1
|
Chen P, Rehman MU, He Y, Li A, Jian F, Zhang L, Huang S. Exploring the interplay between Eimeria spp. infection and the host: understanding the dynamics of gut barrier function. Vet Q 2025; 45:1-22. [PMID: 39831548 PMCID: PMC11749151 DOI: 10.1080/01652176.2025.2452169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 07/23/2024] [Accepted: 01/04/2025] [Indexed: 01/22/2025] Open
Abstract
Coccidiosis is a global disease caused by protozoans, typically including Eimeria spp., which pose a significant threat to the normal growth and development of young animals. Coccidiosis affects mainly the gut, where parasite proliferation occurs. The intestinal barrier, which consists of chemical, mechanical, biological, and immune defences, plays a crucial role in protecting the host against pathogens, xenobiotics, and toxins present in the gastrointestinal tract. When animals ingest sporulated Eimeria spp. oocysts, these parasites primarily reproduce in the intestinal tract, causing damage to the structure and function of the intestine. This disruption of intestinal homeostasis adversely affects animal health. Numerous studies have also revealed that Eimeria-infected animals experience slower bone growth rates, inferior meat quality, reduced egg production and quality, as well as impaired growth and development. Therefore, the purpose of this review is to examine the underlying mechanisms through which Eimeria spp. regulate intestinal damage and disturb the balance of the internal environment. Specifically, this review will focus on their effects on the structural basis of the host intestine's chemical, mechanical, biological and immune barriers. This understanding is crucial for the development of effective drugs to prevent the invasion of Eimeria spp. into the intestine, which is of paramount importance for maintaining host health.
Collapse
Affiliation(s)
- Pan Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Mujeeb Ur Rehman
- Directorate Planning & Development, Livestock & Dairy Development Department Balochistan, Quetta, Pakistan
| | - Yanfeng He
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Aoyun Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Fuchun Jian
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Longxian Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Shucheng Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
2
|
Mertens H, Schwerdtle T, Weikert C, Abraham K, Monien BH. Accumulation of per- and polyfluoroalkyl substances (PFAS) in tissues of wild boar (Sus scrofa). THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 985:179668. [PMID: 40424902 DOI: 10.1016/j.scitotenv.2025.179668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 05/09/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025]
Abstract
The widespread application of per- and polyfluoroalkyl substances (PFAS) resulted in ubiquitous environmental contamination. Understanding the PFAS tissue distribution in mammals and humans is crucial for the assessment of potential health risks. The levels of eleven PFAS were determined by UPLC-MS/MS in plasma and various tissues of wild boar (n = 82) hunted in Germany. The most prevalent PFAS (PFOA, PFNA, PFHxS and PFOS) were detected in all analyzed samples. The median level of the sum (Σ 4PFAS) was highest in liver (90.2 μg/kg), followed by kidney (9.45 μg/kg), plasma (7.63 μg/L), lung (6.84 μg/kg), heart muscle (2.60 μg/kg), spleen (2.46 μg/kg), and skeletal muscle (1.03 μg/kg). Consumption of a single portion (125 g) of liver containing the Σ 4PFAS median level would result in a 36.6-fold exceedance of the tolerable weekly intake (TWI) of EFSA in a 70 kg-person. The accumulation (calculated as tissue/plasma ratio) of perfluoroalkyl carboxylic acids with ηpfc = 8-13 in lung, spleen, muscle and heart tissues increased with molecule size, indicating passive mechanisms of distribution driven by hydrophobicity. In contrast, liver and kidney distribution coefficients scattered, indicating additional involvement of chain-length dependent active transport processes. The highest accumulation was observed for PFOS in the liver (median tissue/plasma ratio 18.0). The shortest PFAS included in the study (PFHxA, PFHpA, PFOA, PFBS and PFHxS) did not accumulate in any of the tissues, probably due to strong binding to blood proteins like serum albumin and their relative polarity impeding passive membrane diffusion.
Collapse
Affiliation(s)
- Helena Mertens
- German Federal Institute for Risk Assessment (BfR), Dept. of Food Safety, 10589 Berlin, Germany.
| | - Tanja Schwerdtle
- German Federal Institute for Risk Assessment (BfR), Dept. of Food Safety, 10589 Berlin, Germany; Max Rubner-Institute (MRI), Federal Research Institute of Nutrition and Food, 76131 Karlsruhe, Germany
| | - Cornelia Weikert
- German Federal Institute for Risk Assessment (BfR), Dept. of Food Safety, 10589 Berlin, Germany
| | - Klaus Abraham
- German Federal Institute for Risk Assessment (BfR), Dept. of Food Safety, 10589 Berlin, Germany
| | - Bernhard H Monien
- German Federal Institute for Risk Assessment (BfR), Dept. of Food Safety, 10589 Berlin, Germany
| |
Collapse
|
3
|
Yan B, Bunch J. A straightforward method for measuring binding affinities of ligands to proteins of unknown concentration in biological tissues. Chem Sci 2025; 16:8673-8681. [PMID: 40313517 PMCID: PMC12042207 DOI: 10.1039/d5sc02460a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Accepted: 04/10/2025] [Indexed: 05/03/2025] Open
Abstract
The equilibrium dissociation constant (K d) is a quantitative measure of the strength with which a drug binds to its receptor. Methods for determining K d typically require a priori knowledge of protein concentration or mass. We report a simple dilution method for estimation of K d using native mass spectrometry which can be applied to protein-ligand complexes involving proteins of unknown concentration, from complex mixtures, including direct tissue sampling.
Collapse
Affiliation(s)
- Bin Yan
- National Centre of Excellence in Mass Spectrometry Imaging, National Physical Laboratory Hampton Road Teddington TW11 0LW UK
| | - Josephine Bunch
- National Centre of Excellence in Mass Spectrometry Imaging, National Physical Laboratory Hampton Road Teddington TW11 0LW UK
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital Du Cane Road London W12 0NN UK
| |
Collapse
|
4
|
He C, Huang Y, Rahayu S, Liu H, Huang Y, Shi G, Chen H, Li G, Zhu C, Jiang M. Transcriptomics analysis provides new insights into the ovarian lipid droplet formation and lipid deposition in Plectropomus leopardus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 56:101534. [PMID: 40398211 DOI: 10.1016/j.cbd.2025.101534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 05/09/2025] [Accepted: 05/11/2025] [Indexed: 05/23/2025]
Abstract
The leopard coral grouper (Plectropomus leopardus), an increasingly important species in marine aquaculture, has garnered significant research interest due to its high market value. Despite extensive research on ovarian growth and development in fish, the molecular mechanisms governing lipid droplet formation and lipid deposition in P. leopardus remain poorly understood. In this study, we conducted transcriptomic analyses of P. leopardus ovaries at three developmental stages: primary growth (PG), pre-vitellogenesis (PV), and mid-vitellogenesis (MV). A total of 534,847,090 raw reads were obtained from nine cDNA libraries, leading to the identification of 19,155 genes with 13,817 genes expressed at all stages. Differential analysis showed that 1012, 2609, and 4039 genes were up-regulated, while 168, 277, and 577 genes were down-regulated in the three comparisons, respectively. Functional enrichment analyses highlighting the critical roles of differentially expressed genes (DEGs) in lipid transport (such as fatp1, fatp4, fatp6, apoeb, lpl and fabps), fatty acid metabolism (such as elovl6, acsl1, dgat2 and gpat4) and phospholipid metabolism (such as ept1, chka and pla2g15). These findings underscore their contribution to lipid droplet formation and deposition. Furthermore, key signaling pathways, including Wnt, mTOR, PPAR and PI3K/Akt, were implicated in regulating these processes. The reliability of the RNA-seq data was confirmed through qPCR validation of 10 lipid-related genes. Based on these results, we propose a model for lipid droplet formation and lipid deposition during ovarian development in P. leopardus. This study advances our understanding of ovarian development in P. leopardus and provides a foundation for future research on marine fish reproduction, with potential applications in species conservation and aquaculture management.
Collapse
Affiliation(s)
- Changqing He
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Youheng Huang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Silvana Rahayu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Hao Liu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Yang Huang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Gang Shi
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Huapu Chen
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China; Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
| | - Guangli Li
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China; Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China; Agro-Tech Extension Center of Guangdong Province, Guangzhou, China
| | - Chunhua Zhu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China; Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China; Agro-Tech Extension Center of Guangdong Province, Guangzhou, China
| | - Mouyan Jiang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China; Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China.
| |
Collapse
|
5
|
Charneca S, Hernando A, Almada-Correia I, Polido-Pereira J, Vieira A, Sousa J, Almeida AS, Motta C, Barreto G, Eklund KK, Alonso-Pérez A, Gómez R, Cicci F, Mauro D, Pinho SS, Fonseca JE, Costa-Reis P, Guerreiro CS. TASTY trial: protocol for a study on the triad of nutrition, intestinal microbiota and rheumatoid arthritis. Nutr J 2025; 24:52. [PMID: 40189532 PMCID: PMC11974026 DOI: 10.1186/s12937-025-01089-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 02/06/2025] [Indexed: 04/09/2025] Open
Abstract
BACKGROUND The gut microbiota has been implicated in the onset and progression of Rheumatoid Arthritis (RA). It has been proposed that gut dysbiosis impairs gut barrier function, leading to alterations in mucosal integrity and immunity. This disruption allows bacterial translocation, contributing to the perpetuation of the inflammatory process. Since diet is recognised as a key environmental factor influencing the gut microbiota, nutritional interventions targeting RA activity are currently being explored. This study aims to investigate whether a dietary intervention based on a typical Mediterranean Diet enriched with fermented foods (MedDiet +) can impact the gut microbiota, intestinal permeability, and RA-related outcomes. METHODS One hundred RA patients are being recruited at Unidade Local de Saúde (ULS) Santa Maria in Lisbon, Portugal, and randomly assigned to either the intervention (MedDiet +) or the control group. The 12-week nutritional intervention includes a personalised dietary plan following the MedDiet + pattern, along with educational resources, food basket deliveries, and clinical culinary workshops, all developed and monitored weekly by registered dietitians. The control group receives standardised general healthy diet recommendations at baseline. The intervention's effects will be assessed by evaluating disease activity, functional status, quality of life, intestinal permeability, endotoxemia, inflammatory biomarkers, intestinal and oral microbiota, serum proteomics, and serum glycome profile characterisation. DISCUSSION We anticipate obtaining integrative insights into the interplay between diet, the gut, and RA, while also exploring the underlying mechanisms driving these changes. This study, conducted by a multidisciplinary research team of registered dietitians, rheumatologists, biologists, and immunologists, aims to bridge the current gap between nutrition-related knowledge and RA. TRIAL REGISTRATION Registered in ClinicalTrials.gov (NCT06758817; date of registry: January 6th 2025).
Collapse
Affiliation(s)
- Sofia Charneca
- Laboratório de Nutrição, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Ana Hernando
- Laboratório de Nutrição, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Inês Almada-Correia
- Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
- GIMM - Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
| | - Joaquim Polido-Pereira
- Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
- GIMM - Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
- Serviço de Reumatologia, ULS Santa Maria, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Adriana Vieira
- GIMM - Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
| | - Joana Sousa
- Laboratório de Nutrição, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
- Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Ana Santos Almeida
- Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
- GIMM - Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
| | - Carla Motta
- Departamento de Alimentação e Nutrição, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisbon, Portugal
| | - Gonçalo Barreto
- Clinicum, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, 00029, Finland.
| | - Kari K Eklund
- Clinicum, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, 00029, Finland
- Department of Rheumatology, Helsinki University Hospital and Helsinki University, Helsinki, Finland
| | - Ana Alonso-Pérez
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, 15706, Santiago de Compostela, Spain
| | - Rodolfo Gómez
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, 15706, Santiago de Compostela, Spain
| | - Francesco Cicci
- Dipartimento di Medicina di Precisione, Università Della Campania L. Vanvitelli, Naples, Italy
| | - Daniele Mauro
- Dipartimento di Medicina di Precisione, Università Della Campania L. Vanvitelli, Naples, Italy
| | - Salomé S Pinho
- Institute for Research and Innovation in Health (i3s), University of Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - João Eurico Fonseca
- Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
- GIMM - Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
- Serviço de Reumatologia, ULS Santa Maria, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Patrícia Costa-Reis
- Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
- GIMM - Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
- Pediatric Rheumatology Unit, ULS Santa Maria, Lisbon, Portugal
| | - Catarina Sousa Guerreiro
- Laboratório de Nutrição, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
- Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| |
Collapse
|
6
|
Kozlowski MM, Strickland A, Benitez AM, Schmidt RE, Bloom AJ, Milbrandt J, DiAntonio A. Pmp2+ Schwann Cells Maintain the Survival of Large-Caliber Motor Axons. J Neurosci 2025; 45:e1362242025. [PMID: 39880678 PMCID: PMC11961402 DOI: 10.1523/jneurosci.1362-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/02/2025] [Accepted: 01/18/2025] [Indexed: 01/31/2025] Open
Abstract
Neurodegenerative diseases of both the central and peripheral nervous system are characterized by selective neuronal vulnerability, i.e., pathology that affects particular types of neurons. While much of this cell type selectivity may be driven by intrinsic differences among the neuron subpopulations, neuron-extrinsic mechanisms such as the selective malfunction of glial support cells may also play a role. Recently, we identified a population of Schwann cells (SCs) expressing Adamtsl1, Cldn14, and Pmp2 (a.k.a. PMP2+ SCs) that preferentially myelinate large-caliber motor axons. PMP2+ SCs are decreased in both amyotrophic lateral sclerosis (ALS) model mice and ALS patient nerves. Thus, PMP2+ SC dysfunction could contribute to motor-selective neuropathies. We engineered a tamoxifen-inducible Pmp2-CreERT2 mouse and expressed diphtheria toxin in PMP2+ SCs to assess the consequences of ablating this SC subtype in male and female mice. Loss of PMP2+ SCs led to significant loss of large-caliber motor axons with concomitant behavioral, electrophysiological, and ultrastructural defects. Subsequent withdrawal of tamoxifen restored both PMP2+ SCs and large-caliber motor axons and improved behavioral and electrophysiological readouts. Together, our findings highlight that the survival of large-caliber motor axons relies on PMP2+ SCs, demonstrating that malfunction of a specific SC subtype can lead to selective neuronal vulnerability.
