1
|
VanKuren NW. Evolution: Gene reuse… again! Curr Biol 2025; 35:R350-R352. [PMID: 40328224 DOI: 10.1016/j.cub.2025.03.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Genetic variation in just a handful of genes underlies a great diversity of animal traits. What makes certain genes prone to reuse? New work highlights how evolution of a single transcription factor underlies adaptive variation across micro- and macro-evolutionary timescales.
Collapse
Affiliation(s)
- Nicholas W VanKuren
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
2
|
Livraghi L, Hanly JJ, Loh LS, Henry A, Keck C, Shirey VM, Tsai CC, Yu N, Van Belleghem SM, Roberts WM, Boggs CL, Martin A. Genetic basis of an adaptive polymorphism controlling butterfly silver iridescence. Curr Biol 2025; 35:2154-2163.e7. [PMID: 40209708 DOI: 10.1016/j.cub.2025.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/03/2025] [Accepted: 03/14/2025] [Indexed: 04/12/2025]
Abstract
Identifying the genes and mutations that drive phenotypic variation and which are subject to selection is crucial for understanding evolutionary processes. Mormon Fritillary butterflies (Speyeria mormonia) exhibit a striking wing color polymorphism throughout their range: typical morphs bear silver spots on their ventral surfaces and can co-occur with unsilvered morphs displaying a dull coloration.1 Through genome-wide association studies in two polymorphic populations, we fine-map this difference in silvering to the 3' region of the transcription factor gene optix. The expression of optix is confined to the unsilvered regions that surround the spots, and these patterns are transformed to a silver identity upon optix RNA interference (RNAi) knockdown, implicating optix as a repressor of silver scales in this butterfly. We show that the unsilvered optix haplotype shows signatures of recent selective sweeps and that this allele is shared with an unsilvered population of Speyeria hydaspe, suggesting that introgressions may facilitate the exchange of variants of adaptive potential across species. Remarkably, these findings parallel the role of allelic sharing and cis-regulatory modulation of optix in shaping the aposematic red patterns of Heliconius butterflies,2,3,4,5,6,7 a lineage that separated from Speyeria 45 million years ago.8 The genetic basis of adaptive variation can thus be more predictable than often presumed, even for traits that appear divergent across large evolutionary distances.
Collapse
Affiliation(s)
- Luca Livraghi
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA.
| | - Joseph J Hanly
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA; Duke University Department of Biology, Duke University, Durham, NC 27708, USA; Smithsonian Tropical Research Institute, Gamboa, Panama
| | - Ling S Loh
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - Albie Henry
- School of Biological Sciences, Faculty of Life Sciences, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Chloe Keck
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA; Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
| | - Vaughn M Shirey
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, Department of Natural History, University of Florida, Gainesville, FL 32611, USA; Marine and Environmental Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Cheng-Chia Tsai
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, USA
| | - Nanfang Yu
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, USA
| | - Steven M Van Belleghem
- Ecology, Evolution and Conservation Biology, Biology Department, KU Leuven, Leuven, Belgium
| | - W Mark Roberts
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Carol L Boggs
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA; Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA; School of Earth, Ocean & Environment, University of South Carolina, Columbia, SC 29208, USA
| | - Arnaud Martin
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA.
| |
Collapse
|
3
|
Guevara-Andino JE, Dávalos LM, Zapata F, Endara MJ, Cotoras DD, Chaves J, Claramunt S, López-Delgado J, Mendoza-Henao AM, Salazar-Valenzuela D, Rivas-Torres G, Yeager J. Neotropics as a Cradle for Adaptive Radiations. Cold Spring Harb Perspect Biol 2025; 17:a041452. [PMID: 38692837 PMCID: PMC11875094 DOI: 10.1101/cshperspect.a041452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Neotropical ecosystems are renowned for numerous examples of adaptive radiation in both plants and animals resulting in high levels of biodiversity and endemism. However, we still lack a comprehensive review of the abiotic and biotic factors that contribute to these adaptive radiations. To fill this gap, we delve into the geological history of the region, including the role of tectonic events such as the Andean uplift, the formation of the Isthmus of Panama, and the emergence of the Guiana and Brazilian Shields. We also explore the role of ecological opportunities created by the emergence of new habitats, as well as the role of key innovations, such as novel feeding strategies or reproductive mechanisms. We discuss different examples of adaptive radiation, including classic ones like Darwin's finches and Anolis lizards, and more recent ones like bromeliads and lupines. Finally, we propose new examples of adaptive radiations mediated by ecological interactions in their geological context. By doing so, we provide insights into the complex interplay of factors that contributed to the remarkable diversity of life in the Neotropics and highlight the importance of this region in understanding the origins of biodiversity.
Collapse
Affiliation(s)
- Juan E Guevara-Andino
- Grupo de Investigación en Ecología y Evolución en los Trópicos-EETrop, Universidad de las Américas, Quito 170124, Ecuador
| | - Liliana M Dávalos
- Department of Ecology and Evolution and Consortium for Inter-Disciplinary Environmental Research, Stony Brook University, Stony Brook, New York 11794, USA
| | - Felipe Zapata
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California 90024, USA
- Center for Tropical Research, Institute of the Environment and Sustainability, University of California, Los Angeles, California 90024, USA
| | - María José Endara
- Grupo de Investigación en Ecología y Evolución en los Trópicos-EETrop, Universidad de las Américas, Quito 170124, Ecuador
| | - Darko D Cotoras
- Department of Terrestrial Zoology, Senckenberg Research Institute and Natural History Museum, 60325 Frankfurt am Main, Germany
- Department of Entomology, California Academy of Sciences, San Francisco, California 94118, USA
| | - Jaime Chaves
- Galapagos Science Center, Universidad San Francisco de Quito (USFQ) and University of North Carolina (UNC), Chapel Hill, North Carolina 27516, USA
- Department of Biology, San Francisco State University, San Francisco, California 94132, USA
- Laboratorio de Biología Evolutiva, Instituto Biósfera, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito (USFQ), Quito 170901, Ecuador
| | - Santiago Claramunt
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto M5S 1A1, Ontario, Canada
| | - Julia López-Delgado
- School of Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, United Kingdom
| | - Angela M Mendoza-Henao
- Colecciones Biológicas, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Claustro de San Agustín, Villa de Leyva 12-65 Piso 7, Colombia
| | - David Salazar-Valenzuela
- Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb) e Ingeniería en Biodiversidad y Recursos Genéticos, Facultad de Ciencias del Medio Ambiente, Universidad Indoamérica, Quito 170301, Ecuador
| | - Gonzalo Rivas-Torres
- Galapagos Science Center, Universidad San Francisco de Quito (USFQ) and University of North Carolina (UNC), Chapel Hill, North Carolina 27516, USA
- Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito (USFQ), Quito 170901, Ecuador
| | - Justin Yeager
- Grupo de Investigación en Biodiversidad, Ambiente y Salud-BIOMAS-Universidad de las Américas, Quito 170124, Ecuador
| |
Collapse
|
4
|
VanKuren NW, Kronforst MR. Hidden in plain sight: (Re)definition of a key lepidopteran color patterning gene. Proc Natl Acad Sci U S A 2024; 121:e2419749121. [PMID: 39585997 PMCID: PMC11626153 DOI: 10.1073/pnas.2419749121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024] Open
Affiliation(s)
- Nicholas W. VanKuren
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL60637
| | - Marcus R. Kronforst
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL60637
| |
Collapse
|
5
|
Rice G, Gaitán-Escudero T, Charles-Obi K, Zeitlinger J, Rebeiz M. Co-option of the trichome-forming network initiated the evolution of a morphological novelty in Drosophila eugracilis. Curr Biol 2024; 34:5284-5294.e3. [PMID: 39461339 DOI: 10.1016/j.cub.2024.09.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/25/2024] [Accepted: 09/25/2024] [Indexed: 10/29/2024]
Abstract
Identifying the molecular origins by which new morphological structures evolve is one of the long-standing problems in evolutionary biology. To date, vanishingly few examples provide a compelling account of how new morphologies were initially formed, thereby limiting our understanding of how diverse forms of life derived their complex features. Here, we provide evidence that the large projections on the Drosophila eugracilis phallus that are implicated in sexual conflict have evolved through the partial co-option of the trichome genetic network. These unicellular apical projections on the phallus postgonal sheath are reminiscent of trichomes that cover the Drosophila body but are up to 20-fold larger in size. During their development, they express the transcription factor Shavenbaby, the master regulator of the trichome network. Consistent with the co-option of the Shavenbaby network during the evolution of the D. eugracilis projections, somatic mosaic CRISPR-Cas9 mutagenesis shows that shavenbaby is necessary for their proper length. Moreover, misexpression of Shavenbaby in the sheath of D. melanogaster, a naive species that lacks these projections, is sufficient to induce small trichomes. These induced projections rely on a genetic network that is shared to a large extent with the D. eugracilis projections, indicating its partial co-option but also some genetic rewiring. Thus, by leveraging a genetically tractable evolutionary novelty, our work shows that the trichome-forming network is flexible enough that it can be partially co-opted in a new context and subsequently refined to produce unique apical projections that are barely recognizable compared with their simpler ancestral beginnings.
Collapse
Affiliation(s)
- Gavin Rice
- Department of Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | | | | | - Julia Zeitlinger
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Mark Rebeiz
- Department of Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
6
|
Orteu A, Hornett EA, Reynolds LA, Warren IA, Hurst GDD, Martin SH, Jiggins CD. Optix and cortex/ivory/mir-193 again: the repeated use of two mimicry hotspot loci. Proc Biol Sci 2024; 291:20240627. [PMID: 39045691 PMCID: PMC11267468 DOI: 10.1098/rspb.2024.0627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024] Open
Abstract
The extent to which evolution is repeatable has been a debated topic among evolutionary biologists. Although rewinding the tape of life perhaps would not lead to the same outcome every time, repeated evolution of analogous genes for similar functions has been extensively reported. Wing phenotypes of butterflies and moths have provided a wealth of examples of gene re-use, with certain 'hotspot loci' controlling wing patterns across diverse taxa. Here, we present an example of convergent evolution in the molecular genetic basis of Batesian wing mimicry in two Hypolimnas butterfly species. We show that mimicry is controlled by variation near cortex/ivory/mir-193, a known butterfly hotspot locus. By dissecting the genetic architecture of mimicry in Hypolimnas misippus and Hypolimnas bolina, we present evidence that distinct non-coding regions control the development of white pattern elements in the forewing and hindwing of the two species, suggesting independent evolution, and that no structural variation is found at the locus. Finally, we also show that orange coloration in H. bolina is associated with optix, a well-known patterning gene. Overall, our study once again implicates variation near the hotspot loci cortex/ivory/mir-193 and optix in butterfly wing mimicry and thereby highlights the repeatability of adaptive evolution.
