1
|
Yu J, Li Q, Zhang C, Wang Q, Luo S, Wang X, Hu R, Cheng Q. Targeted LNPs deliver IL-15 superagonists mRNA for precision cancer therapy. Biomaterials 2025; 317:123047. [PMID: 39742840 DOI: 10.1016/j.biomaterials.2024.123047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/10/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025]
Abstract
Interleukin-15 (IL-15) emerges as a promising immunotherapeutic candidate, but the therapeutic utility remains concern due to the unexpected systematic stress. Here, we propose that the mRNA lipid nanoparticle (mRNA-LNP) system can balance the issue through targeted delivery to increase IL-15 concentration in the tumor area and reduce leakage into the circulation. In the established Structure-driven TARgeting (STAR) platform, the LNPLocal and LNPLung can effectively and selectively deliver optimized IL-15 superagonists mRNAs to local and lungs, respectively, in relevant tumor models. As a result, such superagonists exhibited well-balanced efficacy and side-effects, demonstrating the better anti-tumor activity, less systematic exposure, and less cytokine related risks. We finally verified the selective delivery and well tolerability of LNPLung in non-human primates (NHPs), confirming the potential for clinical application. This finding provides new potentials for cancers treatment on lung cancers or lung metastasis cancers.
Collapse
Affiliation(s)
- Juntao Yu
- Starna Therapeutics Co., Ltd., Suzhou, 215123, China
| | - Qian Li
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - Chaoting Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Biochemistry and Molecular Biology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Qiu Wang
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - Shenggen Luo
- Starna Therapeutics Co., Ltd., Suzhou, 215123, China
| | - Xiaona Wang
- Starna Therapeutics Co., Ltd., Suzhou, 215123, China
| | - Rongkuan Hu
- Starna Therapeutics Co., Ltd., Suzhou, 215123, China.
| | - Qiang Cheng
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China; Beijing Advanced Center of RNA Biology (BEACON), Peking University, Beijing, 100871, China.
| |
Collapse
|
2
|
Ageitos L, Boaro A, Cesaro A, Torres MDT, Broset E, de la Fuente-Nunez C. Frog-derived synthetic peptides display anti-infective activity against Gram-negative pathogens. Trends Biotechnol 2025:S0167-7799(25)00044-7. [PMID: 40140310 DOI: 10.1016/j.tibtech.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 03/28/2025]
Abstract
Novel antibiotics are urgently needed since bacteria are becoming increasingly resistant to existing antimicrobial drugs. Furthermore, available antibiotics are broad spectrum, often causing off-target effects on host cells and the beneficial microbiome. To overcome these limitations, we used structure-guided design to generate synthetic peptides derived from Andersonin-D1, an antimicrobial peptide (AMP) produced by the odorous frog Odorrana andersonii. We found that both hydrophobicity and net charge were critical for its bioactivity, enabling the design of novel, optimized synthetic peptides. These peptides selectively targeted Gram-negative pathogens in single cultures and complex microbial consortia, showed no off-target effects on human cells or beneficial gut microbes, and did not select for bacterial resistance. Notably, they also exhibited in vivo activity in two preclinical murine models. Overall, we present synthetic peptides that selectively target pathogenic infections and offer promising preclinical antibiotic candidates.
Collapse
Affiliation(s)
- Lucía Ageitos
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA; Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Andreia Boaro
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA; Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Angela Cesaro
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA; Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Marcelo D T Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA; Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Esther Broset
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA; Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA; Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Kinoshita Y, Kobayashi E, Matsui K, Inage Y, Morimoto K, Yamamoto S, Iwai S, Kitada K, Iwasawa K, Saito Y, Fujimoto T, Matsumoto K, Nagamori S, Nishiyama A, Kume H, Takebe T, Yokoo T, Yamanaka S. Life-supporting functional kidney replacement by integration of embryonic metanephros-bladder composite tissue transplants. Kidney Int 2025:S0085-2538(25)00251-0. [PMID: 40122339 DOI: 10.1016/j.kint.2025.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/06/2025] [Accepted: 02/17/2025] [Indexed: 03/25/2025]
Abstract
Novel transplantable organs need to be developed to address the global organ shortage. Transplantation of embryonic kidney tissue, or metanephros, facilitates glomerular and tubular maturation and offers partial organ functional support. However, adult environments do not permit exponential growth in size, limiting the life-supporting functionality and organ replacement effect of this approach. Here, we developed a novel strategy that combines the fusion of embryonic bladders with multiple anastomoses to the host ureter, enabling a significant increase in metanephros transplantation and urinary tract integration. By surgically anastomosing divided bladder segments, we reconstructed the excretory pathways by merging four metanephroi into each bladder and integrating them with the host ureter. Following the transplantation and integration of 20 metanephroi at the para-aortic region, anephric rats survived for over a month and generated approximately 50,000 nephrons in vivo. Ultrastructural and single-cell- transcriptomic analyses revealed that the maturity of the transplanted metanephroi was comparable to that of adult kidneys, although their small size likely contributed to their decreased urine concentration ability. Postoperative support helped normalize physiological homeostasis, including solute clearance, acid-base balance, electrolyte levels, and kidney hormone levels, within vital ranges. Our findings underscore the functional maturation capacity and dose-dependent therapeutic efficacy of embryonic kidney tissue, suggesting its potential as a transplantable organ system.
Collapse
Affiliation(s)
- Yoshitaka Kinoshita
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan; Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Eiji Kobayashi
- Department of Kidney Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan.
| | - Kenji Matsui
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yuka Inage
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan; Department of Pediatrics, The Jikei University School of Medicine, Tokyo, Japan
| | - Keita Morimoto
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Shutaro Yamamoto
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan; Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
| | - Satomi Iwai
- Laboratory of Small Animal Surgery 2, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Kento Kitada
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Kentaro Iwasawa
- Division of Gastroenterology, Hepatology and Nutrition, Developmental Biology and Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Ohio, USA
| | - Yatsumu Saito
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Toshinari Fujimoto
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kei Matsumoto
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Shushi Nagamori
- Center for SI Medical Research, The Jikei University School of Medicine, Tokyo, Japan
| | - Akira Nishiyama
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Haruki Kume
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takanori Takebe
- Division of Gastroenterology, Hepatology and Nutrition, Developmental Biology and Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Ohio, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Ohio, USA; Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), and Department of Genome Biology, Osaka University, Osaka, Japan; Institute of Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takashi Yokoo
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Shuichiro Yamanaka
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan.
| |
Collapse
|
4
|
Hernández-Aceves JA, Cervantes-Torres J, Cruz-Gregorio A, Aranda-Rivera AK, Moctezuma D, Peña-Agudelo JA, Patiño-Chávez OJ, Hernández M, Sifontes-Rodríguez S, Rodriguez T, Pedraza-Chaverri J, Sciutto E, Fragoso G. Antitumoral effectiveness and safety of intravenous versus subcutaneous administration of immunomodulatory peptide GK-1 in a murine breast cancer model. Vaccine 2025; 50:126814. [PMID: 39893770 DOI: 10.1016/j.vaccine.2025.126814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/23/2024] [Accepted: 01/25/2025] [Indexed: 02/04/2025]
Abstract
INTRODUCTION GK-1 is a safe and effective molecule with high antimetastatic activity against murine breast and skin cancer. GK-1 treatment enhances cytotoxic response of CD8+ lymphocytes against the tumor and modifies the oxidative stress in the tumor. This study was designed to compare the antitumor efficacy of GK-1 by subcutaneous (SC) versus intravenous (IV) route of administration in the 4T1 mouse mammary carcinoma model and to extend its innocuity in heart and kidney, key tissues for observing damage induced by anticancer drugs and immunotherapy. MATERIAL AND METHODS BALB/c female mice were injected orthotopically with 1000 4T1 cells. When palpable primary tumors of about 1 mm3 were detected, GK-1 (5 mg/kg) was administered IV or SC weekly for 21 days. Tumor growth and mouse weight were monitored weekly. The primary tumor weight and volume, the number of lung metastases, and programmed cell death protein 1 (PD-1) expression were recorded after 28 days of starting treatment. Kidney, heart, spleen, serum, and blood samples from naïve mice were obtained to evaluate the safety of GK-1 administration by measuring the degree of damage to these tissues with specific cytotoxic markers. RESULTS Subcutaneous or intravenous administration of GK-1 significantly increased the lifespan of mice and significantly reduced the primary tumor weight and volume and the number of lungs macrometastases. GK-1 reduced the expression of PD-1 in tumor-infiltrating lymphocytes in mice regardless of the route of immunization used, which is especially encouraging. No evidence of damage to kidney or heart tissues was detected in the tumor-free mice. CONCLUSIONS This study supports that subcutaneous GK-1 administered, has an efficacy non-inferior to intravenous administration, well-tolerated with a similar safety profile and therefore offers a less invasive valid treatment alternative.
Collapse
Affiliation(s)
- Juan A Hernández-Aceves
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jacquelynne Cervantes-Torres
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alfredo Cruz-Gregorio
- Departamento de Fisiología, Instituto Nacional de Cardiología Ignacio Chavéz, Mexico City, Mexico
| | - Ana Karina Aranda-Rivera
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Diego Moctezuma
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jorge A Peña-Agudelo
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Osiris J Patiño-Chávez
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Marisela Hernández
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sergio Sifontes-Rodríguez
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Tonathiu Rodriguez
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - José Pedraza-Chaverri
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Edda Sciutto
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| | - Gladis Fragoso
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
5
|
Wigger N, Krüger J, Vankriekelsvenne E, Kipp M. Titration of cuprizone induces reliable demyelination. Brain Res 2025; 1850:149410. [PMID: 39716594 DOI: 10.1016/j.brainres.2024.149410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/28/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
Multiple Sclerosis (MS) is a chronic inflammatory disease of the central nervous system. Cuprizone-induced demyelination, wherein mice are fed a diet containing the copper chelator cuprizone, is a well-established model that replicates key features of demyelination and remyelination. However, the dose-response relationship of cuprizone is complex; high concentrations can induce toxicity, whereas low doses may fail to produce reliable demyelination across subjects. This study aimed to investigate whether titration of the cuprizone concentration results in reliable acute demyelination and weight stabilization. To this end, experimental animals were intoxicated with cuprizone over a period of 5 weeks to induce acute demyelination. In one group, during the first 10 days, the initial cuprizone dose was gradually reduced until the experimental animals showed stable weights. Another group was subjected to a continuous cuprizone intoxication protocol without adaptions. Histological analyses were performed to quantify the extent of demyelination and glia activation. Animals of both groups experienced significant weight loss. Histological analyses revealed, despite adopting the cuprizone concentration, substantial demyelination of various brain regions, including the corpus callosum. This pattern was consistent across multiple staining methods, including anti-proteolipid protein (PLP), anti-myelin basic protein (MBP), and luxol-fast-blue (LFB) stains. Additionally, grey matter regions, specifically the neocortex, demonstrated significant demyelination. Accompanying these changes, there was notable activation and accumulation of microglia and astrocytes in white and grey matter regions. These histopathological changes were comparably pronounced in both cuprizone-treated groups. In summary, we demonstrate that titration of cuprizone is a reliable approach to induce acute demyelination in the mouse forebrain. This work represents a significant step toward refining animal models of MS, contributing to the broader effort of understanding and treating this complex disease.
Collapse
Affiliation(s)
- Nicole Wigger
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, Rostock 18057, Germany
| | - Johann Krüger
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, Rostock 18057, Germany
| | - Elise Vankriekelsvenne
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, Rostock 18057, Germany
| | - Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, Rostock 18057, Germany.
| |
Collapse
|
6
|
Castillo-Mariqueo L, Alveal-Mellado D, Giménez-Llort L. Phenotypical, Behavioral, and Systemic Hallmarks in End-Point Mouse Scenarios. Animals (Basel) 2025; 15:521. [PMID: 40003003 PMCID: PMC11851987 DOI: 10.3390/ani15040521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/31/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
The state of frailty is a clinical-biological syndrome that affects the older population with a higher risk of functional dependence. Animal models can provide a tool to study this complex scenario. In the present work, we analyzed the physical and behavioral hallmarks of end-point status in 16-month-old mice (C57BL/6J) according to animal welfare regulations compared to age-matched counterparts with normal aging. A group of 6-month-old mice was added to control for age bias. First, we identified 'structural kyphosis' (visible and unmodifiable deformation in locomotion) correlated with piloerection as the hallmarks of the physical frailty phenotype compared to the 'postural kyphosis' (adjustment to counteract increased visceral volume but attenuated during locomotion) of old mice with normal aging. Alopecia (barbering) was presented in both old groups. Normal levels of exploratory activity in the corner test for neophobia and triceps surae muscle weight but an increased latency of rearing indicated the poorest emotional phenotype, with a possible contribution of structural kyphosis. The presence of hepatomegaly and splenomegaly counteracted the significant WAT loss commonly associated with end-of-life traits, which should have a normal body weight but preserved muscle mass.
Collapse
Affiliation(s)
- Lidia Castillo-Mariqueo
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain; (L.C.-M.); (D.A.-M.)
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
- Departamento de Procesos Terapeúticos, Facultad de Ciencias de la Salud, Universidad Católica de Temuco, Temuco 4780000, Chile
| | - Daniel Alveal-Mellado
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain; (L.C.-M.); (D.A.-M.)
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Lydia Giménez-Llort
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain; (L.C.-M.); (D.A.-M.)
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| |
Collapse
|
7
|
de la Fuente-Muñoz M, Román-Carmena M, Amor S, González-Hedström D, Martinez-Rios V, Martorell P, Inarejos-García AM, García Bou R, Guilera-Bermell S, García-Villalón ÁL, Granado M. Supplementation with the Postbiotic BPL1™-HT (Heat-Inactivated Bifidobacterium animalis subsp. Lactis) Attenuates the Cardiovascular Alterations Induced by Angiotensin II Infusion in Mice. Antioxidants (Basel) 2025; 14:193. [PMID: 40002381 PMCID: PMC11851978 DOI: 10.3390/antiox14020193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Hypertension is associated with alterations in the composition and diversity of the intestinal microbiota. Indeed, supplementation with probiotics and prebiotics has shown promising results in modulating the gut microbiota and improving cardiovascular health. However, there are no studies regarding the possible beneficial effects of postbiotics on cardiovascular function and particularly on hypertension-induced cardiovascular alterations. Thus, the aim of this study was to analyze the effect of supplementation with the heat-treated Bifidobacterium animalis subsp. lactis CECT 8145 strain (BPL1™ HT), a postbiotic developed by the company ADM-Biopolis, on cardiovascular alterations induced by angiotensin II (AngII) infusion in mice. For this purpose, three groups of C57BL/6J male mice were used: (i) mice infused with saline (control); (ii) mice infused with AngII for 4 weeks (AngII); and (iii) mice supplemented with BPL1™ HT in the drinking water (1010 cells/animal/day) for 8 weeks and infused with AngII for the last 4 weeks (AngII + BPL1™ HT). AngII infusion was associated with heart hypertrophy, hypertension, endothelial dysfunction, and overexpression of proinflammatory cytokines in aortic tissue. BPL1™ HT supplementation reduced systolic blood pressure and attenuated AngII-induced endothelial dysfunction in aortic segments. Moreover, mice supplemented with BPL1™ HT showed a decreased gene expression of the proinflammatory cytokine interleukin 6 (Il-6) and the prooxidant enzymes NADPH oxidases 1 (Nox-1) and 4 (Nox-4), as well as an overexpression of AngII receptor 2 (At2r) and interleukin 10 (Il-10) in arterial tissue. In the heart, BPL1™ HT supplementation increased myocardial contractility and prevented ischemia-reperfusion-induced cardiomyocyte apoptosis. In conclusion, supplementation with the postbiotic BPL1™ HT prevents endothelial dysfunction, lowers blood pressure, and has cardioprotective effects in an experimental model of hypertension induced by AngII infusion in mice.
Collapse
Affiliation(s)
- Mario de la Fuente-Muñoz
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (M.d.l.F.-M.); (M.R.-C.); (S.A.); (Á.L.G.-V.)
| | - Marta Román-Carmena
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (M.d.l.F.-M.); (M.R.-C.); (S.A.); (Á.L.G.-V.)
| | - Sara Amor
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (M.d.l.F.-M.); (M.R.-C.); (S.A.); (Á.L.G.-V.)
| | - Daniel González-Hedström
- R&D Department of Functional Extracts, ADM Valencia, 46740 Carcaixent, Spain; (D.G.-H.); (V.M.-R.); (A.M.I.-G.); (R.G.B.); (S.G.-B.)
| | - Verónica Martinez-Rios
- R&D Department of Functional Extracts, ADM Valencia, 46740 Carcaixent, Spain; (D.G.-H.); (V.M.-R.); (A.M.I.-G.); (R.G.B.); (S.G.-B.)
| | - Patricia Martorell
- Nutrition Archer Daniels Midland (ADM) Health & Wellness, Biopolis S. L. Parc Cientific, Universitat de València, 46980 Paterna, Spain;
| | - Antonio M. Inarejos-García
- R&D Department of Functional Extracts, ADM Valencia, 46740 Carcaixent, Spain; (D.G.-H.); (V.M.-R.); (A.M.I.-G.); (R.G.B.); (S.G.-B.)
| | - Reme García Bou
- R&D Department of Functional Extracts, ADM Valencia, 46740 Carcaixent, Spain; (D.G.-H.); (V.M.-R.); (A.M.I.-G.); (R.G.B.); (S.G.-B.)
| | - Sonia Guilera-Bermell
- R&D Department of Functional Extracts, ADM Valencia, 46740 Carcaixent, Spain; (D.G.-H.); (V.M.-R.); (A.M.I.-G.); (R.G.B.); (S.G.-B.)
| | - Ángel L. García-Villalón
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (M.d.l.F.-M.); (M.R.-C.); (S.A.); (Á.L.G.-V.)
| | - Miriam Granado
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (M.d.l.F.-M.); (M.R.-C.); (S.A.); (Á.L.G.-V.)
