1
|
Park J, Jinno C, Wickramasinghe S, Mills DA, Liu Y, Lönnerdal BL, Ji P. Iron Fortification and Inulin Supplementation in Early Infancy: Evaluating the Impact on Gut Microbiome in a Piglet Model. Curr Dev Nutr 2025; 9:104587. [PMID: 40242393 PMCID: PMC12002768 DOI: 10.1016/j.cdnut.2025.104587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 03/03/2025] [Accepted: 03/08/2025] [Indexed: 04/18/2025] Open
Abstract
Background Prophylactic iron fortification in infant formula effectively prevents iron deficiency anemia. However, the low absorption rate results in excess unabsorbed iron accumulates in colon, where it has been linked to harmful microbiota changes and increased diarrheal incidence. Prebiotic oligosaccharides have shown promise in mitigating these adverse effects, but the role of inulin or synbiotic supplementation with inulin-fermenting lactic acid bacteria in modulating early gut microbiome under iron fortification remains understudied. Objectives This study used a neonatal pig model to investigate the effects of iron fortification and inulin supplementation, with or without Ligilactobacillus agilis YZ050 (L. agilis), on gut microbiome. Methods Twenty-four piglets were stratified and randomly assigned into 1 of the 4 dietary treatments from postnatal day (PD) 2: iron-adequate milk (AI), high-iron milk (HI), high-iron milk with 5% inulin (HIP), or HIP milk with oral gavage of L . agilis every third day (HIS). Piglets were individually housed and fed milk in proportion to body weight in 14 meals daily, simulating formula feeding in infants. Fecal and colonic microbiome were analyzed via 16S rRNA sequencing, with microbial diversity and relative abundance analyzed using QIIME2 and R. Results Iron fortification, regardless of inulin supplementation, decreased α-diversity compared with AI. β-Diversity showed clustering of HIP and HIS samples, which were distinct from AI and HI. Although iron fortification had minor impact on microbial composition, inulin supplementation significantly modified microbiome diversity, increasing Prevotella, Megasphaera, and Lachnospiraceae_NK3A20_group species, while reducing Bacteroides and Ruminococcus. Colonic microbiome shifted from Bacteroides-dominant enterotype in AI and HI groups to Prevotella-dominant enterotype in HIP and HIS groups, indicating enhanced fiber degrading capacity. Despite its inulin-fermenting property, L . agilis showed limited colonization and minimal microbiome impact. Conclusions Inulin supplementation significantly influenced gut microbiome, shifting enterotype from Bacteroides to Prevotella. dominance and overriding the effect of high-iron fortification in a milk-fed piglet model.
Collapse
Affiliation(s)
- Jungjae Park
- Department of Nutrition, University of California, Davis, CA, United States
| | - Cynthia Jinno
- Department of Animal Science, University of California, Davis, CA, United States
| | - Saumya Wickramasinghe
- Department of Food Science and Technology, University of California, Davis, CA, United States
| | - David A Mills
- Department of Food Science and Technology, University of California, Davis, CA, United States
| | - Yanhong Liu
- Department of Animal Science, University of California, Davis, CA, United States
| | - Bo L Lönnerdal
- Department of Nutrition, University of California, Davis, CA, United States
| | - Peng Ji
- Department of Nutrition, University of California, Davis, CA, United States
| |
Collapse
|
2
|
Kim WJ, Ryu R, Doo EH, Choi Y, Kim K, Kim BK, Kim H, Kim M, Huh CS. Supplementation with the Probiotic Strains Bifidobacterium longum and Lactiplantibacillus rhamnosus Alleviates Glucose Intolerance by Restoring the IL-22 Response and Pancreatic Beta Cell Dysfunction in Type 2 Diabetic Mice. Probiotics Antimicrob Proteins 2025; 17:541-556. [PMID: 37804432 DOI: 10.1007/s12602-023-10156-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2023] [Indexed: 10/09/2023]
Abstract
Type 2 diabetes (T2D) is known as adult-onset diabetes, but recently, T2D has increased in the number of younger people, becoming a major clinical burden in human society. The objective of this study was to determine the effects of Bifidobacterium and Lactiplantibacillus strains derived from the feces of 20 healthy humans on T2D development and to understand the mechanism underlying any positive effects of probiotics. We found that Bifidobacterium longum NBM7-1 (Chong Kun Dang strain 1; CKD1) and Lactiplantibacillus rhamnosus NBM17-4 (Chong Kun Dang strain 2; CKD2) isolated from the feces of healthy Korean adults (n = 20) have anti-diabetic effects based on the insulin sensitivity. During the oral gavage for 8 weeks, T2D mice were supplemented with anti-diabetic drugs (1.0-10 mg/kg body weight) to four positive and negative control groups or four probiotics (200 uL; 1 × 109 CFU/mL) to groups separately or combined to the four treatment groups (n = 6 per group). While acknowledging the relatively small sample size, this study provides valuable insights into the potential benefits of B. longum NBM7-1 and L. rhamnosus NBM17-4 in mitigating T2D development. The animal gene expression was assessed using a qRT-PCR, and metabolic parameters were assessed using an ELISA assay. We demonstrated that B. longum NBM7-1 in the CKD1 group and L. rhamnosus NBM17-4 in the CKD2 group alleviate T2D development through the upregulation of IL-22, which enhances insulin sensitivity and pancreatic functions while reducing liver steatosis. These findings suggest that B. longum NBM7-1 and L. rhamnosus NBM17-4 could be the candidate probiotics for the therapeutic treatments of T2D patients as well as the prevention of type 2 diabetes.
Collapse
Affiliation(s)
- Won Jun Kim
- Department of Agricultural Biotechnology, College of Agriculture Sciences, Seoul National University, Seoul, South Korea
| | - Ri Ryu
- Institute of Green-Bio Science & Technology, Seoul National University, Pyeongchang, South Korea
| | - Eun-Hee Doo
- Institute of Green-Bio Science & Technology, Seoul National University, Pyeongchang, South Korea
- Department of Yuhan Biotechnology, School of Bio-Health Sciences, Yuhan University, Bucheon, 14780, South Korea
| | - Yukyung Choi
- Research Institute, Chong Kun Dang Bio Co. Ltd, Ansan, South Korea
| | - Kyunghwan Kim
- Research Institute, Chong Kun Dang Bio Co. Ltd, Ansan, South Korea
| | - Byoung Kook Kim
- Research Institute, Chong Kun Dang Bio Co. Ltd, Ansan, South Korea
| | - Heebal Kim
- Department of Agricultural Biotechnology, College of Agriculture Sciences, Seoul National University, Seoul, South Korea
- Department of Animal Science and Biotechnology, Seoul National University, Seoul, South Korea
| | - Myunghoo Kim
- Department of Animal Science, Pusan National University, Miryang, South Korea.
| | - Chul Sung Huh
- Institute of Green-Bio Science & Technology, Seoul National University, Pyeongchang, South Korea.
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, South Korea.
| |
Collapse
|
3
|
Chew C, Matsuyama M, Davies PSW, Hill RJ, Morrison M, Martin R, Codoñer FM, Knol J, Roeselers G. A young child formula supplemented with a synbiotic mixture of scGOS/lcFOS and Bifidobacterium breve M-16V improves the gut microbiota and iron status in healthy toddlers. Front Pediatr 2024; 12:1193027. [PMID: 39469104 PMCID: PMC11513326 DOI: 10.3389/fped.2024.1193027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/12/2024] [Indexed: 10/30/2024] Open
Abstract
Early-life gut microbiota development depends on a highly synchronized microbial colonization process in which diet is a key regulator. Microbiota transition toward a more adult-like state in toddlerhood goes hand in hand with the transition from a milk-based diet to a family diet. Microbiota development during the first year of life has been extensively researched; however, studies during toddlerhood remain sparse. Young children's requirement for micronutrients, such as dietary iron, is higher than adults. However, their intake is usually sub-optimal based on regular dietary consumption. The Child Health and Residence Microbes (CHaRM) study, conducted as an adjunct to the GUMLi (Growing Up Milk "Lite") trial, was a double-blind randomized controlled trial to investigate the effects on body composition of toddler milk compared to unfortified standard cow's milk in healthy children between 1 and 2 years of age in Brisbane (Australia). In this trial, fortified milk with reduced protein content and added synbiotics [Bifidobacterium breve M-16V, short-chain galactooligosaccharides, and long-chain fructooligosaccharides (ratio 9:1)] and micronutrients were compared to standard unfortified cow's milk. In the present study, the effects of the intervention on the gut microbiota and its relationship with iron status in toddlers were investigated in a subset of 29 children (18 in the Active group and 11 in the Control group) who completed the CHaRM study. The toddler microbiota consisted mainly of members of the phyla Firmicutes, Bacteroidota, and Actinobacteriota. The abundance of the B. breve species was quantified and was found to be lower in the Control group than in the Active group. Analysis of blood iron markers showed an improved iron status in the Active group. We observed a positive correlation between Bifidobacterium abundance and blood iron status. PICRUSt, a predictive functionality algorithm based on 16S ribosomal gene sequencing, was used to correlate potential microbial functions with iron status measurements. This analysis showed that the abundance of predicted genes encoding for enterobactin, a class of siderophores specific to Enterobacteriaceae, is inversely correlated with the relative abundance of members of the genus Bifidobacterium. These findings suggest that healthy children who consume a young child formula fortified with synbiotics as part of a healthy diet have improved iron availability and absorption in the gut and an increased abundance of Bifidobacterium in their gut microbiome.
Collapse
Affiliation(s)
- Charmaine Chew
- Danone Research & Innovation, Singapore, Singapore
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | - Misa Matsuyama
- Faculty of Medicine, Child Health Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Peter S. W. Davies
- Faculty of Medicine, Child Health Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Rebecca J. Hill
- Faculty of Medicine, Child Health Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Mark Morrison
- Faculty of Medicine, Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Rocio Martin
- Danone Research & Innovation, Utrecht, Netherlands
| | | | - Jan Knol
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
- Danone Research & Innovation, Utrecht, Netherlands
| | | |
Collapse
|
4
|
Gough EK, Edens TJ, Carr L, Robertson RC, Mutasa K, Ntozini R, Chasekwa B, Geum HM, Baharmand I, Gill SK, Mutasa B, Mbuya MNN, Majo FD, Tavengwa N, Francis F, Tome J, Evans C, Kosek M, Prendergast AJ, Manges AR. Bifidobacterium longum and microbiome maturation modify a nutrient intervention for stunting in Zimbabwean infants. EBioMedicine 2024; 108:105362. [PMID: 39341154 PMCID: PMC11467582 DOI: 10.1016/j.ebiom.2024.105362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Small-quantity lipid-based nutrient supplements (SQ-LNS), which has been widely tested to reduce child stunting, has largely modest effects to date, but the mechanisms underlying these modest effects are unclear. Child stunting is a longstanding indicator of chronic undernutrition and it remains a prevalent public health problem. The infant gut microbiome may be a key contributor to stunting; and mother and infant fucosyltransferase (FUT) phenotypes are important determinants of infant microbiome composition. METHODS We investigated whether mother-infant FUT status (n = 792) and infant gut microbiome composition (n = 354 fecal specimens from 172 infants) modified the impact of an infant and young child feeding (IYCF) intervention, that included SQ-LNS, on stunting at age 18 months in secondary analysis of a randomized trial in rural Zimbabwe. FINDINGS We found that the impact of the IYCF intervention on stunting was modified by: (i) mother-infant FUT2+/FUT3- phenotype (difference-in-differences -32.6% [95% CI: -55.3%, -9.9%]); (ii) changes in species composition that reflected microbiome maturation (difference-in-differences -68.1% [95% CI: -99.0%, -28.5%); and (iii) greater relative abundance of B. longum (differences-in-differences 49.1% [95% CI: 26.6%, 73.6%]). The dominant strains of B. longum when the intervention started were most similar to the proficient milk oligosaccharide utilizer subspecies infantis, which decreased with infant age and differed by mother-infant FUT2+/FUT3- phenotypes. INTERPRETATION These findings indicate that a persistently "younger" microbiome at initiation of the intervention reduced its benefits on stunting in areas with a high prevalence of growth restriction. FUNDING Bill and Melinda Gates Foundation, UK DFID/Aid, Wellcome Trust, Swiss Agency for Development and Cooperation, US National Institutes of Health, UNICEF, and Nutricia Research Foundation.