Collapse
Affiliation(s)
- Mikolaj M Kozlowski
- Departments of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, 63110
| | - Amy Strickland
- Genetics, Washington University School of Medicine, St. Louis, Missouri, 63110
| | - Ana Morales Benitez
- Departments of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, 63110
| | - Robert E Schmidt
- Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, 63110
| | - A Joseph Bloom
- Genetics, Washington University School of Medicine, St. Louis, Missouri, 63110
- Needleman Center for Neurometabolism and Axonal Therapeutics, St. Louis, Missouri, 63110
| | - Jeffrey Milbrandt
- Genetics, Washington University School of Medicine, St. Louis, Missouri, 63110
- Needleman Center for Neurometabolism and Axonal Therapeutics, St. Louis, Missouri, 63110
| | - Aaron DiAntonio
- Departments of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, 63110
- Needleman Center for Neurometabolism and Axonal Therapeutics, St. Louis, Missouri, 63110
| |
Collapse
|
7
|
Yang D, Wang X, Liu J, Gong Y, Nair P, Sun J, Qian X, Cui C, Zeng H, Dong A, Harding RJ, Burgess-Brown N, Beyett TS, Song D, Krause H, Diamond ML, Bolhuis DL, Brown NG, Arrowsmith CH, Edwards AM, Halabelian L, Peng H. High-throughput protein target mapping enables accelerated bioactivity discovery for ToxCast and PFAS compounds. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.20.644436. [PMID: 40196539 PMCID: PMC11974678 DOI: 10.1101/2025.03.20.644436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Chemical pollution is a global threat to human health, yet the toxicity mechanism of most contaminants remains unknown. Here, we applied an ultrahigh-throughput affinity-selection mass spectrometry (AS-MS) platform to systematically identify protein targets of prioritized chemical contaminants. After benchmarking the platform, we screened 50 human proteins against 481 prioritized chemicals, including 446 ToxCast chemicals and 35 per- and polyfluoroalkyl substances (PFAS). Among 24,050 interactions assessed, we discovered 35 novel interactions involving 14 proteins, with fatty acid-binding proteins (FABPs) emerging as the most ligandable protein family. Given this, we selected FABPs for further validation, which revealed a distinct PFAS binding pattern: legacy PFAS selectively bound to FABP1, whereas replacement compounds, PFECAs, unexpectedly interacted with all FABPs. X-ray crystallography further revealed that the ether group enhances molecular flexibility of alternative PFAS, to accommodate the binding pockets of FABPs. Our findings demonstrate that AS-MS is a robust platform for the discovery of novel protein targets beyond the scope of the ToxCast program and highlight the broader protein-binding spectrum of alternative PFAS as potential regrettable substitutes.
Collapse
Affiliation(s)
- Diwen Yang
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Department of Physical and Environmental Sciences, University of Toronto, Toronto, ON, Canada
| | - Xiaoyun Wang
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Jiabao Liu
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Yufeng Gong
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Pranav Nair
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Jianxian Sun
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Xing Qian
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Claire Cui
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Hong Zeng
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Aiping Dong
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Rachel J. Harding
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Nicola Burgess-Brown
- Structural Genomics Consortium, University College London, London, United Kingdom
| | - Tyler S. Beyett
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, United States
| | - Datong Song
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Henry Krause
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Miriam L. Diamond
- School of the Environment, University of Toronto, Toronto, ON, Canada
- Department of Earth Sciences, University of Toronto, Toronto, ON, Canada
| | - Derek L. Bolhuis
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Nicholas G. Brown
- Pharmacology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Cheryl H. Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Aled M. Edwards
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Levon Halabelian
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Hui Peng
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
- School of the Environment, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
Koundouros N, Nagiec MJ, Bullen N, Noch EK, Burgos-Barragan G, Li Z, He L, Cho S, Parang B, Leone D, Andreopoulou E, Blenis J. Direct sensing of dietary ω-6 linoleic acid through FABP5-mTORC1 signaling. Science 2025; 387:eadm9805. [PMID: 40080571 DOI: 10.1126/science.adm9805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 10/09/2024] [Accepted: 01/14/2025] [Indexed: 03/15/2025]
Abstract
Diet influences macronutrient availability to cells, and although mechanisms of sensing dietary glucose and amino acids are well characterized, less is known about sensing lipids. We defined a nutrient signaling mechanism involving fatty acid-binding protein 5 (FABP5) and mechanistic target of rapamycin complex 1 (mTORC1) that is activated by the essential polyunsaturated fatty acid (PUFA) ω-6 linoleic acid (LA). FABP5 directly bound to the regulatory-associated protein of mTOR (Raptor) to enhance formation of functional mTORC1 and substrate binding, ultimately converging on increased mTOR signaling and proliferation. The amounts of FABP5 protein were increased in tumors and serum from triple-negative compared with those from receptor-positive breast cancer patients, which highlights its potential role as a biomarker that mediates cellular responses to ω-6 LA intake in this disease subtype.
Collapse
Affiliation(s)
- Nikos Koundouros
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Michal J Nagiec
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Nayah Bullen
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Evan K Noch
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Neurology, Division of Neuro-oncology, Weill Cornell Medicine, New York, NY, USA
| | - Guillermo Burgos-Barragan
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Zhongchi Li
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Long He
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Sungyun Cho
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Bobak Parang
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Dominique Leone
- Cancer Clinical Trials Office - Breast, Weill Cornell Medicine, New York, NY, USA
| | - Eleni Andreopoulou
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY, USA
| | - John Blenis
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
9
|
Winterfeldt K, Tasin FR, Siddiqi SA. Establishing the Role of Liver Fatty Acid-Binding Protein in Post-Golgi Very-Low-Density Lipoprotein Trafficking Using a Novel Fluorescence-Based Assay. Int J Mol Sci 2025; 26:2399. [PMID: 40141042 PMCID: PMC11942602 DOI: 10.3390/ijms26062399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/24/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
The liver plays a crucial role in maintaining lipid homeostasis by converting toxic free fatty acids into VLDL, which the body uses for energy. Even minor changes in VLDL formation and secretion can result in serious health conditions such as atherosclerosis and non-alcoholic fatty liver disease. Despite the importance of VLDL, the proteins and signaling pathways involved in its regulation remain largely unknown. This study aims to develop a novel methodology to study intracellular VLDL transport events and explore the role of liver fatty acid-binding protein (LFABP) in VLDL transport and secretion. Current methods to study VLDL are often tedious, time-consuming, and expensive, underscoring the need for an alternative approach. We designed a new immunofluorescence-based assay to track the formation and secretion of VLDL in cells over time using fluorescently tagged TopFluor oleic acid. Confocal microscopy confirmed that TopFluor oleic acid enters hepatocytes and colocalizes with the ER, Golgi, and plasma membrane. Additionally, the collection of cell culture media revealed that TopFluor was incorporated into VLDL particles, as confirmed by fluorescence readings and ApoB100 immunoblots. This novel assay provides a valuable tool for further research into the mechanisms of VLDL regulation and the development of potential therapeutic targets for related diseases. Utilizing this assay, we identified LFABP as a key regulatory protein in post-Golgi VLDL trafficking. Our data suggest that LFABP plays a crucial role in this process, and its functional impairment leads to reduced VLDL secretion.
Collapse
Affiliation(s)
| | | | - Shadab A. Siddiqi
- Division of Metabolic & Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Room# 349, Orlando, FL 32827, USA; (K.W.); (F.R.T.)
| |
Collapse
|
10
|
Vecchio E, Gallo R, Mimmi S, Gentile D, Giordano C, Straface E, Marino R, Caiazza C, Pastore A, Ruocco MR, Arcucci A, Schiavone M, Palmieri C, Iaccino E, Stornaiuolo M, Quinto I, Mallardo M, Martini F, Tognon M, Fiume G. FABP5 is a key player in metabolic modulation and NF-κB dependent inflammation driving pleural mesothelioma. Commun Biol 2025; 8:324. [PMID: 40016284 PMCID: PMC11868402 DOI: 10.1038/s42003-025-07754-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 02/17/2025] [Indexed: 03/01/2025] Open
Abstract
Pleural mesothelioma (PM) poses a significant challenge in oncology due to its intricate molecular and metabolic landscape, chronic inflammation, and heightened oxidative stress, which contribute to its notorious resilience and clinical complexities. Despite advancements, the precise mechanisms driving PM carcinogenesis remain elusive, impeding therapeutic progress. Here, we explore the interplay between tumor growth dynamics, lipid metabolism, and NF-κB dysregulation in malignant pleural mesothelioma, shedding light on novel molecular mechanisms underlying its pathogenesis. Our study reveals distinctive growth dynamics in PM cells, characterized by heightened proliferation, altered cell cycle progression, and resistance to apoptosis. Intriguingly, PM cells exhibit increased intracellular accumulation of myristic, palmitic, and stearic acids, suggestive of augmented lipid uptake and altered biosynthesis. Notably, we identify FABP5 as a key player in driving metabolic alterations and inflammation through NF-κB dysregulation in mesothelioma cells, distinguishing them from normal mesothelial cells. Silencing of FABP5 leads to significant alterations in cell dynamics, metabolism, and NF-κB activity, highlighting its potential as a therapeutic target. Our findings unveil a reciprocal relationship between lipid metabolism and inflammation in PM, providing a foundation for targeted therapeutic strategies. Overall, this comprehensive investigation offers insights into the intricate molecular mechanisms driving PM pathogenesis and identifies potential avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Eleonora Vecchio
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| | - Raffaella Gallo
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| | - Selena Mimmi
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| | - Debora Gentile
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| | - Caterina Giordano
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| | - Emilio Straface
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| | - Rossana Marino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Carmen Caiazza
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Arianna Pastore
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Maria Rosaria Ruocco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Alessandro Arcucci
- Department of Public Health, University of Naples "Federico II", Naples, Italy
| | - Marco Schiavone
- Department of Molecular and Translational Medicine, Zebrafish Facility, University of Brescia, Brescia, Italy
| | - Camillo Palmieri
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| | - Enrico Iaccino
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| | | | - Ileana Quinto
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| | - Massimo Mallardo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Giuseppe Fiume
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Catanzaro, Italy.
| |
Collapse
|
11
|
Ohguro H, Higashide M, Ishiwata E, Hikage F, Watanabe M, Nishikiori N, Sato T, Furuhashi M. Expression and Secretion of Intraocular Fatty Acid-Binding Protein 4 (ioFABP4) and 5 (ioFABP5) Are Regulated by Glucose Levels and Fatty Acids. Int J Mol Sci 2025; 26:1791. [PMID: 40076418 PMCID: PMC11898455 DOI: 10.3390/ijms26051791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/15/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
Intraocularly, fatty acid-binding protein 4 (FABP4) and 5 (FABP5) mainly originate from human ocular choroidal fibroblasts (HOCF), and human nonpigmented ciliary epithelium (HNPCE) cells have been suggested to be pivotally involved in intraocular pathophysiology. To elucidate the unidentified regulatory mechanisms of the gene expression and protein secretion of FABPs, the effects of glucose levels, fatty acids (FAs), and peroxisome proliferator-activated receptor (PPAR) modulators were studied. To elucidate the additional biological role of FABPs, laser choroidal neovascularization (CNV) in Fabp4-/- and Fabp4/5-/- mice was analyzed by fluorescein angiography. By changing glucose levels, the secretion and expression of FABP4 in HOCF were significantly upregulated, whereas the secretion and expression of FABP5 in HNPCE decreased. The administration of various FAs, particularly docosahexaenoic acid (DHA), markedly increased the expression and secretion of both FABPs. PPAR modulators also influenced the secretion and expression of FABPs. In vivo, wild-type retina exhibited evident CNV with high fluorescein intensity, while Fabp4-/- retina showed reduced CNV formation and Fabp4/5-/- retina displayed evident CNV along with vitreous leakage. These findings suggest that (1) the production and secretion of intraocular FABP4 and FABP5 are distinctly regulated by glucose levels, FAs, and PPARs; and (2) intraocular FABP4 and FABP5 are critical for inducing retinal neovascularization and maintaining the blood-aqueous barrier.
Collapse
Affiliation(s)
- Hiroshi Ohguro
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.H.); (F.H.); (M.W.); (N.N.)
| | - Megumi Higashide
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.H.); (F.H.); (M.W.); (N.N.)
| | - Erika Ishiwata
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (E.I.); (T.S.)
| | - Fumihito Hikage
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.H.); (F.H.); (M.W.); (N.N.)
| | - Megumi Watanabe
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.H.); (F.H.); (M.W.); (N.N.)
| | - Nami Nishikiori
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.H.); (F.H.); (M.W.); (N.N.)
| | - Tatsuya Sato
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (E.I.); (T.S.)
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Masato Furuhashi
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (E.I.); (T.S.)
| |
Collapse
|
12
|
Marina CL, de Castro RJA, Bellozi P, Cruz AM, Bürgel PH, Potter PGW, Beall C, Tavares AH, De Bem A, Alanio A, Coelho C, Bocca AL. Immunometabolic reprogramming in macrophages infected with active and dormant Cryptococcus neoformans: differential modulation of respiration, glycolysis, and fatty acid utilization. Infect Immun 2025; 93:e0048724. [PMID: 39714095 PMCID: PMC11834436 DOI: 10.1128/iai.00487-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 12/24/2024] Open
Abstract
Dormancy is an adaptation in which cells reduce their metabolism, transcription, and translation to stay alive under stressful conditions, preserving the capacity to reactivate once the environment reverts to favorable conditions. Dormancy and reactivation of Cryptococcus neoformans (Cn) are closely linked to intracellular residency within macrophages. Our previous work showed that in vitro murine macrophages rely on the viable but not cultivable (VBNC-a dormancy phenotype) fungus from active Cn, with striking differences in immunometabolic gene expression. Here, we analyzed the influence of VBNC and active Cn on the immunometabolism of infected macrophages, combining metabolic gene expression, mitochondrial membrane potential (ΔΨm), oxygen consumption analysis, and uptake of glucose and fatty acids. The active fungus induced mitochondrial depolarization, and increased glycolysis and mitochondrial oxygen consumption. VBNC infection in bone marrow-derived macrophage (BMDM) caused an attenuated modification in mitochondrial metabolism. However, we found differences in BMDM infected with VBNC vs those infected with active fungus, where VBNC induced an increment in fatty acid uptake in M0 and M1 BMDM, measured by incorporation of BODIPY-palmitate, accompanied by an increase in expression of fatty acid transporters Fabp1 and Fabp4. Overall, distinct fatty acid-related responses induced by VBNC and active Cn suggest different immunomodulatory reactions, depending on the microbial growth stage. We posit that, for VBNC, some of these macrophage metabolic responses reflect the establishment of prolonged microbial intracellular residency and possibly initial stages of granuloma formation.