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
8
|
Zuo L, Liu Q, Zhang K, Zhao L, Lin S, Dai Y, Sun Y, Li Y, Zhang P, Shen H, He D, Ma S, Long X, Chen Y, Luo Y, Wong G. Self-amplifying mRNA vaccines protect elderly BALB/c mice against a lethal respiratory syncytial virus infection. Mol Ther 2025; 33:499-513. [PMID: 39673128 PMCID: PMC11852396 DOI: 10.1016/j.ymthe.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 11/05/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024] Open
Abstract
Respiratory syncytial virus (RSV) represents a significant threat, being a primary cause of critical lower respiratory tract infections and fatalities among infants and the elderly worldwide, and poses a challenge to global public health. This urgent public health challenge necessitates the swift development of safe and effective vaccines capable of eliciting robust immune responses at low doses. Addressing this need, our study investigated five self-amplifying mRNA (sa-mRNA) candidate vaccines that encode the various pre-fusion conformations of the RSV fusion protein. When administered via low-dose intramuscular injection to 8-month-old elderly mice, these vaccines triggered potent humoral reactions and T helper type 1-biased cellular immunity. A prime-boost strategy followed by challenge with a lethal, mouse-adapted RSV strain showed that three of these sa-mRNA candidates achieved greater than 80% survival rates. An immune correlates of protection analysis contrasting immunized survivors with non-survivors suggest that the titers of IgG and neutralizing antibody are associated with vaccine-mediated protection from RSV infection. Our results highlight the usefulness of sa-mRNA vaccines to play a crucial role in forging an effective defense against RSV, addressing a critical need in protecting vulnerable populations against this virus.
Collapse
Affiliation(s)
- Lulu Zuo
- Viral Hemorrhagic Fevers Research Unit, Institut Pasteur of Shanghai (now Shanghai Institute of Immunity and Infection), Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qixing Liu
- Viral Hemorrhagic Fevers Research Unit, Institut Pasteur of Shanghai (now Shanghai Institute of Immunity and Infection), Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Nucleic Acid Research, Hongene Biotech, Shanghai 201203, China
| | - Ke Zhang
- Viral Hemorrhagic Fevers Research Unit, Institut Pasteur of Shanghai (now Shanghai Institute of Immunity and Infection), Chinese Academy of Sciences, Shanghai 201203, China; Guizhou Key Laboratory of Microbio and Infectious Disease Prevention & Control/Institute of Virology, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Lu Zhao
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 201203, China
| | - Siyu Lin
- Guizhou Key Laboratory of Microbio and Infectious Disease Prevention & Control/Institute of Virology, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - You Dai
- Guizhou Key Laboratory of Microbio and Infectious Disease Prevention & Control/Institute of Virology, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Yun Sun
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yingwen Li
- Viral Hemorrhagic Fevers Research Unit, Institut Pasteur of Shanghai (now Shanghai Institute of Immunity and Infection), Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pingping Zhang
- Guizhou Key Laboratory of Microbio and Infectious Disease Prevention & Control/Institute of Virology, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Huyan Shen
- Guizhou Key Laboratory of Microbio and Infectious Disease Prevention & Control/Institute of Virology, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Dongmei He
- Institute of Pathogenic Microorganisms, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China; Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangzhou 511430, China
| | - Shuang Ma
- Department of Clinical Laboratory, Huadu Maternal and Child Health Care Hospital, Guangzhou 511430, China
| | - Xianhua Long
- Guangzhou DAAN Clinical Laboratory Center, Guangzhou 510665, China
| | - Yanhua Chen
- Viral Hemorrhagic Fevers Research Unit, Institut Pasteur of Shanghai (now Shanghai Institute of Immunity and Infection), Chinese Academy of Sciences, Shanghai 201203, China
| | - Yusi Luo
- Department of Emergency ICU, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China.
| | - Gary Wong
- Viral Hemorrhagic Fevers Research Unit, Institut Pasteur of Shanghai (now Shanghai Institute of Immunity and Infection), Chinese Academy of Sciences, Shanghai 201203, China; Virology Laboratory, Institut Pasteur du Laos, Vientiane 01030, Laos.
| |
Collapse
|
9
|
Su HW, Qiu CW. A comparative review of murine models of repeated low-dose cisplatin-induced chronic kidney disease. Lab Anim (NY) 2025; 54:42-49. [PMID: 39885282 DOI: 10.1038/s41684-024-01504-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 12/13/2024] [Indexed: 02/01/2025]
Abstract
This Review evaluates various mouse and rat models of chronic kidney disease (CKD) that result from repeated low-dose cisplatin (RLDC) treatment while also discussing ethical considerations on the topic. Cisplatin can cause nephrotoxicity, and high doses of cisplatin can cause acute kidney injury. The RLDC regimen has been used in the treatment of solid organ cancers and has shown efficacy in reducing the occurrence of acute kidney injury in patients. However, prolonged treatments may lead to CKD. Mouse and rat models that effectively replicate the pathological features of CKD are invaluable for studying the mechanisms of the disease and exploring potential therapeutic interventions. Whereas administration of a single higher dose in some RLDC models may lead to higher mortality rates, a single lower dose may not replicate the fibrotic characteristics of CKD. Here we gathered information on mouse and rat models of RLDC-induced CKD and analyzed the impact of different variables, such as animal age, cisplatin dosage and administration frequency, on success rates, mortality rate and weight loss. Among the different models, weekly intraperitoneal administration of 8 mg/kg or 9 mg/kg of cisplatin for a total of 4 weeks in 12-week-old male C57BL/6 mice showed the most similar clinical characteristics of CKD while adhering to ethical requirements. In this Review, we suggest the best timings for both drug intervention and observation based on the biological traits of the model. Furthermore, given the limited research available on RLDC-induced CKD rat models, it is urgent to focus on developing RLDC methods that can induce detailed characteristics of CKD in rats.
Collapse
Affiliation(s)
- Hong-Wei Su
- Department of Urology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Cai-Wei Qiu
- Research Center of Combine Traditional Chinese and Western Medicine, Prophylaxis and Treatment of Organ Fibrosis by Integrated Medicine of Luzhou Key Laboratory, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China.
| |
Collapse
|
10
|
Kodama H, Takaki H, Hirata Y, Ueshima E, Kimura Y, Wada R, Osuga K, Yamakado K. Unilateral Bleomycin-induced Interstitial Pneumonitis Mouse Model With Both a Healthy and a Diseased Lung. In Vivo 2025; 39:251-256. [PMID: 39740912 PMCID: PMC11705107 DOI: 10.21873/invivo.13823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/14/2024] [Accepted: 11/01/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND/AIM A standard mouse model of pulmonary fibrosis has been created by intratracheal or intraperitoneal administration of bleomycin. However, a difficulty presented by this traditional method is its high mortality rate of more than 50% after bleomycin administration. In this study, we aimed to establish a unilateral lung disease model and to assess its feasibility and usefulness. MATERIALS AND METHODS After 6-week-old C57BL/6 mice were anesthetized, a 1.7Fr microcatheter was advanced into the trachea using an otoscope. Then, 1.0 mg/kg of bleomycin was injected into bilateral lung at the trachea (n=13) or unilateral lung (n=14) after advancing the microcatheter to the left main bronchus under fluoroscopy. Body weight change and survival of bilateral and unilateral lung disease group mice at day 28 were compared using Mann-Whitney and log-rank tests. Lungs were extracted and evaluated using Masson trichrome staining. RESULTS Body weights decreased 75.7%±14.0% in the bilateral lung disease group, but were greater, 94.1%±11.4%, in the unilateral lung disease group (p=0.03). Overall survival rates at day 28 were 30.8% and 85.7% in the bilateral and unilateral lung disease groups, respectively. Survival was significantly better in the unilateral lung disease model (p=0.01). Histological evaluation confirmed collagen deposition only in the bleomycin injected lung in the unilateral lung disease model. CONCLUSION Establishing both a healthy and a diseased lung in the same individual model was feasible, achieving lessened body weight loss and more favorable survival. This technique allows for a more efficacious research design, where both the efficacy and adverse effects of a pharmaceutical agent can be evaluated in a single animal.
Collapse
Affiliation(s)
- Hiroshi Kodama
- Department of Radiology, Hyogo Medical University, Hyogo, Japan;
| | - Haruyuki Takaki
- Department of Radiology, Hyogo Medical University, Hyogo, Japan
| | - Yutaka Hirata
- Department of Physiology, Hyogo Medical University, Hyogo, Japan
| | - Eisuke Ueshima
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yasushi Kimura
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Reona Wada
- Department of Radiology, Hyogo Medical University, Hyogo, Japan
| | - Keigo Osuga
- Department of Diagnostic Radiology, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | | |
Collapse
|
11
|
Türkez H, Özdemir Tozlu Ö, Yıldız E, Saraçoğlu M, Baba C, Çınar B, Yıldırım S, Kılıçlıoğlu M, Topkara KÇ, Çadırcı K. Assessment of Subacute Toxicity of Ulexite in Rats: Behavioral, Hematological, and Biochemical Insights. Biol Trace Elem Res 2024:10.1007/s12011-024-04489-7. [PMID: 39666170 DOI: 10.1007/s12011-024-04489-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/09/2024] [Indexed: 12/13/2024]
Abstract
Ulexite (UX), a naturally occurring borate mineral, has gained interest for its diverse industrial applications, yet its toxicological profile remains inadequately characterized. This study aimed to evaluate the subacute toxicity of UX in rats, focusing on behavioral, hematological, and biochemical parameters. Rats were administered UX via gavage at doses of 10, 30, and 300 mg/kg for 7 days. No mortality or significant signs of toxicity were observed, although body weight measurements indicated a notable reduction in the UX-treated groups compared to controls. Behavioral assessments demonstrated increased exploratory activity in the 10 and 300 mg/kg UX treated groups, suggesting low anxiety levels. Likewise, hematological analysis revealed that 30 and 300 mg/kg UX led a significant (P < 0.001) increase in hematocrit and a decrease in mean corpuscular hemoglobin concentration (P < 0.001), indicating potential changes in erythropoiesis. Additionally, serum biochemistry showed elevated aspartate aminotransferase (P < 0.05), lactate dehydrogenase (P < 0.001), and uric acid levels (P < 0.01), suggesting liver stress. Histopathological examinations indicated dose-dependent alterations, with mild hepatocellular degeneration and neuronal changes observed at the highest dose. Also, MN levels in the blood of rats exposed to 10 and 30 mg/kg UX showed no significant differences. These results suggest that UX is relatively safe at lower doses, though higher exposures may pose health risks. Further research is warranted to elucidate the mechanisms underlying UX-induced effects and to evaluate its safety for therapeutic and occupational applications.
Collapse
Affiliation(s)
- Hasan Türkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Özlem Özdemir Tozlu
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey.
| | - Edanur Yıldız
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Melik Saraçoğlu
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Cem Baba
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
- Trustlife Labs, Drug Research & Development Center, Istanbul, Turkey
| | - Burak Çınar
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Serkan Yıldırım
- Department of Pathology, Veterinary Faculty, Atatürk University, Erzurum, Turkey
| | - Metin Kılıçlıoğlu
- Department of Pathology, Veterinary Faculty, Atatürk University, Erzurum, Turkey
| | - Kübra Çelik Topkara
- Department of Physiology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Kenan Çadırcı
- Department of Internal Medicine, Erzurum Regional Training and Research Hospital, Health Sciences University, Erzurum, Turkey
| |
Collapse
|
12
|
Delgado-Enciso I, Aurelien-Cabezas NS, Meza-Robles C, Walle-Guillen M, Hernandez-Fuentes GA, Cabrera-Licona A, Hernandez-Rangel AE, Delgado-Machuca M, Rodriguez-Hernandez A, Beas-Guzman OF, Cardenas-Aguilar CB, Rodriguez-Sanchez IP, Martinez-Fierro ML, Chaviano-Conesa D, Paz-Michel BA. Efficacy of neutral electrolyzed water vs. common topical antiseptics in the healing of full‑thickness burn: Preclinical trial in a mouse model. Biomed Rep 2024; 21:189. [PMID: 39479362 PMCID: PMC11522847 DOI: 10.3892/br.2024.1877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/06/2024] [Indexed: 11/02/2024] Open
Abstract
Burn injuries impose challenges such as infection risk, pain management, fluid loss, electrolyte imbalance and psychological and emotional impact, on healthcare professionals, requiring effective treatments to enhance wound healing. The present study evaluated the efficacy superoxidized electrolyzed solution (SES), with low (SES-low) or high (SES-high) concentrations of active species, alone or in combination with a formulation in gel (G), in comparison with commonly prescribed treatments for burn injury, including nitrofurazone (NF) and silver sulfadiazine (S); normal saline was used as placebo (PI). A scald burn model was established in BALB/c mice. Measurements of the burned area and histological parameters such as inflammatory infiltration state, epithelial regeneration and collagen fibers were evaluated on days 3, 6, 9, 18 and 32 to assess healing score and status. All treatments achieved wound closure at day 32; histopathological parameters indicated that SES-low and SES-low + G performed better than the Pl and S groups (P<0.05). All treatments showed a lower count of inflammatory cells compared with S (P<0.05); for collagen deposition and orientation, SES-low + G showed a more uniform horizontal orientation compared with Pl, SES-high + G, NF and S groups (P<0.05). SES-Low was the most effective substance to induce favorable and organized healing, while S was the worst, inducing disorganized closure of the wound due to a pro-inflammatory effect.
Collapse
Affiliation(s)
- Ivan Delgado-Enciso
- Department of Molecular Medicine, School of Medicine, University of Colima, Colima 28040, Mexico
- Department of Research, State Cancerology Institute of Colima, Health Services of The Mexican Social Security Institute for Welfare (IMSS-BIENESTAR Colima), Colima 28085, Mexico
- Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| | | | - Carmen Meza-Robles
- Department of Research, State Cancerology Institute of Colima, Health Services of The Mexican Social Security Institute for Welfare (IMSS-BIENESTAR Colima), Colima 28085, Mexico
| | - Mireya Walle-Guillen
- Department of Molecular Medicine, School of Medicine, University of Colima, Colima 28040, Mexico
| | | | | | | | - Marina Delgado-Machuca
- Department of Molecular Medicine, School of Medicine, University of Colima, Colima 28040, Mexico
| | | | - Oscar F. Beas-Guzman
- Department of Molecular Medicine, School of Medicine, University of Colima, Colima 28040, Mexico
| | | | - Iram P. Rodriguez-Sanchez
- Molecular and Structural Physiology Laboratory, School of Biological Sciences, Autonomous University of Nuevo León, San Nicolás de los Garza 66455, Mexico
| | - Margarita L. Martinez-Fierro
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Autonomous University of Zacatecas, Zacatecas 98160, México
| | - Daniel Chaviano-Conesa
- Department of Molecular Medicine, School of Medicine, University of Colima, Colima 28040, Mexico
| | | |
Collapse
|
13
|
Chaudhary S, Ali Z, Pantoja‐Angles A, Abdelrahman S, Juárez COB, Rao GS, Hong P, Hauser C, Mahfouz M. High-yield, plant-based production of an antimicrobial peptide with potent activity in a mouse model. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3392-3405. [PMID: 39264967 PMCID: PMC11606426 DOI: 10.1111/pbi.14460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/14/2024]
Abstract
Plants offer a promising chassis for the large-scale, cost-effective production of diverse therapeutics, including antimicrobial peptides (AMPs). However, key advances will reduce production costs, including simplifying the downstream processing and purification steps. Here, using Nicotiana benthamiana plants, we present an improved modular design that enables AMPs to be secreted via the endomembrane system and sequestered in an extracellular compartment, the apoplast. Additionally, we translationally fused an AMP to a mutated small ubiquitin-like modifier sequence, thereby enhancing peptide yield and solubilizing the peptide with minimal aggregation and reduced occurrence of necrotic lesions in the plant. This strategy resulted in substantial peptide accumulation, reaching around 2.9 mg AMP per 20 g fresh weight of leaf tissue. Furthermore, the purified AMP demonstrated low collateral toxicity in primary human skin cells, killed pathogenic bacteria by permeabilizing the membrane and exhibited anti-infective efficacy in a preclinical mouse (Mus musculus) model system, reducing bacterial loads by up to three orders of magnitude. A base-case techno-economic analysis demonstrated the economic advantages and scalability of our plant-based platform. We envision that our work can establish plants as efficient bioreactors for producing preclinical-grade AMPs at a commercial scale, with the potential for clinical applications.