Collapse
Affiliation(s)
- Ethan K Gough
- Department of International Health, Johns Hopkins Bloomberg School of Public Health; Baltimore, MD, USA.
| | | | - Lynnea Carr
- Department of Microbiology and Immunology, University of British Columbia; Vancouver, BC, Canada
| | | | - Kuda Mutasa
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Robert Ntozini
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Bernard Chasekwa
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Hyun Min Geum
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Iman Baharmand
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Sandeep K Gill
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Batsirai Mutasa
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Mduduzi N N Mbuya
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe; Global Alliance for Improved Nutrition, Washington, DC, 20036, USA
| | - Florence D Majo
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Naume Tavengwa
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Freddy Francis
- Department of Experimental Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Joice Tome
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Ceri Evans
- Blizard Institute, Queen Mary University of London, London, UK; Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe; Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK
| | - Margaret Kosek
- University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Andrew J Prendergast
- Blizard Institute, Queen Mary University of London, London, UK; Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Amee R Manges
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada; British Columbia Centre for Disease Control (BCCDC), Vancouver, BC, Canada
| |
Collapse
|
5
|
Li Q, Liu D, Liang M, Zhu Y, Yousaf M, Wu Y. Mechanism of probiotics in the intervention of colorectal cancer: a review. World J Microbiol Biotechnol 2024; 40:306. [PMID: 39160377 DOI: 10.1007/s11274-024-04112-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024]
Abstract
The human microbiome interacts with the host mainly in the intestinal lumen, where putrefactive bacteria are suggested to promote colorectal cancer (CRC). In contrast, probiotics and their isolated components and secreted substances, display anti-tumor properties due to their ability to modulate gut microbiota composition, promote apoptosis, enhance immunity, resist oxidation and alter metabolism. Probiotics help to form a solid intestinal barrier against damaging agents via altering the gut microbiota and preventing harmful microbes from colonization. Probiotic strains that specifically target essential proteins involved in the process of apoptosis can overcome CRC resistance to apoptosis. They can increase the production of anti-inflammatory cytokines, essential in preventing carcinogenesis, and eliminate cancer cells by activating T cell-mediated immune responses. There is a clear indication that probiotics optimize the antioxidant system, decrease radical generation, and detect and degrade potential carcinogens. In this review, the pathogenic mechanisms of pathogens in CRC and the recent insights into the mechanism of probiotics in CRC prevention and therapy are discussed to provide a reference for the actual application of probiotics in CRC.
Collapse
Affiliation(s)
- Qinqin Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Dongmei Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China.
| | - Minghua Liang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yichao Zhu
- Laboratory of Cell Engineering, Research Unit of Cell Death Mechanism, Beijing Institute of Biotechnology, Chinese Academy of Medical Sciences (2021RU008), Beijing, 100071, China
| | - Muhammad Yousaf
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yaping Wu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
6
|
Gough EK, Edens TJ, Carr L, Robertson RC, Mutasa K, Ntozini R, Chasekwa B, Geum HM, Baharmand I, Gill SK, Mutasa B, Mbuya MNN, Majo FD, Tavengwa N, Francis F, Tome J, Evans C, Kosek M, Prendergast AJ, Manges AR. Bifidobacterium longum modifies a nutritional intervention for stunting in Zimbabwean infants. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.18.24301438. [PMID: 38293149 PMCID: PMC10827232 DOI: 10.1101/2024.01.18.24301438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Child stunting is an indicator of chronic undernutrition and reduced human capital. However, it remains a poorly understood public health problem. Small-quantity lipid-based nutrient supplements (SQ-LNS) have been widely tested to reduce stunting, but have modest effects. The infant intestinal microbiome may contribute to stunting, and is partly shaped by mother and infant histo-blood group antigens (HBGA). We investigated whether mother-infant fucosyltransferase status, which governs HBGA, and the infant gut microbiome modified the impact of SQ-LNS on stunting at age 18 months among Zimbabwean infants in the SHINE Trial ( NCT01824940 ). We found that mother-infant fucosyltransferase discordance and Bifidobacterium longum reduced SQ-LNS efficacy. Infant age-related microbiome shifts in B. longum subspecies dominance from infantis , a proficient human milk oligosaccharide utilizer, to suis or longum , proficient plant-polysaccharide utilizers, were partly influenced by discordance in mother-infant FUT2+/FUT3- phenotype, suggesting that a "younger" microbiome at initiation of SQ-LNS reduces its benefits on stunting.
Collapse
|
7
|
Karamantziani T, Pouliakis A, Xanthos T, Ekmektzoglou K, Paliatsiou S, Sokou R, Iacovidou N. The Effect of Oral Iron Supplementation/Fortification on the Gut Microbiota in Infancy: A Systematic Review and Meta-Analysis. CHILDREN (BASEL, SWITZERLAND) 2024; 11:231. [PMID: 38397343 PMCID: PMC10887499 DOI: 10.3390/children11020231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024]
Abstract
(1) Background: Iron is an essential metal for the proper growth and neurodevelopment of infants. To prevent and treat iron deficiency, iron supplementation or fortification is often required. It has been shown, though, that it affects the synthesis of gut microbiota. (2) Methods: This paper is a systematic review and meta-analysis of the effect of oral iron supplementation/fortification on the gut microbiota in infancy. Studies in healthy neonates and infants who received per os iron with existing data on gut microbiota were included. Three databases were searched: PUBMED, Scopus, and Google Scholar. Randomized controlled trials (RCTs) were included. Quality appraisal was assessed using the ROB2Tool. (3) Results: A total of six RCTs met inclusion criteria for a systematic review, and four of them were included in the meta-analysis using both the fixed and random effects methods. Our results showed that there is very good heterogeneity in the iron group (I2 = 62%), and excellent heterogeneity in the non-iron group (I2 = 98%). According to the meta-analysis outcomes, there is a 10.3% (95% CI: -15.0--5.55%) reduction in the bifidobacteria population in the iron group and a -2.96% reduction for the non-iron group. There is a confirmed difference (p = 0.02) in the aggregated outcomes between iron and non-iron supplement, indicative that the bifidobacteria population is reduced when iron supplementation is given (total reduction 6.37%, 95%CI: 10.16-25.8%). (4) Conclusions: The abundance of bifidobacteria decreases when iron supplementation or fortification is given to infants.
Collapse
Affiliation(s)
- Theoni Karamantziani
- B’ Neonatal Intensive Care Unit and Neonatal High Dependency Unit, “Aghia Sofia” General Children’s Hospital, 11527 Athens, Greece;
| | - Abraham Pouliakis
- 2nd Department of Pathology, “Attikon” University Hospital, National and Kapodistrian University of Athens, 12464 Athens, Greece
| | - Theodoros Xanthos
- School of Health Sciences, University of West Attica, 12243 Athens, Greece;
| | | | - Styliani Paliatsiou
- 2nd Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Aretaieio Hospital, 11528 Athens, Greece;
| | - Rozeta Sokou
- Neonatal Intensive Care Unit, “Agios Panteleimon” General Hospital of Nikea, 3 D. Mantouvalou Str., Nikea, 18454 Piraeus, Greece;
| | - Nicoletta Iacovidou
- Neonatal Department, Aretaieio Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| |
Collapse
|
8
|
Mikulic N, Uyoga MA, Stoffel NU, Derrien M, Nyilima S, Kostopoulos I, Roeselers G, Chenoll E, Mwasi E, Pironaci G, Karanja S, Bourdet-Sicard R, Zimmermann MB. Prebiotics increase iron absorption and reduce the adverse effects of iron on the gut microbiome and inflammation: a randomized controlled trial using iron stable isotopes in Kenyan infants. Am J Clin Nutr 2024; 119:456-469. [PMID: 38042412 PMCID: PMC10884607 DOI: 10.1016/j.ajcnut.2023.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 11/18/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023] Open
Abstract
BACKGROUND Iron fortificants tend to be poorly absorbed and may adversely affect the gut, especially in African children. OBJECTIVE We assessed the effects of prebiotic galacto-oligosaccharides/fructo-oligosaccharides (GOS/FOS) on iron absorption and gut health when added to iron-fortified infant cereal. METHODS We randomly assigned Kenyan infants (n = 191) to receive daily for 3 wk a cereal containing iron and 7.5 g GOS/FOS (7.5 g+iron group), 3 g (3-g+iron group) GOS/FOS, or no prebiotics (iron group). A subset of infants in the 2 prebiotic+iron groups (n = 66) consumed 4 stable iron isotope-labeled test meals without and with prebiotics, both before and after the intervention. Primary outcome was fractional iron absorption (FIA) from the cereal with or without prebiotics regardless of dose, before and after 3 wk of consumption. Secondary outcomes included fecal gut microbiota, iron and inflammation status, and effects of prebiotic dose. RESULTS Median (25th-75th percentiles) FIAs from meals before intervention were as follows: 16.3% (8.0%-27.6%) without prebiotics compared with 20.5% (10.4%-33.4%) with prebiotics (Cohen d = 0.53; P < 0.001). FIA from the meal consumed without prebiotics after intervention was 22.9% (8.5%-32.4%), 41% higher than from the meal without prebiotics before intervention (Cohen d = 0.36; P = 0.002). FIA from the meal consumed with prebiotics after intervention was 26.0% (12.2%-36.1%), 60% higher than from the meal without prebiotics before intervention (Cohen d = 0.45; P = 0.007). After 3 wk, compared with the iron group, the following results were observed: 1) Lactobacillus sp. abundances were higher in both prebiotic+iron groups (P < 0.05); 2) Enterobacteriaceae sp. abundances (P = 0.022) and the sum of pathogens (P < 0.001) were lower in the 7.5-g+iron group; 3) the abundance of bacterial toxin-encoding genes was lower in the 3-g+iron group (false discovery rate < 0.05); 4) fecal pH (P < 0.001) and calprotectin (P = 0.033) were lower in the 7.5-g+iron group. CONCLUSIONS Adding prebiotics to iron-fortified infant cereal increases iron absorption and reduces the adverse effects of iron on the gut microbiome and inflammation in Kenyan infants. This trial was registered at clinicaltrials.gov as NCT03894358.
Collapse
Affiliation(s)
- Nadja Mikulic
- Laboratory of Human Nutrition, Department of Health Sciences and Technology, ETH Zurich, Switzerland
| | - Mary A Uyoga
- Laboratory of Human Nutrition, Department of Health Sciences and Technology, ETH Zurich, Switzerland
| | - Nicole U Stoffel
- Laboratory of Human Nutrition, Department of Health Sciences and Technology, ETH Zurich, Switzerland
| | | | - Suzane Nyilima
- Public and Community Health Department, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | | | | | | | - Edith Mwasi
- Paediatrics Department, Msambweni County Referral Hospital, Msambweni, Kenya
| | - Giulia Pironaci
- Laboratory of Human Nutrition, Department of Health Sciences and Technology, ETH Zurich, Switzerland
| | - Simon Karanja
- Public and Community Health Department, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | | | - Michael B Zimmermann
- Medical Research Council Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford, United Kingdom.
| |
Collapse
|
9
|
Noordine ML, Seyoum Y, Bruneau A, Baye K, Lefebvre T, Cherbuy C, Canonne-Hergaux F, Nicolas G, Humblot C, Thomas M. The microbiota and the host organism switch between cooperation and competition based on dietary iron levels. Gut Microbes 2024; 16:2361660. [PMID: 38935764 PMCID: PMC11212566 DOI: 10.1080/19490976.2024.2361660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/24/2024] [Indexed: 06/29/2024] Open
Abstract
The microbiota significantly impacts digestive epithelium functionality, especially in nutrient processing. Given the importance of iron for both the host and the microbiota, we hypothesized that host-microbiota interactions fluctuate with dietary iron levels. We compared germ-free (GF) and conventional mice (SPF) fed iron-containing (65 mg/Kg) or iron-depleted (<6 mg/Kg) diets. The efficacy of iron privation was validated by iron blood parameters. Ferritin and Dmt1, which represent cellular iron storage and transport respectively, were studied in tissues where they are abundant: the duodenum, liver and lung. When the mice were fed an iron-rich diet, the microbiota increased blood hemoglobin and hepcidin and the intestinal ferritin levels, suggesting that the microbiota helps iron storage. When iron was limiting, the microbiota inhibited the expression of the intestinal Dmt1 transporter, likely via the pathway triggered by Hif-2α. The microbiota assists the host in storing intestinal iron when it is abundant and competes with the host by inhibiting Dmt1 in conditions of iron scarcity. Comparison between duodenum, liver and lung indicates organ-specific responses to microbiota and iron availability. Iron depletion induced temporal changes in microbiota composition and activity, reduced α-diversity of microbiota, and led to Lactobacillaceae becoming particularly more abundant after 60 days of privation. By inoculating GF mice with a simplified bacterial mixture, we show that the iron-depleted host favors the gut fitness of Bifidobacterium longum.