Collapse
Affiliation(s)
- Clara Luna Marina
- Laboratory of Applied Immunology, Institute of Biology Sciences, University of Brasília, Brasília, Brazil
| | | | - Paula Bellozi
- Laboratory of Bioenergetics and Metabolism, Institute of Biology Sciences, University of Brasília, Brasília, Brazil
| | - Ana M. Cruz
- Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Pedro Henrique Bürgel
- Laboratory of Applied Immunology, Institute of Biology Sciences, University of Brasília, Brasília, Brazil
| | | | - Craig Beall
- Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Aldo Henrique Tavares
- Graduate Program in Microbial Biology, Department of Cell Biology, Institute of Biological Sciences, Laboratory of Microorganism, Faculty of Ceilândia, University of Brasília, Brasília, Brazil
| | - Andreza De Bem
- Laboratory of Bioenergetics and Metabolism, Institute of Biology Sciences, University of Brasília, Brasília, Brazil
| | - Alexandre Alanio
- Translational Mycology Research Group, National Reference Center for Invasive Mycoses and Antifungals, Mycology Department, Institut Pasteur, Université Paris Cité, Paris, Île-de-France, France
| | - Carolina Coelho
- Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
- MRC Centre for Medical Mycology at University of Exeter, Exeter, Devon, United Kingdom
| | - Anamélia Lorenzetti Bocca
- Laboratory of Applied Immunology, Institute of Biology Sciences, University of Brasília, Brasília, Brazil
- Bi-Institutional Translational Medicine Platform, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, State of Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Fish SR, Halley CL, Dileepan M, Hertzel AV, Dickey DM, Bernlohr DA. Expression of fatty acid binding proteins in mesenteric adipose tissue. Biochem Biophys Res Commun 2025; 749:151346. [PMID: 39855040 DOI: 10.1016/j.bbrc.2025.151346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
Adipose is a complex tissue comprised of adipocytes, immune cells, endothelial and progenitor stem cells. In humans, there are at least nine defined adipose depots, each containing variable numbers of genetically identified adipocyte clusters suggesting remarkable heterogeneity and potential functionality in each depot with respect to lipid metabolism. Although subcutaneous and visceral depots are commonly analyzed for biochemical and molecular functions, the mesenteric depot has been overlooked yet strongly implicated in lipid mediated immune surveillance. Since fatty acid binding proteins (FABPs) are primary cellular conduits to lipid trafficking, we evaluated the expression patterns for four major fatty acid binding proteins (FABP1, FABP3, FABP4 and FABP5) using a combination of gene expression, immunoblotting, and immunofluorescence in mesenteric fat from both young and old, male and female C57Bl/6J mice. All four FABPs were expressed at the mRNA and protein level in murine mesenteric adipose tissue. While there was no statistical change in expression of mesenteric FABP isoforms with sex or age, the expression of mesenteric FABP1 was increased, and FABP4 decreased, in both males and females as compared to perigonadal and inguinal depots. Surprisingly, immunofluorescence staining revealed that compared to subcutaneous or perigonadal depots, mesenteric fat expresses FABP3, but little FABP5, in adipocytes. These results highlight the diversity in adipose tissue and the importance of evaluating the mesenteric depot in the context of lipid transport and metabolism.
Collapse
Affiliation(s)
- Shayla R Fish
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Catherine L Halley
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Mythili Dileepan
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN, USA; Institute on the Biology of Aging and Metabolism, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Ann V Hertzel
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN, USA; Institute on the Biology of Aging and Metabolism, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Deborah M Dickey
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - David A Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN, USA; Institute on the Biology of Aging and Metabolism, University of Minnesota-Twin Cities, Minneapolis, MN, USA.
| |
Collapse
|
14
|
McCarty KD, Guengerich FP. Liver fatty acid binding protein FABP1 transfers substrates to cytochrome P450 4A11 for catalysis. J Biol Chem 2025; 301:108168. [PMID: 39793892 PMCID: PMC11847541 DOI: 10.1016/j.jbc.2025.108168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/21/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
Cytochrome P450 (P450) 4A11 is a human P450 family 4 ω-oxidase that selectively catalyzes the hydroxylation of the terminal methyl group of fatty acids. Cytosolic lipids are the substrates for the enzyme but are considered to be primarily bound in cells by liver fatty acid binding protein (FABP1). Lipid binding to recombinant FABP1 with a fluorophore displacement assay showed substantial preference of FABP1 for ≥16-carbon fatty acids (Kd < 70 nM). Comparison of palmitate-binding studies revealed that FABP1 bound the lipid >100-fold more tightly than P450 4A11. Tight binding of P450 4A11 to Alexa-488 dye-labeled FABP1 was observed in fluorescence assays, and the interaction was dependent on ionic strength (Kd = 3-124 nM). Kinetic studies with Alexa-FABP1 indicated that the rate of protein-protein association is fast (∼2 s-1), and a palmitate delivery experiment suggested that substrate transfer (from FABP1 to P450) is not rate limiting. From these results, we constructed a kinetic model of the FABP1-P450 interaction and applied it to a catalytic study of FABP1 on P450 4A11 palmitate ω-hydroxylation, the results of which conclusively rejected the free ligand hypothesis. Our results are explained by a direct transfer model in which lipid-bound FABP1 interacts with P450 4A11, transfers the substrate, and a slower P450 conformational change follows to position the molecule in a mode for oxidation. Given the limited free lipid pool in vivo, interaction with FABP1 may be a dominant mechanism by which P450 4A11 accesses its substrates and may offer a novel means to target P450 4A11 activity.
Collapse
Affiliation(s)
- Kevin D McCarty
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| |
Collapse
|
15
|
Germitsch N, Kockmann T, Schnyder M, Tritten L. N-terminomics profiling of host proteins targeted by excretory-secretory proteases of the nematode Angiostrongylus vasorum identifies points of interaction with canine coagulation and complement cascade. PLoS One 2025; 20:e0316217. [PMID: 39813225 PMCID: PMC11734930 DOI: 10.1371/journal.pone.0316217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 12/07/2024] [Indexed: 01/18/2025] Open
Abstract
The cardiopulmonary nematode Angiostrongylus vasorum can cause severe disease in dogs, including coagulopathies manifesting with bleeding. We analysed A. vasorum excretory/secretory protein (ESP)-treated dog plasma and serum by N-terminome analysis using Terminal Amine Isotopic Labelling of Substrates (TAILS) to identify cleaved host substrates. In plasma and serum samples 430 and 475 dog proteins were identified, respectively. A total of eight dog proteins were significantly cleaved at higher levels upon exposure to A. vasorum ESP: of these, three were coagulation factors (factor II, V and IX) and three were complement proteins (complement C3, C4-A and C5). Comparison with human motif sequence orthologues revealed known cleavage sites in coagulation factor IX and II (prothrombin). These and further identified cleavage sites suggest direct or indirect activation or proteolysis of complement and coagulation components through A. vasorum ESP, which contains several proteases. Further studies are needed to validate their substrate specificity.
Collapse
Affiliation(s)
- Nina Germitsch
- Institute of Parasitology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Tobias Kockmann
- Functional Genomics Center Zurich, Swiss Federal Institute of Technology Zurich (ETH Zurich)/ University of Zurich, Zurich, Switzerland
| | - Manuela Schnyder
- Institute of Parasitology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Lucienne Tritten
- Institute of Parasitology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
16
|
Shand H, Patra S, Ghorai S. Fatty acid binding protein as a new age biomarker. Clin Chim Acta 2025; 565:120029. [PMID: 39515633 DOI: 10.1016/j.cca.2024.120029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Small lipid-binding proteins known as fatty acid-binding proteins (FABPs) are extensively expressed in cells having elevated levels of fatty acid (FA) metabolism. There are ten known FABPs in mammals that exhibit expression patterns specific to tissues and tertiary structures that are substantially preserved. FABPs were first investigated as FA transport proteins inside cells. Subsequent research has shown that they are involved in signalling within their expression cells and in metabolism of lipid, directly and through the control of expression of gene. Additionally, there is evidence that they might be released and influence circulatory function. It has been observed that some tissues and organs linked to inflammatory, metabolic illnesses and also infectious disease have markedly elevated expression levels of FABPs. Thus, in addition to previously identified markers, FABPs represent a promising new biomarker that require additional investigation to optimise illness detection and prognosis techniques.
Collapse
Affiliation(s)
- Harshita Shand
- Infection and Disease Biology Laboratory, Department of Microbiology, Raiganj University, Raiganj, West Bengal- 733134, India
| | - Soumendu Patra
- Infection and Disease Biology Laboratory, Department of Microbiology, Raiganj University, Raiganj, West Bengal- 733134, India
| | - Suvankar Ghorai
- Infection and Disease Biology Laboratory, Department of Microbiology, Raiganj University, Raiganj, West Bengal- 733134, India; Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA.
| |
Collapse
|
17
|
Hörauf JA, Singh A, Voth M, Moheimani H, Schindler CR, Relja B, Leppik L, Marzi I, Henrich D. Limited Diagnostic Value of miRNAs in Early Trauma-Induced Liver Injury: Only miRNA-122 Emerges as a Late-Phase Marker. Diagnostics (Basel) 2025; 15:179. [PMID: 39857063 PMCID: PMC11764008 DOI: 10.3390/diagnostics15020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/09/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Liver injury is common after abdominal trauma. However, the established biomarkers of liver injury, such as alanine aminotransferase (ALT) and aspartate aminotransferase (AST), lack accuracy. This study investigates whether specific liver-related microRNAs (miRNAs) are released into the circulation in trauma patients with liver injury and whether they can indicate liver damage in the early phase after major trauma. Methods: A retrospective analysis of prospectively collected data and blood samples from 26 trauma patients was conducted. The levels of miRNA-21-5p, -122-5p, -191-5p, -192-3p, and -212-3p were measured in patients with computed tomography-confirmed liver trauma (LT group, n = 12) and polytrauma patients without liver trauma (PT group, n = 14) upon emergency room (ER) admission, and 24 and 48 h after trauma. Additionally, liver-type fatty acid binding protein (L-FABP) was measured, as it has recently been discussed in the context of abdominal trauma. Results: Only miRNA-122-5p showed a significant increase in the LT group compared to the PT group, but only at the 48 h time point (p = 0.032). Conversely, L-FABP (p = 0.018) and ALT (p = 0.05) were significantly elevated in the LT group compared to the PT group at the time of ER admission. There was a moderate correlation between miRNA-122-5p and AISAbdomen (p = 0.056) and transfused red blood cell concentrates (p = 0.055). L-FABP correlated strongly with the ALT levels (p = 0.0009) and the length of stay in the ICU (p = 0.0086). Conclusions: In this study, the liver-specific miRNA-122-5p did not effectively indicate liver injury in the early acute post-traumatic phase. Future research with a large sample size should investigate whether other miRNAs can more accurately predict liver injury and the extent of hepatocellular injury, particularly in the acute post-traumatic phase.
Collapse
Affiliation(s)
- Jason-Alexander Hörauf
- Department of Trauma Surgery and Orthopedics, University Hospital Frankfurt, Goethe University Frankfurt, 60596 Frankfurt am Main, Germany
| | - Amit Singh
- Department of Trauma Surgery and Orthopedics, University Hospital Frankfurt, Goethe University Frankfurt, 60596 Frankfurt am Main, Germany
| | - Maika Voth
- Department of Trauma Surgery and Orthopedics, University Hospital Frankfurt, Goethe University Frankfurt, 60596 Frankfurt am Main, Germany
| | - Hamed Moheimani
- Pittsburgh Trauma Research Center, Division of Trauma and Acute Care Surgery, Pittsburgh, PA 15213, USA
| | - Cora Rebecca Schindler
- Department of Trauma Surgery and Orthopedics, University Hospital Frankfurt, Goethe University Frankfurt, 60596 Frankfurt am Main, Germany
| | - Borna Relja
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, Translational and Experimental Trauma Research, University Hospital Ulm, Ulm University, 89081 Ulm, Germany
| | - Liudmila Leppik
- Department of Trauma Surgery and Orthopedics, University Hospital Frankfurt, Goethe University Frankfurt, 60596 Frankfurt am Main, Germany
| | - Ingo Marzi
- Department of Trauma Surgery and Orthopedics, University Hospital Frankfurt, Goethe University Frankfurt, 60596 Frankfurt am Main, Germany
| | - Dirk Henrich
- Department of Trauma Surgery and Orthopedics, University Hospital Frankfurt, Goethe University Frankfurt, 60596 Frankfurt am Main, Germany
| |
Collapse
|
18
|
Hanske A, Nazaré M, Grether U. Chemical Probes for Investigating the Endocannabinoid System. Curr Top Behav Neurosci 2025. [PMID: 39747798 DOI: 10.1007/7854_2024_563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Cannabis sativa has been used therapeutically since early civilizations, with key cannabinoids Δ9-tetrahydrocannabinol (THC) 3.1 and cannabidiol characterized in the 1960s, leading to the discovery of cannabinoid receptors type 1 (CB1R) and type 2 (CB2R) and the endocannabinoid system (ECS) in the 1990s. The ECS, involving endogenous ligands like 2-arachidonoylglycerol (2-AG) 1.1, anandamide (N-arachidonoylethanolamine (AEA)) 1.2, and various proteins, regulates vital processes such as sleep, appetite, and memory, and holds significant therapeutic potential, especially for neurological disorders. Small molecule-derived pharmacological tools, or chemical probes, target key components of the ECS and are crucial for target validation, mechanistic studies, pathway elucidation, phenotypic screening, and drug discovery. These probes selectively interact with specific proteins or pathways, enabling researchers to modulate target activity and observe biological effects. When they carry an additional reporter group, they are referred to as labeled chemical probes. Developed through medicinal chemistry, structural biology, and high-throughput screening, effective chemical probes must be selective, potent, and depending on their purpose meet additional criteria such as cell permeability and metabolic stability.This chapter describes high-quality labeled and unlabeled chemical probes targeting ECS constituents that have been successfully applied for various research purposes. CB1R and CB2R, class A G protein-coupled receptors, are activated by 2-AG 1.1, AEA 1.2, and THC 3.1, with numerous ligands developed for these receptors. Imaging techniques like single-photon emission computed tomography, positron emission tomography, and fluorescently labeled CB1R and CB2R probes have enhanced CB receptor studies. CB2R activation generally results in immunosuppressive effects, limiting tissue injury. AEA 1.2 is mainly degraded by fatty acid amide hydrolase (FAAH) or N-acylethanolamine acid amidase (NAAA) into ethanolamine and arachidonic acid (AA) 1.3. FAAH inhibitors increase endogenous fatty acid amides, providing analgesic effects without adverse effects. NAAA inhibitors reduce inflammation and pain in animal models. Diacylglycerol lipase (DAGL) is essential for 2-AG 1.1 biosynthesis, while monoacylglycerol lipase (MAGL) degrades 2-AG 1.1 into AA 1.3, thus regulating cannabinoid signaling. Multiple inhibitors targeting FAAH and MAGL have been generated, though NAAA and DAGL probe development lags behind. Similarly, advancements in inhibitors targeting endocannabinoid (eCB) cellular uptake or trafficking proteins like fatty acid-binding proteins have been slower. The endocannabinoidome (eCBome) includes the ECS and related molecules and receptors, offering therapeutic opportunities from non-THC cannabinoids and eCBome mediators. Ongoing research aims to refine chemical tools for ECS and eCBome study, addressing unmet medical needs in central nervous system disorders and beyond.
Collapse
Affiliation(s)
- Annaleah Hanske
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie FMP, Berlin, Germany
| | - Marc Nazaré
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie FMP, Berlin, Germany
| | - Uwe Grether
- Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| |
Collapse
|
19
|
Odendaal C, Reijngoud DJ, Bakker BM. How lipid transfer proteins and the mitochondrial membrane shape the kinetics of β-oxidation the liver. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149519. [PMID: 39428049 DOI: 10.1016/j.bbabio.2024.149519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/24/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024]
Abstract
The mitochondrial fatty acid β-oxidation (mFAO) is important for producing ATP under conditions of energetic stress, such as fasting and cold exposure. The regulation of this pathway is dependent on the kinetic properties of the enzymes involved. To better understand pathway behaviour, accurate enzyme kinetics is required. Setting up and interpreting such proper assays requires a good understanding of what influences the enzymes' kinetics. Often, knowing the buffer composition, pH, and temperature is considered to be sufficient. Many mFAO enzymes are membrane-bound, however, and their kinetic properties depend on the composition and curvature of the mitochondrial membranes. These properties are, in turn, affected by metabolite concentrations, but are rarely accounted for in kinetic assays. Especially for carnitine palmitoyltransferase 1 (CPT1), this has been shown to be of great consequence. Moreover, the enzymes of the mFAO metabolise water-insoluble acyl-CoA derivatives, which become toxic at high concentrations. In vivo, these are carried across the cytosol by intracellular lipid transfer proteins (iLTPs), such as the fatty-acid and acyl-CoA-binding proteins (FABP and ACBP, respectively). In vitro, this is often mimicked by using bovine serum albumin (BSA), which differs from the iLPTs in terms of its binding behaviour and subcellular localisation patterns. In this review, we argue that the iLTPs and membrane properties cannot be ignored when measuring or interpreting the kinetics of mFAO enzymes. They should be considered fundamental to the activity of mFAO enzymes just as pH, buffer composition, and temperature are.