Collapse
Affiliation(s)
- Shahid Chaudhary
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological SciencesKing Abdullah University of Science and Technology (KAUST)ThuwalJeddahSaudi Arabia
| | - Zahir Ali
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological SciencesKing Abdullah University of Science and Technology (KAUST)ThuwalJeddahSaudi Arabia
| | - Aarón Pantoja‐Angles
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological SciencesKing Abdullah University of Science and Technology (KAUST)ThuwalJeddahSaudi Arabia
| | - Sherin Abdelrahman
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)ThuwalJeddahSaudi Arabia
- Computational Bioscience Research CenterKing Abdullah University of Science and Technology (KAUST)ThuwalJeddahSaudi Arabia
- Red Sea Research CenterKing Abdullah University of Science and Technology (KAUST)ThuwalJeddahSaudi Arabia
| | - Cynthia Olivia Baldelamar Juárez
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)ThuwalJeddahSaudi Arabia
- Computational Bioscience Research CenterKing Abdullah University of Science and Technology (KAUST)ThuwalJeddahSaudi Arabia
- Red Sea Research CenterKing Abdullah University of Science and Technology (KAUST)ThuwalJeddahSaudi Arabia
| | - Gundra Sivakrishna Rao
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological SciencesKing Abdullah University of Science and Technology (KAUST)ThuwalJeddahSaudi Arabia
| | - Pei‐Ying Hong
- Water Desalination and Reuse Center, Division of Biological Sciences and EngineeringKing Abdullah University of Science and Technology (KAUST)ThuwalJeddahSaudi Arabia
| | - Charlotte Hauser
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)ThuwalJeddahSaudi Arabia
- Computational Bioscience Research CenterKing Abdullah University of Science and Technology (KAUST)ThuwalJeddahSaudi Arabia
- Red Sea Research CenterKing Abdullah University of Science and Technology (KAUST)ThuwalJeddahSaudi Arabia
| | - Magdy Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological SciencesKing Abdullah University of Science and Technology (KAUST)ThuwalJeddahSaudi Arabia
| |
Collapse
|
14
|
Ye H, Franco C, Aboouf MA, Thiersch M, Sevim S, Llacer‐Wintle J, Veciana A, Llauradó‐Capdevila G, Wang K, Chen X, Tang Q, Matheu R, Wendel‐Garcia PD, Sánchez‐Murcia PA, Nelson BJ, Luo C, Puigmartí‐Luis J, Pané S. Insights into the Biological Activity and Bio-Interaction Properties of Nanoscale Imine-Based 2D and 3D Covalent Organic Frameworks. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407391. [PMID: 39387248 PMCID: PMC11600295 DOI: 10.1002/advs.202407391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/16/2024] [Indexed: 10/15/2024]
Abstract
Covalent Organic Frameworks (COFs) emerged as versatile materials with promising potential in biomedicine. Their customizable functionalities and tunable pore structures make them valuable for various biomedical applications such as biosensing, bioimaging, antimicrobial activity, and targeted drug delivery. Despite efforts made to create nanoscale COFs (nCOFs) to enhance their interaction with biological systems, a comprehensive understanding of their inherent biological activities remains a significant challenge. In this study, a thorough investigation is conducted into the biocompatibility and anti-neoplastic properties of two distinct imine-based nCOFs. The approach involved an in-depth analysis of these nCOFs through in vitro experiments with various cell types and in vivo assessments using murine models. These findings revealed significant cytotoxic effects on tumor cells. Moreover, the activation of multiple cellular death pathways, including apoptosis, necroptosis, and ferroptosis is determined, supported by evidence at the molecular level. In vivo evaluations exhibited marked inhibition of tumor growth, associated with the elevated spontaneous accumulation of nCOFs in tumor tissues and the modulation of cell death-related protein expression. The research contributes to developing a roadmap for the characterization of the intricate interactions between nCOFs and biological systems and opens new avenues for exploiting their therapeutic potential in advanced biomedical applications.
Collapse
Affiliation(s)
- Hao Ye
- Multi‐Scale Robotics Lab (MSRL)Institute of Robotics & Intelligent Systems (IRIS)ETH ZurichZurich8092Switzerland
| | - Carlos Franco
- Multi‐Scale Robotics Lab (MSRL)Institute of Robotics & Intelligent Systems (IRIS)ETH ZurichZurich8092Switzerland
| | - Mostafa A. Aboouf
- Institute of Veterinary PhysiologyVetsuisse FacultyUniversity of ZurichWinterthurerstrasse 260Zurich8057Switzerland
- Department of BiochemistryFaculty of PharmacyAin Shams UniversityCairo11566Egypt
| | - Markus Thiersch
- Institute of Veterinary PhysiologyVetsuisse FacultyUniversity of ZurichWinterthurerstrasse 260Zurich8057Switzerland
| | - Semih Sevim
- Multi‐Scale Robotics Lab (MSRL)Institute of Robotics & Intelligent Systems (IRIS)ETH ZurichZurich8092Switzerland
| | - Joaquin Llacer‐Wintle
- Multi‐Scale Robotics Lab (MSRL)Institute of Robotics & Intelligent Systems (IRIS)ETH ZurichZurich8092Switzerland
| | - Andrea Veciana
- Multi‐Scale Robotics Lab (MSRL)Institute of Robotics & Intelligent Systems (IRIS)ETH ZurichZurich8092Switzerland
| | - Gemma Llauradó‐Capdevila
- Departament de Ciència dels Materials i Química Física Institut de Química Teòrica i ComputacionalUniversity of BarcelonaBarcelona08028Spain
| | - Kaiyuan Wang
- Department of PharmaceuticsWuya College of InnovationShenyang Pharmaceutical University103 Wenhua RoadShenyang Liaoning110016P. R. China
| | - Xiang‐Zhong Chen
- State Key Laboratory of Photovoltaic Science and TechnologyShanghai Frontiers Science Research Base of Intelligent Optoelectronics and PerceptionInstitute of OptoelectronicsInternational Institute of Intelligent Nanorobots and NanosystemsFudan UniversitySonghu Road 2005Shanghai200438China
- Yiwu Research Intitute of Fudan UniversityYiwu322000China
| | - Qiao Tang
- Multi‐Scale Robotics Lab (MSRL)Institute of Robotics & Intelligent Systems (IRIS)ETH ZurichZurich8092Switzerland
| | - Roc Matheu
- Departament de Química Inorgànica i OrgànicaInstitut de Química Teòrica i ComputacionalBarcelona08028Spain
| | - Pedro D. Wendel‐Garcia
- Institute of Intensive Care MedicineUniversity Hospital ZurichRämistrasse 100Zurich8091Switzerland
| | - Pedro A. Sánchez‐Murcia
- Laboratory of Computer‐Aided Molecular DesignDivision of Medicinal ChemistryOtto‐Loewi Research CenterMedical University of GrazNeue Stiftingstalstraße 6/IIIGrazA‐8010Austria
| | - Bradley J. Nelson
- Multi‐Scale Robotics Lab (MSRL)Institute of Robotics & Intelligent Systems (IRIS)ETH ZurichZurich8092Switzerland
| | - Cong Luo
- Department of PharmaceuticsWuya College of InnovationShenyang Pharmaceutical University103 Wenhua RoadShenyang Liaoning110016P. R. China
| | - Josep Puigmartí‐Luis
- Departament de Ciència dels Materials i Química Física Institut de Química Teòrica i ComputacionalUniversity of BarcelonaBarcelona08028Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)Pg. Lluís Companys 23Barcelona08010Spain
| | - Salvador Pané
- Multi‐Scale Robotics Lab (MSRL)Institute of Robotics & Intelligent Systems (IRIS)ETH ZurichZurich8092Switzerland
| |
Collapse
|
15
|
Menescal-de-Oliveira L, Brentegani MR, Teixeira FP, Giusti H, Saia RS. Immune-mediated impairment of tonic immobility defensive behavior in an experimental model of colonic inflammation. Pflugers Arch 2024; 476:1743-1760. [PMID: 39218820 DOI: 10.1007/s00424-024-03011-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Ulcerative colitis has been associated with psychological distress and an aberrant immune response. The immunomodulatory role of systemic cytokines produced during experimental intestinal inflammation in tonic immobility (TI) defensive behavior remains unknown. The present study characterized the TI defensive behavior of guinea pigs subjected to colitis induction at the acute stage and after recovery from intestinal mucosa injury. Moreover, we investigated whether inflammatory mediators (tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-8, IL-10, and prostaglandins) act on the mesencephalic nucleus, periaqueductal gray matter (PAG). Colitis was induced in guinea pigs by intrarectal administration of acetic acid. The TI defensive behavior, histology, cytokine production, and expression of c-FOS, IBA-1, and cyclooxygenase (COX)-2 in PAG were evaluated. Colitis reduced the duration of TI episodes from the first day, persisting throughout the 7-day experimental period. Neuronal c-FOS immunoreactivity was augmented in both columns of the PAG (ventrolateral (vlPAG) and dorsal), but there were no changes in IBA-1 expression. Dexamethasone, infliximab, and parecoxib treatments increased the duration of TI episodes, suggesting a modulatory role of peripheral inflammatory mediators in this behavior. Immunoneutralization of TNF-α, IL-1β, and IL-8 in the vlPAG reversed all effects produced by colitis. In contrast, IL-10 neutralization further reduced the duration of TI episodes. Our results reveal that peripherally produced inflammatory mediators during colitis may modulate neuronal functioning in mesencephalic structures such as vlPAG.
Collapse
Affiliation(s)
- Leda Menescal-de-Oliveira
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Avenida Dos Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Mariulza Rocha Brentegani
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Avenida Dos Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Fernanda Pincelli Teixeira
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Avenida Dos Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Humberto Giusti
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Avenida Dos Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Rafael Simone Saia
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Avenida Dos Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil.
| |
Collapse
|
16
|
Morax L, Beck-Schimmer B, Neff J, Mueller M, Flury-Frei R, Schläpfer M. Sevoflurane Postconditioning Protects From an Early Neurological Deficit After Subarachnoid Hemorrhage: Results of a Randomized Laboratory Study in Rats. Anesth Analg 2024; 139:1075-1085. [PMID: 39437202 DOI: 10.1213/ane.0000000000006829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
BACKGROUND Subarachnoid hemorrhage (SAH) is associated with neurocognitive impairment. Recent data suggest that sevoflurane attenuates edema formation after SAH in rats. However, so far, no information is available about the long-term repair phase, nor if sevoflurane impacts functionality by increasing vascularity. This study tested whether sevoflurane postconditioning would improve long-term neurologic deficit through increased formation of new vessels close to the hemorrhage area. METHODS Fifty-three animals were subjected to SAH or sham surgery with or without a 2-hour sevoflurane postconditioning (versus propofol anesthesia). Animal survival, including dropout animals due to death or reaching termination criteria, as well as neurologic deficit, defined by the Garcia score, were assessed 2 hours after recovery until postoperative day 14. On day 14, blood samples and brain tissue were harvested. Vessel density was determined by the number of cluster of differentiation 31 (CD31)-positive vessels, and activated glial cells by glial fibrillary acidic protein (GFAP)-positive astrocytes per field of view. RESULTS The survival rate for sham animals was 100%, 69% in the SAH-propofol and 92% in the SAH-sevoflurane groups. According to the log-rank Mantel-Cox test, survival curves were significantly different ( P = .024). The short-term neurologic deficit was higher in SAH-propofol versus SAH-sevoflurane animals 2 hours after recovery and on postoperative day 1 (propofol versus sevoflurane: 14. 6 ± 3.4 vs 15. 9 ± 2.7 points, P = .034, and 16. 2 ± 3.5 vs 17. 8 ± 0.9 points, P = .015). Overall complete recovery from neurologic deficit was observed on day 7 in both SAH groups (18. 0 ± 0.0 vs 18. 0 ± 0.0 points, P = 1.000). Cortical vascular density increased to 80. 6 ± 15.0 vessels per field of view in SAH-propofol animals (vs 71. 4 ± 10.1 in SAH-sevoflurane, P < .001). Activation of glial cells, an indicator of neuroinflammation, was assessed by GFAP-positive astrocytes GFAP per field of view. Hippocampal GFAP-positive cells were 201 ± 68 vs 179 ± 84 cells per field of view in SAH-propofol versus SAH-sevoflurane animals ( P < .001). CONCLUSIONS Sevoflurane postconditioning improves survival by 23% (SAH-sevoflurane versus SAH-propofol). The sevoflurane intervention could attenuate the early neurologic deficit, while the long-term outcome was similar across the groups. A higher vascular density close to the SAH area in the propofol group was not associated with improved outcomes.
Collapse
Affiliation(s)
- Laurent Morax
- From the Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Beatrice Beck-Schimmer
- From the Institute of Physiology, University of Zurich, Zurich, Switzerland
- Institute of Anesthesiology, University Hospital Zurich, Zurich, Switzerland
| | - Jonah Neff
- From the Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Mattia Mueller
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Renata Flury-Frei
- Department of Pathology, Cantonal Hospital Winterthur, Winterthur, Switzerland
| | - Martin Schläpfer
- From the Institute of Physiology, University of Zurich, Zurich, Switzerland
- Institute of Anesthesiology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
Delgado Y, Torres-Sanchez A, Perez D, Torres G, Estrada S, Ortiz Alvelo N, Vega J, Santos L, Torres A, Madera BA, Ferrer-Acosta Y. Deferasirox's Anti-Chemoresistance and Anti-Metastatic Effect on Non-Small Cell Lung Carcinoma. Biomedicines 2024; 12:2272. [PMID: 39457585 PMCID: PMC11505511 DOI: 10.3390/biomedicines12102272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
Clinically approved iron chelators, originally designed to address iron overload disorders, have emerged as potential anticancer agents. Deferasirox (Def), a tridentate iron chelator, has demonstrated antiproliferative effects in cancer. Background/Objectives: This study aims to elucidate the mechanism of action of Def and its impact on non-small cell lung carcinoma (NSCLC). Methods: NSCLC A549 cells were treated with Def to assess cytotoxicity, the effect on nuclear and mitochondrial pathways, and iron-containing proteins and genes to evaluate anti-metastasis and chemoresistance. A lung carcinoma mouse model was used for in vivo studies. Results: Our findings revealed that Def induced cytotoxicity, effectively chelated intracellular iron, and triggered apoptosis through the increase in phosphatidylserine externalization and caspase 3 activity. Additionally, Def caused G0/G1 cell cycle arrest by downregulating the ribonucleotide reductase catalytic subunit. Furthermore, Def perturbed mitochondrial function by promoting the production of reactive oxygen species and the inhibition of glutathione as a measurement of ferroptosis activation. Def demonstrated inhibitory effects on cell migration in scratch assays, which was supported by the upregulation of n-myc downstream-regulated gene 1 and downregulation of the epidermal growth factor receptor protein. Also, Def downregulated one of the main markers of chemoresistance, the ABCB1 gene. In vivo experiments using a lung carcinoma mouse model showed that Def treatment did not affect the animal's body weight and showed a significant decrease in tumor growth. Conclusions: This investigation lays the groundwork for unraveling Def action's molecular targets and mechanisms in lung carcinoma, particularly within iron-related pathways, pointing out its anti-metastasis and anti-chemoresistance effect.