Collapse
Affiliation(s)
- Anna Orteu
- Tree of Life Programme, Wellcome Sanger Institute, Hinxton, UK
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Emily A. Hornett
- Institute of Infection, Veterinary and Ecological Science, University of Liverpool, Liverpool, UK
- Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
- Department of Biology, University of Oxford, Oxford, UK
| | - Louise A. Reynolds
- Institute of Infection, Veterinary and Ecological Science, University of Liverpool, Liverpool, UK
| | - Ian A. Warren
- Tree of Life Programme, Wellcome Sanger Institute, Hinxton, UK
| | - Gregory D. D. Hurst
- Institute of Infection, Veterinary and Ecological Science, University of Liverpool, Liverpool, UK
| | - Simon H. Martin
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
7
|
Rice G, Gaitan-Escudero T, Charles-Obi K, Zeitlinger J, Rebeiz M. Gene regulatory network co-option is sufficient to induce a morphological novelty in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.584840. [PMID: 38585823 PMCID: PMC10996490 DOI: 10.1101/2024.03.22.584840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Identifying the molecular origins by which new morphological structures evolve is one of the long standing problems in evolutionary biology. To date, vanishingly few examples provide a compelling account of how new morphologies were initially formed, thereby limiting our understanding of how diverse forms of life derived their complex features. Here, we provide evidence that the large projections on the Drosophila eugracilis phallus that are implicated in sexual conflict have evolved through co-option of the trichome genetic network. These unicellular apical projections on the phallus postgonal sheath are reminiscent of trichomes that cover the Drosophila body but are up to 20-fold larger in size. During their development, they express the transcription factor Shavenbaby, the master regulator of the trichome network. Consistent with the co-option of the Shavenbaby network during the evolution of the D. eugracilis projections, somatic mosaic CRISPR/Cas9 mutagenesis shows that shavenbaby is necessary for their proper length. Moreover, mis-expression of Shavenbaby in the sheath of D. melanogaster , a naïve species that lacks these extensions, is sufficient to induce small trichomes. These induced extensions rely on a genetic network that is shared to a large extent with the D. eugracilis projections, indicating its co-option but also some genetic rewiring. Thus, by leveraging a genetically tractable evolutionarily novelty, our work shows that the trichome-forming network is flexible enough that it can be co-opted in a new context, and subsequently refined to produce unique apical projections that are barely recognizable compared to their simpler ancestral beginnings.
Collapse
|
8
|
Teng D, Zhang W. The diversification of butterfly wing patterns: progress and prospects. CURRENT OPINION IN INSECT SCIENCE 2024; 61:101137. [PMID: 37922984 DOI: 10.1016/j.cois.2023.101137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Butterfly wings display rich phenotypic diversity and are associated with complex biological functions, thus serving as an important evolutionary system to address the genetic basis and evolution of phenotypic diversification. We review recent butterfly studies that revealed complex functions underlying diversified wing patterns and describe the genetic and environmental factors involved in wing pattern determinations. These factors lead to inter-specific divergence, genetic polymorphism, and phenotypic plasticity, which in many cases are decided by several key genes. We also summarize the research advances on gene co-option as an important origin of functional complexity and evolutionary novelty. These findings reveal a pattern of evolutionary innovation within a constrained developmental framework during butterfly wing morphogenesis, but further research is required to gain a systematic and comprehensive understanding.
Collapse
Affiliation(s)
- Dequn Teng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Wei Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Medog Biodiversity Observation and Research Station of Tibet Autonomous Region, Nyingchi 860711, China.
| |
Collapse
|
9
|
VanKuren NW, Doellman MM, Sheikh SI, Palmer Droguett DH, Massardo D, Kronforst MR. Acute and Long-Term Consequences of Co-opted doublesex on the Development of Mimetic Butterfly Color Patterns. Mol Biol Evol 2023; 40:msad196. [PMID: 37668300 PMCID: PMC10498343 DOI: 10.1093/molbev/msad196] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/06/2023] Open
Abstract
Novel phenotypes are increasingly recognized to have evolved by co-option of conserved genes into new developmental contexts, yet the process by which co-opted genes modify existing developmental programs remains obscure. Here, we provide insight into this process by characterizing the role of co-opted doublesex in butterfly wing color pattern development. dsx is the master regulator of insect sex differentiation but has been co-opted to control the switch between discrete nonmimetic and mimetic patterns in Papilio alphenor and its relatives through the evolution of novel mimetic alleles. We found dynamic spatial and temporal expression pattern differences between mimetic and nonmimetic butterflies throughout wing development. A mimetic color pattern program is switched on by a pulse of dsx expression in early pupal development that causes acute and long-term differential gene expression, particularly in Wnt and Hedgehog signaling pathways. RNAi suggested opposing, novel roles for these pathways in mimetic pattern development. Importantly, Dsx co-option caused Engrailed, a primary target of Hedgehog signaling, to gain a novel expression domain early in pupal wing development that is propagated through mid-pupal development to specify novel mimetic patterns despite becoming decoupled from Dsx expression itself. Altogether, our findings provide multiple views into how co-opted genes can both cause and elicit changes to conserved networks and pathways to result in development of novel, adaptive phenotypes.
Collapse
Affiliation(s)
- Nicholas W VanKuren
- Department of Ecology & Evolution, The University of Chicago, Chicago, IL, USA
| | - Meredith M Doellman
- Department of Ecology & Evolution, The University of Chicago, Chicago, IL, USA
| | - Sofia I Sheikh
- Department of Ecology & Evolution, The University of Chicago, Chicago, IL, USA
| | | | - Darli Massardo
- Department of Ecology & Evolution, The University of Chicago, Chicago, IL, USA
| | - Marcus R Kronforst
- Department of Ecology & Evolution, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
10
|
Bayala EX, Cisneros I, Massardo D, VanKuren NW, Kronforst MR. Divergent expression of aristaless1 and aristaless2 during embryonic appendage and pupal wing development in butterflies. BMC Biol 2023; 21:104. [PMID: 37170114 PMCID: PMC10173497 DOI: 10.1186/s12915-023-01602-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/13/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Gene duplication events are critical for the evolution of new gene functions. Aristaless is a major regulator of distinct developmental processes. It is most known for its role during appendage development across animals. However, more recently other distinct biological functions have been described for this gene and its duplicates. Butterflies and moths have two copies of aristaless, aristaless1 (al1) and aristaless2 (al2), as a result of a gene duplication event. Previous work in Heliconius has shown that both copies appear to have novel functions related to wing color patterning. Here we expand our knowledge of the expression profiles associated with both ancestral and novel functions of Al1 across embryogenesis and wing pigmentation. Furthermore, we characterize Al2 expression, providing a comparative framework between gene copies within the same species, allowing us to understand the origin of new functions following gene duplication. RESULTS Our work shows that the expression of both Al1 and Al2 is associated with the ancestral function of sensory appendage (leg, mouth, spines, and eyes) development in embryos. Interestingly, Al1 exhibits higher expression earlier in embryogenesis while the highest levels of Al2 expression are shifted to later stages of embryonic development. Furthermore, Al1 localization appears extranuclear while Al2 co-localizes tightly with nuclei earlier, and then also expands outside the nucleus later in development. Cellular expression of Al1 and Al2 in pupal wings is broadly consistent with patterns observed during embryogenesis. We also describe, for the first time, how Al1 localization appears to correlate with zones of anterior/posterior elongation of the body during embryonic growth, showcasing a possible new function related to Aristaless' previously described role in appendage extension. CONCLUSIONS Overall, our data suggest that while both gene copies play a role in embryogenesis and wing pigmentation, the duplicates have diverged temporally and mechanistically across those functions. Our study helps clarify principles behind sub-functionalization and gene expression evolution associated with developmental functions following gene duplication events.
Collapse
Affiliation(s)
- Erick X Bayala
- Department of Ecology & Evolution, University of Chicago, Chicago, IL, 60637, USA.
| | - Isabella Cisneros
- Department of Ecology & Evolution, University of Chicago, Chicago, IL, 60637, USA
| | - Darli Massardo
- Department of Ecology & Evolution, University of Chicago, Chicago, IL, 60637, USA
| | - Nicholas W VanKuren
- Department of Ecology & Evolution, University of Chicago, Chicago, IL, 60637, USA
| | - Marcus R Kronforst
- Department of Ecology & Evolution, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
11
|
Bayala EX, VanKuren N, Massardo D, Kronforst MR. aristaless1 has a dual role in appendage formation and wing color specification during butterfly development. BMC Biol 2023; 21:100. [PMID: 37143075 PMCID: PMC10161628 DOI: 10.1186/s12915-023-01601-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/13/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Highly diverse butterfly wing patterns have emerged as a powerful system for understanding the genetic basis of phenotypic variation. While the genetic basis of this pattern variation is being clarified, the precise developmental pathways linking genotype to phenotype are not well understood. The gene aristaless, which plays a role in appendage patterning and extension, has been duplicated in Lepidoptera. One copy, aristaless1, has been shown to control a white/yellow color switch in the butterfly Heliconius cydno, suggesting a novel function associated with color patterning and pigmentation. Here we investigate the developmental basis of al1 in embryos, larvae, and pupae using new antibodies, CRISPR/Cas9, RNAi, qPCR assays of downstream targets, and pharmacological manipulation of an upstream activator. RESULTS We find that Al1 is expressed at the distal tips of developing embryonic appendages consistent with its ancestral role. In developing wings, we observe Al1 accumulation within developing scale cells of white H. cydno during early pupation while yellow scale cells exhibit little Al1 at this time point. Reduced Al1 expression is also associated with yellow scale development in al1 knockouts and knockdowns. We propose that Al1 expression in future white scales might be related to an observed downregulation of the enzyme Cinnabar and other genes that synthesize and transport the yellow pigment, 3-hydroxykynurenine (3-OHK). Finally, we provide evidence that Al1 activation is under the control of Wnt signaling. CONCLUSIONS We propose a model in which high levels of Al1 during early pupation, which are mediated by Wnt, are important for melanic pigmentation and specifying white portions of the wing while reduced levels of Al1 during early pupation promote upregulation of proteins needed to move and synthesize 3-OHK, promoting yellow pigmentation. In addition, we discuss how the ancestral role of aristaless in appendage extension may be relevant in understanding the cellular mechanism behind color patterning in the context of the heterochrony hypothesis.
Collapse
Affiliation(s)
- Erick X Bayala
- Department of Ecology & Evolution, University of Chicago, Chicago, IL, 60637, USA.
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, 60637, USA.
| | - Nicholas VanKuren
- Department of Ecology & Evolution, University of Chicago, Chicago, IL, 60637, USA
| | - Darli Massardo
- Department of Ecology & Evolution, University of Chicago, Chicago, IL, 60637, USA
| | - Marcus R Kronforst
- Department of Ecology & Evolution, University of Chicago, Chicago, IL, 60637, USA
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
12
|
Wee JLQ, Murugesan SN, Wheat CW, Monteiro A. The genetic basis of wing spots in Pieris canidia butterflies. BMC Genomics 2023; 24:169. [PMID: 37016295 PMCID: PMC10074818 DOI: 10.1186/s12864-023-09261-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/20/2023] [Indexed: 04/06/2023] Open
Abstract
Spots in pierid butterflies and eyespots in nymphalid butterflies are likely non-homologous wing colour pattern elements, yet they share a few features in common. Both develop black scales that depend on the function of the gene spalt, and both might have central signalling cells. This suggests that both pattern elements may be sharing common genetic circuitry. Hundreds of genes have already been associated with the development of nymphalid butterfly eyespot patterns, but the genetic basis of the simpler spot patterns on the wings of pierid butterflies has not been investigated. To facilitate studies of pierid wing patterns, we report a high-quality draft genome assembly for Pieris canidia, the Indian cabbage white. We then conducted transcriptomic analyses of pupal wing tissues sampled from the spot and non-spot regions of P. canidia at 3-6 h post-pupation. A total of 1352 genes were differentially regulated between wing tissues with and without the black spot, including spalt, Krüppel-like factor 10, genes from the Toll, Notch, TGF-β, and FGFR signalling pathways, and several genes involved in the melanin biosynthetic pathway. We identified 14 genes that are up-regulated in both pierid spots and nymphalid eyespots and propose that spots and eyespots share regulatory modules despite their likely independent origins.