Collapse
Affiliation(s)
- Christoff Odendaal
- Laboratory of Paediatrics, University Medical Centre Groningen, University of Groningen, the Netherlands
| | - Dirk-Jan Reijngoud
- Laboratory of Paediatrics, University Medical Centre Groningen, University of Groningen, the Netherlands
| | - Barbara M Bakker
- Laboratory of Paediatrics, University Medical Centre Groningen, University of Groningen, the Netherlands.
| |
Collapse
|
20
|
Wang L, Cheng C, Yu X, Guo L, Wan X, Xu J, Xiang X, Yang J, Kang J, Deng Q. Conversion of α-linolenic acid into n-3 long-chain polyunsaturated fatty acids: bioavailability and dietary regulation. Crit Rev Food Sci Nutr 2024:1-33. [PMID: 39686568 DOI: 10.1080/10408398.2024.2442064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
N-3 long-chain polyunsaturated fatty acids (n-3 LCPUFAs) are essential for physiological requirements and disease prevention throughout life but are not adequately consumed worldwide. Dietary supplementation with plant-derived α-linolenic acid (ALA) has the potential to rebalance the fatty acid profile and enhance health benefits but faces challenges such as high β-oxidation consumption, low hepatic conversion efficiency, and high oxidative susceptibility under stress. This review focuses on the metabolic fate and potential regulatory targets of ALA-containing lipids in vivo, specifically the pathway from the gastrointestinal tract to the lymph, blood circulation, and liver. We propose a hypothesis that positively regulates the conversion of ALA into n-3 LCPUFAs based on the model of "fast" or "slow" absorption, transport, and hepatic metabolic fate. Furthermore, the potential effects of dietary nutrients on the metabolic conversion of ALA into n-3 LCPUFAs are discussed. The conversion of ALA is differentially regulated by structured lipids, phospholipids, other lipids, carbohydrates, specific proteins, amino acids, polyphenols, vitamins, and minerals. Future research should focus on designing a steady-state and precise delivery system for ALA, coupled with specific nutrients or phytochemicals, to effectively improve its metabolic conversion and ultimately achieve synergistic regulation of nutrition and health effects.
Collapse
Affiliation(s)
- Lei Wang
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Chen Cheng
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Xiao Yu
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xia Wan
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Jiqu Xu
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Xia Xiang
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Jing Yang
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Jingxuan Kang
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Qianchun Deng
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
| |
Collapse
|
21
|
Mann M, Kartseva V, Stanley C, Blumenthal M, Silliboy R, Berger B. Direct measurement of PFAS levels in surface water using an engineered biosensor. RSC SUSTAINABILITY 2024; 2:3967-3972. [PMID: 39493805 PMCID: PMC11525949 DOI: 10.1039/d4su00349g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a large set of emerging contaminants pervasive in the environment due to amphiphilic properties and strong carbon-fluorine bonds resistant to biodegradation. With an ever-increasing prevalence, the need for precise detection of these chemicals at low levels in drinking water is clear. However, ground and surface water as well as soil and other biosolids have become reservoirs for PFAS at extremely high levels. In fact, PFAS concentrations at part per billion and part per million levels are found in environmental samples taken near high contamination sites including industrial facilities and military bases. In this work, we demonstrate the application of a biosensor based on human liver fatty acid binding protein to detect perfluorooctanoic acid (PFOA) in surface water samples taken near Loring Airforce Base. We show this sensor can detect the high levels of PFOA found in the samples quickly and easily without the use of extensive sample pre-treatment or analytical methods. Therefore, we hope the future of this technology will better assess PFAS detection needs for a multitude of end point users.
Collapse
Affiliation(s)
- Madison Mann
- Department of Chemical Engineering, University of Virginia Charlottesville VA USA
| | - Victoria Kartseva
- Department of Chemical Engineering, University of Virginia Charlottesville VA USA
- Department of Chemistry, University of Virginia Charlottesville VA USA
| | | | | | | | - Bryan Berger
- Department of Chemical Engineering, University of Virginia Charlottesville VA USA
- Department of Biomedical Engineering, University of Virginia Charlottesville VA USA
| |
Collapse
|
22
|
Zywno H, Figiel W, Grat M, Nazarewski S, Galazka Z, Malyszko J. Can Novel Biomarkers Effectively Predict Acute Kidney Injury in Liver or Kidney Transplant Recipients? Int J Mol Sci 2024; 25:12072. [PMID: 39596140 PMCID: PMC11593440 DOI: 10.3390/ijms252212072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/05/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
Acute kidney injury (AKI) constitutes a common complication associated with liver or kidney transplantation, which may significantly impact the graft condition and perioperative mortality. Current AKI diagnostic criteria based on serum creatinine (sCr) and urine output alterations are widely utilized in routine clinical practice. However, the diagnostic value of sCr may be limited by various confounding factors, including age, sex, reduced or increased muscle mass, and pre-existing chronic kidney disease (CKD). Furthermore, sCr is rather a late indicator of AKI, as its concentration tends to increase only when the severity of the injury is enough to decrease the estimated glomerular filtration rate (eGFR). Recent expertise highlights the need for novel biomarkers in post-transplantation AKI diagnosis, prediction of event-associated mortality, or evaluation of indications for renal replacement treatment (RRT). Over the last decade, the diagnostic performance of various AKI biomarkers has been assessed, among which some showed the potential to outperform sCr in AKI diagnosis. Identifying susceptible individuals, early diagnosis, and prompt intervention are crucial for successful transplantation, undisturbed graft function in long-term follow-up, and decreased mortality. However, the research on AKI biomarkers in transplantation still needs to be explored. The field lacks consistent results, rigorous study designs, and external validation. Considering the rapidly growing prevalence of CKD and cirrhosis that are associated with the transplantation at their end-stage, as well as the existing knowledge gap, the aim of this article was to provide the most up-to-date review of the studies on novel biomarkers in the diagnosis of post-transplantation AKI.
Collapse
Affiliation(s)
- Hubert Zywno
- Department of Nephrology, Dialysis, and Internal Diseases, University Clinical Centre, Medical University of Warsaw, 02-097 Warsaw, Poland;
- Doctoral School of Medical University of Warsaw, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Wojciech Figiel
- Department of General, Transplant, and Liver Surgery, University Clinical Centre, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Michal Grat
- Department of General, Transplant, and Liver Surgery, University Clinical Centre, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Slawomir Nazarewski
- Department of General, Endocrinological, and Vascular Surgery, University Clinical Centre, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Zbigniew Galazka
- Department of General, Endocrinological, and Vascular Surgery, University Clinical Centre, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Jolanta Malyszko
- Department of Nephrology, Dialysis, and Internal Diseases, University Clinical Centre, Medical University of Warsaw, 02-097 Warsaw, Poland;
| |
Collapse
|
23
|
Jang S, Choi B, Lim C, Kim M, Lee JE, Lee H, Baek E, Cho KS. Neuronal fatty acid-binding protein enhances autophagy and suppresses amyloid-β pathology in a Drosophila model of Alzheimer's disease. PLoS Genet 2024; 20:e1011475. [PMID: 39561115 PMCID: PMC11575808 DOI: 10.1371/journal.pgen.1011475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 10/28/2024] [Indexed: 11/21/2024] Open
Abstract
Fatty acid-binding proteins (FABPs) are small cytoplasmic proteins involved in intracellular lipid transport and bind free fatty acids, cholesterol, and retinoids. FABP3, the major neuronal FABP in the adult brain, is upregulated in the CSF of patients with Alzheimer's disease (AD). However, the precise role of neuronal FABPs in AD pathogenesis remains unclear. This study investigates the contribution of fabp, the Drosophila homolog of FABP3 and FABP7, to amyloid β (Aβ) pathology using a Drosophila model. Neuronal knockdown of fabp shortened the lifespan of flies and increased age-related protein aggregates in the brain. In an AD model, fabp knockdown in neurons increased Aβ accumulation and Aβ-induced neurodegeneration, whereas fabp overexpression ameliorated Aβ pathology. Notably, fabp overexpression stimulated autophagy, which was inhibited by the knockdown of Eip75B, the Drosophila homolog of the peroxisome proliferator-activated receptor (PPAR). The PPAR activator rosiglitazone restored autophagy impaired by fabp knockdown and reduced fabp knockdown-induced increased Aβ aggregation and cell death. Furthermore, knockdown of either fabp or Eip75B in the wing imaginal disc or adult fly brain reduced the expression of Atg6 and Atg8a. Additionally, treatment of the fabp knockdown AD model flies with polyunsaturated fatty acids, such as docosahexaenoic acid or linoleic acid, partially alleviated cell death in the developing eye, restored impaired autophagy flux, reduced Aβ aggregation, and attenuated Aβ-induced cell death. Our results suggest that Drosophila fabp plays an important role in maintaining protein homeostasis during aging and protects neurons from Aβ-induced cell death by enhancing autophagy through the PPAR pathway. These findings highlight the potential importance of neuronal FABP function in AD pathogenesis.
Collapse
Affiliation(s)
- Seokhui Jang
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Byoungyun Choi
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Chaejin Lim
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Minkyoung Kim
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Ji-Eun Lee
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Hyungi Lee
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Eunji Baek
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Kyoung Sang Cho
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
- Korea Hemp Institute, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
24
|
Jagdale AD, Angal MM, Patil RS, Tupe RS. Exploring the glycation association with dyslipidaemia: Novel approach for diabetic nephropathy. Biochem Pharmacol 2024; 229:116513. [PMID: 39218042 DOI: 10.1016/j.bcp.2024.116513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/14/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
The transcription factor known as sterol regulatory element-binding protein (SREBP) and the glycation pathways, specifically the formation of Advanced Glycation End Products (AGEs), have a significant and deleterious impact on the kidney. They alter renal lipid metabolism and promote glomerulosclerosis, mesangial cell expansion, tubulointerstitial fibrosis, and inflammation, leading to diabetic nephropathy (DN) progression. Although several pieces of scientific evidence are reported for potential causes of glycation and lipotoxicity in DN, the underlying mechanism of renal lipid accumulation still needs to be fully understood. We provide a rationalized view on how AGEs exert multiple effects that cause SREBP activation and inflammation, contributing to DN through Receptor for AGEs (RAGE) signaling, AGE-R1-dependent downregulation of Sirtuin 1 (SIRT-1), and increased SREBP Cleavage Activating Protein (SCAP) glycosylation. This review emphasizes the association between glycation and the SREBP pathway and how it affects the onset of DN associated with obesity. Finally, we discuss the correlation of glycation and the SREBP pathway with insulin resistance (IR), oxidative stress, endoplasmic reticulum stress, inflammation, and existing and emerging therapeutic approaches toward better controlling obesity-related DN.
Collapse
Affiliation(s)
- Ashwini D Jagdale
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra, India
| | - Mukul M Angal
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra, India
| | - Rahul S Patil
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Rashmi S Tupe
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra, India.
| |
Collapse
|
25
|
Ding Y, Yan F, Yoon B, Wei W, Ruff DM, Zhang Y, Lin X, Xu X. An mTOR-Tfeb-Fabp7a signaling axis can be harnessed to ameliorate bag3 cardiomyopathy in adult zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.24.620101. [PMID: 39484593 PMCID: PMC11527138 DOI: 10.1101/2024.10.24.620101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Dysregulated proteostasis in cardiomyocytes is an important pathological event in BAG3 cardiomyopathy, which can be repaired by inhibiting mechanistic target of rapamycin (mTOR) for cardioprotective effects. Here, we aimed to uncover additional pathological events and therapeutic target genes via leveraging zebrafish genetics. We first assessed transcription factor EB ( tfeb ), a candidate gene that encodes a direct downstream phosphorylation target of mTOR signaling. We found that cardiomyocyte-specific transgenic overexpression of tfeb ( Tg[cmlc2:tfeb] ) is sufficient to repair defective proteostasis, attenuate accelerated cardiac senescence, a previously unrecognized phenotype in the bag3 cardiomyopathy model, and rescue cardiac dysfunction. Next, we compared cardiac transcriptomes between the Tg(cmlc2:tfeb) transgenic fish and the mtor xu015/+ mutant, and tested 4 commonly downregulated lipodystrophy genes using an F0-based genetic assay. We found that inhibition of the fatty acid binding protein a ( fabp7a ) gene, but not the other 3 genes, exerts therapeutic effects on bag3 cardiomyopathy. Conversely, fabp7a expression is elevated in bag3 cardiomyopathy model and cardiomyocyte-specific overexpression of fabp7a resulted in dysregulated proteostasis, accelerated cardiac senescence, as well as cardiac dysfunction. Together, these genetic studies in zebrafish uncovered Fabp7a activation and accelerated cardiac senescence as important pathological events in bag3 cardiomyopathy. The mTOR-Tfeb-Fabp7a signaling axis can be harnessed to repair these pathological changes and exert cardioprotective effects.
Collapse
|
26
|
Miuma S, Miyaaki H, Taura N, Kanda Y, Matsuo S, Tajima K, Takahashi K, Nakao Y, Fukushima M, Haraguchi M, Sasaki R, Ozawa E, Ichikawa T, Nakao K. Elevated intestinal fatty acid-binding protein levels as a marker of portal hypertension and gastroesophageal varices in cirrhosis. Sci Rep 2024; 14:25003. [PMID: 39443545 PMCID: PMC11499902 DOI: 10.1038/s41598-024-76040-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024] Open
Abstract
We measured intestinal fatty acid-binding protein (I-FABP) levels, a useful marker of small intestinal mucosal injury, in patients with cirrhosis to determine their relationship with liver function and complications. This cross-sectional study included 71 patients with cirrhosis admitted for treatment of cirrhotic complications or hepatocellular carcinoma (cohort A) and 104 patients with cirrhosis who received direct-acting antiviral therapy for HCV (cohort B). I-FABP levels, measured by ELISA, were evaluated relative to hepatic reserve and compared with non-invasive scoring systems for diagnostic performance in cirrhotic complications. The median I-FABP level in both cohorts were significantly elevated in patients with reduced hepatic reserve (CTP grade A/BC cohort A, 2.33/3.17 ng/mL, p = 0.032; cohort B, 2.46/3.64 ng/mL, p = 0.008) and complications with gastroesophageal varices (GEV; GEV (-)/(+) cohort A, 1.66/3.67 ng/mL, p < 0.001; cohort B, 2.32/3.36 ng/mL; p = 0.003). Further, multiple logistic regression analysis identified I-FABP as the only factor contributing to GEV presence in both cohorts, which outperformed non-invasive scoring systems for GEV diagnosis (sensitivity 84.6%; specificity 84.2%; sensitivity 69.6%; specificity 63.8%, respectively). In conclusion, elevated small-intestinal mucosal injury in patients with cirrhosis was related to reduced hepatic reserve and GEV presence. I-FABP levels reflect portal hypertension and may be useful in cirrhosis management.
