4 T cells are key mediators of adaptive immune responses during infection and vaccination. Within secondary lymphoid organs, helper CD4 T cells, particularly those residing in germinal centers known as follicular helper T cells (Tfh), provide critical help to B-cells to promote their survival, isotype switching and selection of high affinity memory B-cells. On the other hand, the important role of Tfh cells for the maintenance of HIV reservoir is well documented. Thus, interrogating and better understanding the tissue specific micro-environment and immune subsets that contribute to optimal Tfh cell differentiation and function is important for designing successful prevention and cure strategies. Here, we describe the development and optimization of eight multispectral confocal microscopy immunofluorescence panels designed for in depth characterization and immune-profiling of relevant immune cells in formalin-fixed paraffin-embedded human lymphoid tissue samples. We provide a comprehensive library of antibodies to use for the characterization of CD4+ T-cells -including Tfh and regulatory T-cells- as well as CD8 T-cells, B-cells, macrophages and dendritic cells and discuss how the resulting multispectral confocal datasets can be quantitatively dissected using the HistoCytometry pipeline to collect information about relative frequencies and immune cell spatial distributions. Cells harboring actively transcribed virus are analyzed using an in-situ hybridization assay for the characterization of HIV mRNA positive cells in combination with additional protein markers (multispectral RNAscope). The application of this methodology to lymphoid tissues offers a means to interrogate multiple relevant immune cell targets simultaneously at increased resolution in a reproducible manner to guide CD4 T-cell studies in infection and vaccination.
Collapse
Affiliation(s)
- Eirini Moysi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Perla M Del Rio Estrada
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Fernanda Torres-Ruiz
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Gustavo Reyes-Terán
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico.,Comisión Coordinadora de Institutos Nacionales de Salud y Hospitales de Alta Especialidad, Secretaría de Salud, Mexico City, Mexico
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Constantinos Petrovas
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States.,Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
46
|
Kazer SW, Walker BD, Shalek AK. Evolution and Diversity of Immune Responses during Acute HIV Infection. Immunity 2021; 53:908-924. [PMID: 33207216 DOI: 10.1016/j.immuni.2020.10.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/03/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023]
Abstract
Understanding the earliest immune responses following HIV infection is critical to inform future vaccines and therapeutics. Here, we review recent prospective human studies in at-risk populations that have provided insight into immune responses during acute infection, including additional relevant data from non-human primate (NHP) studies. We discuss the timing, nature, and function of the diverse immune responses induced, the onset of immune dysfunction, and the effects of early anti-retroviral therapy administration. Treatment at onset of viremia mitigates peripheral T and B cell dysfunction, limits seroconversion, and enhances cellular antiviral immunity despite persistence of infection in lymphoid tissues. We highlight pertinent areas for future investigation, and how application of high-throughput technologies, alongside targeted NHP studies, may elucidate immune response features to target in novel preventions and cures.
