1
|
Yu Q, Ye S, Chen M, Sun P, Weng N. A novel function for exosomes in depression. Life Sci 2025; 369:123558. [PMID: 40089099 DOI: 10.1016/j.lfs.2025.123558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/01/2025] [Accepted: 03/08/2025] [Indexed: 03/17/2025]
Abstract
Exosomes are a class of extracellular vesicles that encompass a diverse array of bioactive molecules, including proteins, lipids, mRNA, and microRNA(miRNA). Virtually all cell types release exosomes under both physiological and pathological conditions. In addition to electrical and chemical signals, exosomes are an alternative route of signaling between cells in the brain. In the brain, they are involved in processes such as synaptic plasticity, neuronal stress response, intercellular communication, and neurogenesis. A number of studies have shown that exosomes regulate the occurrence and development of depression by participating in the regulation of hypothalamic-pituitary-adrenal axis, brain-derived neurotrophic factor, immune inflammatory response and other mechanisms, showing that they may become potential biological agents for the diagnosis and treatment of depression. In addition, exosomes have the ability to easily cross the blood-brain barrier, making them ideal drug or molecular delivery tools for the central nervous system. Engineered exosomes have good brain targeting ability, and their research in central nervous system diseases has begun to emerge. However, the molecular pathways involved in the pathogenesis of depression remain unknown, and further studies are needed to fully understand the role of exosomes in the development or improvement of depression. Therefore, in this review, we mainly focus on the diagnostic performance and therapeutic effect of exosomes in depression, and explore the advantages of exosomes as biomarkers and gene delivery vectors for depression.
Collapse
Affiliation(s)
- Qingying Yu
- School of Pharmacy, Shandong University of Chinese Medicine, Jinan 250000, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Shuyi Ye
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Mengxue Chen
- Chinese Medicine Guangdong Laboratory, Guangdong Hengqin, China
| | - Peng Sun
- Innovation Research Institute of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250000, China.
| | - Ning Weng
- Department of Chinese Medicine, Shandong Mental Health Center, Shandong University, Jinan, China.
| |
Collapse
|
2
|
Le Meur M, Pignatelli J, Blasi P, Palomo V. Nanoparticles targeting the central circadian clock: Potential applications for neurological disorders. Adv Drug Deliv Rev 2025; 220:115561. [PMID: 40120723 DOI: 10.1016/j.addr.2025.115561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
Circadian rhythms and their involvement with various human diseases, including neurological disorders, have become an intense area of research for the development of new pharmacological treatments. The location of the circadian clock machinery in the central nervous system makes it challenging to reach molecular targets at therapeutic concentrations. In addition, a timely administration of the therapeutic agents is necessary to efficiently modulate the circadian clock. Thus, the use of nanoparticles in circadian clock dysfunctions may accelerate their clinical translation by addressing these two key challenges: enhancing brain penetration and/or enabling their formulation in chronodelivery systems. This review describes the implications of the circadian clock in neurological pathologies, reviews potential molecular targets and their modulators and suggests how the use of nanoparticle-based formulations could improve their clinical success. Finally, the potential integration of nanoparticles into chronopharmaceutical drug delivery systems will be described.
Collapse
Affiliation(s)
- Marion Le Meur
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), 28049 Madrid, Spain; Dipartimento di Farmacia e Biotecnologie (FaBiT), Alma Mater Studiorum - Università di Bologna, 40127 Bologna, Italy
| | - Jaime Pignatelli
- Cajal Institute, Consejo Superior de Investigaciones Científicas (CSIC), 28002 Madrid, Spain; Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Paolo Blasi
- Dipartimento di Farmacia e Biotecnologie (FaBiT), Alma Mater Studiorum - Università di Bologna, 40127 Bologna, Italy.
| | - Valle Palomo
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), 28049 Madrid, Spain; Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; Unidad de Nanobiotecnología asociada al Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain.
