1
|
Esteban P, Letona-Gimenez S, Domingo MP, Morte E, Pellejero-Sagastizabal G, Del Mar Encabo M, Ramírez-Labrada A, Sanz-Pamplona R, Pardo J, Paño JR, Galvez EM. Combination of exhaled volatile organic compounds with serum biomarkers predicts respiratory infection severity. Pulmonology 2025; 31:2477911. [PMID: 40152323 DOI: 10.1080/25310429.2025.2477911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 03/06/2025] [Indexed: 03/29/2025] Open
Abstract
OBJECTIVE During respiratory infections, host-pathogen interaction alters metabolism, leading to changes in the composition of expired volatile organic compounds (VOCs) and soluble immunomodulators. This study aims to identify VOC and blood biomarker signatures to develop machine learning-based prognostic models capable of distinguishing infections with similar symptoms. METHODS Twenty-one VOCs and fifteen serum biomarkers were quantified in samples from 86 COVID-19 patients, 75 patients with non-COVID-19 respiratory infections, and 72 healthy donors. The populations were categorized into severity subgroups based on their oxygen support requirements. Descriptive and statistical analyses were conducted to assess group differentiation. Additionally, machine learning classifiers were developed to predict disease severity in both COVID-19 and non-COVID-19 patients. RESULTS VOC and biomarker profiles differed significantly among groups. Random Forest models demonstrated the best performance for severity prediction. The COVID-19 model achieved 93% accuracy, 100% sensitivity, and 89% specificity, identifying IL-6, IL-8, thrombomodulin, and toluene as key severity predictors. In non-COVID-19 patients, the model reached 89% accuracy, 100% sensitivity, and 67% specificity, with CXCL10 and methyl-isobutyl-ketone as key markers. CONCLUSION VOCs and serum biomarkers differentiated HD, COVID-19, and non-COVID-19 patients, and enabled the development of high-performance severity prediction models. While promising, these findings require validation in larger independent cohorts.
Collapse
Affiliation(s)
| | - Santiago Letona-Gimenez
- Servicio de Enfermedades Infecciosas, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | | | - Elena Morte
- Servicio de Enfermedades Infecciosas, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Galadriel Pellejero-Sagastizabal
- Servicio de Enfermedades Infecciosas, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | | | - Ariel Ramírez-Labrada
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Rebeca Sanz-Pamplona
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- CIBERESP, ISCIII - CIBER de Epidemiologia y Salud Pública, Instituto de Salud Carlos III, Madrid, Spain
- Fundación Agencia Aragonesa para la Investigación y el Desarrollo (ARAID), Zaragoza, Spain
- Cancer Heterogeneity and Immunomics group, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
| | - Julián Pardo
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Microbiología, Pediatría, Radiología y Salud Pública, Área de Inmunología, Facultad de Medicina, Universidad de Zaragoza, Zaragoza, Spain
| | - José Ramón Paño
- Servicio de Enfermedades Infecciosas, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Eva M Galvez
- Instituto de Carboquímica ICB-CSIC, Zaragoza, Spain
- CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
2
|
Li X, Pakanati V, Liu C, Wang T, Morelli D, Korpak A, Baraff A, Isaacs SN, Vittor A, Chang KM, Le E, Smith NL, Lee JS, Ross JM, Shah JA. Peripheral blood cytokine profiles predict the severity of SARS-CoV-2 infection: an EPIC 3 study analysis. BMC Infect Dis 2025; 25:677. [PMID: 40340594 PMCID: PMC12063214 DOI: 10.1186/s12879-025-10914-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 04/03/2025] [Indexed: 05/10/2025] Open
Abstract
BACKGROUND Predicting which patients will develop severe COVID-19 complications could improve clinical care. Peripheral blood cytokine profiles may predict the severity of SARS-CoV-2 infection, but none have been identified in US Veterans. METHODS We analyzed peripheral blood cytokine profiles from 202 participants in the EPIC3 study, a prospective observational cohort of US Veterans tested for SARS-CoV-2 across 15 VA medical centers. Illness severity was assessed based on the highest level documented during the first 60 days after recruitment. We correlated cytokine levels with illness severity using LASSO logistic regression, random forest, and XGBoost models on a 70% training set and calculated the AUC on a 30% test set. RESULTS LASSO regression identified 6 cytokines as predictors of SARS-CoV-2 severity with 77.3% AUC in the test set. Random forest and XGBoost models achieved an AUC of 80.4% and 80.7% in the test set, respectively. All models assigned a feature importance to each cytokine, with IP-10, MCP-1, and HGF consistently identified as key markers. CONCLUSIONS Cytokine profiles are predictive of SARS-CoV-2 severity in US Veterans and may guide tailored interventions for improved patient management.
Collapse
Affiliation(s)
- Xumin Li
- VA Puget Sound Health Care System, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | | | - Cindy Liu
- VA Puget Sound Health Care System, Seattle, WA, USA
| | - Tracy Wang
- VA Puget Sound Health Care System, Seattle, WA, USA
| | | | - Anna Korpak
- VA Puget Sound Health Care System, Seattle, WA, USA
| | - Aaron Baraff
- VA Puget Sound Health Care System, Seattle, WA, USA
| | - Stuart N Isaacs
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amy Vittor
- North Florida/South Georgia Veterans Health System, Gainesville, FL, USA
- Division of Infectious Disease and Global Medicine, University of Florida, Gainesville, FL, USA
| | - Kyong-Mi Chang
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth Le
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Nicholas L Smith
- VA Puget Sound Health Care System, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Jennifer S Lee
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Division of Endocrinology, Gerontology, and Metabolism, Stanford University, Palo Alto, CA, USA
| | - Jennifer M Ross
- VA Puget Sound Health Care System, Seattle, WA, USA
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Javeed A Shah
- VA Puget Sound Health Care System, Seattle, WA, USA.
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, USA.
| |
Collapse
|
3
|
Long JP, Prakash R, Edelkamp P, Knafl M, Lionel AC, Nair R, Ahmed S, Strati P, Castillo LEM, Al-Zaki A, Chien K, Chihara D, Westin J, Khawaja F, Nastoupil LJ, Mulanovich V, Futreal A, Woodman SE, Daver NG, Flowers CR, Neelapu S, Manzano JG, Iyer SP. Cytokine Storms in COVID-19, Hemophagocytic Lymphohistiocytosis, and CAR-T Therapy. JAMA Netw Open 2025; 8:e253455. [PMID: 40193078 PMCID: PMC11976493 DOI: 10.1001/jamanetworkopen.2025.3455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 12/27/2024] [Indexed: 04/10/2025] Open
Abstract
Importance Cytokine storm (CS) is a hyperinflammatory syndrome causing multiorgan dysfunction and high mortality, especially in patients with malignant hematologic neoplasms. Triggers include malignant neoplasm-associated hemophagocytic lymphohistiocytosis (MN-HLH), cytokine release syndrome from chimeric antigen receptor T-cell therapy (CAR-T CRS), and COVID-19, but the underlying mechanisms of inflammation and their impact on outcomes are poorly understood. Objective To delineate the inflammatory patterns characterizing different CS etiologies and their association with clinical outcomes. Design, Setting, and Participants This retrospective cohort study was conducted at the MD Anderson Cancer Center in Houston, Texas, between March 1, 2020, and November 20, 2022, using the software-as-a-service Syntropy Foundry Platform. Participants were patients with malignant hematologic neoplasms who developed CS from COVID-19 (COVID-CS), MN-HLH, or CAR-T CRS. Exposure Diagnostic criteria for COVID-CS were developed based on surging inflammatory markers (interleukin-6, C-reactive protein, and ferritin), while diagnosis of MN-HLH and CAR-T CRS followed established guidelines. Main Outcomes and Measures The study compared cytokine levels, clinical characteristics, and survival outcomes across the 3 cohorts and focused on inflammatory markers, survival times, and key factors associated with survival identified through univariate and multivariable analyses. Results A total of 671 patients met the inclusion criteria. Of those, 220 (33%) had CAR-T CRS, 227 (34%) had COVID-CS, and 224 (33%) had MN-HLH. Patients were predominantly male (435 [65%]), and 461 (69%) were White, with significant differences in median age (CAR-T CRS, 63 [IQR, 54-71] years; COVID-CS, 63 [IQR, 52-72] years; MN-HLH, 55 [IQR, 41-65] years; P < .001) as well as number of admission days and underlying cancer type across cohorts. Marked variations in cytokine levels and survival outcomes were observed, with the MN-HLH cohort exhibiting the highest levels of inflammatory markers (eg, median TNF-α, 105 pg/mL [IQR, 38-201 pg/mL] for MN-HLH vs 23 pg/mL [IQR, 17-42 pg/mL] for COVID-CS) and lowest fibrinogen and albumin levels. The cohort with CAR-T CRS showed substantially longer survival times compared with the cohort with COVID-CS (hazard ratio [HR], 2.93; 95% CI, 1.95-4.41) and the cohort with MN-HLH (HR, 8.12; 95% CI, 5.51-12.00). Clustering analysis showed overlapping patterns between COVID-CS and CAR-T CRS, while MN-HLH formed a distinct cluster. Conclusions and Relevance This study of CS syndromes found distinct immune responses within each cohort. The distinct clinical patterns and outcomes associated with different CS etiologies emphasize the importance of early diagnosis and timely intervention.
Collapse
Affiliation(s)
- James P. Long
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston
| | - Rishab Prakash
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston
| | - Paul Edelkamp
- Department of Enterprise Data Engineering & Analytics, The University of Texas MD Anderson Cancer Center, Houston
| | - Mark Knafl
- Department of Enterprise Data Engineering & Analytics, The University of Texas MD Anderson Cancer Center, Houston
| | - Anath C. Lionel
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston
| | - Ranjit Nair
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston
| | - Sairah Ahmed
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston
| | - Paolo Strati
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston
| | - Luis E. Malpica Castillo
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston
| | - Ajlan Al-Zaki
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston
| | - Kelly Chien
- Department of Leukemia, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston
| | - Dai Chihara
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston
| | - Jason Westin
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston
| | - Fareed Khawaja
- Department of Infectious Diseases, The University of Texas MD Anderson Cancer Center, Houston
| | - Loretta J. Nastoupil
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston
| | - Victor Mulanovich
- Department of Infectious Diseases, The University of Texas MD Anderson Cancer Center, Houston
| | - Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston
| | - Scott E. Woodman
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston
| | - Naval G. Daver
- Department of Leukemia, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston
| | - Christopher R. Flowers
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston
| | - Sattva Neelapu
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston
| | - Joanna-Grace Manzano
- Department of Hospital Medicine, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston
| | - Swaminathan P. Iyer
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston
| |
Collapse
|
4
|
Cheng J, Wang H, Li C, Yu J, Zhu M. Characteristics of cytokines/chemokines associated with disease severity and adverse prognosis in COVID-19 patients. Front Immunol 2024; 15:1464545. [PMID: 39654886 PMCID: PMC11625740 DOI: 10.3389/fimmu.2024.1464545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 11/05/2024] [Indexed: 12/12/2024] Open
Abstract
Background Cytokines and chemokines as crucial participants in innate immune response play significant roles during SARS-CoV-2 infection, yet excessive immune response exacerbates the severity of COVID-19. Purpose This study aims to investigate the involvement of which cytokines/chemokines in the cytokine storm of COVID-19, as well as the changes in cytokine/chemokine levels during the course of COVID-19, simultaneously exploring the diagnostic and prognostic value of the relevant cytokines/chemokines for COVID-19. Methods Flow cytometry was employed to detect the levels of cytokines and chemokines in the serum of 50 COVID-19 patients. Results Compared with severe COVID-19 patients, the levels of cytokines IL-6, IL-8, IL-10, sCD25, and chemokines IP-10 and MIG in the peripheral blood of non-severe patients were significantly reduced, while only IL-6, IL-10, and IP-10 levels were significantly decreased compared to non-survivors of COVID-19. Meanwhile, serum concentrations of IP-10, MCP-1, sTREM-1, IL-10, and the neutrophil-to-lymphocyte ratio (NLR) in peripheral blood could distinguish between COVID-19 survivors and non-survivors and were significantly associated with mortality. Among them, the concentration of IP-10 was shown to be the most powerful indicator for predicting adverse outcomes in COVID-19 patients (AUC: 0.715); however, its combined detection with the conventional inflammatory marker NLR did not improve the predictive value for adverse outcomes in COVID-19 patients. Additionally, serum IP-10 levels were negatively correlated with peripheral blood NK cell count and total lymphocyte count, while sTREM-1 levels were positively correlated with peripheral blood CD4+ T cell count and CD3+ T cell count. Meanwhile, IL-8 levels were positively correlated with total lymphocyte count in peripheral blood. Finally, the serum levels of cytokines/chemokines in non-survivors of COVID-19 increased significantly before death, while in survivors, they returned to normal levels before discharge. Conclusions Severely ill and non-surviving COVID-19 patients exhibit compromised immune function, with significantly higher levels of inflammation, cytokine/chemokine storms, and immune dysregulation compared to non-severe patients. Serum concentrations of IP-10, MCP-1, sTREM-1, and IL-10 levels can serve as biomarkers to predict adverse outcomes in COVID-19.