Collapse
Affiliation(s)
- Samuel W Kazer
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Bruce D Walker
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA; HIV Pathogenesis Programme, Nelson R. Mandela School of Medicine, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Alex K Shalek
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
47
|
Jha V, Nicholson LK, Gardner EM, Rahkola JT, Pratap H, Scott J, Borgeson M, Jacobelli J, Janoff EN. Impact of HIV-1 Infection and Antigen Class on T Follicular Helper Cell Responses to Pneumococcal Polysaccharide-Protein Conjugate Vaccine-13. THE JOURNAL OF IMMUNOLOGY 2021; 206:2402-2411. [PMID: 33931485 DOI: 10.4049/jimmunol.2001133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/04/2021] [Indexed: 11/19/2022]
Abstract
Pneumococcal infections are common and serious complications of HIV-1 disease. Prevention has been compromised by the limited magnitude and quality of Ab responses to T cell-independent type 2 pneumococcal capsular polysaccharides (PPS). The pneumococcal polysaccharide-protein conjugate vaccine-13 (PCV-13) contains PPS conjugated to the T cell-dependent protein (diphtheria toxoid [DT] [CRM197]). We investigated the differential response to PPS and DT by human Ab-secreting B cells (ASC) after immunization with PCV-13 in newly diagnosed healthy HIV+ and control adults. The numbers of PPS-specific IgG ASC increased significantly and similarly in HIV+ and controls. However, DT-specific IgG ASC increased in controls but not HIV+ subjects. To determine the cellular basis of these disparate responses to DT and PPS, we characterized the frequency and activation of T follicular helper (Tfh) cells, the predominant T cell subset providing B cell help. Expression of inducible T cell costimulator (ICOS), which sustains Tfh function and phenotype, increased significantly among controls, when compared with the HIV+ group. Increases in ICOS+ Tfh correlated with changes in T-dependent, DT-specific IgG ASC in controls but not in HIV+ In contrast, ICOS expression did not correlate with T cell-independent type 2 PPS-specific ASC in either group. Of note, upon optimized ex vivo stimulation, CD4 T cells from HIV+ subjects differentiated into Tfh cells and formed synapses with Raji B cells at frequencies similar to that of controls. In summary, PCV-13-induced increase in ICOS expression on Tfh was associated with responses to DT, which was compromised in recently diagnosed healthy HIV+ adults and can be restored ex vivo by providing effective Tfh-differentiating signals.
Collapse
Affiliation(s)
- Vibha Jha
- Mucosal and Vaccine Research Program Colorado, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO.,Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO
| | - Lindsay K Nicholson
- Mucosal and Vaccine Research Program Colorado, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO.,Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO
| | | | - Jeremy T Rahkola
- Mucosal and Vaccine Research Program Colorado, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO.,Barbara Davis Center, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Harsh Pratap
- Mucosal and Vaccine Research Program Colorado, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO.,Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO
| | | | - Mandy Borgeson
- Mucosal and Vaccine Research Program Colorado, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO.,Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO
| | - Jordan Jacobelli
- Barbara Davis Center, University of Colorado Anschutz Medical Campus, Aurora, CO.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Edward N Janoff
- Mucosal and Vaccine Research Program Colorado, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO .,Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
48
|
Van de Wijer L, van der Heijden WA, Ter Horst R, Jaeger M, Trypsteen W, Rutsaert S, van Cranenbroek B, van Rijssen E, Joosten I, Joosten L, Vandekerckhove L, Schoofs T, van Lunzen J, Netea MG, Koenen HJPM, van der Ven AJAM, de Mast Q. The Architecture of Circulating Immune Cells Is Dysregulated in People Living With HIV on Long Term Antiretroviral Treatment and Relates With Markers of the HIV-1 Reservoir, Cytomegalovirus, and Microbial Translocation. Front Immunol 2021; 12:661990. [PMID: 33953724 PMCID: PMC8091964 DOI: 10.3389/fimmu.2021.661990] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/29/2021] [Indexed: 12/26/2022] Open
Abstract
Long-term changes in the immune system of successfully treated people living with HIV (PLHIV) remain incompletely understood. In this study, we assessed 108 white blood cell (WBC) populations in a cohort of 211 PLHIV on stable antiretroviral therapy and in 56 HIV-uninfected controls using flow cytometry. We show that marked differences exist in T cell maturation and differentiation between PLHIV and HIV-uninfected controls: PLHIV had reduced percentages of CD4+ T cells and naïve T cells and increased percentages of CD8+ T cells, effector T cells, and T helper 17 (Th17) cells, together with increased Th17/regulatory T cell (Treg) ratios. PLHIV also exhibited altered B cell maturation with reduced percentages of memory B cells and increased numbers of plasmablasts. Determinants of the T and B cell composition in PLHIV included host factors (age, sex, and smoking), markers of the HIV reservoir, and CMV serostatus. Moreover, higher circulating Th17 percentages were associated with higher plasma concentrations of interleukin (IL) 6, soluble CD14, the gut homing chemokine CCL20, and intestinal fatty acid binding protein (IFABP). The changes in circulating lymphocytes translated into functional changes with reduced interferon (IFN)- γ responses of peripheral blood mononuclear cells to stimulation with Candida albicans and Mycobacterium tuberculosis. In conclusion, this comprehensive analysis confirms the importance of persistent abnormalities in the number and function of circulating immune cells in PLHIV on stable treatment.