| |
Collapse
|
3
|
Zeng Z, Yi Z, Xu B. The biological and technical challenges facing utilizing circulating tumor DNA in non-metastatic breast cancer patients. Cancer Lett 2025; 616:217574. [PMID: 39983895 DOI: 10.1016/j.canlet.2025.217574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/13/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
Breast cancer is one of the most prevalent cancers and has emerged as a major global challenge. Circulating tumor DNA (ctDNA), a liquid biopsy method, overcomes the accessibility limitations of tissue-based testing and is widely used for monitoring minimal residual disease and molecular relapse, predicting prognosis, evaluating the response of neoadjuvant therapy, and optimizing treatment decisions in non-metastatic breast cancer. However, the application of ctDNA still faces many challenges. Here, we survey the clinical applications of ctDNA in non-metastatic breast cancer and discuss the significant biological and technical challenges of utilizing ctDNA. Importantly, we investigate potential avenues for addressing the challenges. In addition, emerging technologies, including fragmentomics detection, methylation sequencing, and long-read sequencing, have clinical potential and could be a future direction. Proper utilization of machine learning facilitates the identification of meaningful patterns from complex fragment and methylation profiles of ctDNA. There is still a lack of clinical trials focused on the subsets of ctDNA (e.g., circulating mitochondrial DNA), ctDNA-inferred drug-resistant clonal evolution, tumor heterogeneity, and ctDNA-guided clinical decision-making in non-metastatic breast cancer. Due to regional differences in the number of registered clinical trials, it is essential to enhance communication and foster global collaboration to advance the field.
Collapse
Affiliation(s)
- Zihang Zeng
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, 430071, Wuhan, China
| | - Zongbi Yi
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, 430071, Wuhan, China.
| | - Binghe Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
| |
Collapse
|
4
|
Kim H, Lee J, Qian A, Ji YR, Zhang R, Hu Q, Williams CK, Chuang HY, Smalley MD, Xu Y, Gao L, Mayo MC, Zhang T, Posadas EM, Tan ZS, Vinters HV, Vossel K, Magaki S, Zhu Y, Tseng HR. Noninvasive Assessment of β-Secretase Activity Through Click Chemistry-Mediated Enrichment of Neuronal Extracellular Vesicles to Detect Alzheimer's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2415289. [PMID: 40245252 DOI: 10.1002/advs.202415289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/27/2025] [Indexed: 04/19/2025]
Abstract
Alzheimer's disease (AD), the most prevalent type of dementia, is characterized by a biological process that begins with the development of AD neuropathologic change (ADNPC) while individuals remain asymptomatic. A key molecular hallmark of ADNPC is the accumulation of amyloid-β plaques. β-secretase plays a critical role in the upstream pathological cleavage of amyloid precursor protein (APP), producing amyloid-β peptides that are prone to misfolding, ultimately contributing to plaque formation. Neuronal extracellular vesicles (NEVs) in the blood transport β-secretase and preserve its activity, allowing for noninvasive profiling of β-secretase activity for detecting early onset of ADNPC. In this study, a novel approach is approached for noninvasive assessment of β-secretase activity in AD patients using an NEV β-secretase activity assay. This assay identifies NEVs exhibiting colocalization of NEV markers with AD-associated β-secretase, generating a β-secretase activity profile for each patient. The NEV β-secretase activity assay represents a significant advancement in leveraging the diagnostic potential of NEVs, offering a noninvasive, quantitative method for reliably assessing β-secretase activity to detect the early onset of ADNPC.
Collapse
Affiliation(s)
- Hyoyong Kim
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Junseok Lee
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Audrey Qian
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - You-Ren Ji
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Ryan Zhang
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Qixin Hu
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Christopher Kazu Williams
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Han-Yu Chuang
- Eximius Diagnostics Corp, Magnify Incubator, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Matthew D Smalley
- Eximius Diagnostics Corp, Magnify Incubator, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Yaya Xu
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Liang Gao
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Mary C Mayo
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Ting Zhang
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Edwin M Posadas
- Division of Medical Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Zaldy S Tan
- Departments of Neurology and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Harry V Vinters
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Keith Vossel
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Shino Magaki
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Yazhen Zhu
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Hsian-Rong Tseng
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| |
Collapse
|
5
|