Collapse
Affiliation(s)
- Jianghao Cheng
- Department of Open Laboratory Medicine, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Haozhen Wang
- Department of General Practice, Jinhua People’s Hospital, Jinhua, China
| | - Chaodan Li
- Department of Open Laboratory Medicine, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianhua Yu
- Department of Infectious Diseases, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Mingli Zhu
- Department of Open Laboratory Medicine, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
5
|
Asefi N, Pakzad P, Khorasani A, Taghizadeh M, Amirkhani Z, Yazdi MH, Shahverdi AR, Mahdavi M. Ascorbic Acid and α-Tocopherol in the Inactivated SARS-CoV-2 Vaccine Formulation: Induction of the Th1 Pattern in Aged Mice. Viral Immunol 2024; 37:355-370. [PMID: 39212606 DOI: 10.1089/vim.2024.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Aging is physiologically associated with a decline in the function of the immune system and subsequent susceptibility to infections. Interferon-gamma (IFN-γ), a key element in the activation of cellular immunity, plays an important role in defense against virus infections. Decreased levels of IFN-γ in the elderly may explain their increased risk for viral infectious diseases such as COVID-19. There is accumulating evidence that ascorbic acid (vitamin C [VitC]) and α-tocopherol together help improve the function of the immune system in the elderly, control infections, and decrease the treatment duration. A SARS-CoV-2 strain was isolated from a patient and then cultured in the Vero cell line. The isolated and propagated virus was then inactivated using formalin and purified by the column chromatography. The inactivated SARS-CoV-2 was formulated in the Alum adjuvant combined with VitC or α-tocopherol and/or both of them. The vaccines were injected twice to young and aged C57BL/6 mice. Two weeks later, IFN-γ, IL-4, and IL-2 cytokines were assessed using ELISA Kits. Specific IgG and IgG1/IgG2a were assessed by an in-house ELISA. In addition, the expression of PD1 and TERT genes in the spleen tissue of the mice was measured using real-time PCR. IL-4 and IFN-γ cytokines showed a significant increase in both aged and young mice compared with the Alum-based vaccine. In addition, our results exhibited a significant decrease and increase in specific total IgG and the IgG2a/IgG1 ratio, respectively. Furthermore, the vaccine formulated in α-tocopherol + VitC led to decreased PD1 and increased TERT gene expression levels. In conclusion, our results demonstrated that α-tocopherol + VitC formulated in the inactivated SARS-CoV-2 vaccine led to a shift toward Th1, which may be due to their effect on the physiology of cells, especially aged ones and changing their phenotype toward young cells.
Collapse
Affiliation(s)
- Nika Asefi
- Department of Microbiology, Faculty of Basic Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Academic Center for Education, Culture and Research (ACECR), Motamed Cancer Institute, Tehran, Iran
| | - Parviz Pakzad
- Department of Microbiology, Faculty of Basic Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Akbar Khorasani
- Department of FMD vaccine production, Razi Vaccine & Serum Research Institute, Agricultural Research, Education & Extension Organization (AREEO), Karaj, Iran
| | - Morteza Taghizadeh
- Department of Human Vaccine, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Zahra Amirkhani
- Cellular and Molecular Biology Research Center, Larestan University of Medical Sciences, Larestan, Iran
| | - Mohammad Hossein Yazdi
- Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Recombinant Vaccine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Shahverdi
- Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mahdavi
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Academic Center for Education, Culture and Research (ACECR), Motamed Cancer Institute, Tehran, Iran
- Recombinant Vaccine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
De Lorenzo R, Loré NI, Finardi A, Mandelli A, Calesella F, Palladini M, Cirillo DM, Tresoldi C, Ciceri F, Rovere-Querini P, Manfredi AA, Mazza MG, Benedetti F, Furlan R. Inflammatory Markers Predict Blood Neurofilament Light Chain Levels in Acute COVID-19 Patients. Int J Mol Sci 2024; 25:8259. [PMID: 39125829 PMCID: PMC11311410 DOI: 10.3390/ijms25158259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Acute coronavirus disease 2019 (COVID-19) is paralleled by a rise in the peripheral levels of neurofilament light chain (NfL), suggesting early nervous system damage. In a cohort of 103 COVID-19 patients, we studied the relationship between the NfL and peripheral inflammatory markers. We found that the NfL levels are significantly predicted by a panel of circulating cytokines/chemokines, including CRP, IL-4, IL-8, IL-9, Eotaxin, and MIP-1ß, which are highly up-regulated during COVID-19 and are associated with clinical outcomes. Our findings show that peripheral cytokines influence the plasma levels of the NfL, suggesting a potential role of the NfL as a marker of neuronal damage associated with COVID-19 inflammation.
Collapse
Affiliation(s)
- Rebecca De Lorenzo
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (R.D.L.); (N.I.L.); (P.R.-Q.); (A.A.M.)
- Faculty of Medicine, Università Vita-Salute San Raffaele, 20132 Milan, Italy;
| | - Nicola I. Loré
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (R.D.L.); (N.I.L.); (P.R.-Q.); (A.A.M.)
- Faculty of Medicine, Università Vita-Salute San Raffaele, 20132 Milan, Italy;
| | - Annamaria Finardi
- Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (A.F.); (A.M.); (R.F.)
| | - Alessandra Mandelli
- Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (A.F.); (A.M.); (R.F.)
| | - Federico Calesella
- Faculty of Psychology, Università Vita-Salute San Raffaele, 20132 Milan, Italy; (F.C.); (M.P.)
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milan, Italy;
| | - Mariagrazia Palladini
- Faculty of Psychology, Università Vita-Salute San Raffaele, 20132 Milan, Italy; (F.C.); (M.P.)
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milan, Italy;
| | - Daniela M. Cirillo
- Emerging Bacterial Pathogens Unit, IRCCS Ospedale San Raffaele, 20132 Milan, Italy;
| | - Cristina Tresoldi
- Hematology and Bone Marrow Transplant, IRCCS Ospedale San Raffaele, 20132 Milan, Italy;
| | - Fabio Ciceri
- Faculty of Medicine, Università Vita-Salute San Raffaele, 20132 Milan, Italy;
- Hematology and Bone Marrow Transplant, IRCCS Ospedale San Raffaele, 20132 Milan, Italy;
| | - Patrizia Rovere-Querini
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (R.D.L.); (N.I.L.); (P.R.-Q.); (A.A.M.)
- Faculty of Medicine, Università Vita-Salute San Raffaele, 20132 Milan, Italy;
| | - Angelo A. Manfredi
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (R.D.L.); (N.I.L.); (P.R.-Q.); (A.A.M.)
- Faculty of Medicine, Università Vita-Salute San Raffaele, 20132 Milan, Italy;
| | - Mario G. Mazza
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milan, Italy;
| | - Francesco Benedetti
- Faculty of Medicine, Università Vita-Salute San Raffaele, 20132 Milan, Italy;
- Faculty of Psychology, Università Vita-Salute San Raffaele, 20132 Milan, Italy; (F.C.); (M.P.)
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milan, Italy;
| | - Roberto Furlan
- Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (A.F.); (A.M.); (R.F.)
| |
Collapse
|
7
|
Sbierski-Kind J, Schlickeiser S, Feldmann S, Ober V, Grüner E, Pleimelding C, Gilberg L, Brand I, Weigl N, Ahmed MIM, Ibarra G, Ruzicka M, Benesch C, Pernpruner A, Valdinoci E, Hoelscher M, Adorjan K, Stubbe HC, Pritsch M, Seybold U, Roider J. Persistent immune abnormalities discriminate post-COVID syndrome from convalescence. Infection 2024; 52:1087-1097. [PMID: 38326527 PMCID: PMC11142964 DOI: 10.1007/s15010-023-02164-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/19/2023] [Indexed: 02/09/2024]
Abstract
BACKGROUND Innate lymphoid cells (ILCs) are key organizers of tissue immune responses and regulate tissue development, repair, and pathology. Persistent clinical sequelae beyond 12 weeks following acute COVID-19 disease, named post-COVID syndrome (PCS), are increasingly recognized in convalescent individuals. ILCs have been associated with the severity of COVID-19 symptoms but their role in the development of PCS remains poorly defined. METHODS AND RESULTS Here, we used multiparametric immune phenotyping, finding expanded circulating ILC precursors (ILCPs) and concurrent decreased group 2 innate lymphoid cells (ILC2s) in PCS patients compared to well-matched convalescent control groups at > 3 months after infection or healthy controls. Patients with PCS showed elevated expression of chemokines and cytokines associated with trafficking of immune cells (CCL19/MIP-3b, FLT3-ligand), endothelial inflammation and repair (CXCL1, EGF, RANTES, IL-1RA, PDGF-AA). CONCLUSION These results define immunological parameters associated with PCS and might help find biomarkers and disease-relevant therapeutic strategies.
Collapse
Affiliation(s)
- Julia Sbierski-Kind
- Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Internal Medicine IV, Division of Diabetology, Endocrinology and Nephrology, University Hospital, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
- The M3 Research Center, University Clinic Tübingen (UKT), Medical Faculty, Otfried-Müllerstr. 37, Tübingen, Germany
| | - Stephan Schlickeiser
- Charité, Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt- Universität Zu Berlin, Institute of Medical Immunology, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité, Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117, Berlin, Germany
| | - Svenja Feldmann
- Department of Infectious Diseases, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Veronica Ober
- Department of Infectious Diseases, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Eva Grüner
- Department of Infectious Diseases, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Claire Pleimelding
- Department of Infectious Diseases, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Leonard Gilberg
- Department of Infectious Diseases, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Isabel Brand
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Nikolas Weigl
- Department of Medicine IV, Division of Clinical Pharmacology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Mohamed I M Ahmed
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- Division of Infectious Diseases and Tropical Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Gerardo Ibarra
- The M3 Research Center, University Clinic Tübingen (UKT), Medical Faculty, Otfried-Müllerstr. 37, Tübingen, Germany
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Michael Ruzicka
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Medicine III, LMU University Hospital, LMU Munich, Munich, Germany
| | - Christopher Benesch
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Medicine II, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anna Pernpruner
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Medicine II, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Elisabeth Valdinoci
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Medicine II, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Michael Hoelscher
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- Division of Infectious Diseases and Tropical Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Kristina Adorjan
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Hans Christian Stubbe
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Medicine II, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Michael Pritsch
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- Division of Infectious Diseases and Tropical Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ulrich Seybold
- Department of Infectious Diseases, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Julia Roider
- Department of Infectious Diseases, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany.
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany.
| |
Collapse
|
8
|
Gietl M, Burkert F, Hofer S, Gostner JM, Sonnweber T, Tancevski I, Pizzini A, Sahanic S, Schroll A, Brigo N, Egger A, Bellmann-Weiler R, Löffler-Ragg J, Weiss G, Kurz K. Laboratory parameters related to disease severity and physical performance after reconvalescence of acute COVID-19 infection. Sci Rep 2024; 14:10388. [PMID: 38710760 DOI: 10.1038/s41598-024-57448-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/18/2024] [Indexed: 05/08/2024] Open
Abstract
Research into the molecular basis of disease trajectory and Long-COVID is important to get insights toward underlying pathophysiological processes. The objective of this study was to investigate inflammation-mediated changes of metabolism in patients with acute COVID-19 infection and throughout a one-year follow up period. The study enrolled 34 patients with moderate to severe COVID-19 infection admitted to the University Clinic of Innsbruck in early 2020. The dynamics of multiple laboratory parameters (including inflammatory markers [C-reactive protein (CRP), interleukin-6 (IL-6), neopterin] as well as amino acids [tryptophan (Trp), phenylalanine (Phe) and tyrosine (Tyr)], and parameters of iron and vitamin B metabolism) was related to disease severity and patients' physical performance. Also, symptom load during acute illness and at approximately 60 days (FU1), and one year after symptom onset (FU2) were monitored and related with changes of the investigated laboratory parameters: During acute infection many investigated laboratory parameters were elevated (e.g., inflammatory markers, ferritin, kynurenine, phenylalanine) and enhanced tryptophan catabolism and phenylalanine accumulation were found. At FU2 nearly all laboratory markers had declined back to reference ranges. However, kynurenine/tryptophan ratio (Kyn/Trp) and the phenylalanine/tyrosine ratio (Phe/Tyr) were still exceeding the 95th percentile of healthy controls in about two thirds of our cohort at FU2. Lower tryptophan concentrations were associated with B vitamin availability (during acute infection and at FU1), patients with lower vitamin B12 levels at FU1 had a prolonged and more severe impairment of their physical functioning ability. Patients who had fully recovered (ECOG 0) presented with higher concentrations of iron parameters (ferritin, hepcidin, transferrin) and amino acids (phenylalanine, tyrosine) at FU2 compared to patients with restricted ability to work. Persistent symptoms at FU2 were tendentially associated with IFN-γ related parameters. Women were affected by long-term symptoms more frequently. Conclusively, inflammation-mediated biochemical changes appear to be related to symptoms of patients with acute and Long Covid.