Collapse
Affiliation(s)
- Jocelyn Liang Qi Wee
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore.
| | - Suriya Narayanan Murugesan
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore.
| | | | - Antónia Monteiro
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| |
Collapse
|
13
|
Kellenberger RT, Ponraj U, Delahaie B, Fattorini R, Balk J, Lopez-Gomollon S, Müller KH, Ellis AG, Glover BJ. Multiple gene co-options underlie the rapid evolution of sexually deceptive flowers in Gorteria diffusa. Curr Biol 2023; 33:1502-1512.e8. [PMID: 36963385 DOI: 10.1016/j.cub.2023.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/26/2023]
Abstract
Gene co-option, the redeployment of an existing gene in an unrelated developmental context, is an important mechanism underlying the evolution of morphological novelty. In most cases described to date, novel traits emerged by co-option of a single gene or genetic network. Here, we show that the integration of multiple co-opted genetic elements facilitated the rapid evolution of complex petal spots that mimic female bee-fly pollinators in the sexually deceptive South African daisy Gorteria diffusa. First, co-option of iron homeostasis genes altered petal spot pigmentation, producing a color similar to that of female pollinators. Second, co-option of the root hair gene GdEXPA7 enabled the formation of enlarged papillate petal epidermal cells, eliciting copulation responses from male flies. Third, co-option of the miR156-GdSPL1 transcription factor module altered petal spot placement, resulting in better mimicry of female flies resting on the flower. The three genetic elements were likely co-opted sequentially, and strength of sexual deception in different G. diffusa floral forms strongly correlates with the presence of the three corresponding morphological alterations. Our findings suggest that gene co-options can combine in a modular fashion, enabling rapid evolution of novel complex traits.
Collapse
Affiliation(s)
- Roman T Kellenberger
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK.
| | - Udhaya Ponraj
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Boris Delahaie
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; CIRAD, UMR DIADE, Montpellier 34398, France; UMR DIADE, Université de Montpellier, CIRAD, IRD, Montpellier, France
| | - Róisín Fattorini
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Janneke Balk
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich NR4 7UH, UK; School of Biological Sciences, University of East Anglia, Norwich NR4 4JT, UK
| | - Sara Lopez-Gomollon
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Karin H Müller
- Cambridge Advanced Imaging Centre, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Allan G Ellis
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Beverley J Glover
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK.
| |
Collapse
|
14
|
LaFountain AM, McMahon HE, Reid NM, Yuan YW. To stripe or not to stripe: the origin of a novel foliar pigmentation pattern in monkeyflowers (Mimulus). THE NEW PHYTOLOGIST 2023; 237:310-322. [PMID: 36101514 PMCID: PMC10601762 DOI: 10.1111/nph.18486] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
The origin of phenotypic novelty is one of the most challenging problems in evolutionary biology. Although genetic regulatory network rewiring or co-option has been widely recognised as a major contributor, in most cases how such genetic rewiring/co-option happens is completely unknown. We have studied a novel foliar pigmentation pattern that evolved recently in the monkeyflower species Mimulus verbenaceus. Through genome-wide association tests using wild-collected samples, experimental crosses of laboratory inbred lines, gene expression analyses, and functional assays, we identified an anthocyanin-activating R2R3-MYB gene, STRIPY, as the causal gene triggering the emergence of the discrete, mediolateral anthocyanin stripe in the M. verbenaceus leaf. Chemical mutagenesis revealed the existence of upstream activators and repressors that form a 'hidden' prepattern along the leaf proximodistal axis, potentiating the unique expression pattern of STRIPY. Population genomics analyses did not reveal signatures of positive selection, indicating that nonadaptive processes may be responsible for the establishment of this novel trait in the wild. This study demonstrates that the origin of phenotypic novelty requires at least two separate phases, potentiation and actualisation. The foliar stripe pattern of M. verbenaceus provides an excellent platform to probe the molecular details of both processes in future studies.
Collapse
Affiliation(s)
- Amy M. LaFountain
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Storrs, CT, USA. 06269-3043
| | - Hayley E. McMahon
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Storrs, CT, USA. 06269-3043
| | - Noah M. Reid
- Institute for Systems Genomics, University of Connecticut, 67 North Eagleville Road, Storrs, CT, USA 06269-3197
| | - Yao-Wu Yuan
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Storrs, CT, USA. 06269-3043
- Institute for Systems Genomics, University of Connecticut, 67 North Eagleville Road, Storrs, CT, USA 06269-3197
| |
Collapse
|
15
|
Antennapedia and optix regulate metallic silver wing scale development and cell shape in Bicyclus anynana butterflies. Cell Rep 2022; 40:111052. [PMID: 35793633 DOI: 10.1016/j.celrep.2022.111052] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/06/2022] [Accepted: 06/14/2022] [Indexed: 12/29/2022] Open
Abstract
Butterfly wing scales can develop intricate cuticular nanostructures that produce silver colors, but the underlying genetic and physical basis of such colors is mostly unexplored. Here, we characterize different types of wild-type silver scales in Bicyclus anynana butterflies and show that the varying thickness of the air layer between two cuticular laminas is most important for producing silvery broadband reflectance. We then address the function of five genes-apterous A, Ultrabithorax, doublesex, Antennapedia, and optix-in silver scale development by examining crispants with either ectopic gains or losses of silver scales. Simultaneous transformations of three parameters-loss of the upper lamina, increased lower lamina thickness, and increased pigmentation-occur when silver scales become brown and vice versa when brown scales become silver. Antennapedia and optix are high-level regulators of different silver scale types and determine cell shape in both sexes. Moreover, Antennapedia is involved in determining ridge and crossrib orientation.
Collapse
|
16
|
McCulloch KJ, Macias-Muñoz A, Mortazavi A, Briscoe AD. Multiple mechanisms of photoreceptor spectral tuning in Heliconius butterflies. Mol Biol Evol 2022; 39:6555095. [PMID: 35348742 PMCID: PMC9048915 DOI: 10.1093/molbev/msac067] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The evolution of color vision is often studied through the lens of receptor gain relative to an ancestor with fewer spectral classes of photoreceptor. For instance, in Heliconius butterflies, a genus-specific UVRh opsin duplication led to the evolution of UV color discrimination in Heliconius erato females, a rare trait among butterflies. However, color vision evolution is not well understood in the context of loss. In Heliconius melpomene and Heliconius ismenius lineages, the UV2 receptor subtype has been lost, which limits female color vision in shorter wavelengths. Here, we compare the visual systems of butterflies that have either retained or lost the UV2 photoreceptor using intracellular recordings, ATAC-seq, and antibody staining. We identify several ways these butterflies modulate their color vision. In H. melpomene, chromatin reorganization has downregulated an otherwise intact UVRh2 gene, whereas in H. ismenius, pseudogenization has led to the truncation of UVRh2. In species that lack the UV2 receptor, the peak sensitivity of the remaining UV1 photoreceptor cell is shifted to longer wavelengths. Across Heliconius, we identify the widespread use of filtering pigments and co-expression of two opsins in the same photoreceptor cells. Multiple mechanisms of spectral tuning, including the molecular evolution of blue opsins, have led to the divergence of receptor sensitivities between species. The diversity of photoreceptor and ommatidial subtypes between species suggests that Heliconius visual systems are under varying selection pressures for color discrimination. Modulating the wavelengths of peak sensitivities of both the blue- and remaining UV-sensitive photoreceptor cells suggests that Heliconius species may have compensated for UV receptor loss.
Collapse
Affiliation(s)
- Kyle J McCulloch
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA 92697, USA.,Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN 55108, USA
| | - Aide Macias-Muñoz
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA 92697, USA.,Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara CA 93106, USA.,Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Adriana D Briscoe
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA 92697, USA
| |
Collapse
|
17
|
Common Themes and Future Challenges in Understanding Gene Regulatory Network Evolution. Cells 2022; 11:cells11030510. [PMID: 35159319 PMCID: PMC8834487 DOI: 10.3390/cells11030510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/26/2022] [Accepted: 01/29/2022] [Indexed: 12/18/2022] Open
Abstract
A major driving force behind the evolution of species-specific traits and novel structures is alterations in gene regulatory networks (GRNs). Comprehending evolution therefore requires an understanding of the nature of changes in GRN structure and the responsible mechanisms. Here, we review two insect pigmentation GRNs in order to examine common themes in GRN evolution and to reveal some of the challenges associated with investigating changes in GRNs across different evolutionary distances at the molecular level. The pigmentation GRN in Drosophila melanogaster and other drosophilids is a well-defined network for which studies from closely related species illuminate the different ways co-option of regulators can occur. The pigmentation GRN for butterflies of the Heliconius species group is less fully detailed but it is emerging as a useful model for exploring important questions about redundancy and modularity in cis-regulatory systems. Both GRNs serve to highlight the ways in which redeployment of trans-acting factors can lead to GRN rewiring and network co-option. To gain insight into GRN evolution, we discuss the importance of defining GRN architecture at multiple levels both within and between species and of utilizing a range of complementary approaches.
Collapse
|
18
|
Fisher CR, Kratovil JD, Angelini DR, Jockusch EL. Out from under the wing: reconceptualizing the insect wing gene regulatory network as a versatile, general module for body-wall lobes in arthropods. Proc Biol Sci 2021; 288:20211808. [PMID: 34933597 PMCID: PMC8692954 DOI: 10.1098/rspb.2021.1808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/29/2021] [Indexed: 12/24/2022] Open
Abstract
Body plan evolution often occurs through the differentiation of serially homologous body parts, particularly in the evolution of arthropod body plans. Recently, homeotic transformations resulting from experimental manipulation of gene expression, along with comparative data on the expression and function of genes in the wing regulatory network, have provided a new perspective on an old question in insect evolution: how did the insect wing evolve? We investigated the metamorphic roles of a suite of 10 wing- and body-wall-related genes in a hemimetabolous insect, Oncopeltus fasciatus. Our results indicate that genes involved in wing development in O. fasciatus play similar roles in the development of adult body-wall flattened cuticular evaginations. We found extensive functional similarity between the development of wings and other bilayered evaginations of the body wall. Overall, our results support the existence of a versatile development module for building bilayered cuticular epithelial structures that pre-dates the evolutionary origin of wings. We explore the consequences of reconceptualizing the canonical wing-patterning network as a bilayered body-wall patterning network, including consequences for long-standing debates about wing homology, the origin of wings and the origin of novel bilayered body-wall structures. We conclude by presenting three testable predictions that result from this reconceptualization.