Denis HL, de Rus Jacquet A, Alpaugh M, Panisset M, Barker RA, Boilard É, Cicchetti F. Erythrocyte-derived extracellular vesicles transcytose across the blood-brain barrier to induce Parkinson's disease-like neurodegeneration. Fluids Barriers CNS 2025; 22:38. [PMID: 40229767 PMCID: PMC11998243 DOI: 10.1186/s12987-025-00646-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/26/2025] [Indexed: 04/16/2025] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative illness characterized by motor and non-motor features. Hallmarks of the disease include an extensive loss of dopaminergic neurons in the substantia nigra pars compacta, evidence of neuroinflammation, and the accumulation of misfolded proteins leading to the formation of Lewy bodies. While PD etiology is complex and identifying a single disease trigger has been a challenge, accumulating evidence indicates that non-neuronal and peripheral factors may likely contribute to disease onset and progression. The brain is shielded from peripheral factors by the blood-brain barrier (BBB), which tightly controls the entry of systemic molecules and cells from the blood to the brain. The BBB integrates molecular signals originating from the luminal (blood) and abluminal (brain) sides of the endothelial wall, regulating these exchanges. Of particular interest are erythrocytes, which are not only the most abundant cell type in the blood, but they also secrete extracellular vesicles (EVs) that display disease-specific signatures over the course of PD. Erythrocyte-derived EVs (EEVs) could provide a route by which pathological molecular signals travel from the periphery to the central nervous system. The primary objective of this study was to evaluate, in a human-based platform, mechanisms of EEV transport from the blood to the brain under physiological conditions. The secondary objective was to determine the ability of EEVs, generated by erythrocytes of healthy donors or patients, to induce PD-like features. We leveraged two in vitro models of the BBB, the transwell chambers and a microfluidic BBB chip generated using human induced pluripotent stem cells. Our findings suggest that EEVs transcytose from the vascular to the brain compartment of the human BBB model via a caveolin-dependant mechanism. Furthermore, EEVs derived from individuals with PD altered BBB integrity compared to healthy EEV controls, and clinical severity aggravated the loss of barrier integrity and increased EEV extravasation into the brain compartment. PD-derived EEVs reduced ZO-1 and Claudin 5 tight junction levels in BMEC-like cells and induced the selective atrophy of dopaminergic neurons. In contrast, non-dopaminergic neurons were not affected by treatment with PD EEVs. In summary, our data suggest that EEV interactions at the human BBB can be studied using a highly translational human-based brain chip model, and EEV toxicity at the neurovascular unit is exacerbated by disease severity.
Collapse
Affiliation(s)
- Hélèna L Denis
- Centre de recherche du CHU de Québec, Axe Neurosciences, T2-07 2705, Boulevard Laurier, Québec, QC, G1V 4G2, QC, Canada
- Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, Canada
| | - Aurélie de Rus Jacquet
- Centre de recherche du CHU de Québec, Axe Neurosciences, T2-07 2705, Boulevard Laurier, Québec, QC, G1V 4G2, QC, Canada
- Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, Canada
| | - Melanie Alpaugh
- Centre de recherche du CHU de Québec, Axe Neurosciences, T2-07 2705, Boulevard Laurier, Québec, QC, G1V 4G2, QC, Canada
- Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, Canada
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | - Michel Panisset
- Centre Hospitalier de l'Université de Montréal and Centre de recherche du Centre Hospitalier de l'Université de Montréal, Département de neuroscience, Université de Montréal, Montréal, QC, Canada
| | - Roger A Barker
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Éric Boilard
- Centre de recherche du CHU de Québec, Axe Neurosciences, T2-07 2705, Boulevard Laurier, Québec, QC, G1V 4G2, QC, Canada
- Département de microbiologie et immunologie, Université Laval, Québec, QC, Canada
| | - Francesca Cicchetti
- Centre de recherche du CHU de Québec, Axe Neurosciences, T2-07 2705, Boulevard Laurier, Québec, QC, G1V 4G2, QC, Canada.
- Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, Canada.
| |
Collapse
|
6
|
Escudero C, Vatish M. Review: The potential role of placental extracellular vesicles in blood-brain barrier disruption and neuroinflammation in preeclampsia. Placenta 2025:S0143-4004(25)00104-3. [PMID: 40229181 DOI: 10.1016/j.placenta.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/25/2025] [Accepted: 04/01/2025] [Indexed: 04/16/2025]
Abstract
Preeclampsia is a complex pregnancy disorder characterized by hypertension and multisystem organ damage, notably affecting the liver, kidneys, and brain. Eclampsia, a severe form of preeclampsia, is marked by the sudden onset of generalized tonic-clonic seizures. Brain complications, including eclampsia, are responsible for 60-70 % of preeclampsia-related maternal deaths, particularly in low-income regions. Despite the significant impact of brain complications in preeclampsia, their underlying pathophysiology remains unclear. Evidence suggests that brain edema in preeclampsia and eclampsia results from disruption of the blood-brain barrier (BBB). Although direct analysis of the BBB is challenging, in vitro studies indicate that plasma from women with preeclampsia can compromise the BBB, with the specific circulating factors involved still unidentified. Among the potential culprits, recent findings highlight placental-derived small extracellular vesicles (PDsEVs) as key players in BBB disruption observed in preeclampsia. This review examines the role of PDsEVs in the pathophysiology of brain edema associated with preeclampsia, emphasizing areas for future research, including neuroinflammation and neuron dysfunction. Additionally, we discuss the protective role of magnesium sulfate in these processes.