Collapse
Affiliation(s)
- Mario Gietl
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Francesco Burkert
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Stefanie Hofer
- Institute of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Innrain 80, 6020, Innsbruck, Austria
| | - Johanna M Gostner
- Institute of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Innrain 80, 6020, Innsbruck, Austria
| | - Thomas Sonnweber
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Ivan Tancevski
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Alex Pizzini
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Sabina Sahanic
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Andrea Schroll
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Natascha Brigo
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Alexander Egger
- Central Institute for Medical and Chemical Laboratory Diagnostics (ZIMCL), Tirol Kliniken GmbH, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Rosa Bellmann-Weiler
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Judith Löffler-Ragg
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| | - Katharina Kurz
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| |
Collapse
|
9
|
Kang Y, Lu S, Zhong R, You J, Chen J, Li L, Huang R, Xie Y, Chen F, Chen J, Chen L. The immune inflammation factors associated with disease severity and poor prognosis in patients with COVID-19: A retrospective cohort study. Heliyon 2024; 10:e23583. [PMID: 38173531 PMCID: PMC10761779 DOI: 10.1016/j.heliyon.2023.e23583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) is associated with immune dysregulation and cytokine storm. It is essential to explore the immune response characteristics of peripheral circulation in COVID-19 patients to reveal pathogenesis and predict disease progression. In this study, the levels of total immunoglobulins (IgG, IgM, IgA), complement (C3, C4),lymphocyte subsets (CD3+ cell,CD4+ cell,CD8+ cell, NK cell, CD19+ cell and CD45+ cell) and cytokines (IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-17, IL-12p, IL-1β, TNF-α, IFN-α and IFN-γ) were retrospectively analyzed in COVID-19 patients. A total of 513 patients were enrolled in this study, cases were distributed according to clinical status as mild or moderate (n = 212), severe survivors (n = 197) and severe non-survivors (n = 104). IL-6, IL-8, IL-10 and IFN-γ were increased in severe patients compared with non-severe patients, despite decreased CD45+ cell, CD3+ cell, CD4+ cell, CD8+ cell, CD19+ cell, and NK cell. Compared with severe survivors, the levels of L-6, IL-8 and IL-10 in non-survivors increased significantly, and levels of C3, CD45+ cell, CD3+ cell,CD4+ cell,CD8+ cell, and NK cell decreased. Moreover, age, IL-8, IL-10, CD8+cells and NK cell were independent risk factors for the severity of COVID-19. Multivariable regression showed increasing odds ratio of in-hospital death associated with tumor, older age, higher IL-8 level, and decreasing odds ratio of in-hospital death associated with increased levels of CD8+cell and NK cell. Finally, patients with tumor, or high IL-6 or high IL-10 expression and lower CD8+ or lower NK levels exhibited a significantly shorter survival time. In conclusion, our study provides findings of the immunological characteristics associated with disease severity to predict the progression of COVID-19. The immune inflammation factors, such as IL-6, IL-8, IL-10, CD8+ cell and NK cell, could serve as excellent biomarkers for monitoring or predicting COVID-19 progression therapeutic to COVID-19 patients.
Collapse
Affiliation(s)
- Yanli Kang
- Department of Clinical Laboratory, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Shifa Lu
- Department of Clinical Laboratory, JianOu Municipal Hospital of Fujian Province, Nanping, China
| | - Ruifang Zhong
- Department of Clinical Laboratory, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Jianbin You
- Department of Clinical Laboratory, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Jiahao Chen
- Department of Clinical Laboratory, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Ling Li
- Department of Clinical Laboratory, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Rongbin Huang
- Department of Clinical Laboratory, JianOu Municipal Hospital of Fujian Province, Nanping, China
| | - Yanyan Xie
- Department of Clinical Laboratory, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Falin Chen
- Department of Clinical Laboratory, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Jinhua Chen
- Department of Clinical Laboratory, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Liangyuan Chen
- Department of Clinical Laboratory, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| |
Collapse
|
10
|
de Walque JM, de Terwangne C, Jungers R, Pierard S, Beauloye C, Laarbaui F, Dechamps M, Jacquet LM. Potential for recovery after extremely prolonged VV-ECMO support in well-selected severe COVID-19 patients: a retrospective cohort study. BMC Pulm Med 2024; 24:19. [PMID: 38191411 PMCID: PMC10773010 DOI: 10.1186/s12890-023-02836-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/28/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND VenoVenous ExtraCorporeal Membrane Oxygenation (VV-ECMO) has been widely used as supportive therapy for severe respiratory failure related to Acute Respiratory Distress Syndrome (ARDS) due to coronavirus 2019 (COVID-19). Only a few data describe the maximum time under VV-ECMO during which pulmonary recovery remains possible. The main objective of this study is to describe the outcomes of prolonged VV-ECMO in patients with COVID-19-related ARDS. METHODS This retrospective study was conducted at a tertiary ECMO center in Brussels, Belgium, between March 2020 and April 2022. All adult patients with ARDS due to COVID-19 who were managed with ECMO therapy for more than 50 days as a bridge to recovery were included. RESULTS Fourteen patients met the inclusion criteria. The mean duration of VV-ECMO was 87 ± 29 days. Ten (71%) patients were discharged alive from the hospital. The 90-day survival was 86%, and the one-year survival was 71%. The evolution of the patients was characterized by very impaired pulmonary compliance that started to improve slowly and progressively on day 53 (± 25) after the start of ECMO. Of note, four patients improved substantially after a second course of steroids. CONCLUSIONS There is potential for recovery in patients with very severe ARDS due to COVID-19 supported by VV-ECMO for up to 151 days.
Collapse
Affiliation(s)
- Jean-Marc de Walque
- Department of Cardiovascular Intensive Care, Cliniques Universitaires Saint Luc, Catholic University of Louvain, Avenue Hippocrate 10, Brussels, 1200, Belgium
- Emergency Department, Universitair Ziekenhuis Brussels, Brussels, Belgium
| | - Christophe de Terwangne
- Department of Cardiovascular Intensive Care, Cliniques Universitaires Saint Luc, Catholic University of Louvain, Avenue Hippocrate 10, Brussels, 1200, Belgium
| | - Raphaël Jungers
- Institute for Information and Communication Technologies, Electronics, and Applied Mathematics, Université Catholique de Louvain, Louvain-La-Neuve, Belgium
| | - Sophie Pierard
- Department of Cardiovascular Intensive Care, Cliniques Universitaires Saint Luc, Catholic University of Louvain, Avenue Hippocrate 10, Brussels, 1200, Belgium
- Pôle de Recherche Cardiovasculaire, Institutde Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Christophe Beauloye
- Department of Cardiovascular Intensive Care, Cliniques Universitaires Saint Luc, Catholic University of Louvain, Avenue Hippocrate 10, Brussels, 1200, Belgium
- Pôle de Recherche Cardiovasculaire, Institutde Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Fatima Laarbaui
- Department of Cardiovascular Intensive Care, Cliniques Universitaires Saint Luc, Catholic University of Louvain, Avenue Hippocrate 10, Brussels, 1200, Belgium
| | - Melanie Dechamps
- Department of Cardiovascular Intensive Care, Cliniques Universitaires Saint Luc, Catholic University of Louvain, Avenue Hippocrate 10, Brussels, 1200, Belgium
- Pôle de Recherche Cardiovasculaire, Institutde Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Luc Marie Jacquet
- Department of Cardiovascular Intensive Care, Cliniques Universitaires Saint Luc, Catholic University of Louvain, Avenue Hippocrate 10, Brussels, 1200, Belgium.
- Pôle de Recherche Cardiovasculaire, Institutde Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
11
|
Dhawan A, Ganduboina R, Dutta P, Gandrakota G, Kumar Y, Palagati K, Avvaru SN, Sreekumar A, Mylavarapu S, Nizami A, Babu AT, Alam M. COVID-associated cystitis: the culprit behind the bladder woes post-COVID infection? A review. Int Urol Nephrol 2023; 55:2367-2372. [PMID: 37410305 DOI: 10.1007/s11255-023-03700-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023]
Abstract
PURPOSE SARS-CoV-2 had a significant impact on public health since its declaration as a pandemic. It is linked to a high rate of multiple organ dysfunction syndrome (MODS) and a slew of long-term symptoms that are yet to be thoroughly investigated. Among these, genitourinary symptoms of an overactive bladder (increased frequency, urgency, and nocturia) have recently been identified and labeled as COVID-associated cystitis (CAC). This current research is performed to review this phenomenon. METHODS A literature search was performed in MEDLINE, Cochrane, and Google Scholar databases and 185 articles were obtained in total, including reviews and trials involving CAC, which were screened using various methods, and 42 articles were gathered for the review. RESULTS Among its multitude of symptoms, overactive bladder (OAB) leads to poorer outcomes. The inflammatory mediator-based theory and the ACE-2 receptor-based theory are two probable theories for how it harms the bladder urothelium. The expression of ACE-2 receptors during the pathogenesis of CAC warrants further investigation as ACE modulation may reveal more information about COVID-19 complications. Other comorbidities, immunocompromised patients, or patients with a history of urinary tract infections can also exacerbate this condition. CONCLUSION The scarce literature collected related to CAC gives us an insight into the symptomatology, pathophysiology, and possible treatment plans. Treatment choices are diverse among COVID-19-afflicted and unaffected patients for treating urinary symptoms which highlights the importance to distinguish between the two. CAC shows greater prevalence and morbidity when linked to other conditions, thereby warranting future developments in it.
Collapse
Affiliation(s)
| | - Rohit Ganduboina
- NRI Institute of Medical Sciences, Sangivalasa, Visakhapatnam, 531162, India.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Dubhashi S, Sinha S, Dwivedi S, Ghanekar J, Kadam S, Samant P, Datta V, Singh S, Chaudry IH, Gurmet P, Kelkar H, Mishra R, Galwankar S, Agrawal A. Early Trends to Show the Efficacy of Cordyceps militaris in Mild to Moderate COVID Inflammation. Cureus 2023; 15:e43731. [PMID: 37727187 PMCID: PMC10505833 DOI: 10.7759/cureus.43731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2023] [Indexed: 09/21/2023] Open
Abstract
Background/objective Cordyceps enhances animal survival against influenza by boosting the immune system. In animal studies, it also had anti-inflammatory and preventive properties. Cordyceps stimulates the immune system by increasing the activity and production of various immune cells. Some studies have shown the role of Cordyceps in the novel SARS-CoV-2 virus responsible for the COVID-19 pandemic, in addition to other respiratory diseases caused by the Picorna viruses, SARS-CoV, MERS-CoV, and Influenza viruses. However, it remains unknown whether this food supplement is safe and has anti-inflammatory effects in patients with COVID-19. Therefore, the objectives of this study were to evaluate the use and efficacy of Cordyceps capsules as an adjunct to standard treatment in patients with mild (symptomatic) to moderate COVID-19 infection. Methods A randomised, double-blind, placebo-controlled study was conducted to evaluate the efficacy and safety of Cordyceps capsules (a food supplement) 500 mg as adjuvant therapy in patients with COVID-19. The rationale for dose selection was as per the existing evidence from toxicity studies. The inclusion criteria were patients with either a mild or moderate COVID-19 infection. Clinical features suggestive of dyspnoea or hypoxia, fever, and cough, including SpO2 <94% (range 90-94%) on room air and a respiratory rate ≥24 per minute, were also included. Results Sixty-five patients were recruited for the study, with 33 in the Cordyceps group and 32 in the placebo group. Out of 58 evaluable patients, 33 recovered on day 5, 49 on day 10, and 58 on days 16 and 30. The recovery of patients steadily increased from 56.9% on day 5 to 100% on day 30. The time to clinical recovery was shorter in the Cordyceps group than in the placebo group (mean 6.6 vs. 7.3 days; p > 0.05) overall and for mild disease. However, there was no difference in the time to recovery (time from day 1 to the resolution of all symptoms) for moderate disease. A lower frequency of normal chest X-rays on day 1 and a higher number on day 16 in the treatment group than in the placebo group suggest an improvement in the number of normal chest X-rays with Cordyceps. Significant changes were seen in biomarkers MCPIP, CxCL10, and IL-1β for overall (both mild and moderate patients) on days 5 and 10 as compared to baseline, and in biomarkers CRP and CxCL10 in moderate category patients on days 5 and 10, respectively. There were no statistically significant changes in IL-6, ferritin, lactate dehydrogenase (LDH), C-reactive protein (CRP), or D-dimer levels between baseline and day 5/10 in patients taking Cordyceps capsules and also between the treatment and placebo groups. Conclusion Cordyceps capsules administered at a dose of 500 mg three times a day along with supportive treatment showed effectiveness in patients with mild to moderate COVID-19 infection, as evidenced by the proportionately higher number of recoveries on day 5, the relatively shorter time for improvement of clinical symptoms, and the proportionately higher number of patients showing negative RT-PCR tests on day 10. Thus, Cordyceps appears to be a safe immunological adjuvant for the treatment of patients with mild-to-moderate COVID-19. Future studies with a larger sample size would shed more light on the evidence, as there are limitations in the generalizability of the results from the present study due to the small sample size.