Collapse
Affiliation(s)
- Lisa Van de Wijer
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Wouter A van der Heijden
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Rob Ter Horst
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Martin Jaeger
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Wim Trypsteen
- HIV Cure Research Center, Department of Internal Medicine and Paediatrics, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Sofie Rutsaert
- HIV Cure Research Center, Department of Internal Medicine and Paediatrics, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Bram van Cranenbroek
- Laboratory for Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Esther van Rijssen
- Laboratory for Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Irma Joosten
- Laboratory for Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Leo Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine and Paediatrics, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Ghent, Belgium
| | | | | | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands.,Department for Genomics & Immunoregulation, Life and Medical Sciences 12 Institute (LIMES), University of Bonn, Bonn, Germany
| | - Hans J P M Koenen
- Laboratory for Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - André J A M van der Ven
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Quirijn de Mast
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
49
|
Spoerl S, Kremer AN, Aigner M, Eisenhauer N, Koch P, Meretuk L, Löffler P, Tenbusch M, Maier C, Überla K, Heinzerling L, Frey B, Lutzny-Geier G, Winkler TH, Krönke G, Vetter M, Bruns H, Neurath MF, Mackensen A, Kremer AE, Völkl S. Upregulation of CCR4 in activated CD8 + T cells indicates enhanced lung homing in patients with severe acute SARS-CoV-2 infection. Eur J Immunol 2021; 51:1436-1448. [PMID: 33784417 PMCID: PMC8250120 DOI: 10.1002/eji.202049135] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/21/2021] [Accepted: 03/23/2021] [Indexed: 12/15/2022]
Abstract
COVID‐19 is a life‐threatening disease leading to bilateral pneumonia and respiratory failure. The underlying reasons why a smaller percentage of patients present with severe pulmonary symptoms whereas the majority is only mildly affected are to date not well understood. Comparing the immunological phenotype in healthy donors and patients with mild versus severe COVID‐19 shows that in COVID‐19 patients, NK‐/B‐cell activation and proliferation are enhanced independent of severity. As an important precondition for effective antibody responses, T‐follicular helper cells and antibody secreting cells are increased both in patients with mild and severe SARS‐CoV‐2 infection. Beyond this, T cells in COVID‐19 patients exhibit a stronger activation profile with differentiation toward effector cell phenotypes. Importantly, when looking at the rates of pulmonary complications in COVID‐19 patients, the chemokine receptor CCR4 is higher expressed by both CD4 and CD8 T cells of patients with severe COVID‐19. This raises the hypothesis that CCR4 upregulation on T cells in the pathogenesis of COVID‐19 promotes stronger T‐cell attraction to the lungs leading to increased immune activation with presumably higher pulmonary toxicity. Our study contributes significantly to the understanding of the immunological changes during COVID‐19, as new therapeutic agents, preferentially targeting the immune system, are highly warranted.