Collapse
Affiliation(s)
- Marie-Louise Noordine
- Micalis Institute, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), AgroParisTech, Université Paris-Saclay, UMR1319, Jouy-en-Josas, France
- Center for Microbiome Medicine (PaCeMM) FHU, AP-HP, Paris, Ile-de-France, France
| | - Yohannes Seyoum
- Micalis Institute, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), AgroParisTech, Université Paris-Saclay, UMR1319, Jouy-en-Josas, France
- Center for Food Science and Nutrition, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier Cedex, France
| | - Aurélia Bruneau
- Micalis Institute, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), AgroParisTech, Université Paris-Saclay, UMR1319, Jouy-en-Josas, France
- Center for Microbiome Medicine (PaCeMM) FHU, AP-HP, Paris, Ile-de-France, France
| | - Kaleab Baye
- Center for Food Science and Nutrition, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Thibaud Lefebvre
- Assistance Publique-Hôpitaux de Paris, Centre Français des Porphyries, Hôpital Louis Mourier, Colombes, France
- Institut National de la Santé et de la Recherche Médicale, U1149, Centre de Recherches sur l’Inflammation, Paris, France
| | - Claire Cherbuy
- Micalis Institute, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), AgroParisTech, Université Paris-Saclay, UMR1319, Jouy-en-Josas, France
- Center for Microbiome Medicine (PaCeMM) FHU, AP-HP, Paris, Ile-de-France, France
| | - François Canonne-Hergaux
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
- U1188 DéTROI, Université de La Réunion, Paris, France
| | - Gaël Nicolas
- Institut National de la Santé et de la Recherche Médicale, U1149, Centre de Recherches sur l’Inflammation, Paris, France
- Université Paris Diderot, site Bichat, Sorbonne Paris Cité, Paris, Ile-de-France, France
| | - Christèle Humblot
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier Cedex, France
| | - Muriel Thomas
- Micalis Institute, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), AgroParisTech, Université Paris-Saclay, UMR1319, Jouy-en-Josas, France
- Center for Microbiome Medicine (PaCeMM) FHU, AP-HP, Paris, Ile-de-France, France
| |
Collapse
|
10
|
Sharma D, Gajjar D, Seshadri S. Understanding the role of gut microfloral bifidobacterium in cancer and its potential therapeutic applications. MICROBIOME RESEARCH REPORTS 2023; 3:3. [PMID: 38455077 PMCID: PMC10917622 DOI: 10.20517/mrr.2023.51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/28/2023] [Accepted: 10/30/2023] [Indexed: 03/09/2024]
Abstract
Gut microbiota research has gained a tremendous amount of attention from the scientific community because of its contribution to gut homeostasis, human health, and various pathophysiological conditions. The early colonizer of the human gut, i.e., bifidobacteria, has emerged as an efficient probiotic in various diseased conditions, including cancer. This review explores the pros and cons of Bifidobacterium in various malignancies and various therapeutic strategies. We have illustrated the controversial role of bifidobacteria participating in various malignancies as well as described the current knowledge regarding its use in anticancer therapies. Ultimately, this article also addresses the need for further extensive research in elucidating the mechanism of how bifidobacteria is involved and is indirectly affecting the tumor microenvironment. Exhaustive and large-scale research is also required to solve the controversial questions regarding the involvement of bifidobacteria in cancer research.
Collapse
Affiliation(s)
| | | | - Sriram Seshadri
- Institute of Science, Nirma University, 382481 Ahmedabad, Gujarat, India
| |
Collapse
|
11
|
Celis AI, Relman DA, Huang KC. The impact of iron and heme availability on the healthy human gut microbiome in vivo and in vitro. Cell Chem Biol 2023; 30:110-126.e3. [PMID: 36603582 PMCID: PMC9913275 DOI: 10.1016/j.chembiol.2022.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 07/12/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023]
Abstract
Responses of the indigenous human gut commensal microbiota to iron are poorly understood because of an emphasis on in vitro studies of pathogen iron sensitivity. In a study of iron supplementation in healthy humans, we identified gradual microbiota shifts in some participants correlated with bacterial iron internalization. To identify direct effects due to taxon-specific iron sensitivity, we used participant stool samples to derive diverse in vitro communities. Iron supplementation of these communities caused small compositional shifts, mimicking those in vivo, whereas iron deprivation dramatically inhibited growth with irreversible, cumulative reduction in diversity and replacement of dominant species. Sensitivity of individual species to iron deprivation in axenic culture generally predicted iron dependency in a community. Finally, exogenous heme acted as a source of inorganic iron to prevent depletion of some species. Our results highlight the complementarity of in vivo and in vitro studies in understanding how environmental factors affect gut microbiotas.
Collapse
Affiliation(s)
- Arianna I Celis
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - David A Relman
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Infectious Diseases Section, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
12
|
Ndungo E, Holm JB, Gama S, Buchwald AG, Tennant SM, Laufer MK, Pasetti MF, Rasko DA. Dynamics of the Gut Microbiome in Shigella-Infected Children during the First Two Years of Life. mSystems 2022; 7:e0044222. [PMID: 36121169 PMCID: PMC9600951 DOI: 10.1128/msystems.00442-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/23/2022] [Indexed: 02/02/2023] Open
Abstract
Shigella continues to be a major contributor to diarrheal illness and dysentery in children younger than 5 years of age in low- and middle-income countries. Strategies for the prevention of shigellosis have focused on enhancing adaptive immunity. The interaction between Shigella and intrinsic host factors, such as the microbiome, remains unknown. We hypothesized that Shigella infection would impact the developing microbial community in infancy and, conversely, that changes in the gastrointestinal microbiome may predispose infections. To test this hypothesis, we characterized the gastrointestinal microbiota in a longitudinal birth cohort from Malawi that was monitored for Shigella infection using 16S rRNA amplicon sequencing. Children with at least one Shigella quantitative polymerase chain reaction (qPCR) positive sample during the first 2 years of life (cases) were compared to uninfected controls that were matched for sex and age. Overall, the microbial species diversity, as measured by the Shannon diversity index, increased over time, regardless of case status. At early time points, the microbial community was dominated by Bifidobacterium longum and Escherichia/Shigella. A greater abundance of Prevotella 9 and Bifidobacterium kashiwanohense was observed at 2 years of age. While no single species was associated with susceptibility to Shigella infection, significant increases in Lachnospiraceae NK4A136 and Fusicatenibacter saccharivorans were observed following Shigella infection. Both taxa are in the family Lachnospiraceae, which are known short-chain fatty acid producers that may improve gut health. Our findings identified temporal changes in the gastrointestinal microbiota associated with Shigella infection in Malawian children and highlight the need to further elucidate the microbial communities associated with disease susceptibility and resolution. IMPORTANCE Shigella causes more than 180 million cases of diarrhea globally, mostly in children living in poor regions. Infection can lead to severe health impairments that reduce quality of life. There is increasing evidence that disruptions in the gut microbiome early in life can influence susceptibility to illnesses. A delayed or impaired reconstitution of the microbiota following infection can further impact overall health. Aiming to improve our understanding of the interaction between Shigella and the developing infant microbiome, we investigated changes in the gut microbiome of Shigella-infected and uninfected children over the course of their first 2 years of life. We identified species that may be involved in recovery from Shigella infection and in driving the microbiota back to homeostasis. These findings support future studies into the elucidation of the interaction between the microbiota and enteric pathogens in young children and into the identification of potential targets for prevention or treatment.
Collapse
Affiliation(s)
- Esther Ndungo
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Johanna B. Holm
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Syze Gama
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi
| | - Andrea G. Buchwald
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Sharon M. Tennant
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Miriam K. Laufer
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Marcela F. Pasetti
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - David A. Rasko
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
13
|
Jans C, Wambui J, Stevens MJA, Tasara T. Comparative genomics of dairy-associated Staphylococcus aureus from selected sub-Saharan African regions reveals milk as reservoir for human-and animal-derived strains and identifies a putative animal-related clade with presumptive novel siderophore. Front Microbiol 2022; 13:923080. [PMID: 36046020 PMCID: PMC9421002 DOI: 10.3389/fmicb.2022.923080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus infection is considered to be a neglected tropical disease with huge impact on human and animal health alike. Dairy production in sub-Saharan Africa (SSA) relies heavily on various animals such as cows, goats, and camels, depending on the region. S. aureus causes mastitis and exhibits high prevalence in raw milk. The population structure including genotypic and phenotypic traits of dairy S. aureus in relation to animal and human isolates is, however, unknown for SSA. In this work, 20 S. aureus dairy isolates from East and West Africa were selected for comparative genomics and phenotypic analysis. Comparing their population structure revealed a large diversity of different origins suggesting milk to be a reservoir for human and animal strains alike. Furthermore, a novel putative siderophore was detected in multiple strains in a distinct animal-clade with strains of global origin. This putative siderophore shares a high genetic identity with that from Streptococcus equi suggesting possible horizontal gene transfer. These findings combined with the virulence genes harbored by these dairy-derived strains such as pvl, human evasion factor scn, various enterotoxin, leucocidin and antibiotic resistance genes, stresses the need for an integrative One Health approach to tackle the problem of S. aureus infections in animals and humans in sub-Saharan Africa.
Collapse
Affiliation(s)
- Christoph Jans
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Department of Health Science and Technology, ETH Zurich, Switzerland
| | - Joseph Wambui
- Institute of Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - Marc J. A. Stevens
- Institute of Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - Taurai Tasara
- Institute of Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
- *Correspondence: Taurai Tasara,
| |
Collapse
|
14
|
Akritidou T, Smet C, Akkermans S, Tonti M, Williams J, Van de Wiele T, Van Impe JFM. A protocol for the cultivation and monitoring of ileal gut microbiota surrogates. J Appl Microbiol 2022; 133:1919-1939. [PMID: 35751580 DOI: 10.1111/jam.15684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/10/2022] [Accepted: 06/21/2022] [Indexed: 11/28/2022]
Abstract
AIMS This research aimed to develop and validate a cultivation and monitoring protocol that is suitable for a surrogate microbial community that accounts for the gut microbiota of the ileum of the small intestine. METHODS AND RESULTS Five bacterial species have been selected as representatives of the ileal gut microbiota and a general anaerobic medium (MS-BHI, as minimally supplemented BHI) has been constructed and validated against BCCM/LGM recommended and commercial media. Moreover, appropriate selective/differential media have been investigated for monitoring each ileal gut microbiota surrogate. Results showed that MS-BHI was highly efficient in displaying individual and collective behavior of the ileal gut microbiota species, when compared with other types of media. Likewise, the selective/differential media managed to identify and describe the behavior of their targeted species. CONCLUSIONS MS-BHI renders a highly efficient, inexpensive and easy-to-prepare cultivation and enumeration alternative for the surrogate ileal microbiota species. Additionally, the selective/differential media can identify and quantify the bacteria of the surrogate ileal microbial community. SIGNIFICANCE AND IMPACT OF STUDY The selected gut microbiota species can represent an in vitro ileal community, forming the basis for future studies on small intestinal microbiota. MS-BHI and the proposed monitoring protocol can be used as a standard for gut microbiota studies that utilize conventional microbiological techniques.
Collapse
Affiliation(s)
- Theodora Akritidou
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Cindy Smet
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Simen Akkermans
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Maria Tonti
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Jennifer Williams
- School of Biological Sciences, Faculty of Science, Dublin Institute of Technology, Dublin, Ireland
| | - Tom Van de Wiele
- Laboratory of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Jan F M Van Impe
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| |
Collapse
|
15
|
Abdelbary MMH, Kuppe C, Michael SSY, Krüger T, Floege J, Conrads G. Impact of sucroferric oxyhydroxide on the oral and intestinal microbiome in hemodialysis patients. Sci Rep 2022; 12:9614. [PMID: 35689007 PMCID: PMC9187715 DOI: 10.1038/s41598-022-13552-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/25/2022] [Indexed: 11/09/2022] Open
Abstract
Hyperphosphatemia is a consequence of chronic kidney disease associated with mineral/bone impairment, increased cardiovascular events and mortality. Therapeutically, most dialysis patients have to take phosphate binders. Here, we investigated effects of the Fe(3+)-based phosphate binder sucroferric oxyhydroxide (SFOH) on the oral and gastrointestinal microbiome of 11 hemodialysis patients. Saliva, dental plaque and stool were collected at baseline, one and four weeks of SFOH intake and subjected to 16S rRNA gene (V3-V4 region) directed Illumina MiSeq-based analysis. Total Fe, Fe(2+) and Fe(3+) were determined in stool and saliva. Overall, the microbiome did not change significantly. However, some patient-, sample- and taxon-specific differences were noted, which allowed patients to be divided into those with a shift in their microbiome (6/11) and those without a shift (5/11). Total Fe and Fe(2+) were highest after one week of SFOH, particularly in patients who exhibited a shift in microbiome composition. Eight bacterial taxa showed significant unidirectional changes during treatment. In-depth microbiome analysis revealed that taxa that significantly benefited from iron plethora had no iron-binding siderophores or alternatives, which was in contrast to taxa that significantly declined under iron plethora. Patients with microbiome-shift were significantly younger and had higher serum phosphate concentrations. In conclusion, this study sheds light on the impact of iron on the microbiome of hemodialysis patients.
Collapse
Affiliation(s)
- Mohamed M H Abdelbary
- Division of Oral Microbiology and Immunology, Department of Operative Dentistry, Periodontology and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital of Aachen, Pauwelsstr. 30, 52057, Aachen, Germany
| | - Christoph Kuppe
- Department of Nephrology and Clinical Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital, Aachen, Germany
| | - Sareh Said-Yekta Michael
- Department of Operative Dentistry, Periodontology and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital, Aachen, Germany
| | - Thilo Krüger
- Department of Nephrology and Clinical Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital, Aachen, Germany
- DaVita Clinical Research GmbH, Geilenkirchen, Germany
| | - Jürgen Floege
- Department of Nephrology and Clinical Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital, Aachen, Germany
| | - Georg Conrads
- Division of Oral Microbiology and Immunology, Department of Operative Dentistry, Periodontology and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital of Aachen, Pauwelsstr. 30, 52057, Aachen, Germany.
| |
Collapse
|
16
|
Strain R, Stanton C, Ross RP. Effect of diet on pathogen performance in the microbiome. MICROBIOME RESEARCH REPORTS 2022; 1:13. [PMID: 38045644 PMCID: PMC10688830 DOI: 10.20517/mrr.2021.10] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 12/05/2023]
Abstract
Intricate interactions among commensal bacteria, dietary substrates and immune responses are central to defining microbiome community composition, which plays a key role in preventing enteric pathogen infection, a dynamic phenomenon referred to as colonisation resistance. However, the impact of diet on sculpting microbiota membership, and ultimately colonisation resistance has been overlooked. Furthermore, pathogens have evolved strategies to evade colonisation resistance and outcompete commensal microbiota by using unique nutrient utilisation pathways, by exploiting microbial metabolites as nutrient sources or by environmental cues to induce virulence gene expression. In this review, we will discuss the interplay between diet, microbiota and their associated metabolites, and how these can contribute to or preclude pathogen survival.