Collapse
Affiliation(s)
- Carlos Escudero
- Vascular Physiology Laboratory, Department of Basic Sciences, Universidad del Bío-Bío, Chillán, Chile; Nuffield Department of Women's & Reproductive Health. University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom; Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillan, Chile.
| | - Manu Vatish
- Nuffield Department of Women's & Reproductive Health. University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| |
Collapse
|
7
|
Wang L, Liu R, Wang Y. The roles of extracellular vesicles in mental disorders: information carriers, biomarkers, therapeutic agents. Front Pharmacol 2025; 16:1591469. [PMID: 40271072 PMCID: PMC12014780 DOI: 10.3389/fphar.2025.1591469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 04/01/2025] [Indexed: 04/25/2025] Open
Abstract
Mental disorders are complex conditions that encompass various symptoms and types, affecting approximately 1 in 8 people globally. They place a significant burden on both families and society as a whole. So far, the etiology of mental disorders remains poorly understood, making diagnosis and treatment particularly challenging. Extracellular vesicles (EVs) are nanoscale particles produced by cells and released into the extracellular space. They contain bioactive molecules including nucleotides, proteins, lipids, and metabolites, which can mediate intercellular communication and are involved in various physiological and pathological processes. Recent studies have shown that EVs are closely linked to mental disorders like schizophrenia, major depressive disorder, and bipolar disorder, playing a key role in their development, diagnosis, prognosis, and treatment. Therefore, based on recent research findings, this paper aims to describe the roles of EVs in mental disorders and summarize their potential applications in diagnosis and treatment, providing new ideas for the future clinical transformation and application of EVs.
Collapse
Affiliation(s)
| | | | - Ying Wang
- Department of Pharmacy, Tianjin Anding Hospital, Tianjin, China
| |
Collapse
|
8
|
Kawiková I, Špička V, Lai JCK, Askenase PW, Wen L, Kejík Z, Jakubek M, Valeš K, Španiel F. Extracellular vesicles as precision therapeutics for psychiatric conditions: targeting interactions among neuronal, glial, and immune networks. Front Immunol 2025; 16:1454306. [PMID: 40264776 PMCID: PMC12011847 DOI: 10.3389/fimmu.2025.1454306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 02/14/2025] [Indexed: 04/24/2025] Open
Abstract
The critical role of the immune system in brain function and dysfunction is well recognized, yet development of immune therapies for psychiatric diseases has been slow due to concerns about iatrogenic immune deficiencies. These concerns are emphasized by the lack of objective diagnostic tools in psychiatry. A promise to resolve this conundrum lies in the exploitation of extracellular vesicles (EVs) that are physiologically produced or can be synthetized. EVs regulate recipient cell functions and offer potential for EVs-based therapies. Intranasal EVs administration enables the targeting of specific brain regions and functions, thereby facilitating the design of precise treatments for psychiatric diseases. The development of such therapies requires navigating four dynamically interacting networks: neuronal, glial, immune, and EVs. These networks are profoundly influenced by brain fluid distribution. They are crucial for homeostasis, cellular functions, and intercellular communication. Fluid abnormalities, like edema or altered cerebrospinal fluid (CSF) dynamics, disrupt these networks, thereby negatively impacting brain health. A deeper understanding of the above-mentioned four dynamically interacting networks is vital for creating diagnostic biomarker panels to identify distinct patient subsets with similar neuro-behavioral symptoms. Testing the functional pathways of these biomarkers could lead to new therapeutic tools. Regulatory approval will depend on robust preclinical data reflecting progress in these interdisciplinary areas, which could pave the way for the design of innovative and precise treatments. Highly collaborative interdisciplinary teams will be needed to achieve these ambitious goals.