Collapse
Affiliation(s)
- Cera R. Fisher
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Justin D. Kratovil
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | | | - Elizabeth L. Jockusch
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
19
|
Silva-Brandão KL, Cirino M, Magaldi LDM, Gueratto PE, Mattos RG, Freitas AVL. Subspecies limits and hidden Wolbachia diversity in Actinote pellenea butterflies. SYST BIODIVERS 2021. [DOI: 10.1080/14772000.2021.1965669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Karina L. Silva-Brandão
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Av. Candido Rondom, 400, Campinas, 13083-875, São Paulo, Brazil
| | - Mariana Cirino
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Av. Candido Rondom, 400, Campinas, 13083-875, São Paulo, Brazil
| | - Luiza De Moraes Magaldi
- Programa de Pós-graduação em Ecologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
- Instituto de Biologia, Departamento de Biologia Animal, Universidade Estadual de Campinas, Rua Monteiro Lobato, 255, Campinas, 13083-862, São Paulo, Brazil
| | - Patrícia Eyng Gueratto
- Programa de Pós-graduação em Ecologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
- Instituto de Biologia, Departamento de Biologia Animal, Universidade Estadual de Campinas, Rua Monteiro Lobato, 255, Campinas, 13083-862, São Paulo, Brazil
| | - Ricardo Gabriel Mattos
- Programa de Pós-graduação em Ecologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - André V. L. Freitas
- Instituto de Biologia, Departamento de Biologia Animal, Universidade Estadual de Campinas, Rua Monteiro Lobato, 255, Campinas, 13083-862, São Paulo, Brazil
| |
Collapse
|
20
|
Van Belleghem SM, Lewis JJ, Rivera ES, Papa R. Heliconius butterflies: a window into the evolution and development of diversity. Curr Opin Genet Dev 2021; 69:72-81. [PMID: 33714874 PMCID: PMC8364860 DOI: 10.1016/j.gde.2021.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 10/21/2022]
Abstract
Butterflies have become prominent models for studying the evolution and development of phenotypic variation. In Heliconius, extraordinary within species divergence and between species convergence in wing color patterns has driven decades of comparative genetic studies. However, connecting genetic patterns of diversification to the molecular mechanisms of adaptation has remained elusive. Recent studies are bridging this gap between genome and function and have driven substantial advances in deciphering the genetic architecture of diversification in Heliconius. While only a handful of large-effect genes were initially identified in the diversification of Heliconius color patterns, recent experiments have begun to unravel the underlying gene regulatory networks and how these have evolved. These results reveal an evolutionary story of many interacting loci and partly independent genetic architectures that underlie convergent evolution.
Collapse
Affiliation(s)
| | - James J Lewis
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA; Baker Institute for Animal Health, Cornell University, Ithaca, NY, USA
| | - Edgardo S Rivera
- Department of Biology, University of Puerto Rico-Rio Piedras, San Juan, Puerto Rico; Chairs of Biomaterials, University of Bayreuth, Bayreuth, Bayern, Germany
| | - Riccardo Papa
- Department of Biology, University of Puerto Rico-Rio Piedras, San Juan, Puerto Rico; Molecular Sciences and Research Center, University of Puerto Rico, San Juan, Puerto Rico.
| |
Collapse
|
21
|
Lewis JJ, Cicconardi F, Martin SH, Reed RD, Danko CG, Montgomery SH. The Dryas iulia Genome Supports Multiple Gains of a W Chromosome from a B Chromosome in Butterflies. Genome Biol Evol 2021; 13:evab128. [PMID: 34117762 PMCID: PMC8290107 DOI: 10.1093/gbe/evab128] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2021] [Indexed: 12/17/2022] Open
Abstract
In butterflies and moths, which exhibit highly variable sex determination mechanisms, the homogametic Z chromosome is deeply conserved and is featured in many genome assemblies. The evolution and origin of the female W sex chromosome, however, remains mostly unknown. Previous studies have proposed that a ZZ/Z0 sex determination system is ancestral to Lepidoptera, and that W chromosomes may originate from sex-linked B chromosomes. Here, we sequence and assemble the female Dryas iulia genome into 32 highly contiguous ordered and oriented chromosomes, including the Z and W sex chromosomes. We then use sex-specific Hi-C, ATAC-seq, PRO-seq, and whole-genome DNA sequence data sets to test if features of the D. iulia W chromosome are consistent with a hypothesized B chromosome origin. We show that the putative W chromosome displays female-associated DNA sequence, gene expression, and chromatin accessibility to confirm the sex-linked function of the W sequence. In contrast with expectations from studies of homologous sex chromosomes, highly repetitive DNA content on the W chromosome, the sole presence of domesticated repetitive elements in functional DNA, and lack of sequence homology with the Z chromosome or autosomes is most consistent with a B chromosome origin for the W, although it remains challenging to rule out extensive sequence divergence. Synteny analysis of the D. iulia W chromosome with other female lepidopteran genome assemblies shows no homology between W chromosomes and suggests multiple, independent origins of the W chromosome from a B chromosome likely occurred in butterflies.
Collapse
Affiliation(s)
- James J Lewis
- Baker Institute for Animal Health, Cornell University, Ithaca, New York, USA
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Francesco Cicconardi
- School of Biological Sciences, University of Bristol, United Kingdom
- Department of Zoology, University of Cambridge, United Kingdom
| | - Simon H Martin
- Institute of Evolutionary Biology, University of Edinburgh, United Kingdom
| | - Robert D Reed
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Charles G Danko
- Baker Institute for Animal Health, Cornell University, Ithaca, New York, USA
| | | |
Collapse
|
22
|
Prakash A, Monteiro A. Doublesex Mediates the Development of Sex-Specific Pheromone Organs in Bicyclus Butterflies via Multiple Mechanisms. Mol Biol Evol 2021; 37:1694-1707. [PMID: 32077943 PMCID: PMC7253200 DOI: 10.1093/molbev/msaa039] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The Bicyclus lineage of satyrid butterflies exhibits male-specific traits, the scent organs, used for chemical communication during courtship. These organs consist of tightly packed brush-like scales (hair-pencils) that rub against scent patches to disperse pheromones, but the evolution and molecular basis of these organ’s male-limited development remains unknown. Here, we examine the evolution of the number and location of the scent patches and hair-pencils within 53 species of Bicyclus butterflies, and the involvement of the sex determinant gene doublesex (dsx) in scent organ development in Bicyclus anynana using CRISPR/Cas9. We show that scent patches and hair-pencils arose via multiple, independent gains, in a correlated manner. Further, an initially nonsex-specific Dsx protein expression pattern in developing wing discs becomes male-specific and spatially refined to areas that develop the scent patches. Functional perturbations of dsx show that this gene activates patch development in males whereas hair-pencils develop in both sexes without Dsx input. Dsx in females is, instead, required to repress hair-pencils whereas Dsx in males regulates minor aspects of its development. These findings suggest that the patches and hair-pencils evolve as correlated composite organs presumably due to their functional integration. Divergence in the function of dsx isoforms occurred across the sexes, where the male isoform promotes patch development in males and the female isoform represses hair-pencil development in females, both leading to the development of male-limited traits. Furthermore, evolution in number of patches in males is due to the evolution of spatial regulation of dsx.
Collapse
Affiliation(s)
- Anupama Prakash
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Antónia Monteiro
- Department of Biological Sciences, National University of Singapore, Singapore.,Yale-NUS College, Singapore
| |
Collapse
|
23
|
The color pattern inducing gene wingless is expressed in specific cell types of campaniform sensilla of a polka-dotted fruit fly, Drosophila guttifera. Dev Genes Evol 2021; 231:85-93. [PMID: 33774724 DOI: 10.1007/s00427-021-00674-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/15/2021] [Indexed: 12/16/2022]
Abstract
A polka-dotted fruit fly, Drosophila guttifera, has a unique pigmentation pattern on its wings and is used as a model for evo-devo studies exploring the mechanism of evolutionary gain of novel traits. In this species, a morphogen-encoding gene, wingless, is expressed in species-specific positions and induces a unique pigmentation pattern. To produce some of the pigmentation spots on wing veins, wingless is thought to be expressed in developing campaniform sensillum cells, but it was unknown which of the four cell types there express(es) wingless. Here we show that two of the cell types, dome cells and socket cells, express wingless, as indicated by in situ hybridization together with immunohistochemistry. This is a unique case in which non-neuronal SOP (sensory organ precursor) progeny cells produce Wingless as an inducer of pigmentation pattern formation. Our finding opens a path to clarifying the mechanism of evolutionary gain of a unique wingless expression pattern by analyzing gene regulation in dome cells and socket cells.
Collapse
|
24
|
The evolution of structural colour in butterflies. Curr Opin Genet Dev 2021; 69:28-34. [PMID: 33540167 DOI: 10.1016/j.gde.2021.01.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/21/2020] [Accepted: 01/01/2021] [Indexed: 01/23/2023]
Abstract
Butterflies display some of the most striking examples of structural colour in nature. These colours originate from cuticular scales that cover the wing surface, which have evolved a diverse suite of optical nanostructures capable of manipulating light. In this review we explore recent advances in the evolution of structural colour in butterflies. We discuss new insights into the underlying genetics and development of the structural colours in various nanostructure types. Improvements in -omic and imaging technologies have been paramount to these new advances and have permitted an increased appreciation of their development and evolution.
Collapse
|
25
|
Byers KJRP, Darragh K, Fernanda Garza S, Abondano Almeida D, Warren IA, Rastas PMA, Merrill RM, Schulz S, McMillan WO, Jiggins CD. Clustering of loci controlling species differences in male chemical bouquets of sympatric Heliconius butterflies. Ecol Evol 2021; 11:89-107. [PMID: 33437416 PMCID: PMC7790645 DOI: 10.1002/ece3.6947] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 12/23/2022] Open
Abstract
The degree to which loci promoting reproductive isolation cluster in the genome-that is, the genetic architecture of reproductive isolation-can influence the tempo and mode of speciation. Tight linkage between these loci can facilitate speciation in the face of gene flow. Pheromones play a role in reproductive isolation in many Lepidoptera species, and the role of endogenously produced compounds as secondary metabolites decreases the likelihood of pleiotropy associated with many barrier loci. Heliconius butterflies use male sex pheromones to both court females (aphrodisiac wing pheromones) and ward off male courtship (male-transferred antiaphrodisiac genital pheromones), and it is likely that these compounds play a role in reproductive isolation between Heliconius species. Using a set of backcross hybrids between H. melpomene and H. cydno, we investigated the genetic architecture of putative male pheromone compound production. We found a set of 40 significant quantitative trait loci (QTL) representing 33 potential pheromone compounds. QTL clustered significantly on two chromosomes, chromosome 8 for genital compounds and chromosome 20 for wing compounds, and chromosome 20 was enriched for potential pheromone biosynthesis genes. There was minimal overlap between pheromone QTL and known QTL for mate choice and color pattern. Nonetheless, we did detect linkage between a QTL for wing androconial area and optix, a color pattern locus known to play a role in reproductive isolation in these species. This tight clustering of putative pheromone loci might contribute to coincident reproductive isolating barriers, facilitating speciation despite ongoing gene flow.