Collapse
Affiliation(s)
- Satoshi Miuma
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, 1- 7-1 Sakamoto, Nagasaki, 852-8501, Japan.
| | - Hisamitsu Miyaaki
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, 1- 7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Naota Taura
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, 1- 7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Yasuko Kanda
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, 1- 7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Satoshi Matsuo
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, 1- 7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Kazuaki Tajima
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, 1- 7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Kosuke Takahashi
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, 1- 7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Yasuhiko Nakao
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, 1- 7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Masanori Fukushima
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, 1- 7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Masafumi Haraguchi
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, 1- 7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Ryu Sasaki
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, 1- 7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Eisuke Ozawa
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, 1- 7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Tatsuki Ichikawa
- Department of Gastroenterology, Nagasaki Harbor Medical Center, Shinti 6-39, Nagasaki, 850-8555, Japan
| | - Kazuhiko Nakao
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, 1- 7-1 Sakamoto, Nagasaki, 852-8501, Japan
| |
Collapse
|
27
|
Blitek A, Szymanska M. Expression Profiles of Fatty Acid Transporters and the Role of n-3 and n-6 Polyunsaturated Fatty Acids in the Porcine Endometrium. Int J Mol Sci 2024; 25:11102. [PMID: 39456882 PMCID: PMC11507490 DOI: 10.3390/ijms252011102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Fatty acids (FAs) are important for cell membrane composition, eicosanoid synthesis, and metabolic processes. Membrane proteins that facilitate FA transport into cells include FA translocase (also known as CD36) and FA transporter proteins (encoded by SLC27A genes). The present study aimed to examine expression profiles of FA transporters in the endometrium of cyclic and early pregnant gilts on days 3 to 20 after estrus and the possible regulation by conceptus signals and polyunsaturated FAs (PUFAs). The effect of PUFAs on prostaglandin (PG) synthesis and transcript abundance of genes related to FA action and metabolism, angiogenesis, and immune response was also determined. Day after estrus and reproductive status of animals affected FA transporter expression, with greater levels of CD36, SLC27A1, and SLC27A4 observed in pregnant than in cyclic gilts. Conceptus-conditioned medium and/or estradiol-17β stimulated SLC27A1 and CD36 expression. Among PUFAs, linoleic acid decreased SLC27A1 and SLC27A6 mRNA expression, while arachidonic, docosahexaenoic, and eicosapentaenoic acids increased SLC27A4 transcript abundance. Moreover, arachidonic acid stimulated ACOX1, CPT1A, and IL1B expression and increased PGE2 and PGI2 secretion. In turn, α-linolenic acid up-regulated VEGFA, FGF2, FABP4, and PPARG mRNA expression. These results indicate the presence of an active transport of FAs in the porcine endometrium and the role of PUFAs as modulators of the uterine activity during conceptus implantation.
Collapse
Affiliation(s)
- Agnieszka Blitek
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland;
| | | |
Collapse
|
28
|
Adepu KK, Anishkin A, Adams SH, Chintapalli SV. A versatile delivery vehicle for cellular oxygen and fuels or metabolic sensor? A review and perspective on the functions of myoglobin. Physiol Rev 2024; 104:1611-1642. [PMID: 38696337 PMCID: PMC11495214 DOI: 10.1152/physrev.00031.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/04/2024] Open
Abstract
A canonical view of the primary physiological function of myoglobin (Mb) is that it is an oxygen (O2) storage protein supporting mitochondrial oxidative phosphorylation, especially as the tissue O2 partial pressure (Po2) drops and Mb off-loads O2. Besides O2 storage/transport, recent findings support functions for Mb in lipid trafficking and sequestration, interacting with cellular glycolytic metabolites such as lactate (LAC) and pyruvate (PYR), and "ectopic" expression in some types of cancer cells and in brown adipose tissue (BAT). Data from Mb knockout (Mb-/-) mice and biochemical models suggest additional metabolic roles for Mb, especially regulation of nitric oxide (NO) pools, modulation of BAT bioenergetics, thermogenesis, and lipid storage phenotypes. From these and other findings in the literature over many decades, Mb's function is not confined to delivering O2 in support of oxidative phosphorylation but may serve as an O2 sensor that modulates intracellular Po2- and NO-responsive molecular signaling pathways. This paradigm reflects a fundamental change in how oxidative metabolism and cell regulation are viewed in Mb-expressing cells such as skeletal muscle, heart, brown adipocytes, and select cancer cells. Here, we review historic and emerging views related to the physiological roles for Mb and present working models illustrating the possible importance of interactions between Mb, gases, and small-molecule metabolites in regulation of cell signaling and bioenergetics.
Collapse
Affiliation(s)
- Kiran Kumar Adepu
- Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
| | - Andriy Anishkin
- Department of Biology, University of Maryland, College Park, Maryland, United States
| | - Sean H Adams
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, California, United States
- Center for Alimentary and Metabolic Science, School of Medicine, University of California Davis, Sacramento, California, United States
| | - Sree V Chintapalli
- Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
| |
Collapse
|
29
|
Jia F, Liu L, Weng Q, Zhang H, Zhao X. Glycolysis-Metabolism-Related Prognostic Signature for Ewing Sarcoma Patients. Mol Biotechnol 2024; 66:2882-2896. [PMID: 37775679 DOI: 10.1007/s12033-023-00899-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/11/2023] [Indexed: 10/01/2023]
Abstract
Ewing sarcoma (EwS) is a malignant sarcoma which occurs in bone and soft tissues commonly happening in children with poor survival rates. Changes in cell metabolism, such as glycolysis, may provide the environment for the transformation and progression of tumors. We aimed to build a model to predict prognosis of EwS patients based on glycolysis and metabolism genes. Candidate genes were obtained by differential gene expression analysis based on GSE17679, GSE17674 and ICGC datasets. We performed GO and KEGG pathway enrichment analysis on candidate genes. Univariate Cox and LASSO Cox regression analyses were conducted to construct a model to calculate the Risk Score. GSEA was done between high-risk and low-risk groups. CIBERSORT was applied to analyze the immune landscape. We got 295 candidate glycolysis-metabolism-related genes which were enriched in 620 GO terms and 18 KEGG pathways. 12 Genes were selected by univariate Cox model and 5 of them were determined by LASSO Cox regression analysis to be used in the construction of the Risk Score model. The Risk Score could be considered as an independent prognosis factor. The immune landscape and immune checkpoints' expression significantly differed between high- and low-risk groups. Our research constructed a new glycolysis-metabolism-related genes (FABP5, EMILIN1, GLCE, PHF11 and PALM3) based prognostic signature for EwS patients and assisted in gaining insight into prognosis to improve therapies further.
Collapse
Affiliation(s)
- Fusen Jia
- Department of Hand & Foot Surgery, Zibo Central Hospital, Zhangdian District, Zibo, 255036, Shandong, People's Republic of China
| | - Lei Liu
- Orthopedic Surgery 2nd, Qilu Hospital Huantai Branch, Huantai County, Zibo, 256400, Shandong, People's Republic of China
| | - Qi Weng
- Department of Psychology, Zibo Maternal and Child Health Hospital, Zhangdian District, Zibo, 255022, Shandong, People's Republic of China
| | - Haiyang Zhang
- Department of Hand & Foot Surgery, Zibo Central Hospital, Zhangdian District, Zibo, 255036, Shandong, People's Republic of China
| | - Xuesheng Zhao
- Orthopedic Surgery 2nd, The Fifth People's Hospital of Jinan, No. 24297 Jingshi Road, Huaiyin District, Jinan, 250000, Shandong, People's Republic of China.
| |
Collapse
|
30
|
Warren WG, Osborn M, Duffy P, Yates A, O'Sullivan SE. Potential safety implications of fatty acid-binding protein inhibition. Toxicol Appl Pharmacol 2024; 491:117079. [PMID: 39218163 DOI: 10.1016/j.taap.2024.117079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/15/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Fatty acid-binding proteins (FABPs) are small intracellular proteins that regulate fatty acid metabolism, transport, and signalling. There are ten known human isoforms, many of which are upregulated and involved in clinical pathologies. As such, FABP inhibition may be beneficial in disease states such as cancer, and those involving the cardiovascular system, metabolism, immunity, and cognition. Recently, a potent, selective FABP5 inhibitor (ART26.12), with 90-fold selectivity to FABP3 and 20-fold selectivity to FABP7, was found to be remarkably benign, with a no-observed-adverse-effect level of 1000 mg/kg in rats and dogs, showing no genotoxicity, cardiovascular, central, or respiratory toxicity. To understand the potential implication of FABP inhibition more fully, this review systematically assessed literature investigating genetic knockout, knockdown, and pharmacological inhibition of FABP3, FABP4, FABP5, or FABP7. Analysis of the literature revealed that animals bred not to express FABPs showed the most biological effects, suggesting key roles of these proteins during development. FABP ablation sometimes exacerbated symptoms of disease models, particularly those linked to metabolism, inflammatory and immune responses, cardiac contractility, neurogenesis, and cognition. However, FABP inhibition (genetic silencing or pharmacological) had a positive effect in many more disease conditions. Several polymorphisms of each FABP gene have also been linked to pathological conditions, but it was unclear how several polymorphisms affected protein function. Overall, analysis of the literature to date suggests that pharmacological inhibition of FABPs in adults is of low risk.
Collapse
Affiliation(s)
- William G Warren
- Artelo Biosciences Limited, Alderley Park, Cheshire SK10 4TG, United Kingdom.
| | - Myles Osborn
- Artelo Biosciences Limited, Alderley Park, Cheshire SK10 4TG, United Kingdom
| | - Paul Duffy
- Apconix Ltd., Alderley Park, Cheshire SK10 4TG, United Kingdom
| | - Andrew Yates
- Artelo Biosciences Limited, Alderley Park, Cheshire SK10 4TG, United Kingdom
| | | |
Collapse
|
31
|
Tiburtini GA, Bertarini L, Bersani M, Dragani TA, Rolando B, Binello A, Barge A, Spyrakis F. In silico prediction of the interaction of legacy and novel per- and poly-fluoroalkyl substances (PFAS) with selected human transporters and of their possible accumulation in the human body. Arch Toxicol 2024; 98:3035-3047. [PMID: 38884658 PMCID: PMC11324760 DOI: 10.1007/s00204-024-03797-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/23/2024] [Indexed: 06/18/2024]
Abstract
Per- and poly-fluorinated compounds constitute a wide group of fluorocarbon chemicals with widespread industrial applications, ranging from non-stick coating in cookware to water surfactants, from fire-fighting foams to water-repellent coatings on textiles. Presently, over 12,000 PFAS are known worldwide. In recent years, extensive research has focused on investigating the biological effects of these molecules on various organisms, including humans. Here, we conducted in silico simulations to examine the potential binding of a representative selection of PFAS to various human proteins known to be involved in chemical transportation and accumulation processes. Specifically, we targeted human serum albumin (HSA), transthyretin (TTR), thyroxine binding protein (TBG), fatty acid binding proteins (FABPs), organic anion transporters (OATs), aiming to assess the potential for bioaccumulation. Molecular docking simulations were employed for this purpose, supplemented by molecular dynamics (MD) simulations to account for protein flexibility, when necessary. Our findings indicate that so-called "legacy PFAS" such as PFOA or PFOS exhibit a higher propensity for interaction with the analysed human protein targets compared to newly formulated PFAS, characterised by higher branching and hydrophilicity, and possibly a higher accumulation in the human body.
Collapse
Affiliation(s)
- G A Tiburtini
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - L Bertarini
- Department of Drug Science and Technology, University of Turin, Turin, Italy
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - M Bersani
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | | | - B Rolando
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - A Binello
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - A Barge
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - F Spyrakis
- Department of Drug Science and Technology, University of Turin, Turin, Italy.
| |
Collapse
|
32
|
Ohguro H, Watanabe M, Hikage F, Sato T, Nishikiori N, Umetsu A, Higashide M, Ogawa T, Furuhashi M. Fatty Acid-Binding Protein 4-Mediated Regulation Is Pivotally Involved in Retinal Pathophysiology: A Review. Int J Mol Sci 2024; 25:7717. [PMID: 39062961 PMCID: PMC11277531 DOI: 10.3390/ijms25147717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Fatty acid-binding proteins (FABPs), a family of lipid chaperone molecules that are involved in intracellular lipid transportation to specific cellular compartments, stimulate lipid-associated responses such as biological signaling, membrane synthesis, transcriptional regulation, and lipid synthesis. Previous studies have shown that FABP4, a member of this family of proteins that are expressed in adipocytes and macrophages, plays pivotal roles in the pathogenesis of various cardiovascular and metabolic diseases, including diabetes mellitus (DM) and hypertension (HT). Since significant increases in the serum levels of FABP4 were detected in those patients, FABP4 has been identified as a crucial biomarker for these systemic diseases. In addition, in the field of ophthalmology, our group found that intraocular levels of FABP4 (ioFABP4) and free fatty acids (ioFFA) were substantially elevated in patients with retinal vascular diseases (RVDs) including proliferative diabetic retinopathy (PDR) and retinal vein occlusion (RVO), for which DM and HT are also recognized as significant risk factors. Recent studies have also revealed that ioFABP4 plays important roles in both retinal physiology and pathogenesis, and the results of these studies have suggested potential molecular targets for retinal diseases that might lead to future new therapeutic strategies.
Collapse
Affiliation(s)
- Hiroshi Ohguro
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (F.H.); (N.N.); (A.U.); (M.H.)
| | - Megumi Watanabe
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (F.H.); (N.N.); (A.U.); (M.H.)
| | - Fumihito Hikage
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (F.H.); (N.N.); (A.U.); (M.H.)
| | - Tatsuya Sato
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.O.)
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Nami Nishikiori
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (F.H.); (N.N.); (A.U.); (M.H.)
| | - Araya Umetsu
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (F.H.); (N.N.); (A.U.); (M.H.)
| | - Megumi Higashide
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (F.H.); (N.N.); (A.U.); (M.H.)
| | - Toshifumi Ogawa
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.O.)
