1
|
Meshram S, Das D, Singh S, Bhattacharjee M, Patil RI, Arunima S, Kalita PJ, Jaba J, Sarmah BK, Acharjee S. Dynamics of cytosolic and organellar gene transcripts in wild and cultivated genotypes of pigeon pea due to simulated herbivory. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 357:112537. [PMID: 40324724 DOI: 10.1016/j.plantsci.2025.112537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 04/29/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
Pigeon pea (Cajanus cajan), widely grown in India, suffers significant yield losses due to pod borers (Helicoverpa armigera and Maruca vitrata). Therefore, studying the host resistance mechanism is pivotal for crop improvement. In this study, we conducted transcriptome analysis on two wild-type (WT) Cajanus scarabaeoides accessions (ICP-15761 and ICP-15738) having high levels of resistance to pod borers and two cultivated C. cajan genotypes, ICPL-332 (moderately resistant) and ICPL-87 (susceptible), following simulated herbivory with H. armigera oral secretions (OS). Differential gene expression analysis identified 3573 and 4677 differentially expressed genes (DEGs) in ICP-15761 and ICP-15738, whereas 4149 and 3639 DEGs were documented in ICPL-332 and ICPL-87, respectively. Genes related to chloroplast biogenesis, photosynthesis, and chlorophyll metabolism exhibited significant differential expression, indicating chloroplast reprogramming under simulated herbivory. Significant upregulation of key defense genes, including chitinases and cysteine proteases, in C. scarabaeoides accessions highlighted robust defense pathway activation. A genotype-specific shift in transcription factors, phytohormones, and calcium signaling-related gene expression was noted. Higher levels of expression of aspartic proteinases and pathogenesis-related proteins in cultivated genotypes suggesting adaptive evolutionary traits. This is a novel insight on molecular mechanism of defense in a wild type, C. scarabaeoides and cultivated genotypes of pigeon pea under simulated herbivory. The information on cytosolic and organellar gene changes in pigeon pea due to H. armigera OS mediated-simulated herbivory may help develop pigeon pea varieties that are resistant to pod borer infestations.
Collapse
Affiliation(s)
- Swapnilkumar Meshram
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam 785013, India
| | - Debajit Das
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam 785013, India; DBT-North-East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam 785013, India
| | - Sanjay Singh
- Divison of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistical Research Institute, Pusa, New Delhi 110012, India
| | - Mamta Bhattacharjee
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam 785013, India; DBT-North-East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam 785013, India
| | - Rahul Ishwar Patil
- DBT-North-East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam 785013, India
| | - S Arunima
- DBT-North-East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam 785013, India
| | - Prakash Jyoti Kalita
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam 785013, India; DBT-North-East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam 785013, India
| | - Jagdish Jaba
- The International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana 502324, India
| | - Bidyut Kumar Sarmah
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam 785013, India; DBT-North-East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam 785013, India
| | - Sumita Acharjee
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam 785013, India; DBT-North-East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam 785013, India.
| |
Collapse
|
2
|
Stockmann L, Kabbech H, Kremers GJ, van Herk B, Dille B, van den Hout M, van IJcken WF, Dekkers DH, Demmers JA, Smal I, Huylebroeck D, Basu S, Galjart N. KIF2A stabilizes intercellular bridge microtubules to maintain mouse embryonic stem cell cytokinesis. J Cell Biol 2025; 224:e202409157. [PMID: 40353778 PMCID: PMC12077228 DOI: 10.1083/jcb.202409157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/12/2025] [Accepted: 04/17/2025] [Indexed: 05/14/2025] Open
Abstract
Cytokinesis, the final stage of cell division, serves to physically separate daughter cells. In cultured naïve mouse embryonic stem cells, cytokinesis lasts unusually long. Here, we describe a novel function for the kinesin-13 member KIF2A in this process. In genome-engineered mouse embryonic stem cells, we find that KIF2A localizes to spindle poles during metaphase and regulates spindle length in a manner consistent with its known role as a microtubule minus-end depolymerase. In contrast, during cytokinesis we observe tight binding of KIF2A to intercellular bridge microtubules. At this stage, KIF2A maintains microtubule length and number and controls microtubule acetylation. We propose that the conversion of KIF2A from a depolymerase to a stabilizer is driven by both the inhibition of its ATPase activity, which increases lattice affinity, and a preference for compacted lattices. In turn, KIF2A might maintain the compacted microtubule state at the intercellular bridge, thereby dampening acetylation. As KIF2A depletion causes pluripotency problems and affects mRNA homeostasis, our results furthermore indicate that KIF2A-mediated microtubule stabilization prolongs cytokinesis to maintain pluripotency.
Collapse
Affiliation(s)
- Lieke Stockmann
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Hélène Kabbech
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Gert-Jan Kremers
- Optical Imaging Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Brent van Herk
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Bas Dille
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mirjam van den Hout
- Center for Biomics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Wilfred F.J. van IJcken
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Center for Biomics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Dick H.W. Dekkers
- Proteomics Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jeroen A.A. Demmers
- Proteomics Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ihor Smal
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Danny Huylebroeck
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Sreya Basu
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Niels Galjart
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
3
|
Anton L, Cristancho AG, Ferguson B, Ravel J, Elovitz MA. Cervicovaginal microbiome alters transcriptomic and epigenomic signatures across cervicovaginal epithelial barriers. RESEARCH SQUARE 2025:rs.3.rs-6171614. [PMID: 40386438 PMCID: PMC12083688 DOI: 10.21203/rs.3.rs-6171614/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/25/2025]
Abstract
Background The cervicovaginal microbiome plays a critical role in women's health, with microbial communities dominated by Lactobacillus species considered optimal. In contrast, the depletion of lactobacilli and the presence of a diverse array of strict and facultative anaerobes, such as Gardnerella vaginalis, have been linked with adverse reproductive outcomes. Despite these associations, the molecular mechanisms by which host-microbial interactions modulate cervical and vaginal epithelial function remains poorly understood. Results In this study, we used RNA sequencing to characterize the transcriptional response of cervicovaginal epithelial cells exposed to the culture supernatants of common vaginal bacteria. Our findings revealed that G. vaginalis culture supernatants upregulate genes associated with an activated innate immune response and increased cell death. Conversely, Lactobacillus crispatus culture supernatants induced transcriptional changes indicative of epigenomic modeling in ectocervical epithelial cells. Epigenomic modification by L. crispatus, was confirmed by ATAC-sequencing, which demonstrated reduced chromatin accessibility. Conclusions These results provide new insights into host-microbe interactions within the lower reproductive tract and suggests that modulating the vaginal microbiome could offer innovative therapeutic strategies to improve reproductive health.
Collapse
|
4
|
Tajammal A, Haddox S, Zahra S, Cornelison R, Fierti AO, Li H. BLADE-R: streamlined RNA extraction for molecular diagnostics and high-throughput applications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.27.645479. [PMID: 40196560 PMCID: PMC11974778 DOI: 10.1101/2025.03.27.645479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Efficient nucleic acid extraction and purification are crucial for cellular and molecular biology research, yet they pose challenges for large-scale clinical RNA sequencing and PCR assays. Here, we present BLADE-R, a magnetic bead-based protocol that simplifies the process by combining cellular lysis and nucleic acid binding into a single step, followed by a unique on-bead rinse for nuclease-free separation of genomic DNA and RNA. The Agilent TapeStation and RT-qPCR analyses show that RNA extracted from HEK293T cell line using BLADE-R outperforms the TRIzol protocol in terms of time and cost. RNA sequencing reveals no differences in sequence quality or gene count variance between samples processed with BLADE-R and those processed with TRIzol followed by RNA kit clean-up. Additionally, BLADE-R outperformed TRIzol in RNA extraction from frozen tissue and whole blood samples, as confirmed by RT-qPCR. Our protocol can be adapted to a 96-well plate format, enabling RNA purification of up to 96 human blood samples in less time than a single-sample traditional extraction. Using BLADE-R in this format, we confirmed minimal well-to-well contamination in RNA purification, cDNA synthesis, and PCR. Therefore, our novel BLADE-R protocol, suitable for both low and high-throughput formats, is effective even in limited-resource settings for preparing clinical samples for PCR and sequencing assays. Thus, our new BLADE-R technique works well even in low-resource environments to prepare clinical samples for PCR and sequencing experiments. It can be adapted for both low- and high-throughput formats.
Collapse
|
5
|
A Farrugia M, Rajagopalan R, Kroos L. Transcriptomic analysis of Myxococcus xanthus csgA, fruA, and mrpC mutants reveals extensive and diverse roles of key regulators in the multicellular developmental process. BMC Genomics 2025; 26:355. [PMID: 40200151 PMCID: PMC11980068 DOI: 10.1186/s12864-025-11417-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 02/28/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND The bacterium Myxococcus xanthus provides an important multicellular model for understanding stress responses. The regulatory proteins CsgA, FruA, and MrpC are essential to survive prolonged starvation by forming fruiting bodies, which are mounds containing hardy round spores formed from vegetative rods, but the genome-wide pathways affected by these proteins remain poorly understood. Only a fruA mutant transcriptome and MrpC ChIP-seq have been reported. We describe RNA-seq transcriptome analysis of csgA, fruA, and mrpC mutants relative to a wild-type laboratory strain midway during the starvation-induced developmental process, when mounds, but not spores, have formed. RESULTS We show that CsgA, FruA, and MrpC broadly impact developmental gene expression, with over 60% of the genes differentially expressed in one or more mutants. Building upon previous investigations, we found that strongly regulated genes in the mrpC mutant correlate with MrpC DNA-binding sites located ~ 80 bp upstream of transcriptional start sites. We also confirmed that FruA directly or indirectly regulates many genes negatively, as well as many others positively. CsgA regulates indirectly and its strongest effects are positive. MrpC strongly stimulates fruA transcription and FruA accumulation, impacting many genes, but our results reveal that MrpC is also a strong negative or positive regulator of hundreds of genes independently of FruA. Indeed, we observed nearly every possible pattern of coregulation, unique regulation, and counterregulation by comparing the wild-type and mutant transcriptomes, indicating diverse roles of CsgA, FruA, and MrpC in the developmental gene regulatory network. The genes most strongly regulated were coregulated in two or three of the mutants. Each set of genes exhibiting differential expression in one or more mutants was analyzed for enrichment of gene ontology (GO) terms or KEGG pathways, and predicted protein-protein interactions. These analyses highlighted enrichment of pathways involved in cellular signaling, protein synthesis, energetics, and envelope function. In particular, we describe how CsgA, FruA, and MrpC control production of ribosomes, lipid signals, and peptidoglycan intermediates during development. CONCLUSIONS By comparing wild-type and mutant transcriptomes midway in development, this study documents individual and coordinate regulation of crucial pathways by CsgA, FruA, and MrpC, providing a valuable resource for future investigations.
Collapse
Affiliation(s)
- Mark A Farrugia
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Ramya Rajagopalan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA.
- Department of Molecular & Cellular Biology, Kennesaw State University, Kennesaw, GA, USA.
| | - Lee Kroos
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
6
|
Scalora N, DeWane G, Drebot Y, Khan AA, Sinha S, Ghosh K, Robinson D, Cogswell P, Bellizzi AM, Snow AN, Breheny P, Chimenti MS, Tanas MR. EHE cell cultures: a platform for mechanistic and therapeutic investigation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.24.644191. [PMID: 40196670 PMCID: PMC11974726 DOI: 10.1101/2025.03.24.644191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Epithelioid hemangioendothelioma (EHE) is a difficult to treat vascular sarcoma defined by TAZ- CAMTA1 or YAP-TFE3 fusion proteins. Human cell lines needed to further understand the pathogenesis of EHE have been lacking. Herein, we describe a method to generate EHE extended primary cell cultures. An integrated multi -omic and functional approach was used to characterize these cultures. The cell cultures, relatively homogenous by single cell RNA-Seq, demonstrated established characteristics of EHE including increased proliferation, anchorage independent growth, as well as the overall gene expression profile and secondary genetic alterations seen in EHE. Whole genome sequencing (WGS) identified links to epigenetic modifying complexes, metabolic processes, and pointed to the importance of the extracellular matrix (ECM) in these tumors. Bulk RNA-Seq demonstrated upregulation of pathways including PI3K-Akt signaling, ECM/ECM receptor interaction, and the Hippo signaling pathway. Development of these extended primary cell cultures allowed for single-cell profiling which demonstrated different cell compartments within the cultures. Furthermore, the cultures served as a therapeutic platform to test the efficacy of TEAD inhibitors in vitro . Overall, the development of EHE primary cell cultures will aid in the mechanistic understanding of this sarcoma and serve as a model system to test new therapeutic approaches.
Collapse
|
7
|
Kim TL, Lim H, Lee K, Denison MIJ, Natarajan S, Oh C. Comparative phenotypic, physiological, and transcriptomic responses to drought and recovery in two Fraxinus species. BMC PLANT BIOLOGY 2025; 25:348. [PMID: 40098103 PMCID: PMC11916329 DOI: 10.1186/s12870-025-06372-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/10/2025] [Indexed: 03/19/2025]
Abstract
BACKGROUND This study focused on the drought tolerance and resilience of two ash species: Fraxinus chiisanensis and F. rhynchophylla. These two species are distributed in different habitats, suggesting that they have different levels of drought tolerance. Understanding their response to drought stress, particularly during the seedling stage, is crucial for selecting and developing drought-resistant varieties. This study aimed to compare the phenotypic, physiological, and transcriptomic characteristics of drought-stressed and recovered rewatered plants in a time-course experiment. RESULTS In F. rhynchophylla, drought stress resulted in more severe growth retardation, temperature increase, and a faster decline in the fluorescence response, accompanied by a significant rise in stress indices. However, these reactions recovered quickly after rehydration. In contrast, F. chiisanensis exhibited less growth retardation, a slower decline in fluorescence, and milder increases in stress indices, although many individuals did not fully recover after rehydration. The activity of antioxidant enzymes (SOD, CAT, APX) was more responsive and recovered more efficiently in F. rhynchophylla, while F. chiisanensis had a weaker and delayed response. Transcriptome analysis revealed that photosynthesis and enzyme activity were the most responsive to drought and recovery, as shown by Gene Ontology term analysis. Kyoto Encyclopedia of Genes and Genomes pathway analysis identified common pathways involved in starch and sucrose metabolism and phenylpropanoid biosynthesis in both species. F. rhynchophylla had more differentially expressed genes (DEGs) than F. chiisanensis, particularly on the drought and recovery day 6. Most drought-induced DEGs were restored after rehydration. Commonly associated genes included BGLU and TPS in sugar metabolism; CAT, GSTF, TT7, and HCT in antioxidant enzymes; PYL4 and RR17 in hormone signaling; and ADC1 and ASP3 in proline synthesis. CONCLUSIONS This study highlights the species-specific characteristics of drought and recovery responses of two Fraxinus species and provides targets for assessing and improving drought tolerance. Moreover, the results of this study provide insights into the physiological and genetic responses of Fraxinus and may guide future research on ash tree stress tolerance.