Collapse
Affiliation(s)
- Ronan Strain
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61 C996, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61 C996, Ireland
| | - R. Paul Ross
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland
- School of Microbiology, University College Cork, College Road, Cork T12 K8AF, Ireland
| |
Collapse
|
17
|
Ojima MN, Asao Y, Nakajima A, Katoh T, Kitaoka M, Gotoh A, Hirose J, Urashima T, Fukiya S, Yokota A, Abou Hachem M, Sakanaka M, Katayama T. Diversification of a Fucosyllactose Transporter within the Genus Bifidobacterium. Appl Environ Microbiol 2022; 88:e0143721. [PMID: 34731055 PMCID: PMC8788664 DOI: 10.1128/aem.01437-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/29/2021] [Indexed: 11/20/2022] Open
Abstract
Human milk oligosaccharides (HMOs), which are natural bifidogenic prebiotics, were recently commercialized to fortify formula milk. However, HMO assimilation phenotypes of bifidobacteria vary by species and strain, which has not been fully linked to strain genotype. We have recently shown that specialized uptake systems, particularly for the internalization of major HMOs (fucosyllactose [FL]), are associated with the formation of a Bifidobacterium-rich gut microbial community. Phylogenetic analysis revealed that FL transporters have diversified into two clades harboring four clusters within the Bifidobacterium genus, but the underpinning functional diversity associated with this divergence remains underexplored. In this study, we examined the HMO consumption phenotypes of two bifidobacterial species, Bifidobacterium catenulatum subsp. kashiwanohense and Bifidobacterium pseudocatenulatum, both of which possess FL-binding proteins that belong to phylogenetic clusters with unknown specificities. Growth assays, heterologous gene expression experiments, and HMO consumption analyses showed that the FL transporter type from B. catenulatum subsp. kashiwanohense JCM 15439T conferred a novel HMO uptake pattern that includes complex fucosylated HMOs (lacto-N-fucopentaose II and lacto-N-difucohexaose I/II). Further genomic landscape analyses of FL transporter-positive bifidobacterial strains revealed that the H-antigen- or Lewis antigen-specific fucosidase gene(s) and FL transporter specificities were largely aligned. These results suggest that bifidobacteria have acquired FL transporters along with the corresponding gene sets necessary to utilize the imported HMOs. Our results provide insight into the species- and strain-dependent adaptation strategies of bifidobacteria in HMO-rich environments. IMPORTANCE The gut of breastfed infants is generally dominated by health-promoting bifidobacteria. Human milk oligosaccharides (HMOs) from breast milk selectively promote the growth of specific taxa such as bifidobacteria, thus forming an HMO-mediated host-microbe symbiosis. While the coevolution of humans and bifidobacteria has been proposed, the underpinning adaptive strategies employed by bifidobacteria require further research. Here, we analyzed the divergence of the critical fucosyllactose (FL) HMO transporter within Bifidobacterium. We have shown that the diversification of the solute-binding proteins of the FL transporter led to uptake specificities of fucosylated sugars ranging from simple trisaccharides to complex hexasaccharides. This transporter and the congruent acquisition of the necessary intracellular enzymes allow bifidobacteria to consume different types of HMOs in a predictable and strain-dependent manner. These findings explain the adaptation and proliferation of bifidobacteria in the competitive and HMO-rich infant gut environment and enable accurate specificity annotation of transporters from metagenomic data.
Collapse
Affiliation(s)
- Miriam N. Ojima
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yuya Asao
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Aruto Nakajima
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Toshihiko Katoh
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | | | - Aina Gotoh
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Junko Hirose
- School of Human Cultures, The University of Shiga Prefecture, Hikone, Shiga, Japan
| | - Tadasu Urashima
- Department of Food and Life Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Satoru Fukiya
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Atsushi Yokota
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Maher Abou Hachem
- Department of Biotechnology and Bioengineering, Technical University of Denmark, Lyngby, Denmark
| | | | - Takane Katayama
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
18
|
Ribeiro M, Fonseca L, Anjos JS, Capo-Chichi JCC, Borges NA, Burrowes J, Mafra D. Oral iron supplementation in patients with chronic kidney disease: Can it be harmful to the gut microbiota? Nutr Clin Pract 2021; 37:81-93. [PMID: 33979013 DOI: 10.1002/ncp.10662] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Patients with chronic kidney disease (CKD) have several pathophysiological alterations, including anemia, one of the first changes in CKD patients. More recently, researchers have observed that the intestinal microbiota alterations are also another complication in these patients. The most common treatment for anemia is oral (mainly ferrous sulfate) or intravenous iron supplementation. Despite being a necessary treatment, recent studies have reported that supplementation with oral iron may increase its availability in the intestine, leading to disturbance in the gut microbiota and also to oxidative stress in the enterocytes, which may change the permeability and the microbiota profile. Although it is a therapy routinely used in patients with CKD, supplementation with oral iron on the gut microbiota has been rarely studied in these patients. Thus, this review will discuss the relationship between iron and the gut microbiota and the possible effects of oral iron supplementation on gut microbiota in patients with CKD.
Collapse
Affiliation(s)
- Marcia Ribeiro
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil.,Unidade de Pesquisa Clinica (UPC)-University Hospital Antonio Pedro, Niterói, Rio de Janeiro, Brazil
| | - Larissa Fonseca
- Unidade de Pesquisa Clinica (UPC)-University Hospital Antonio Pedro, Niterói, Rio de Janeiro, Brazil.,Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Juliana S Anjos
- Unidade de Pesquisa Clinica (UPC)-University Hospital Antonio Pedro, Niterói, Rio de Janeiro, Brazil.,Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Jean C C Capo-Chichi
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Natália A Borges
- Institute of Nutrition, Rio de Janeiro State University (UERJ), Rio de Janeiro, RJ, Brazil
| | | | - Denise Mafra
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil.,Unidade de Pesquisa Clinica (UPC)-University Hospital Antonio Pedro, Niterói, Rio de Janeiro, Brazil.,Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil.,Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
19
|
Zimmermann MB. Global look at nutritional and functional iron deficiency in infancy. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2020; 2020:471-477. [PMID: 33275751 PMCID: PMC7727574 DOI: 10.1182/hematology.2020000131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Iron-deficiency anemia (IDA) affects many infants in low- and middle-income countries (LMICs) and may impair cognitive development and adaptive immunity. Effective interventions to improve iron intakes for infants in LMICs are urgently needed. However, absorption of oral iron fortificants and supplements is low, usually <10%, and most of the iron passes into the colon unabsorbed. In randomized controlled trials, provision of iron to infants in LMICs adversely affects their gut microbiome and increases pathogenic Escherichia coli, gut inflammation, and diarrhea. To minimize these detrimental effects of iron, it is important to provide the lowest effective dosage and maximize fractional iron absorption. Prebiotic galacto-oligosaccharides and apo-lactoferrin may prove useful in iron formulations in LMICs because they increase absorption of fortificant iron and at the same time may mitigate the adverse effects of unabsorbed iron on the infant gut. Providing well-absorbed iron early in infancy may improve immune function. Recent data from a Kenyan birth cohort suggest IDA at the time of infant vaccination impairs the response to diphtheria, pertussis, and pneumococcus vaccines. A randomized trial follow-up study reported that providing iron to Kenyan infants at the time of measles vaccination increased antimeasles immunoglobulin G (IgG), seroconversion, and IgG avidity. Because IDA is so common among infants in LMICs and because the vaccine-preventable disease burden is so high, even if IDA only modestly reduces immunogenicity of vaccines, its prevention could have major benefits.
Collapse
|
20
|
Food as medicine: targeting the uraemic phenotype in chronic kidney disease. Nat Rev Nephrol 2020; 17:153-171. [PMID: 32963366 DOI: 10.1038/s41581-020-00345-8] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2020] [Indexed: 02/07/2023]
Abstract
The observation that unhealthy diets (those that are low in whole grains, fruits and vegetables, and high in sugar, salt, saturated fat and ultra-processed foods) are a major risk factor for poor health outcomes has boosted interest in the concept of 'food as medicine'. This concept is especially relevant to metabolic diseases, such as chronic kidney disease (CKD), in which dietary approaches are already used to ameliorate metabolic and nutritional complications. Increased awareness that toxic uraemic metabolites originate not only from intermediary metabolism but also from gut microbial metabolism, which is directly influenced by diet, has fuelled interest in the potential of 'food as medicine' approaches in CKD beyond the current strategies of protein, sodium and phosphate restriction. Bioactive nutrients can alter the composition and metabolism of the microbiota, act as modulators of transcription factors involved in inflammation and oxidative stress, mitigate mitochondrial dysfunction, act as senolytics and impact the epigenome by altering one-carbon metabolism. As gut dysbiosis, inflammation, oxidative stress, mitochondrial dysfunction, premature ageing and epigenetic changes are common features of CKD, these findings suggest that tailored, healthy diets that include bioactive nutrients as part of the foodome could potentially be used to prevent and treat CKD and its complications.
Collapse
|
21
|
Whey and Its Derivatives for Probiotics, Prebiotics, Synbiotics, and Functional Foods: a Critical Review. Probiotics Antimicrob Proteins 2020; 11:348-369. [PMID: 29732479 DOI: 10.1007/s12602-018-9427-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The purpose of this review is to highlight the importance of whey as a source of new-generation functional ingredients. Particular interest is given to probiotic growth in the presence of whey derivatives such as lactulose, a lactose derivative, which is a highly sought-after prebiotic in functional feeding. The role of sugar/nitrogen interactions in the formation of Maillard products is also highlighted. These compounds are known for their antioxidant power. The role of bioactive peptides from whey is also discussed in this study. Finally, the importance of an integrated valuation of whey is discussed with an emphasis on functional nutrition and the role of probiotics in the development of novel foods such as synbiotics.
Collapse
|
22
|
Yang Q, Liang Q, Balakrishnan B, Belobrajdic DP, Feng QJ, Zhang W. Role of Dietary Nutrients in the Modulation of Gut Microbiota: A Narrative Review. Nutrients 2020; 12:381. [PMID: 32023943 PMCID: PMC7071260 DOI: 10.3390/nu12020381] [Citation(s) in RCA: 291] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/21/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023] Open
Abstract
Understanding how dietary nutrients modulate the gut microbiome is of great interest for the development of food products and eating patterns for combatting the global burden of non-communicable diseases. In this narrative review we assess scientific studies published from 2005 to 2019 that evaluated the effect of micro- and macro-nutrients on the composition of the gut microbiome using in vitro and in vivo models, and human clinical trials. The clinical evidence for micronutrients is less clear and generally lacking. However, preclinical evidence suggests that red wine- and tea-derived polyphenols and vitamin D can modulate potentially beneficial bacteria. Current research shows consistent clinical evidence that dietary fibers, including arabinoxylans, galacto-oligosaccharides, inulin, and oligofructose, promote a range of beneficial bacteria and suppress potentially detrimental species. The preclinical evidence suggests that both the quantity and type of fat modulate both beneficial and potentially detrimental microbes, as well as the Firmicutes/Bacteroides ratio in the gut. Clinical and preclinical studies suggest that the type and amount of proteins in the diet has substantial and differential effects on the gut microbiota. Further clinical investigation of the effect of micronutrients and macronutrients on the microbiome and metabolome is warranted, along with understanding how this influences host health.
Collapse
Affiliation(s)
- Qi Yang
- Center for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China;
- Centre for Marine Biopro ducts Development, College of Medicine and Public Health, Flinders University, Adelaide, South Australia 5042, Australia; (Q.L.); (B.B.)
| | - Qi Liang
- Centre for Marine Biopro ducts Development, College of Medicine and Public Health, Flinders University, Adelaide, South Australia 5042, Australia; (Q.L.); (B.B.)