Collapse
Affiliation(s)
- Kelsey J. R. P. Byers
- Department of ZoologyUniversity of CambridgeCambridgeUK
- Smithsonian Tropical Research InstitutePanamaPanama
- Present address:
Department of Cell and Developmental BiologyJohn Innes CentreNorwichUK
| | - Kathy Darragh
- Department of ZoologyUniversity of CambridgeCambridgeUK
- Smithsonian Tropical Research InstitutePanamaPanama
- Present address:
Department of Evolution and EcologyUniversity of California DavisDavisCAUSA
| | - Sylvia Fernanda Garza
- Smithsonian Tropical Research InstitutePanamaPanama
- Present address:
Department of Collective BehaviourMax Planck Institute of Animal BehaviourKonstanzGermany
| | - Diana Abondano Almeida
- Smithsonian Tropical Research InstitutePanamaPanama
- Present address:
Institute for Ecology, Evolution and DiversityGoethe UniversitätFrankfurtGermany
| | - Ian A. Warren
- Department of ZoologyUniversity of CambridgeCambridgeUK
| | | | - Richard M. Merrill
- Smithsonian Tropical Research InstitutePanamaPanama
- Division of Evolutionary BiologyLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Stefan Schulz
- Institute of Organic ChemistryDepartment of Life SciencesTechnische Universität BraunschweigBraunschweigGermany
| | | | - Chris D. Jiggins
- Department of ZoologyUniversity of CambridgeCambridgeUK
- Smithsonian Tropical Research InstitutePanamaPanama
| |
Collapse
|
26
|
Morris J, Hanly JJ, Martin SH, Van Belleghem SM, Salazar C, Jiggins CD, Dasmahapatra KK. Deep Convergence, Shared Ancestry, and Evolutionary Novelty in the Genetic Architecture of Heliconius Mimicry. Genetics 2020; 216:765-780. [PMID: 32883703 PMCID: PMC7648585 DOI: 10.1534/genetics.120.303611] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 08/25/2020] [Indexed: 01/31/2023] Open
Abstract
Convergent evolution can occur through different genetic mechanisms in different species. It is now clear that convergence at the genetic level is also widespread, and can be caused by either (i) parallel genetic evolution, where independently evolved convergent mutations arise in different populations or species, or (ii) collateral evolution in which shared ancestry results from either ancestral polymorphism or introgression among taxa. The adaptive radiation of Heliconius butterflies shows color pattern variation within species, as well as mimetic convergence between species. Using comparisons from across multiple hybrid zones, we use signals of shared ancestry to identify and refine multiple putative regulatory elements in Heliconius melpomene and its comimics, Heliconius elevatus and Heliconius besckei, around three known major color patterning genes: optix, WntA, and cortex While we find that convergence between H. melpomene and H. elevatus is caused by a complex history of collateral evolution via introgression in the Amazon, convergence between these species in the Guianas appears to have evolved independently. Thus, we find adaptive convergent genetic evolution to be a key driver of regulatory changes that lead to rapid phenotypic changes. Furthermore, we uncover evidence of parallel genetic evolution at some loci around optix and WntA in H. melpomene and its distant comimic Heliconius erato Ultimately, we show that all three of convergence, conservation, and novelty underlie the modular architecture of Heliconius color pattern mimicry.
Collapse
Affiliation(s)
- Jake Morris
- Department of Biology, University of York, Heslington YO10 5DD, United Kingdom
| | - Joseph J Hanly
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, United Kingdom
| | - Simon H Martin
- Institute of Evolutionary Biology, The University of Edinburgh, Ashworth Laboratories, Edinburgh EH9 3FL, United Kingdom
| | - Steven M Van Belleghem
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, United Kingdom
| | - Camilo Salazar
- Biology Program, Faculty of Natural Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, United Kingdom
| | | |
Collapse
|
27
|
Bainbridge HE, Brien MN, Morochz C, Salazar PA, Rastas P, Nadeau NJ. Limited genetic parallels underlie convergent evolution of quantitative pattern variation in mimetic butterflies. J Evol Biol 2020; 33:1516-1529. [DOI: 10.1111/jeb.13704] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/05/2020] [Accepted: 09/04/2020] [Indexed: 01/28/2023]
Affiliation(s)
- Hannah E. Bainbridge
- Department of Animal and Plant Sciences The University of Sheffield Sheffield UK
| | - Melanie N. Brien
- Department of Animal and Plant Sciences The University of Sheffield Sheffield UK
| | - Carlos Morochz
- Biology & Research Department Mashpi Lodge Mashpi Ecuador
| | - Patricio A. Salazar
- Department of Animal and Plant Sciences The University of Sheffield Sheffield UK
| | - Pasi Rastas
- Institute of Biotechnology University of Helsinki Helsinki Finland
| | - Nicola J. Nadeau
- Department of Animal and Plant Sciences The University of Sheffield Sheffield UK
| |
Collapse
|
28
|
Rossi M, Hausmann AE, Thurman TJ, Montgomery SH, Papa R, Jiggins CD, McMillan WO, Merrill RM. Visual mate preference evolution during butterfly speciation is linked to neural processing genes. Nat Commun 2020; 11:4763. [PMID: 32958765 PMCID: PMC7506007 DOI: 10.1038/s41467-020-18609-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
Many animal species remain separate not because their individuals fail to produce viable hybrids but because they "choose" not to mate. However, we still know very little of the genetic mechanisms underlying changes in these mate preference behaviours. Heliconius butterflies display bright warning patterns, which they also use to recognize conspecifics. Here, we couple QTL for divergence in visual preference behaviours with population genomic and gene expression analyses of neural tissue (central brain, optic lobes and ommatidia) across development in two sympatric Heliconius species. Within a region containing 200 genes, we identify five genes that are strongly associated with divergent visual preferences. Three of these have previously been implicated in key components of neural signalling (specifically an ionotropic glutamate receptor and two regucalcins), and overall our candidates suggest shifts in behaviour involve changes in visual integration or processing. This would allow preference evolution without altering perception of the wider environment.
Collapse
Affiliation(s)
- Matteo Rossi
- Division of Evolutionary Biology, LMU, Munich, Germany.
- Smithsonian Tropical Research Institute, Panama City, Panama.
| | | | - Timothy J Thurman
- Smithsonian Tropical Research Institute, Panama City, Panama
- Division of Biological Sciences, University of Montana, Montana, USA
| | | | - Riccardo Papa
- Smithsonian Tropical Research Institute, Panama City, Panama
- Department of Biology, University of Puerto Rico, San Juan, Puerto Rico
- Molecular Sciences and Research Center, University of Puerto Rico, San Juan, Puerto Rico
| | - Chris D Jiggins
- Smithsonian Tropical Research Institute, Panama City, Panama
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - W Owen McMillan
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Richard M Merrill
- Division of Evolutionary Biology, LMU, Munich, Germany.
- Smithsonian Tropical Research Institute, Panama City, Panama.
| |
Collapse
|
29
|
McMillan WO, Livraghi L, Concha C, Hanly JJ. From Patterning Genes to Process: Unraveling the Gene Regulatory Networks That Pattern Heliconius Wings. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00221] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
30
|
Mérot C, Debat V, Le Poul Y, Merrill RM, Naisbit RE, Tholance A, Jiggins CD, Joron M. Hybridization and transgressive exploration of colour pattern and wing morphology in Heliconius butterflies. J Evol Biol 2020; 33:942-956. [PMID: 32255231 DOI: 10.1111/jeb.13626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/21/2020] [Accepted: 03/24/2020] [Indexed: 12/19/2022]
Abstract
Hybridization can generate novel phenotypes distinct from those of parental lineages, a phenomenon known as transgressive trait variation. Transgressive phenotypes might negatively or positively affect hybrid fitness, and increase available variation. Closely related species of Heliconius butterflies regularly produce hybrids in nature, and hybridization is thought to play a role in the diversification of novel wing colour patterns despite strong stabilizing selection due to interspecific mimicry. Here, we studied wing phenotypes in first- and second-generation hybrids produced by controlled crosses between either two co-mimetic species of Heliconius or between two nonmimetic species. We quantified wing size, shape and colour pattern variation and asked whether hybrids displayed transgressive wing phenotypes. Discrete traits underlain by major-effect loci, such as the presence or absence of colour patches, generate novel phenotypes. For quantitative traits, such as wing shape or subtle colour pattern characters, hybrids only exceed the parental range in specific dimensions of the morphological space. Overall, our study addresses some of the challenges in defining and measuring phenotypic transgression for multivariate traits and our data suggest that the extent to which transgressive trait variation in hybrids contributes to phenotypic diversity depends on the complexity and the genetic architecture of the traits.
Collapse
Affiliation(s)
- Claire Mérot
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France.,IBIS, Université Laval, Québec, QC, Canada
| | - Vincent Debat
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Yann Le Poul
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France.,Division of Evolutionary Biology, Ludwig-Maximilians-Universität, München, Germany
| | - Richard M Merrill
- Division of Evolutionary Biology, Ludwig-Maximilians-Universität, München, Germany.,Department of Zoology, University of Cambridge, Cambridge, UK.,Smithsonian Tropical Research Institute, Panama City, Panama
| | - Russell E Naisbit
- Smithsonian Tropical Research Institute, Panama City, Panama.,Institute for Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Adélie Tholance
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge, UK.,Smithsonian Tropical Research Institute, Panama City, Panama
| | - Mathieu Joron
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France.,UMR 5175, CNRS-Centre d'Ecologie Fonctionnelle et Evolutive, Montpellier, France
| |
Collapse
|
31
|
Thayer RC, Allen FI, Patel NH. Structural color in Junonia butterflies evolves by tuning scale lamina thickness. eLife 2020; 9:52187. [PMID: 32254023 PMCID: PMC7138606 DOI: 10.7554/elife.52187] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/24/2020] [Indexed: 11/13/2022] Open
Abstract
In diverse organisms, nanostructures that coherently scatter light create structural color, but how such structures are built remains mysterious. We investigate the evolution and genetic regulation of butterfly scale laminae, which are simple photonic nanostructures. In a lineage of buckeye butterflies artificially selected for blue wing color, we found that thickened laminae caused a color shift from brown to blue. Deletion of the optix patterning gene also altered color via lamina thickening, revealing shared regulation of pigments and lamina thickness. Finally, we show how lamina thickness variation contributes to the color diversity that distinguishes sexes and species throughout the genus Junonia. Thus, quantitatively tuning one dimension of scale architecture facilitates both the microevolution and macroevolution of a broad spectrum of hues. Because the lamina is an intrinsic component of typical butterfly scales, our findings suggest that tuning lamina thickness is an available mechanism to create structural color across the Lepidoptera. From iridescent blues to vibrant purples, many butterflies display dazzling ‘structural colors’ created not by pigments but by microscopic structures that interfere with light. For instance, the scales that coat their wings can contain thin films of chitin, the substance that normally makes the external skeleton of insects. In slim layers, however, chitin can also scatter light to produce color, the way that oil can create iridescence at the surface of water. The thickness of the film, which is encoded by the genes of the butterfly, determines what color will be produced. Yet, little is known about how common thin films are in butterflies, exactly how genetic information codes for them, and how their thickness and the colors they produce can evolve. To investigate, Thayer et al. used a technique called Helium Ion Microscopy and examined the wings of ten related species of butterflies, showing that thin film structures were present across this sample. However, the different species have evolved many different structural colors over the past millions of years by changing the thickness of the films. Next, Thayer et al. showed that this evolution could be reproduced at a faster pace in the laboratory using common buckeye butterflies. These insects mostly have brown wings, but they can have specks of blue created by thin film structures. Individuals with more blue on their wings were mated and over the course of a year, the thickness of the film structures increased by 74%, leading to shiny blue butterflies. Deleting a gene called optix from the insects also led to blue wings. Optix was already known to control the patterns of pigments in butterflies, but it now appears that it controls structural colors as well. From solar panels to new fabrics, microscopic structures that can scatter light are useful in a variety of industries. Understanding how these elements exist and evolve in organisms may help to better design them for human purposes.