Collapse
Affiliation(s)
- Ivana Kawiková
- National Institute of Mental Health, Klecany, Czechia
- Department of Medicine, Yale School of Medicine, New Haven, CT, United States
- Department of Biology, Hartford University, West Hartford, CT, United States
| | - Václav Špička
- Institute of Physics of the Czech Academy of Sciences, Prague, Czechia
| | - James C. K. Lai
- Department of Biomedical and Pharmaceutical Sciences, Idaho State University College of Pharmacy, Pocatello, ID, United States
- Department of Diagnostic Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale School of Medicine, New Haven, CT, United States
| | - Philip W. Askenase
- Department of Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Li Wen
- Department of Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Zdeněk Kejík
- Biotechnology and Biomedical Center in Vestec (BIOCEV) , First Faculty of Medicine, Charles University, Vestec, Czechia
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Milan Jakubek
- Biotechnology and Biomedical Center in Vestec (BIOCEV) , First Faculty of Medicine, Charles University, Vestec, Czechia
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Karel Valeš
- National Institute of Mental Health, Klecany, Czechia
- 3rd Medical Faculty, Charles University, Prague, Czechia
| | - Filip Španiel
- National Institute of Mental Health, Klecany, Czechia
- 3rd Medical Faculty, Charles University, Prague, Czechia
| |
Collapse
|
9
|
Lukacher AS, O'Hara BA, Yuan W, Garabian K, Kaiserman J, MacLure E, Haley SA, Atwood WJ. The microvascular endothelium of the blood-brain barrier is highly restrictive to JC Polyomavirus neuroinvasion. Microbiol Spectr 2025:e0028225. [PMID: 40130848 DOI: 10.1128/spectrum.00282-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 02/20/2025] [Indexed: 03/26/2025] Open
Abstract
JC Polyomavirus is the causative agent of progressive multifocal leukoencephalopathy (PML), an often-fatal demyelinating disease. Unfortunately, a diagnosis of PML occurs only after patients have suffered irreversible neuropathologies. The first step in the initiation of PML is viral entry to the brain, but the route and mechanisms responsible for neuroinvasion have not been well established. To gain a better understanding of this, we asked whether purified virus or virus associated with extracellular vesicles (EVs) could penetrate two different cell culture models of the blood-brain barrier. In one model, we used the hCMEC/D3 brain endothelial cell line, and in the other, we used pluripotent stem cells induced to a brain endothelial cell phenotype (iPSC-EC). We found that neither cell type was permissive to viral infection, but the virus bound and was internalized by both in a sialic acid-dependent manner. Despite virus internalization into these cells, very few virions or virus-associated extracellular vesicles (virus-EVs) penetrated the barriers. The small amount of virus or virus-EVs that did pass through either barrier was sufficient to establish infection in human glial cells. Our findings demonstrate that limited amounts of infectious virions and virus-associated EVs can traverse the brain microvascular endothelium and establish infection.IMPORTANCEThe human polyomavirus, JC Polyomavirus (JCPyV), causes a rapidly progressing demyelinating disease in immunocompromised or immunomodulated patients. Demyelinating lesions are often seen surrounding blood vessels in the brain. In this paper, we used two models to recapitulate a minimal blood-brain barrier and found that both were highly restrictive of virus penetration. A small amount of virus succeeded in crossing both barriers and was sufficient to establish infection of human glia. These data have direct implications for mechanisms used by JCPyV to invade the CNS and cause neurological disease.
Collapse
Affiliation(s)
- Avraham S Lukacher
- Department of Cell Biology, Biochemistry, and Molecular Biology, Brown University, Providence, Rhode Island, USA
| | - Bethany A O'Hara
- Department of Cell Biology, Biochemistry, and Molecular Biology, Brown University, Providence, Rhode Island, USA
| | - Wenqing Yuan
- Department of Cell Biology, Biochemistry, and Molecular Biology, Brown University, Providence, Rhode Island, USA
| | - Kaitlin Garabian
- Department of Cell Biology, Biochemistry, and Molecular Biology, Brown University, Providence, Rhode Island, USA
| | - Jacob Kaiserman
- Department of Cell Biology, Biochemistry, and Molecular Biology, Brown University, Providence, Rhode Island, USA
| | - Evan MacLure
- Department of Cell Biology, Biochemistry, and Molecular Biology, Brown University, Providence, Rhode Island, USA
| | - Sheila A Haley
- Department of Cell Biology, Biochemistry, and Molecular Biology, Brown University, Providence, Rhode Island, USA
| | - Walter J Atwood
- Department of Cell Biology, Biochemistry, and Molecular Biology, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
10
|