- Shanxi University of Chinese Medicine, Tai Yuan 030619, China;
| | - Biju Balakrishnan
- Centre for Marine Biopro ducts Development, College of Medicine and Public Health, Flinders University, Adelaide, South Australia 5042, Australia; (Q.L.); (B.B.)
| | | | - Qian-Jin Feng
- Shanxi University of Chinese Medicine, Tai Yuan 030619, China;
| | - Wei Zhang
- Centre for Marine Biopro ducts Development, College of Medicine and Public Health, Flinders University, Adelaide, South Australia 5042, Australia; (Q.L.); (B.B.)
| |
Collapse
|
23
|
Ghadimi D, Yoness Hassan MF, Fölster-Holst R, Röcken C, Ebsen M, de Vrese M, Heller KJ. Regulation of hepcidin/iron-signalling pathway interactions by commensal bifidobateria plays an important role for the inhibition of metaflammation-related biomarkers. Immunobiology 2020; 225:151874. [DOI: 10.1016/j.imbio.2019.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023]
|
24
|
Skrypnik K, Bogdański P, Schmidt M, Suliburska J. The Effect of Multispecies Probiotic Supplementation on Iron Status in Rats. Biol Trace Elem Res 2019; 192:234-243. [PMID: 30746586 PMCID: PMC6820595 DOI: 10.1007/s12011-019-1658-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 01/29/2019] [Indexed: 12/16/2022]
Abstract
A range of interactions between gut microbiota and iron (Fe) metabolism is described. Oral probiotics ameliorate host's iron status. However, this has been proven for single-strain probiotic supplements. Dose-dependence of beneficial probiotic supplementation effect on iron turnover remains unexplored. Our study aimed to investigate the effects of oral multispecies probiotic supplementation in two doses on iron status in rats. Thirty rats were randomized into three groups receiving multispecies probiotic supplement at a daily dose of 2.5 × 109 CFU (PA group, n = 10) and 1 × 1010 CFU (PB group, n = 10) or placebo (KK group, n = 10). After 6 weeks, rats were sacrificed for analysis, blood samples, and organs (the liver, heart, kidneys, spleen, pancreas, femur, testicles, duodenum, and hair) were collected. The total fecal bacteria content was higher in the PB group vs. PA group. Unsaturated iron-binding capacity was higher in the PB group vs. KK group. Serum Fe was lower in both PA and PB vs. KK group. Iron content in the liver was higher in the PB group vs. KK group; in the pancreas, this was higher in the PB group vs. the KK and PA group, and in the duodenum, it was higher in both supplemented groups vs. the KK group. A range of alterations in zinc and copper status and correlations between analyzed parameters were found. Oral multispecies probiotic supplementation exerts dose-independent and beneficial effect on iron bioavailability and duodenal iron absorption in the rat model, induces a dose-independent iron shift from serum and intensifies dose-dependent pancreatic and liver iron uptake.
Collapse
Affiliation(s)
- Katarzyna Skrypnik
- Institute of Human Nutrition and Dietetics, Poznan University of Life Sciences, Wojska Polskiego St. 31, 60-624, Poznan, Poland.
| | - Paweł Bogdański
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Szamarzewskiego St. 82/84, 60-569, Poznan, Poland
| | - Marcin Schmidt
- Department of Food Biotechnology and Microbiology, Poznan University of Life Sciences, Wojska Polskiego St. 48, Poznan, 60-627, Poland
| | - Joanna Suliburska
- Institute of Human Nutrition and Dietetics, Poznan University of Life Sciences, Wojska Polskiego St. 31, 60-624, Poznan, Poland
| |
Collapse
|
25
|
Metabolism of the predominant human milk oligosaccharide fucosyllactose by an infant gut commensal. Sci Rep 2019; 9:15427. [PMID: 31659215 PMCID: PMC6817895 DOI: 10.1038/s41598-019-51901-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/09/2019] [Indexed: 12/22/2022] Open
Abstract
A number of bifidobacterial species are found at a particularly high prevalence and abundance in faecal samples of healthy breastfed infants, a phenomenon that is believed to be, at least partially, due to the ability of bifidobacteria to metabolize Human Milk Oligosaccharides (HMOs). In the current study, we isolated a novel strain of Bifidobacterium kashiwanohense, named APCKJ1, from the faeces of a four-week old breastfed infant, based on the ability of the strain to utilise the HMO component fucosyllactose. We then determined the full genome sequence of this strain, and employed the generated data to analyze fucosyllactose metabolism in B. kashiwanohense APCKJ1. Transcriptomic and growth analyses, combined with metabolite analysis, in vitro hydrolysis assays and heterologous expression, allowed us to elucidate the pathway for fucosyllactose metabolism in B. kashiwanohense APCKJ1. Homologs of the key genes for this metabolic pathway were identified in particular in infant-derived members of the Bifdobacterium genus, revealing the apparent niche-specific nature of this pathway, and allowing a broad perspective on bifidobacterial fucosyllactose and L-fucose metabolism.
Collapse
|
26
|
Derrien M, Alvarez AS, de Vos WM. The Gut Microbiota in the First Decade of Life. Trends Microbiol 2019; 27:997-1010. [PMID: 31474424 DOI: 10.1016/j.tim.2019.08.001] [Citation(s) in RCA: 355] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/07/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023]
Abstract
Appreciation of the importance of the gut microbiome is growing, and it is becoming increasingly relevant to identify preventive or therapeutic solutions targeting it. The composition and function of the gut microbiota are relatively well described for infants (less than 3 years) and adults, but have been largely overlooked in pre-school (3-6 years) and primary school-age (6-12 years) children, as well as teenagers (12-18 years). Early reports suggested that the infant microbiota would attain an adult-like structure at the age of 3 years, but recent studies have suggested that microbiota development may take longer. This development time is of key importance because there is evidence to suggest that deviations in this development may have consequences in later life. In this review, we provide an overview of current knowledge concerning the gut microbiota, its evolution, variation, and response to dietary challenges during the first decade of life with a focus on healthy pre-school and primary school-age children (up to 12 years) from various populations around the globe. This knowledge should facilitate the identification of diet-based approaches targeting individuals of this age group, to promote the development of a healthy microbiota in later life.
Collapse
Affiliation(s)
- Muriel Derrien
- Danone Nutricia Research, RD, 128 Avenue de la Vauve, 91120 Palaiseau, France.
| | - Anne-Sophie Alvarez
- Danone Nutricia Research, RD, 128 Avenue de la Vauve, 91120 Palaiseau, France
| | - Willem M de Vos
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands; Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
27
|
Rocha Martin VN, Lacroix C, Killer J, Bunesova V, Voney E, Braegger C, Schwab C. Cutibacterium avidum is phylogenetically diverse with a subpopulation being adapted to the infant gut. Syst Appl Microbiol 2019; 42:506-516. [PMID: 31128887 DOI: 10.1016/j.syapm.2019.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 12/18/2022]
Abstract
The infant gut harbors a diverse microbial community consisting of several taxa whose persistence depends on adaptation to the ecosystem. In healthy breast-fed infants, the gut microbiota is dominated by Bifidobacterium spp.. Cutibacterium avidum is among the initial colonizers, however, the phylogenetic relationship of infant fecal isolates to isolates from other body sites, and C. avidum carbon utilization related to the infant gut ecosystem have been little investigated. In this study, we investigated the phylogenetic and phenotypic diversity of 28 C. avidum strains, including 16 strains isolated from feces of healthy infants. We investigated the in vitro capacity of C. avidum infant isolates to degrade and consume carbon sources present in the infant gut, and metabolic interactions of C. avidum with infant associated Bifidobacterium longum subsp. infantis and Bifidobacterium bifidum. Isolates of C. avidum showed genetic heterogeneity. C. avidum consumed d- and l-lactate, glycerol, glucose, galactose, N-acetyl-d-glucosamine and maltodextrins. Alpha-galactosidase- and β-glucuronidase activity were a trait of a group of non-hemolytic strains, which were mostly isolated from infant feces. Beta-glucuronidase activity correlated with the ability to ferment glucuronic acid. Co-cultivation with B. infantis and B. bifidum enhanced C. avidum growth and production of propionate, confirming metabolic cross-feeding. This study highlights the phylogenetic and functional diversity of C. avidum, their role as secondary glycan degraders and propionate producers, and suggests adaptation of a subpopulation to the infant gut.
Collapse
Affiliation(s)
- Vanesa Natalin Rocha Martin
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH-Zurich, 8092 Zurich, Switzerland; Division of Gastroenterology and Nutrition, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| | - Christophe Lacroix
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH-Zurich, 8092 Zurich, Switzerland
| | - Jiri Killer
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Czech Republic
| | - Vera Bunesova
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, Suchdol 165 00, Czech Republic
| | - Evelyn Voney
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH-Zurich, 8092 Zurich, Switzerland
| | - Christian Braegger
- Division of Gastroenterology and Nutrition, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| | - Clarissa Schwab
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH-Zurich, 8092 Zurich, Switzerland.
| |
Collapse
|
28
|
Dabour N, Dyab N, Kheadr E. Iron fortification of reduced‐fat bioyoghurt containing either short‐ or long‐chain inulin. INT J DAIRY TECHNOL 2019. [DOI: 10.1111/1471-0307.12575] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nassra Dabour
- Functional Foods and Nutraceuticals Laboratory (FFNL) Department of Dairy Science and Technology Faculty of Agriculture University of Alexandria Alexandria 21545 Egypt
| | - Noha Dyab
- Functional Foods and Nutraceuticals Laboratory (FFNL) Department of Dairy Science and Technology Faculty of Agriculture University of Alexandria Alexandria 21545 Egypt
| | - Ehab Kheadr
- Functional Foods and Nutraceuticals Laboratory (FFNL) Department of Dairy Science and Technology Faculty of Agriculture University of Alexandria Alexandria 21545 Egypt
| |
Collapse
|
29
|
Sane F, Scuotto A, Pierrat V, Kacet N, Hober D, Romond MB. Diabetes progression and alterations in gut bacterial translocation: prevention by diet supplementation with human milk in NOD mice. J Nutr Biochem 2018; 62:108-122. [PMID: 30292969 DOI: 10.1016/j.jnutbio.2018.08.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/19/2018] [Accepted: 08/29/2018] [Indexed: 12/19/2022]
Abstract
Impaired intestinal barrier function occurs before type 1 diabetes (T1D) onset with a possible contribution of microbial translocation. Breastfeeding is associated with enhanced mucosal intestinal integrity and T1D protection. Our aim was to study the potential of human milk (HM) to prevent diabetes onset and modulate the translocation of gut bacteria susceptible to breastfeeding or associated to diabetes onset. We show that HM intake can prevent T1D in nonobese diabetic mice independently of bifidobacteria colonization. Prior to diabetes onset, HM mice harbored splenic bacterial counts and plasma lipopolysaccharides level similar to control mice but exhibited a reduced expansion of Anaerotruncus sp. in pancreas and Lactobacillus johnsonii and Barnesiella in Peyer's patches (PP). Surprisingly, pancreas and PP bacterial expansion did not correlate with their own gut localization but with ileal Escherichia coli and cecal HM-susceptible bacteria (the promoted L. murinus and Bacteroides vulgatus, and the repressed B. fragilis and E. coli), respectively. Besides, higher colonic B. vulgatus counts induced by HM intake were associated with low islet infiltration and pancreatic E. coli expansion. On another hand, splenic dendritic cells (DCs) were identified as negative covariate of PP Barnesiella, suggesting a possible HM contribution to preserving splenic DCs through the reduction of Barnesiella translocation. Fecal B. vulgatus also negatively correlated with PP Barnesiella expansion, indicating that the mouse coprophagic behavior likely added to HM effect. Our findings provide evidence that HM has a multilevel impact and cooperates with some gut bacteria for controlling bacterial translocation at the earliest stage of insulitis.
Collapse
Affiliation(s)
- Famara Sane
- Université Lille et CHU de Lille Laboratoire de Virologie EA3610, F-59037 Lille, France
| | | | - Véronique Pierrat
- CHRU Lille, Hôpital Jeanne de Flandres, Lactarium Régional, Lille 59133, France
| | - Nadine Kacet
- CHRU Lille, Hôpital Jeanne de Flandres, Lactarium Régional, Lille 59133, France
| | - Didier Hober
- Université Lille et CHU de Lille Laboratoire de Virologie EA3610, F-59037 Lille, France
| | | |
Collapse
|
30
|
Skrypnik K, Suliburska J. Association between the gut microbiota and mineral metabolism. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:2449-2460. [PMID: 28991359 DOI: 10.1002/jsfa.8724] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/23/2017] [Accepted: 09/27/2017] [Indexed: 06/07/2023]
Abstract
The aim of this review is to present the most recent scientific evidence of interactions between the intestinal microbiota and minerals, and the effect of this interaction on the health of the host. The Web of Science database from the years 2013-2017 on this topic was reviewed. Numerous in vitro studies have shown that iron significantly affects the intestinal microbiota. However, Bifidobacteriaceae are capable of binding iron in the large intestine, thereby limiting the formation of free radicals synthesized in the presence of iron, and thus reducing the risk of colorectal cancer. Animal studies have revealed that supplementation with probiotics, prebiotics and synbiotics has a significant effect on bone calcium, phosphate and bone metabolism. The dynamic interaction between microbiota and zinc was shown. Human studies have provided evidence of the influence of probiotic bacteria on parathormone, calcium and phosphate levels and thus on bone resorption. Recent studies have produced new information mainly on the impact of the intestinal bacteria on the metabolism of calcium and iron. From a scientific perspective, the most urgent fields that remain to be investigated are the identification of all human gut microbes and new therapies targeting the interaction between intestinal bacteria and minerals. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Katarzyna Skrypnik
- Institute of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poznań, Poland
| | - Joanna Suliburska
- Institute of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
31
|
Bunesova V, Lacroix C, Schwab C. Mucin Cross-Feeding of Infant Bifidobacteria and Eubacterium hallii. MICROBIAL ECOLOGY 2018; 75:228-238. [PMID: 28721502 DOI: 10.1007/s00248-017-1037-4] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/04/2017] [Indexed: 06/07/2023]
Abstract
Mucus production is initiated before birth and provides mucin glycans to the infant gut microbiota. Bifidobacteria are the major bacterial group in the feces of vaginally delivered and breast milk-fed infants. Among the bifidobacteria, only Bifidobacterium bifidum is able to degrade mucin and to release monosaccharides which can be used by other gut microbes colonizing the infant gut. Eubacterium hallii is an early occurring commensal that produces butyrate and propionate from fermentation metabolites but that cannot degrade complex oligo- and polysaccharides. We aimed to demonstrate that mucin cross-feeding initiated by B. bifidum enables growth and metabolite formation of E. hallii leading to short-chain fatty acid (SCFA) formation. Growth and metabolite formation of co-cultures of B. bifidum, of Bifidobacterium breve or Bifidobacterium infantis, which use mucin-derived hexoses and fucose, and of E. hallii were determined. Growth of E. hallii in the presence of lactose and mucin monosaccharides was tested. In co-culture fermentations, the presence of B. bifidum enabled growth of the other strains. B. bifidum/B. infantis co-cultures yielded acetate, formate, and lactate while co-cultures of B. bifidum and E. hallii formed acetate, formate, and butyrate. In three-strain co-cultures, B. bifidum, E. hallii, and B. breve or B. infantis produced up to 16 mM acetate, 5 mM formate, and 4 mM butyrate. The formation of propionate (approximately 1 mM) indicated cross-feeding on fucose. Lactose, galactose, and GlcNAc were identified as substrates of E. hallii. This study shows that trophic interactions of bifidobacteria and E. hallii lead to the formation of acetate, butyrate, propionate, and formate, potentially contributing to intestinal SCFA formation with potential benefits for the host and for microbial colonization of the infant gut. The ratios of SCFA formed differed depending on the microbial species involved in mucin cross-feeding.