Collapse
Affiliation(s)
| | - Sagar Sinha
- Emergency Medicine, Mahatma Gandhi Mission (MGM) Medical College and Hospital, Navi Mumbai, IND
| | - Sankalp Dwivedi
- General Surgery, Maharishi Markandeshwar (MM) Institute of Medical Sciences and Research, Mullana, IND
| | - Jaishree Ghanekar
- Internal Medicine, Mahatma Gandhi Mission (MGM) Medical College and Hospital, Navi Mumbai, IND
| | - Sameer Kadam
- Cardiovascular Surgery, Mahatma Gandhi Mission (MGM) Medical College and Hospital, Navi Mumbai, IND
| | - Parineeta Samant
- Biochemistry, Mahatma Gandhi Mission (MGM) Medical College and Hospital, Navi Mumbai, IND
| | - Vibha Datta
- Pathology, All India Institute of Medical Sciences, Nagpur, Nagpur, IND
| | - Sarman Singh
- Medical Science and Engineering Research (MEDSER) Center, Indian Institute of Science Education and Research (IISER), Bhopal, IND
| | | | - Padma Gurmet
- Miscellaneous, National Institute of Sowa-Rigpa, Leh, IND
| | | | - Rakesh Mishra
- Neurosurgery, All India Institute of Medical Sciences, Bhopal, Bhopal, IND
| | - Sagar Galwankar
- Emergency Medicine, Florida State University College of Medicine, Sarasota, USA
| | - Amit Agrawal
- Neurosurgery, All India Institute of Medical Sciences, Bhopal, Bhopal, IND
| |
Collapse
|
13
|
Lee G, Schauner R, Burke J, Borocz J, Vasana S, Sobieraj L, Giraudo M, Jackson Z, Ansari Q, Navas M, Sakr H, Wald D. NK cells from COVID-19 positive patients exhibit enhanced cytotoxic activity upon NKG2A and KIR2DL1 blockade. Front Immunol 2023; 14:1022890. [PMID: 37483595 PMCID: PMC10360118 DOI: 10.3389/fimmu.2023.1022890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
SARS CoV-2 has caused a global pandemic leading to significant morbidity and mortality. There is a need to elucidate and further understand the implications of COVID-19 disease on the immune system to develop improved therapeutic strategies. In particular, Natural Killer (NK) cells play an essential role in mediating the innate immune response against viral infections. To better understand the role of innate immunity in COVID-19, we characterized the phenotype of circulating NK cells from 74 COVID-19 patients and 25 controls. Through evaluating the protein expression of activating and inhibitory NK cell surface molecules using dimension reduction analysis and clustering, we identified 4 specific clusters of NK cells specific to disease state (COVID-19 positive or COVID-19 negative) and characterized COVID-19 positive NK cells as: NGK2A+KIR2DL1+NKG2C-. Utilizing blocking antibodies specific for receptors NKG2A and KIR2DL1, we found that both NKG2A and KIR2DL1 blockade markedly enhances the ability of NK cells from COVID-19 positive patients to lyse SARS-Cov-2 infected cells. Overall, this study reveals new insights into NK cell phenotypes during SARS-CoV-2 infection and suggests a therapeutic approach worthy of further investigation to enhance NK cell-mediated responses against the virus.
Collapse
Affiliation(s)
- Grace Lee
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Robert Schauner
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Juanita Burke
- Department of Pathology, Louis Stokes Cleveland Veteran Affairs (VA) Medical Center, Cleveland, OH, United States
| | - Jade Borocz
- Department of Pathology, Louis Stokes Cleveland Veteran Affairs (VA) Medical Center, Cleveland, OH, United States
| | - Smitha Vasana
- Department of Pediatrics, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Lukasz Sobieraj
- Midwestern University Chicago College of Osteopathic Medicine, Downers Grove, IL, United States
| | - Maria Giraudo
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Zachary Jackson
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Qasim Ansari
- Department of Pathology, Louis Stokes Cleveland Veteran Affairs (VA) Medical Center, Cleveland, OH, United States
| | - Maria Navas
- Department of Pathology, Louis Stokes Cleveland Veteran Affairs (VA) Medical Center, Cleveland, OH, United States
| | - Hany Sakr
- Department of Pathology, Louis Stokes Cleveland Veteran Affairs (VA) Medical Center, Cleveland, OH, United States
| | - David Wald
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
- Department of Pathology, Louis Stokes Cleveland Veteran Affairs (VA) Medical Center, Cleveland, OH, United States
| |
Collapse
|
14
|
Dechamps M, De Poortere J, Octave M, Ginion A, Robaux V, Pirotton L, Bodart J, Gruson D, Van Dievoet MA, Douxfils J, Haguet H, Morimont L, Derive M, Jolly L, Bertrand L, Laterre PF, Horman S, Beauloye C. Dexamethasone Modulates the Cytokine Response but Not COVID-19-Induced Coagulopathy in Critically Ill. Int J Mol Sci 2023; 24:ijms24087278. [PMID: 37108440 PMCID: PMC10138864 DOI: 10.3390/ijms24087278] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/29/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Severe forms of coronavirus 2019 (COVID-19) disease are caused by an exaggerated systemic inflammatory response and subsequent inflammation-related coagulopathy. Anti-inflammatory treatment with low dose dexamethasone has been shown to reduce mortality in COVID-19 patients requiring oxygen therapy. However, the mechanisms of action of corticosteroids have not been extensively studied in critically ill patients in the context of COVID-19. Plasma biomarkers of inflammatory and immune responses, endothelial and platelet activation, neutrophil extracellular trap formation, and coagulopathy were compared between patients treated or not by systemic dexamethasone for severe forms of COVID-19. Dexamethasone treatment significantly reduced the inflammatory and lymphoid immune response in critical COVID-19 patients but had little effect on the myeloid immune response and no effect on endothelial activation, platelet activation, neutrophil extracellular trap formation, and coagulopathy. The benefits of low dose dexamethasone on outcome in critical COVID-19 can be partially explained by a modulation of the inflammatory response but not by reduction of coagulopathy. Future studies should explore the impact of combining dexamethasone with other immunomodulatory or anticoagulant drugs in severe COVID-19.
Collapse
Affiliation(s)
- Mélanie Dechamps
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
- Department of Cardiovascular Intensive Care, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Julien De Poortere
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Marie Octave
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Audrey Ginion
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Valentine Robaux
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Laurence Pirotton
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Julie Bodart
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Damien Gruson
- Department of Clinical Biology, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | | | - Jonathan Douxfils
- Department of Pharmacy, Namur Research Institute for Life Sciences (Narilis), 5000 Namur, Belgium
- Qualiblood, s.a., 5000 Namur, Belgium
| | - Hélène Haguet
- Department of Pharmacy, Namur Research Institute for Life Sciences (Narilis), 5000 Namur, Belgium
- Qualiblood, s.a., 5000 Namur, Belgium
| | - Laure Morimont
- Department of Pharmacy, Namur Research Institute for Life Sciences (Narilis), 5000 Namur, Belgium
- Qualiblood, s.a., 5000 Namur, Belgium
| | - Marc Derive
- Inotrem s.a., 54500 Vandoeuvre-les-Nancy, France
| | - Lucie Jolly
- Inotrem s.a., 54500 Vandoeuvre-les-Nancy, France
| | - Luc Bertrand
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO) Department, WEL Research Institute, 1300 Wavre, Belgium
| | - Pierre-François Laterre
- Department of Intensive Care, Centre Hospitalier Regional Mons-Hainaut, 7000 Mons, Belgium
- Critical Care Coordinating Center (4Cs), 1200 Brussels, Belgium
| | - Sandrine Horman
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Christophe Beauloye
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
- Department of Cardiology, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| |
Collapse
|
15
|
Matthay ZA, Fields AT, Wick KD, Jones C, Lane HC, Herrera K, Nuñez-Garcia B, Gennatas E, Hendrickson CM, Kornblith AE, Matthay MA, Kornblith LZ. Association of SARS-CoV-2 nucleocapsid viral antigen and the receptor for advanced glycation end products with development of severe disease in patients presenting to the emergency department with COVID-19. Front Immunol 2023; 14:1130821. [PMID: 37026003 PMCID: PMC10070743 DOI: 10.3389/fimmu.2023.1130821] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/07/2023] [Indexed: 04/08/2023] Open
Abstract
Introduction There remains a need to better identify patients at highest risk for developing severe Coronavirus Disease 2019 (COVID-19) as additional waves of the pandemic continue to impact hospital systems. We sought to characterize the association of receptor for advanced glycation end products (RAGE), SARS-CoV-2 nucleocapsid viral antigen, and a panel of thromboinflammatory biomarkers with development of severe disease in patients presenting to the emergency department with symptomatic COVID-19. Methods Blood samples were collected on arrival from 77 patients with symptomatic COVID-19, and plasma levels of thromboinflammatory biomarkers were measured. Results Differences in biomarkers between those who did and did not develop severe disease or death 7 days after presentation were analyzed. After adjustment for multiple comparisons, RAGE, SARS-CoV-2 nucleocapsid viral antigen, interleukin (IL)-6, IL-10 and tumor necrosis factor receptor (TNFR)-1 were significantly elevated in the group who developed severe disease (all p<0.05). In a multivariable regression model, RAGE and SARS-CoV-2 nucleocapsid viral antigen remained significant risk factors for development of severe disease (both p<0.05), and each had sensitivity and specificity >80% on cut-point analysis. Discussion Elevated RAGE and SARS-CoV-2 nucleocapsid viral antigen on emergency department presentation are strongly associated with development of severe disease at 7 days. These findings are of clinical relevance for patient prognostication and triage as hospital systems continue to be overwhelmed. Further studies are warranted to determine the feasibility and utility of point-of care measurements of these biomarkers in the emergency department setting to improve patient prognostication and triage.
Collapse
Affiliation(s)
- Zachary A. Matthay
- Department of Surgery, Zuckerberg San Francisco General Hospital, University of California San Francisco, San Francisco, CA, United States
| | - Alexander T. Fields
- Department of Surgery, Zuckerberg San Francisco General Hospital, University of California San Francisco, San Francisco, CA, United States
| | - Katherine D. Wick
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Chayse Jones
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
| | - H. Clifford Lane
- Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Kimberly Herrera
- Department of Surgery, Zuckerberg San Francisco General Hospital, University of California San Francisco, San Francisco, CA, United States
| | - Brenda Nuñez-Garcia
- Department of Surgery, Zuckerberg San Francisco General Hospital, University of California San Francisco, San Francisco, CA, United States
| | - Efstathios Gennatas
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, United States
| | - Carolyn M. Hendrickson
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Aaron E. Kornblith
- Department of Emergency Medicine, Zuckerberg San Francisco General Hospital, University of California San Francisco, San Francisco, CA, United States
| | - Michael A. Matthay
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Lucy Z. Kornblith
- Department of Surgery, Zuckerberg San Francisco General Hospital, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
16
|
Guo M, Wu G, Tan Y, Li Y, Jin X, Qi W, Guo X, Zhang C, Zhu Z, Zhao L. Guild-Level Microbiome Signature Associated with COVID-19 Severity and Prognosis. mBio 2023; 14:e0351922. [PMID: 36744910 PMCID: PMC9973266 DOI: 10.1128/mbio.03519-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 01/13/2023] [Indexed: 02/07/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) severity has been associated with alterations of the gut microbiota. However, the relationship between gut microbiome alterations and COVID-19 prognosis remains elusive. Here, we performed a genome-resolved metagenomic analysis on fecal samples from 300 in-hospital COVID-19 patients, collected at the time of admission. Among the 2,568 high quality metagenome-assembled genomes (HQMAGs), redundancy analysis identified 33 HQMAGs which showed differential distribution among mild, moderate, and severe/critical severity groups. Co-abundance network analysis determined that the 33 HQMAGs were organized as two competing guilds. Guild 1 harbored more genes for short-chain fatty acid biosynthesis, and fewer genes for virulence and antibiotic resistance, compared with Guild 2. Based on average abundance difference between the two guilds, the guild-level microbiome index (GMI) classified patients from different severity groups (average AUROC [area under the receiver operating curve] = 0.83). Moreover, age-adjusted partial Spearman's correlation showed that GMIs at admission were correlated with 8 clinical parameters, which are predictors for COVID-19 prognosis, on day 7 in hospital. In addition, GMI at admission was associated with death/discharge outcome of the critical patients. We further validated that GMI was able to consistently classify patients with different COVID-19 symptom severities in different countries and differentiated COVID-19 patients from healthy subjects and pneumonia controls in four independent data sets. Thus, this genome-based guild-level signature may facilitate early identification of hospitalized COVID-19 patients with high risk of more severe outcomes at time of admission. IMPORTANCE Previous reports on the associations between COVID-19 and gut microbiome have been constrained by taxonomic-level analysis and overlook the interaction between microbes. By applying a genome-resolved, reference-free, guild-based metagenomic analysis, we demonstrated that the relationship between gut microbiota and COVID-19 is genome-specific instead of taxon-specific or even species-specific. Moreover, the COVID-19-associated genomes were not independent but formed two competing guilds, with Guild 1 potentially beneficial and Guild 2 potentially more detrimental to the host based on comparative genomic analysis. The dominance of Guild 2 over Guild 1 at time of admission was associated with hospitalized COVID-19 patients at high risk for more severe outcomes. Moreover, the guild-level microbiome signature is not only correlated with the symptom severity of COVID-19 patients, but also differentiates COVID-19 patients from pneumonia controls and healthy subjects across different studies. Here, we showed the possibility of using genome-resolved and guild-level microbiome signatures to identify hospitalized COVID-19 patients with a high risk of more severe outcomes at the time of admission.