Collapse
Affiliation(s)
- Yamixa Delgado
- Biochemistry & Pharmacology Department, San Juan Bautista School of Medicine, Caguas, PR 00725, USA; (D.P.); (G.T.); (N.O.A.); (J.V.); (A.T.)
| | - Anamaris Torres-Sanchez
- Biology Department, University of Puerto Rico-Rio Piedras, San Juan, PR 00925, USA; (A.T.-S.); (S.E.)
| | - Daraishka Perez
- Biochemistry & Pharmacology Department, San Juan Bautista School of Medicine, Caguas, PR 00725, USA; (D.P.); (G.T.); (N.O.A.); (J.V.); (A.T.)
| | - Grace Torres
- Biochemistry & Pharmacology Department, San Juan Bautista School of Medicine, Caguas, PR 00725, USA; (D.P.); (G.T.); (N.O.A.); (J.V.); (A.T.)
| | - Sthephanie Estrada
- Biology Department, University of Puerto Rico-Rio Piedras, San Juan, PR 00925, USA; (A.T.-S.); (S.E.)
| | - Natalia Ortiz Alvelo
- Biochemistry & Pharmacology Department, San Juan Bautista School of Medicine, Caguas, PR 00725, USA; (D.P.); (G.T.); (N.O.A.); (J.V.); (A.T.)
| | - Jaisy Vega
- Biochemistry & Pharmacology Department, San Juan Bautista School of Medicine, Caguas, PR 00725, USA; (D.P.); (G.T.); (N.O.A.); (J.V.); (A.T.)
| | - Laurie Santos
- Biomedical Graduate Program, Universidad Central del Caribe, Bayamón, PR 00960, USA;
| | - Aracelis Torres
- Biochemistry & Pharmacology Department, San Juan Bautista School of Medicine, Caguas, PR 00725, USA; (D.P.); (G.T.); (N.O.A.); (J.V.); (A.T.)
| | - Bismark A. Madera
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR 00926, USA;
| | - Yancy Ferrer-Acosta
- Department of Anatomy and Neurobiology, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA;
| |
Collapse
|
18
|
Bolan F, Dickie BR, Cook JR, Thomas JM, Pinteaux E, Allan SM, Saiani A, Lawrence CB. Intracerebral Administration of a Novel Self-Assembling Peptide Hydrogel Is Safe and Supports Cell Proliferation in Experimental Intracerebral Haemorrhage. Transl Stroke Res 2024; 15:986-1004. [PMID: 37853252 PMCID: PMC11364698 DOI: 10.1007/s12975-023-01189-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/08/2023] [Accepted: 08/15/2023] [Indexed: 10/20/2023]
Abstract
Intracerebral haemorrhage (ICH) is the deadliest form of stroke, but current treatment options are limited, meaning ICH survivors are often left with life-changing disabilities. The significant unmet clinical need and socioeconomic burden of ICH mean novel regenerative medicine approaches are gaining interest. To facilitate the regeneration of the ICH lesion, injectable biomimetic hydrogels are proposed as both scaffolds for endogenous repair and delivery platforms for pro-regenerative therapies. In this paper, the objective was to explore whether injection of a novel self-assembling peptide hydrogel (SAPH) Alpha2 was feasible, safe and could stimulate brain tissue regeneration, in a collagenase-induced ICH model in rats. Alpha2 was administered intracerebrally at 7 days post ICH and functional outcome measures, histological markers of damage and repair and RNA-sequencing were investigated for up to 8 weeks. The hydrogel Alpha2 was safe, well-tolerated and was retained in the lesion for several weeks, where it allowed infiltration of host cells. The hydrogel had a largely neutral effect on functional outcomes and expression of angiogenic and neurogenic markers but led to increased numbers of proliferating cells. RNAseq and pathway analysis showed that ICH altered genes related to inflammatory and phagocytic pathways, and these changes were also observed after administration of hydrogel. Overall, the results show that the novel hydrogel was safe when injected intracerebrally and had no negative effects on functional outcomes but increased cell proliferation. To elicit a regenerative effect, future studies could use a functionalised hydrogel or combine it with an adjunct therapy.
Collapse
Affiliation(s)
- Faye Bolan
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, The University of Manchester, Manchester, M13 9PT, UK
- Division of Neuroscience, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Ben R Dickie
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, The University of Manchester, Manchester, M13 9PT, UK
- Division of Informatics, Imaging and Data Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - James R Cook
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, The University of Manchester, Manchester, M13 9PT, UK
- Division of Neuroscience, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Josephine M Thomas
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, The University of Manchester, Manchester, M13 9PT, UK
- Division of Neuroscience, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Emmanuel Pinteaux
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, The University of Manchester, Manchester, M13 9PT, UK
- Division of Neuroscience, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Stuart M Allan
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, The University of Manchester, Manchester, M13 9PT, UK
- Division of Neuroscience, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Alberto Saiani
- Department of Materials, The University of Manchester, Manchester, M13 9PL, UK
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, M13 9PL, UK
| | - Catherine B Lawrence
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, The University of Manchester, Manchester, M13 9PT, UK.
- Division of Neuroscience, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
19
|
Guzman M, Geuther BQ, Sabnis GS, Kumar V. Highly accurate and precise determination of mouse mass using computer vision. PATTERNS (NEW YORK, N.Y.) 2024; 5:101039. [PMID: 39568644 PMCID: PMC11573914 DOI: 10.1016/j.patter.2024.101039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/20/2024] [Accepted: 07/11/2024] [Indexed: 11/22/2024]
Abstract
Changes in body mass are key indicators of health in humans and animals and are routinely monitored in animal husbandry and preclinical studies. In rodent studies, the current method of manually weighing the animal on a balance causes at least two issues. First, directly handling the animal induces stress, possibly confounding studies. Second, these data are static, limiting continuous assessment and obscuring rapid changes. A non-invasive, continuous method of monitoring animal mass would have utility in multiple biomedical research areas. We combine computer vision with statistical modeling to demonstrate the feasibility of determining mouse body mass by using video data. Our methods determine mass with a 4.8% error across genetically diverse mouse strains with varied coat colors and masses. This error is low enough to replace manual weighing in most mouse studies. We conclude that visually determining rodent mass enables non-invasive, continuous monitoring, improving preclinical studies and animal welfare.
Collapse
Affiliation(s)
- Malachy Guzman
- The Jackson Laboratory, Bar Harbor, ME, USA
- Carleton College, Northfield, MN, USA
| | | | | | - Vivek Kumar
- The Jackson Laboratory, Bar Harbor, ME, USA
- School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
| |
Collapse
|
20
|
Brochut M, Heinonen T, Snäkä T, Gilbert C, Le Roy D, Roger T. Using weight loss to predict outcome and define a humane endpoint in preclinical sepsis studies. Sci Rep 2024; 14:21150. [PMID: 39256525 PMCID: PMC11387420 DOI: 10.1038/s41598-024-72039-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024] Open
Abstract
Preclinical mouse models are critical for understanding the pathophysiological response to infections and developing treatment strategies for sepsis. In keeping with ethical values, researchers follow guidelines to minimize the suffering of the mice. Weight loss is a criteria used as a humane end point, but there is no official recommendation for a maximum weight loss leading to euthanasia. To evaluate whether the thresholds used in daily practice are optimal, we performed a comprehensive retrospective analysis of data generated over 10 years with > 2300 mice used in models of infection with Listeria monocytogenes, Streptococcus pneumoniae, Candida albicans and H1N1 influenza virus. Weight loss segregated mice that survived from those that did not. Statistical analyses revealed that lowering the weight loss thresholds used (none, 30% or 20%) would have increased mortality rates due to the sacrifice of mice that survived infections (p < 0.01-0.001). Power calculations showed high variability and reduction of power as weight loss thresholds approached 20% for S. pneumoniae and L. monocytogenes models. Hence, weight loss thresholds need to be adapted to each model of infection used in a laboratory. Overall, weight loss is a valuable predictor of mortality that contributes to the robustness of composite scores. To our knowledge, this is the most extensive study exploring the relationship between weight loss threshold and sepsis outcome. It underscores the importance of the infection-model-specific evaluation of weight loss for use in clinical scores defining humane endpoints to minimize mouse suffering without compromising statistical power and scientific objectives.
Collapse
Affiliation(s)
- Maëlick Brochut
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, CLED.04.407, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - Tytti Heinonen
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, CLED.04.407, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - Tiia Snäkä
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, CLED.04.407, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - Charly Gilbert
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, CLED.04.407, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - Didier Le Roy
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, CLED.04.407, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - Thierry Roger
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, CLED.04.407, Chemin des Boveresses 155, 1066, Epalinges, Switzerland.
| |
Collapse
|
21
|
Abdollahi Nejat M, Stiedl O, Smit AB, van Kesteren RE. Continuous locomotor activity monitoring to assess animal welfare following intracranial surgery in mice. Front Behav Neurosci 2024; 18:1457894. [PMID: 39296476 PMCID: PMC11408287 DOI: 10.3389/fnbeh.2024.1457894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/19/2024] [Indexed: 09/21/2024] Open
Abstract
Locomotor activity can serve as a readout to identify discomfort and pain. Therefore, monitoring locomotor activity following interventions that induce potential discomfort may serve as a reliable method for evaluating animal health, complementing conventional methods such as body weight measurement. In this study, we used the digital ventilated cage (DVC®) system for the assessment of circadian locomotor activity, in addition to body weight monitoring, following intracranial stereotaxic surgery in an Alzheimer's disease mouse model (C57BL/6J/APPswe/PSEN1dE9). Stereotaxic surgery did not affect the organization of circadian locomotor activity of both 7-8-week-old and 19-21-week-old mice. However, we observed that both young and old mice exhibited a significant decrease in activity during the dark phase. Also, our study shows that changes in locomotor activity exhibit higher sensitivity in detecting alterations indicative of animal health compared to measuring body weight. In contrast to 7-8-week-old mice, where we observed no genotypic differences in locomotor activity, 19-21-week-old APP/PS1 mice showed increased locomotor activity compared to wild-type mice. Furthermore, our analyses revealed that a subset of the 7-8-week-old mice showed increased locomotor activity during the initial peak of the dark phase. One mouse experienced sudden death early in life, possibly due to epileptic seizures. Altogether, our findings affirm continuous activity measurements as used in the DVC® as a highly valuable objective method for post-surgical welfare monitoring. Its discerning capacity not only facilitates circadian locomotor rhythm assessment but also enables the identification of individual aberrant activity patterns, possibly indicative of epileptic seizures.
Collapse
Affiliation(s)
- Mazyar Abdollahi Nejat
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Oliver Stiedl
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Ronald E van Kesteren
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
22
|
Munk A, Philippi V, Buchecker V, Bankstahl M, Glasenapp A, Blutke A, Michelakaki E, Talbot SR, Huwyler J, Jirkof P, Kopaczka M, Merhof D, Palme R, Potschka H. Refining pain management in mice by comparing multimodal analgesia and NSAID monotherapy for neurosurgical procedures. Sci Rep 2024; 14:18691. [PMID: 39134625 PMCID: PMC11319454 DOI: 10.1038/s41598-024-69075-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024] Open
Abstract
While neurosurgical interventions are frequently used in laboratory mice, refinement efforts to optimize analgesic management based on multimodal approaches appear to be rather limited. Therefore, we compared the efficacy and tolerability of combinations of the non-steroidal anti-inflammatory drug carprofen, a sustained-release formulation of the opioid buprenorphine, and the local anesthetic bupivacaine with carprofen monotherapy. Female and male C57BL/6J mice were subjected to isoflurane anesthesia and an intracranial electrode implant procedure. Given the multidimensional nature of postsurgical pain and distress, various physiological, behavioral, and biochemical parameters were applied for their assessment. The analysis revealed alterations in Neuro scores, home cage locomotion, body weight, nest building, mouse grimace scales, and fecal corticosterone metabolites. A composite measure scheme allowed the allocation of individual mice to severity classes. The comparison between groups failed to indicate the superiority of multimodal regimens over high-dose NSAID monotherapy. In conclusion, our findings confirmed the informative value of various parameters for assessment of pain and distress following neurosurgical procedures in mice. While all drug regimens were well tolerated in control mice, our data suggest that the total drug load should be carefully considered for perioperative management. Future studies would be of interest to assess potential synergies of drug combinations with lower doses of carprofen.
Collapse
Affiliation(s)
- Anna Munk
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-Universität München, Koeniginstr. 16, 80539, Munich, Germany
| | - Vanessa Philippi
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-Universität München, Koeniginstr. 16, 80539, Munich, Germany
| | - Verena Buchecker
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-Universität München, Koeniginstr. 16, 80539, Munich, Germany
| | - Marion Bankstahl
- Institute for Laboratory Animal Science, Hannover Medical School, Hanover, Germany
| | - Aylina Glasenapp
- Institute for Laboratory Animal Science, Hannover Medical School, Hanover, Germany
| | - Andreas Blutke
- Institute of Veterinary Pathology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Effrosyni Michelakaki
- Institute of Veterinary Pathology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Steven Roger Talbot
- Institute for Laboratory Animal Science, Hannover Medical School, Hanover, Germany
| | - Jörg Huwyler
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Paulin Jirkof
- Office for Animal Welfare and 3R, University of Zurich, Zurich, Switzerland
| | - Marcin Kopaczka
- Department of Electrical Engineering, RWTH Aachen University, Aachen, Germany
| | - Dorit Merhof
- Department of Informatics and Data Science, University of Regensburg, Regensburg, Germany
| | - Rupert Palme
- Department of Biological Sciences and Pathobiology, Experimental Endocrinology, University of Veterinary Medicine, Vienna, Austria
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-Universität München, Koeniginstr. 16, 80539, Munich, Germany.
| |
Collapse
|
23
|
Shin YB, Choi JY, Yoon MS, Yoo MK, Shin DH, Lee JW. Evaluation of Anticancer Efficacy of D-α-Tocopheryl Polyethylene-Glycol Succinate and Soluplus ® Mixed Micelles Loaded with Olaparib and Rapamycin Against Ovarian Cancer. Int J Nanomedicine 2024; 19:7871-7893. [PMID: 39114180 PMCID: PMC11304412 DOI: 10.2147/ijn.s468935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/02/2024] [Indexed: 08/10/2024] Open
Abstract
Purpose Ovarian cancer has the highest mortality rate and lowest survival rate among female reproductive system malignancies. There are treatment options of surgery and chemotherapy, but both are limited. In this study, we developed and evaluated micelles composed of D-α-tocopheryl polyethylene-glycol (PEG) 1000 succinate (TPGS) and Soluplus® (SOL) loaded with olaparib (OLA), a poly(ADP-ribose)polymerase (PARP) inhibitor, and rapamycin (RAPA), a mammalian target of rapamycin (mTOR) inhibitor in ovarian cancer. Methods We prepared micelles containing different molar ratios of OLA and RAPA embedded in different weight ratios of TPGS and SOL (OLA/RAPA-TPGS/SOL) were prepared and physicochemical characterized. Furthermore, we performed in vitro cytotoxicity experiments of OLA, RAPA, and OLA/RAPA-TPGS/SOL. In vivo toxicity and antitumor efficacy assays were also performed to assess the efficacy of the mixed micellar system. Results OLA/RAPA-TPGS/SOL containing a 4:1 TPGS:SOL weight ratio and a 2:3 OLA:RAPA molar ratio showed synergistic effects and were optimized. The drug encapsulation efficiency of this formulation was >65%, and the physicochemical properties were sustained for 180 days. Moreover, the formulation had a high cell uptake rate and significantly inhibited cell migration (**p < 0.01). In the in vivo toxicity test, no toxicity was observed, with the exception of the high dose group. Furthermore, OLA/RAPA-TPGS/SOL markedly inhibited tumor spheroid and tumor growth in vivo. Conclusion Compared to the control, OLA/RAPA-TPGS/SOL showed significant tumor inhibition. These findings lay a foundation for the use of TPGS/SOL mixed micelles loaded with OLA and RAPA in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Yu Been Shin
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Ju-Yeon Choi
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Moon Sup Yoon
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Myeong Kyun Yoo
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Dae Hwan Shin
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
- Chungbuk National University Hospital, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Jeong-Won Lee
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| |
Collapse
|
24
|
Talbot SR, Heider M, Wirth M, Jörns A, Naujok O. Exploring dose-response variability and relative severity assessment in STZ-induced diabetes male NSG mice. Sci Rep 2024; 14:16559. [PMID: 39020093 PMCID: PMC11255292 DOI: 10.1038/s41598-024-67490-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024] Open
Abstract
NSG mice are among the most immunodeficient mouse model being used in various scientific branches. In diabetelogical research diabetic NSG mice are an important asset as a xenotransplantation model for human pancreatic islets or pluripotent stem cell-derived islets. The treatment with the beta cell toxin streptozotocin is the standard procedure for triggering a chemically induced diabetes. Surprisingly, little data has been published about the reproducibility, stress and animal suffering in these NSG mice during diabetes induction. The 3R rules, however, are a constant reminder that existing methods can be further refined to minimize suffering. In this pilot study the dose-response relationship of STZ in male NSG mice was investigated and additionally animal suffering was charted by applying the novel 'Relative Severity Assessment' algorithm. By this we successfully explored an STZ dose that reliably induced diabetes while reduced stress and pain to the animals to a minimum using evidence-based and objective parameters rather than criteria that might be influenced by human bias.