Collapse
Affiliation(s)
- Tae-Lim Kim
- Department of Forest Bioresources, National Institute of Forest Science, Suwon, 16631, Korea
| | - Hyemin Lim
- Department of Forest Bioresources, National Institute of Forest Science, Suwon, 16631, Korea.
| | - Kyungmi Lee
- Department of Forest Bioresources, National Institute of Forest Science, Suwon, 16631, Korea.
| | | | | | - Changyoung Oh
- Department of Forest Bioresources, National Institute of Forest Science, Suwon, 16631, Korea
| |
Collapse
|
8
|
Liu G, Gao H, Song Y, Wang H, Zhang D, Wang Y, Liu S, Li Z, Liu C, Sun Y. Multiomic analysis reveals that the flavonoid biosynthesis pathway is associated with cold tolerance in Heracleum moellendorffii Hance. FRONTIERS IN PLANT SCIENCE 2025; 16:1544898. [PMID: 40161225 PMCID: PMC11949932 DOI: 10.3389/fpls.2025.1544898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/21/2025] [Indexed: 04/02/2025]
Abstract
Heracleum moellendorffii Hance is a perennial herbaceous plant that is adaptable to cold environments and has both edible and medicinal value. Given that no reference genome for this species is available, we constructed a high-quality transcript isoform library using full-length transcriptome sequencing and conducted a comparative genomic analysis. Samples were obtained from plants that had been subjected to cold stress for 12, 24 and 36 hours (Cold_12, Cold_24, and Cold_36, respectively) and from control plants (Cold_0) that were not subjected to cold stress and used in transcriptome and nontargeted metabolome analyses. Compared with the genes expressed in CK (Cold_0), the number of differentially expressed genes (DEGs) in Cold 12, Cold_24, and Cold_36 increased gradually over time; plants subjected to 12, 24 and 36 hours of cold stress displayed 669, 6084, and 24,129 DEGs, respectively. The DEGs were clustered into 8 subclasses by k-means clustering; subclasses 2, 3, 4, and 7 were enriched in pathways related to "flavonoid biosynthesis". Nontargeted metabolome analysis revealed that 3719 annotated metabolites were shared by all four groups of samples. We identified 1186, 1087, and 1097 differentially accumulated metabolites (DAMs) in three comparisons: Cold_12 vs. CK, Cold_24 vs. CK, and Cold_36 vs. CK, respectively. The DAMs were predominantly enriched in the "flavonoid biosynthesis pathway". Through WGCNA, we obtained five modules and 29 flavonoid-related metabolites with extremely significant module-metabolite paired relationships (|correlation coefficient|> 0.9, P < 0.01). We analysed the DEGs and DAMs of the flavonoid biosynthetic pathway in H. moellendorffii Hance under cold stress and constructed a correlation network between transcription factors (TFs) and structural genes in the pathway. RT-qPCR was used to confirm the expression of four hub genes from the WGCNA, six TFs, and 15 structural genes of the flavonoid biosynthetic pathway. These data provide a foundation for functional genomics studies of H. moellendorffii Hance and contribute to the study of the molecular mechanisms and transcriptional regulation of flavonoid accumulation by TFs under cold stress conditions in plants.
Collapse
Affiliation(s)
- Guan Liu
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Northeast Forestry University, Harbin, China
| | - Huan Gao
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Yu Song
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Northeast Forestry University, Harbin, China
| | - Hanhui Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Northeast Forestry University, Harbin, China
| | - Dongye Zhang
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Yang Wang
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Shuo Liu
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Zhonghua Li
- Heilongjiang Greater Hinggan Mountains Region Agriculture Forestry Research Institute, Da Hinggan Ling, China
| | - Changhua Liu
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Yan Sun
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| |
Collapse
|
9
|
Körner MB, Velluva A, Bundalian L, Krohn K, Schön K, Schumann I, Kromp J, Thum AS, Garten A, Hentschel J, Abou Jamra R, Mrestani A, Scholz N, Langenhan T, Le Duc D. Drosophila WDFY3/ Bchs overexpression impairs neural function. J Neurogenet 2025; 39:23-38. [PMID: 40000652 DOI: 10.1080/01677063.2025.2465536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/06/2025] [Indexed: 02/27/2025]
Abstract
Pathogenic variants in WDFY3, a gene encoding for an autophagy adaptor termed ALFY, are linked to neurodevelopmental delay and altered brain size in human probands. While the role of WDFY3 loss-of-function is extensively studied in neurons, little is known about the effects of WDFY3 upregulation in different cell types of the central nervous system (CNS). We show that overexpression of the Drosophila melanogaster WDFY3 ortholog, Bchs, in either glia or neurons impaired autophagy and locomotion. Bchs glial overexpression also increased VNC size and glial nuclei number significantly, whereas neuronal Bchs overexpression affected wing and thorax morphology. We identified 79 genes that were differentially expressed and overlapped in flies that overexpress Bchs in glial and neuronal cells, respectively. Additionally, upon neuronal Bchs overexpression differentially expressed genes clustered in gene ontology categories associated with autophagy and mitochondrial function. Our data indicate that glial as well as neuronal Bchs upregulation can have detrimental outcomes on neural function.
Collapse
Affiliation(s)
- Marek B Körner
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Leipzig University, Leipzig, Germany
| | - Akhil Velluva
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Linnaeus Bundalian
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Knut Krohn
- Core Unit DNA-Technologies, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Kathleen Schön
- Core Unit DNA-Technologies, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Isabell Schumann
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Jessica Kromp
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Department of Genetics, Institute of Biology, Leipzig University, Leipzig, Germany
| | - Andreas S Thum
- Department of Genetics, Institute of Biology, Leipzig University, Leipzig, Germany
| | - Antje Garten
- Pediatric Research Center, University Hospital for Children and Adolescents, Leipzig University, Leipzig, Germany
| | - Julia Hentschel
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Achmed Mrestani
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Leipzig University, Leipzig, Germany
- Department of Neurology, University of Leipzig Medical Center, Leipzig, Germany
| | - Nicole Scholz
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Leipzig University, Leipzig, Germany
| | - Tobias Langenhan
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Leipzig University, Leipzig, Germany
| | - Diana Le Duc
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
10
|
Lazado CC, Nhan TH, Voldvik V, Burgerhout E, Sundaram AYM, Tengs T, Østbye TKK, Andersen Ø. Molecular regulation of cardiomyocyte functions by exogenous hydrogen sulphide in Atlantic salmon (Salmo salar). Genomics 2025; 117:111017. [PMID: 40010544 DOI: 10.1016/j.ygeno.2025.111017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/02/2025] [Accepted: 02/17/2025] [Indexed: 02/28/2025]
Abstract
Hydrogen sulphide (H2S) is known to regulate various physiological processes, but its role in fish cardiac function, especially at the molecular level, is poorly understood. This study examined the molecular functions of exogenous H2S, using sodium hydrosulphide (NaHS) as a donor, on Atlantic salmon cardiomyocytes. NaHS concentrations of 10 to 160 μM showed limited cytotoxicity and no impact on cell proliferation, though higher doses increased ATP activity. Menadione and NaHS administered separately or sequentially differentially regulated the expression of antioxidant response and sulphide detoxification genes. Transcriptomic analysis over 24, 48, 72, and 120 h revealed differential gene expression related to metabolic recovery. Enriched Gene Ontology terms at 24 h included processes like cell signalling and lipid metabolism, shifting to lipid metabolism and ribosomal processes by 48 h. By 120 h, xenobiotic metabolism and RNA synthesis were prominent. The study highlights NaHS-induced metabolic adjustments, particularly in lipid metabolism, in Atlantic salmon cardiomyocytes.
Collapse
Affiliation(s)
- Carlo C Lazado
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, 1433 Ås, Norway.
| | - Thinh Hoang Nhan
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, 1433 Ås, Norway; Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Vibeke Voldvik
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, 1433 Ås, Norway
| | - Erik Burgerhout
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, 9019 Tromsø, Norway
| | - Arvind Y M Sundaram
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Torstein Tengs
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, 1433 Ås, Norway
| | - Tone-Kari K Østbye
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, 1433 Ås, Norway
| | - Øivind Andersen
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, 1433 Ås, Norway; Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences (NMBU), 1433 Ås, Norway
| |
Collapse
|
11
|
Kim JJ, Ahn A, Ying JY, Ludlow AT. Discovery and characterization of a novel telomerase alternative splicing isoform that protects lung cancer cells from chemotherapy induced cell death. Sci Rep 2025; 15:6787. [PMID: 40000722 PMCID: PMC11861669 DOI: 10.1038/s41598-025-90639-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
All cancer cells must adopt a telomere maintenance mechanism to achieve replicative immortality. Most human cancer cells utilize the enzyme telomerase to maintain telomeres. Alternative splicing of TERT regulates the amount and function of telomerase, however many alternative splicing isoforms of TERT have unknown functions. Single molecule long read RNA/cDNA sequencing of TERT revealed 45 TERT mRNA variants including 13 known and 32 novel variants. Among the variants, TERT Delta 2-4, which lacks exons 2-4 but retains the original open reading frame, was selected for further study. Induced pluripotent stem cells and cancer cells express higher levels of TERT Delta 2-4 compared to primary human bronchial epithelial cells. Overexpression of TERT Delta 2-4 enhanced clonogenicity and resistance to cisplatin-induced cell death. Knockdown of endogenous TERT Delta 2-4 in Calu-6 cells reduced clonogenicity and resistance to cisplatin. Our results suggest that TERT Delta 2-4 enhances cancer cells' resistance to cell death. RNA sequencing following knockdown of Delta 2-4 TERT indicates that translation is downregulated and that mitochondrial related proteins are upregulated compared to controls. Overall, our data indicate that TERT produces many isoforms that influence the function of TERT and the abundance and activity of telomerase.
Collapse
Affiliation(s)
- Jeongjin J Kim
- School of Kinesiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alexander Ahn
- School of Kinesiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jeffrey Y Ying
- School of Kinesiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Andrew T Ludlow
- School of Kinesiology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
12
|
Goodman JH, Berland C, Soni RK, Ferrante AW. Overfeeding induces adipose tissue release of distinct mitochondria. Cell Rep 2025; 44:115318. [PMID: 39970045 DOI: 10.1016/j.celrep.2025.115318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/20/2024] [Accepted: 01/24/2025] [Indexed: 02/21/2025] Open
Abstract
Overfeeding animals beyond what they eat ad libitum causes rapid adipose tissue expansion, leading to an unusual form of obesity characterized by low immune cell accumulation in fat and sustained anorexia. To investigate how overfeeding affects adipose tissue, we studied the protein secretome of fat from equally obese overfed and ad libitum-fed mice. Fat from overfed animals secretes lower amounts of immune regulatory proteins. Unexpectedly, fat from overfed mice releases larger amounts of mitochondrial proteins. Microscopy identified mitochondria in the conditioned medium of cultured fat that were found not within extracellular vesicles but rather as free extracellular organelles. The protein profile of released mitochondria was distinct from the mitochondrial protein profile of the whole fat, suggesting that the metabolic stress of overfeeding leads to the release of a mitochondrial subset favoring de novo lipogenesis. These findings add to growing evidence that cells alter their energy profiles through the release of mitochondria.
Collapse
Affiliation(s)
- Joshua H Goodman
- Division of Preventive Medicine & Nutrition, Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA
| | - Chloé Berland
- Division of Preventive Medicine & Nutrition, Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA
| | - Rajesh K Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA; Pathology & Cell Biology, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Anthony W Ferrante
- Division of Preventive Medicine & Nutrition, Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA.
| |
Collapse
|
13
|
Demin KA, Kolesnikova TO, Galstyan DS, Krotova NA, Ilyin NP, Derzhavina KA, Seredinskaya M, Nerush M, Pushkareva SA, Masharsky A, de Abreu MS, Kalueff AV. The Utility of Prolonged Chronic Unpredictable Stress to Study the Effects of Chronic Fluoxetine, Eicosapentaenoic Acid, and Lipopolysaccharide on Anxiety-Like Behavior and Hippocampal Transcriptomic Responses in Male Rats. J Neurosci Res 2025; 103:e70025. [PMID: 39907099 DOI: 10.1002/jnr.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 12/05/2024] [Accepted: 01/16/2025] [Indexed: 02/06/2025]
Abstract
Chronic stress is a common trigger of multiple neuropsychiatric illnesses. Animal models are widely used to study stress-induced brain disorders and their interplay with neuroinflammation and other neuroimmune processes. Here, we apply the prolonged 12-week chronic unpredictable stress (PCUS) model to examine rat behavioral and hippocampal transcriptomic responses to stress and to chronic 4-week treatment with a classical antidepressant fluoxetine, an anti-inflammatory agent eicosapentaenoic acid (EPA), a pro-inflammatory agent lipopolysaccharide and their combinations. Overall, PCUS evoked anxiety-like behavioral phenotype in rats, corrected by chronic fluoxetine (alone or combined with other drugs), and EPA. PCUS also evoked pronounced transcriptomic responses in rat hippocampi, involving > 200 differentially expressed genes. While pharmacological manipulations did not affect hippocampal gene expression markedly, Gpr6, Drd2 and Adora2a were downregulated in stressed rats treated with fluoxetine, EPA and fluoxetine + EPA, suggesting their respective protein products (G protein-coupled receptor 6, dopamine D2 receptor and adenosine A2A receptor) as potential evolutionarily conserved targets under chronic stress. Overall, these findings support the validity of rat PCUS paradigm as a useful model to study stress-related anxiety pathogenesis, and call for further research probing how various conventional and novel drugs may (co)modulate behavioral and neurotranscriptomic biomarkers of chronic stress.
Collapse
Affiliation(s)
- Konstantin A Demin
- Almazov National Medical Research Centre, St. Petersburg, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Tatiana O Kolesnikova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Neuroscience Program, Sirius University of Science and Technology, Sochi, Russia
| | - David S Galstyan
- Almazov National Medical Research Centre, St. Petersburg, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Natalia A Krotova
- Almazov National Medical Research Centre, St. Petersburg, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Nikita P Ilyin
- Almazov National Medical Research Centre, St. Petersburg, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | | | - Maria Seredinskaya
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Maria Nerush
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Sofia A Pushkareva
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Alexey Masharsky
- Core Facility Centre for Molecular and Cell Technologies, St. Petersburg State University, St. Petersburg, Russia
| | - Murilo S de Abreu
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
- Western Caspian University, Baku, Azerbaijan
| | - Allan V Kalueff
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| |
Collapse
|
14
|
Kim BR, Rauckhorst AJ, Chimenti MS, Rehman T, Keen HL, Karp PH, Taylor EB, Welsh MJ. The oxygen level in air directs airway epithelial cell differentiation by controlling mitochondrial citrate export. SCIENCE ADVANCES 2025; 11:eadr2282. [PMID: 39854459 PMCID: PMC11759043 DOI: 10.1126/sciadv.adr2282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 12/26/2024] [Indexed: 01/26/2025]
Abstract
Oxygen controls most metazoan metabolism, yet in mammals, tissue O2 levels vary widely. While extensive research has explored cellular responses to hypoxia, understanding how cells respond to physiologically high O2 levels remains uncertain. To address this problem, we investigated respiratory epithelia as their contact with air exposes them to some of the highest O2 levels in the body. We asked how the O2 level in air controls differentiation of airway basal stem cells into the ciliated epithelial cells essential for clearing airborne pathogens from the lung. Through a metabolomics screen and 13C tracing on primary cultures of human airway basal cells, we found that the O2 level in air directs ciliated cell differentiation by increasing mitochondrial citrate export. Unexpectedly, disrupting mitochondrial citrate export elicited hypoxia transcriptional responses independently of HIF1α stabilization and at O2 levels that would be hyperoxic for most tissues. These findings identify mitochondrial citrate export as a cellular mechanism for responding to physiologically high O2 levels.