Collapse
Affiliation(s)
- Mingquan Guo
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Guojun Wu
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences and Center for Microbiome, Nutrition, and Health, New Jersey Institute for Food, Nutrition, and Health, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
- Rutgers-Jiaotong Joint Laboratory for Microbiome and Human Health, New Brunswick, New Jersey, USA
| | - Yun Tan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai, China
| | - Yan Li
- State Key Laboratory of Microbial Metabolism and Ministry of Education Key Laboratory of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Jin
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Weiqiang Qi
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xiaokui Guo
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism and Ministry of Education Key Laboratory of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhaoqin Zhu
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Liping Zhao
- State Key Laboratory of Microbial Metabolism and Ministry of Education Key Laboratory of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences and Center for Microbiome, Nutrition, and Health, New Jersey Institute for Food, Nutrition, and Health, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
- Rutgers-Jiaotong Joint Laboratory for Microbiome and Human Health, New Brunswick, New Jersey, USA
| |
Collapse
|
17
|
Grimm L, Onyeukwu C, Kenny G, Parent DM, Fu J, Dhingra S, Yang E, Moy J, Utz PJ, Tracy R, Landay A. Immune Dysregulation in Acute SARS-CoV-2 Infection. Pathog Immun 2023; 7:143-170. [PMID: 36865568 PMCID: PMC9973727 DOI: 10.20411/pai.v7i2.537] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/13/2022] [Indexed: 02/23/2023] Open
Abstract
Introduction Neutralizing antibodies have been shown to develop rapidly following SARS-CoV-2 infection, specifically against spike (S) protein, where cytokine release and production is understood to drive the humoral immune response during acute infection. Thus, we evaluated the quantity and function of antibodies across disease severities and analyzed the associated inflammatory and coagulation pathways to identify acute markers that correlate with antibody response following infection. Methods Blood samples were collected from patients at time of diagnostic SARS-CoV-2 PCR testing between March 2020-November 2020. Plasma samples were analyzed using the MesoScale Discovery (MSD) Platform using the COVID-19 Serology Kit and U-Plex 8 analyte multiplex plate to measure anti-alpha and beta coronavirus antibody concentration and ACE2 blocking function, as well as plasma cytokines. Results A total of 230 (181 unique patients) samples were analyzed across the 5 COVID-19 disease severities. We found that antibody quantity directly correlated with functional ability to block virus binding to membrane-bound ACE2, where a lower SARS-CoV-2 anti-spike/anti-RBD response corresponded with a lower antibody blocking potential compared to higher antibody response (anti-S1 r = 0.884, P < 0.001; anti-RBD r = 0.75, P < 0.001). Across all the soluble proinflammatory markers we examined, ICAM, IL-1β, IL-4, IL-6, TNFα, and Syndecan showed a statistically significant positive correlation between cytokine or epithelial marker and antibody quantity regardless of COVID-19 disease severity. Analysis of autoantibodies against type 1 interferon was not shown to be statistically significant between disease severity groups. Conclusion Previous studies have shown that proinflammatory markers, including IL-6, IL-8, IL-1β, and TNFα, are significant predictors of COVID-19 disease severity, regardless of demographics or comorbidities. Our study demonstrated that not only are these proinflammatory markers, as well as IL-4, ICAM, and Syndecan, correlative of disease severity, they are also correlative of antibody quantity and quality following SARS-CoV-2 exposure.
Collapse
Affiliation(s)
- Lauren Grimm
- Department of Internal Medicine, RUSH University Medical Center, Chicago, IL,CORRESPONDING AUTHOR: Lauren Grimm,
| | - Chinyere Onyeukwu
- Department of Internal Medicine, RUSH University Medical Center, Chicago, IL
| | - Grace Kenny
- Centre for Experimental Pathogen Host Research, University College Dublin, Ireland; Department of Infectious Diseases, St Vincent’s University Hospital, Dublin, Ireland
| | - Danielle M. Parent
- Department of Pathology and Laboratory Medicine and Department of Biochemistry, University of Vermont Larner College of Medicine, Burlington, VT
| | - Jia Fu
- Department of Internal Medicine, RUSH University Medical Center, Chicago, IL
| | - Shaurya Dhingra
- Division of Immunology, Department of Medicine, Stanford University, Stanford, CA
| | - Emily Yang
- Division of Immunology, Department of Medicine, Stanford University, Stanford, CA
| | - James Moy
- Department of Internal Medicine, RUSH University Medical Center, Chicago, IL
| | - PJ Utz
- Division of Immunology, Department of Medicine, Stanford University, Stanford, CA
| | - Russell Tracy
- Department of Pathology and Laboratory Medicine and Department of Biochemistry, University of Vermont Larner College of Medicine, Burlington, VT
| | - Alan Landay
- Department of Internal Medicine, RUSH University Medical Center, Chicago, IL
| |
Collapse
|
18
|
He S, Fang Y, Yang J, Wang W. Association between immunity and viral shedding duration in non-severe SARS-CoV-2 Omicron variant-infected patients. Front Public Health 2022; 10:1032957. [PMID: 36620263 PMCID: PMC9813739 DOI: 10.3389/fpubh.2022.1032957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
Background Coronavirus disease 2019 (COVID-19) is a respiratory-related disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). More than 200 countries worldwide are affected by this disease. The Omicron variant of SARS-CoV-2 is the major epidemic variant worldwide and is characterized by higher infectivity. However, the immunity and risk factors for prolonged viral elimination in patients with non-severe SARS-CoV-2 Omicron variant infections are unclear. Therefore, this study aimed to examine the relationship between immunity and duration of viral elimination in non-severe SARS-CoV-2 Omicron variant-infected patients in Shanghai. Methods In total, 108 non-severe SARS-CoV-2 Omicron variant-infected patients from Shanghai New International Expo Center Fangcang Shelter Hospital were recruited in this study. They were further allocated to the early elimination (EE) and prolonged elimination (PE) groups according to SARS-CoV-2 nucleic acid positivity duration. Results Compared to patients with EE, those with PE had increased serum concentrations of interleukin (IL)-5, IL-6, and IL-8; higher neutrophil count and neutrophil-to-lymphocyte ratio (NLR); lower lymphocyte, eosinophil, and red blood cell counts; and lower concentrations of hemoglobin and albumin (ALB). In lymphocyte subpopulation analysis, lower numbers of CD3+ T cells, CD4+ T cells, CD8+ T cells, and NK cells and a higher CD4/CD8 ratio were observed in patients with PE. In addition, correlation analysis results revealed that cycle threshold values of SARS-CoV-2 Omicron variant ORF1ab and N were negatively correlated with IL-6 and IL-8 levels and positively correlated with eosinophil count in patients with COVID-19. Finally, multivariate regression analysis showed that ALB, CD4/CD8 ratio, NLR, and eosinophil count were predictors of the SARS-CoV-2 Omicron variant elimination. Conclusion In this study, we identified that the ALB, CD4/CD8 ratio, NLR, and eosinophil count were risk factors for prolonged viral elimination in non-severe SARS-CoV-2 Omicron variant-infected patients. These factors might be efficient indicators in the diagnosis, evaluation, and prognosis monitoring of the disease.
Collapse
Affiliation(s)
- Shaojun He
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yanhong Fang
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China,Department of Respiratory Medicine, Shanghai New International Expo Center Fangcang Shelter Hospital, Shanghai, China
| | - Jiong Yang
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Wang
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China,Department of Respiratory Medicine, Shanghai New International Expo Center Fangcang Shelter Hospital, Shanghai, China,*Correspondence: Wei Wang ✉
| |
Collapse
|
19
|
SeyedAlinaghi S, Karimi A, Mirzapour P, Afroughi F, Noroozi A, Arjmand G, Abshenas S, Pashaei Z, Tantuoyir MM, Dadras O, Qaderi K, Saeidi S, Dehghani S, Shabanzadeh Pirsaraie A, Mehraeen E, Afsahi AM. The relationship between C-reactive protein and levels of various cytokines in patients with COVID-19: A systematic review and correlation analysis. Health Sci Rep 2022; 5:e868. [PMID: 36248353 PMCID: PMC9547116 DOI: 10.1002/hsr2.868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/23/2022] [Accepted: 09/16/2022] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION C-reactive protein (CRP) and cytokines levels could alter in patients with coronavirus disease (COVID-19) due to the inflammatory response caused by the virus. This analysis aimed to assess the relationship between the CRP levels and the levels of various cytokines in COVID-19 patients. MATERIALS AND METHODS We searched the databases of PubMed, Cochrane, and Web of Science for relevant articles on May 29th, 2021. Applying the inclusion/exclusion criteria, the retrieved records underwent two-phase screenings; first, a title/abstract screening process, and then, a full-text screening to find the eligible studies. Data for study variables were extracted, including the CRP levels and the levels of all reported cytokines. A strong and significant relationship between Interleukins and CRP was defined as: p ≤ 0.05, 0.7 ≤ r ≤ 1. RESULTS In this study, 103 studies were included for systematic review and correlation analysis. The aggregate mean and SD of study variables were calculated and reported. The correlation between Interleukins and CRP was measured using correlation coefficient (r). It appeared that interleukin (IL)-10 has a moderate and significant relationship with CRP (p ≤ 0.05, r = 0.472). IL-10 predicted almost 10% of CRP changes. CONCLUSION This correlation analysis suggests IL-10 is moderately correlated with CRP levels in patients with COVID-19 infection. A better understanding of the pro-inflammatory markers could contribute to the implementation of therapeutic and preventive approaches. More prospective studies are suggested to explore the relationship between CRP and cytokines as potential markers for the early identification of COVID-19 progression and severity.
Collapse
Affiliation(s)
- SeyedAhmad SeyedAlinaghi
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk BehaviorsTehran University of Medical SciencesTehranIran
| | - Amirali Karimi
- School of MedicineTehran University of Medical SciencesTehranIran
| | - Pegah Mirzapour
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk BehaviorsTehran University of Medical SciencesTehranIran
| | - Fatemeh Afroughi
- School of MedicineIslamic Azad UniversityTehranIran
- Pars HospitalIran University of Medical SciencesTehranIran
| | | | - Ghazal Arjmand
- Shahid Beheshti University of Medical SciencesTehranIran
| | - Shayan Abshenas
- School of MedicineKashan University of Medical SciencesKashanIran
| | - Zahra Pashaei
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk BehaviorsTehran University of Medical SciencesTehranIran
| | - Marcarious M. Tantuoyir
- School of MedicineTehran University of Medical SciencesTehranIran
- Biomedical Engineering UnitUniversity of Ghana Medical Center (UGMC)AccraGhana
| | - Omid Dadras
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk BehaviorsTehran University of Medical SciencesTehranIran
- Department of Global Public Health and Primary Care, Graduate School of MedicineBergen UniversityBergenNorway
| | - Kowsar Qaderi
- Department of Midwifery, School of Nursing and MidwiferyKermanshah University of Medical SciencesKermanshahIran
| | - Solmaz Saeidi
- Department of NursingKhalkhal University of Medical SciencesKhalkhalIran
| | - Soheil Dehghani
- School of MedicineTehran University of Medical SciencesTehranIran
| | | | - Esmaeil Mehraeen
- Department of Health Information TechnologyKhalkhal University of Medical SciencesKhalkhalIran
| | - Amir Masoud Afsahi
- Department of Radiology, School of Medicine, University of CaliforniaSan Diego (UCSD)San DiegoCaliforniaUSA
| |
Collapse
|
20
|
de Graaf DM, Teufel LU, de Nooijer AH, van Gammeren AJ, Ermens AAM, Gaál IO, Crișan TO, van de Veerdonk FL, Netea MG, Dinarello CA, Joosten LAB, Arts RJW. Exploratory analysis of interleukin-38 in hospitalized COVID-19 patients. Immun Inflamm Dis 2022; 10:e712. [PMID: 36301025 PMCID: PMC9601778 DOI: 10.1002/iid3.712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/05/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION A major contributor to coronavirus disease 2019 (COVID-19) progression and severity is a dysregulated innate and adaptive immune response. Interleukin-38 (IL-38) is an IL-1 family member with broad anti-inflammatory properties, but thus far little is known about its role in viral infections. Recent studies have shown inconsistent results, as one study finding an increase in circulating IL-38 in COVID-19 patients in comparison to healthy controls, whereas two other studies report no differences in IL-38 concentrations. METHODS Here, we present an exploratory, retrospective cohort study of circulating IL-38 concentrations in hospitalized COVID-19 patients admitted to two Dutch hospitals (discovery n = 148 and validation n = 184) and age- and sex-matched healthy subjects. Plasma IL-38 concentrations were measured by enzyme-linked immunosorbent assay, disease-related proteins by proximity extension assay, and clinical data were retrieved from hospital records. RESULTS IL-38 concentrations were stable during hospitalization and similar to those of healthy control subjects. IL-38 was not associated with rates of intensive care unit admission or mortality. Only in men in the discovery cohort, IL-38 concentrations were positively correlated with hospitalization duration. A positive correlation between IL-38 and the inflammatory biomarker d-dimer was observed in men of the validation cohort. In women of the validation cohort, IL-38 concentrations correlated negatively with thrombocyte numbers. Furthermore, plasma IL-38 concentrations in the validation cohort correlated positively with TNF, TNFRSF9, IL-10Ra, neurotrophil 3, polymeric immunoglobulin receptor, CHL1, CD244, superoxide dismutase 2, and fatty acid binding protein 2, and negatively with SERPINA12 and cartilage oligomeric matrix protein. CONCLUSIONS These data indicate that IL-38 is not associated with disease outcomes in hospitalized COVID-19 patients. However, moderate correlations between IL-38 concentrations and biomarkers of disease were identified in one of two cohorts. While we demonstrate that IL-38 concentrations are not indicative of COVID-19 severity, its anti-inflammatory effects may reduce COVID-19 severity and should be experimentally investigated.