Collapse
Affiliation(s)
- Vera Bunesova
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zürich, Schmelzbergstrasse 7, 8092, Zürich, Switzerland
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague, Czech Republic
| | - Christophe Lacroix
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zürich, Schmelzbergstrasse 7, 8092, Zürich, Switzerland
| | - Clarissa Schwab
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zürich, Schmelzbergstrasse 7, 8092, Zürich, Switzerland.
| |
Collapse
|
32
|
Paganini D, Uyoga MA, Kortman GAM, Cercamondi CI, Moretti D, Barth-Jaeggi T, Schwab C, Boekhorst J, Timmerman HM, Lacroix C, Karanja S, Zimmermann MB. Prebiotic galacto-oligosaccharides mitigate the adverse effects of iron fortification on the gut microbiome: a randomised controlled study in Kenyan infants. Gut 2017; 66:1956-1967. [PMID: 28774885 DOI: 10.1136/gutjnl-2017-314418] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 05/30/2017] [Accepted: 05/30/2017] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Iron-containing micronutrient powders (MNPs) reduce anaemia in African infants, but the current high iron dose (12.5 mg/day) may decrease gut Bifidobacteriaceae and Lactobacillaceae, and increase enteropathogens, diarrhoea and respiratory tract infections (RTIs). We evaluated the efficacy and safety of a new MNP formula with prebiotic galacto-oligosaccharides (GOS) combined with a low dose (5 mg/day) of highly bioavailable iron. DESIGN In a 4-month, controlled, double-blind trial, we randomised Kenyan infants aged 6.5-9.5 months (n=155) to receive daily (1) a MNP without iron (control); (2) the identical MNP but with 5 mg iron (2.5 mg as sodium iron ethylenediaminetetraacetate and 2.5 mg as ferrous fumarate) (Fe group); or (3) the identical MNP as the Fe group but with 7.5 g GOS (FeGOS group). RESULTS Anaemia decreased by ≈50% in the Fe and FeGOS groups (p<0.001). Compared with the control or FeGOS group, in the Fe group there were (1) lower abundances of Bifidobacterium and Lactobacillus and higher abundances of Clostridiales (p<0.01); (2) higher abundances of virulence and toxin genes (VTGs) of pathogens (p<0.01); (3) higher plasma intestinal fatty acid-binding protein (a biomarker of enterocyte damage) (p<0.05); and (4) a higher incidence of treated RTIs (p<0.05). In contrast, there were no significant differences in these variables comparing the control and FeGOS groups, with the exception that the abundance of VTGs of all pathogens was significantly lower in the FeGOS group compared with the control and Fe groups (p<0.01). CONCLUSION A MNP containing a low dose of highly bioavailable iron reduces anaemia, and the addition of GOS mitigates most of the adverse effects of iron on the gut microbiome and morbidity in African infants. TRIAL REGISTRATION NUMBER NCT02118402.
Collapse
Affiliation(s)
- Daniela Paganini
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Mary A Uyoga
- Department of Medical Epidemiology, College of Health Sciences, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | | | - Colin I Cercamondi
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Diego Moretti
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Tanja Barth-Jaeggi
- Health Systems Support Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Clarissa Schwab
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | | | | | - Christophe Lacroix
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Simon Karanja
- Department of Medical Epidemiology, College of Health Sciences, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | | |
Collapse
|
33
|
Lanigan N, Bottacini F, Casey PG, O'Connell Motherway M, van Sinderen D. Genome-Wide Search for Genes Required for Bifidobacterial Growth under Iron-Limitation. Front Microbiol 2017; 8:964. [PMID: 28620359 PMCID: PMC5449479 DOI: 10.3389/fmicb.2017.00964] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 05/15/2017] [Indexed: 11/13/2022] Open
Abstract
Bacteria evolved over millennia in the presence of the vital micronutrient iron. Iron is involved in numerous processes within the cell and is essential for nearly all living organisms. The importance of iron to the survival of bacteria is obvious from the large variety of mechanisms by which iron may be acquired from the environment. Random mutagenesis and global gene expression profiling led to the identification of a number of genes, which are essential for Bifidobacterium breve UCC2003 survival under iron-restrictive conditions. These genes encode, among others, Fe-S cluster-associated proteins, a possible ferric iron reductase, a number of cell wall-associated proteins, and various DNA replication and repair proteins. In addition, our study identified several presumed iron uptake systems which were shown to be essential for B. breve UCC2003 growth under conditions of either ferric and/or ferrous iron chelation. Of these, two gene clusters encoding putative iron-uptake systems, bfeUO and sifABCDE, were further characterised, indicating that sifABCDE is involved in ferrous iron transport, while the bfeUO-encoded transport system imports both ferrous and ferric iron. Transcription studies showed that bfeUO and sifABCDE constitute two separate transcriptional units that are induced upon dipyridyl-mediated iron limitation. In the anaerobic gastrointestinal environment ferrous iron is presumed to be of most relevance, though a mutation in the sifABCDE cluster does not affect B. breve UCC2003's ability to colonise the gut of a murine model.
Collapse
Affiliation(s)
- Noreen Lanigan
- APC Microbiome Institute and School of Microbiology, University College CorkCork, Ireland
| | - Francesca Bottacini
- APC Microbiome Institute and School of Microbiology, University College CorkCork, Ireland
| | - Pat G Casey
- APC Microbiome Institute and School of Microbiology, University College CorkCork, Ireland
| | | | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, University College CorkCork, Ireland
| |
Collapse
|
34
|
Lee T, Clavel T, Smirnov K, Schmidt A, Lagkouvardos I, Walker A, Lucio M, Michalke B, Schmitt-Kopplin P, Fedorak R, Haller D. Oral versus intravenous iron replacement therapy distinctly alters the gut microbiota and metabolome in patients with IBD. Gut 2017; 66:863-871. [PMID: 26848182 PMCID: PMC5531225 DOI: 10.1136/gutjnl-2015-309940] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 12/02/2015] [Accepted: 12/21/2015] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Iron deficiency is a common complication in patients with IBD and oral iron therapy is suggested to exacerbate IBD symptoms. We performed an open-labelled clinical trial to compare the effects of per oral (PO) versus intravenous (IV) iron replacement therapy (IRT). DESIGN The study population included patients with Crohn's disease (CD; N=31), UC (N=22) and control subjects with iron deficiency (non-inflamed, NI=19). After randomisation, participants received iron sulfate (PO) or iron sucrose (IV) over 3 months. Clinical parameters, faecal bacterial communities and metabolomes were assessed before and after intervention. RESULTS Both PO and IV treatments ameliorated iron deficiency, but higher ferritin levels were observed with IV. Changes in disease activity were independent of iron treatment types. Faecal samples in IBD were characterised by marked interindividual differences, lower phylotype richness and proportions of Clostridiales. Metabolite analysis also showed separation of both UC and CD from control anaemic participants. Major shifts in bacterial diversity occurred in approximately half of all participants after IRT, but patients with CD were most susceptible. Despite individual-specific changes in phylotypes due to IRT, PO treatment was associated with decreased abundances of operational taxonomic units assigned to the species Faecalibacterium prausnitzii, Ruminococcus bromii, Dorea sp. and Collinsella aerofaciens. Clear IV-specific and PO-specific fingerprints were evident at the level of metabolomes, with changes affecting cholesterol-derived host substrates. CONCLUSIONS Shifts in gut bacterial diversity and composition associated with iron treatment are pronounced in IBD participants. Despite similar clinical outcome, oral administration differentially affects bacterial phylotypes and faecal metabolites compared with IV therapy. TRIAL REGISTRATION NUMBER clinicaltrial.gov (NCT01067547).
Collapse
Affiliation(s)
- Thomas Lee
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Canada,Department of Gastroenterology, Wollongong Hospital, Wollongong, NSW, Australia
| | - Thomas Clavel
- ZIEL Institute for Food and Health, Technische Universität München, Freising, Germany
| | - Kirill Smirnov
- Research Unit Analytical BioGeoChemistry, German Research Center for Environmental Health, Neuherberg, Germany
| | - Annemarie Schmidt
- Chair of Nutrition and Immunology, Technische Universität München, Freising, Germany
| | - Ilias Lagkouvardos
- ZIEL Institute for Food and Health, Technische Universität München, Freising, Germany
| | - Alesia Walker
- Research Unit Analytical BioGeoChemistry, German Research Center for Environmental Health, Neuherberg, Germany
| | - Marianna Lucio
- Research Unit Analytical BioGeoChemistry, German Research Center for Environmental Health, Neuherberg, Germany
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, German Research Center for Environmental Health, Neuherberg, Germany
| | - Philippe Schmitt-Kopplin
- ZIEL Institute for Food and Health, Technische Universität München, Freising, Germany,Research Unit Analytical BioGeoChemistry, German Research Center for Environmental Health, Neuherberg, Germany
| | - Richard Fedorak
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Dirk Haller
- ZIEL Institute for Food and Health, Technische Universität München, Freising, Germany,Chair of Nutrition and Immunology, Technische Universität München, Freising, Germany
| |
Collapse
|
35
|
Ellermann M, Arthur JC. Siderophore-mediated iron acquisition and modulation of host-bacterial interactions. Free Radic Biol Med 2017; 105:68-78. [PMID: 27780750 PMCID: PMC5401654 DOI: 10.1016/j.freeradbiomed.2016.10.489] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/11/2016] [Accepted: 10/19/2016] [Indexed: 02/07/2023]
Abstract
Iron is an essential micronutrient for most life forms including the majority of resident bacteria of the microbiota and their mammalian hosts. Bacteria have evolved numerous mechanisms to competitively acquire iron within host environments, such as the secretion of small molecules known as siderophores that can solubilize iron for bacterial use. However, siderophore biosynthesis and acquisition is not a capability equally harbored by all resident bacteria. Moreover, the structural diversity of siderophores creates variability in the susceptibility to host mechanisms that serve to counteract siderophore-mediated iron acquisition and limit bacterial growth. As a result, the differential capabilities to acquire iron among members of a complex microbial community carry important implications for the growth and function of resident bacteria. Siderophores can also directly influence host function by modulating cellular iron homeostasis, further providing a mechanism by which resident bacteria may influence their local environment at the host-microbial interface. This review will explore the putative mechanisms by which siderophore production by resident bacteria in the intestines may influence microbial community dynamics and host-bacterial interactions with important implications for pathogen- and microbiota-driven diseases including infection, inflammatory bowel diseases and colorectal cancer.