Collapse
Affiliation(s)
- Bo Ram Kim
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Howard Hughes Medical Institute, University of Iowa, Iowa City, IA, USA
| | - Adam J. Rauckhorst
- Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Michael S. Chimenti
- Iowa Institute of Human Genetics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Tayyab Rehman
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Henry L. Keen
- Iowa Institute of Human Genetics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Philip H. Karp
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Howard Hughes Medical Institute, University of Iowa, Iowa City, IA, USA
| | - Eric B. Taylor
- Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Michael J. Welsh
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Howard Hughes Medical Institute, University of Iowa, Iowa City, IA, USA
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
15
|
Garcia KC, Khan AA, Ghosh K, Sinha S, Scalora N, DeWane G, Fullenkamp C, Merritt N, Drebot Y, Yu S, Leidinger M, Henry MD, Breheny P, Chimenti MS, Tanas MR. PI3K regulates TAZ/YAP and mTORC1 axes that can be synergistically targeted. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.21.634138. [PMID: 39896636 PMCID: PMC11785051 DOI: 10.1101/2025.01.21.634138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Purpose Sarcomas are a heterogeneous group of cancers with few shared therapeutic targets. PI3K signaling is activated in various subsets of sarcomas, representing a shared oncogenic signaling pathway. Oncogenic PI3K signaling has been challenging to target therapeutically. An integrated view of PI3K and Hippo pathway signaling is examined to determine if this could be leveraged therapeutically. Experimental design A tissue microarray containing sarcomas of various histological types was evaluated for PTEN loss and correlated with levels of activated TAZ and YAP. PI3K and Hippo pathways were dissected in sarcoma cell lines. The role of TAZ and YAP were evaluated in a PI3K-driven mouse model. The efficacy of mTORC1 inhibition and TEAD inhibition were evaluated in sarcoma cell lines and in vivo . Results PI3K signaling is frequently activated in sarcomas due to PTEN loss (in 30-60%), representing a common therapeutic target. TAZ and YAP are transcriptional co-activators regulated by PI3K and drive a transcriptome necessary for tumor growth in a PI3K-driven sarcoma mouse model. Combination therapy using IK-930 (TEAD inhibitor) and everolimus (mTORC1 inhibitor) synergistically diminished proliferation and anchorage independent growth of PI3K-activated sarcoma cell lines at low, physiologically achievable doses. Furthermore, this combination therapy showed a synergistic effect in vivo , reducing tumor proliferation and size. Conclusions TAZ and YAP are transcriptional co-activators downstream of PI3K signaling, a pathway that has lacked a well-defined oncogenic transcription factor. This PI3K-TAZ/YAP axis exists in parallel to the known PI3K-Akt-mTORC1 axis allowing for synergistic combination therapy targeting the TAZ/YAP-TEAD interaction and mTORC1 in sarcomas.
Collapse
|
16
|
Degroat TJ, Paladino SE, Denney K, Moran KM, Samuels BA, Roepke TA. Chronic social instability stress differentially affects the behavior and the transcriptome of the anterodorsal bed nucleus of the stria terminalis between male and female mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.21.634142. [PMID: 39896497 PMCID: PMC11785045 DOI: 10.1101/2025.01.21.634142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Stress can be broken down into systemic and processive stressors with processive stressors requiring higher limbic processing. These are also often called social stressors as they require an understanding of social dynamics as opposed to physical based stressors. This differing of processing necessitates we study both phenomena. Additionally, sex is an important aspect of stress research as men and women show differing responses to stress and mood disorder development. To study this, we used a chronic social instability stress (CSIS) paradigm to stress male and female mice. This paradigm is approximately 7-weeks long and involves changing the cage mates of a mouse every 3 days so stable social dynamics cannot form. Afterwards, one cohort was used for avoidance behavior testing using the open field test, the elevated plus maze, the light/dark box emergence test, and the novelty suppressed feeding test. A second cohort was used for bulk RNA-Sequencing of the anterodorsal bed nucleus of the stria terminalis which is a limbic structure known to be related to chronic stress signaling. In the behavior assays, CSIS caused the females to be less avoidant, while the males became more avoidant. Additionally, we found that a low estrogen state in the females caused them to be less avoidant than in a high estrogen state. In the transcriptome, we found major differences between the males and females with the males expressing more genes related to transcription whereas the females expressed more genes related to synaptic transmission. We also found that the transcriptome in the males is more sensitive to the stress than the females. In summary, we have found how social stress is differentially regulated between males and females and how this may be related to the development of stress-related behavioral changes.
Collapse
Affiliation(s)
- Thomas J Degroat
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ
| | - Sarah E Paladino
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ
| | - Katherine Denney
- Department of Psychology, School of Arts and Sciences, Rutgers University, New Brunswick, NJ
| | - Kevin M Moran
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacology, Rutgers University, New Brunswick, NJ
| | - Benjamin A Samuels
- Department of Psychology, School of Arts and Sciences, Rutgers University, New Brunswick, NJ
| | - Troy A Roepke
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ
| |
Collapse
|
17
|
Zhang N, Bitterli P, Oluoch P, Hermann M, Aichinger E, Groot EP, Laux T. Deciphering the molecular logic of WOX5 function in the root stem cell organizer. EMBO J 2025; 44:281-303. [PMID: 39558109 PMCID: PMC11696986 DOI: 10.1038/s44318-024-00302-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/17/2024] [Accepted: 10/25/2024] [Indexed: 11/20/2024] Open
Abstract
Plant and animal stem cells receive signals from their surrounding cells to stay undifferentiated. In the Arabidopsis root, the quiescent center (QC) acts as a stem cell organizer, signaling to the neighboring stem cells. WOX5 is a central transcription factor regulating QC function. However, due to the scarcity of QC cells, WOX5 functions in the QC are largely unexplored at a genomic scale. Here, we unveil the transcriptional and epigenetic landscapes of the QC and the role of WOX5 within them. We find that WOX5 functions both as a transcriptional repressor and activator, affecting histone modifications and chromatin accessibility. Our data expand on known WOX5 functions, such as the regulation of differentiation, cell division, and auxin biosynthesis. We also uncover unexpected WOX5-regulated pathways involved in nitrate transport and the regulation of basal expression levels of genes associated with mature root tissues. These data suggest a role for QC cells as reserve stem cells and primed cells for prospective progenitor fates. Taken together, these findings offer insights into the role of WOX5 at the QC and provide a basis for further analyses to advance our understanding of the nature of plant stem cell organizers.
Collapse
Affiliation(s)
- Ning Zhang
- State Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, 271018, Tai'an, Shandong, China.
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany.
| | - Pamela Bitterli
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Peter Oluoch
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Marita Hermann
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Ernst Aichinger
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Edwin P Groot
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
- Sino-German Joint Research Center on Agricultural Biology, Shandong Agricultural University, Tai'an, Shandong, China
| | - Thomas Laux
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany.
- Sino-German Joint Research Center on Agricultural Biology, Shandong Agricultural University, Tai'an, Shandong, China.
| |
Collapse
|
18
|
Guan X, Fury H, Issuree PD, Atagozli T, McManimon EE, Shao P, Li Y, Chimenti M, Butler NS, Kaplan MH, Elliott DE, Blazar BR, Ince MN. The Impact of Cell-Intrinsic STAT6 Protein on Donor T Cell-Mediated Graft-Versus-Tumor Effect. Int J Mol Sci 2024; 26:280. [PMID: 39796136 PMCID: PMC11719522 DOI: 10.3390/ijms26010280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Bone marrow transplantation (BMT) is mainly performed to restore an anti-tumor immune response, called the graft-versus-tumor (GVT) effect, against leukemia, myeloma and lymphoma. This GVT reactivity is driven by donor T cells, and it can also cause lethal graft-versus-host disease (GVHD). We previously demonstrated that the colonization of mice with helminths preserves the GVT response while suppressing GVHD. As the T helper-2 (Th2) pathway is critical to helminthic immune regulation, we asked whether the genetic induction of Th2 signaling in donor T cells can restore helminthic immune regulation after BMT. Our studies utilized transgenic donor T lymphocytes that overexpress a constitutively active form of the Th2-associated transcription factor STAT6. Constitutively active STAT6 sustained the GVT response without causing severe acute GVHD, where transgenic T cells generated robust quantities of cytotoxic proteins important in GVT response, such as granzymes A and B, interferon-γ and Fas ligand, in addition to generating high quantities of Th2/regulatory cytokines. Bioinformatic analysis based on chromosome immune precipitation experiments indicated that STAT6 stimulates the expression of granzymes directly. Thus, in preserving the GVT response without causing GVHD mortality, our results indicate the therapeutic potential of restoring helminthic immune modulation by targeting STAT6 and STAT6-dependent T cell maturation.
Collapse
Affiliation(s)
- Xiaoqun Guan
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (X.G.); (H.F.); (T.A.); (E.E.M.); (Y.L.); (D.E.E.)
- Iowa City Veterans Affairs Medical Center, Iowa City, IA 52246, USA
| | - Hope Fury
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (X.G.); (H.F.); (T.A.); (E.E.M.); (Y.L.); (D.E.E.)
- Iowa City Veterans Affairs Medical Center, Iowa City, IA 52246, USA
| | - Priya D. Issuree
- Department of Internal Medicine, Division of Infectious Diseases, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Tyler Atagozli
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (X.G.); (H.F.); (T.A.); (E.E.M.); (Y.L.); (D.E.E.)
- Iowa City Veterans Affairs Medical Center, Iowa City, IA 52246, USA
| | - Emory E. McManimon
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (X.G.); (H.F.); (T.A.); (E.E.M.); (Y.L.); (D.E.E.)
- Iowa City Veterans Affairs Medical Center, Iowa City, IA 52246, USA
| | - Peng Shao
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (P.S.); (N.S.B.)
| | - Yue Li
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (X.G.); (H.F.); (T.A.); (E.E.M.); (Y.L.); (D.E.E.)
| | - Michael Chimenti
- Iowa Institute of Human Genetics, University of Iowa, Iowa City, IA 52246, USA;
| | - Noah S. Butler
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (P.S.); (N.S.B.)
| | - Mark H. Kaplan
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, School of Medicine, Indiana University, Indianapolis, IN 46202, USA;
- Department of Microbiology and Immunology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - David E. Elliott
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (X.G.); (H.F.); (T.A.); (E.E.M.); (Y.L.); (D.E.E.)
- Iowa City Veterans Affairs Medical Center, Iowa City, IA 52246, USA
| | - Bruce R. Blazar
- Division of Blood & Marrow Transplant & Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA;
| | - M. Nedim Ince
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (X.G.); (H.F.); (T.A.); (E.E.M.); (Y.L.); (D.E.E.)
- Iowa City Veterans Affairs Medical Center, Iowa City, IA 52246, USA
| |
Collapse
|
19
|
Beijen EPW, van Maanen MH, Marian IM, Klusener JX, van Roosmalen E, Herman KC, Koster MC, Ohm RA. Transcriptomics reveals the regulation of the immune system of the mushroom-forming fungus Schizophyllum commune during interaction with four competitors. Microbiol Res 2024; 289:127929. [PMID: 39413670 DOI: 10.1016/j.micres.2024.127929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/23/2024] [Accepted: 10/06/2024] [Indexed: 10/18/2024]
Abstract
Mushroom-forming fungi frequently encounter competitors during their lifecycle, but their defense mechanisms remain largely unexplored. We studied the response of the mushroom-forming fungus Schizophyllum commune during interaction with the fungal competitors Trichoderma harzianum, Trichoderma aggressivum and Purpureocillium lilacinum and the bacterial competitor Serratia quinivorans. Transcriptomics revealed 632 up-regulated genes in the direct interaction zone, which were enriched in small secreted proteins and transporters. A set of 26 genes were up-regulated during all interactions, indicating a core transcriptomic defense response. In the non-interacting edge of the mycelium of S. commune, there were 154 up-regulated genes, suggesting that there is a systemic response due to a signal that reaches unaffected areas. The GATA zinc finger transcription factor gene gat1 was up-regulated during interaction and a Δgat1 strain displayed increased colonization by T. harzianum. Previously linked to mushroom development, this transcription factor apparently has a dual role. Moreover, 138 genes were up-regulated during both interaction and mushroom development, indicating priming of the defense response during development to prepare the fruiting body for future interactions. Overall, we unveiled a defensive response of S. commune during interaction with fungal and bacterial competitors and identified a regulator of this response.
Collapse
Affiliation(s)
- Erik P W Beijen
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Marieke H van Maanen
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Ioana M Marian
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Janieke X Klusener
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Emmeline van Roosmalen
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Koen C Herman
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Margot C Koster
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Robin A Ohm
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands.
| |
Collapse
|
20
|
Sambo D, Kinstler E, Lin Y, Goldman D. Differential effects of prenatal alcohol exposure on brain growth reveals early upregulation of cell cycle and apoptosis and delayed downregulation of metabolism in affected offspring. PLoS One 2024; 19:e0311683. [PMID: 39602444 PMCID: PMC11602053 DOI: 10.1371/journal.pone.0311683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/06/2024] [Indexed: 11/29/2024] Open
Abstract
Fetal Alcohol Spectrum Disorder (FASD) encompasses the deleterious consequences of Prenatal Alcohol Exposure (PAE), including developmental delay, microcephaly, dysmorphologies, and cognitive and behavioral issues. The dose and timing of alcohol exposure, maternal and environmental factors, and genetics all impact FASD outcomes, but differential susceptibility and resiliency to PAE remains poorly understood. In this study, we examined the differential effects of PAE during early mouse development on brain growth and gene expression. Brains were weighed and collected either 24 hours or five days after treatment. We then performed transcriptomics to determine whether offspring differentially affected by PAE, by brain weight, also differ in gene expression, despite having the same genetic background, alcohol exposure, and maternal factors. We found within litter variation in brain weights after PAE, and classified offspring as having normal, middle, and low-weight brains relative to saline-treated controls. The normal-weight brains showed no significant differences in gene expression, suggesting these offspring were both phenotypically and transcriptionally unaffected by PAE. While both middle- and low-weight brains showed changes in gene expression, the middle-weight brains showed the most robust transcriptome differences. Twenty-four hours after PAE, we saw an upregulation of cell cycle and apoptosis in affected offspring, whereas at roughly a week later, we saw a downregulation of metabolic processes. Overall, these findings highlight variability in response to PAE and demonstrate the molecular processes involved in offspring phenotypically affected by alcohol.