Collapse
Affiliation(s)
- Rachel C Thayer
- Department of Integrative Biology, University of California, Berkeley, Berkeley, United States
| | - Frances I Allen
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States
| | - Nipam H Patel
- Department of Integrative Biology, University of California, Berkeley, Berkeley, United States.,Marine Biological Laboratory, Woods Hole, United States
| |
Collapse
|
32
|
Suzuki TK, Tomita S, Sezutsu H. Multicomponent structures in camouflage and mimicry in butterfly wing patterns. J Morphol 2020; 280:149-166. [PMID: 30556951 DOI: 10.1002/jmor.20927] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 09/16/2018] [Accepted: 11/10/2018] [Indexed: 11/07/2022]
Abstract
Understanding how morphological structures are built is essential for appreciating the morphological complexity and divergence of organisms. One representative case of morphological structures is the camouflage and mimicry of butterfly wing patterns. Some previous studies have questioned whether camouflage and mimicry are truly structures, considering that they rely on coloration. Nevertheless, our recent study revealed that the leaf pattern of Kallima inachus butterfly wings evolved through the combination of changes in several pigment components in a block-wise manner; it remains unclear whether such block-wise structures are common in other cases of camouflage and mimicry in butterflies and how they come about. Previous studies focused solely on a set of homologous components, termed the nymphalid ground plan. In the present study, we extended the scope of the description of components by including not only the nymphalid ground plan but also other common components (i.e., ripple patterns, dependent patterns, and color fields). This extension allowed us to analyze the combinatorial building logic of structures and examine multicomponent structures of camouflage and mimicry in butterfly wing patterns. We investigated various patterns of camouflage and mimicry (e.g., masquerade, crypsis, Müllerian mimicry, Batesian mimicry) in nine species and decomposed them into an assembly of multiple components. These structural component analyses suggested that camouflage and mimicry in butterfly wing patterns are built up by combining multiple types of components. We also investigated associations between components and the kinds of camouflage and mimicry. Several components are statistically more often used to produce specific types of camouflage or mimicry. Thus, our work provides empirical evidence that camouflage and mimicry patterns of butterfly wings are mosaic structures, opening up a new avenue of studying camouflage, and mimicry from a structural perspective.
Collapse
Affiliation(s)
- Takao K Suzuki
- Transgenic Silkworm Research Unit, Division of Biotechnology, Institute of Agrobiological Sciences, NARO, Ibaraki, Japan
| | - Shuichiro Tomita
- Transgenic Silkworm Research Unit, Division of Biotechnology, Institute of Agrobiological Sciences, NARO, Ibaraki, Japan
| | - Hideki Sezutsu
- Transgenic Silkworm Research Unit, Division of Biotechnology, Institute of Agrobiological Sciences, NARO, Ibaraki, Japan
| |
Collapse
|
33
|
|
34
|
Banerjee TD, Monteiro A. Molecular mechanisms underlying simplification of venation patterns in holometabolous insects. Development 2020; 147:dev.196394. [DOI: 10.1242/dev.196394] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/21/2020] [Indexed: 01/07/2023]
Abstract
How mechanisms of pattern formation evolve has remained a central research theme in the field of evolutionary and developmental biology. The mechanism of wing vein differentiation in Drosophila is a classic text-book example of pattern formation using a system of positional-information, yet very little is known about how species with a different number of veins pattern their wings, and how insect venation patterns evolved. Here, we examine the expression pattern of genes previously implicated in vein differentiation in Drosophila in two butterfly species with more complex venation Bicyclus anynana and Pieris canidia. We also test the function of some of these genes in B. anynana. We identify both conserved as well as new domains of decapentaplegic, engrailed, invected, spalt, optix, wingless, armadillo, blistered, and rhomboid gene expression in butterflies, and propose how the simplified venation in Drosophila might have evolved via loss of decapentaplegic, spalt and optix gene expression domains, silencing of vein inducing programs at Spalt-expression boundaries, and changes in gene expression of vein maintenance genes.
Collapse
Affiliation(s)
- Tirtha Das Banerjee
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Antónia Monteiro
- Department of Biological Sciences, National University of Singapore, Singapore
- Yale-NUS College, Singapore
| |
Collapse
|
35
|
Co-option of wing-patterning genes underlies the evolution of the treehopper helmet. Nat Ecol Evol 2019; 4:250-260. [DOI: 10.1038/s41559-019-1054-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/25/2019] [Indexed: 12/18/2022]
|
36
|
Parallel evolution of ancient, pleiotropic enhancers underlies butterfly wing pattern mimicry. Proc Natl Acad Sci U S A 2019; 116:24174-24183. [PMID: 31712408 DOI: 10.1073/pnas.1907068116] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Color pattern mimicry in Heliconius butterflies is a classic case study of complex trait adaptation via selection on a few large effect genes. Association studies have linked color pattern variation to a handful of noncoding regions, yet the presumptive cis-regulatory elements (CREs) that control color patterning remain unknown. Here we combine chromatin assays, DNA sequence associations, and genome editing to functionally characterize 5 cis-regulatory elements of the color pattern gene optix We were surprised to find that the cis-regulatory architecture of optix is characterized by pleiotropy and regulatory fragility, where deletion of individual cis-regulatory elements has broad effects on both color pattern and wing vein development. Remarkably, we found orthologous cis-regulatory elements associate with wing pattern convergence of distantly related comimics, suggesting that parallel coevolution of ancestral elements facilitated pattern mimicry. Our results support a model of color pattern evolution in Heliconius where changes to ancient, multifunctional cis-regulatory elements underlie adaptive radiation.
Collapse
|
37
|
Morris J, Navarro N, Rastas P, Rawlins LD, Sammy J, Mallet J, Dasmahapatra KK. The genetic architecture of adaptation: convergence and pleiotropy in Heliconius wing pattern evolution. Heredity (Edinb) 2019; 123:138-152. [PMID: 30670842 PMCID: PMC6781118 DOI: 10.1038/s41437-018-0180-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 12/14/2022] Open
Abstract
Unravelling the genetic basis of adaptive traits is a major challenge in evolutionary biology. Doing so informs our understanding of evolution towards an adaptive optimum, the distribution of locus effect sizes, and the influence of genetic architecture on the evolvability of a trait. In the Müllerian co-mimics Heliconius melpomene and Heliconius erato some Mendelian loci affecting mimicry shifts are well known. However, several phenotypes in H. melpomene remain to be mapped, and the quantitative genetics of colour pattern variation has rarely been analysed. Here we use quantitative trait loci (QTL) analyses of crosses between H. melpomene races from Peru and Suriname to map, for the first time, the control of the broken band phenotype to WntA and identify a ~100 kb region controlling this variation. Additionally, we map variation in basal forewing red-orange pigmentation to a locus centred around the gene ventral veins lacking (vvl). The locus also appears to affect medial band shape variation as it was previously known to do in H. erato. This adds to the list of homologous regions controlling convergent phenotypes between these two species. Finally we show that Heliconius wing-patterning genes are strikingly pleiotropic among wing pattern traits. Our results demonstrate how genetic architecture can shape, aid and constrain adaptive evolution.
Collapse
Affiliation(s)
- Jake Morris
- Department of Biology, University of York, Heslington, YO10 5DD, UK.
| | - Nicolas Navarro
- EPHE, PSL University, 21000, Dijon, France
- Biogéosciences, UMR CNRS 6282, Université Bourgogne Franche-Comté, 21000, Dijon, France
| | - Pasi Rastas
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| | - Lauren D Rawlins
- Department of Environment and Geography, University of York, Heslington, YO10 5DD, UK
| | - Joshua Sammy
- Department of Biology, University of York, Heslington, YO10 5DD, UK
| | - James Mallet
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | | |
Collapse
|
38
|
Hanly JJ, Wallbank RWR, McMillan WO, Jiggins CD. Conservation and flexibility in the gene regulatory landscape of heliconiine butterfly wings. EvoDevo 2019; 10:15. [PMID: 31341608 PMCID: PMC6631869 DOI: 10.1186/s13227-019-0127-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 06/21/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Many traits evolve by cis-regulatory modification, by which changes to noncoding sequences affect the binding affinity for available transcription factors and thus modify the expression profile of genes. Multiple examples of cis-regulatory evolution have been described at pattern switch genes responsible for butterfly wing pattern polymorphism, including in the diverse neotropical genus Heliconius, but the identities of the factors that can regulate these switch genes have not been identified. RESULTS We investigated the spatial transcriptomic landscape across the wings of three closely related butterfly species, two of which have a convergently evolved co-mimetic pattern and the other having a divergent pattern. We identified candidate factors for regulating the expression of wing patterning genes, including transcription factors with a conserved expression profile in all three species, and others, including both transcription factors and Wnt pathway genes, with markedly different profiles in each of the three species. We verified the conserved expression profile of the transcription factor homothorax by immunofluorescence and showed that its expression profile strongly correlates with that of the selector gene optix in butterflies with the Amazonian forewing pattern element 'dennis.' CONCLUSION Here we show that, in addition to factors with conserved expression profiles like homothorax, there are also a variety of transcription factors and signaling pathway components that appear to vary in their expression profiles between closely related butterfly species, highlighting the importance of genome-wide regulatory evolution between species.
Collapse
Affiliation(s)
- Joseph J. Hanly
- Department of Zoology, University of Cambridge, Downing St., Cambridge, CB2 3EJ UK
- Smithsonian Tropical Research Institute, Gamboa, Panama
- Biological Sciences, The George Washington University, Washington, DC 20052 USA
| | - Richard W. R. Wallbank
- Department of Zoology, University of Cambridge, Downing St., Cambridge, CB2 3EJ UK
- Smithsonian Tropical Research Institute, Gamboa, Panama
| | | | - Chris D. Jiggins
- Department of Zoology, University of Cambridge, Downing St., Cambridge, CB2 3EJ UK
- Smithsonian Tropical Research Institute, Gamboa, Panama
| |
Collapse
|
39
|
Tian L, Rahman SR, Ezray BD, Franzini L, Strange JP, Lhomme P, Hines HM. A homeotic shift late in development drives mimetic color variation in a bumble bee. Proc Natl Acad Sci U S A 2019; 116:11857-11865. [PMID: 31043564 PMCID: PMC6575597 DOI: 10.1073/pnas.1900365116] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Natural phenotypic radiations, with their high diversity and convergence, are well-suited for informing how genomic changes translate to natural phenotypic variation. New genomic tools enable discovery in such traditionally nonmodel systems. Here, we characterize the genomic basis of color pattern variation in bumble bees (Hymenoptera, Apidae, Bombus), a group that has undergone extensive convergence of setal color patterns as a result of Müllerian mimicry. In western North America, multiple species converge on local mimicry patterns through parallel shifts of midabdominal segments from red to black. Using genome-wide association, we establish that a cis-regulatory locus between the abdominal fate-determining Hox genes, abd-A and Abd-B, controls the red-black color switch in a western species, Bombus melanopygus Gene expression analysis reveals distinct shifts in Abd-B aligned with the duration of setal pigmentation at the pupal-adult transition. This results in atypical anterior Abd-B expression, a late developmental homeotic shift. Changing expression of Hox genes can have widespread effects, given their important role across segmental phenotypes; however, the late timing reduces this pleiotropy, making Hox genes suitable targets. Analysis of this locus across mimics and relatives reveals that other species follow independent genetic routes to obtain the same phenotypes.