Collapse
Affiliation(s)
- Dennis M. de Graaf
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboudumc Center for Infectious DiseasesRadboud University Medical CenterNijmegenThe Netherlands,Department of MedicineUniversity of ColoradoAuroraColoradoUSA
| | - Lisa U. Teufel
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboudumc Center for Infectious DiseasesRadboud University Medical CenterNijmegenThe Netherlands
| | - Aline H. de Nooijer
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboudumc Center for Infectious DiseasesRadboud University Medical CenterNijmegenThe Netherlands
| | | | | | - Ildikó O. Gaál
- Department of Medical GeneticsIuliu Hatieganu University of Medicine and PharmacyCluj‐NapocaRomania
| | - Tania O. Crișan
- Department of Medical GeneticsIuliu Hatieganu University of Medicine and PharmacyCluj‐NapocaRomania
| | - Frank L. van de Veerdonk
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboudumc Center for Infectious DiseasesRadboud University Medical CenterNijmegenThe Netherlands
| | - Mihai G. Netea
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboudumc Center for Infectious DiseasesRadboud University Medical CenterNijmegenThe Netherlands,Department of Immunology and Metabolism, Life and Medical Sciences InstituteUniversity of BonnBonnGermany
| | - Charles A. Dinarello
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboudumc Center for Infectious DiseasesRadboud University Medical CenterNijmegenThe Netherlands,Department of MedicineUniversity of ColoradoAuroraColoradoUSA
| | - Leo A. B. Joosten
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboudumc Center for Infectious DiseasesRadboud University Medical CenterNijmegenThe Netherlands,Department of Medical GeneticsIuliu Hatieganu University of Medicine and PharmacyCluj‐NapocaRomania
| | - Rob J. W. Arts
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboudumc Center for Infectious DiseasesRadboud University Medical CenterNijmegenThe Netherlands
| | | |
Collapse
|
21
|
Kalinina O, Golovkin A, Zaikova E, Aquino A, Bezrukikh V, Melnik O, Vasilieva E, Karonova T, Kudryavtsev I, Shlyakhto E. Cytokine Storm Signature in Patients with Moderate and Severe COVID-19. Int J Mol Sci 2022; 23:8879. [PMID: 36012146 PMCID: PMC9408700 DOI: 10.3390/ijms23168879] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Hypercytokinemia, found in SARS-CoV-2 infection, contributes to multiple organ dysfunctions with acute respiratory distress syndrome, shock etc. The aim of this study was to describe cytokine storm signatures in patients with acute COVID-19 and to investigate their influence on severity of the infection. Plasma levels of 47 cytokines were investigated in 73 patients with moderate and severe COVID-19 (41 and 32, respectively) and 11 healthy donors (HD). The most elevated levels comparing patients and the HD were observed for seven pro-inflammatory cytokines (IL-6, IL-8, IL-15, IL-18, IL-27, IFNγ, TNFα), three chemokines (GROα, IP-10, MIG), two anti-inflammatory cytokines (IL-1RA, IL-10), and two growth factors (G-CSF, M-CSF). The patients with severe disease had significantly higher levels of FGF-2/FGF-basic, IL-1β, and IL-7 compared to the HD. The two groups of patients differed from each other only based on the levels of EGF, eotaxin, and IL-12 p40. Pneumonia lung injury, characterized by computer tomography, positively correlated with levels of EGF, IP-10, MCP-3 levels and negatively with IL-12 p40. Pro-inflammatory factors including IL-6, TNFα, and IP-10 negatively correlated with the frequency of the circulating T-helper17-like cells (Th17-like) and follicular Th cells that are crucial to develop SARS-CoV-2-specific plasma cells and memory B cells. Obtained data on the cytokine levels illustrate their influence on progression and severity of COVID-19.
Collapse
Affiliation(s)
- Olga Kalinina
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia
| | - Alexey Golovkin
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia
| | - Ekaterina Zaikova
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia
| | - Arthur Aquino
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia
| | - Vadim Bezrukikh
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia
| | - Olesya Melnik
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia
| | - Elena Vasilieva
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia
| | - Tatiana Karonova
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia
| | - Igor Kudryavtsev
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia
- Institute of Experimental Medicine, 197376 St. Petersburg, Russia
| | - Evgeny Shlyakhto
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia
| |
Collapse
|
22
|
Aiello A, Grossi A, Meschi S, Meledandri M, Vanini V, Petrone L, Casetti R, Cuzzi G, Salmi A, Altera AM, Pierelli L, Gualano G, Ascoli Bartoli T, Castilletti C, Agrati C, Girardi E, Palmieri F, Nicastri E, Di Rosa E, Goletti D. Coordinated innate and T-cell immune responses in mild COVID-19 patients from household contacts of COVID-19 cases during the first pandemic wave. Front Immunol 2022; 13:920227. [PMID: 35967321 PMCID: PMC9364317 DOI: 10.3389/fimmu.2022.920227] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/30/2022] [Indexed: 01/08/2023] Open
Abstract
Objective To better define the immunopathogenesis of COVID-19, the present study aims to characterize the early immune responses to SARS-CoV-2 infection in household contacts of COVID-19 cases. In particular, innate, T- and B-cell specific responses were evaluated over time. Methods Household contacts of COVID-19 cases screened for SARS−CoV−2 infection by nasopharyngeal swab for surveillance purposes were enrolled (T0, n=42). Of these, 28 subjects returned for a follow-up test (T1). The innate response was assessed by detecting a panel of soluble factors by multiplex-technology in plasma samples. Cell-mediated response was evaluated by measuring interferon (IFN)-γ levels by ELISA in plasma harvested from whole-blood stimulated with SARS−CoV−2 peptide pools, including spike (S), nucleocapsid (N) and membrane (M) proteins. The serological response was assessed by quantifying anti-Receptor-Binding-Domain (RBD), anti-Nucleocapsid (N), whole virus indirect immunofluorescence, and neutralizing antibodies. Results At T0, higher levels of plasmatic IFN-α, IL-1ra, MCP-1 and IP-10, and lower levels of IL-1β, IL-9, MIP-1β and RANTES were observed in subjects with positive swab compared to individuals with a negative one (p<0.05). Plasmatic IFN-α was the only cytokine detectable in subjects with positive SARS-CoV-2 swabs with high accuracy for swab score positivity (0.93, p<0.0001). Among subjects with positive swabs, significant negative correlations were found among the RT-PCR cycle threshold values reported for genes S and N and IFN-α or IP-10 levels. At T0, the IFN-γ T-cell specific response was detected in 50% (5/10) of subjects with positive swab, while anti-RBD/anti-N antibodies showed a positivity rate of 10% (1/10). At T1, the IFN-γ T-cell specific response was detected in most of the confirmed-infection subjects (77.8%, 7/9), whereas the serological response was still observed in a minority of them (44.4%, 4/9). Overall, the swab test showed a moderate concordance with the T-cell response (78.6%, k=0.467), and a scarce concordance with the serological one (72.9%, k=0.194). Conclusions Plasmatic IFN-α and the IFN-γ T-cell specific response appear early even in the absence of seroconversion, and show a greater positivity rate than the serological response in household contacts with positive swab.
Collapse
Affiliation(s)
- Alessandra Aiello
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Adriano Grossi
- Local Public Health Office, Azienda Sanitaria Locale (ASL) Roma 1, Rome, Italy
| | - Silvia Meschi
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Marcello Meledandri
- Unità Operativa Complessa (UOC) Microbiology and Virology, Azienda Sanitaria Locale (ASL) Roma 1-San Filippo Neri Hospital, Rome, Italy
| | - Valentina Vanini
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
- Unità Operativa Semplice (UOS) Professioni Sanitarie Tecniche, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Linda Petrone
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Rita Casetti
- Laboratory of Cellular Immunology, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Gilda Cuzzi
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Andrea Salmi
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Anna Maria Altera
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Luca Pierelli
- Unità Operativa Complessa (UOC) Transfusion Medicine and Stem Cell, San Camillo Forlanini Hospital, Rome, Italy
| | - Gina Gualano
- Respiratory Infectious Diseases Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Tommaso Ascoli Bartoli
- Clinical Division of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Concetta Castilletti
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Chiara Agrati
- Laboratory of Cellular Immunology, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Enrico Girardi
- Clinical Epidemiology, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Fabrizio Palmieri
- Respiratory Infectious Diseases Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Emanuele Nicastri
- Clinical Division of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Enrico Di Rosa
- Local Public Health Office, Azienda Sanitaria Locale (ASL) Roma 1, Rome, Italy
| | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
- *Correspondence: Delia Goletti,
| |
Collapse
|
23
|
Tufa A, Gebremariam TH, Manyazewal T, Getinet T, Webb DL, Hellström PM, Genet S. Inflammatory mediators profile in patients hospitalized with COVID-19: A comparative study. Front Immunol 2022; 13:964179. [PMID: 35958594 PMCID: PMC9359079 DOI: 10.3389/fimmu.2022.964179] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/01/2022] [Indexed: 01/08/2023] Open
Abstract
Abnormal inflammatory mediator concentrations during SARS-CoV-2 infection may represent disease severity. We aimed to assess plasma inflammatory mediator concentrations in patients with SARS-CoV-2 in Addis Ababa, Ethiopia. In this study, 260 adults: 126 hospitalized patients with confirmed COVID-19 sorted into severity groups: severe (n=68) and mild or moderate (n=58), and 134 healthy controls were enrolled. We quantified 39 plasma inflammatory mediators using multiplex ELISA. Spearman rank correlation and Mann-Whitney U test were used to identify mechanistically coupled inflammatory mediators and compare disease severity. Compared to healthy controls, patients with COVID-19 had significantly higher levels of interleukins 1α, 2, 6, 7, 8, 10 and 15, C-reactive protein (CRP), serum amyloid A (SAA), intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion protein 1 (VCAM-1), IFN-γ-inducible protein-10 (IP-10, CXCL10), macrophage inflammatory protein-1 alpha (MIP-1α, CCL3), eotaxin-3 (CCL26), interferon-gamma (IFN-γ), tumor necrosis factor-α (TNF-α), basic fibroblast growth factor (bFGF), placental growth factor (PlGF), and fms-like tyrosine kinase 1 (Flt-1). Patients with severe COVID-19 had higher IL-10 and lower macrophage-derived chemokine (MDC, CCL22) compared to the mild or moderate group (P<0.05). In the receiver operating characteristic curve, SAA, IL-6 and CRP showed strong sensitivity and specificity in predicting the severity and prognosis of COVID-19. Greater age and higher CRP had a significant association with disease severity (P<0.05). Our findings reveal that CRP, SAA, VCAM-1, CXCL10, CCL22 and IL-10 levels are promising biomarkers for COVID-19 disease severity, suggesting that plasma inflammatory mediators could be used as warning indicators of COVID-19 severity, aid in COVID-19 prognosis and treatment.