Collapse
Affiliation(s)
- Steven R Talbot
- Hannover Medical School, Institute for Laboratory Animal Science, Carl-Neuberg-Straβe 1, 30625, Hannover, Germany
| | - Miriam Heider
- Hannover Medical School, Institute for Laboratory Animal Science, Carl-Neuberg-Straβe 1, 30625, Hannover, Germany
| | - Martin Wirth
- Institute of Clinical Biochemistry, Hannover Medical School, 30625, Hannover, Germany
| | - Anne Jörns
- Institute of Clinical Biochemistry, Hannover Medical School, 30625, Hannover, Germany
| | - Ortwin Naujok
- Institute of Clinical Biochemistry, Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
25
|
Seyidoglu N, Karakçı D, Ergin Eğritağ H, Yıkmış S. A New Alternative Nutritional Source Hawthorn Vinegar: How It Interacts with Protein, Glucose and GLP-1. Nutrients 2024; 16:2163. [PMID: 38999910 PMCID: PMC11243100 DOI: 10.3390/nu16132163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/14/2024] Open
Abstract
(1) Background: There is a balance between nutrition, glycemic control, and immune response. Their roles in physiological mechanisms are essential for maintaining life quality. This study aimed to evaluate hawthorn vinegar's metabolic effects, and describe its possible mechanism. We also pointed out several vinegar production methods to clarify the antioxidant features. (2) Methods: In the study, three vinegar techniques were applied to vinegar: traditional production of hawthorn vinegar (N), thermal pasteurization (P), and ultrasound method (U). Thirty-two female adult Wistar albino rats were randomly separated into four groups: Control, N1 (regular vinegar; 1 mL/kg bw), P1 (pasteurized vinegar; 1 mL/kg bw), and U1(ultrasound treated vinegar; 1 mL/kg bw). Vinegar was administered by oral gavage daily for 45 days. Initial and final weights, the percentage changes of body weight gains, and Gamma-Glutamyl Transferase (GGT) values of plasma and liver were measured. The total protein, globulin, and albumin values of plasma, liver, and intestinal tissue were determined. In addition, plasma glucagon-like peptide-1 (GLP-1) and glucose concentrations were evaluated. (3) Results: There was a statistical increase in total intestinal protein value and an increasing tendency in total protein in plasma and liver in group U1 compared to group Control. However, the GGT concentrations in plasma and liver were slightly lower in group U1 than in group Control. In addition, there were significant increases in plasma GLP-1 values in all experimental groups compared to the Control group (p: 0.015; 576.80 ± 56.06, 773.10 ± 28.92, 700.70 ± 17.05 and 735.00 ± 40.70; respectively groups control, N1, P1, and U1). Also, liver GLP-1 concentrations in groups P1 and U1 were higher than in group Control (p: 0.005; 968.00 ± 25.54, 1176 ± 17.54 and 1174.00 ± 44.06, respectively groups control, P1 and U1). On the other hand, significant decreases were found in plasma glucose concentrations in groups N1 and U1 as to the Control group (p: 0.02; Control: 189.90 ± 15.22, N1: 133.10 ± 7.32 and U1: 142.30 ± 4.14). Besides, liver glucose levels were lower in all experimental groups than in group Control statistically (p: 0.010; 53.47 ± 0.97, 37.99 ± 1.46, 44.52 ± 4.05 and 44.57 ± 2.39, respectively groups control, N1, P1, and U1). (4) Conclusions: The findings suggest that hawthorn vinegar can balance normal physiological conditions via intestinal health, protein profiles, and glycemic control. Additionally, ultrasound application of vinegar may improve the ability of hawthorn vinegar, and have positive effects on general health.
Collapse
Affiliation(s)
- Nilay Seyidoglu
- Department of Physiology, Faculty of Veterinary Medicine, Tekirdag Namik Kemal University, Tekirdag 59030, Türkiye
| | - Deniz Karakçı
- Department of Biochemistry, Faculty of Veterinary Medicine, Tekirdag Namik Kemal University, Tekirdag 59030, Türkiye;
| | - Hale Ergin Eğritağ
- Department of Biochemistry, Faculty of Veterinary Medicine, Burdur Mehmet Akif University, Burdur 15030, Türkiye;
| | - Seydi Yıkmış
- Department of Food Technology, Tekirdag Namik Kemal University, Tekirdag 59030, Türkiye
| |
Collapse
|
26
|
El Sorogy HM, Fayez SM, Khalil IA, Abdel Jaleel GA, Fayez AM, Eliwa HA, Teba HE. Microporation-Mediated Transdermal Delivery of In Situ Gel Incorporating Etodolac-Loaded PLGA Nanoparticles for Management of Rheumatoid Arthritis. Pharmaceutics 2024; 16:844. [PMID: 39065541 PMCID: PMC11279519 DOI: 10.3390/pharmaceutics16070844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 07/28/2024] Open
Abstract
Management of rheumatoid arthritis (RA) requires long-term administration of different medications since there has been no cure until now. Etodolac (ETD) is a nonsteroidal anti-inflammatory drug commonly used for RA management. However, its long-term administration resulted in severe side effects. This study aimed to develop a transdermal in situ gel incorporating ETD-loaded polymeric nanoparticles (NPs) to target the affected joints for long-term management of RA. Several PLGA NPs incorporating 1% ETD were prepared by nanoprecipitation and optimized according to the central composite design. The optimum NPs (F1) exhibited 96.19 ± 2.31% EE, 282.3 ± 0.62 nm PS, 0.383 ± 0.04 PDI, and -6.44 ± 1.69 ZP. A hyaluronate coating was applied to F1 (H-F1) to target activated macrophages at inflammation sites. H-F1 exhibited 287.4 ± 4.2 nm PS, 0.267 ± 0.02 PDI, and -23.7 ± 3.77 ZP. Pluronic F-127 in situ gel (H-F1G) showed complete gelation at 29 °C within 5 min. ETD permeation from H-F1G was sustained over 48 h when applied to microporated skin and exhibited significant enhancement of all permeation parameters. Topical application of H-F1G (equivalent to 8 mg ETD) to Wistarrat microporated skin every 48 h resulted in antirheumatic therapeutic efficacy comparable to commercial oral tablets (10 mg/kg/day).
Collapse
Affiliation(s)
- Heba M. El Sorogy
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October 12566, Giza, Egypt;
| | - Sahar M. Fayez
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6th University, 6th of October 12566, Giza, Egypt;
| | - Islam A. Khalil
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October 12566, Giza, Egypt;
| | | | - Ahmed M. Fayez
- Department of Pharmacology and Toxicology, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital 11835, Cairo, Egypt;
| | - Hesham A. Eliwa
- Department of Pharmacology, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October 12566, Giza, Egypt;
| | - Hoda E. Teba
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October 12566, Giza, Egypt;
| |
Collapse
|
27
|
Giansante G, Mazzoleni S, Zippo AG, Ponzoni L, Ghilardi A, Maiellano G, Lewerissa E, van Hugte E, Nadif Kasri N, Francolini M, Sala M, Murru L, Bassani S, Passafaro M. Neuronal network activity and connectivity are impaired in a conditional knockout mouse model with PCDH19 mosaic expression. Mol Psychiatry 2024; 29:1710-1725. [PMID: 36997609 PMCID: PMC11371655 DOI: 10.1038/s41380-023-02022-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 04/01/2023]
Abstract
Mutations in PCDH19 gene, which encodes protocadherin-19 (PCDH19), cause Developmental and Epileptic Encephalopathy 9 (DEE9). Heterogeneous loss of PCDH19 expression in neurons is considered a key determinant of the disorder; however, how PCDH19 mosaic expression affects neuronal network activity and circuits is largely unclear. Here, we show that the hippocampus of Pcdh19 mosaic mice is characterized by structural and functional synaptic defects and by the presence of PCDH19-negative hyperexcitable neurons. Furthermore, global reduction of network firing rate and increased neuronal synchronization have been observed in different limbic system areas. Finally, network activity analysis in freely behaving mice revealed a decrease in excitatory/inhibitory ratio and functional hyperconnectivity within the limbic system of Pcdh19 mosaic mice. Altogether, these results indicate that altered PCDH19 expression profoundly affects circuit wiring and functioning, and provide new key to interpret DEE9 pathogenesis.
Collapse
Affiliation(s)
| | - Sara Mazzoleni
- Institute of Neuroscience, CNR, 20854, Vedano al Lambro, Italy
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20129, Milano, Italy
| | - Antonio G Zippo
- Institute of Neuroscience, CNR, 20854, Vedano al Lambro, Italy
- NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, 20126, Milano, Italy
| | - Luisa Ponzoni
- Institute of Neuroscience, CNR, 20854, Vedano al Lambro, Italy
| | - Anna Ghilardi
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20129, Milano, Italy
| | - Greta Maiellano
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20129, Milano, Italy
| | - Elly Lewerissa
- Radboud University Nijmegen Medical Centre, Donders Institute for Brain, Cognition, and Behaviour, Department of Human Genetics, Department of Human Genetics Cognitive Neuroscience, Nijmegen, Netherlands
| | - Eline van Hugte
- Radboud University Nijmegen Medical Centre, Donders Institute for Brain, Cognition, and Behaviour, Department of Human Genetics, Department of Human Genetics Cognitive Neuroscience, Nijmegen, Netherlands
| | - Nael Nadif Kasri
- Radboud University Nijmegen Medical Centre, Donders Institute for Brain, Cognition, and Behaviour, Department of Human Genetics, Department of Human Genetics Cognitive Neuroscience, Nijmegen, Netherlands
| | - Maura Francolini
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20129, Milano, Italy
| | | | - Luca Murru
- Institute of Neuroscience, CNR, 20854, Vedano al Lambro, Italy
- NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, 20126, Milano, Italy
| | - Silvia Bassani
- Institute of Neuroscience, CNR, 20854, Vedano al Lambro, Italy.
- NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, 20126, Milano, Italy.
| | - Maria Passafaro
- Institute of Neuroscience, CNR, 20854, Vedano al Lambro, Italy.
- NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, 20126, Milano, Italy.
| |
Collapse
|
28
|
Ruiz-Lara G, Costa-Silva TA, Muso-Cachumba JJ, Cevallos Espinel J, Fontes MG, Garcia-Maya M, Rahman KM, Rangel-Yagui CDO, Monteiro G. Nonclinical Evaluation of Single-Mutant E. coli Asparaginases Obtained by Double-Mutant Deconvolution: Improving Toxicological, Immune and Inflammatory Responses. Int J Mol Sci 2024; 25:6008. [PMID: 38892196 PMCID: PMC11172649 DOI: 10.3390/ijms25116008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Acute lymphoblastic leukaemia is currently treated with bacterial L-asparaginase; however, its side effects raise the need for the development of improved and efficient novel enzymes. Previously, we obtained low anti-asparaginase antibody production and high serum enzyme half-life in mice treated with the P40S/S206C mutant; however, its specific activity was significantly reduced. Thus, our aim was to test single mutants, S206C and P40S, through in vitro and in vivo assays. Our results showed that the drop in specific activity was caused by P40S substitution. In addition, our single mutants were highly stable in biological environment simulation, unlike the double-mutant P40S/S206C. The in vitro cell viability assay demonstrated that mutant enzymes have a higher cytotoxic effect than WT on T-cell-derived ALL and on some solid cancer cell lines. The in vivo assays were performed in mice to identify toxicological effects, to evoke immunological responses and to study the enzymes' pharmacokinetics. From these tests, none of the enzymes was toxic; however, S206C elicited lower physiological changes and immune/allergenic responses. In relation to the pharmacokinetic profile, S206C exhibited twofold higher activity than WT and P40S two hours after injection. In conclusion, we present bioengineered E. coli asparaginases with high specific enzyme activity and fewer side effects.
Collapse
Affiliation(s)
- Grace Ruiz-Lara
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Science, University of São Paulo, São Paulo 05508-000, SP, Brazil; (G.R.-L.); (J.J.M.-C.); (M.G.F.); (C.d.O.R.-Y.)
| | - Tales A. Costa-Silva
- Center for Natural and Human Sciences, Federal University of ABC, Santo André 09210-580, SP, Brazil;
| | - Jorge Javier Muso-Cachumba
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Science, University of São Paulo, São Paulo 05508-000, SP, Brazil; (G.R.-L.); (J.J.M.-C.); (M.G.F.); (C.d.O.R.-Y.)
| | | | - Marina Gabriel Fontes
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Science, University of São Paulo, São Paulo 05508-000, SP, Brazil; (G.R.-L.); (J.J.M.-C.); (M.G.F.); (C.d.O.R.-Y.)
| | - Mitla Garcia-Maya
- Randall Division of Cell and Molecular Biophysics, King’s College London, London SE1 1UL, UK;
| | | | - Carlota de Oliveira Rangel-Yagui
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Science, University of São Paulo, São Paulo 05508-000, SP, Brazil; (G.R.-L.); (J.J.M.-C.); (M.G.F.); (C.d.O.R.-Y.)
| | - Gisele Monteiro
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Science, University of São Paulo, São Paulo 05508-000, SP, Brazil; (G.R.-L.); (J.J.M.-C.); (M.G.F.); (C.d.O.R.-Y.)
| |
Collapse
|
29
|
Osorio-Londoño D, Heras-Romero Y, Tovar-y-Romo LB, Olayo-González R, Morales-Guadarrama A. Improved Recovery of Complete Spinal Cord Transection by a Plasma-Modified Fibrillar Scaffold. Polymers (Basel) 2024; 16:1133. [PMID: 38675052 PMCID: PMC11054293 DOI: 10.3390/polym16081133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/07/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Complete spinal cord injury causes an irreversible disruption in the central nervous system, leading to motor, sensory, and autonomic function loss, and a secondary injury that constitutes a physical barrier preventing tissue repair. Tissue engineering scaffolds are presented as a permissive platform for cell migration and the reconnection of spared tissue. Iodine-doped plasma pyrrole polymer (pPPy-I), a neuroprotective material, was applied to polylactic acid (PLA) fibers and implanted in a rat complete spinal cord transection injury model to evaluate whether the resulting composite implants provided structural and functional recovery, using magnetic resonance (MR) imaging, diffusion tensor imaging and tractography, magnetic resonance spectroscopy, locomotion analysis, histology, and immunofluorescence. In vivo, MR studies evidenced a tissue response to the implant, demonstrating that the fibrillar composite scaffold moderated the structural effects of secondary damage by providing mechanical stability to the lesion core, tissue reconstruction, and significant motor recovery. Histologic analyses demonstrated that the composite scaffold provided a permissive environment for cell attachment and neural tissue guidance over the fibers, reducing cyst formation. These results supply evidence that pPPy-I enhanced the properties of PLA fibrillar scaffolds as a promising treatment for spinal cord injury recovery.
Collapse
Affiliation(s)
- Diana Osorio-Londoño
- Electrical Engineering Department, Universidad Autónoma Metropolitana, Mexico City 09340, Mexico;
| | - Yessica Heras-Romero
- Experimental Analysis of Behavior Department, Faculty of Psychology, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Luis B. Tovar-y-Romo
- Department of Molecular Neuropathology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | | | - Axayácatl Morales-Guadarrama
- Medical Imaging and Instrumentation Research National Center, Universidad Autónoma Metropolitana, Mexico City 09340, Mexico
| |
Collapse
|
30
|
Ohland PLS, Jack T, Mast M, Melk A, Bleich A, Talbot SR. Continuous monitoring of physiological data using the patient vital status fusion score in septic critical care patients. Sci Rep 2024; 14:7198. [PMID: 38531955 DOI: 10.1038/s41598-024-57712-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/21/2024] [Indexed: 03/28/2024] Open
Abstract
Accurate and standardized methods for assessing the vital status of patients are crucial for patient care and scientific research. This study introduces the Patient Vital Status (PVS), which quantifies and contextualizes a patient's physical status based on continuous variables such as vital signs and deviations from age-dependent normative values. The vital signs, heart rate, oxygen saturation, respiratory rate, mean arterial blood pressure, and temperature were selected as input to the PVS pipeline. The method was applied to 70 pediatric patients in the intensive care unit (ICU), and its efficacy was evaluated by matching high values with septic events at different time points in patient care. Septic events included systemic inflammatory response syndrome (SIRS) and suspected or proven sepsis. The comparison of maximum PVS values between the presence and absence of a septic event showed significant differences (SIRS/No SIRS: p < 0.0001, η2 = 0.54; Suspected Sepsis/No Suspected Sepsis: p = 0.00047, η2 = 0.43; Proven Sepsis/No Proven Sepsis: p = 0.0055, η2 = 0.34). A further comparison between the most severe PVS in septic patients with the PVS at ICU discharge showed even higher effect sizes (SIRS: p < 0.0001, η2 = 0.8; Suspected Sepsis: p < 0.0001, η2 = 0.8; Proven Sepsis: p = 0.002, η2 = 0.84). The PVS is emerging as a data-driven tool with the potential to assess a patient's vital status in the ICU objectively. Despite real-world data challenges and potential annotation biases, it shows promise for monitoring disease progression and treatment responses. Its adaptability to different disease markers and reliance on age-dependent reference values further broaden its application possibilities. Real-time implementation of PVS in personalized patient monitoring may be a promising way to improve critical care. However, PVS requires further research and external validation to realize its true potential.
Collapse
Affiliation(s)
- Philipp L S Ohland
- Hannover Medical School, Institute for Laboratory Animal Science, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Thomas Jack
- Department of Pediatric Cardiology and Intensive Care Medicine, Hannover Medical School, Hanover, Germany
| | - Marcel Mast
- Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School, Hanover, Germany
| | - Anette Melk
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hanover, Germany
| | - André Bleich
- Hannover Medical School, Institute for Laboratory Animal Science, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Steven R Talbot
- Hannover Medical School, Institute for Laboratory Animal Science, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
| |
Collapse
|
31
|
Belser JA, Kieran TJ, Mitchell ZA, Sun X, Mayfield K, Tumpey TM, Spengler JR, Maines TR. Key considerations to improve the normalization, interpretation and reproducibility of morbidity data in mammalian models of viral disease. Dis Model Mech 2024; 17:dmm050511. [PMID: 38440823 PMCID: PMC10941659 DOI: 10.1242/dmm.050511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/05/2024] [Indexed: 03/06/2024] Open
Abstract
Viral pathogenesis and therapeutic screening studies that utilize small mammalian models rely on the accurate quantification and interpretation of morbidity measurements, such as weight and body temperature, which can vary depending on the model, agent and/or experimental design used. As a result, morbidity-related data are frequently normalized within and across screening studies to aid with their interpretation. However, such data normalization can be performed in a variety of ways, leading to differences in conclusions drawn and making comparisons between studies challenging. Here, we discuss variability in the normalization, interpretation, and presentation of morbidity measurements for four model species frequently used to study a diverse range of human viral pathogens - mice, hamsters, guinea pigs and ferrets. We also analyze findings aggregated from influenza A virus-infected ferrets to contextualize this discussion. We focus on serially collected weight and temperature data to illustrate how the conclusions drawn from this information can vary depending on how raw data are collected, normalized and measured. Taken together, this work supports continued efforts in understanding how normalization affects the interpretation of morbidity data and highlights best practices to improve the interpretation and utility of these findings for extrapolation to public health contexts.