Collapse
Affiliation(s)
- Li Tian
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
| | | | - Briana D Ezray
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802
| | - Luca Franzini
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802
| | - James P Strange
- United States Department of Agriculture-Agricultural Research Service Pollinating Insects Research Unit, Utah State University, Logan, UT 84322
| | - Patrick Lhomme
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
- Biodiversity and Crop Improvement Program, International Center of Agricultural Research in the Dry Areas, 10112 Rabat, Morocco
| | - Heather M Hines
- Department of Biology, The Pennsylvania State University, University Park, PA 16802;
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
40
|
Merrill RM, Rastas P, Martin SH, Melo MC, Barker S, Davey J, McMillan WO, Jiggins CD. Genetic dissection of assortative mating behavior. PLoS Biol 2019; 17:e2005902. [PMID: 30730873 PMCID: PMC6366751 DOI: 10.1371/journal.pbio.2005902] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 11/06/2018] [Indexed: 12/26/2022] Open
Abstract
The evolution of new species is made easier when traits under divergent ecological selection are also mating cues. Such ecological mating cues are now considered more common than previously thought, but we still know little about the genetic changes underlying their evolution or more generally about the genetic basis for assortative mating behaviors. Both tight physical linkage and the existence of large-effect preference loci will strengthen genetic associations between behavioral and ecological barriers, promoting the evolution of assortative mating. The warning patterns of Heliconius melpomene and H. cydno are under disruptive selection due to increased predation of nonmimetic hybrids and are used during mate recognition. We carried out a genome-wide quantitative trait locus (QTL) analysis of preference behaviors between these species and showed that divergent male preference has a simple genetic basis. We identify three QTLs that together explain a large proportion (approximately 60%) of the difference in preference behavior observed between the parental species. One of these QTLs is just 1.2 (0-4.8) centiMorgans (cM) from the major color pattern gene optix, and, individually, all three have a large effect on the preference phenotype. Genomic divergence between H. cydno and H. melpomene is high but broadly heterogenous, and admixture is reduced at the preference-optix color pattern locus but not the other preference QTLs. The simple genetic architecture we reveal will facilitate the evolution and maintenance of new species despite ongoing gene flow by coupling behavioral and ecological aspects of reproductive isolation.
Collapse
Affiliation(s)
- Richard M. Merrill
- Division of Evolutionary Biology, Ludwig-Maximilians-Universität, München, Germany
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Pasi Rastas
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Simon H. Martin
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Maria C. Melo
- Smithsonian Tropical Research Institute, Panama City, Panama
- IST Austria, Klosterburg, Austria
| | - Sarah Barker
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - John Davey
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- Department of Biology, University of York, York, United Kingdom
| | | | - Chris D. Jiggins
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
41
|
Dick C, Arendt J, Reznick DN, Hayashi CY. The developmental and genetic trajectory of coloration in the guppy (Poecilia reticulata). Evol Dev 2018; 20:207-218. [PMID: 30191662 DOI: 10.1111/ede.12268] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Examining the association between trait variation and development is crucial for understanding the evolution of phenotypic differences. Male guppy ornamental caudal fin coloration is one trait that shows a striking degree of variation within and between guppy populations. Males initially have no caudal fin coloration, then gradually develop it as they reach sexual maturity. For males, there is a trade-off between female preference for caudal fin coloration and increased visibility to predators. This trade-off may reach unique endpoints in males from different predation regimes. Caudal fin coloration includes black melanin, orange/yellow pteridines or carotenoids, and shimmering iridescence. This study examined the phenotypic trajectory and genetics associated with color development. We found that black coloration always developed first, followed by orange/yellow, then iridescence. The ordering and timing of color appearance was the same regardless of predation regime. The increased expression of melanin synthesis genes correlated well with the visual appearance of black coloration, but there was no correlation between carotenoids or pteridine synthesis gene expression and the appearance of orange/yellow. The lack of orange/yellow coloration in earlier male caudal fin developmental stages may be due to reduced expression of genes underlying the development of orange/yellow xanthophores.
Collapse
Affiliation(s)
- Cynthia Dick
- Department of Evolution, Ecology, and Organismal Biology, University of California-Riverside, Riverside, California
| | - Jeff Arendt
- Department of Evolution, Ecology, and Organismal Biology, University of California-Riverside, Riverside, California
| | - David N Reznick
- Department of Evolution, Ecology, and Organismal Biology, University of California-Riverside, Riverside, California
| | - Cheryl Y Hayashi
- Division of Invertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York
| |
Collapse
|
42
|
Gene regulatory network architecture in different developmental contexts influences the genetic basis of morphological evolution. PLoS Genet 2018; 14:e1007375. [PMID: 29723190 PMCID: PMC5953500 DOI: 10.1371/journal.pgen.1007375] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 05/15/2018] [Accepted: 04/23/2018] [Indexed: 01/09/2023] Open
Abstract
Convergent phenotypic evolution is often caused by recurrent changes at particular nodes in the underlying gene regulatory networks (GRNs). The genes at such evolutionary ‘hotspots’ are thought to maximally affect the phenotype with minimal pleiotropic consequences. This has led to the suggestion that if a GRN is understood in sufficient detail, the path of evolution may be predictable. The repeated evolutionary loss of larval trichomes among Drosophila species is caused by the loss of shavenbaby (svb) expression. svb is also required for development of leg trichomes, but the evolutionary gain of trichomes in the ‘naked valley’ on T2 femurs in Drosophila melanogaster is caused by reduced microRNA-92a (miR-92a) expression rather than changes in svb. We compared the expression and function of components between the larval and leg trichome GRNs to investigate why the genetic basis of trichome pattern evolution differs in these developmental contexts. We found key differences between the two networks in both the genes employed, and in the regulation and function of common genes. These differences in the GRNs reveal why mutations in svb are unlikely to contribute to leg trichome evolution and how instead miR-92a represents the key evolutionary switch in this context. Our work shows that variability in GRNs across different developmental contexts, as well as whether a morphological feature is lost versus gained, influence the nodes at which a GRN evolves to cause morphological change. Therefore, our findings have important implications for understanding the pathways and predictability of evolution. A major goal of biology is to identify the genetic causes of organismal diversity. Convergent evolution of traits is often caused by changes in the same genes–evolutionary ‘hotspots’. shavenbaby is a ‘hotspot’ for larval trichome loss in Drosophila, but microRNA-92a underlies the gain of leg trichomes. To understand this difference in the genetics of phenotypic evolution, we compared the expression and function of genes in the underlying regulatory networks. We found that the pathway of evolution is influenced by differences in gene regulatory network architecture in different developmental contexts, as well as by whether a trait is lost or gained. Therefore, hotspots in one context may not readily evolve in a different context. This has important implications for understanding the genetic basis of phenotypic change and the predictability of evolution.
Collapse
|
43
|
Rossato DO, Boligon D, Fornel R, Kronforst MR, Gonçalves GL, Moreira GRP. Subtle variation in size and shape of the whole forewing and the red band among co-mimics revealed by geometric morphometric analysis in Heliconius butterflies. Ecol Evol 2018; 8:3280-3295. [PMID: 29607024 PMCID: PMC5869215 DOI: 10.1002/ece3.3916] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 01/08/2018] [Accepted: 01/16/2018] [Indexed: 11/08/2022] Open
Abstract
Heliconius are unpalatable butterflies that exhibit remarkable intra- and interspecific variation in wing color pattern, specifically warning coloration. Species that have converged on the same pattern are often clustered in Müllerian mimicry rings. Overall, wing color patterns are nearly identical among co-mimics. However, fine-scale differences exist, indicating that factors in addition to natural selection may underlie wing phenotype. Here, we investigate differences in shape and size of the forewing and the red band in the Heliconius postman mimicry ring (H. erato phyllis and the co-mimics H. besckei, H. melpomene burchelli, and H. melpomene nanna) using a landmark-based approach. If phenotypic evolution is driven entirely by predation pressure, we expect nonsignificant differences among co-mimics in terms of wing shape. Also, a reinforcement of wing pattern (i.e., greater similarity) could occur when co-mimics are in sympatry. We also examined variation in the red forewing band because this trait is critical for both mimicry and sexual communication. Morphometric results revealed significant but small differences among species, particularly in the shape of the forewing of co-mimics. Although we did not observe greater similarity when co-mimics were in sympatry, nearly identical patterns provided evidence of convergence for mimicry. In contrast, mimetic pairs could be distinguished based on the shape (but not the size) of the red band, suggesting an "advergence" process. In addition, sexual dimorphism in the red band shape (but not size) was found for all lineages. Thus, we infer that natural selection due to predation by birds might not be the only mechanism responsible for variation in color patterns, and sexual selection could be an important driver of wing phenotypic evolution in this mimicry ring.
Collapse
Affiliation(s)
- Dirleane O Rossato
- Programa de Pós-Graduação em Ecologia Instituto de Biociências Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| | - Danessa Boligon
- Programa de Pós-Graduação em Ecologia Universidade Regional Integrada do Alto Uruguai e das Missões Erechim Brazil
| | - Rodrigo Fornel
- Programa de Pós-Graduação em Ecologia Universidade Regional Integrada do Alto Uruguai e das Missões Erechim Brazil
| | - Marcus R Kronforst
- Department of Ecology and Evolution University of Chicago Chicago MI USA
| | - Gislene L Gonçalves
- Programa de Pós-Graduação em Biologia Animal Instituto de Biociências Universidade Federal do Rio Grande do Sul Porto Alegre Brazil.,Departamento de Recursos Ambientales Facultad de Ciencias Agronomicas Universidad de Tarapacá Arica Chile
| | - Gilson R P Moreira
- Programa de Pós-Graduação em Biologia Animal Instituto de Biociências Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| |
Collapse
|
44
|
Rice G, Barmina O, Hu K, Kopp A. Evolving doublesex expression correlates with the origin and diversification of male sexual ornaments in the Drosophila immigrans species group. Evol Dev 2018; 20:78-88. [PMID: 29372584 DOI: 10.1111/ede.12249] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Male ornaments and other sex-specific traits present some of the most dramatic examples of evolutionary innovations. Comparative studies of similar but independently evolved traits are particularly important for identifying repeated patterns in the evolution of these traits. Male-specific modifications of the front legs have evolved repeatedly in Drosophilidae and other Diptera. The best understood of these novel structures is the sex comb of Drosophila melanogaster and its close relatives. Here, we examine the evolution of another male foreleg modification, the sex brush, found in the distantly related Drosophila immigrans species group. Similar to the sex comb, we find that the origin of the sex brush correlates with novel, spatially restricted expression of the doublesex (dsx) transcription factor, the primary effector of the Drosophila sex determination pathway. The diversity of Dsx expression patterns in the immigrans species group closely reflects the differences in the presence, position, and size of the sex brush. Together with previous work on sex comb evolution, these observations suggest that tissue-specific activation of dsx expression may be a common mechanism responsible for the evolution of sexual dimorphism and particularly for the origin of novel male-specific ornaments.
Collapse
Affiliation(s)
- Gavin Rice
- Department of Evolution and Ecology, University of California-Davis, Davis, California.,Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Olga Barmina
- Department of Evolution and Ecology, University of California-Davis, Davis, California
| | - Kevin Hu
- Department of Evolution and Ecology, University of California-Davis, Davis, California
| | - Artyom Kopp
- Department of Evolution and Ecology, University of California-Davis, Davis, California
| |
Collapse
|
45
|
Jiggins CD, Wallbank RWR, Hanly JJ. Waiting in the wings: what can we learn about gene co-option from the diversification of butterfly wing patterns? Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2015.0485. [PMID: 27994126 DOI: 10.1098/rstb.2015.0485] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2016] [Indexed: 12/11/2022] Open
Abstract
A major challenge is to understand how conserved gene regulatory networks control the wonderful diversity of form that we see among animals and plants. Butterfly wing patterns are an excellent example of this diversity. Butterfly wings form as imaginal discs in the caterpillar and are constructed by a gene regulatory network, much of which is conserved across the holometabolous insects. Recent work in Heliconius butterflies takes advantage of genomic approaches and offers insights into how the diversification of wing patterns is overlaid onto this conserved network. WntA is a patterning morphogen that alters spatial information in the wing. Optix is a transcription factor that acts later in development to paint specific wing regions red. Both of these loci fit the paradigm of conserved protein-coding loci with diverse regulatory elements and developmental roles that have taken on novel derived functions in patterning wings. These discoveries offer insights into the 'Nymphalid Ground Plan', which offers a unifying hypothesis for pattern formation across nymphalid butterflies. These loci also represent 'hotspots' for morphological change that have been targeted repeatedly during evolution. Both convergent and divergent evolution of a great diversity of patterns is controlled by complex alleles at just a few genes. We suggest that evolutionary change has become focused on one or a few genetic loci for two reasons. First, pre-existing complex cis-regulatory loci that already interact with potentially relevant transcription factors are more likely to acquire novel functions in wing patterning. Second, the shape of wing regulatory networks may constrain evolutionary change to one or a few loci. Overall, genomic approaches that have identified wing patterning loci in these butterflies offer broad insight into how gene regulatory networks evolve to produce diversity.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'.