Collapse
Affiliation(s)
- Melissa Ellermann
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Janelle C Arthur
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA; Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
36
|
Rethinking Diet to Aid Human–Microbe Symbiosis. Trends Microbiol 2017; 25:100-112. [DOI: 10.1016/j.tim.2016.09.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/19/2016] [Accepted: 09/26/2016] [Indexed: 01/06/2023]
|
37
|
Vazquez-Gutierrez P, Stevens MJA, Gehrig P, Barkow-Oesterreicher S, Lacroix C, Chassard C. The extracellular proteome of two Bifidobacterium species reveals different adaptation strategies to low iron conditions. BMC Genomics 2017; 18:41. [PMID: 28061804 PMCID: PMC5219805 DOI: 10.1186/s12864-016-3472-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 12/26/2016] [Indexed: 12/30/2022] Open
Abstract
Background Bifidobacteria are among the first anaerobic bacteria colonizing the gut. Bifidobacteria require iron for growth and their iron-sequestration mechanisms are important for their fitness and possibly inhibit enteropathogens. Here we used combined genomic and proteomic analyses to characterize adaptations to low iron conditions of B. kashiwanohense PV20-2 and B. pseudolongum PV8-2, 2 strains isolated from the feces of iron-deficient African infants and selected for their high iron-sequestering ability. Results Analyses of the genome contents revealed evolutionary adaptation to low iron conditions. A ferric and a ferrous iron operon encoding binding proteins and transporters were found in both strains. Remarkably, the ferric iron operon of B. pseudolongum PV8-2 is not found in other B. pseudolongum strains and likely acquired via horizontal gene transfer. The genome B. kashiwanohense PV20-2 harbors a unique region encoding genes putatively involved in siderophore production. Additionally, the secretomes of the two strains grown under low-iron conditions were analyzed using a combined genomic-proteomic approach. A ferric iron transporter was found in the secretome of B. pseudolongum PV8-2, while ferrous binding proteins were detected in the secretome of B. kashiwanohense PV20-2, suggesting different strategies to take up iron in the strains. In addition, proteins such as elongation factors, a glyceraldehyde-3-phosphate dehydrogenase, and the stress proteins GroEL and DnaK were identified in both secretomes. These proteins have been previously associated with adhesion of lactobacilli to epithelial cells. Conclusion Analyses of the genome and secretome of B. kashiwanohense PV20-2 and B. pseudolongum PV8-2 revealed different adaptations to low iron conditions and identified extracellular proteins for iron transport. The identified extracellular proteins might be involved in competition for iron in the gastrointestinal tract. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3472-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pamela Vazquez-Gutierrez
- Laboratory of Food Biotechnology, ETH Zurich, Institute of Food, Nutrition and Health, Schmelzbergstrasse 7, 8092, Zurich, Switzerland
| | - Marc J A Stevens
- Laboratory of Food Biotechnology, ETH Zurich, Institute of Food, Nutrition and Health, Schmelzbergstrasse 7, 8092, Zurich, Switzerland
| | - Peter Gehrig
- Functional Genomics Center Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | | | - Christophe Lacroix
- Laboratory of Food Biotechnology, ETH Zurich, Institute of Food, Nutrition and Health, Schmelzbergstrasse 7, 8092, Zurich, Switzerland.
| | - Christophe Chassard
- Laboratory of Food Biotechnology, ETH Zurich, Institute of Food, Nutrition and Health, Schmelzbergstrasse 7, 8092, Zurich, Switzerland.,Present Address: Institut National de la Recherche Agronomique, UR 545 URF, 15000, Aurillac, France
| |
Collapse
|
38
|
Bifidobacterium breve UCC2003 metabolises the human milk oligosaccharides lacto-N-tetraose and lacto-N-neo-tetraose through overlapping, yet distinct pathways. Sci Rep 2016; 6:38560. [PMID: 27929046 PMCID: PMC5144078 DOI: 10.1038/srep38560] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 11/10/2016] [Indexed: 12/30/2022] Open
Abstract
In this study, we demonstrate that the prototype B. breve strain UCC2003 possesses specific metabolic pathways for the utilisation of lacto-N-tetraose (LNT) and lacto-N-neotetraose (LNnT), which represent the central moieties of Type I and Type II human milk oligosaccharides (HMOs), respectively. Using a combination of experimental approaches, the enzymatic machinery involved in the metabolism of LNT and LNnT was identified and characterised. Homologs of the key genetic loci involved in the utilisation of these HMO substrates were identified in B. breve, B. bifidum, B. longum subsp. infantis and B. longum subsp. longum using bioinformatic analyses, and were shown to be variably present among other members of the Bifidobacterium genus, with a distinct pattern of conservation among human-associated bifidobacterial species.
Collapse
|
39
|
Sarkar A, Mandal S. Bifidobacteria-Insight into clinical outcomes and mechanisms of its probiotic action. Microbiol Res 2016; 192:159-171. [PMID: 27664734 DOI: 10.1016/j.micres.2016.07.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 06/12/2016] [Accepted: 07/07/2016] [Indexed: 02/07/2023]
Abstract
The invasion of pathogens causes a disruption of the gut homeostasis. Innate immune responses and those triggered by endogenous microbiota form the first line of defence in our body. Pathogens often successfully overcome the resistances offered, calling for therapeutic intervention. Conventional strategy involving antibiotics might eradicate pathogens, but often leave the gut uncolonised and susceptible to recurrences. Probiotic supplements are useful alternatives. Bifidobacterium is one of widely studied probiotic genus, effective in restoring gut homeostasis. Mechanisms of probiotic action of bifidobacteria are several, often with strain-specificity. Analysis of streamlined literature reports reveal that although most studies report the probiotic aspect of bifidobacteria, sporadic documented contradictory results exist, challenging its therapeutic application and prompting studies to unambiguously establish the strain-associated probiotic activity and negate adverse effects prior to its clinical administration. Multi-strain/combinatorial therapy possibly relies on a combination of underlying operating mechanisms, each contributing towards enhanced probiotic efficacy, understanding which could help in developing customised formulations against targeted pathogens. Bifidogenic activity is also mediated by surface-associated structural components such as exopolysaccharides, lipoteichoic acids along with metabolites and bifidocins. This highlights scope for developing advanced structural therapeutic strategy which might be pivotal in replacing intact cell probiotics therapy.
Collapse
Affiliation(s)
- Amrita Sarkar
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| | - Santanu Mandal
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| |
Collapse
|
40
|
Bunesova V, Lacroix C, Schwab C. Fucosyllactose and L-fucose utilization of infant Bifidobacterium longum and Bifidobacterium kashiwanohense. BMC Microbiol 2016; 16:248. [PMID: 27782805 PMCID: PMC5080750 DOI: 10.1186/s12866-016-0867-4] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 10/22/2016] [Indexed: 12/31/2022] Open
Abstract
Background Human milk oligosaccharides (HMOs) are one of the major glycan source of the infant gut microbiota. The two species that predominate the infant bifidobacteria community, Bifidobacterium longum subsp. infantis and Bifidobacterium bifidum, possess an arsenal of enzymes including α-fucosidases, sialidases, and β-galactosidases to metabolise HMOs. Recently bifidobacteria were obtained from the stool of six month old Kenyan infants including species such as Bifidobacterium kashiwanohense, and Bifidobacterium pseudolongum that are not frequently isolated from infant stool. The aim of this study was to characterize HMOs utilization by these isolates. Strains were grown in presence of 2′-fucosyllactose (2′-FL), 3′-fucosyllactose (3′-FL), 3′-sialyl-lactose (3′-SL), 6′-sialyl-lactose (6′-SL), and Lacto-N-neotetraose (LNnT). We further investigated metabolites formed during L-fucose and fucosyllactose utilization, and aimed to identify genes and pathways involved through genome comparison. Results Bifidobacterium longum subsp. infantis isolates, Bifidobacterium longum subsp. suis BSM11-5 and B. kashiwanohense strains grew in the presence of 2′-FL and 3′- FL. All B. longum isolates utilized the L-fucose moiety, while B. kashiwanohense accumulated L-fucose in the supernatant. 1,2-propanediol (1,2-PD) was the major metabolite from L-fucose fermentation, and was formed in equimolar amounts by B. longum isolates. Alpha-fucosidases were detected in all strains that degraded fucosyllactose. B. longum subsp. infantis TPY11-2 harboured four α-fucosidases with 95–99 % similarity to the type strain. B. kashiwanohense DSM 21854 and PV20-2 possessed three and one α-fucosidase, respectively. The two α-fucosidases of B. longum subsp. suis were 78–80 % similar to B. longum subsp. infantis and were highly similar to B. kashiwanohense α-fucosidases (95–99 %). The genomes of B. longum strains that were capable of utilizing L-fucose harboured two gene regions that encoded enzymes predicted to metabolize L-fucose to L-lactaldehyde, the precursor of 1,2-PD, via non-phosphorylated intermediates. Conclusion Here we observed that the ability to utilize fucosyllactose is a trait of various bifidobacteria species. For the first time, strains of B. longum subsp. infantis and an isolate of B. longum subsp. suis were shown to use L-fucose to form 1,2-PD. As 1,2-PD is a precursor for intestinal propionate formation, bifidobacterial L-fucose utilization may impact intestinal short chain fatty acid balance. A L-fucose utilization pathway for bifidobacteria is suggested. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0867-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vera Bunesova
- Laboratory of Food Biotechnology, ETH Zurich, Institute of Food, Nutrition and Health, Schmelzbergstrasse 7, Zurich, Switzerland.,Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czech Republic
| | - Christophe Lacroix
- Laboratory of Food Biotechnology, ETH Zurich, Institute of Food, Nutrition and Health, Schmelzbergstrasse 7, Zurich, Switzerland
| | - Clarissa Schwab
- Laboratory of Food Biotechnology, ETH Zurich, Institute of Food, Nutrition and Health, Schmelzbergstrasse 7, Zurich, Switzerland.
| |
Collapse
|
41
|
Vazquez-Gutierrez P, de Wouters T, Werder J, Chassard C, Lacroix C. High Iron-Sequestrating Bifidobacteria Inhibit Enteropathogen Growth and Adhesion to Intestinal Epithelial Cells In vitro. Front Microbiol 2016; 7:1480. [PMID: 27713730 PMCID: PMC5031772 DOI: 10.3389/fmicb.2016.01480] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/06/2016] [Indexed: 12/18/2022] Open
Abstract
The gut microbiota plays an important role in host health, in particular by its barrier effect and competition with exogenous pathogenic bacteria. In the present study, the competition of Bifidobacterium pseudolongum PV8-2 (Bp PV8-2) and Bifidobacterium kashiwanohense PV20-2 (Bk PV20-2), isolated from anemic infant gut microbiota and selected for their high iron sequestration properties, was investigated against Salmonella Typhimurium (S. Typhi) and Escherichia coli O157:H45 (EHEC) by using co-culture tests and assays with intestinal cell lines. Single and co-cultures were carried out anaerobically in chemically semi-defined low iron (1.5 μM Fe) medium (CSDLIM) without and with added ferrous iron (30 μM Fe). Surface properties of the tested strains were measured by bacterial adhesion to solvent xylene, chloroform, ethyl acetate, and to extracellular matrix molecules, mucus II, collagen I, fibrinogen, fibronectin. HT29-MTX mucus-secreting intestinal cell cultures were used to study bifidobacteria competition, inhibition and displacement of the enteropathogens. During co-cultures in CSDLIM we observed strain-dependent inhibition of bifidobacterial strains on enteropathogens, independent of pH, organic acid production and supplemented iron. Bp PV8-2 significantly (P < 0.05) inhibited S. Typhi N15 and EHEC after 24 h compared to single culture growth. In contrast Bk PV20-2 showed less inhibition on S. Typhi N15 than Bp PV8-2, and no inhibition on EHEC. Affinity for intestinal cell surface glycoproteins was strain-specific, with high affinity of Bp PV8-2 for mucin and Bk PV20-2 for fibronectin. Bk PV20-2 showed high adhesion potential (15.6 ± 6.0%) to HT29-MTX cell layer compared to Bp PV8-2 (1.4 ± 0.4%). In competition, inhibition and displacement tests, Bp PV8-2 significantly (P < 0.05) reduced S. Typhi N15 and EHEC adhesion, while Bk PV20-2 was only active on S. Typhi N15 adhesion. To conclude, bifidobacterial strains selected for their high iron binding properties inhibited S. Typhi N15 and EHEC in co-culture experiments and efficiently competed with the enteropathogens on mucus-producing HT29-MTX cell lines. Further studies in complex gut ecosystems should explore host protection effects of Bp PV8-2 and Bk PV20-2 mediated by nutritional immunity mechanism associated with iron-binding.
Collapse
Affiliation(s)
- Pamela Vazquez-Gutierrez
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich Zürich, Switzerland
| | - Tomas de Wouters
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich Zürich, Switzerland
| | - Julia Werder
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich Zürich, Switzerland
| | - Christophe Chassard
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich Zürich, Switzerland
| | - Christophe Lacroix
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich Zürich, Switzerland
| |
Collapse
|
42
|
Valdés-Varela L, Alonso-Guervos M, García-Suárez O, Gueimonde M, Ruas-Madiedo P. Screening of Bifidobacteria and Lactobacilli Able to Antagonize the Cytotoxic Effect of Clostridium difficile upon Intestinal Epithelial HT29 Monolayer. Front Microbiol 2016; 7:577. [PMID: 27148250 PMCID: PMC4840286 DOI: 10.3389/fmicb.2016.00577] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/08/2016] [Indexed: 01/05/2023] Open
Abstract
Clostridium difficile is an opportunistic pathogen inhabiting the human gut, often being the aetiological agent of infections after a microbiota dysbiosis following, for example, an antibiotic treatment. C. difficile infections (CDI) constitute a growing health problem with increasing rates of morbidity and mortality at groups of risk, such as elderly and hospitalized patients, but also in populations traditionally considered low-risk. This could be related to the occurrence of virulent strains which, among other factors, have high-level of resistance to fluoroquinolones, more efficient sporulation and markedly high toxin production. Several novel intervention strategies against CDI are currently under study, such as the use of probiotics to counteract the growth and/or toxigenic activity of C. difficile. In this work, we have analyzed the capability of twenty Bifidobacterium and Lactobacillus strains, from human intestinal origin, to counteract the toxic effect of C. difficile LMG21717 upon the human intestinal epithelial cell line HT29. For this purpose, we incubated the bacteria together with toxigenic supernatants obtained from C. difficile. After this co-incubation new supernatants were collected in order to quantify the remnant A and B toxins, as well as to determine their residual toxic effect upon HT29 monolayers. To this end, the real time cell analyser (RTCA) model, recently developed in our group to monitor C. difficile toxic effect, was used. Results obtained showed that strains of Bifidobacterium longum and B. breve were able to reduce the toxic effect of the pathogen upon HT29, the RTCA normalized cell-index values being inversely correlated with the amount of remnant toxin in the supernatant. The strain B. longum IPLA20022 showed the highest ability to counteract the cytotoxic effect of C. difficile acting directly against the toxin, also having the highest capability for removing the toxins from the clostridial toxigenic supernatant. Image analysis showed that this strain prevents HT29 cell rounding; this was achieved by preserving the F-actin microstructure and tight-junctions between adjacent cells, thus keeping the typical epithelium-like morphology. Besides, preliminary evidence showed that the viability of B. longum IPLA20022 is needed to exert the protective effect and that secreted factors seems to have anti-toxin activity.