Collapse
Affiliation(s)
- Danielle Sambo
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, United States of America
| | - Ethan Kinstler
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, United States of America
| | - Yuhong Lin
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, United States of America
| | - David Goldman
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, United States of America
| |
Collapse
|
21
|
Eraso JM, Olsen RJ, Long SW, Gadd R, Boukthir S, Faili A, Kayal S, Musser JM. Integrative genomic, virulence, and transcriptomic analysis of emergent Streptococcus dysgalactiae subspecies equisimilis (SDSE) emm type stG62647 isolates causing human infections. mBio 2024; 15:e0257824. [PMID: 39417630 PMCID: PMC11559094 DOI: 10.1128/mbio.02578-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Streptococcus dysgalactiae subspecies equisimilis (SDSE) is a Gram-positive bacterial pathogen that infects humans and is closely related to group A streptococcus (GAS). Compared with GAS, far less is known about SDSE pathobiology. Increased rates of invasive SDSE infections have recently been reported in many countries. One SDSE emm type (stG62647) is known to cause severe diseases, including necrotizing soft-tissue infections, endocarditis, and osteoarticular infections. To increase our understanding of the molecular pathogenesis of stG62647 SDSE isolates causing human infections, we sequenced to closure the genomes of 120 stG62647 SDSE isolates. The genomes varied in size from 2.1 to 2.24 Mb pairs. The great majority of stG62647 isolates had IS1548 integrated into the silB gene, thereby inactivating it. Regions of difference, such as mobile genetic elements, were the largest source of genomic diversity. All 120 stG62647 isolates were assayed for virulence using a well-established mouse model of necrotizing myositis. An unexpectedly wide range of virulence was identified (20% to 95%), as assessed by near-mortality data. To explore the molecular mechanisms underlying virulence differences, we analyzed RNAseq transcriptome profiles for 38 stG62647 isolates (comprising the 19 least and most virulent) grown in vitro. Genetic polymorphisms were identified from whole-genome sequence data. Collectively, the results suggest that these SDSE isolates use multiple genetic pathways to alter virulence phenotype. The data also suggest that human genetics and underlying medical conditions contribute to disease severity. Our study integrates genomic, mouse virulence, and RNAseq data to advance our understanding of SDSE pathobiology and its molecular pathogenesis. IMPORTANCE This study integrated genomic sequencing, mouse virulence assays, and bacterial transcriptomic analysis to advance our understanding of the molecular mechanisms contributing to Streptococcus dysgalactiae subsp. equisimilis emm type stG62647 pathogenesis. We tested a large cohort of genetically closely related stG62647 isolates for virulence using an established mouse model of necrotizing myositis and discovered a broad spectrum of virulence phenotypes, with near-mortality rates ranging from 20% to 95%. This variation was unexpected, given their close genetic proximity. Transcriptome analysis of stG62647 isolates responsible for the lowest and highest near-mortality rates suggested that these isolates used multiple molecular pathways to alter their virulence. In addition, some genes encoding transcriptional regulators and putative virulence factors likely contribute to SDSE emm type stG62647 pathogenesis. These data underscore the complexity of pathogen-host interactions in an emerging SDSE clonal group.
Collapse
Affiliation(s)
- Jesus M. Eraso
- Laboratory for Molecular and Translational Human Infectious Diseases Research, Center for Infectious Diseases, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, New York, USA
| | - Randall J. Olsen
- Laboratory for Molecular and Translational Human Infectious Diseases Research, Center for Infectious Diseases, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, New York, USA
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, USA
| | - S. Wesley Long
- Laboratory for Molecular and Translational Human Infectious Diseases Research, Center for Infectious Diseases, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, New York, USA
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, USA
| | - Ryan Gadd
- Laboratory for Molecular and Translational Human Infectious Diseases Research, Center for Infectious Diseases, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Sarrah Boukthir
- CHU de Rennes, Service de Bacteriologie-Hygiène Hospitalière, Rennes, France
- INSERM, CIC 1414, Rennes, France
- Université Rennes 1, Faculté de Médecine, Rennes, France
| | - Ahmad Faili
- INSERM, CIC 1414, Rennes, France
- Université Rennes 1, Faculté de Pharmacie, Rennes, France
- OSS-Oncogenesis, Stress, and Signaling, INSERM 1242, Rennes, France
| | - Samer Kayal
- CHU de Rennes, Service de Bacteriologie-Hygiène Hospitalière, Rennes, France
- INSERM, CIC 1414, Rennes, France
- Université Rennes 1, Faculté de Médecine, Rennes, France
- OSS-Oncogenesis, Stress, and Signaling, INSERM 1242, Rennes, France
| | - James M. Musser
- Laboratory for Molecular and Translational Human Infectious Diseases Research, Center for Infectious Diseases, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, New York, USA
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, USA
| |
Collapse
|
22
|
Glossop M, Chelysheva I, Ketley R, Alagia A, Gullerova M. TIRR regulates mRNA export and association with P-bodies in response to DNA damage. Nucleic Acids Res 2024; 52:12633-12649. [PMID: 39119906 PMCID: PMC11551748 DOI: 10.1093/nar/gkae688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/15/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
To ensure the integrity of our genetic code, a coordinated network of signalling and repair proteins, known as the DNA damage response (DDR), detects and repairs DNA insults, the most toxic being double-strand breaks (DSBs). Tudor interacting repair regulator (TIRR) is a key factor in DSB repair, acting through its interaction with p53 binding protein 1 (53BP1). TIRR is also an RNA binding protein, yet its role in RNA regulation during the DDR remains elusive. Here, we show that TIRR selectively binds to a subset of messenger RNAs (mRNAs) in response to DNA damage. Upon DNA damage, TIRR interacts with the nuclear export protein Exportin-1 through a nuclear export signal. Furthermore, TIRR plays a crucial role in the modulation of RNA processing bodies (PBs). TIRR itself and TIRR-bound RNA co-localize with PBs, and TIRR depletion results in nuclear RNA retention and impaired PB formation. We also suggest a potential link between TIRR-regulated RNA export and efficient DDR. This work reveals intricate involvement of TIRR in orchestrating mRNA nuclear export and storage within PBs, emphasizing its significance in the regulation of RNA-mediated DDR.
Collapse
Affiliation(s)
- Michelle S Glossop
- Sir William Dunn School of Pathology, Medical Sciences Division, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Irina Chelysheva
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford OX3 7LE, UK
| | - Ruth F Ketley
- Sir William Dunn School of Pathology, Medical Sciences Division, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Adele Alagia
- Sir William Dunn School of Pathology, Medical Sciences Division, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Monika Gullerova
- Sir William Dunn School of Pathology, Medical Sciences Division, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
23
|
Nozu R, Kadota M, Nakamura M, Kuraku S, Bono H. Meta-analysis of gonadal transcriptome provides novel insights into sex change mechanism across protogynous fishes. Genes Cells 2024; 29:1052-1068. [PMID: 39344081 PMCID: PMC11555629 DOI: 10.1111/gtc.13166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/25/2024] [Accepted: 09/14/2024] [Indexed: 10/01/2024]
Abstract
Protogyny, being capable of changing from female to male during their lifetime, is prevalent in 20 families of teleosts but is believed to have evolved within specific evolutionary lineages. Therefore, shared regulatory factors governing the sex change process are expected to be conserved across protogynous fishes. However, a comprehensive understanding of this mechanism remains elusive. To identify these factors, we conducted a meta-analysis using gonadal transcriptome data from seven species. We curated data pairs of ovarian tissue and transitional gonad, and employed ratios of expression level as a unified criterion for differential expression, enabling a meta-analysis across species. Our approach revealed that classical sex change-related genes exhibited differential expression levels between the ovary and transitional gonads, consistent with previous reports. These results validate our methodology's robustness. Additionally, we identified novel genes not previously linked to gonadal sex change in fish. Notably, changes in the expression levels of acetoacetyl-CoA synthetase and apolipoprotein Eb, which are involved in cholesterol synthesis and transport, respectively, suggest that the levels of cholesterol, a precursor of steroid hormones crucial for sex change, are decreased upon sex change onset in the gonads. This implies a potential universal influence of cholesterol dynamics on gonadal transformation in protogyny.
Collapse
Affiliation(s)
- Ryo Nozu
- Laboratory of Genome Informatics, Graduate School of Integrated Sciences for LifeHiroshima UniversityHigashi‐HiroshimaJapan
- Laboratory of BioDX, Genome Editing Innovation CenterHiroshima UniversityHiroshimaJapan
| | - Mitsutaka Kadota
- Laboratory for PhyloinformaticsRIKEN Center for Biosystems Dynamics Research (BDR)KobeJapan
- Laboratory for Developmental Genome SystemRIKEN Center for Biosystems Dynamics Research (BDR)KobeJapan
| | - Masaru Nakamura
- Okinawa Churashima Research CenterOkinawa Churashima FoundationMotobu‐choJapan
| | - Shigehiro Kuraku
- Molecular Life History Laboratory, Department of Genomics and Evolutionary BiologyNational Institute of GeneticsMishimaJapan
- Department of GeneticsGraduate University for Advanced Studies, SOKENDAIMishimaJapan
| | - Hidemasa Bono
- Laboratory of Genome Informatics, Graduate School of Integrated Sciences for LifeHiroshima UniversityHigashi‐HiroshimaJapan
- Laboratory of BioDX, Genome Editing Innovation CenterHiroshima UniversityHiroshimaJapan
| |
Collapse
|
24
|
Sweeney MD, Torre-Healy LA, Ma VL, Hall MA, Chrastecka L, Yurovsky A, Moffitt RA. FaStaNMF: A Fast and Stable Non-Negative Matrix Factorization for Gene Expression. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:1633-1644. [PMID: 37467096 DOI: 10.1109/tcbb.2023.3296979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Gene expression analysis of samples with mixed cell types only provides limited insight to the characteristics of specific tissues. In silico deconvolution can be applied to extract cell type specific expression, thus avoiding prohibitively expensive techniques such as cell sorting or single-cell sequencing. Non-negative matrix factorization (NMF) is a deconvolution method shown to be useful for gene expression data, in part due to its constraint of non-negativity. Unlike other methods, NMF provides the capability to deconvolve without prior knowledge of the components of the model. However, NMF is not guaranteed to provide a globally unique solution. In this work, we present FaStaNMF, a method that balances achieving global stability of the NMF results, which is essential for inter-experiment and inter-lab reproducibility, with accuracy and speed. Results: FaStaNMF was applied to four datasets with known ground truth, created based on publicly available data or by using our simulation infrastructure, RNAGinesis. We assessed FaStaNMF on three criteria - speed, accuracy, and stability, and it favorably compared to the standard approach of achieving reproduceable results with NMF. We expect that FaStaNMF can be applied successfully to a wide array of biological data, such as different tumor/immune and other disease microenvironments.
Collapse
|
25
|
Del Toro K, Sayaman R, Thi K, Licon-Munoz Y, Hines WC. Transcriptomic analysis of the 12 major human breast cell types reveals mechanisms of cell and tissue function. PLoS Biol 2024; 22:e3002820. [PMID: 39499736 PMCID: PMC11537416 DOI: 10.1371/journal.pbio.3002820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/29/2024] [Indexed: 11/07/2024] Open
Abstract
A fundamental question in biology, central to our understanding of cancer and other pathologies, is determining how different cell types coordinate to form and maintain tissues. Recognizing the distinct features and capabilities of the cells that compose these tissues is critical. Unfortunately, the complexity of tissues often hinders our ability to distinguish between neighboring cell types and, in turn, scrutinize their transcriptomes and generate reliable and tractable cell models for studying their inherently different biologies. We have recently introduced a novel method that permits the identification and purification of the 12 cell types that compose the human breast-nearly all of which could be reliably propagated in the laboratory. Here, we explore the nature of these cell types. We sequence mRNAs from each purified population and investigate transcriptional patterns that reveal their distinguishing features. We describe the differentially expressed genes and enriched biological pathways that capture the essence of each cell type, and we highlight transcripts that display intriguing expression patterns. These data, analytic tools, and transcriptional analyses form a rich resource whose exploration provides remarkable insights into the inner workings of the cell types composing the breast, thus furthering our understanding of the rules governing normal cell and tissue function.
Collapse
Affiliation(s)
- Katelyn Del Toro
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Rosalyn Sayaman
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Kate Thi
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Yamhilette Licon-Munoz
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - William Curtis Hines
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, University of New Mexico, Albuquerque, New Mexico, United States of America
| |
Collapse
|
26
|
Ustjanzew A, Nedwed AS, Sandhoff R, Faber J, Marini F, Paret C. Unraveling the glycosphingolipid metabolism by leveraging transcriptome-weighted network analysis on neuroblastic tumors. Cancer Metab 2024; 12:29. [PMID: 39449099 PMCID: PMC11515559 DOI: 10.1186/s40170-024-00358-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Glycosphingolipids (GSLs) are membrane lipids composed of a ceramide backbone linked to a glycan moiety. Ganglioside biosynthesis is a part of the GSL metabolism, which involves sequential reactions catalyzed by specific enzymes that in part have a poor substrate specificity. GSLs are deregulated in cancer, thus playing a role as potential biomarkers for personalized therapy or subtype classification. However, the analysis of GSL profiles is complex and requires dedicated technologies, that are currently not included in the commonly utilized high-throughput assays adopted in contexts such as molecular tumor boards. METHODS In this study, we developed a method to discriminate the enzyme activity among the four series of the ganglioside metabolism pathway by incorporating transcriptome data and topological information of the metabolic network. We introduced three adjustment options for reaction activity scores (RAS) and demonstrated their application in both exploratory and comparative analyses by applying the method on neuroblastic tumors (NTs), encompassing neuroblastoma (NB), ganglioneuroblastoma (GNB), and ganglioneuroma (GN). Furthermore, we interpreted the results in the context of earlier published GSL measurements in the same tumors. RESULTS By adjusting RAS values using a weighting scheme based on network topology and transition probabilities (TPs), the individual series of ganglioside metabolism can be differentiated, enabling a refined analysis of the GSL profile in NT entities. Notably, the adjustment method we propose reveals the differential engagement of the ganglioside series between NB and GNB. Moreover, MYCN gene expression, a well-known prognostic marker in NTs, appears to correlate with the expression of therapeutically relevant gangliosides, such as GD2. Using unsupervised learning, we identified subclusters within NB based on altered GSL metabolism. CONCLUSION Our study demonstrates the utility of adjusting RAS values in discriminating ganglioside metabolism subtypes, highlighting the potential for identifying novel cancer subgroups based on sphingolipid profiles. These findings contribute to a better understanding of ganglioside dysregulation in NT and may have implications for stratification and targeted therapeutic strategies in these tumors and other tumor entities with a deregulated GSL metabolism.