Collapse
Affiliation(s)
- Jessica A. Belser
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Troy J. Kieran
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Zoë A. Mitchell
- Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30602, USA
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Xiangjie Sun
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Kristin Mayfield
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Terrence M. Tumpey
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Jessica R. Spengler
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Taronna R. Maines
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| |
Collapse
|
32
|
Hajizadeh M, Jabbari A, Spotin A, Hejazian SS, Mikaeili Galeh T, Hassannia H, Sahlolbei M, Pagheh AS, Ahmadpour E. Modulatory Effects of Hydatid Cyst Fluid on a Mouse Model of Experimental Autoimmune Encephalomyelitis. Vet Sci 2024; 11:34. [PMID: 38250940 PMCID: PMC10819194 DOI: 10.3390/vetsci11010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
The reduced burden of helminth parasites in industrialized countries is probably one of the reasons for the increased prevalence of autoimmune disorders such as multiple sclerosis (MS). The current study aimed to evaluate the potential preventive effects of hydatid cyst fluid (HCF) on the disease severity in an EAE mouse model of MS. EAE-induced mice were treated with HCF before and after EAE induction. An RT-PCR-based evaluation of IFN-γ, IL-1β, TNF, T-bet, IL-4, GATA3, IL-17, RoRγ, TGF-β, and FOXP3 expression levels in splenocytes and an ELISA-based analysis of IFN-γ and IL-4 levels in cell culture supernatant of splenocytes were performed. Histopathological examinations of mice during the study were also conducted. The expression levels of T-bet, IL-4, GATA3, TGF-β, and FOXP3 in EAE + HCF mice were significantly higher compared to EAE + PBS mice. In the EAE + HCF group, the expression levels of IFN-γ, IL-1β, and TNF were significantly lower than in the EAE + PBS group. The histopathological results showed significantly reduced inflammation and demyelination in EAE + HCF mice compared to EAE + PBS mice. Our study provides proof-of-concept in the EAE mouse model of MS that helminth-derived products such as HCF have a potential prophylactic effect on MS development and present a novel potential therapeutic strategy.
Collapse
Affiliation(s)
- Maryam Hajizadeh
- Infectious and Tropical Disease Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran
| | - Aynaz Jabbari
- Infectious and Tropical Disease Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran
| | - Adel Spotin
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran (S.S.H.)
| | - Seyyed Sina Hejazian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran (S.S.H.)
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran
| | - Tahereh Mikaeili Galeh
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy 53464-58167, Iran
| | - Hadi Hassannia
- Immunogenetic Research Center, Faculty of Medicine and Amol Faculty of Paramedical Sciences, Mazandaran, University of Medical Sciences, Sari 48175-866, Iran
| | - Maryam Sahlolbei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran (S.S.H.)
| | - Abdol Sattar Pagheh
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand 14619-65381, Iran
| | - Ehsan Ahmadpour
- Infectious and Tropical Disease Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran (S.S.H.)
| |
Collapse
|
33
|
Guzman M, Geuther B, Sabnis G, Kumar V. Highly Accurate and Precise Determination of Mouse Mass Using Computer Vision. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.30.573718. [PMID: 38318203 PMCID: PMC10843158 DOI: 10.1101/2023.12.30.573718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Changes in body mass are a key indicator of health and disease in humans and model organisms. Animal body mass is routinely monitored in husbandry and preclinical studies. In rodent studies, the current best method requires manually weighing the animal on a balance which has at least two consequences. First, direct handling of the animal induces stress and can have confounding effects on studies. Second, the acquired mass is static and not amenable to continuous assessment, and rapid mass changes can be missed. A noninvasive and continuous method of monitoring animal mass would have utility in multiple areas of biomedical research. Here, we test the feasibility of determining mouse body mass using video data. We combine computer vision methods with statistical modeling to demonstrate the feasibility of our approach. Our methods determine mouse mass with 4.8% error across highly genetically diverse mouse strains, with varied coat colors and mass. This error is low enough to replace manual weighing with image-based assessment in most mouse studies. We conclude that visual determination of rodent mass using video enables noninvasive and continuous monitoring and can improve animal welfare and preclinical studies.
Collapse
|
34
|
Lim M, Fletcher NL, Saunus JM, McCart Reed AE, Chittoory H, Simpson PT, Thurecht KJ, Lakhani SR. Targeted Hyperbranched Nanoparticles for Delivery of Doxorubicin in Breast Cancer Brain Metastasis. Mol Pharm 2023; 20:6169-6183. [PMID: 37970806 PMCID: PMC10699306 DOI: 10.1021/acs.molpharmaceut.3c00558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
Breast cancer brain metastases (BM) are associated with a dismal prognosis and very limited treatment options. Standard chemotherapy is challenging in BM patients because the high dosage required for an effective outcome causes unacceptable systemic toxicities, a consequence of poor brain penetration, and a short physiological half-life. Nanomedicines have the potential to circumvent off-target toxicities and factors limiting the efficacy of conventional chemotherapy. The HER3 receptor is commonly expressed in breast cancer BM. Here, we investigate the use of hyperbranched polymers (HBP) functionalized with a HER3 bispecific-antibody fragment for cancer cell-specific targeting and pH-responsive release of doxorubicin (DOX) to selectively deliver and treat BM. We demonstrated that DOX-release from the HBP carrier was controlled, gradual, and greater in endosomal acidic conditions (pH 5.5) relative to physiologic pH (pH 7.4). We showed that the HER3-targeted HBP with DOX payload was HER3-specific and induced cytotoxicity in BT474 breast cancer cells (IC50: 17.6 μg/mL). Therapeutic testing in a BM mouse model showed that HER3-targeted HBP with DOX payload impacted tumor proliferation, reduced tumor size, and prolonged overall survival. HER3-targeted HBP level detected in ex vivo brain samples was 14-fold more than untargeted-HBP. The HBP treatments were well tolerated, with less cardiac and oocyte toxicity compared to free DOX. Taken together, our HER3-targeted HBP nanomedicine has the potential to deliver chemotherapy to BM while reducing chemotherapy-associated toxicities.
Collapse
Affiliation(s)
- Malcolm Lim
- UQ
Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Herston, Queensland 4006, Australia
| | - Nicholas L. Fletcher
- Centre
for Advanced Imaging, The University of
Queensland, Brisbane, St. Lucia, Queensland 4072, Australia
- Australian
Research Council Training Centre for Innovation in Biomedical Imaging
Technology, The University of Queensland,
Brisbane, St. Lucia, Queensland 4072, Australia
- Australian
Research Council Centre of Excellence in Convergent Bio-Nano Science
and Technology, The University of Queensland,
Brisbane, St. Lucia, Queensland 4072, Australia
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia
| | - Jodi M. Saunus
- UQ
Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Herston, Queensland 4006, Australia
| | - Amy E. McCart Reed
- UQ
Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Herston, Queensland 4006, Australia
| | - Haarika Chittoory
- UQ
Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Herston, Queensland 4006, Australia
| | - Peter T. Simpson
- UQ
Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Herston, Queensland 4006, Australia
| | - Kristofer J. Thurecht
- Centre
for Advanced Imaging, The University of
Queensland, Brisbane, St. Lucia, Queensland 4072, Australia
- Australian
Research Council Training Centre for Innovation in Biomedical Imaging
Technology, The University of Queensland,
Brisbane, St. Lucia, Queensland 4072, Australia
- Australian
Research Council Centre of Excellence in Convergent Bio-Nano Science
and Technology, The University of Queensland,
Brisbane, St. Lucia, Queensland 4072, Australia
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia
| | - Sunil R. Lakhani
- UQ
Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Herston, Queensland 4006, Australia
- Pathology
Queensland, Royal Brisbane and Women’s
Hospital, Herston, Queensland 4006, Australia
| |
Collapse
|
35
|
Ferreira-Duarte M, Tonin FS, Duarte-Araújo M, Fernandez-Llimos F, Morato M. Heterogeneity in protocols and outcomes to study the effect of renin-angiotensin system blockers in inflammatory bowel disease: A systematic review. Fundam Clin Pharmacol 2023; 37:1139-1152. [PMID: 37394277 DOI: 10.1111/fcp.12935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/25/2023] [Accepted: 06/13/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND The renin-angiotensin system (RAS) has been associated with inflammatory bowel disease (IBD), supporting translational relevance of RAS blockers. Comparability of study design/outcomes is fundamental for data analysis/discussion. OBJECTIVES We aimed at evaluating the heterogeneity among protocols and outcomes to study the effect of angiotensin-converting enzyme inhibitors or angiotensin receptor blockers in IBD. METHODS This study was performed and reported in accordance with the Cochrane recommendations and PRISMA (PROSPERO-CRD42022323853). Systematic searches were performed in PubMed, Scopus and Web of Science. Studies that met the inclusion criteria were selected. Quality assessment of the studies was done with the SYRCLES's risk of bias tools for animal studies. RESULTS Thirty-five pre-clinical studies and six clinical studies were included. Chemical induction of colitis was the most used model, but variable doses of the induction agent were reported. All studies reported at least a disease activity index, a macroscopic score, or a histologic assessment, but these scores were methodologically heterogeneous and reported for different characteristics. Great heterogeneity was also found in drug interventions. Inflammatory markers assessed as outcomes were different across studies. CONCLUSION Lack of standardization of protocols and outcomes among studies threatens the evidence on how RAS blockers influence IBD outcomes.
Collapse
Affiliation(s)
- Mariana Ferreira-Duarte
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- LAQV@REQUIMTE, University of Porto, Porto, Portugal
| | - Fernanda S Tonin
- ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
- H&TRC-Health and Technology Research Center, Instituto Politécnico de Lisboa, Lisbon, Portugal
| | - Margarida Duarte-Araújo
- LAQV@REQUIMTE, University of Porto, Porto, Portugal
- Department of Immuno-Physiology and Pharmacology, School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Fernando Fernandez-Llimos
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- UCIBIO i4HB - Applied Molecular Biosciences Unit, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Manuela Morato
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- LAQV@REQUIMTE, University of Porto, Porto, Portugal
| |
Collapse
|
36
|
Collins HM, Pinacho R, Tam SKE, Sharp T, Bannerman DM, Peirson SN. Continuous home cage monitoring of activity and sleep in mice during repeated paroxetine treatment and discontinuation. Psychopharmacology (Berl) 2023; 240:2403-2418. [PMID: 37584734 PMCID: PMC10593620 DOI: 10.1007/s00213-023-06442-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/27/2023] [Indexed: 08/17/2023]
Abstract
RATIONALE Non-invasive home cage monitoring is emerging as a valuable tool to assess the effects of experimental interventions on mouse behaviour. A field in which these techniques may prove useful is the study of repeated selective serotonin reuptake inhibitor (SSRI) treatment and discontinuation. SSRI discontinuation syndrome is an under-researched condition that includes the emergence of sleep disturbances following treatment cessation. OBJECTIVES We used passive infrared (PIR) monitoring to investigate changes in activity, sleep, and circadian rhythms during repeated treatment with the SSRI paroxetine and its discontinuation in mice. METHODS Male mice received paroxetine (10 mg/kg/day, s.c.) for 12 days, then were swapped to saline injections for a 13 day discontinuation period and compared to mice that received saline injections throughout. Mice were continuously tracked using the Continuous Open Mouse Phenotyping of Activity and Sleep Status (COMPASS) system. RESULTS Repeated paroxetine treatment reduced activity and increased behaviourally-defined sleep in the dark phase. These effects recovered to saline-control levels within 24 h of paroxetine cessation, yet there was also evidence of a lengthening of sleep bouts in the dark phase for up to a week following discontinuation. CONCLUSIONS This study provides the first example of how continuous non-invasive home cage monitoring can be used to detect objective behavioural changes in activity and sleep during and after drug treatment in mice. These data suggest that effects of paroxetine administration reversed soon after its discontinuation but identified an emergent change in sleep bout duration, which could be used as a biomarker in future preclinical studies to prevent or minimise SSRI discontinuation symptoms.
Collapse
Affiliation(s)
- Helen M Collins
- University Department of Pharmacology, Oxford, UK
- University Department of Experimental Psychology, Oxford, UK
| | - Raquel Pinacho
- University Department of Pharmacology, Oxford, UK
- University Department of Experimental Psychology, Oxford, UK
| | - S K Eric Tam
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford, OX1 3QU, UK
| | - Trevor Sharp
- University Department of Pharmacology, Oxford, UK
| | | | - Stuart N Peirson
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
37
|
Ballon Romero SS, Fuh LJ, Hung SY, Lee YC, Huang YC, Chien SY, Chen YH. Electroacupuncture exerts prolonged analgesic and neuroprotective effects in a persistent dental pain model induced by multiple dental pulp injuries: GABAergic interneurons-astrocytes interaction. Front Immunol 2023; 14:1213710. [PMID: 37954604 PMCID: PMC10639134 DOI: 10.3389/fimmu.2023.1213710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/03/2023] [Indexed: 11/14/2023] Open
Abstract
Pain within the trigeminal system, particularly dental pain, is poorly understood. This study aimed to determine whether single or multiple dental pulp injuries induce persistent pain, its association with trigeminal central nociceptive pathways and whether electroacupuncture (EA) provides prolonged analgesic and neuroprotective effects in a persistent dental pain model. Models of single dental pulp injury (SDPI) and multiple dental pulp injuries (MDPI) were used to induce trigeminal neuropathic pain. The signs of dental pain-related behavior were assessed using the mechanical head withdrawal threshold (HWT). Immunofluorescence and western blot protocols were used to monitor astrocyte activation, changes in apoptosis-related proteins, and GABAergic interneuron plasticity. SDPI mice exhibited an initial marked decrease in HWT from days one to 14, followed by progressive recovery from days 21 to 42. From days 49 to 70, the HWT increased and returned to the control values. In contrast, MDPI mice showed a persistent decrease in HWT from days one to 70. MDPI increased glial fibrillary acidic protein (GFAP) and decreased glutamine synthetase (GS) and glutamate transporter-1 (GLT1) expression in the Vi/Vc transition zone of the brainstem on day 70, whereas no changes in astrocytic markers were observed on day 70 after SDPI. Increased expression of cleaved cysteine-aspartic protease-3 (cleaved caspase-3) and Bcl-2-associated X protein (Bax), along with decreased B-cell lymphoma/leukemia 2 (Bcl-2), were observed at day 70 after MDPI but not after SDPI. The downregulation of glutamic acid decarboxylase (GAD65) expression was observed on day 70 only after MDPI. The effects of MDPI-induced lower HWT from days one to 70 were attenuated by 12 sessions of EA treatment (days one to 21 after MDPI). Changes in astrocytic GFAP, GS, and GLT-1, along with cleaved caspase-3, Bax, Bcl-2, and GAD65 expression observed 70 days after MDPI, were reversed by EA treatment. The results suggest that persistent dental pain in mice was induced by MDPI but not by SDPI. This effect was associated with trigeminal GABAergic interneuron plasticity along with morphological and functional changes in astrocytes. EA exerts prolonged analgesic and neuroprotective effects that might be associated with the modulation of neuron-glia crosstalk mechanisms.
Collapse
Affiliation(s)
| | - Lih-Jyh Fuh
- School of Dentistry, College of Dentistry, China Medical University, Taichung, Taiwan
| | - Shih-Ya Hung
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
- Division of Surgery, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Chen Lee
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
- Department of Acupuncture, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Chuen Huang
- Department of Medical Research, China Medical University Hospital, School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Szu-Yu Chien
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
| | - Yi-Hung Chen
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
- Department of Photonics and Communication Engineering, Asia University, Taichung, Taiwan
| |
Collapse
|
38
|
Reiber M, von Schumann L, Buchecker V, Boldt L, Gass P, Bleich A, Talbot SR, Potschka H. Evidence-based comparative severity assessment in young and adult mice. PLoS One 2023; 18:e0285429. [PMID: 37862304 PMCID: PMC10588901 DOI: 10.1371/journal.pone.0285429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/21/2023] [Indexed: 10/22/2023] Open
Abstract
In animal-based research, welfare assessments are essential for ethical and legal reasons. However, accurate assessment of suffering in laboratory animals is often complicated by the multidimensional character of distress and pain and the associated affective states. The present study aimed to design and validate multidimensional composite measure schemes comprising behavioral and biochemical parameters based on a bioinformatics approach. Published data sets from induced and genetic mouse models of neurological and psychiatric disorders were subjected to a bioinformatics workflow for cross-model analyses. ROC analyses pointed to a model-specific discriminatory power of selected behavioral parameters. Principal component analyses confirmed that the composite measure schemes developed for adult or young mice provided relevant information with the level of group separation reflecting the expected severity levels. Finally, the validity of the composite measure schemes developed for adult and young mice was further confirmed by k-means-based clustering as a basis for severity classification. The classification systems allowed the allocation of individual animals to different severity levels and a direct comparison of animal groups and other models. In conclusion, the bioinformatics approach confirmed the suitability of the composite measure schemes for evidence-based comparative severity assessment in adult and young mice. In particular, we demonstrated that the composite measure schemes provide a basis for an individualized severity classification in control and experimental groups allowing direct comparison of severity levels across different induced or genetic models. An online tool (R package) is provided, allowing the application of the bioinformatics approach to severity assessment data sets regardless of the parameters or models used. This tool can also be used to validate refinement measures.