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Masato Furuhashi
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.O.)
| |
Collapse
|
33
|
Farrag Y, Farrag M, Varela-García M, Torrijos-Pulpón C, Capuozzo M, Ottaiano A, Lago F, Mera A, Pino J, Gualillo O. Adipokines as potential pharmacological targets for immune inflammatory rheumatic diseases: Focus on rheumatoid arthritis, osteoarthritis, and intervertebral disc degeneration. Pharmacol Res 2024; 205:107219. [PMID: 38763327 DOI: 10.1016/j.phrs.2024.107219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Adipokines are a heterogeneous group of signalling molecules secreted prevalently by adipose tissue. Initially considered as regulators of energy metabolism and appetite, adipokines have been recognized for their substantial involvement in musculoskeletal disorders, including osteoarthritis, rheumatoid arthritis, and many others. Understanding the role of adipokines in rheumatic inflammatory and autoimmune diseases, as well as in other musculoskeletal diseases such as intervertebral disc degeneration, is crucial for the development of novel therapeutic strategies. Targeting adipokines, or their signalling pathways, may offer new opportunities for the treatment and management of these conditions. By modulating adipokines levels or activity, it may be possible to regulate inflammation, to maintain bone health, and preserve muscle mass, thereby improving the outcomes and quality of life for individuals affected by musculoskeletal diseases. The aim of this review article is to update the reader on the multifaceted role of adipokines in the main rheumatic diseases such as osteoarthritis and rheumatoid arthritis and to unravel the complex interplay among adipokines, cartilage metabolism, bone remodelling and muscles, which will pave the way for innovative therapeutic intervention in the future. For completeness, the role of adipokines in intervertebral disc degeneration will be also addressed.
Collapse
Affiliation(s)
- Yousof Farrag
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesía da Choupana SIN, Santiago de Compostela 15706, Spain.
| | - Mariam Farrag
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesía da Choupana SIN, Santiago de Compostela 15706, Spain.
| | - María Varela-García
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesía da Choupana SIN, Santiago de Compostela 15706, Spain.
| | - Carlos Torrijos-Pulpón
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesía da Choupana SIN, Santiago de Compostela 15706, Spain.
| | - Maurizio Capuozzo
- Pharmaceutical Department, ASL-Napoli-3 Sud, Via Marittima 3, Ercolano 80056, Italy.
| | - Alessando Ottaiano
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via M. Semmola, Naples 80131, Italy.
| | - Francisca Lago
- Molecular and Cellular Cardiology Group, SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), Research Laboratory 7, Santiago University Clinical Hospital, Santiago de Compostela 15706, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain.
| | - Antonio Mera
- SERGAS, Servizo Galego de Saude, Santiago University Clinical Hospital, Division of Rheumatology, Santiago de Compostela 15706, Spain.
| | - Jesus Pino
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesía da Choupana SIN, Santiago de Compostela 15706, Spain; International PhD School, University of Santiago de Compostela (EDIUS), Santiago de Compostela 15706, Spain; University of Santiago de Compostela, Department of Surgery and Medical Surgical Specialties, Santiago University Clinical Hospital, Trav. Choupana s/n, 15706, Santiago de Compostela, Spain.
| | - Oreste Gualillo
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesía da Choupana SIN, Santiago de Compostela 15706, Spain; International PhD School, University of Santiago de Compostela (EDIUS), Santiago de Compostela 15706, Spain.
| |
Collapse
|
34
|
Kemp F, Braverman EL, Byersdorfer CA. Fatty acid oxidation in immune function. Front Immunol 2024; 15:1420336. [PMID: 39007133 PMCID: PMC11240245 DOI: 10.3389/fimmu.2024.1420336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/31/2024] [Indexed: 07/16/2024] Open
Abstract
Cellular metabolism is a crucial determinant of immune cell fate and function. Extensive studies have demonstrated that metabolic decisions influence immune cell activation, differentiation, and cellular capacity, in the process impacting an organism's ability to stave off infection or recover from injury. Conversely, metabolic dysregulation can contribute to the severity of multiple disease conditions including autoimmunity, alloimmunity, and cancer. Emerging data also demonstrate that metabolic cues and profiles can influence the success or failure of adoptive cellular therapies. Importantly, immunometabolism is not one size fits all; and different immune cell types, and even subdivisions within distinct cell populations utilize different metabolic pathways to optimize function. Metabolic preference can also change depending on the microenvironment in which cells are activated. For this reason, understanding the metabolic requirements of different subsets of immune cells is critical to therapeutically modulating different disease states or maximizing cellular function for downstream applications. Fatty acid oxidation (FAO), in particular, plays multiple roles in immune cells, providing both pro- and anti-inflammatory effects. Herein, we review the major metabolic pathways available to immune cells, then focus more closely on the role of FAO in different immune cell subsets. Understanding how and why FAO is utilized by different immune cells will allow for the design of optimal therapeutic interventions targeting this pathway.
Collapse
Affiliation(s)
| | | | - Craig A. Byersdorfer
- Department of Pediatrics, Division of Blood and Marrow Transplant and Cellular Therapies, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
35
|
Soto-Avellaneda A, Oxford AE, Halla F, Vasquez P, Oe E, Pugel AD, Schoenfeld AM, Tillman MC, Cuevas A, Ortlund EA, Morrison BE. FABP5-binding lipids regulate autophagy in differentiated SH-SY5Y cells. PLoS One 2024; 19:e0300168. [PMID: 38900831 PMCID: PMC11189175 DOI: 10.1371/journal.pone.0300168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 02/22/2024] [Indexed: 06/22/2024] Open
Abstract
The motor features of Parkinson's disease result from loss of dopaminergic neurons in the substantia nigra with autophagy dysfunction being closely linked to this disease. While a large body of work focusing on protein effectors of autophagy has been reported, regulation of autophagy by lipids has garnered far less attention. Therefore, we sought to identify endogenous lipid molecules that act as signaling mediators of autophagy in differentiated SH-SY5Y cells, a commonly used dopaminergic neuron-like cell model. In order to accomplish this goal, we assessed the role of a fatty acid-binding protein (FABP) family member on autophagy due to its function as an intracellular lipid chaperone. We focused specifically upon FABP5 due to its heightened expression in dopaminergic neurons within the substantia nigra and SH-SY5Y cells. Here, we report that knockdown of FABP5 resulted in suppression of autophagy in differentiated SH-SY5Y cells suggesting the possibility of an autophagic role for an interacting lipid. A lipidomic screen of FABP5-interacting lipids uncovered hits that include 5-oxo-eicosatetraenoic acid (5OE) and its precursor metabolite, arachidonic acid (AA). Additionally, other long-chain fatty acids were found to bind FABP5, such as stearic acid (SA), hydroxystearic acid (HSA), and palmitic acid (PA). The addition of 5OE, SA, and HSA but not AA or PA, led to potent inhibition of autophagy in SH-SY5Y cells. To identify potential molecular mechanisms for autophagy inhibition by these lipids, RNA-Seq was performed which revealed both shared and divergent signaling pathways between the lipid-treated groups. These findings suggest a role for these lipids in modulating autophagy through diverse signaling pathways and could represent novel therapeutic targets for Parkinson's disease.
Collapse
Affiliation(s)
| | - Alexandra E. Oxford
- Department of Biological Sciences, Boise State University, Boise, ID, United States of America
| | - Fabio Halla
- Department of Biological Sciences, Boise State University, Boise, ID, United States of America
| | - Peyton Vasquez
- Department of Biological Sciences, Boise State University, Boise, ID, United States of America
| | - Emily Oe
- Department of Biological Sciences, Boise State University, Boise, ID, United States of America
| | - Anton D. Pugel
- Biomolecular Sciences Ph.D. Program, Boise State University, Boise, ID, United States of America
| | - Alyssa M. Schoenfeld
- Department of Biological Sciences, Boise State University, Boise, ID, United States of America
| | - Matthew C. Tillman
- Department of Biochemistry, Emory University, Atlanta, GA, United States of America
| | - André Cuevas
- Department of Biochemistry, Emory University, Atlanta, GA, United States of America
| | - Eric A. Ortlund
- Department of Biochemistry, Emory University, Atlanta, GA, United States of America
| | - Brad E. Morrison
- Biomolecular Sciences Ph.D. Program, Boise State University, Boise, ID, United States of America
- Department of Biological Sciences, Boise State University, Boise, ID, United States of America
| |
Collapse
|
36
|
Horcicka A, Fischer L, Weigand MA, Larmann J. [Cardiac biomarkers prior to noncardiac surgery]. DIE ANAESTHESIOLOGIE 2024; 73:365-375. [PMID: 38829520 DOI: 10.1007/s00101-024-01417-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/18/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Cardiac biomarkers, such as high-sensitivity cardiac troponin (hs-cTn) and brain natriuretic peptide (BNP) or N‑terminal prohormone of brain natriuretic peptide (NT-proBNP) are measured perioperatively to improve the prognosis and risk prediction. The European Society of Cardiology (ESC), European Society of Anesthesiology and Intensive Care (ESAIC) and the German Society of Anesthesiology and Intensive Care Medicine (DGAI) have recently published guidelines on the use of cardiac biomarkers prior to surgery. OBJECTIVE/RESEARCH QUESTION This article provides an overview of the available evidence on perioperative troponin and BNP/NT-proBNP measurements. Current guideline recommendations are presented and discussed. MATERIAL AND METHODS MEDLINE, Cochrane and google.scholar were searched for relevant keywords. Titles and abstracts of identified papers were checked for relevance and published results were summarized. Guideline recommendations from the ESC, ESAIC and DGAI are presented, compared and evaluated based on the available literature. In addition, the significance of new perioperative cardiac biomarkers is discussed based on the existing evidence. RESULTS The definitions, diagnosis and management of cardiovascular events in the perioperative context differ from those in the nonsurgical setting. The evidence for the measurement of hs-cTn and BNP/NT-proBNP is evaluated differently in the guidelines and the resulting recommendations are partly contradictory. In particular, recommendations for changes in perioperative management based on biomarker measurements diverge. The ESC guidelines propose an algorithm that uses preoperative biomarkers as the basis for additional cardiac investigations. In particular, invasive coronary angiography is recommended for patients with stable chronic coronary syndrome who have no preoperative cardiac symptoms but elevated biomarkers. In contrast, the ESAIC guidelines emphasize that the available evidence is not sufficient to use perioperative biomarker measurements as a basis for a change in perioperative management. DISCUSSION Treating physicians should coordinate interdisciplinary (surgery, anesthesiology, cardiology) recommendations for clinical practice based on the aforementioned guidelines. If cardiac biomarkers are routinely determined in high-risk patients, this should be done in accordance with the ESC algorithm.
Collapse
Affiliation(s)
- Anna Horcicka
- Klinik für Anästhesiologie, Universitätsklinikum Heidelberg, Universität Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Deutschland
| | - Lilli Fischer
- Klinik für Anästhesiologie, Universitätsklinikum Heidelberg, Universität Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Deutschland
| | - Markus A Weigand
- Klinik für Anästhesiologie, Universitätsklinikum Heidelberg, Universität Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Deutschland
| | - Jan Larmann
- Klinik für Anästhesiologie, Universitätsklinikum Heidelberg, Universität Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Deutschland.
| |
Collapse
|
37
|
Michler S, Schöffmann FA, Robaa D, Volmer J, Hinderberger D. Fatty acid binding to the human transport proteins FABP3, FABP4, and FABP5 from a Ligand's perspective. J Biol Chem 2024; 300:107396. [PMID: 38777142 PMCID: PMC11231610 DOI: 10.1016/j.jbc.2024.107396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Fatty acid binding proteins (FABPs) are a family of amphiphilic transport proteins with high diversity in terms of their amino acid sequences and binding preferences. Beyond their main biological role as cytosolic fatty acid transporters, many aspects regarding their binding mechanism and functional specializations in human cells remain unclear. In this work, the binding properties and thermodynamics of FABP3, FABP4, and FABP5 were analyzed under various physical conditions. For this purpose, the FABPs were loaded with fatty acids bearing fluorescence or spin probes as model ligands, comparing their binding affinities via microscale thermophoresis (MST) and continuous-wave electron paramagnetic resonance (CW EPR) spectroscopy. The CW EPR spectra of non-covalently bound 5- and 16-DOXYL stearic acid (5/16-DSA) deliver in-depth information about the dynamics and chemical environments of ligands inside the binding pockets of the FABPs. EPR spectral simulations allow the construction of binding curves, revealing two different binding states ('intermediately' and 'strongly' bound). The proportion of bound 5/16-DSA depends strongly on the FABP concentration and the temperature but with remarkable differences between the three isoforms. Additionally, the more dynamic state ('intermediately bound') seems to dominate at body temperature with thermodynamic preference. The ligand binding studies were supplemented by aggregation studies via dynamic light scattering and bioinformatic analyses. Beyond the remarkably fine-tuned binding properties exhibited by each FABP, which were discernible with our EPR-centered approach, the results of this work attest to the power of simple spectroscopic experiments to provide new insights into the ligand binding mechanisms of proteins in general on a molecular level.
Collapse
Affiliation(s)
- Sebastian Michler
- Physical Chemistry - Complex Self-Organizing Systems, Institute of Chemistry, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Florian Arndt Schöffmann
- Physical Chemistry - Complex Self-Organizing Systems, Institute of Chemistry, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Dina Robaa
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Jonas Volmer
- Physical Chemistry - Complex Self-Organizing Systems, Institute of Chemistry, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Dariush Hinderberger
- Physical Chemistry - Complex Self-Organizing Systems, Institute of Chemistry, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
38
|
Rawat S, Singh G, Prasad A. Investigating the Taenia solium Fatty Acid Binding Protein Superfamily for Their Immunological Outlook and Prospect for Therapeutic Targets. ACS OMEGA 2024; 9:22557-22572. [PMID: 38826528 PMCID: PMC11137695 DOI: 10.1021/acsomega.3c09253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/22/2024] [Accepted: 05/07/2024] [Indexed: 06/04/2024]
Abstract
Taenia solium, like other helminthic parasites, lacks key components of cellular machinery required for endogenous lipid biosynthesis. This deficiency compels the parasite to obtain all of its lipid requirements from its host. The passage of lipids across the cell membrane is tightly regulated. To facilitate effective lipid transport, the cestode parasite utilizes certain lipid binding proteins called FABPs. These FABPs bind with the lipid ligands and allow the transport of lipids across the membranes and into the cytosol. Here, by integrating a computational with homology protein prediction tools, we had identified five FABPs in the T. solium proteome. We confirmed their presence by RNA expression analysis of respective genes from the parasite's cysticerci transcript. During the molecular modeling and MD simulation studies, two of them, TsM_000544100 and TsM_001185100, were most stable. Furthermore, they had a robust interaction with the IgG1 molecule, as evidenced by MD simulation. In addition, by employing in silico screening, we had identified potential ligand interacting residues that are present on the probable druggable site. In combination with in vitro cysticidal assays, enalaprilat dihydrate showed efficacy against cysticerci, which suggests that FABPs play a significant role in the cysticercus life cycle. Together, we provided a detailed distribution of all FABPs expressed by T. solium cysticerci and the critical role of TsM_001185100 in cysticercus viability.