Salviano-Silva A, Wollmann K, Brenna S, Reimer R, Neumann JE, Dottermusch M, Woythe L, Maire CL, Puig B, Schüller U, Saul MJ, Westphal M, Drexler R, Dührsen L, Gempt J, Heiland DH, Lamszus K, Ricklefs FL. Extracellular Vesicles Carrying Tenascin-C are Clinical Biomarkers and Improve Tumor-Derived DNA Analysis in Glioblastoma Patients. ACS NANO 2025; 19:9844-9859. [PMID: 40056466 PMCID: PMC11924321 DOI: 10.1021/acsnano.4c13599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 03/10/2025]
Abstract
Extracellular vesicles (EVs) act as carriers of biological information from tumors to the bloodstream, enabling the detection of circulating tumor material and tracking of disease progression. This is particularly crucial in glioblastoma, a highly aggressive and heterogeneous tumor that is challenging to monitor. Using imaging flow cytometry (IFCM), we conducted an immunophenotyping analysis of eight glioma-associated antigens and tetraspanins in plasma EVs from 37 newly diagnosed glioblastoma patients (pre- and post-surgery), 11 matched individuals with recurrent glioblastoma, and 22 healthy donors (HD). Tenascin-C (TNC) positive EVs displayed the strongest differences in newly diagnosed and recurrent glioblastoma patients, when compared to non-tumor subjects. Among dual-positive subpopulations, TNC+/CD9+ EVs were the most elevated in newly diagnosed (FC = 7.6, p <0.0001, AUC = 81%) and recurrent patients (FC = 16.5, p <0.0001; AUC = 90%) than HD. In comparison with other CNS tumors (n = 25), this subpopulation was also 34.5-fold higher in glioblastoma than in meningioma cases (p <0.01). Additionally, TNC+/CD9+ EV levels were 3.3-fold elevated in cerebrospinal fluid from glioblastoma patients (n = 6) than controls (p <0.05). Aberrant TNC levels were further observed in glioblastoma EVs from different sources and purified via different methods. Immunohistochemical analysis revealed high levels of TNC in tumor tissues. Spatial transcriptomic analysis indicated a TNC overexpression in malignant cell populations of glioblastoma resections, particularly in cells with mesenchymal-like signatures and chromosomal aberrations. Lastly, we purified TNC+ EVs from plasma of 21 glioblastoma patients by magnetic sorting and detected the oncogenic mutation TERT*C228T by droplet digital PCR. The mutant allele frequency was higher in TNC+ EVs vs TNC-negative EVs (FC = 32, p <0.001), total EVs (FC = 5.3, p <0.001) or cell-free DNA (FC = 5.3, p <0.01). In conclusion, circulating TNC+ EVs may have potential as clinical biomarkers in glioblastoma, and their purification could improve the identification of tumor-specific mutations in liquid biopsies.
Collapse
Affiliation(s)
- Amanda Salviano-Silva
- Department
of Neurosurgery, University Medical Center
Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Kathrin Wollmann
- Department
of Neurosurgery, University Medical Center
Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Santra Brenna
- Neurology
Department, Experimental Research in Stroke and Inflammation, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Rudolph Reimer
- Leibniz
Institute for Experimental Virology, Hamburg 20251, Germany
| | - Julia E. Neumann
- Institute
of Neuropathology, University Medical Center
Hamburg-Eppendorf, Hamburg 20246, Germany
- Center
for Molecular Neurobiology (ZMNH), University
Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Matthias Dottermusch
- Institute
of Neuropathology, University Medical Center
Hamburg-Eppendorf, Hamburg 20246, Germany
- Center
for Molecular Neurobiology (ZMNH), University
Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Laura Woythe
- Oxford Nanoimaging
Limited (ONI), Oxford OX2 8TA, U.K.
| | - Cecile L. Maire
- Department
of Neurosurgery, University Medical Center
Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Berta Puig
- Neurology
Department, Experimental Research in Stroke and Inflammation, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Ulrich Schüller
- Institute
of Neuropathology, University Medical Center
Hamburg-Eppendorf, Hamburg 20246, Germany
- Department
of Pediatric Hematology and Oncology, University
Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Children’s
Cancer Research Center Hamburg, Hamburg 20246, Germany
| | - Meike J. Saul
- Department
of Oncology, Hematology and Bone Marrow Transplantation with Section
Pneumology, University Cancer Center Hamburg, University Clinic Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Manfred Westphal
- Department
of Neurosurgery, University Medical Center
Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Richard Drexler
- Department
of Neurosurgery, University Medical Center
Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Lasse Dührsen
- Department
of Neurosurgery, University Medical Center
Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Jens Gempt
- Department
of Neurosurgery, University Medical Center
Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Dieter H. Heiland
- Department
of Neurosurgery, Medical Center University