Collapse
Affiliation(s)
- Arsenij Ustjanzew
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, 55131, Germany.
| | - Annekathrin Silvia Nedwed
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, 55131, Germany
| | - Roger Sandhoff
- Lipid Pathobiochemistry, German Cancer Research Center, Heidelberg, 69120, Germany
| | - Jörg Faber
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, 55131, Germany
- University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, 55131, Germany
| | - Federico Marini
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, 55131, Germany
- Research Center for Immunotherapy (FZI), Mainz, 55131, Germany
| | - Claudia Paret
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, 55131, Germany
- University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, 55131, Germany
- Research Center for Immunotherapy (FZI), Mainz, 55131, Germany
| |
Collapse
|
27
|
Yu Z, Saiki S, Shiina K, Iseki T, Sasazawa Y, Ishikawa KI, Nishikawa N, Sako W, Oyama G, Hatano T, Suzuki A, Souma S, Kataura T, Hattori N. Comprehensive data for studying serum exosome microRNA transcriptome in Parkinson's disease patients. Sci Data 2024; 11:1128. [PMID: 39406833 PMCID: PMC11480472 DOI: 10.1038/s41597-024-03909-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024] Open
Abstract
Parkinson's disease (PD), the second most prevalent neurodegenerative disorder, was classically attributed to alpha-synuclein aggregation and consequent loss of dopaminergic neurons in the substantia nigra pars compacta. Recently, emerging evidence suggested a broader spectrum of contributing factors, including exosome-mediated intercellular communication, which can potentially serve as biomarkers and therapeutic targets. However, there is a remarkable lack of comprehensive studies that connect the serum exosome microRNA (miRNA) transcriptome with demographic, clinical, and neuroimaging data in PD patients. Here, we present serum exosome miRNA transcriptome data generated from four cohort studies. Two of these studies include 96 PD patients and 80 age- and gender-matched controls, with anonymised demographic, clinical, and neuroimaging data provided for PD patients. The other two studies involve 96 PD patients who were evaluated both before and after one year of treatment with rasagiline, a widely prescribed anti-parkinsonism drug. Together, the datasets provide a valuable source for understanding pathogenesis and discovering biomarkers and therapeutic targets in PD.
Collapse
Affiliation(s)
- Zhiyang Yu
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shinji Saiki
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan.
- Department of Neurology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan.
| | - Kenta Shiina
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tatou Iseki
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yukiko Sasazawa
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Division for Development of Autophagy Modulating Drugs, Juntendo University Faculty of Medicine, Tokyo, Japan
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kei-Ichi Ishikawa
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Noriko Nishikawa
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Wataru Sako
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Genko Oyama
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Taku Hatano
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ayami Suzuki
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Neurology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Sanae Souma
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tetsushi Kataura
- Department of Neurology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan.
- Division for Development of Autophagy Modulating Drugs, Juntendo University Faculty of Medicine, Tokyo, Japan.
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan.
- Neurodegenerative Disorders Collaborative Laboratory, RIKEN Center for Brain Science, Saitama, Japan.
| |
Collapse
|
28
|
Caldwell A, Yang L, Scheef EA, Kaur A, Coyne CB. Comparative analysis of rhesus macaque and human placental organoids highlights evolutionary differences in placentation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617873. [PMID: 39416122 PMCID: PMC11482954 DOI: 10.1101/2024.10.11.617873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Throughout evolution, the placenta has diversified in both structure and cellular composition while maintaining its fundamental function. Trophoblasts are fetal-derived cells responsible for nourishing and protecting the developing fetus and are a universal component of all placentas. While primate placentas exhibit many shared morphological features, species-specific differences in gene expression remain largely unexplored, primarily due to the lack of suitable in vitro models. To address this gap, we developed organoids from rhesus macaque placentas, including trophoblast and maternal-derived decidua types, and compared them with organoids derived from human placentas. We performed comparative single-cell RNA sequencing to delineate shared and distinct transcriptional signatures between rhesus macaque and human trophoblasts. We further defined the differentiation trajectories leading to the multinucleated syncytiotrophoblast, highlighting both shared and unique transcriptional signatures between rhesus macaque and human placentas. This work establishes novel in vitro models of the non-human primate placenta and characterizes distinct trophoblast gene profiles in rhesus macaques and humans, providing insights into interspecies variations in placental biology.
Collapse
|
29
|
Hodoameda P, Ditter RE, Santos SR, Clem RJ. Differing Transcriptomic Responses in High Titer versus Low Titer Aedes aegypti Mosquitoes after Oral Infection with Sindbis Virus. Viruses 2024; 16:1487. [PMID: 39339963 PMCID: PMC11437473 DOI: 10.3390/v16091487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/05/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Oral infection of mosquitoes by arboviruses often results in a large degree of variation in the amount of infectious virus between individual mosquitoes, even when the mosquitoes are from inbred laboratory strains. This variability in arbovirus load has been shown to affect virus transmissibility. Previously, our group described population genetic and specific infectivity differences between the virus populations found in high and low titer Aedes aegypti mosquitoes that had been orally infected with Sindbis virus (SINV). In this study, we sought to investigate whether there were also differences in transcriptomic response between these high and low titer mosquitoes. Results from the transcriptomic data analysis showed that more genes involved in antiviral activity, endopeptidase activity, and methyltransferase activity were upregulated in low titer mosquitoes than in high titer mosquitoes, relative to blood-fed controls. Meanwhile, genes involved in ion transport, energy metabolism, acetylation, glycosylation, lipid metabolism, and transport tended to be upregulated in high titer mosquitoes more than in low titer mosquitoes, relative to blood-fed mosquitoes. Overall, genes involved in antiviral activities tended to be upregulated in low titer mosquitoes while genes involved in proviral activities were mostly upregulated in high titer mosquitoes. This study has identified a number of candidate mosquito genes that are putatively associated with SINV titer variability after oral infection of Ae. aegypti, and these can now be investigated in order to ascertain their roles in virus replication and their contributions to determining vector competence.
Collapse
Affiliation(s)
- Peter Hodoameda
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA;
| | - Robert E. Ditter
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY 14261, USA;
| | - Scott R. Santos
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY 14261, USA;
| | - Rollie J. Clem
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA;
| |
Collapse
|
30
|
Decruyenaere P, Daneels W, Morlion A, Verniers K, Anckaert J, Tavernier J, Offner F, Vandesompele J. Characterizing the Cell-Free Transcriptome in a Humanized Diffuse Large B-Cell Lymphoma Patient-Derived Tumor Xenograft Model for RNA-Based Liquid Biopsy in a Preclinical Setting. Int J Mol Sci 2024; 25:9982. [PMID: 39337470 PMCID: PMC11432451 DOI: 10.3390/ijms25189982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The potential of RNA-based liquid biopsy is increasingly being recognized in diffuse large B-cell lymphoma (DLBCL), the most common subtype of non-Hodgkin's lymphoma. This study explores the cell-free transcriptome in a humanized DLBCL patient-derived tumor xenograft (PDTX) model. Blood plasma samples (n = 171) derived from a DLBCL PDTX model, including 27 humanized (HIS) PDTX, 8 HIS non-PDTX, and 21 non-HIS PDTX non-obese diabetic (NOD)-scid IL2Rgnull (NSG) mice were collected during humanization, xenografting, treatment, and sacrifice. The mice were treated with either rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP), CD20-targeted human IFNα2-based AcTaferon combined with CHOP (huCD20-Fc-AFN-CHOP), or phosphate-buffered saline (PBS). RNA was extracted using the miRNeasy serum/plasma kit and sequenced on the NovaSeq 6000 platform. RNA sequencing data of the formalin-fixed paraffin-embedded (FFPE) tissue and blood plasma samples of the original patient were included. Flow cytometry was performed on immune cells isolated from whole blood, spleen, and bone marrow. Bulk deconvolution was performed using the Tabula Sapiens v1 basis matrix. Both R-CHOP and huCD20-Fc-AFN-CHOP were able to control tumor growth in most mice. Xenograft tumor volume was strongly associated with circulating tumor RNA (ctRNA) concentration (p < 0.001, R = 0.89), as well as with the number of detected human genes (p < 0.001, R = 0.79). Abundance analysis identified tumor-specific biomarkers that were dynamically tracked during tumor growth or treatment. An 8-gene signature demonstrated high accuracy for assessing therapy response (AUC 0.92). The tumoral gene detectability in the ctRNA of the PDTX-derived plasma was associated with RNA abundance levels in the patient's tumor tissue and blood plasma (p < 0.001), confirming that tumoral gene abundance contributes to the cell-free RNA (cfRNA) profile. Decomposing the transcriptome, however, revealed high inter- and intra-mouse variability, which was lower in the HIS PDTX mice, indicating an impact of human engraftment on the stability and profile of cfRNA. Immunochemotherapy resulted in B cell depletion, and tumor clearance was reflected by a decrease in the fraction of human CD45+ cells. Lastly, bulk deconvolution provided complementary biological insights into the composition of the tumor and circulating immune system. In conclusion, the blood plasma-derived transcriptome serves as a biomarker source in a preclinical PDTX model, enables the assessment of biological pathways, and enhances the understanding of cfRNA dynamics.
Collapse
Affiliation(s)
- Philippe Decruyenaere
- Department of Hematology, Ghent University Hospital, 9000 Ghent, Belgium
- OncoRNALab, Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
| | - Willem Daneels
- Department of Hematology, Ghent University Hospital, 9000 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, 9052 Ghent, Belgium
| | - Annelien Morlion
- OncoRNALab, Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
| | - Kimberly Verniers
- OncoRNALab, Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
| | - Jasper Anckaert
- OncoRNALab, Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
| | - Jan Tavernier
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, 9052 Ghent, Belgium
- Orionis Biosciences B.V., 9052 Zwijnaarde, Belgium
| | - Fritz Offner
- Department of Hematology, Ghent University Hospital, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
| | - Jo Vandesompele
- OncoRNALab, Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
31
|
Koll R, Theilen J, Hauten E, Woodhouse JN, Thiel R, Möllmann C, Fabrizius A. Network-based integration of omics, physiological and environmental data in real-world Elbe estuarine Zander. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173656. [PMID: 38830414 DOI: 10.1016/j.scitotenv.2024.173656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/05/2024]
Abstract
Coastal and estuarine environments are under endogenic and exogenic pressures jeopardizing survival and diversity of inhabiting biota. Information of possible synergistic effects of multiple (a)biotic stressors and holobiont interaction are largely missing in estuaries like the Elbe but are of importance to estimate unforeseen effects on animals' physiology. Here, we seek to leverage host-transcriptional RNA-seq and gill mucus microbial 16S rRNA metabarcoding data coupled with physiological and abiotic measurements in a network analysis approach to decipher the impact of multiple stressors on the health of juvenile Sander lucioperca along one of the largest European estuaries. We find mesohaline areas characterized by gill tissue specific transcriptional responses matching osmosensing and tissue remodeling. Liver transcriptomes instead emphasized that zander from highly turbid areas were undergoing starvation which was supported by compromised body condition. Potential pathogenic bacteria, including Shewanella, Acinetobacter, Aeromonas and Chryseobacterium, dominated the gill microbiome along the freshwater transition and oxygen minimum zone. Their occurrence coincided with a strong adaptive and innate transcriptional immune response in host gill and enhanced energy demand in liver tissue supporting their potential pathogenicity. Taken together, we show physiological responses of a fish species and its microbiome to abiotic factors whose impact is expected to increase with consequences of climate change. We further present a method for the close-meshed detection of the main stressors and bacterial species with disease potential in a highly productive ecosystem.
Collapse
Affiliation(s)
- Raphael Koll
- University of Hamburg, Institute of Cell- and Systems Biology of Animals, Molecular Animal Physiology, Germany.
| | - Jesse Theilen
- University of Hamburg, Department of Biology, Biodiversity Research, Germany
| | - Elena Hauten
- University of Hamburg, Institute of Marine Ecosystem and Fishery Science, Marine ecosystem dynamics, Germany
| | - Jason Nicholas Woodhouse
- University of Hamburg, Institute of Cell- and Systems Biology of Animals, Molecular Animal Physiology, Germany; Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Microbial and phytoplankton Ecology, Germany
| | - Ralf Thiel
- Leibniz Institute for the Analysis of Biodiversity Change (LIB) - Hamburg site, Centre for Taxonomy & Morphology, Zoological Museum, Germany; University of Hamburg, Department of Biology, Biodiversity Research, Germany
| | - Christian Möllmann
- University of Hamburg, Institute of Marine Ecosystem and Fishery Science, Marine ecosystem dynamics, Germany
| | - Andrej Fabrizius
- University of Hamburg, Institute of Cell- and Systems Biology of Animals, Molecular Animal Physiology, Germany
| |
Collapse
|
32
|
Disner GR, Fernandes TADM, Nishiyama-Jr MY, Lima C, Wincent E, Lopes-Ferreira M. TnP and AHR-CYP1A1 Signaling Crosstalk in an Injury-Induced Zebrafish Inflammation Model. Pharmaceuticals (Basel) 2024; 17:1155. [PMID: 39338318 PMCID: PMC11435205 DOI: 10.3390/ph17091155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/21/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Aryl Hydrocarbon Receptor (AHR) signaling is crucial for regulating the biotransformation of xenobiotics and physiological processes like inflammation and immunity. Meanwhile, Thalassophryne nattereri Peptide (TnP), a promising anti-inflammatory candidate from toadfish venom, demonstrates therapeutic effects through immunomodulation. However, its influence on AHR signaling remains unexplored. This study aimed to elucidate TnP's molecular mechanisms on the AHR-cytochrome P450, family 1 (CYP1) pathway upon injury-induced inflammation in wild-type (WT) and Ahr2-knockdown (KD) zebrafish larvae through transcriptomic analysis and Cyp1a reporters. TnP, while unable to directly activate AHR, potentiated AHR activation by the high-affinity ligand 6-Formylindolo [3,2-b]carbazole (FICZ), implying a role as a CYP1A inhibitor, confirmed by in vitro studies. This interplay suggests TnP's ability to modulate the AHR-CYP1 complex, prompting investigations into its influence on biotransformation pathways and injury-induced inflammation. Here, the inflammation model alone resulted in a significant response on the transcriptome, with most differentially expressed genes (DEGs) being upregulated across the groups. Ahr2-KD resulted in an overall greater number of DEGs, as did treatment with the higher dose of TnP in both WT and KD embryos. Genes related to oxidative stress and inflammatory response were the most apparent under inflamed conditions for both WT and KD groups, e.g., Tnfrsf1a, Irf1b, and Mmp9. TnP, specifically, induces the expression of Hspa5, Hsp90aa1.2, Cxcr3.3, and Mpeg1.2. Overall, this study suggests an interplay between TnP and the AHR-CYP1 pathway, stressing the inflammatory modulation through AHR-dependent mechanisms. Altogether, these results may offer new avenues in novel therapeutic strategies, such as based on natural bioactive molecules, harnessing AHR modulation for targeted and sustained drug effects in inflammatory conditions.