Collapse
Affiliation(s)
- Abdisa Tufa
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tewodros Haile Gebremariam
- Department of Internal Medicine, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tsegahun Manyazewal
- Centre for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tewodros Getinet
- School of Public Health, Saint Paul’s Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | - Dominic-Luc Webb
- Gastroenterology and Hepatology Unit, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Per M. Hellström
- Gastroenterology and Hepatology Unit, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Solomon Genet
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
24
|
Fears AC, Beddingfield BJ, Chirichella NR, Slisarenko N, Killeen SZ, Redmann RK, Goff K, Spencer S, Picou B, Golden N, Midkiff CC, Bush DJ, Branco LM, Boisen ML, Gao H, Montefiori DC, Blair RV, Doyle-Meyers LA, Russell-Lodrigue K, Maness NJ, Roy CJ. Exposure modality influences viral kinetics but not respiratory outcome of COVID-19 in multiple nonhuman primate species. PLoS Pathog 2022; 18:e1010618. [PMID: 35789343 PMCID: PMC9286241 DOI: 10.1371/journal.ppat.1010618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/15/2022] [Accepted: 05/25/2022] [Indexed: 11/18/2022] Open
Abstract
The novel coronavirus SARS-CoV-2 emerged in late 2019, rapidly reached pandemic status, and has maintained global ubiquity through the emergence of variants of concern. Efforts to develop animal models have mostly fallen short of recapitulating severe disease, diminishing their utility for research focusing on severe disease pathogenesis and life-saving medical countermeasures. We tested whether route of experimental infection substantially changes COVID-19 disease characteristics in two species of nonhuman primates (Macaca mulatta; rhesus macaques; RM, Chlorocebus atheiops; African green monkeys; AGM). Species-specific cohorts were experimentally infected with SARS-CoV-2 by either direct mucosal (intratracheal + intranasal) instillation or small particle aerosol in route-discrete subcohorts. Both species demonstrated analogous viral loads in all compartments by either exposure route although the magnitude and duration of viral loading was marginally greater in AGMs than RMs. Clinical onset was nearly immediate (+1dpi) in the mucosal exposure cohort whereas clinical signs and cytokine responses in aerosol exposure animals began +7dpi. Pathologies conserved in both species and both exposure modalities include pulmonary myeloid cell influx, development of pleuritis, and extended lack of regenerative capacity in the pulmonary compartment. Demonstration of conserved pulmonary pathology regardless of species and exposure route expands our understanding of how SARS-CoV-2 infection may lead to ARDS and/or functional lung damage and demonstrates the near clinical response of the nonhuman primate model for anti-fibrotic therapeutic evaluation studies.
Collapse
Affiliation(s)
- Alyssa C. Fears
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
- Biomedical Science Training Program, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | | | - Nicole R. Chirichella
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Nadia Slisarenko
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Stephanie Z. Killeen
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Rachel K. Redmann
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Kelly Goff
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Skye Spencer
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Breanna Picou
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Nadia Golden
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Cecily C. Midkiff
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Duane J. Bush
- Zalgen Labs, LLC, Germantown, Maryland, United States of America
| | - Luis M. Branco
- Zalgen Labs, LLC, Germantown, Maryland, United States of America
| | | | - Hongmei Gao
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - David C. Montefiori
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Robert V. Blair
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Lara A. Doyle-Meyers
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Kasi Russell-Lodrigue
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Nicholas J. Maness
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Chad J. Roy
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| |
Collapse
|
25
|
Quesada-Gomez JM, Lopez-Miranda J, Entrenas-Castillo M, Casado-Díaz A, Nogues y Solans X, Mansur JL, Bouillon R. Vitamin D Endocrine System and COVID-19: Treatment with Calcifediol. Nutrients 2022; 14:nu14132716. [PMID: 35807895 PMCID: PMC9268645 DOI: 10.3390/nu14132716] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023] Open
Abstract
The COVID-19 pandemic is the greatest challenge facing modern medicine and public health systems. The viral evolution of SARS-CoV-2, with the emergence of new variants with in-creased infectious potential, is a cause for concern. In addition, vaccination coverage remains in-sufficient worldwide. Therefore, there is a need to develop new therapeutic options, and/or to optimize the repositioning of drugs approved for other indications for COVID-19. This may include the use of calcifediol, the prohormone of the vitamin D endocrine system (VDES) as it may have potential useful effects for the treatment of COVID-19. We review the aspects associating COVID-19 with VDES and the potential use of calcifediol in COVID-19. VDES/VDR stimulation may enhance innate antiviral effector mechanisms, facilitating the induction of antimicrobial peptides/autophagy, with a critical modulatory role in the subsequent host reactive hyperinflammatory phase during COVID-19: By decreasing the cytokine/chemokine storm, regulating the renin–angiotensin–bradykinin system (RAAS), modulating neutrophil activity and maintaining the integrity of the pulmonary epithelial barrier, stimulating epithelial repair, and directly and indirectly decreasing the increased coagulability and prothrombotic tendency associated with severe COVID-19 and its complications. Available evidence suggests that VDES/VDR stimulation, while maintaining optimal serum 25OHD status, in patients with SARS-CoV-2 infection may significantly reduce the risk of acute respiratory distress syndrome (ARDS) and severe COVID-19, with possible beneficial effects on the need for mechanical ventilation and/or intensive care unit (ICU) admission, as well as deaths in the course of the disease. The pharmacokinetic and functional characteristics of calcifediol give it superiority in rapidly optimizing 25OHD levels in COVID-19. A pilot study and several observational intervention studies using high doses of calcifediol (0.532 mg on day 1 and 0.266 mg on days 3, 7, 14, 21, and 28) dramatically decreased the need for ICU admission and the mortality rate. We, therefore, propose to use calcifediol at the doses described for the rapid correction of 25OHD deficiency in all patients in the early stages of COVID-19, in association, if necessary, with the new oral antiviral agents.
Collapse
Affiliation(s)
- Jose Manuel Quesada-Gomez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; (J.L.-M.); (A.C.-D.)
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Correspondence: (J.M.Q.-G.); (R.B.)
| | - José Lopez-Miranda
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; (J.L.-M.); (A.C.-D.)
- Departamento de Medicina Interna, Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
- CIBER Fisiopatologia Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | | | - Antonio Casado-Díaz
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; (J.L.-M.); (A.C.-D.)
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Xavier Nogues y Solans
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Internal Medicine Department, IMIM (Hospital del Mar Medical Research Institute), Hospital del Mar, 08003 Barcelona, Spain
| | - José Luis Mansur
- Centro de Endocrinología y Osteoporosis La Plata, Buenos Aires B1902ADQ, Argentina;
| | - Roger Bouillon
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, Catholic University of Leuven, 3000 Leuven, Belgium
- Correspondence: (J.M.Q.-G.); (R.B.)
| |
Collapse
|
26
|
Zhang Y, Archie SR, Ghanwatkar Y, Sharma S, Nozohouri S, Burks E, Mdzinarishvili A, Liu Z, Abbruscato TJ. Potential role of astrocyte angiotensin converting enzyme 2 in the neural transmission of COVID-19 and a neuroinflammatory state induced by smoking and vaping. Fluids Barriers CNS 2022; 19:46. [PMID: 35672716 PMCID: PMC9171490 DOI: 10.1186/s12987-022-00339-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/05/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Knowledge of the entry receptors responsible for SARS-CoV-2 is key to understand the neural transmission and pathogenesis of COVID-19 characterized by a neuroinflammatory scenario. Understanding the brain distribution of angiotensin converting enzyme 2 (ACE2), the primary entry receptor for SARS-CoV-2, remains mixed. Smoking has been shown as a risk factor for COVID-19 severity and it is not clear how smoking exacerbates the neural pathogenesis in smokers. METHODS Immunohistochemistry, real-time PCR and western blot assays were used to systemically examine the spatial-, cell type- and isoform-specific expression of ACE2 in mouse brain and primary cultured brain cells. Experimental smoking exposure was conducted to evaluate the effect of smoking on brain expression. RESULTS We observed ubiquitous expression of ACE2 but uneven brain distribution, with high expression in the cerebral microvasculature, medulla oblongata, hypothalamus, subventricular zones, and meninges around medulla oblongata and hypothalamus. Co-staining with cell type-specific markers demonstrates ACE2 is primarily expressed in astrocytes around the microvasculature, medulla oblongata, hypothalamus, ventricular and subventricular zones of cerebral ventricles, and subependymal zones in rhinoceles and rostral migratory streams, radial glial cells in the lateral ventricular zones, tanycytes in the third ventricle, epithelial cells and stroma in the cerebral choroid plexus, as well as cerebral pericytes, but rarely detected in neurons and cerebral endothelial cells. ACE2 expression in astrocytes is further confirmed in primary cultured cells. Furthermore, isoform-specific analysis shows astrocyte ACE2 has the peptidase domain responsible for SARS-CoV-2 entry, indicating astrocytes are indeed vulnerable to SARS-CoV-2 infection. Finally, our data show experimental tobacco smoking and electronic nicotine vaping exposure increase proinflammatory and/or immunomodulatory cytokine IL-1a, IL-6 and IL-5 without significantly affecting ACE2 expression in the brain, suggesting smoking may pre-condition a neuroinflammatory state in the brain. CONCLUSIONS The present study demonstrates a spatial- and cell type-specific expression of ACE2 in the brain, which might help to understand the acute and lasting post-infection neuropsychological manifestations in COVID-19 patients. Our data highlights a potential role of astrocyte ACE2 in the neural transmission and pathogenesis of COVID-19. This also suggests a pre-conditioned neuroinflammatory and immunocompromised scenario might attribute to exacerbated COVID-19 severity in the smokers.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA
| | - Sabrina Rahman Archie
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA
| | - Yashwardhan Ghanwatkar
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA
| | - Sejal Sharma
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA
| | - Saeideh Nozohouri
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA
| | - Elizabeth Burks
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA
| | - Alexander Mdzinarishvili
- Imaging Core at Office of Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA
| | - Zijuan Liu
- Imaging Core at Office of Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA.
| |
Collapse
|
27
|
Wang M, Wu D, Liu CH, Li Y, Hu J, Wang W, Jiang W, Zhang Q, Huang Z, Bai L, Tang H. Predicting progression to severe COVID-19 using the PAINT score. BMC Infect Dis 2022; 22:498. [PMID: 35619076 PMCID: PMC9134988 DOI: 10.1186/s12879-022-07466-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 05/10/2022] [Indexed: 02/08/2023] Open
Abstract
Objectives One of the major challenges in treating patients with coronavirus disease 2019 (COVID-19) is predicting the severity of disease. We aimed to develop a new score for predicting progression from mild/moderate to severe COVID-19. Methods A total of 239 hospitalized patients with COVID-19 from two medical centers in China between February 6 and April 6, 2020 were retrospectively included. The prognostic abilities of variables, including clinical data and laboratory findings from the electronic medical records of each hospital, were analysed using the Cox proportional hazards model and Kaplan–Meier methods. A prognostic score was developed to predict progression from mild/moderate to severe COVID-19. Results Among the 239 patients, 216 (90.38%) patients had mild/moderate disease, and 23 (9.62%) progressed to severe disease. After adjusting for multiple confounding factors, pulmonary disease, age > 75, IgM, CD16+/CD56+ NK cells and aspartate aminotransferase were independent predictors of progression to severe COVID-19. Based on these five factors, a new predictive score (the ‘PAINT score’) was established and showed a high predictive value (C-index = 0.91, 0.902 ± 0.021, p < 0.001). The PAINT score was validated using a nomogram, bootstrap analysis, calibration curves, decision curves and clinical impact curves, all of which confirmed its high predictive value. Conclusions The PAINT score for progression from mild/moderate to severe COVID-19 may be helpful in identifying patients at high risk of progression. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-022-07466-4.
Collapse
Affiliation(s)
- Ming Wang
- Center of Infectious Diseases, West China Hospital, Sichuan University, 37 Guoxue Lane, Chengdu, Sichuan Province, 610041, People's Republic of China.,COVID-19 Medical Team (Hubei) of West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Dongbo Wu
- Center of Infectious Diseases, West China Hospital, Sichuan University, 37 Guoxue Lane, Chengdu, Sichuan Province, 610041, People's Republic of China.,COVID-19 Medical Team (Hubei) of West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Chang-Hai Liu
- Center of Infectious Diseases, West China Hospital, Sichuan University, 37 Guoxue Lane, Chengdu, Sichuan Province, 610041, People's Republic of China
| | - Yan Li
- The People's Hospital of Qianxi, Qianxi, 551500, People's Republic of China
| | - Jianghong Hu
- The People's Hospital of Duyun, Duyun, 558000, People's Republic of China
| | - Wei Wang
- COVID-19 Medical Team (Hubei) of West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Emergency Department, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Wei Jiang
- Center of Infectious Diseases, West China Hospital, Sichuan University, 37 Guoxue Lane, Chengdu, Sichuan Province, 610041, People's Republic of China
| | - Qifan Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Zhixin Huang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Lang Bai
- Center of Infectious Diseases, West China Hospital, Sichuan University, 37 Guoxue Lane, Chengdu, Sichuan Province, 610041, People's Republic of China. .,COVID-19 Medical Team (Hubei) of West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| | - Hong Tang
- COVID-19 Medical Team (Hubei) of West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
28
|
Sezer A, Halilović-Alihodžić M, Vanwieren AR, Smajkan A, Karić A, Djedović H, Šutković J. A review on drug repurposing in COVID-19: from antiviral drugs to herbal alternatives. J Genet Eng Biotechnol 2022; 20:78. [PMID: 35608704 PMCID: PMC9127474 DOI: 10.1186/s43141-022-00353-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/02/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND COVID-19 is an illness caused by severe acute respiratory syndrome coronavirus 2. Due to its rapid spread, in March 2020 the World Health Organization (WHO) declared pandemic. Since the outbreak of pandemic many governments, scientists, and institutions started to work on new vaccines and finding of new and repurposing drugs. Drug repurposing is an excellent option for discovery of already used drugs, effective against COVID-19, lowering the cost of production, and shortening the period of delivery, especially when preclinical safety studies have already been performed. There are many approved drugs that showed significant results against COVID-19, like ivermectin and hydrochloroquine, including alternative treatment options against COVID-19, utilizing herbal medicine. SHORT CONCLUSION This article summarized 11 repurposing drugs, their positive and negative health implications, along with traditional herbal alternatives, that harvest strong potential in efficient treatments options against COVID-19, with small or no significant side effects. Out of 11 repurposing drugs, four drugs are in status of emergency approval, most of them being in phase IV clinical trials. The first repurposing drug approved for clinical usage is remdesivir, whereas chloroquine and hydrochloroquine approval for emergency use was revoked by FDA for COVID-19 treatment in June 2020.