of Freiburg, Freiburg D-79106, Germany
- Translational Neurosurgery, Friedrich-Alexander
University Erlangen Nuremberg, Erlangen 91054, Germany
- Department of Neurosurgery, University
Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen 91054, Germany
- Department of Neurological
Surgery, Northwestern
University Feinberg School of Medicine, Chicago, Illinois 60611, United States
- German Cancer Consortium (DKTK), Partner
Site Freiburg, Freiburg D-79106, Germany
| | - Katrin Lamszus
- Department
of Neurosurgery, University Medical Center
Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Franz L. Ricklefs
- Department
of Neurosurgery, University Medical Center
Hamburg-Eppendorf, Hamburg 20246, Germany
| |
Collapse
|
11
|
Schock Vaiani J, Broekgaarden M, Coll JL, Sancey L, Busser B. In vivo vectorization and delivery systems for gene therapies and RNA-based therapeutics in oncology. NANOSCALE 2025; 17:5501-5525. [PMID: 39927415 DOI: 10.1039/d4nr05371k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Gene and RNA-based therapeutics represent a promising frontier in oncology, enabling targeted modulation of tumor-associated genes and proteins. This review explores the latest advances in payload vectorization and delivery systems developed for in vivo cancer treatments. We discuss viral and non-viral organic particles, including lipid based nanoparticles and polymeric structures, for the effective transport of plasmids, siRNA, and self-amplifying RNA therapeutics. Their physicochemical properties, strategies to overcome intracellular barriers, and innovations in cell-based carriers and engineered extracellular vesicles are highlighted. Moreover, we consider oncolytic viruses, novel viral capsid modifications, and approaches that refine tumor targeting and immunomodulation. Ongoing clinical trials and regulatory frameworks guide future directions and emphasize the need for safe, scalable production. The potential convergence of these systems with combination therapies paves the way toward personalized cancer medicine.
Collapse
Affiliation(s)
- Julie Schock Vaiani
- Univ. Grenoble-Alpes (UGA), INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Allée des Alpes, 38000 Grenoble, France.
| | - Mans Broekgaarden
- Univ. Grenoble-Alpes (UGA), INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Allée des Alpes, 38000 Grenoble, France.
| | - Jean-Luc Coll
- Univ. Grenoble-Alpes (UGA), INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Allée des Alpes, 38000 Grenoble, France.
| | - Lucie Sancey
- Univ. Grenoble-Alpes (UGA), INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Allée des Alpes, 38000 Grenoble, France.
| | - Benoit Busser
- Univ. Grenoble-Alpes (UGA), INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Allée des Alpes, 38000 Grenoble, France.
- Grenoble Alpes Univ. Hospital (CHUGA), 38043 Grenoble, France
- Institut Universitaire de France (IUF), 75005 Paris, France
| |
Collapse
|
12
|
Chen J, Tian C, Xiong X, Yang Y, Zhang J. Extracellular vesicles: new horizons in neurodegeneration. EBioMedicine 2025; 113:105605. [PMID: 40037089 PMCID: PMC11925178 DOI: 10.1016/j.ebiom.2025.105605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 01/28/2025] [Accepted: 02/05/2025] [Indexed: 03/06/2025] Open
Abstract
Extracellular vesicles (EVs) are lipid-enclosed nanovesicles secreted by diverse cell types that orchestrate intercellular communication through cargo delivery. Their pivotal roles span from supporting the development of normal central nervous system (CNS) to contributing to the pathogenesis of neurological diseases. Particularly noteworthy is their involvement in the propagation of pathogenic proteins, such as those involved in neurodegenerative disorders, and nucleic acids, closely linking them to disease onset and progression. Moreover, EVs have emerged as promising diagnostic biomarkers for neurological disorders and as tools for disease staging, owing to their ability to traverse the blood-brain barrier and their specific, stable, and accessible properties. This review comprehensively explores the realm of CNS-derived EVs found in peripheral blood, encompassing their detection methods, transport mechanisms, and diverse roles in various neurodegenerative diseases. Furthermore, we evaluate the potentials and limitations of EVs in clinical applications and highlight prospective research directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Jun Chen
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310002, China
| | - Chen Tian
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310002, China
| | - Xiao Xiong
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310002, China
| | - Ying Yang
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310002, China.
| | - Jing Zhang
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310002, China; National Human Brain Bank for Health and Disease, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310002, China.