Collapse
Affiliation(s)
- Geonildo Rodrigo Disner
- Immunoregulation Unit, Laboratory of Applied Toxinology (CeTICS/FAPESP), Butantan Institute, São Paulo 05585-000, Brazil
- Unit of System Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Solna, Sweden
| | - Thales Alves de Melo Fernandes
- Nucleus of Bioinformatics and Computational Biology, Laboratory of Applied Toxinology, Butantan Institute, São Paulo 05585-000, Brazil
| | - Milton Yutaka Nishiyama-Jr
- Nucleus of Bioinformatics and Computational Biology, Laboratory of Applied Toxinology, Butantan Institute, São Paulo 05585-000, Brazil
| | - Carla Lima
- Immunoregulation Unit, Laboratory of Applied Toxinology (CeTICS/FAPESP), Butantan Institute, São Paulo 05585-000, Brazil
| | - Emma Wincent
- Unit of System Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Solna, Sweden
| | - Monica Lopes-Ferreira
- Immunoregulation Unit, Laboratory of Applied Toxinology (CeTICS/FAPESP), Butantan Institute, São Paulo 05585-000, Brazil
| |
Collapse
|
33
|
Lin MH, Jensen MK, Elrod ND, Chu HF, Haseley M, Beam AC, Huang KL, Chiang W, Russell WK, Williams K, Pröschel C, Wagner EJ, Tong L. Cytoplasmic binding partners of the Integrator endonuclease INTS11 and its paralog CPSF73 are required for their nuclear function. Mol Cell 2024; 84:2900-2917.e10. [PMID: 39032490 PMCID: PMC11316654 DOI: 10.1016/j.molcel.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 06/04/2024] [Accepted: 06/18/2024] [Indexed: 07/23/2024]
Abstract
INTS11 and CPSF73 are metal-dependent endonucleases for Integrator and pre-mRNA 3'-end processing, respectively. Here, we show that the INTS11 binding partner BRAT1/CG7044, a factor important for neuronal fitness, stabilizes INTS11 in the cytoplasm and is required for Integrator function in the nucleus. Loss of BRAT1 in neural organoids leads to transcriptomic disruption and precocious expression of neurogenesis-driving transcription factors. The structures of the human INTS9-INTS11-BRAT1 and Drosophila dIntS11-CG7044 complexes reveal that the conserved C terminus of BRAT1/CG7044 is captured in the active site of INTS11, with a cysteine residue directly coordinating the metal ions. Inspired by these observations, we find that UBE3D is a binding partner for CPSF73, and UBE3D likely also uses a conserved cysteine residue to directly coordinate the active site metal ions. Our studies have revealed binding partners for INTS11 and CPSF73 that behave like cytoplasmic chaperones with a conserved impact on the nuclear functions of these enzymes.
Collapse
Affiliation(s)
- Min-Han Lin
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Madeline K Jensen
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Nathan D Elrod
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Hsu-Feng Chu
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - MaryClaire Haseley
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Alissa C Beam
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Kai-Lieh Huang
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Wesley Chiang
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - William K Russell
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Kelsey Williams
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Christoph Pröschel
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Eric J Wagner
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77550, USA.
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
34
|
Kim TL, Oh C, Denison MIJ, Natarajan S, Lee K, Lim H. Transcriptomic and physiological responses of Quercus acutissima and Quercus palustris to drought stress and rewatering. FRONTIERS IN PLANT SCIENCE 2024; 15:1430485. [PMID: 39166236 PMCID: PMC11333329 DOI: 10.3389/fpls.2024.1430485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/19/2024] [Indexed: 08/22/2024]
Abstract
Establishment of oak seedlings, which is an important factor in forest restoration, is affected by drought that hampers the survival, growth, and development of seedlings. Therefore, it is necessary to understand how seedlings respond to and recover from water-shortage stress. We subjected seedlings of two oak species, Quercus acutissima and Quercus palustris, to drought stress for one month and then rewatered them for six days to observe physiological and genetic expression changes. Phenotypically, the growth of Q. acutissima was reduced and severe wilting and recovery failure were observed in Q. palustris after an increase in plant temperature. The two species differed in several physiological parameters during drought stress and recovery. Although the photosynthesis-related indicators did not change in Q. acutissima, they were decreased in Q. palustris. Moreover, during drought, content of soluble sugars was significantly increased in both species, but it recovered to original levels only in Q. acutissima. Malondialdehyde content increased in both the species during drought, but it did not recover in Q. palustris after rewatering. Among the antioxidant enzymes, only superoxide dismutase activity increased in Q. acutissima during drought, whereas activities of ascorbate peroxidase, catalase, and glutathione reductase increased in Q. palustris. Abscisic acid levels were increased and then maintained in Q. acutissima, but recovered to previous levels after rewatering in Q. palustris. RNA samples from the control, drought, recovery day 1, and recovery day 6 treatment groups were compared using transcriptome analysis. Q. acutissima exhibited 832 and 1076 differentially expressed genes (DEGs) related to drought response and recovery, respectively, whereas Q. palustris exhibited 3947 and 1587 DEGs, respectively under these conditions. Gene ontology enrichment of DEGs revealed "response to water," "apoplast," and "Protein self-association" to be common to both the species. However, in the heatmap analysis of genes related to sucrose and starch synthesis, glycolysis, antioxidants, and hormones, the two species exhibited very different transcriptome responses. Nevertheless, the levels of most DEGs returned to their pre-drought levels after rewatering. These results provide a basic foundation for understanding the physiological and genetic expression responses of oak seedlings to drought stress and recovery.
Collapse
Affiliation(s)
- Tae-Lim Kim
- Department of Forest Bioresources, National Institute of Forest Science, Suwon, Republic of Korea
| | - Changyoung Oh
- Department of Forest Bioresources, National Institute of Forest Science, Suwon, Republic of Korea
| | | | | | - Kyungmi Lee
- Department of Forest Bioresources, National Institute of Forest Science, Suwon, Republic of Korea
| | - Hyemin Lim
- Department of Forest Bioresources, National Institute of Forest Science, Suwon, Republic of Korea
| |
Collapse
|
35
|
Kambara K, Gupta SK, Takano T, Tsugama D. Data from collection and analysis of RNA sequencing data from pearl millet. Data Brief 2024; 55:110592. [PMID: 38993231 PMCID: PMC11237866 DOI: 10.1016/j.dib.2024.110592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 07/13/2024] Open
Abstract
Pearl millet (Pennisetum glaucum, also known as Cenchrus americanus) is a cereal crop that has a C4 photosynthesis system and that can grow and develop seeds even under stressed conditions including drought-stressed, high temperature-stressed and nutrient-poor conditions. In previous studies, transcriptomes of pearl millet were studied by RNA sequencing (RNA-Seq) to understand mechanisms regulating its development and tolerance to such stressed conditions. Here, RNA-Seq reads from 565 pearl millet samples from 25 projects in the NCBI (National Center for Biotechnology Information) BioProject database were collected and mapped to the pearl millet reference genome to obtain read counts and transcripts per million (TPM) for each pearl millet gene. The count and TPM data for all the 565 samples as well as the attributes of those samples and projects were deposited in the figshare repository (https://doi.org/10.6084/m9.figshare.24902100).
Collapse
Affiliation(s)
- Kota Kambara
- Asian Research Center for Bioresource and Environmental Sciences (ARC-BRES), Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Nishi-tokyo-shi, Tokyo 188-0002, Japan
| | - Shashi Kumar Gupta
- International Crops Research Institute for Semi-Arid Tropics (ICRISAT), Patancheru, Telangana 502324, India
| | - Tetsuo Takano
- Asian Research Center for Bioresource and Environmental Sciences (ARC-BRES), Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Nishi-tokyo-shi, Tokyo 188-0002, Japan
| | - Daisuke Tsugama
- Asian Research Center for Bioresource and Environmental Sciences (ARC-BRES), Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Nishi-tokyo-shi, Tokyo 188-0002, Japan
| |
Collapse
|
36
|
Cerda-Jara CA, Kim SJ, Thomas G, Farsi Z, Zolotarov G, Dube G, Deter A, Bahry E, Georgii E, Woehler A, Piwecka M, Rajewsky N. miR-7 controls glutamatergic transmission and neuronal connectivity in a Cdr1as-dependent manner. EMBO Rep 2024; 25:3008-3039. [PMID: 38831125 PMCID: PMC11239925 DOI: 10.1038/s44319-024-00168-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/12/2024] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
The circular RNA (circRNA) Cdr1as is conserved across mammals and highly expressed in neurons, where it directly interacts with microRNA miR-7. However, the biological function of this interaction is unknown. Here, using primary cortical murine neurons, we demonstrate that stimulating neurons by sustained depolarization rapidly induces two-fold transcriptional upregulation of Cdr1as and strong post-transcriptional stabilization of miR-7. Cdr1as loss causes doubling of glutamate release from stimulated synapses and increased frequency and duration of local neuronal bursts. Moreover, the periodicity of neuronal networks increases, and synchronicity is impaired. Strikingly, these effects are reverted by sustained expression of miR-7, which also clears Cdr1as molecules from neuronal projections. Consistently, without Cdr1as, transcriptomic changes caused by miR-7 overexpression are stronger (including miR-7-targets downregulation) and enriched in secretion/synaptic plasticity pathways. Altogether, our results suggest that in cortical neurons Cdr1as buffers miR-7 activity to control glutamatergic excitatory transmission and neuronal connectivity important for long-lasting synaptic adaptations.
Collapse
Affiliation(s)
- Cledi A Cerda-Jara
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Hannoversche Str. 28, 10115, Berlin, Germany
| | - Seung Joon Kim
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Hannoversche Str. 28, 10115, Berlin, Germany
| | - Gwendolin Thomas
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Hannoversche Str. 28, 10115, Berlin, Germany
| | - Zohreh Farsi
- Light Microscopy Platform, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Hannoversche Str. 28, 10115, Berlin, Germany
| | - Grygoriy Zolotarov
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Hannoversche Str. 28, 10115, Berlin, Germany
| | - Giuliana Dube
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Hannoversche Str. 28, 10115, Berlin, Germany
| | - Aylina Deter
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Hannoversche Str. 28, 10115, Berlin, Germany
| | - Ella Bahry
- Helmholtz Imaging, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany Hannoversche Str. 28, 10115, Berlin, Germany
| | - Elisabeth Georgii
- Helmholtz AI, Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Andrew Woehler
- Light Microscopy Platform, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Hannoversche Str. 28, 10115, Berlin, Germany
| | - Monika Piwecka
- Department of Non-Coding RNAs, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Nikolaus Rajewsky
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Hannoversche Str. 28, 10115, Berlin, Germany.
| |
Collapse
|
37
|
Pénzes Z, Horváth D, Molnár P, Fekete T, Pázmándi K, Bácsi A, Szöllősi AG. Anandamide modulation of monocyte-derived Langerhans cells: implications for immune homeostasis and skin inflammation. Front Immunol 2024; 15:1423776. [PMID: 38979427 PMCID: PMC11228147 DOI: 10.3389/fimmu.2024.1423776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/06/2024] [Indexed: 07/10/2024] Open
Abstract
Introduction The endocannabinoid system (ECS), named after the chemical compounds found in the cannabis plant, is a regulatory network of neurotransmitters, receptors, and enzymes that plays crucial roles in skin health and disease. Endogenous ligands of the ECS, called endocannabinoids, have proven to be important regulators of immune responses. One of the most prevalent endocannabinoids, arachidonoylethanolamide (also known as anandamide), is known for its anti-inflammatory effects. Langerhans cells (LCs) are the sole antigen-presenting cells present in the human epidermis. They serve as the first line of defense against pathogens and are essential for the skin's specific immune responses and play a critical role in maintaining tissue homeostasis; however, little is known about the effect of endocannabinoids on these cells. Our research aimed to provide the connection between monocyte-derived Langerhans cells (moLCs) and the ECS, shedding light on their collaborative roles in immune homeostasis and inflammation. Methods Human monocytes were differentiated into moLCs using established protocols. Anandamide was applied during the differentiation process to test its effect on the viability, marker expression, and cytokine production of the cells, as well as in short term treatments for intracellular calcium measurement. TLR ligands applied after the differentiation protocol were used to activate moLCs. The impact of anandamide on the functionality of moLCs was further assessed using differential gene expression analysis of bulk RNA-Seq data, moLC-T cell cocultures, while ELISpot was employed to determine polarization of T cells activated in the aforementioned cocultures. Results Anandamide did not significantly affect the viability of moLCs up to 10 µM. When applied during the differentiation process it had only a negligible effect on CD207 expression, the prototypic marker of LCs; however, there was an observed reduction in CD1a expression by moLCs. Anandamide had no significant effects on the maturation status of moLCs, nor did it affect the maturation induced by TLR3 and TLR7/8 agonists. MoLCs differentiated in the presence of anandamide did however show decreased production of CXCL8, IL-6, IL-10 and IL-12 cytokines induced by TLR3 and TLR7/8 activation. Anandamide-treated moLCs showed an increased capability to activate naïve T cells; however, not to the level seen with combined TLR agonism. RNA sequencing analysis of moLCs differentiated with anandamide showed modest changes compared to control cells but did reveal an inhibitory effect on oxidative phosphorylation specifically in activated moLCs. Anandamide also promoted the polarization of naïve T cells towards a Th1 phenotype. Discussion Our results show that anandamide has nuanced effects on the differentiation, maturation, cytokine secretion, metabolism and function of activated moLCs. Among these changes the decrease in CD1a expression on moLCs holds promise to selectively dampen inflammation induced by CD1a restricted T cells, which have been implicated as drivers of inflammation in common inflammatory skin conditions such as psoriasis, atopic dermatitis and contact dermatitis.
Collapse
Affiliation(s)
- Zsófia Pénzes
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Dorottya Horváth
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Petra Molnár
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Tünde Fekete
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Kitti Pázmándi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Bácsi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- ELKH-DE Allergology Research Group, Debrecen, Hungary
| | - Attila Gábor Szöllősi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
38
|
Li X, Mara AB, Musial SC, Kolling FW, Gibbings SL, Gerebtsov N, Jakubzick CV. Coordinated chemokine expression defines macrophage subsets across tissues. Nat Immunol 2024; 25:1110-1122. [PMID: 38698086 PMCID: PMC11565582 DOI: 10.1038/s41590-024-01826-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 03/20/2024] [Indexed: 05/05/2024]
Abstract
Lung-resident macrophages, which include alveolar macrophages and interstitial macrophages (IMs), exhibit a high degree of diversity, generally attributed to different activation states, and often complicated by the influx of monocytes into the pool of tissue-resident macrophages. To gain a deeper insight into the functional diversity of IMs, here we perform comprehensive transcriptional profiling of resident IMs and reveal ten distinct chemokine-expressing IM subsets at steady state and during inflammation. Similar IM subsets that exhibited coordinated chemokine signatures and differentially expressed genes were observed across various tissues and species, indicating conserved specialized functional roles. Other macrophage types shared specific IM chemokine profiles, while also presenting their own unique chemokine signatures. Depletion of CD206hi IMs in Pf4creR26EYFP+DTR and Pf4creR26EYFPCx3cr1DTR mice led to diminished inflammatory cell recruitment, reduced tertiary lymphoid structure formation and fewer germinal center B cells in models of allergen- and infection-driven inflammation. These observations highlight the specialized roles of IMs, defined by their coordinated chemokine production, in regulating immune cell influx and organizing tertiary lymphoid tissue architecture.