Collapse
Affiliation(s)
- Silvia Spoerl
- Department of Internal Medicine 5, Hematology, and Oncology, University Hospital Erlangen and Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Anita N Kremer
- Department of Internal Medicine 5, Hematology, and Oncology, University Hospital Erlangen and Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Aigner
- Department of Internal Medicine 5, Hematology, and Oncology, University Hospital Erlangen and Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Nina Eisenhauer
- Department of Internal Medicine 5, Hematology, and Oncology, University Hospital Erlangen and Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Pauline Koch
- Department of Internal Medicine 5, Hematology, and Oncology, University Hospital Erlangen and Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Lina Meretuk
- Department of Internal Medicine 5, Hematology, and Oncology, University Hospital Erlangen and Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Patrick Löffler
- Department of Internal Medicine 5, Hematology, and Oncology, University Hospital Erlangen and Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Tenbusch
- Institute of Virology, University Hospital Erlangen and Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Clara Maier
- Institute of Virology, University Hospital Erlangen and Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Klaus Überla
- Institute of Virology, University Hospital Erlangen and Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Lucie Heinzerling
- Department of Dermatology, University Hospital Erlangen and Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Benjamin Frey
- Department of Radiation Oncology, University Hospital Erlangen and Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Gloria Lutzny-Geier
- Department of Internal Medicine 5, Hematology, and Oncology, University Hospital Erlangen and Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas H Winkler
- Division of Genetics, Department of Biology, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Gerhard Krönke
- Department of Internal Medicine 3, Rheumatology, and Immunology, University Hospital Erlangen and Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Marcel Vetter
- Department of Internal Medicine 1, Gastroenterology, Pneumology, and Endocrinology, University Hospital Erlangen and Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Heiko Bruns
- Department of Internal Medicine 5, Hematology, and Oncology, University Hospital Erlangen and Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Markus F Neurath
- Department of Internal Medicine 1, Gastroenterology, Pneumology, and Endocrinology, University Hospital Erlangen and Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas Mackensen
- Department of Internal Medicine 5, Hematology, and Oncology, University Hospital Erlangen and Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas E Kremer
- Department of Internal Medicine 1, Gastroenterology, Pneumology, and Endocrinology, University Hospital Erlangen and Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Simon Völkl
- Department of Internal Medicine 5, Hematology, and Oncology, University Hospital Erlangen and Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
50
|
Production of HIV-1 Env-specific antibodies mediating innate immune functions depends on cognate IL-21- secreting CD4+ T cells. J Virol 2021; 95:JVI.02097-20. [PMID: 33504598 PMCID: PMC8103692 DOI: 10.1128/jvi.02097-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Antibodies with a functional Fc region were previously associated with protection from HIV-1 acquisition and spontaneous suppression of viral replication. Unlike broadly neutralizing antibodies, they are not restricted to neutralizing epitopes and do not require unconventional structural traits to exert their antiviral activity. They, therefore, develop earlier after infection and can be detected in the majority of cases. The conditions under which these antibodies are generated, however, remain largely unknown. Here we demonstrate that the generation of HIV-1 Env-specific antibodies facilitating Fc-dependent innate immune responses, including neutrophil phagocytosis (ADNP), complement deposition (ADCD), and NK cell activation, likely depends on help provided by CD4+ T and peripheral T follicular helper (pTfh) cells secreting IL-21. Other proteins, including CD40L, IFNγ, and IL-4/13, involved in crosstalk between B and T cells were linked to the production of antibodies with functional Fc region but only when co-expressed with IL-21. As a potential source of these antibodies, we identified a subset of Env-specific memory B cells known to be expanded in chronic HIV-1 infection. The frequency and level of Blimp-1 expression in Env-specific tissue-like memory B cells (TLM) correlated with the functional CD4+ T cell subsets associated with robust antibody-dependent innate responses. Thus, our data suggest a mechanism responsible for the generation of antibodies with functional Fc region in chronically HIV-1 infected individuals that is based on CD4+ T cell-induced activation of memory B cells.Importance To develop a vaccine or immunotherapy that would cure the HIV-1 infection it is important to identify helper T cells able to mount an efficient antibody response. Here, we demonstrate that the generation of HIV-1 Env-specific antibodies facilitating antibody-dependent innate immune responses likely depends on Env-specific IL-21-secreting CD4+ T and peripheral T follicular helper cells.
Collapse
|