Collapse
Affiliation(s)
- Suraj
S. Rawat
- School
of Biosciences and Bioengineering, Indian
Institute of Technology Mandi, Mandi, Himachal Pradesh 175005, India
| | - Gagandeep Singh
- Dayanad
Medical College and Hospital, Ludhiana, Punjab 141001,India
| | - Amit Prasad
- School
of Biosciences and Bioengineering, Indian
Institute of Technology Mandi, Mandi, Himachal Pradesh 175005, India
- Indian
Knowledge System and Mental Health Centre, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175005, India
- Centre
for Human-Computer Interaction, Indian Institute
of Technology Mandi, Mandi, Himachal Pradesh 175005, India
| |
Collapse
|
39
|
Yabut KCB, Martynova A, Nath A, Zercher BP, Bush MF, Isoherranen N. Drugs Form Ternary Complexes with Human Liver Fatty Acid Binding Protein 1 (FABP1) and FABP1 Binding Alters Drug Metabolism. Mol Pharmacol 2024; 105:395-410. [PMID: 38580446 PMCID: PMC11114116 DOI: 10.1124/molpharm.124.000878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/07/2024] Open
Abstract
Liver fatty acid binding protein 1 (FABP1) binds diverse endogenous lipids and is highly expressed in the human liver. Binding to FABP1 alters the metabolism and homeostasis of endogenous lipids in the liver. Drugs have also been shown to bind to rat FABP1, but limited data are available for human FABP1 (hFABP1). FABP1 has a large binding pocket, and up to two fatty acids can bind to FABP1 simultaneously. We hypothesized that drug binding to hFABP1 results in formation of ternary complexes and that FABP1 binding alters drug metabolism. To test these hypotheses, native protein mass spectrometry (MS) and fluorescent 11-(dansylamino)undecanoic acid (DAUDA) displacement assays were used to characterize drug binding to hFABP1, and diclofenac oxidation by cytochrome P450 2C9 (CYP2C9) was studied in the presence and absence of hFABP1. DAUDA binding to hFABP1 involved high (Kd,1 = 0.2 μM) and low (Kd,2 > 10 μM) affinity binding sites. Nine drugs bound to hFABP1 with equilibrium dissociation constant (Kd) values ranging from 1 to 20 μM. None of the tested drugs completely displaced DAUDA from hFABP1, and fluorescence spectra showed evidence of ternary complex formation. Formation of DAUDA-hFABP1-diclofenac ternary complex was verified with native MS. Docking predicted diclofenac binding in the portal region of FABP1 with DAUDA in the binding cavity. The catalytic rate constant of diclofenac hydroxylation by CYP2C9 was decreased by ∼50% (P < 0.01) in the presence of FABP1. Together, these results suggest that drugs form ternary complexes with hFABP1 and that hFABP1 binding in the liver will alter drug metabolism and clearance. SIGNIFICANCE STATEMENT: Many commonly prescribed drugs bind fatty acid binding protein 1 (FABP1), forming ternary complexes with FABP1 and the fluorescent fatty acid 11-(dansylamino)undecanoic acid. These findings suggest that drugs will bind to apo-FABP1 and fatty acid-bound FABP1 in the human liver. The high expression of FABP1 in the liver, together with drug binding to FABP1, may alter drug disposition processes in vivo.
Collapse
Affiliation(s)
- King Clyde B Yabut
- Department of Pharmaceutics, School of Pharmacy (K.C.B.Y., N.I.), Department of Chemistry (A.M., B.P.Z., M.F.B.), and Department of Medicinal Chemistry (A.N.), University of Washington, Seattle, Washington
| | - Alice Martynova
- Department of Pharmaceutics, School of Pharmacy (K.C.B.Y., N.I.), Department of Chemistry (A.M., B.P.Z., M.F.B.), and Department of Medicinal Chemistry (A.N.), University of Washington, Seattle, Washington
| | - Abhinav Nath
- Department of Pharmaceutics, School of Pharmacy (K.C.B.Y., N.I.), Department of Chemistry (A.M., B.P.Z., M.F.B.), and Department of Medicinal Chemistry (A.N.), University of Washington, Seattle, Washington
| | - Benjamin P Zercher
- Department of Pharmaceutics, School of Pharmacy (K.C.B.Y., N.I.), Department of Chemistry (A.M., B.P.Z., M.F.B.), and Department of Medicinal Chemistry (A.N.), University of Washington, Seattle, Washington
| | - Matthew F Bush
- Department of Pharmaceutics, School of Pharmacy (K.C.B.Y., N.I.), Department of Chemistry (A.M., B.P.Z., M.F.B.), and Department of Medicinal Chemistry (A.N.), University of Washington, Seattle, Washington
| | - Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy (K.C.B.Y., N.I.), Department of Chemistry (A.M., B.P.Z., M.F.B.), and Department of Medicinal Chemistry (A.N.), University of Washington, Seattle, Washington
| |
Collapse
|
40
|
Eigenfeld M, Lupp KFM, Schwaminger SP. Role of Natural Binding Proteins in Therapy and Diagnostics. Life (Basel) 2024; 14:630. [PMID: 38792650 PMCID: PMC11122601 DOI: 10.3390/life14050630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
This review systematically investigates the critical role of natural binding proteins (NBPs), encompassing DNA-, RNA-, carbohydrate-, fatty acid-, and chitin-binding proteins, in the realms of oncology and diagnostics. In an era where cancer continues to pose significant challenges to healthcare systems worldwide, the innovative exploration of NBPs offers a promising frontier for advancing both the diagnostic accuracy and therapeutic efficacy of cancer management strategies. This manuscript provides an in-depth examination of the unique mechanisms by which NBPs interact with specific molecular targets, highlighting their potential to revolutionize cancer diagnostics and therapy. Furthermore, it discusses the burgeoning research on aptamers, demonstrating their utility as 'nucleic acid antibodies' for targeted therapy and precision diagnostics. Despite the promising applications of NBPs and aptamers in enhancing early cancer detection and developing personalized treatment protocols, this review identifies a critical knowledge gap: the need for comprehensive studies to understand the diverse functionalities and therapeutic potentials of NBPs across different cancer types and diagnostic scenarios. By bridging this gap, this manuscript underscores the importance of NBPs and aptamers in paving the way for next-generation diagnostics and targeted cancer treatments.
Collapse
Affiliation(s)
- Marco Eigenfeld
- Otto-Loewi Research Center, Division of Medicinal Chemistry, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Kilian F. M. Lupp
- Otto-Loewi Research Center, Division of Medicinal Chemistry, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Sebastian P. Schwaminger
- Otto-Loewi Research Center, Division of Medicinal Chemistry, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| |
Collapse
|
41
|
van der Ark-Vonk EM, Puijk MV, Pasterkamp G, van der Laan SW. The Effects of FABP4 on Cardiovascular Disease in the Aging Population. Curr Atheroscler Rep 2024; 26:163-175. [PMID: 38698167 PMCID: PMC11087245 DOI: 10.1007/s11883-024-01196-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2024] [Indexed: 05/05/2024]
Abstract
PURPOSE OF REVIEW Fatty acid-binding protein 4 (FABP4) plays a role in lipid metabolism and cardiovascular health. In this paper, we cover FABP4 biology, its implications in atherosclerosis from observational studies, genetic factors affecting FABP4 serum levels, and ongoing drug development to target FABP4 and offer insights into future FABP4 research. RECENT FINDINGS FABP4 impacts cells through JAK2/STAT2 and c-kit pathways, increasing inflammatory and adhesion-related proteins. In addition, FABP4 induces angiogenesis and vascular smooth muscle cell proliferation and migration. FABP4 is established as a reliable predictive biomarker for cardiovascular disease in specific at-risk groups. Genetic studies robustly link PPARG and FABP4 variants to FABP4 serum levels. Considering the potential effects on atherosclerotic lesion development, drug discovery programs have been initiated in search for potent inhibitors of FABP4. Elevated FABP4 levels indicate an increased cardiovascular risk and is causally related to acceleration of atherosclerotic disease, However, clinical trials for FABP4 inhibition are lacking, possibly due to concerns about available compounds' side effects. Further research on FABP4 genetics and its putative causal role in cardiovascular disease is needed, particularly in aging subgroups.
Collapse
Affiliation(s)
- Ellen M van der Ark-Vonk
- Central Diagnostics Laboratory, Division Laboratory, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Mike V Puijk
- Central Diagnostics Laboratory, Division Laboratory, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Gerard Pasterkamp
- Central Diagnostics Laboratory, Division Laboratory, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Sander W van der Laan
- Central Diagnostics Laboratory, Division Laboratory, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
42
|
Nielsen RL, Monfeuga T, Kitchen RR, Egerod L, Leal LG, Schreyer ATH, Gade FS, Sun C, Helenius M, Simonsen L, Willert M, Tahrani AA, McVey Z, Gupta R. Data-driven identification of predictive risk biomarkers for subgroups of osteoarthritis using interpretable machine learning. Nat Commun 2024; 15:2817. [PMID: 38561399 PMCID: PMC10985086 DOI: 10.1038/s41467-024-46663-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Osteoarthritis (OA) is increasing in prevalence and has a severe impact on patients' lives. However, our understanding of biomarkers driving OA risk remains limited. We developed a model predicting the five-year risk of OA diagnosis, integrating retrospective clinical, lifestyle and biomarker data from the UK Biobank (19,120 patients with OA, ROC-AUC: 0.72, 95%CI (0.71-0.73)). Higher age, BMI and prescription of non-steroidal anti-inflammatory drugs contributed most to increased OA risk prediction ahead of diagnosis. We identified 14 subgroups of OA risk profiles. These subgroups were validated in an independent set of patients evaluating the 11-year OA risk, with 88% of patients being uniquely assigned to one of the 14 subgroups. Individual OA risk profiles were characterised by personalised biomarkers. Omics integration demonstrated the predictive importance of key OA genes and pathways (e.g., GDF5 and TGF-β signalling) and OA-specific biomarkers (e.g., CRTAC1 and COL9A1). In summary, this work identifies opportunities for personalised OA prevention and insights into its underlying pathogenesis.
Collapse
Affiliation(s)
| | | | | | - Line Egerod
- Novo Nordisk Research Centre Oxford, Oxford, UK
| | - Luis G Leal
- Novo Nordisk Research Centre Oxford, Oxford, UK
| | | | | | - Carol Sun
- Novo Nordisk Research Centre Oxford, Oxford, UK
| | | | | | | | | | - Zahra McVey
- Novo Nordisk Research Centre Oxford, Oxford, UK
| | | |
Collapse
|
43
|
Başarır Sivri FN, Çiftçi S. A New Insight into Fatty Acid Binding Protein 4 Mechanisms and Therapeutic Implications in Obesity-Associated Diseases: A Mini Review. Mol Nutr Food Res 2024; 68:e2300840. [PMID: 38593305 DOI: 10.1002/mnfr.202300840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/14/2024] [Indexed: 04/11/2024]
Abstract
Fatty acid binding proteins (FABPs), such as FABP4 (aP2, A-FABP), are essential for cellular lipid regulation, membrane-protein interactions, and the modulation of metabolic and inflammatory pathways. FABP4, primarily expressed in adipocytes, monocytes, and macrophages, is integrated into signaling networks that influence immune responses and insulin activity. It has been linked to obesity, inflammation, lipid metabolism, insulin resistance, diabetes, cardiovascular disease, and cancer. Inhibition of FABP4 is emerging as a promising strategy for treating obesity-related conditions, particularly insulin resistance and diabetes. Elevated FABP4 levels in individuals with a BMI above 30 underscore its association with obesity. Furthermore, FABP4 levels are higher not only in the tissues but also in the blood, promoting the onset and development of various cancers. Understanding its broader role reveals involvement in the mechanisms underlying metabolic syndrome, contributing to various metabolic and inflammatory responses. While blocking FABP4 offers an alternative therapeutic approach, a comprehensive understanding of potential side effects is crucial before clinical use. This review aims to provide concise insights into FABP4, elucidating its mechanisms and potential therapeutic applications in obesity and associated disorders, contributing to innovative interventions against metabolic syndrome and obesity.
Collapse
Affiliation(s)
- Feyza Nur Başarır Sivri
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Izmir Democracy University, Güzelyalı, Konak, İzmir, 35290, Turkey
| | - Seda Çiftçi
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Izmir Democracy University, Güzelyalı, Konak, İzmir, 35290, Turkey
| |
Collapse
|
44
|
Fang XX, Wei P, Zhao K, Sheng ZC, Song BL, Yin L, Luo J. Fatty acid-binding proteins 3, 7, and 8 bind cholesterol and facilitate its egress from lysosomes. J Cell Biol 2024; 223:e202211062. [PMID: 38429999 PMCID: PMC10909654 DOI: 10.1083/jcb.202211062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/22/2023] [Accepted: 01/18/2024] [Indexed: 03/03/2024] Open
Abstract
Cholesterol from low-density lipoprotein (LDL) can be transported to many organelle membranes by non-vesicular mechanisms involving sterol transfer proteins (STPs). Fatty acid-binding protein (FABP) 7 was identified in our previous study searching for new regulators of intracellular cholesterol trafficking. Whether FABP7 is a bona fide STP remains unknown. Here, we found that FABP7 deficiency resulted in the accumulation of LDL-derived cholesterol in lysosomes and reduced cholesterol levels on the plasma membrane. A crystal structure of human FABP7 protein in complex with cholesterol was resolved at 2.7 Å resolution. In vitro, FABP7 efficiently transported the cholesterol analog dehydroergosterol between the liposomes. Further, the silencing of FABP3 and 8, which belong to the same family as FABP7, caused robust cholesterol accumulation in lysosomes. These two FABP proteins could transport dehydroergosterol in vitro as well. Collectively, our results suggest that FABP3, 7, and 8 are a new class of STPs mediating cholesterol egress from lysosomes.
Collapse
Affiliation(s)
- Xian-Xiu Fang
- The Institute for Advanced Studies, College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Taikang Center for Life and Medical Sciences, Taikang Medical School, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Pengcheng Wei
- The Institute for Advanced Studies, College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Taikang Center for Life and Medical Sciences, Taikang Medical School, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Kai Zhao
- The Institute for Advanced Studies, College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Taikang Center for Life and Medical Sciences, Taikang Medical School, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Zhao-Chen Sheng
- The Institute for Advanced Studies, College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Taikang Center for Life and Medical Sciences, Taikang Medical School, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Bao-Liang Song
- The Institute for Advanced Studies, College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Taikang Center for Life and Medical Sciences, Taikang Medical School, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Lei Yin
- The Institute for Advanced Studies, College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Taikang Center for Life and Medical Sciences, Taikang Medical School, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Jie Luo
- The Institute for Advanced Studies, College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Taikang Center for Life and Medical Sciences, Taikang Medical School, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| |
Collapse
|
45
|
Ma Z, An P, Hao S, Huang Z, Yin A, Li Y, Tian J. Single-cell sequencing analysis and multiple machine-learning models revealed the cellular crosstalk of dendritic cells and identified FABP5 and KLRB1 as novel biomarkers for psoriasis. Front Immunol 2024; 15:1374763. [PMID: 38596682 PMCID: PMC11002082 DOI: 10.3389/fimmu.2024.1374763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024] Open
Abstract
Background Psoriasis is an immune-mediated disorder influenced by environmental factors on a genetic basis. Despite advancements, challenges persist, including the diminishing efficacy of biologics and small-molecule targeted agents, alongside managing recurrence and psoriasis-related comorbidities. Unraveling the underlying pathogenesis and identifying valuable biomarkers remain pivotal for diagnosing and treating psoriasis. Methods We employed a series of bioinformatics (including single-cell sequencing data analysis and machine learning techniques) and statistical methods to integrate and analyze multi-level data. We observed the cellular changes in psoriatic skin tissues, screened the key genes Fatty acid binding protein 5 (FABP5) and The killer cell lectin-like receptor B1 (KLRB1), evaluated the efficacy of six widely prescribed drugs on psoriasis treatment in modulating the dendritic cell-associated pathway, and assessed their overall efficacy. Finally, RT-qPCR, immunohistochemistry, and immunofluorescence assays were used to validate. Results The regulatory influence of dendritic cells (DCs) on T cells through the CD70/CD27 signaling pathway may emerge as a significant facet of the inflammatory response in psoriasis. Notably, FABP5 and KLRB1 exhibited up-regulation and co-localization in psoriatic skin tissues and M5-induced HaCaT cells, serving as potential biomarkers influencing psoriasis development. Conclusion Our study analyzed the impact of DC-T cell crosstalk in psoriasis, elucidated the characterization of two biomarkers, FABP5 and KLRB1, in psoriasis, and highlighted the promise and value of tofacitinib in psoriasis therapy targeting DCs.