Collapse
Affiliation(s)
- Xin Li
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, NH, USA
| | - Arlind B Mara
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, NH, USA
| | - Shawn C Musial
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, NH, USA
| | - Fred W Kolling
- Dartmouth Cancer Center, Dartmouth Geisel School of Medicine, Hanover, NH, USA
| | | | - Nikita Gerebtsov
- Lab for Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Claudia V Jakubzick
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, NH, USA.
| |
Collapse
|
39
|
Elovitz M, Anton L, Cristancho A, Ferguson B, Joseph A, Ravel J. Vaginal microbes alter epithelial transcriptome and induce epigenomic modifications providing insight into mechanisms for susceptibility to adverse reproductive outcomes. RESEARCH SQUARE 2024:rs.3.rs-4385224. [PMID: 38854063 PMCID: PMC11160883 DOI: 10.21203/rs.3.rs-4385224/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The cervicovaginal microbiome is highly associated with women's health, with microbial communities dominated by Lactobacillus species considered optimal. Conversely, a lack of lactobacilli and a high abundance of strict and facultative anaerobes, including Gardnerella vaginalis, have been associated with adverse reproductive outcomes. However, how host-microbial interactions alter specific molecular pathways and impact cervical and vaginal epithelial function remains unclear. Using RNA-sequencing, we characterized the in vitro cervicovaginal epithelial transcriptional response to different vaginal bacteria and their culture supernatants. We showed that G. vaginalis upregulates genes associated with an activated innate immune response. Unexpectedly, G. vaginalis specifically induced inflammasome pathways through activation of NLRP3-mediated increases in caspase-1, IL-1β and cell death, while live L. crispatus had minimal transcriptomic changes on epithelial cells. L. crispatus culture supernatants resulted in a shift in the epigenomic landscape of cervical epithelial cells that was confirmed by ATAC-sequencing showing reduced chromatin accessibility. This study reveals new insights into host-microbe interactions in the lower reproductive tract and suggests potential therapeutic strategies leveraging the vaginal microbiome to improve reproductive health.
Collapse
|
40
|
Bandyopadhyay G, Jehrio MG, Baker C, Bhattacharya S, Misra RS, Huyck HL, Chu C, Myers JR, Ashton J, Polter S, Cochran M, Bushnell T, Dutra J, Katzman PJ, Deutsch GH, Mariani TJ, Pryhuber GS. Bulk RNA sequencing of human pediatric lung cell populations reveals unique transcriptomic signature associated with postnatal pulmonary development. Am J Physiol Lung Cell Mol Physiol 2024; 326:L604-L617. [PMID: 38442187 PMCID: PMC11381037 DOI: 10.1152/ajplung.00385.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/07/2024] Open
Abstract
Postnatal lung development results in an increasingly functional organ prepared for gas exchange and pathogenic challenges. It is achieved through cellular differentiation and migration. Changes in the tissue architecture during this development process are well-documented and increasing cellular diversity associated with it are reported in recent years. Despite recent progress, transcriptomic and molecular pathways associated with human postnatal lung development are yet to be fully understood. In this study, we investigated gene expression patterns associated with healthy pediatric lung development in four major enriched cell populations (epithelial, endothelial, and nonendothelial mesenchymal cells, along with lung leukocytes) from 1-day-old to 8-yr-old organ donors with no known lung disease. For analysis, we considered the donors in four age groups [less than 30 days old neonates, 30 days to < 1 yr old infants, toddlers (1 to < 2 yr), and children 2 yr and older] and assessed differentially expressed genes (DEG). We found increasing age-associated transcriptional changes in all four major cell types in pediatric lung. Transition from neonate to infant stage showed highest number of DEG compared with the number of DEG found during infant to toddler- or toddler to older children-transitions. Profiles of differential gene expression and further pathway enrichment analyses indicate functional epithelial cell maturation and increased capability of antigen presentation and chemokine-mediated communication. Our study provides a comprehensive reference of gene expression patterns during healthy pediatric lung development that will be useful in identifying and understanding aberrant gene expression patterns associated with early life respiratory diseases.NEW & NOTEWORTHY This study presents postnatal transcriptomic changes in major cell populations in human lung, namely endothelial, epithelial, mesenchymal cells, and leukocytes. Although human postnatal lung development continues through early adulthood, our results demonstrate that greatest transcriptional changes occur in first few months of life during neonate to infant transition. These early transcriptional changes in lung parenchyma are particularly notable for functional maturation and activation of alveolar type II cell genes.
Collapse
Affiliation(s)
- Gautam Bandyopadhyay
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
| | - Matthew G Jehrio
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
| | - Cameron Baker
- UR Genomics Research Center, University of Rochester Medical Center, Rochester, New York, United States
| | - Soumyaroop Bhattacharya
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
- Program in Pediatric Molecular and Personalized Medicine, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
| | - Ravi S Misra
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
| | - Heidie L Huyck
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
| | - ChinYi Chu
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
- Program in Pediatric Molecular and Personalized Medicine, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
| | - Jason R Myers
- UR Genomics Research Center, University of Rochester Medical Center, Rochester, New York, United States
| | - John Ashton
- UR Genomics Research Center, University of Rochester Medical Center, Rochester, New York, United States
| | - Steven Polter
- UR Flow Cytometry Core Facility, University of Rochester Medical Center, Rochester, New York, United States
| | - Matthew Cochran
- UR Flow Cytometry Core Facility, University of Rochester Medical Center, Rochester, New York, United States
| | - Timothy Bushnell
- UR Flow Cytometry Core Facility, University of Rochester Medical Center, Rochester, New York, United States
| | - Jennifer Dutra
- UR Clinical & Translational Science Institute Informatics, University of Rochester Medical Center, Rochester, New York, United States
| | - Philip J Katzman
- Department of Pathology, University of Rochester Medical Center, Rochester, New York, United States
| | - Gail H Deutsch
- Department of Pathology, Seattle Children's Hospital, Seattle, Washington, United States
| | - Thomas J Mariani
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
- Program in Pediatric Molecular and Personalized Medicine, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
| | - Gloria S Pryhuber
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
| |
Collapse
|
41
|
Li J, Fu N, Ge S, Ren L, Luo Y. Physiological Measurements and Transcriptomics Reveal the Fitness Costs of Monochamus saltuarius to Bursaphelenchus xylophilus. Int J Mol Sci 2024; 25:4906. [PMID: 38732123 PMCID: PMC11084816 DOI: 10.3390/ijms25094906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/27/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
The pine wood nematode (PWN) uses several Monochamus species as vehicles, through a temporary hitchhiking process known as phoresy, enabling it to access new host plant resources. Monochamus saltuarius acts as a new and major vector of the PWN in Northeastern China, showing lower PWN carrying capacity and a shorter transmission cycle compared to established vectors. The apparently altered symbiotic relationship offers an interesting area for researching the costs and adaptions involved in nematode-beetle, a specialized phoresy. We analyzed the response and fitness costs of M. saltuarius through physiological measurements and transcriptomics. The PWN exerted adverse repercussions on the growth and development of M. saltuarius. The PWN accelerated larval development into pupae, while beetle adults carrying the PWN exhibited an elevated abnormality rate and mortality, and reduced starvation resistance. During the pupal stage, the expression of growth-related genes, including ecdysone-inducible genes (E74EA), cuticle proteins, and chitin genes (CHTs), markedly increased. Meanwhile, the induced immune response, mainly by the IMD and Toll signaling pathways, could be a contributing factor to adult abnormality and mortality. Adult gonads and trachea exhibited enrichment in pathways related to fatty acid elongation, biosynthesis, and metabolism. FASN, ELOVL, and SCD possibly contributed to resistance against PWN. Our research indicated that phoretic interactions between vector beetles and PWN vary throughout the vector's lifespan, particularly before and after entry into the trachea. This study highlighted the fitness costs of immunity and metabolism on the vector beetle, indicating the adaptation mechanisms and evolutionary trade-offs to PWN.
Collapse
Affiliation(s)
- Jiaxing Li
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China; (J.L.); (S.G.)
| | - Ningning Fu
- Department of Forest Protection, College of Forestry, Hebei Agricultural University, Baoding 071033, China;
| | - Sixun Ge
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China; (J.L.); (S.G.)
| | - Lili Ren
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China; (J.L.); (S.G.)
| | - Youqing Luo
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China; (J.L.); (S.G.)
| |
Collapse
|
42
|
Henry RJ, Barrett JP, Vaida M, Khan NZ, Makarevich O, Ritzel RM, Faden AI, Stoica BA. Interaction of high-fat diet and brain trauma alters adipose tissue macrophages and brain microglia associated with exacerbated cognitive dysfunction. J Neuroinflammation 2024; 21:113. [PMID: 38685031 PMCID: PMC11058055 DOI: 10.1186/s12974-024-03107-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 04/22/2024] [Indexed: 05/02/2024] Open
Abstract
Obesity increases the morbidity and mortality of traumatic brain injury (TBI). Detailed analyses of transcriptomic changes in the brain and adipose tissue were performed to elucidate the interactive effects between high-fat diet-induced obesity (DIO) and TBI. Adult male mice were fed a high-fat diet (HFD) for 12 weeks prior to experimental TBI and continuing after injury. High-throughput transcriptomic analysis using Nanostring panels of the total visceral adipose tissue (VAT) and cellular components in the brain, followed by unsupervised clustering, principal component analysis, and IPA pathway analysis were used to determine shifts in gene expression patterns and molecular pathway activity. Cellular populations in the cortex and hippocampus, as well as in VAT, during the chronic phase after combined TBI-HFD showed amplification of central and peripheral microglia/macrophage responses, including superadditive changes in selected gene expression signatures and pathways. Furthermore, combined TBI and HFD caused additive dysfunction in Y-Maze, Novel Object Recognition (NOR), and Morris water maze (MWM) cognitive function tests. These novel data suggest that HFD-induced obesity and TBI can independently prime and support the development of altered states in brain microglia and VAT, including the disease-associated microglia/macrophage (DAM) phenotype observed in neurodegenerative disorders. The interaction between HFD and TBI promotes a shift toward chronic reactive microglia/macrophage transcriptomic signatures and associated pro-inflammatory disease-altered states that may, in part, underlie the exacerbation of cognitive deficits. Thus, targeting of HFD-induced reactive cellular phenotypes, including in peripheral adipose tissue immune cell populations, may serve to reduce microglial maladaptive states after TBI, attenuating post-traumatic neurodegeneration and neurological dysfunction.
Collapse
Affiliation(s)
- Rebecca J Henry
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Anatomy and Neuroscience, School of Medicine, University College Cork, Cork, Ireland.
| | - James P Barrett
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Maria Vaida
- Harrisburg University of Science and Technology, 326 Market St, Harrisburg, PA, USA
| | - Niaz Z Khan
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Oleg Makarevich
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Rodney M Ritzel
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alan I Faden
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bogdan A Stoica
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
- VA Maryland Health Care System, Baltimore VA Medical Center, Baltimore, MD, 21201, USA
| |
Collapse
|
43
|
Drury RE, Camara S, Chelysheva I, Bibi S, Sanders K, Felle S, Emary K, Phillips D, Voysey M, Ferreira DM, Klenerman P, Gilbert SC, Lambe T, Pollard AJ, O'Connor D. Multi-omics analysis reveals COVID-19 vaccine induced attenuation of inflammatory responses during breakthrough disease. Nat Commun 2024; 15:3402. [PMID: 38649734 PMCID: PMC11035709 DOI: 10.1038/s41467-024-47463-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 04/02/2024] [Indexed: 04/25/2024] Open
Abstract
The immune mechanisms mediating COVID-19 vaccine attenuation of COVID-19 remain undescribed. We conducted comprehensive analyses detailing immune responses to SARS-CoV-2 virus in blood post-vaccination with ChAdOx1 nCoV-19 or a placebo. Samples from randomised placebo-controlled trials (NCT04324606 and NCT04400838) were taken at baseline, onset of COVID-19-like symptoms, and 7 days later, confirming COVID-19 using nucleic amplification test (NAAT test) via real-time PCR (RT-PCR). Serum cytokines were measured with multiplexed immunoassays. The transcriptome was analysed with long, short and small RNA sequencing. We found attenuation of RNA inflammatory signatures in ChAdOx1 nCoV-19 compared with placebo vaccinees and reduced levels of serum proteins associated with COVID-19 severity. KREMEN1, a putative alternative SARS-CoV-2 receptor, was downregulated in placebo compared with ChAdOx1 nCoV-19 vaccinees. Vaccination ameliorates reductions in cell counts across leukocyte populations and platelets noted at COVID-19 onset, without inducing potentially deleterious Th2-skewed immune responses. Multi-omics integration links a global reduction in miRNA expression at COVID-19 onset to increased pro-inflammatory responses at the mRNA level. This study reveals insights into the role of COVID-19 vaccines in mitigating disease severity by abrogating pro-inflammatory responses associated with severe COVID-19, affirming vaccine-mediated benefit in breakthrough infection, and highlighting the importance of clinically relevant endpoints in vaccine evaluation.
Collapse
Affiliation(s)
- Ruth E Drury
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Susana Camara
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Irina Chelysheva
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Sagida Bibi
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Katherine Sanders
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Salle Felle
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Katherine Emary
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Daniel Phillips
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Merryn Voysey
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Daniela M Ferreira
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Paul Klenerman
- NIHR Oxford Biomedical Research Centre, Oxford, UK
- Peter Medawar Building for Pathogen Research, Nuffield Dept. of Clinical Medicine, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sarah C Gilbert
- NIHR Oxford Biomedical Research Centre, Oxford, UK
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute, University of Oxford, Oxford, UK
| | - Teresa Lambe
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute, University of Oxford, Oxford, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Daniel O'Connor
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK.
- NIHR Oxford Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
44
|
McKinzie SR, Kaverina N, Schweickart RA, Chaney CP, Eng DG, Pereira BMV, Kestenbaum B, Pippin JW, Wessely O, Shankland SJ. Podocytes from hypertensive and obese mice acquire an inflammatory, senescent, and aged phenotype. Am J Physiol Renal Physiol 2024; 326:F644-F660. [PMID: 38420674 PMCID: PMC11208020 DOI: 10.1152/ajprenal.00417.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024] Open
Abstract
Patients with hypertension or obesity can develop glomerular dysfunction characterized by injury and depletion of podocytes. To better understand the molecular processes involved, young mice were treated with either deoxycorticosterone acetate (DOCA) or fed a high-fat diet (HFD) to induce hypertension or obesity, respectively. The transcriptional changes associated with these phenotypes were measured by unbiased bulk mRNA sequencing of isolated podocytes from experimental models and their respective controls. Key findings were validated by immunostaining. In addition to a decrease in canonical proteins and reduced podocyte number, podocytes from both hypertensive and obese mice exhibited a sterile inflammatory phenotype characterized by increases in NLR family pyrin domain containing 3 (NLRP3) inflammasome, protein cell death-1, and Toll-like receptor pathways. Finally, although the mice were young, podocytes in both models exhibited increased expression of senescence and aging genes, including genes consistent with a senescence-associated secretory phenotype. However, there were differences between the hypertension- and obesity-associated senescence phenotypes. Both show stress-induced podocyte senescence characterized by increased p21 and p53. Moreover, in hypertensive mice, this is superimposed upon age-associated podocyte senescence characterized by increased p16 and p19. These results suggest that senescence, aging, and inflammation are critical aspects of the podocyte phenotype in experimental hypertension and obesity in mice.NEW & NOTEWORTHY Hypertension and obesity can lead to glomerular dysfunction in patients, causing podocyte injury and depletion. Here, young mice given deoxycorticosterone acetate or a high-fat diet to induce hypertension or obesity, respectively. mRNA sequencing of isolated podocytes showed transcriptional changes consistent with senescence, a senescent-associated secretory phenotype, and aging, which was confirmed by immunostaining. Ongoing studies are determining the mechanistic roles of the accelerated aging podocyte phenotype in experimental hypertension and obesity.