Collapse
Affiliation(s)
- Maria Reiber
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Lara von Schumann
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Verena Buchecker
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Lena Boldt
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Peter Gass
- RG Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Andre Bleich
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - Steven Roger Talbot
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| |
Collapse
|
39
|
He W, Gu A, Wang D. Four-week repeated exposure to tire-derived 6-PPD quinone causes multiple organ injury in male BALB/c mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 894:164842. [PMID: 37336398 DOI: 10.1016/j.scitotenv.2023.164842] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/11/2023] [Accepted: 06/10/2023] [Indexed: 06/21/2023]
Abstract
N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6-PPDQ) is the ozonation product of tire antioxidant 6-PPD. 6-PPDQ can be detected in different environments, such as roadway runoff and dust. Although 6-PPDQ toxicity has been frequently assessed in aquatic organisms, the possible toxic effects of 6-PPDQ on mammals remain largely unclear. We here aimed to perform systematic assessment to evaluate 6-PPDQ toxicity on multiple organs in mice. Male BALB/c mice were intraperitoneally injected with 6-PPDQ for two exposure modes, single intraperitoneal injection and repeated intraperitoneal injection every four days for 28 days. Serum, liver, kidney, lung, spleen, testis, brain, and heart were collected for injury evaluation by organ index, histopathology analysis and biochemical parameters. In 0.4 and 4 mg/kg 6-PPDQ single injected mice, no significant changes in organ indexes and biochemical parameters were detected, and only moderate pathological changes were observed in organs of liver, kidney, lung, and brain. Very different from this, in 0.4 and 4 mg/kg 6-PPDQ repeated injected mice, we observed the obvious increase in organ indexes of liver, kidney, lung, testis, and brain, and the decrease in spleen index. Meanwhile, the significant pathological changes were formed in liver, kidney, lung, spleen, testis, and brain in 0.4 and 4 mg/kg 6-PPDQ repeated injected mice. Biochemical parameters of liver (alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP)) and kidney (urea and creatinine) were all significantly upregulated by repeated injection with 0.4 and 4 mg/kg 6-PPDQ. After repeated exposure, most of 6-PPDQ was accumulated in liver and lung of mice. Therefore, our results suggested the risk of repeated exposure to 6-PPDQ in inducing toxicity on multiple organs in mice.
Collapse
Affiliation(s)
- Wenmiao He
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China; School of Public Health, Nanjing Medical University, Nanjing, China
| | - Aihua Gu
- School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China.
| |
Collapse
|
40
|
Fletcher E, Miserlis D, Sorokolet K, Wilburn D, Bradley C, Papoutsi E, Wilkinson T, Ring A, Ferrer L, Haynatzki G, Smith RS, Bohannon WT, Koutakis P. Diet-induced obesity augments ischemic myopathy and functional decline in a murine model of peripheral artery disease. Transl Res 2023; 260:17-31. [PMID: 37220835 PMCID: PMC11388035 DOI: 10.1016/j.trsl.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/25/2023]
Abstract
Peripheral artery disease (PAD) causes an ischemic myopathy contributing to patient disability and mortality. Most preclinical models to date use young, healthy rodents with limited translatability to human disease. Although PAD incidence increases with age, and obesity is a common comorbidity, the pathophysiologic association between these risk factors and PAD myopathy is unknown. Using our murine model of PAD, we sought to elucidate the combined effect of age, diet-induced obesity and chronic hindlimb ischemia (HLI) on (1) mobility, (2) muscle contractility, and markers of muscle (3) mitochondrial content and function, (4) oxidative stress and inflammation, (5) proteolysis, and (6) cytoskeletal damage and fibrosis. Following 16-weeks of high-fat, high-sucrose, or low-fat, low-sucrose feeding, HLI was induced in 18-month-old C57BL/6J mice via the surgical ligation of the left femoral artery at 2 locations. Animals were euthanized 4-weeks post-ligation. Results indicate mice with and without obesity shared certain myopathic changes in response to chronic HLI, including impaired muscle contractility, altered mitochondrial electron transport chain complex content and function, and compromised antioxidant defense mechanisms. However, the extent of mitochondrial dysfunction and oxidative stress was significantly greater in obese ischemic muscle compared to non-obese ischemic muscle. Moreover, functional impediments, such as delayed post-surgical recovery of limb function and reduced 6-minute walking distance, as well as accelerated intramuscular protein breakdown, inflammation, cytoskeletal damage, and fibrosis were only evident in mice with obesity. As these features are consistent with human PAD myopathy, our model could be a valuable tool to test new therapeutics.
Collapse
Affiliation(s)
- Emma Fletcher
- Department of Biology, Baylor University, Waco, Texas
| | - Dimitrios Miserlis
- Department of Surgery, University of Texas at Austin Dell Medical School, Austin, Texas
| | | | - Dylan Wilburn
- Department of Health, Human Performance and Recreation, Baylor University, Waco, Texas
| | | | | | | | - Andrew Ring
- Department of Biology, Baylor University, Waco, Texas
| | - Lucas Ferrer
- Department of Surgery, University of Texas at Austin Dell Medical School, Austin, Texas
| | - Gleb Haynatzki
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, Nebraska
| | - Robert S Smith
- Department of Surgery, Baylor Scott & White Medical Center, Temple, Texas
| | - William T Bohannon
- Department of Surgery, Baylor Scott & White Medical Center, Temple, Texas
| | | |
Collapse
|
41
|
Florkowski MR, Hamer SA, Yorzinski JL. Brief exposure to captivity in a songbird is associated with reduced diversity and altered composition of the gut microbiome. FEMS Microbiol Ecol 2023; 99:fiad096. [PMID: 37586886 DOI: 10.1093/femsec/fiad096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 06/07/2023] [Accepted: 08/14/2023] [Indexed: 08/18/2023] Open
Abstract
The gut microbiome is important for host fitness and is influenced by many factors including the host's environment. Captive environments could potentially influence the richness and composition of the microbiome and understanding these effects could be useful information for the care and study of millions of animals in captivity. While previous studies have found that the microbiome often changes due to captivity, they have not examined how quickly these changes can occur. We predicted that the richness of the gut microbiome of wild-caught birds would decrease with brief exposure to captivity and that their microbiome communities would become more homogeneous. To test these predictions, we captured wild house sparrows (Passer domesticus) and collected fecal samples to measure their gut microbiomes immediately after capture ("wild sample") and again 5-10 days after capture ("captive sample"). There were significant differences in beta diversity between the wild and captive samples, and captive microbiome communities were more homogenous but only when using nonphylogenetic measures. Alpha diversity of the birds' microbiomes also decreased in captivity. The functional profiles of the microbiome changed, possibly reflecting differences in stress or the birds' diets before and during captivity. Overall, we found significant changes in the richness and composition of the microbiome after only a short exposure to captivity. These findings highlight the necessity of considering microbiome changes in captive animals for research and conservation purposes.
Collapse
Affiliation(s)
- Melanie R Florkowski
- Ecology and Evolutionary Biology Program, Texas A&M University, 534 John Kimbrough Blvd, College Station, TX 77845, United States
| | - Sarah A Hamer
- Ecology and Evolutionary Biology Program, Texas A&M University, 534 John Kimbrough Blvd, College Station, TX 77845, United States
- Schubot Center for Avian Health, Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 701 Farm to Market Service Road, College Station, TX 77840, United States
| | - Jessica L Yorzinski
- Ecology and Evolutionary Biology Program, Texas A&M University, 534 John Kimbrough Blvd, College Station, TX 77845, United States
- Department of Ecology and Conservation Biology, Texas A&M University, 534 John Kimbrough Blvd, College Station, TX 77845, United States
| |
Collapse
|
42
|
Pérez-Martín E, Coto-Vilcapoma A, Castilla-Silgado J, Rodríguez-Cañón M, Prado C, Álvarez G, Álvarez-Vega MA, Fernández-García B, Menéndez-González M, Tomás-Zapico C. Refining Stereotaxic Neurosurgery Techniques and Welfare Assessment for Long-Term Intracerebroventricular Device Implantation in Rodents. Animals (Basel) 2023; 13:2627. [PMID: 37627418 PMCID: PMC10452028 DOI: 10.3390/ani13162627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Stereotaxic surgeries enable precise access to specific brain regions, being of particular interest for chronic intracerebroventricular drug delivery. However, the challenge of long-term studies at this level is to allow the implantation of drug storage devices and their correct intrathecal connection while guaranteeing animal welfare during the entire study period. In this study, we propose an optimized method for safe intrathecal device implantation, focusing on preoperative, intraoperative, and postoperative procedures, following the 3Rs principle and animal welfare regulations. Our optimized protocol introduces three main refinements. Firstly, we modify the dimensions of the implantable devices, notably diminishing the device-to-mouse weight ratio. Secondly, we use a combination of cyanoacrylate tissue adhesive and UV light-curing resin, which decreases surgery time, improves healing, and notably minimizes cannula detachment or adverse effects. Thirdly, we develop a customized welfare assessment scoresheet to accurately monitor animal well-being during long-term implantations. Taken together, these refinements positively impacted animal welfare by minimizing the negative effects on body weight, surgery-related complications, and anxiety-like behaviors. Overall, the proposed refinements have the potential to reduce animal use, enhance experimental data quality, and improve reproducibility. Additionally, these improvements can be extended to other neurosurgical techniques, thereby advancing neuroscience research, and benefiting the scientific community.
Collapse
Affiliation(s)
- Ester Pérez-Martín
- Neuroscience Innovative Technologies S.L., Neurostech, 33428 Llanera, Spain (C.P.)
| | - Almudena Coto-Vilcapoma
- Departamento de Biología Funcional, Área de Fisiología, Universidad de Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Juan Castilla-Silgado
- Departamento de Biología Funcional, Área de Fisiología, Universidad de Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | | | - Catuxa Prado
- Neuroscience Innovative Technologies S.L., Neurostech, 33428 Llanera, Spain (C.P.)
| | - Gabriel Álvarez
- Neuroscience Innovative Technologies S.L., Neurostech, 33428 Llanera, Spain (C.P.)
| | - Marco Antonio Álvarez-Vega
- Departamento de Cirugía, Área de Cirugía, Universidad de Oviedo, 33006 Oviedo, Spain
- Servicio de Neurocirugía, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Benjamín Fernández-García
- Departamento de Biología Funcional, Área de Fisiología, Universidad de Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Departamento de Morfología y Biología Celular, Área de Anatomía, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Manuel Menéndez-González
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Servicio de Neurología, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Departamento de Medicina, Universidad de Oviedo, 33011 Oviedo, Spain
| | - Cristina Tomás-Zapico
- Departamento de Biología Funcional, Área de Fisiología, Universidad de Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
43
|
Boaro A, Ageitos L, Torres MDT, Blasco EB, Oztekin S, de la Fuente-Nunez C. Structure-function-guided design of synthetic peptides with anti-infective activity derived from wasp venom. CELL REPORTS. PHYSICAL SCIENCE 2023; 4:101459. [PMID: 38239869 PMCID: PMC10795512 DOI: 10.1016/j.xcrp.2023.101459] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
Antimicrobial peptides (AMPs) derived from natural toxins and venoms offer a promising alternative source of antibiotics. Here, through structure-function-guided design, we convert two natural AMPs derived from the venom of the solitary eumenine wasp Eumenes micado into α-helical AMPs with reduced toxicity that kill Gram-negative bacteria in vitro and in a preclinical mouse model. To identify the sequence determinants conferring antimicrobial activity, an alanine scan screen and strategic single lysine substitutions are made to the amino acid sequence of these natural peptides. These efforts yield a total of 34 synthetic derivatives, including alanine substituted and lysine-substituted sequences with stabilized α-helical structures and increased net positive charge. The resulting lead synthetic peptides kill the Gram-negative pathogens Escherichia coli and Pseudomonas aeruginosa (PAO1 and PA14) by rapidly permeabilizing both their outer and cytoplasmic membranes, exhibit anti-infective efficacy in a mouse model by reducing bacterial loads by up to three orders of magnitude, and do not readily select for bacterial resistance.
Collapse
Affiliation(s)
- Andreia Boaro
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Present address: Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo 09210-580, Brazil
- These authors contributed equally
| | - Lucía Ageitos
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Present address: CICA - Centro Interdisciplinar de Química e Bioloxía, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15008 A Coruña, Spain
- These authors contributed equally
| | - Marcelo Der Torossian Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Esther Broset Blasco
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sebahat Oztekin
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Present address: Faculty of Engineering, Department of Food Engineering, Bayburt University, Bayburt 69000, Turkey
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Lead contact
| |
Collapse
|
44
|
Azaman FA, Brennan Fournet ME, Sheikh Ab Hamid S, Zawawi MSF, da Silva Junior VA, Devine DM. Enhancement of Scaffold In Vivo Biodegradability for Bone Regeneration Using P28 Peptide Formulations. Pharmaceuticals (Basel) 2023; 16:876. [PMID: 37375823 DOI: 10.3390/ph16060876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
The field of bone tissue engineering has shown a great variety of bone graft substitute materials under development to date, with the aim to reconstruct new bone tissue while maintaining characteristics close to the native bone. Currently, insufficient scaffold degradation remains the critical limitation for the success of tailoring the bone formation turnover rate. This study examines novel scaffold formulations to improve the degradation rate in vivo, utilising chitosan (CS), hydroxyapatite (HAp) and fluorapatite (FAp) at different ratios. Previously, the P28 peptide was reported to present similar, if not better performance in new bone production to its native protein, bone morphogenetic protein-2 (BMP-2), in promoting osteogenesis in vivo. Therefore, various P28 concentrations were incorporated into the CS/HAp/FAp scaffolds for implantation in vivo. H&E staining shows minimal scaffold traces in most of the defects induced after eight weeks, showing the enhanced biodegradability of the scaffolds in vivo. The HE stain highlighted the thickened periosteum indicating a new bone formation in the scaffolds, where CS/HAp/FAp/P28 75 µg and CS/HAp/FAp/P28 150 µg showed the cortical and trabecular thickening. CS/HAp/FAp 1:1 P28 150 µg scaffolds showed a higher intensity of calcein green label with the absence of xylenol orange label, which indicates that mineralisation and remodelling was not ongoing four days prior to sacrifice. Conversely, double labelling was observed in the CS/HAp/FAp 1:1 P28 25 µg and CS/HAp/FAp/P28 75 µg, which indicates continued mineralisation at days ten and four prior to sacrifice. Based on the HE and fluorochrome label, CS/HAp/FAp 1:1 with P28 peptides presented a consistent positive osteoinduction following the implantation in the femoral condyle defects. These results show the ability of this tailored formulation to improve the scaffold degradation for bone regeneration and present a cost-effective alternative to BMP-2.
Collapse
Affiliation(s)
- Farah Alwani Azaman
- PRISM Research Institute, Technological University of the Shannon (TUS), N37 HD68 Athlone, Ireland
- Tissue Bank, School of Medical Sciences, Health Campus, Universiti Sains Malaysia (USM), 16150 Kota Bharu, Malaysia
| | | | - Suzina Sheikh Ab Hamid
- Tissue Bank, School of Medical Sciences, Health Campus, Universiti Sains Malaysia (USM), 16150 Kota Bharu, Malaysia
| | - Muhamad Syahrul Fitri Zawawi
- Tissue Bank, School of Medical Sciences, Health Campus, Universiti Sains Malaysia (USM), 16150 Kota Bharu, Malaysia
| | | | - Declan M Devine
- PRISM Research Institute, Technological University of the Shannon (TUS), N37 HD68 Athlone, Ireland
| |
Collapse
|
45
|
Abdulrasheed-Adeleke T, Lawal B, Agwupuye EI, Kuo Y, Eni AM, Ekoh OF, Lukman HY, Onikanni AS, Olawale F, Saidu S, Ibrahim YO, Al Ghamdi MAS, Aggad SS, Alsayegh AA, Aljarba NH, Batiha GES, Wu AT, Huang HS. Apigetrin-enriched Pulmeria alba extract prevents assault of STZ on pancreatic β-cells and neuronal oxidative stress with concomitant attenuation of tissue damage and suppression of inflammation in the brain of diabetic rats. Biomed Pharmacother 2023; 162:114582. [PMID: 36989727 DOI: 10.1016/j.biopha.2023.114582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
In the present study, in vitro, in vivo, and in silico models were used to evaluate the therapeutic potential of Pulmeria alba methanolic (PAm) extract, and we identified the major phytocompound, apigetrin. Our in vitro studies revealed dose-dependent increased glucose uptake and inhibition of α-amylase (50% inhibitory concentration (IC50)= 217.19 µg/mL), antioxidant (DPPH, ferric-reducing activity of plasma (FRAP), and lipid peroxidation (LPO) [IC50 = 103.23, 58.72, and 114.16 µg/mL respectively]), and anti-inflammatory potential (stabilizes human red blood cell (HRBC) membranes, and inhibits proteinase and protein denaturation [IC50 = 143.73, 131.63, and 198.57 µg/mL]) by the PAm extract. In an in vivo model, PAm treatment reversed hyperglycemia and attenuated insulin deficiency in rats with streptozotocin (STZ)-induced diabetes. A post-treatment tissue analysis revealed that PAm attenuated neuronal oxidative stress, neuronal inflammation, and neuro-cognitive deficiencies. This was evidenced by increased levels of antioxidants enzymes (superoxide dismutase (SOD), catalase (CAT), and reduced glutathione (GSH)), and decreased malondialdehyde (MDA), proinflammatory markers (cyclooxygenase 2 (COX2), nuclear factor (NF)-κB and nitric oxide (NOx)), and acetylcholinesterase (AChE) activities in the brain of PAm-treated rats compared to the STZ-induced diabetic controls. However, no treatment-related changes were observed in levels of neurotransmitters, including serotonin and dopamine. Furthermore, STZ-induced dyslipidemia and alterations in serum biochemical markers of hepatorenal dysfunction were also reversed by PAm treatment. Extract characterization identified apigetrin (retention time: 21,227 s, 30.48%, m/z: 433.15) as the major bioactive compound in the PAm extract. Consequently, we provide in silico insights into the potential of apigetrin to target AChE/COX-2/NOX/NF-κB Altogether the present study provides preclinical evidence of the therapeutic potential of the apigetrin-enriched PAm extract for treating oxidative stress and neuro-inflammation associated with diabetes.