Collapse
Affiliation(s)
- Zhiqiang Ma
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China
| | - Pingyu An
- Basic Medical College, Harbin Medical University, Harbin, China
| | - Siyu Hao
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhangxin Huang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Anqi Yin
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuzhen Li
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiangtian Tian
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| |
Collapse
|
46
|
Qiu S, Liu Z, Hu J, Wang Z, Yue Z, Jia Z, Zhang W, Xue Z, Liu Z, Liu Y. Fatty Acid Binding Protein 1 is an Independent Prognostic Biomarker for Gallbladder Cancer with Direct Hepatic Invasion. Int J Med Sci 2024; 21:862-873. [PMID: 38617005 PMCID: PMC11008480 DOI: 10.7150/ijms.93413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/14/2024] [Indexed: 04/16/2024] Open
Abstract
Background: Direct liver invasion (DI) is a predominant pathway of gallbladder cancer (GBC) metastasis, but the molecular alterations associated with DI remain addressed. This study identified specific genes correlated with DI, which may offer a potential biomarker for the diagnosis and prognosis of advanced GBC. Methods: RNA samples from 3 patients with DI of GBC were used for RNA-seq analysis. Differentially expressed genes and metabolic pathways between primary tumor (T) and DI tissue was used to analyze aberrant gene expressions. Immunohistochemistry (IHC) of fatty acid binding protein 1 (FABP1) in 62 patients with DI was engaged to evaluate its association with clinicopathological characteristics and prognosis. IHC of CD3+ and CD8+ T cells was analyzed for their correlation with FABP1 expression, clinicopathological features and prognosis. Univariate and multivariate Cox hazards regression analyses were performed to identify independent prognostic factors for disease-free survival (DFS) and overall survival (OS). Results: FABP1 mRNA levels were significantly upregulated in DI region compared to T tissue. IHC results showed identical results with elevated FABP1 (p < 0.0001). Expression of FABP1 in DI region was significantly associated with lymph node metastasis (P = 0.028), reduced DFS (P = 0.013) and OS (P = 0.022); in contrast, its expression in T region was not associated with clinicopathological characteristics and prognosis (P > 0.05). The density of CD8+ T cells in DI region with higher FABP1 expression was significantly lower than that with lower FABP1 expression (p = 0.0084). Multivariate analysis unveiled those hepatic metastatic nodules (HR = 3.35, 95%CI: 1.37-8.15, P = 0.008) and FABP1 expression in DI region (HR = 2.01, 95%CI: 1.05-3.88, P = 0.036) were high risk factors for OS, and FABP1(HR = 2.05, 95%CI: 1.04-4.06, P = 0.039) was also a high risk factor for DFS. Conclusions: Elevated expression of FABP1 in DI region serves as a potential prognostic biomarker for advanced GBC with DI.
Collapse
Affiliation(s)
- Shimei Qiu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Zhaonan Liu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Jun Hu
- Department of Animal Science and Technology, Shanghai Vocational College of Agriculture and Forestry, Shanghai, 201699, China
| | - Ziyi Wang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Zhuying Yue
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Ziheng Jia
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Wenhua Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Ziru Xue
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Zebing Liu
- Department of Pathology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yingbin Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| |
Collapse
|
47
|
He L, Ye Q, Zhu Y, Zhong W, Xu G, Wang L, Wang Z, Zou X. Lipid Metabolism-Related Gene Signature Predicts Prognosis and Indicates Immune Microenvironment Infiltration in Advanced Gastric Cancer. Gastroenterol Res Pract 2024; 2024:6639205. [PMID: 38440405 PMCID: PMC10911888 DOI: 10.1155/2024/6639205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 01/05/2024] [Accepted: 01/30/2024] [Indexed: 03/06/2024] Open
Abstract
Objective Abnormal lipid metabolism is known to influence the malignant behavior of gastric cancer. However, the underlying mechanism remains elusive. In this study, we comprehensively analyzed the biological significance of genes involved in lipid metabolism in advanced gastric cancer (AGC). Methods We obtained gene expression profiles from The Cancer Genome Atlas (TCGA) database for early and advanced gastric cancer samples and performed differential expression analysis to identify specific lipid metabolism-related genes in AGC. We then used consensus cluster analysis to classify AGC patients into molecular subtypes based on lipid metabolism and constructed a diagnostic model using least absolute shrinkage and selection operator- (LASSO-) Cox regression analysis and Gene Set Enrichment Analysis (GSEA). We evaluated the discriminative ability and clinical significance of the model using the Kaplan-Meier (KM) curve, ROC curve, DCA curve, and nomogram. We also estimated immune levels based on immune microenvironment expression, immune checkpoints, and immune cell infiltration and obtained hub genes by weighted gene co-expression network analysis (WGCNA) of differential genes from the two molecular subtypes. Results We identified 6 lipid metabolism genes that were associated with the prognosis of AGC and used consistent clustering to classify AGC patients into two subgroups with significantly different overall survival and immune microenvironment. Our risk model successfully classified patients in the training and validation sets into high-risk and low-risk groups. The high-risk score predicted poor prognosis and indicated low degree of immune infiltration. Subgroup analysis showed that the risk model was an independent predictor of prognosis in AGC. Furthermore, our results indicated that most chemotherapeutic agents are more effective for AGC patients in the low-risk group than in the high-risk group, and risk scores for AGC are strongly correlated with drug sensitivity. Finally, we performed qRT-PCR experiments to verify the relevant results. Conclusion Our findings suggest that lipid metabolism-related genes play an important role in predicting the prognosis of AGC and regulating immune invasion. These results have important implications for the development of targeted therapies for AGC patients.
Collapse
Affiliation(s)
- Lijian He
- Department of Gastroenterology, Nanjing Drum Tower Hospital, School of Medicine, Jiangsu University, Nanjing, Jiangsu Province, China
- Department of Gastroenterology, Tongling People's Hospital, Tongling, Anhui Province, China
| | - Qiange Ye
- Department of Gastroenterology, Nanjing Drum Tower Hospital, School of Medicine, Jiangsu University, Nanjing, Jiangsu Province, China
| | - Yanmei Zhu
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Wenqi Zhong
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical, Nanjing, Jiangsu Province, China
| | - Guifang Xu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical, Nanjing, Jiangsu Province, China
| | - Lei Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical, Nanjing, Jiangsu Province, China
| | - Zhangding Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical, Nanjing, Jiangsu Province, China
| | - Xiaoping Zou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, School of Medicine, Jiangsu University, Nanjing, Jiangsu Province, China
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical, Nanjing, Jiangsu Province, China
- Department of Gastroenterology, Affiliated Taikang Xianlin Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| |
Collapse
|
48
|
Colás-Ruiz NR, Pintado-Herrera MG, Santonocito M, Salerno B, Tonini F, Lara-Martín PA, Hampel M. Bioconcentration, biotransformation, and transcriptomic impact of the UV-filter 4-MBC in the manila clam Ruditapes philippinarum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169178. [PMID: 38072265 DOI: 10.1016/j.scitotenv.2023.169178] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/24/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023]
Abstract
Ultraviolet filters (UV-filters) are compounds extensively used in personal care products. These compounds are produced at increasing rates and discharged into marine ecosystems in unknown quantities and with no regulation, making them emerging contaminants. Among those, the UV-filter 4-Methylbenzylidene camphor (4-MBC) is used in a variety of personal care products such as sunscreens, soaps, or lipsticks. This high consumption has resulted in its presence in various environmental matrices at in concentrations ranging from ng to μg L-1. Very little is known, however, about the possible adverse effects in exposed non-target organisms. Our study presents novel data on the bioconcentration, toxicokinetics, and molecular effects of 4-MBC in a marine bivalve species of commercial interest, Ruditapes philippinarum (Manila clam). Organisms were exposed at two different concentrations (1.34 and 10.79 μg L-1) of 4-MBC for 7 days, followed by a 3-day depuration period (clean sea waters). Bioconcentration factors (BCF) were 3562 and 2229 L kg-1 for the low and high exposure concentrations, respectively, making this pollutant bioaccumulative according to REACH criteria. Up to six 4-MBC biotransformation products (BTPs)were identified, 2 of them for the first time. Transcriptomic analysis revealed between 658 and 1310 differently expressed genes (DEGs) after 4-MBC exposure. Functional and enrichment analysis of the DEGs showed the activation of the detoxification pathway to metabolize and excrete the bioconcentrated 4-MBC, which also involved energy depletion and caused an impact on the metabolism of carbohydrates and lipids and in the oxidative phosphorylation pathways. Oxidative stress and immune response were also evidenced through the activation of cathepsins and the complement system. Such elucidation of the mode of action of a ubiquitous pollutant such as 4-MBC at the molecular level is valuable both from an environmental point of view and for the sustainable production of Manila clam, one of the most cultivated mollusk species worldwide.
Collapse
Affiliation(s)
- Nieves R Colás-Ruiz
- Faculty of Marine and Environmental Sciences (CASEM), University of Cadiz, 11510 Puerto Real, Cadiz, Spain.
| | - Marina G Pintado-Herrera
- Faculty of Marine and Environmental Sciences (CASEM), University of Cadiz, 11510 Puerto Real, Cadiz, Spain
| | - Melania Santonocito
- Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI•MAR), Universidad de Cadiz, Av. República Saharaui s/n, 11510 Puerto Real, Cadiz, Spain
| | - Barbara Salerno
- Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI•MAR), Universidad de Cadiz, Av. República Saharaui s/n, 11510 Puerto Real, Cadiz, Spain
| | - Federico Tonini
- Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI•MAR), Universidad de Cadiz, Av. República Saharaui s/n, 11510 Puerto Real, Cadiz, Spain
| | - Pablo A Lara-Martín
- Faculty of Marine and Environmental Sciences (CASEM), University of Cadiz, 11510 Puerto Real, Cadiz, Spain
| | - Miriam Hampel
- Faculty of Marine and Environmental Sciences (CASEM), University of Cadiz, 11510 Puerto Real, Cadiz, Spain
| |
Collapse
|
49
|
Yang L, Tu L, Bisht S, Mao Y, Petkovich D, Thursby SJ, Liang J, Patel N, Yen RWC, Largent T, Zahnow C, Brock M, Gabrielson K, Salimian KJ, Baylin SB, Easwaran H. Tissue-location-specific transcription programs drive tumor dependencies in colon cancer. Nat Commun 2024; 15:1384. [PMID: 38360902 PMCID: PMC10869357 DOI: 10.1038/s41467-024-45605-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 01/30/2024] [Indexed: 02/17/2024] Open
Abstract
Cancers of the same tissue-type but in anatomically distinct locations exhibit different molecular dependencies for tumorigenesis. Proximal and distal colon cancers exemplify such characteristics, with BRAFV600E predominantly occurring in proximal colon cancers along with increased DNA methylation phenotype. Using mouse colon organoids, here we show that proximal and distal colon stem cells have distinct transcriptional programs that regulate stemness and differentiation. We identify that the homeobox transcription factor, CDX2, which is silenced by DNA methylation in proximal colon cancers, is a key mediator of the differential transcriptional programs. Cdx2-mediated proximal colon-specific transcriptional program concurrently is tumor suppressive, and Cdx2 loss sufficiently creates permissive state for BRAFV600E-driven transformation. Human proximal colon cancers with CDX2 downregulation showed similar transcriptional program as in mouse proximal organoids with Cdx2 loss. Developmental transcription factors, such as CDX2, are thus critical in maintaining tissue-location specific transcriptional programs that create tissue-type origin specific dependencies for tumor development.
Collapse
Affiliation(s)
- Lijing Yang
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD, 21287, USA
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, PR China
| | - Lei Tu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shilpa Bisht
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD, 21287, USA
| | - Yiqing Mao
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD, 21287, USA
| | - Daniel Petkovich
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD, 21287, USA
| | - Sara-Jayne Thursby
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD, 21287, USA
| | - Jinxiao Liang
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD, 21287, USA
| | - Nibedita Patel
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD, 21287, USA
| | - Ray-Whay Chiu Yen
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD, 21287, USA
| | - Tina Largent
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD, 21287, USA
| | - Cynthia Zahnow
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD, 21287, USA
| | - Malcolm Brock
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD, 21287, USA
| | - Kathy Gabrielson
- Department of Comparative Medicine, Johns Hopkins Medical Institutions, 863 Broadway Research Building, 733 N. Broadway, Baltimore, MD, 21205-2196, USA
| | - Kevan J Salimian
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Stephen B Baylin
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD, 21287, USA
| | - Hariharan Easwaran
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD, 21287, USA.
| |
Collapse
|
50
|
Ahmed T, Liu FCF, Wu XY. An update on strategies for optimizing polymer-lipid hybrid nanoparticle-mediated drug delivery: exploiting transformability and bioactivity of PLN and harnessing intracellular lipid transport mechanism. Expert Opin Drug Deliv 2024; 21:245-278. [PMID: 38344771 DOI: 10.1080/17425247.2024.2318459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/09/2024] [Indexed: 02/20/2024]
Abstract
INTRODUCTION Polymer-lipid hybrid nanoparticle (PLN) is an emerging nanoplatform with distinct properties and functionalities from other nanocarrier systems. PLN can be optimized to overcome various levels of drug delivery barriers to achieve desired therapeutic outcomes via rational selection of polymer and lipid combinations based on a thorough understanding of their properties and interactions with therapeutic agents and biological systems. AREAS COVERED This review provides an overview of PLN including the motive and history of PLN development, types of PLN, preparation methods, attestations of their versatility, and design strategies to circumvent various barriers for increasing drug delivery accuracy and efficiency. It also highlights recent advances in PLN design including: rationale selection of polymer and lipid components to achieve spatiotemporal drug targeting and multi-targeted cascade drug delivery; utilizing the intracellular lipid transport mechanism for active targeting to desired organelles; and harnessing bioreactive lipids and polymers to magnify therapeutic effects. EXPERT OPINION A thorough understanding of properties of PLN components and their biofate is important for enhancing disease site targeting, deep tumor tissue penetration, cellular uptake, and intracellular trafficking of PLN. For futuristic PLN development, active lipid transport and dual functions of lipids and polymers as both nanocarrier material and pharmacological agents can be further explored.
Collapse
Affiliation(s)
- Taksim Ahmed
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Fuh-Ching Franky Liu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|