Collapse
Affiliation(s)
- Sierra R McKinzie
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington, United States
| | - Natalya Kaverina
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington, United States
| | | | - Christopher P Chaney
- Department of Medicine, University of Texas Southwestern, Dallas, Texas, United States
| | - Diana G Eng
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington, United States
| | | | - Bryan Kestenbaum
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington, United States
| | - Jeffrey W Pippin
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington, United States
| | - Oliver Wessely
- Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States
| | - Stuart J Shankland
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington, United States
| |
Collapse
|
45
|
Degroat TJ, Wiersielis K, Denney K, Kodali S, Daisey S, Tollkuhn J, Samuels BA, Roepke TA. Chronic stress and its effects on behavior, RNA expression of the bed nucleus of the stria terminalis, and the M-current of NPY neurons. Psychoneuroendocrinology 2024; 161:106920. [PMID: 38128260 PMCID: PMC10842864 DOI: 10.1016/j.psyneuen.2023.106920] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/06/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
Mood disorders, like major depressive disorder, can be precipitated by chronic stress and are more likely to be diagnosed in cisgender women than in cisgender men. This suggests that stress signaling in the brain is sexually dimorphic. We used a chronic variable mild stress paradigm to stress female and male mice for 6 weeks, followed by an assessment of avoidance behavior: the open field test, the elevated plus maze, the light/dark box emergence test, and the novelty suppressed feeding test. Additional cohorts were used for bulk RNA-Sequencing of the anterodorsal bed nucleus of the stria terminalis (adBNST) and whole-cell patch clamp electrophysiology in NPY-expressing neurons of the adBNST to record stress-sensitive M-currents. Our results indicate that females are more affected by chronic stress as indicated by an increase in avoidance behaviors, but that this is also dependent on the estrous stage of the animals such that diestrus females show more avoidant behaviors regardless of stress treatment. Results also indicate that NPY-expressing neurons of the adBNST are not major mediators of chronic stress as the M-current was not affected by treatment. RNA-Sequencing data suggests sex differences in estrogen signaling, serotonin signaling, and orexin signaling in the adBNST. Our results indicate that chronic stress influences behavior in a sex- and estrous stage-dependent manner but NPY-expressing neurons in the BNST are not the mediators of these effects.
Collapse
Affiliation(s)
- Thomas J Degroat
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - Kimberly Wiersielis
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | | | - Sowmya Kodali
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - Sierra Daisey
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | | | - Benjamin A Samuels
- Department of Psychology, Schools of Arts & Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - Troy A Roepke
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
46
|
Mätlik K, Baffuto M, Kus L, Deshmukh AL, Davis DA, Paul MR, Carroll TS, Caron MC, Masson JY, Pearson CE, Heintz N. Cell-type-specific CAG repeat expansions and toxicity of mutant Huntingtin in human striatum and cerebellum. Nat Genet 2024; 56:383-394. [PMID: 38291334 PMCID: PMC10937393 DOI: 10.1038/s41588-024-01653-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/28/2023] [Indexed: 02/01/2024]
Abstract
Brain region-specific degeneration and somatic expansions of the mutant Huntingtin (mHTT) CAG tract are key features of Huntington's disease (HD). However, the relationships among CAG expansions, death of specific cell types and molecular events associated with these processes are not established. Here, we used fluorescence-activated nuclear sorting (FANS) and deep molecular profiling to gain insight into the properties of cell types of the human striatum and cerebellum in HD and control donors. CAG expansions arise at mHTT in striatal medium spiny neurons (MSNs), cholinergic interneurons and cerebellar Purkinje neurons, and at mutant ATXN3 in MSNs from SCA3 donors. CAG expansions in MSNs are associated with higher levels of MSH2 and MSH3 (forming MutSβ), which can inhibit nucleolytic excision of CAG slip-outs by FAN1. Our data support a model in which CAG expansions are necessary but may not be sufficient for cell death and identify transcriptional changes associated with somatic CAG expansions and striatal toxicity.
Collapse
Affiliation(s)
- Kert Mätlik
- Laboratory of Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Matthew Baffuto
- Laboratory of Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Laura Kus
- Laboratory of Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Amit Laxmikant Deshmukh
- Program of Genetics & Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - David A Davis
- Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Matthew R Paul
- Bioinformatics Resource Center, The Rockefeller University, New York, NY, USA
| | - Thomas S Carroll
- Bioinformatics Resource Center, The Rockefeller University, New York, NY, USA
| | - Marie-Christine Caron
- CHU de Québec Research Center, Oncology Division, Laval University Cancer Research Center, Quebec City, Quebec, Canada
| | - Jean-Yves Masson
- CHU de Québec Research Center, Oncology Division, Laval University Cancer Research Center, Quebec City, Quebec, Canada
| | - Christopher E Pearson
- Program of Genetics & Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Program of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Nathaniel Heintz
- Laboratory of Molecular Biology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
47
|
Ahmad M, Haffner-Luntzer M, Schoppa A, Najafova Z, Lukic T, Yorgan TA, Amling M, Schinke T, Ignatius A. Mechanical induction of osteoanabolic Wnt1 promotes osteoblast differentiation via Plat. FASEB J 2024; 38:e23489. [PMID: 38407813 DOI: 10.1096/fj.202301424rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/04/2024] [Accepted: 01/30/2024] [Indexed: 02/27/2024]
Abstract
Physical activity-induced mechanical stimuli play a crucial role in preserving bone mass and structure by promoting bone formation. While the Wnt pathway is pivotal for mediating the osteoblast response to loading, the exact mechanisms are not fully understood. Here, we found that mechanical stimulation induces osteoblastic Wnt1 expression, resulting in an upregulation of key osteogenic marker genes, including Runx2 and Sp7, while Wnt1 knockdown using siRNA prevented these effects. RNAseq analysis identified Plat as a major target through which Wnt1 exerts its osteogenic influence. This was corroborated by Plat depletion using siRNA, confirming its positive role in osteogenic differentiation. Moreover, we demonstrated that mechanical stimulation enhances Plat expression, which, in turn leads to increased expression of osteogenic markers like Runx2 and Sp7. Notably, Plat depletion by siRNA prevented this effect. We have established that Wnt1 regulates Plat expression by activating β-Catenin. Silencing Wnt1 impairs mechanically induced β-Catenin activation, subsequently reducing Plat expression. Furthermore, our findings showed that Wnt1 is essential for osteoblasts to respond to mechanical stimulation and induce Runx2 and Sp7 expression, in part through the Wnt1/β-Catenin/Plat signaling pathway. Additionally, we observed significantly reduced Wnt1 and Plat expression in bones from ovariectomy (OVX)-induced and age-related osteoporotic mouse models compared with non-OVX and young mice, respectively. Overall, our data suggested that Wnt1 and Plat play significant roles in mechanically induced osteogenesis. Their decreased expression in bones from OVX and aged mice highlights their potential involvement in post-menopausal and age-related osteoporosis, respectively.
Collapse
Affiliation(s)
- Mubashir Ahmad
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Astrid Schoppa
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | | | - Teodora Lukic
- Robert Bosch Center for Tumor Diseases, Stuttgart, Germany
| | - Timur Alexander Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| |
Collapse
|
48
|
Rosellini M, Omer EA, Schulze A, Ali NT, Boulos JC, Marini F, Küpper JH, Efferth T. Impact of plastic-related compounds on the gene expression signature of HepG2 cells transfected with CYP3A4. Arch Toxicol 2024; 98:525-536. [PMID: 38160208 PMCID: PMC10794370 DOI: 10.1007/s00204-023-03648-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/16/2023] [Indexed: 01/03/2024]
Abstract
The presence of plastic and microplastic within the oceans as well as in marine flora and fauna have caused a multitude of problems that have been the topic of numerous investigations for many years. However, their impact on human health remains largely unknown. Such plastic and microplastic particles have been detected in blood and placenta, underlining their ability to enter the human body. Plastics also contain other compounds, such as plasticizers, antioxidants, or dyes, whose impact on human health is currently being studied. Critical enzymes within the metabolism of endogenous molecules, especially of xenobiotics, are the cytochrome P450 monooxygenases (CYPs). Although their importance in maintaining cellular balance has been confirmed, their interactions with plastics and related products are poorly understood. In this study, the possible relationship between different plastic-related compounds and CYP3A4 as one of the most important CYPs was analyzed using hepatic cells overexpressing this enzyme. Beginning with virtual compound screening and molecular docking of more than 1000 plastic-related compounds, several candidates were identified to interact with CYP3A4. In a second step, RNA-sequencing was used to study in detail the transcriptome-wide gene expression levels affected by the selected compounds. Three candidate molecules ((2,2'-methylenebis(6-tert-butyl-4-methylphenol), 1,1-bis(3,5-di-tert-butyl-2-hydroxyphenyl)ethane, and 2,2'-methylenebis(6-cyclohexyl-4-methylphenol)) had an excellent binding affinity to CYP3A4 in-silico as well as cytotoxic effects and interactions with several metabolic pathways in-vitro. We identified common pathways influenced by all three selected plastic-related compounds. In particular, the suppression of pathways related to mitosis and 'DNA-templated DNA replication' which were confirmed by cell cycle analysis and single-cell gel electrophoresis. Furthermore, several mis-regulated metabolic and inflammation-related pathways were identified, suggesting the induction of hepatotoxicity at different levels. These findings imply that these compounds may cause liver problems subsequently affecting the entire organism.
Collapse
Affiliation(s)
- Matteo Rosellini
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany
| | - Ejlal A Omer
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany
| | - Alicia Schulze
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), Medical Center of the Johannes Gutenberg University, 55122, Mainz, Germany
| | - Nadeen T Ali
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany
| | - Joelle C Boulos
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany
| | - Federico Marini
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), Medical Center of the Johannes Gutenberg University, 55122, Mainz, Germany
- Research Center for Immunotherapy (FZI), Langenbeckstraße 1, 55131, Mainz, Germany
| | - Jan-Heiner Küpper
- Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, 03046, Senftenberg, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany.
| |
Collapse
|
49
|
García-Saldaña EA, Cerqueda-García D, Ibarra-Laclette E, Aluja M. Insights into the differences related to the resistance mechanisms to the highly toxic fruit Hippomane mancinella (Malpighiales: Euphorbiaceae) between the larvae of the sister species Anastrepha acris and Anastrepha ludens (Diptera: Tephritidae) through comparative transcriptomics. Front Physiol 2024; 15:1263475. [PMID: 38304114 PMCID: PMC10830740 DOI: 10.3389/fphys.2024.1263475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024] Open
Abstract
The Manchineel, Hippomane mancinella ("Death Apple Tree") is one of the most toxic fruits worldwide and nevertheless is the host plant of the monophagous fruit fly species Anastrepha acris (Diptera: Tephritidae). Here we aimed at elucidating the detoxification mechanisms in larvae of A. acris reared on a diet enriched with the toxic fruit (6% lyophilizate) through comparative transcriptomics. We compared the performance of A. acris larvae with that of the sister species A. ludens, a highly polyphagous pest species that is unable to infest H. mancinella in nature. The transcriptional alterations in A. ludens were significantly greater than in A. acris. We mainly found two resistance mechanisms in both species: structural, activating cuticle protein biosynthesis (chitin-binding proteins likely reducing permeability to toxic compounds in the intestine), and metabolic, triggering biosynthesis of serine proteases and xenobiotic metabolism activation by glutathione-S-transferases and cytochrome P450 oxidoreductase. Some cuticle proteins and serine proteases were not orthologous between both species, suggesting that in A. acris, a structural resistance mechanism has been selected allowing specialization to the highly toxic host plant. Our results represent a nice example of how two phylogenetically close species diverged over recent evolutionary time related to resistance mechanisms to plant secondary metabolites.
Collapse
Affiliation(s)
- Essicka A. García-Saldaña
- Clúster Científico y Tecnológico BioMimic, Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología, A C–INECOL, Xalapa, Veracruz, Mexico
| | - Daniel Cerqueda-García
- Clúster Científico y Tecnológico BioMimic, Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología, A C–INECOL, Xalapa, Veracruz, Mexico
| | - Enrique Ibarra-Laclette
- Clúster Científico y Tecnológico BioMimic, Red de Estudios Moleculares Avanzados, Instituto de Ecología, A C–INECOL, Xalapa, Veracruz, Mexico
| | - Martín Aluja
- Clúster Científico y Tecnológico BioMimic, Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología, A C–INECOL, Xalapa, Veracruz, Mexico
| |
Collapse
|
50
|
Wang Z, Jacobus EJ, Stirling DC, Krumm S, Flight KE, Cunliffe RF, Mottl J, Singh C, Mosscrop LG, Santiago LA, Vogel AB, Kariko K, Sahin U, Erbar S, Tregoning JS. Reducing cell intrinsic immunity to mRNA vaccine alters adaptive immune responses in mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102045. [PMID: 37876532 PMCID: PMC10591005 DOI: 10.1016/j.omtn.2023.102045] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
The response to mRNA vaccines needs to be sufficient for immune cell activation and recruitment, but moderate enough to ensure efficacious antigen expression. The choice of the cap structure and use of N1-methylpseudouridine (m1Ψ) instead of uridine, which have been shown to reduce RNA sensing by the cellular innate immune system, has led to improved efficacy of mRNA vaccine platforms. Understanding how RNA modifications influence the cell intrinsic immune response may help in the development of more effective mRNA vaccines. In the current study, we compared mRNA vaccines in mice against influenza virus using three different mRNA formats: uridine-containing mRNA (D1-uRNA), m1Ψ-modified mRNA (D1-modRNA), and D1-modRNA with a cap1 structure (cC1-modRNA). D1-uRNA vaccine induced a significantly different gene expression profile to the modified mRNA vaccines, with an up-regulation of Stat1 and RnaseL, and increased systemic inflammation. This result correlated with significantly reduced antigen-specific antibody responses and reduced protection against influenza virus infection compared with D1-modRNA and cC1-modRNA. Incorporation of m1Ψ alone without cap1 improved antibodies, but both modifications were required for the optimum response. Therefore, the incorporation of m1Ψ and cap1 alters protective immunity from mRNA vaccines by altering the innate immune response to the vaccine material.
Collapse
Affiliation(s)
- Ziyin Wang
- Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| | | | - David C. Stirling
- Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| | | | - Katie E. Flight
- Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| | - Robert F. Cunliffe
- Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| | | | - Charanjit Singh
- Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| | - Lucy G. Mosscrop
- Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| | | | | | | | - Ugur Sahin
- BioNTech SE, An der Goldgrube 12, 55131 Mainz, Germany
| | | | - John S. Tregoning
- Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| |
Collapse
|