Collapse
|
46
|
Rivera CE, Zhou Y, Chupp DP, Yan H, Fisher AD, Simon R, Zan H, Xu Z, Casali P. Intrinsic B cell TLR-BCR linked coengagement induces class-switched, hypermutated, neutralizing antibody responses in absence of T cells. SCIENCE ADVANCES 2023; 9:eade8928. [PMID: 37115935 PMCID: PMC10146914 DOI: 10.1126/sciadv.ade8928] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/23/2023] [Indexed: 05/03/2023]
Abstract
Maturation of antibody responses entails somatic hypermutation (SHM), class-switch DNA recombination (CSR), plasma cell differentiation, and generation of memory B cells, and it is thought to require T cell help. We showed that B cell Toll-like receptor 4 (TLR4)-B cell receptor (BCR) (receptor for antigen) coengagement by 4-hydroxy-3-nitrophenyl acetyl (NP)-lipopolysaccharide (LPS) (Escherichia coli lipid A polysaccharide O-antigen) or TLR5-BCR coengagement by Salmonella flagellin induces mature antibody responses to NP and flagellin in Tcrβ-/-Tcrδ-/- and NSG/B mice. TLR-BCR coengagement required linkage of TLR and BCR ligands, "linked coengagement." This induced B cell CSR/SHM, germinal center-like differentiation, clonal expansion, intraconal diversification, plasma cell differentiation, and an anamnestic antibody response. In Tcrβ-/-Tcrδ-/- mice, linked coengagement of TLR4-BCR by LPS or TLR5-BCR by flagellin induced protective antibodies against E. coli or Salmonella Typhimurium. Our findings unveiled a critical role of B cell TLRs in inducing neutralizing antibody responses, including those to microbial pathogens, without T cell help.
Collapse
Affiliation(s)
- Carlos E. Rivera
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX 78229, USA
| | - Yulai Zhou
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX 78229, USA
| | - Daniel P. Chupp
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX 78229, USA
| | - Hui Yan
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX 78229, USA
| | - Amanda D. Fisher
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX 78229, USA
| | - Raphael Simon
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Hong Zan
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX 78229, USA
| | - Zhenming Xu
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX 78229, USA
| | - Paolo Casali
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX 78229, USA
- Department of Medicine, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX 78229, USA
| |
Collapse
|
47
|
Dysregulated balance in Th17/Treg axis of Pristane-induced lupus mouse model, are mesenchymal stem cells therapeutic? Int Immunopharmacol 2023; 117:109699. [PMID: 36867923 DOI: 10.1016/j.intimp.2023.109699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 03/05/2023]
Abstract
BACKGROUND Despite advances in general and targeted immunosuppressive therapies, limiting all mainstay treatment options in refractory systemic lupus erythematosus (SLE) cases has necessitated the development of new therapeutic strategies. Mesenchymal stem cells (MSCs) have recently emerged with unique properties, including a solid propensity to reduce inflammation, exert immunomodulatory effects, and repair injured tissues. METHODS An animal model of acquired SLE mice was induced via intraperitoneal immunization with Pristane and affirmed by measuring specific biomarkers. Bone marrow (BM) MSCs were isolated from healthy BALB/c mice and cultured in vitro, then were identified and confirmed by flow cytometry and cytodifferentiation. Systemic MSCs transplantation was performed and then several parameters were analyzed and compared, including specific cytokines (IL-17, IL-4, IFN-ɣ, TGF-β) at the serum level, the percentage of Th cell subsets (Treg/Th17, Th1/Th2) in splenocytes, and also the relief of lupus nephritis, respectively by enzyme-linked immunosorbent assay (ELISA), flow cytometry analysis and by hematoxylin & eosin staining and also immunofluorescence assessment. Experiments were carried out with different initiation treatment time points (early and late stages of disease). Analysis of variance (ANOVA) followed by post hoc Tukey's test was used for multiple comparisons. RESULTS The rate of proteinuria, anti-double-stranded deoxyribonucleic acid (anti-dsDNA) antibodies, and serum creatinine levels decreased with BM-MSCs transplantation. These results were associated with attenuated lupus renal pathology in terms of reducing IgG and C3 deposition and lymphocyte infiltration. Our findings suggested that TGF-β (associated with lupus microenvironment) can contribute to MSC-based immunotherapy by modulating the population of TCD4+ cell subsets. Obtained results indicated that MSCs-based cytotherapy could negatively affect the progression of induced SLE by recovering the function of Treg cells, suppressing Th1, Th2, and Th17 lymphocyte function, and downregulating their pro-inflammatory cytokines. CONCLUSION MSC-based immunotherapy showed a delayed effect on the progression of acquired SLE in a lupus microenvironment-dependent manner. Allogenic MSCs transplantation revealed the ability to re-establish the balance of Th17/Treg, Th1/Th2 and restore the plasma cytokines network in a pattern dependent on disease conditions. The conflicting results of early versus advanced therapy suggest that MSCs may produce different effects depending on when they are administered and their activation status.
Collapse
|
48
|
Talbot SR, Kumstel S, Schulz B, Tang G, Abdelrahman A, Seume N, Wendt EHU, Eichberg J, Häger C, Bleich A, Vollmar B, Zechner D. Robustness of a multivariate composite score when evaluating distress of animal models for gastrointestinal diseases. Sci Rep 2023; 13:2605. [PMID: 36788346 PMCID: PMC9929045 DOI: 10.1038/s41598-023-29623-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
The fundament of an evidence-based severity assessment in laboratory animal science is reliable distress parameters. Many readouts are used to evaluate and determine animal distress and the severity of experimental procedures. Therefore, we analyzed four distinct parameters like the body weight, burrowing behavior, nesting, and distress score in the four gastrointestinal animal models (pancreatic ductal adenocarcinoma (PDA), pancreatitis, CCl4 intoxication, and bile duct ligation (BDL)). Further, we determined the parameters' robustness in various experimental subgroups due to slight variations like drug treatment or telemeter implantations. We used non-parametric bootstrapping to get robust estimates and 95% confidence intervals for the experimental groups. It was found that the performance of the readout parameters is model-dependent and that the distress score is prone to experimental variation. On the other hand, we also found that burrowing and nesting can be more robust than, e.g., the body weight when evaluating PDA. However, the body weight still was highly robust in BDL, pancreatitis, and CCl4 intoxication. To address the complex nature of the multi-dimensional severity space, we used the Relative Severity Assessment (RELSA) procedure to combine multiple distress parameters into a score and mapped the subgroups and models against a defined reference set obtained by telemeter implantation. This approach allowed us to compare the severity of individual animals in the experimental subgroups using the maximum achieved severity (RELSAmax). With this, the following order of severity was found for the animal models: CCl4 < PDA ≈ Pancreatitis < BDL. Furthermore, the robustness of the RELSA procedure and outcome was externally validated with a reference set from another laboratory also obtained from telemeter implantation. Since the RELSA procedure reflects the multi-dimensional severity information and is highly robust in estimating the quantitative severity within and between models, it can be deemed a valuable tool for laboratory animal severity assessment.
Collapse
Affiliation(s)
- Steven R Talbot
- Hannover Medical School, Institute for Laboratory Animal Science, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
| | - Simone Kumstel
- Rostock University Medical Center, Rudolf-Zenker-Institute for Experimental Surgery, Schillingallee 69a, 18057, Rostock, Germany
| | - Benjamin Schulz
- Rostock University Medical Center, Rudolf-Zenker-Institute for Experimental Surgery, Schillingallee 69a, 18057, Rostock, Germany
| | - Guanglin Tang
- Rostock University Medical Center, Rudolf-Zenker-Institute for Experimental Surgery, Schillingallee 69a, 18057, Rostock, Germany
| | - Ahmed Abdelrahman
- Rostock University Medical Center, Rudolf-Zenker-Institute for Experimental Surgery, Schillingallee 69a, 18057, Rostock, Germany
| | - Nico Seume
- Rostock University Medical Center, Rudolf-Zenker-Institute for Experimental Surgery, Schillingallee 69a, 18057, Rostock, Germany
| | - Edgar H U Wendt
- Rostock University Medical Center, Rudolf-Zenker-Institute for Experimental Surgery, Schillingallee 69a, 18057, Rostock, Germany
| | - Johanna Eichberg
- Rostock University Medical Center, Rudolf-Zenker-Institute for Experimental Surgery, Schillingallee 69a, 18057, Rostock, Germany
| | - Christine Häger
- Hannover Medical School, Institute for Laboratory Animal Science, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - André Bleich
- Hannover Medical School, Institute for Laboratory Animal Science, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Brigitte Vollmar
- Rostock University Medical Center, Rudolf-Zenker-Institute for Experimental Surgery, Schillingallee 69a, 18057, Rostock, Germany
| | - Dietmar Zechner
- Rostock University Medical Center, Rudolf-Zenker-Institute for Experimental Surgery, Schillingallee 69a, 18057, Rostock, Germany
| |
Collapse
|
49
|
McGehee OC, Ebrahim HY, Rad AH, Abdelwahed KS, Mudhish EA, King JA, Helal IE, Meyer SA, El Sayed KA. Towards Developing Novel Prostate Cancer Recurrence Suppressors: Acute Toxicity of Pseurotin A, an Orally Active PCSK9 Axis-Targeting Small-Molecule in Swiss Albino Mice. Molecules 2023; 28:molecules28031460. [PMID: 36771126 PMCID: PMC9922019 DOI: 10.3390/molecules28031460] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
The proprotein convertase subtilisin kexin type 9 (PCSK9) emerged as a molecular target of great interest for the management of cardiovascular disorders due to its ability to reduce low density lipoprotein (LDL) cholesterol by binding and targeting at LDLR for lysosomal degradation in cells. Preliminary studies revealed that pseurotin A (PsA), a spiro-heterocyclic γ-lactam alkaloid from several marine and terrestrial Aspergillus and Penicillium species, has the ability to dually suppress the PCSK9 expression and protein-protein interaction (PPI) with LDLR, resulting in an anti-hypercholesterolemic effect and modulating the oncogenic role of PCSK9 axis in breast and prostate cancers progression and recurrence. Thus, a preliminary assessment of the PsA acute toxicity represents the steppingstone to develop PsA as a novel orally active PCSK9 axis modulating cancer recurrence inhibitor. PsA studies for in vitro toxicity on RWPE-1 and CCD 841 CoN human non-tumorigenic prostate and colon cells, respectively, indicated a cellular death shown at a 10-fold level of its reported anticancer activity. Moreover, a Western blot analysis revealed a significant downregulation of the pro-survival marker Bcl-2, along with the upregulation of the proapoptotic Bax and caspases 3/7, suggesting PsA-mediated induction of cell apoptosis at very high concentrations. The Up-and-Down methodology determined the PsA LD50 value of >550 mg/kg in male and female Swiss albino mice. Animals were orally administered single doses of PsA at 10, 250, and 500 mg/kg by oral gavage versus vehicle control. Mice were observed daily for 14 days with special care over the first 24 h after dosing to monitor any abnormalities in their behavioral, neuromuscular, and autonomic responses. After 14 days, the mice were euthanized, and their body and organ weights were recorded and collected. Mice plasma samples were subjected to comprehensive hematological and biochemical analyses. Collected mouse organs were histopathologically examined. No morbidity was detected following the PsA oral dosing. The 500 mg/kg female dosing group showed a 45% decrease in the body weight after 14 days but displayed no other signs of toxicity. The 250 mg/kg female dosing group had significantly increased serum levels of liver transaminases AST and ALT versus vehicle control. Moreover, a modest upregulation of apoptotic markers was observed in liver tissues of both animal sexes at 500 mg/kg dose level. However, a histopathological examination revealed no damage to the liver, kidneys, heart, brain, or lungs. While these findings suggest a possible sex-related toxicity at higher doses, the lack of histopathological injury implies that single oral doses of PsA, up to 50-fold the therapeutic dose, do not cause acute organ toxicity in mice though further studies are warranted.
Collapse
Affiliation(s)
- Oliver C. McGehee
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA
| | - Hassan Y. Ebrahim
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA
| | - Ashkan H. Rad
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA
| | - Khaldoun S. Abdelwahed
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA
| | - Ethar A. Mudhish
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA
| | - Judy A. King
- Department of Integrated Medical Education, Thomas F. Frist, Jr. College of Medicine, Belmont University, 1900 Belmont Boulevard, Nashville, TN 37212, USA
| | - Iman E. Helal
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA
| | - Sharon A. Meyer
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA
| | - Khalid A. El Sayed
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA
- Correspondence:
| |
Collapse
|
50
|
Nath P, Modak S, Aktar T, Maiti S, Ghosh A, Singh R, Debnath M, Saha B, Maiti D. Olive leaves extract alleviates inflammation and modifies the intrinsic apoptotic signal in the leukemic bone marrow. Front Immunol 2023; 13:1054186. [PMID: 36741365 PMCID: PMC9894250 DOI: 10.3389/fimmu.2022.1054186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/19/2022] [Indexed: 01/20/2023] Open
Abstract
Introduction Current anti-leukemic chemotherapies with multiple targets suffer from side effects. Synthetic drugs with huge off-target effects are detrimental to leukemic patients. Therefore, natural plant-based products are being increasingly tested for new anti-leukemic therapy with fewer or no side effects. Herein, we report the effect of ethanolic olive leaves extract (EOLE) on the K562 cell line and on the bone marrow (BM) of N-ethyl-N-nitrosourea (ENU)-induced leukemic mice. Methods Using standard methodologies, we assessed viability, chromatin condensation, and induction of apoptosis in EOLE-treated K562 cells in-vitro. The anti-leukemic activity of EOLE was assayed by measuring ROS, levels of various cytokines, expression of iNOS and COX-2 gene, and changes in the level of important apoptosis regulatory and cell signaling proteins in-vivo. Result K562 cells underwent apoptotic induction after exposure to EOLE. In the BM of leukemic mice, EOLE therapy decreased the number of blast cells, ROS generation, and expression of NF-κB and ERK1/2. IL-6, IL-1β, TNF-α, iNOS, and COX-2 were among the inflammatory molecules that were down-regulated by EOLE therapy. Additionally, it decreased the expression of anti-apoptotic proteins BCL2A1, BCL-xL, and MCL-1 in the BM of leukemic mice. Discussion Chronic inflammation and anomalous apoptotic mechanism both critically contribute to the malignant transformation of cells. Inflammation in the tumor microenvironment promotes the growth, survival, and migration of cancer cells, accelerating the disease. The current investigation showed that EOLE treatment reduces inflammation and alters the expression of apoptosis regulatory protein in the BM of leukemic mice, which may halt the progression of the disease.
Collapse
Affiliation(s)
- Priyatosh Nath
- Immunology Microbiology Laboratory, Department of Human Physiology, Tripura University, Agartala, Tripura, India
| | - Snehashish Modak
- Immunology Microbiology Laboratory, Department of Human Physiology, Tripura University, Agartala, Tripura, India
| | - Tamanna Aktar
- Immunology Microbiology Laboratory, Department of Human Physiology, Tripura University, Agartala, Tripura, India
| | - Sharanya Maiti
- Delhi Public School Megacity, Kolkata, West Bengal, India
| | - Anisha Ghosh
- Delhi Public School Megacity, Kolkata, West Bengal, India
| | - Riddha Singh
- Hariyana Vidyamandir, Kolkata, West Bengal, India
| | - Mousumi Debnath
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Bhaskar Saha
- National Centre for Cell Science, Pune, Maharashtra, India
| | - Debasish Maiti
- Immunology Microbiology Laboratory, Department of Human Physiology, Tripura University, Agartala, Tripura, India,*Correspondence: Debasish Maiti, ;
| |
Collapse
|