Collapse
Affiliation(s)
- Lorena Valdés-Varela
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas Villaviciosa, Spain
| | - Marta Alonso-Guervos
- Optical Microscopy and Image Processing Unit, University Institute of Oncology of Asturias, Scientific-Technical Services, University of Oviedo Oviedo, Spain
| | - Olivia García-Suárez
- Department of Morphology and Cellular Biology, University of Oviedo Oviedo, Spain
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas Villaviciosa, Spain
| | - Patricia Ruas-Madiedo
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas Villaviciosa, Spain
| |
Collapse
|
43
|
Deschemin JC, Noordine ML, Remot A, Willemetz A, Afif C, Canonne-Hergaux F, Langella P, Karim Z, Vaulont S, Thomas M, Nicolas G. The microbiota shifts the iron sensing of intestinal cells. FASEB J 2015; 30:252-61. [PMID: 26370847 DOI: 10.1096/fj.15-276840] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/31/2015] [Indexed: 12/12/2022]
Abstract
The amount of iron in the diet directly influences the composition of the microbiota. Inversely, the effects of the microbiota on iron homeostasis have been little studied. So, we investigate whether the microbiota itself may alter host iron sensing. Duodenal cytochrome b and divalent metal transporter 1, involved in apical iron uptake, are 8- and 10-fold, respectively, more abundant in the duodenum of germ-free (GF) mice than in mice colonized with a microbiota. In contrast, the luminal exporter ferroportin is 2-fold less abundant in GF. The overall signature of microbiota on iron-related proteins is similar in the colon. The colonization does not modify systemic parameters as plasma transferrin saturation (20%), plasma ferritin (150 ng/L), and liver (85 µg/g) iron load. Commensal organisms (Bacteroides thetaiotaomicron VPI-5482 and Faecalibacterium prausnitzii A2-165) and a probiotic strain (Streptococcus thermophilus LMD-9) led to up to 12-fold induction of ferritin in colon. Our data suggest that the intestinal cells of GF mice are depleted of iron and that following colonization, the epithelial cells favor iron storage. This study is the first to demonstrate that gut microbes induce a specific iron-related protein signature, highlighting new aspects of the crosstalk between the microbiota and the intestinal epithelium.
Collapse
Affiliation(s)
- Jean-Christophe Deschemin
- *INSERM U1016, Institut Cochin, Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, Paris, France; Université Paris Descartes and Université Paris Diderot, site Bichat, Sorbonne Paris Cité, Paris, France; Laboratory of Excellence GR-Ex, Paris, France; Institut National de la Recherche Agronomique, AgroParisTech, and Commensal and Probiotics-Host Interactions Laboratory, Unité Mixte de Recherche 1319, Microbiologie de l'Alimentation au Service de la Santé, Jouy-en-Josas, France; **INSERM Unité 1043-Centre de Physiopathologie de Toulouse Purpan and Université de Toulouse, Université Paul Sabatier, Centre de Physiopathologie de Toulouse Purpan, Toulouse, France; Centre National de la Recherche Scientifique Unité 5282, Toulouse, France; and INSERM Unité 1149, Centre de Recherches sur l'Inflammation, Paris, France
| | - Marie-Louise Noordine
- *INSERM U1016, Institut Cochin, Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, Paris, France; Université Paris Descartes and Université Paris Diderot, site Bichat, Sorbonne Paris Cité, Paris, France; Laboratory of Excellence GR-Ex, Paris, France; Institut National de la Recherche Agronomique, AgroParisTech, and Commensal and Probiotics-Host Interactions Laboratory, Unité Mixte de Recherche 1319, Microbiologie de l'Alimentation au Service de la Santé, Jouy-en-Josas, France; **INSERM Unité 1043-Centre de Physiopathologie de Toulouse Purpan and Université de Toulouse, Université Paul Sabatier, Centre de Physiopathologie de Toulouse Purpan, Toulouse, France; Centre National de la Recherche Scientifique Unité 5282, Toulouse, France; and INSERM Unité 1149, Centre de Recherches sur l'Inflammation, Paris, France
| | - Aude Remot
- *INSERM U1016, Institut Cochin, Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, Paris, France; Université Paris Descartes and Université Paris Diderot, site Bichat, Sorbonne Paris Cité, Paris, France; Laboratory of Excellence GR-Ex, Paris, France; Institut National de la Recherche Agronomique, AgroParisTech, and Commensal and Probiotics-Host Interactions Laboratory, Unité Mixte de Recherche 1319, Microbiologie de l'Alimentation au Service de la Santé, Jouy-en-Josas, France; **INSERM Unité 1043-Centre de Physiopathologie de Toulouse Purpan and Université de Toulouse, Université Paul Sabatier, Centre de Physiopathologie de Toulouse Purpan, Toulouse, France; Centre National de la Recherche Scientifique Unité 5282, Toulouse, France; and INSERM Unité 1149, Centre de Recherches sur l'Inflammation, Paris, France
| | - Alexandra Willemetz
- *INSERM U1016, Institut Cochin, Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, Paris, France; Université Paris Descartes and Université Paris Diderot, site Bichat, Sorbonne Paris Cité, Paris, France; Laboratory of Excellence GR-Ex, Paris, France; Institut National de la Recherche Agronomique, AgroParisTech, and Commensal and Probiotics-Host Interactions Laboratory, Unité Mixte de Recherche 1319, Microbiologie de l'Alimentation au Service de la Santé, Jouy-en-Josas, France; **INSERM Unité 1043-Centre de Physiopathologie de Toulouse Purpan and Université de Toulouse, Université Paul Sabatier, Centre de Physiopathologie de Toulouse Purpan, Toulouse, France; Centre National de la Recherche Scientifique Unité 5282, Toulouse, France; and INSERM Unité 1149, Centre de Recherches sur l'Inflammation, Paris, France
| | - Clément Afif
- *INSERM U1016, Institut Cochin, Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, Paris, France; Université Paris Descartes and Université Paris Diderot, site Bichat, Sorbonne Paris Cité, Paris, France; Laboratory of Excellence GR-Ex, Paris, France; Institut National de la Recherche Agronomique, AgroParisTech, and Commensal and Probiotics-Host Interactions Laboratory, Unité Mixte de Recherche 1319, Microbiologie de l'Alimentation au Service de la Santé, Jouy-en-Josas, France; **INSERM Unité 1043-Centre de Physiopathologie de Toulouse Purpan and Université de Toulouse, Université Paul Sabatier, Centre de Physiopathologie de Toulouse Purpan, Toulouse, France; Centre National de la Recherche Scientifique Unité 5282, Toulouse, France; and INSERM Unité 1149, Centre de Recherches sur l'Inflammation, Paris, France
| | - François Canonne-Hergaux
- *INSERM U1016, Institut Cochin, Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, Paris, France; Université Paris Descartes and Université Paris Diderot, site Bichat, Sorbonne Paris Cité, Paris, France; Laboratory of Excellence GR-Ex, Paris, France; Institut National de la Recherche Agronomique, AgroParisTech, and Commensal and Probiotics-Host Interactions Laboratory, Unité Mixte de Recherche 1319, Microbiologie de l'Alimentation au Service de la Santé, Jouy-en-Josas, France; **INSERM Unité 1043-Centre de Physiopathologie de Toulouse Purpan and Université de Toulouse, Université Paul Sabatier, Centre de Physiopathologie de Toulouse Purpan, Toulouse, France; Centre National de la Recherche Scientifique Unité 5282, Toulouse, France; and INSERM Unité 1149, Centre de Recherches sur l'Inflammation, Paris, France
| | - Philippe Langella
- *INSERM U1016, Institut Cochin, Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, Paris, France; Université Paris Descartes and Université Paris Diderot, site Bichat, Sorbonne Paris Cité, Paris, France; Laboratory of Excellence GR-Ex, Paris, France; Institut National de la Recherche Agronomique, AgroParisTech, and Commensal and Probiotics-Host Interactions Laboratory, Unité Mixte de Recherche 1319, Microbiologie de l'Alimentation au Service de la Santé, Jouy-en-Josas, France; **INSERM Unité 1043-Centre de Physiopathologie de Toulouse Purpan and Université de Toulouse, Université Paul Sabatier, Centre de Physiopathologie de Toulouse Purpan, Toulouse, France; Centre National de la Recherche Scientifique Unité 5282, Toulouse, France; and INSERM Unité 1149, Centre de Recherches sur l'Inflammation, Paris, France
| | - Zoubida Karim
- *INSERM U1016, Institut Cochin, Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, Paris, France; Université Paris Descartes and Université Paris Diderot, site Bichat, Sorbonne Paris Cité, Paris, France; Laboratory of Excellence GR-Ex, Paris, France; Institut National de la Recherche Agronomique, AgroParisTech, and Commensal and Probiotics-Host Interactions Laboratory, Unité Mixte de Recherche 1319, Microbiologie de l'Alimentation au Service de la Santé, Jouy-en-Josas, France; **INSERM Unité 1043-Centre de Physiopathologie de Toulouse Purpan and Université de Toulouse, Université Paul Sabatier, Centre de Physiopathologie de Toulouse Purpan, Toulouse, France; Centre National de la Recherche Scientifique Unité 5282, Toulouse, France; and INSERM Unité 1149, Centre de Recherches sur l'Inflammation, Paris, France
| | - Sophie Vaulont
- *INSERM U1016, Institut Cochin, Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, Paris, France; Université Paris Descartes and Université Paris Diderot, site Bichat, Sorbonne Paris Cité, Paris, France; Laboratory of Excellence GR-Ex, Paris, France; Institut National de la Recherche Agronomique, AgroParisTech, and Commensal and Probiotics-Host Interactions Laboratory, Unité Mixte de Recherche 1319, Microbiologie de l'Alimentation au Service de la Santé, Jouy-en-Josas, France; **INSERM Unité 1043-Centre de Physiopathologie de Toulouse Purpan and Université de Toulouse, Université Paul Sabatier, Centre de Physiopathologie de Toulouse Purpan, Toulouse, France; Centre National de la Recherche Scientifique Unité 5282, Toulouse, France; and INSERM Unité 1149, Centre de Recherches sur l'Inflammation, Paris, France
| | - Muriel Thomas
- *INSERM U1016, Institut Cochin, Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, Paris, France; Université Paris Descartes and Université Paris Diderot, site Bichat, Sorbonne Paris Cité, Paris, France; Laboratory of Excellence GR-Ex, Paris, France; Institut National de la Recherche Agronomique, AgroParisTech, and Commensal and Probiotics-Host Interactions Laboratory, Unité Mixte de Recherche 1319, Microbiologie de l'Alimentation au Service de la Santé, Jouy-en-Josas, France; **INSERM Unité 1043-Centre de Physiopathologie de Toulouse Purpan and Université de Toulouse, Université Paul Sabatier, Centre de Physiopathologie de Toulouse Purpan, Toulouse, France; Centre National de la Recherche Scientifique Unité 5282, Toulouse, France; and INSERM Unité 1149, Centre de Recherches sur l'Inflammation, Paris, France
| | - Gaël Nicolas
- *INSERM U1016, Institut Cochin, Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, Paris, France; Université Paris Descartes and Université Paris Diderot, site Bichat, Sorbonne Paris Cité, Paris, France; Laboratory of Excellence GR-Ex, Paris, France; Institut National de la Recherche Agronomique, AgroParisTech, and Commensal and Probiotics-Host Interactions Laboratory, Unité Mixte de Recherche 1319, Microbiologie de l'Alimentation au Service de la Santé, Jouy-en-Josas, France; **INSERM Unité 1043-Centre de Physiopathologie de Toulouse Purpan and Université de Toulouse, Université Paul Sabatier, Centre de Physiopathologie de Toulouse Purpan, Toulouse, France; Centre National de la Recherche Scientifique Unité 5282, Toulouse, France; and INSERM Unité 1149, Centre de Recherches sur l'Inflammation, Paris, France
| |
Collapse
|
44
|
Complete Genome Sequence of Bifidobacterium kashiwanohense JCM 15439T, Isolated from Feces from a Healthy Japanese Infant. GENOME ANNOUNCEMENTS 2015; 3:3/2/e00255-15. [PMID: 25883283 PMCID: PMC4400426 DOI: 10.1128/genomea.00255-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
We isolated Bifidobacterium kashiwanohense JCM 15439 from the feces of a healthy Japanese infant and proposed it as the type strain of a novel species within the genus Bifidobacterium. Here, we report the complete genome sequence of this organism.
Collapse
|