Collapse
Affiliation(s)
- Chris D Jiggins
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Richard W R Wallbank
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Joseph J Hanly
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| |
Collapse
|
46
|
Wilts BD, Vey AJM, Briscoe AD, Stavenga DG. Longwing (Heliconius) butterflies combine a restricted set of pigmentary and structural coloration mechanisms. BMC Evol Biol 2017; 17:226. [PMID: 29162029 PMCID: PMC5699198 DOI: 10.1186/s12862-017-1073-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 11/15/2017] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Longwing butterflies, Heliconius sp., also called heliconians, are striking examples of diversity and mimicry in butterflies. Heliconians feature strongly colored patterns on their wings, arising from wing scales colored by pigments and/or nanostructures, which serve as an aposematic signal. RESULTS Here, we investigate the coloration mechanisms among several species of Heliconius by applying scanning electron microscopy, (micro)spectrophotometry, and imaging scatterometry. We identify seven kinds of colored scales within Heliconius whose coloration is derived from pigments, nanostructures or both. In yellow-, orange- and red-colored wing patches, both cover and ground scales contain wavelength-selective absorbing pigments, 3-OH-kynurenine, xanthommatin and/or dihydroxanthommatin. In blue wing patches, the cover scales are blue either due to interference of light in the thin-film lower lamina (e.g., H. doris) or in the multilayered lamellae in the scale ridges (so-called ridge reflectors, e.g., H. sara and H. erato); the underlying ground scales are black. In the white wing patches, both cover and ground scales are blue due to their thin-film lower lamina, but because they are stacked upon each other and at the wing substrate, a faint bluish to white color results. Lastly, green wing patches (H. doris) have cover scales with blue-reflecting thin films and short-wavelength absorbing 3-OH-kynurenine, together causing a green color. CONCLUSIONS The pigmentary and structural traits are discussed in relation to their phylogenetic distribution and the evolution of vision in this highly interesting clade of butterflies.
Collapse
Affiliation(s)
- Bodo D Wilts
- Computational Physics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, NL-9747AG, Groningen, The Netherlands.
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland.
| | - Aidan J M Vey
- Computational Physics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, NL-9747AG, Groningen, The Netherlands
| | - Adriana D Briscoe
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA
| | - Doekele G Stavenga
- Computational Physics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, NL-9747AG, Groningen, The Netherlands
| |
Collapse
|
47
|
Single master regulatory gene coordinates the evolution and development of butterfly color and iridescence. Proc Natl Acad Sci U S A 2017; 114:10707-10712. [PMID: 28923944 DOI: 10.1073/pnas.1709058114] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The optix gene has been implicated in butterfly wing pattern adaptation by genetic association, mapping, and expression studies. The actual developmental function of this gene has remained unclear, however. Here we used CRISPR/Cas9 genome editing to show that optix plays a fundamental role in nymphalid butterfly wing pattern development, where it is required for determination of all chromatic coloration. optix knockouts in four species show complete replacement of color pigments with melanins, with corresponding changes in pigment-related gene expression, resulting in black and gray butterflies. We also show that optix simultaneously acts as a switch gene for blue structural iridescence in some butterflies, demonstrating simple regulatory coordination of structural and pigmentary coloration. Remarkably, these optix knockouts phenocopy the recurring "black and blue" wing pattern archetype that has arisen on many independent occasions in butterflies. Here we demonstrate a simple genetic basis for structural coloration, and show that optix plays a deeply conserved role in butterfly wing pattern development.
Collapse
|
48
|
Deshmukh R, Baral S, Gandhimathi A, Kuwalekar M, Kunte K. Mimicry in butterflies: co-option and a bag of magnificent developmental genetic tricks. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2017; 7. [PMID: 28913870 DOI: 10.1002/wdev.291] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 07/04/2017] [Accepted: 07/20/2017] [Indexed: 01/05/2023]
Abstract
Butterfly wing patterns are key adaptations that are controlled by remarkable developmental and genetic mechanisms that facilitate rapid evolutionary change. With swift advancements in the fields of genomics and genetic manipulations, identifying the regulators of wing development and mimetic wing patterns has become feasible even in nonmodel organisms such as butterflies. Recent mapping and gene expression studies have identified single switch loci of major effects such as transcription factors and supergenes as the main drivers of adaptive evolution of mimetic and polymorphic butterfly wing patterns. We highlight several of these examples, with emphasis on doublesex, optix, WntA and other dynamic, yet essential, master regulators that control critical color variation and sex-specific traits. Co-option emerges as a predominant theme, where typically embryonic and other early-stage developmental genes and networks have been rewired to regulate polymorphic and sex-limited mimetic wing patterns in iconic butterfly adaptations. Drawing comparisons from our knowledge of wing development in Drosophila, we illustrate the functional space of genes that have been recruited to regulate butterfly wing patterns. We also propose a developmental pathway that potentially results in dorsoventral mismatch in butterfly wing patterns. Such dorsoventrally mismatched color patterns modulate signal components of butterfly wings that are used in intra- and inter-specific communication. Recent advances-fuelled by RNAi-mediated knockdowns and CRISPR/Cas9-based genomic edits-in the developmental genetics of butterfly wing patterns, and the underlying biological diversity and complexity of wing coloration, are pushing butterflies as an emerging model system in ecological genetics and evolutionary developmental biology. WIREs Dev Biol 2018, 7:e291. doi: 10.1002/wdev.291 This article is categorized under: Gene Expression and Transcriptional Hierarchies > Regulatory Mechanisms Comparative Development and Evolution > Regulation of Organ Diversity Comparative Development and Evolution > Evolutionary Novelties.
Collapse
Affiliation(s)
| | - Saurav Baral
- National Centre for Biological Sciences, Bengaluru, India
| | - A Gandhimathi
- National Centre for Biological Sciences, Bengaluru, India
| | | | | |
Collapse
|
49
|
Al Khatib A, Siomava N, Iannini A, Posnien N, Casares F. Specific expression and function of the Six3 optix in Drosophila serially homologous organs. Biol Open 2017. [PMID: 28642242 PMCID: PMC5576073 DOI: 10.1242/bio.023606] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Organ size and pattern results from the integration of two positional information systems. One global information system, encoded by the Hox genes, links organ type with position along the main body axis. Within specific organs, local information is conveyed by signaling molecules that regulate organ growth and pattern. The mesothoracic (T2) wing and the metathoracic (T3) haltere of Drosophila represent a paradigmatic example of this coordination. The Hox gene Ultrabithorax (Ubx), expressed in the developing T3, selects haltere identity by, among other processes, modulating the production and signaling efficiency of Dpp, a BMP2-like molecule that acts as a major regulator of size and pattern. However, the mechanisms of the Hox-signal integration in this well-studied system are incomplete. Here, we have investigated this issue by studying the expression and function of the Six3 transcription factor optix during Drosophila wing and haltere development. We find that in both organs, Dpp defines the expression domain of optix through repression, and that the specific position of this domain in wing and haltere seems to reflect the differential signaling profile among these organs. We show that optix expression in wing and haltere primordia is conserved beyond Drosophila in other higher diptera. In Drosophila, optix is necessary for the growth of wing and haltere. In the wing, optix is required for the growth of the most anterior/proximal region (the ‘marginal cell’) and for the correct formation of sensory structures along the proximal anterior wing margin; the halteres of optix mutants are also significantly reduced. In addition, in the haltere, optix is necessary for the suppression of sensory bristles. Summary: The position of the Six3 optix is regulated by the Dpp pathway during wing and haltere development, and controls the size of both serially homologous organs.
Collapse
Affiliation(s)
- Amer Al Khatib
- Department of Gene Regulation and Morphogenesis, Andalusian Centre for Developmental Biology (CABD), CSIC-Pablo de Olavide University-JA, 41013 Seville, Spain.,Department of Biology, University of Florence, I-50019, Florence, Italy
| | - Natalia Siomava
- Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology, Goettingen Center for Molecular Biosciences (GZMB), Department of Developmental Biology, University of Goettingen, 37077 Goettingen, Germany
| | - Antonella Iannini
- Department of Gene Regulation and Morphogenesis, Andalusian Centre for Developmental Biology (CABD), CSIC-Pablo de Olavide University-JA, 41013 Seville, Spain
| | - Nico Posnien
- Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology, Goettingen Center for Molecular Biosciences (GZMB), Department of Developmental Biology, University of Goettingen, 37077 Goettingen, Germany
| | - Fernando Casares
- Department of Gene Regulation and Morphogenesis, Andalusian Centre for Developmental Biology (CABD), CSIC-Pablo de Olavide University-JA, 41013 Seville, Spain
| |
Collapse
|
50
|
Llaurens V, Whibley A, Joron M. Genetic architecture and balancing selection: the life and death of differentiated variants. Mol Ecol 2017; 26:2430-2448. [PMID: 28173627 DOI: 10.1111/mec.14051] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 12/15/2016] [Accepted: 12/19/2016] [Indexed: 01/02/2023]
Abstract
Balancing selection describes any form of natural selection, which results in the persistence of multiple variants of a trait at intermediate frequencies within populations. By offering up a snapshot of multiple co-occurring functional variants and their interactions, systems under balancing selection can reveal the evolutionary mechanisms favouring the emergence and persistence of adaptive variation in natural populations. We here focus on the mechanisms by which several functional variants for a given trait can arise, a process typically requiring multiple epistatic mutations. We highlight how balancing selection can favour specific features in the genetic architecture and review the evolutionary and molecular mechanisms shaping this architecture. First, balancing selection affects the number of loci underlying differentiated traits and their respective effects. Control by one or few loci favours the persistence of differentiated functional variants by limiting intergenic recombination, or its impact, and may sometimes lead to the evolution of supergenes. Chromosomal rearrangements, particularly inversions, preventing adaptive combinations from being dissociated are increasingly being noted as features of such systems. Similarly, due to the frequency of heterozygotes maintained by balancing selection, dominance may be a key property of adaptive variants. High heterozygosity and limited recombination also influence associated genetic load, as linked recessive deleterious mutations may be sheltered. The capture of deleterious elements in a locus under balancing selection may reinforce polymorphism by further promoting heterozygotes. Finally, according to recent genomewide scans, balanced polymorphism might be more pervasive than generally thought. We stress the need for both functional and ecological studies to characterize the evolutionary mechanisms operating in these systems.
Collapse
Affiliation(s)
- Violaine Llaurens
- Institut de Systématique Evolution et Biodiversité (UMR 7205 CNRS, MNHN, UPMC, EPHE), Muséum National d'Histoire Naturelle - CP50, 45 rue Buffon, 75005, Paris, France
| | - Annabel Whibley
- Cell and Developmental Biology, John Innes Centre, Norwich, Norfolk, NR4 7UH, UK
| | - Mathieu Joron
- Centre d'Ecologie Fonctionnelle et Evolutive (UMR 5175 CNRS, Université de Montpellier, Université Paul Valéry Montpellier, EPHE), 1919 route de Mende, 34293, Montpellier, France
| |
Collapse
|