Collapse
Affiliation(s)
- Abas Sezer
- Genetics and Bioengineering, International University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | | | - Annissa Rachel Vanwieren
- Genetics and Bioengineering, International University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Adna Smajkan
- Fakultät Chemie und Pharmazie, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Amina Karić
- Genetics and Bioengineering, International University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Husein Djedović
- Genetics and Bioengineering, International University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Jasmin Šutković
- Genetics and Bioengineering, International University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
29
|
Alshammary AF, Alsughayyir JM, Alharbi KK, Al-Sulaiman AM, Alshammary HF, Alshammary HF. T-Cell Subsets and Interleukin-10 Levels Are Predictors of Severity and Mortality in COVID-19: A Systematic Review and Meta-Analysis. Front Med (Lausanne) 2022; 9:852749. [PMID: 35572964 PMCID: PMC9096099 DOI: 10.3389/fmed.2022.852749] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/01/2022] [Indexed: 01/08/2023] Open
Abstract
Background Many COVID-19 patients reveal a marked decrease in their lymphocyte counts, a condition that translates clinically into immunodepression and is common among these patients. Outcomes for infected patients vary depending on their lymphocytopenia status, especially their T-cell counts. Patients are more likely to recover when lymphocytopenia is resolved. When lymphocytopenia persists, severe complications can develop and often lead to death. Similarly, IL-10 concentration is elevated in severe COVID-19 cases and may be associated with the depression observed in T-cell counts. Accordingly, this systematic review and meta-analysis aims to analyze T-cell subsets and IL-10 levels among COVID-19 patients. Understanding the underlying mechanisms of the immunodepression observed in COVID-19, and its consequences, may enable early identification of disease severity and reduction of overall morbidity and mortality. Methods A systematic search was conducted covering PubMed MEDLINE, Scopus, Web of Science, and EBSCO databases for journal articles published from December 1, 2019 to March 14, 2021. In addition, we reviewed bibliographies of relevant reviews and the medRxiv preprint server for eligible studies. Our search covered published studies reporting laboratory parameters for T-cell subsets (CD4/CD8) and IL-10 among confirmed COVID-19 patients. Six authors carried out the process of data screening, extraction, and quality assessment independently. The DerSimonian-Laird random-effect model was performed for this meta-analysis, and the standardized mean difference (SMD) and 95% confidence interval (CI) were calculated for each parameter. Results A total of 52 studies from 11 countries across 3 continents were included in this study. Compared with mild and survivor COVID-19 cases, severe and non-survivor cases had lower counts of CD4/CD8 T-cells and higher levels of IL-10. Conclusion Our findings reveal that the level of CD4/CD8 T-cells and IL-10 are reliable predictors of severity and mortality in COVID-19 patients. The study protocol is registered with the International Prospective Register of Systematic Reviews (PROSPERO); registration number CRD42020218918. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020218918, identifier: CRD42020218918.
Collapse
Affiliation(s)
- Amal F. Alshammary
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Jawaher M. Alsughayyir
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Khalid K. Alharbi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | | | - Haifa F. Alshammary
- College of Applied Medical Sciences, Riyadh Elm University, Riyadh, Saudi Arabia
| | | |
Collapse
|
30
|
Lund Berven L, Selvakumar J, Havdal L, Stiansen-Sonerud T, Einvik G, Leegaard TM, Tjade T, Michelsen AE, Mollnes TE, Wyller VBB. Inflammatory Markers, Pulmonary Function, and Clinical Symptoms in Acute COVID-19 Among Non-Hospitalized Adolescents and Young Adults. Front Immunol 2022; 13:837288. [PMID: 35222429 PMCID: PMC8864121 DOI: 10.3389/fimmu.2022.837288] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/11/2022] [Indexed: 12/11/2022] Open
Abstract
Summary Mild, subacute COVID-19 in young people show inflammatory enhancement, but normal pulmonary function. Inflammatory markers are associated with age and male sex, whereas clinical symptoms are associated with age and female sex, but not with objective disease markers. Background Coronavirus Disease 2019 (COVID-19) is widespread among adolescents and young adults across the globe. The present study aimed to compare inflammatory markers, pulmonary function and clinical symptoms across non-hospitalized, 12 – 25 years old COVID-19 cases and non-COVID-19 controls, and to investigate associations between inflammatory markers, clinical symptoms, pulmonary function and background variables in the COVID-19 group. Methods The present paper presents baseline data from an ongoing longitudinal observational cohort study (Long-Term Effects of COVID-19 in Adolescents, LoTECA, ClinicalTrials ID: NCT04686734). A total of 31 plasma cytokines and complement activation products were assayed by multiplex and ELISA methodologies. Pulmonary function and clinical symptoms were investigated by spirometry and questionnaires, respectively. Results A total of 405 COVID-19 cases and 111 non-COVID-19 controls were included. The COVID-19 group had significantly higher plasma levels of IL-1β, IL-4, IL-7, IL-8, IL-12, TNF, IP-10, eotaxin, GM-CSF, bFGF, complement TCC and C3bc, and significantly lower levels of IL-13 and MIP-1α, as compared to controls. Spirometry did not detect any significant differences across the groups. IL-4, IL-7, TNF and eotaxin were negatively associated with female sex; eotaxin and IL-4 were positively associated with age. Clinical symptoms were positively associated with female sex and age, but not with objective disease markers. Conclusions Among non-hospitalized adolescents and young adults with COVID-19 there was significant alterations of plasma inflammatory markers in the subacute stage of the infection. Still, pulmonary function was normal. Clinical symptoms were independent of inflammatory and pulmonary function markers, but positively associated with age and female sex.
Collapse
Affiliation(s)
- Lise Lund Berven
- Department of Paediatrics, Akershus University Hospital, Lørenskog, Norway
| | - Joel Selvakumar
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lise Havdal
- Department of Paediatrics, Akershus University Hospital, Lørenskog, Norway
| | - Tonje Stiansen-Sonerud
- Department of Paediatrics, Akershus University Hospital, Lørenskog, Norway.,Department of Clinical Molecular Biology (EpiGen), Akershus University Hospital, Lørenskog, Norway
| | - Gunnar Einvik
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Pulmonary Medicine, Akershus University Hospital, Lørenskog, Norway
| | - Truls Michael Leegaard
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Microbiology and Infection Control, Akershus University Hospital, Lørenskog, Norway
| | | | - Annika E Michelsen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Research Institute of Internal Medicine, Oslo University Hospital (Rikshospitalet), Oslo, Norway
| | - Tom Eirik Mollnes
- Department of Immunology, University of Oslo, Oslo, Norway.,Oslo University Hospital, Oslo, Norway.,Research Laboratory, Nordland Hospital, Bodø, Norway.,Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Vegard Bruun Bratholm Wyller
- Department of Paediatrics, Akershus University Hospital, Lørenskog, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
31
|
Role of Polypeptide Inflammatory Biomarkers in the Diagnosis and Monitoring of COVID-19. Int J Pept Res Ther 2022; 28:59. [PMID: 35095356 PMCID: PMC8785374 DOI: 10.1007/s10989-022-10366-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2022] [Indexed: 01/08/2023]
Abstract
The COVID-19 (coronavirus disease 2019) pandemic that took over the world in December 2019 has had everlasting devastating impacts on the lives of people globally. It manifests a huge symptom spectrum ranging from asymptomatic to critically ill patients with an unpredictable outcome. Timely diagnosis and assessment of disease severity is imperative for effective treatment. Possibilities exist that by the time symptoms appear the viral load might increase beyond control. However, it is advisable to get adequately diagnosed as soon as the first symptom appears. There is an immediate requirement of reliable biomarkers of COVID-19 manifesting an early onset for effective clinical management, stratification of high risk patients and ensuring ideal resource allocation. In this review, we attempt to explore and describe important polypeptide inflammatory biomarkers, namely C-reactive protein, Procalcitonin, Ferritin, Lactate Dehydrogenase, Serum amyloid A, Interleukin-6, Tumor necrosis factor-alpha and LIGHT used in the detection and management of COVID-19. Viral pathogenesis and the role of these inflammatory biomarkers is highlighted, based on the evidences available till date. An integrative data monitoring along with their correlation with the natural disease progression is of utmost importance in the management of COVID-19. So further research and in-depth analysis of these biomarkers is warranted in the present scenario.
Collapse
|
32
|
Vahedian-Azimi A, Abbasifard M, Rahimi-Bashar F, Guest PC, Majeed M, Mohammadi A, Banach M, Jamialahmadi T, Sahebkar A. Effectiveness of Curcumin on Outcomes of Hospitalized COVID-19 Patients: A Systematic Review of Clinical Trials. Nutrients 2022; 14:256. [PMID: 35057437 PMCID: PMC8779570 DOI: 10.3390/nu14020256] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 12/11/2022] Open
Abstract
Despite the ongoing vaccination efforts, there is still an urgent need for safe and effective treatments to help curb the debilitating effects of COVID-19 disease. This systematic review aimed to investigate the efficacy of supplemental curcumin treatment on clinical outcomes and inflammation-related biomarker profiles in COVID-19 patients. We searched PubMed, Scopus, Web of Science, EMBASE, ProQuest, and Ovid databases up to 30 June 2021 to find studies that assessed the effects of curcumin-related compounds in mild to severe COVID-19 patients. Six studies were identified which showed that curcumin supplementation led to a significant decrease in common symptoms, duration of hospitalization and deaths. In addition, all of these studies showed that the intervention led to amelioration of cytokine storm effects thought to be a driving force in severe COVID-19 cases. This was seen as a significant (p < 0.05) decrease in proinflammatory cytokines such as IL1β and IL6, with a concomitant significant (p < 0.05) increase in anti-inflammatory cytokines, including IL-10, IL-35 and TGF-α. Taken together, these findings suggested that curcumin exerts its beneficial effects through at least partial restoration of pro-inflammatory/anti-inflammatory balance. In conclusion, curcumin supplementation may offer an efficacious and safe option for improving COVID-19 disease outcomes. We highlight the point that future clinical studies of COVID-19 disease should employ larger cohorts of patients in different clinical settings with standardized preparations of curcumin-related compounds.
Collapse
Affiliation(s)
- Amir Vahedian-Azimi
- Trauma Research Center, Nursing Faculty, Baqiyatallah University of Medical Sciences, Tehran 1435916471, Iran;
| | - Mitra Abbasifard
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan 7718175911, Iran
- Department of Internal Medicine, Ali-Ibn Abi-Talib Hospital, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan 7718175911, Iran
| | - Farshid Rahimi-Bashar
- Department of Anesthesiology and Critical Care, School of Medicine, Hamadan University of Medical Sciences, Hamadan 6515917495, Iran;
| | - Paul C. Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-862, Brazil;
| | | | - Asadollah Mohammadi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj 6617713446, Iran;
| | - Maciej Banach
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, 93-338 Lodz, Poland
- Cardiovascular Research Centre, University of Zielona Gora, 65-046 Zielona Gora, Poland
| | - Tannaz Jamialahmadi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran;
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91177948954, Iran
- School of Medicine, The University of Western Australia, Perth 6009, Australia
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| |
Collapse
|
33
|
Age Related Differences in Monocyte Subsets and Cytokine Pattern during Acute COVID-19-A Prospective Observational Longitudinal Study. Cells 2021; 10:cells10123373. [PMID: 34943881 PMCID: PMC8699549 DOI: 10.3390/cells10123373] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/15/2021] [Accepted: 11/28/2021] [Indexed: 12/20/2022] Open
Abstract
The COVID-19 pandemic drastically highlighted the vulnerability of the elderly population towards viral and other infectious threats, illustrating that aging is accompanied by dysregulated immune responses currently summarized in terms like inflammaging and immunoparalysis. To gain a better understanding on the underlying mechanisms of the age-associated risk of adverse outcome in individuals experiencing a SARS-CoV-2 infection, we analyzed the impact of age on circulating monocyte phenotypes, activation markers and inflammatory cytokines including interleukin 6 (IL-6), IL-8 and tumor necrosis factor (TNF) in the context of COVID-19 disease progression and outcome in 110 patients. Our data indicate no age-associated differences in peripheral monocyte counts or subset composition. However, age and outcome are associated with differences in monocyte activation status. Moreover, a distinct cytokine pattern of IL-6, IL-8 and TNF in elderly survivors versus non-survivors, which consolidates over the time of hospitalization, suggests that older patients with adverse outcomes experience an inappropriate immune response, reminiscent of an inflammaging driven immunoparalysis. Our study underscores the value, necessity and importance of longitudinal monitoring in elderly COVID-19 patients, as dynamic changes after symptom onset can be observed, which allow for a differentiated insight into confounding factors that impact the complex pathogenesis following an infection with SARS-CoV-2.
Collapse
|