| |
Collapse
|
13
|
Xie XH, Chen MM, Xu SX, Mei J, Yang Q, Wang C, Lyu H, Gong Q, Liu Z. Isolating Astrocyte-Derived Extracellular Vesicles From Urine. Int J Nanomedicine 2025; 20:2475-2484. [PMID: 40027875 PMCID: PMC11872092 DOI: 10.2147/ijn.s492381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/03/2025] [Indexed: 03/05/2025] Open
Abstract
Introduction Brain-derived extracellular vesicles (BDEVs) can cross the blood-brain barrier and enter the periphery. Therefore, quantifying and analyzing peripherally circulating BDEVs offer a promising approach to directly obtain a window into central nervous system (CNS) pathobiology in vivo. Rapidly evolving CNS diseases require high-frequency sampling, but daily venipuncture of human subjects is highly invasive and usually unfeasible. Methods To address this challenge, here we present a novel method for isolating astrocyte-derived extracellular vesicles from urine (uADEVs), combining urine concentration, ultracentrifugation to isolate total EVs, and then glutamate-aspartate transporter (GLAST) EV isolation using an anti-GLAST antibody. Results The identity of these GLAST+EVs as uADEVs was confirmed by transmission electron microscopy, nanoparticle tracking analysis, western blotting, and assessment of astrocyte-related neurotrophins. Conclusions Leveraging the convenience and availability of urine samples, the non-invasive uADEV approach provides a novel tool that allows high-frequency sampling to investigate rapidly evolving CNS diseases.
Collapse
Affiliation(s)
- Xin-hui Xie
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Mian-mian Chen
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Shu-xian Xu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Junhua Mei
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Department of Neurology, Wuhan First Hospital, Wuhan, Hubei, People’s Republic of China
| | - Qing Yang
- Department of Neurology, Wuhan First Hospital, Wuhan, Hubei, People’s Republic of China
| | - Chao Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Honggang Lyu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Qian Gong
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, People’s Republic of China
| |
Collapse
|
14
|
Apostolov A, Mladenović D, Tilk K, Lõhmus A, Baev V, Yahubyan G, Sola-Leyva A, Bergamelli M, Görgens A, Zhao C, Andaloussi SEL, Kalinina A, Acharya G, Lanner F, Saare M, Peters M, Piomboni P, Luddi A, Salumets A, Aleksejeva E. Multi-omics analysis of uterine fluid extracellular vesicles reveals a resemblance with endometrial tissue across the menstrual cycle: biological and translational insights. Hum Reprod Open 2025; 2025:hoaf010. [PMID: 40084293 PMCID: PMC11904304 DOI: 10.1093/hropen/hoaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 01/15/2025] [Indexed: 03/16/2025] Open
Abstract
STUDY QUESTION Does the molecular composition of uterine fluid extracellular vesicles (UF-EVs) reflect endometrial tissue changes across the menstrual cycle? SUMMARY ANSWER Concordance between endometrial tissue and UF-EVs exists on miRNA and mRNA levels along the menstrual cycle phases and UF-EV surface proteomic signatures suggest EVs originate from several major endometrial cell populations. WHAT IS KNOWN ALREADY The clinical value of endometrial receptivity testing is restricted by invasiveness and the use of only one omics level of input. There is promising evidence that UF-EVs can reflect changes in mid-secretory endometrium, highlighting the potential to establish endometrial receptivity testing right before embryo transfer. However, the dynamic changes of UF-EVs molecular cargo have not been directly compared to endometrial tissue on multiple omics levels. STUDY DESIGN SIZE DURATION This cross-sectional study included fertile women from four menstrual cycle phases: proliferative and early-, mid-, and late-secretory phases. In total, 26 paired samples of UF and endometrial tissue were collected. mRNA and miRNA were sequenced, and differential analysis was performed on consecutive phases. UF-EVs were profiled for various protein surface markers associated with different cell types. EVs from epithelial endometrial organoid-conditioned culture media were used as a reference of pure epithelial endometrial EVs. PARTICIPANTS/MATERIALS SETTING METHODS Paired UF and endometrial tissue samples were collected from 26 fertile, reproductive-age women. EV isolation from UF was validated using electron microscopy and western blotting, and particle numbers were measured by nanoparticle tracking analysis. The transcriptome and miRNome of UF-EVs and endometrial tissue were sequenced, and differential expression analysis was conducted on consecutive phases of the menstrual cycle. Bead-based EV flow cytometry targeting 37 surface protein markers was used to characterize EVs from UF and endometrial organoids. MAIN RESULTS AND THE ROLE OF CHANCE Surface proteome analysis revealed that UF-EVs from the mid-secretory phase had significantly increased expression of natural killer cell marker CD56 (P < 0.005), pan-leukocyte marker CD45 (P < 0.005), pan-T-cell marker CD3 (P < 0.005), and coagulation-related protein CD142 (P < 0.005) compared to those from the proliferative phase, whereas markers associated with endometrial epithelial cells (CD29, CD133, and CD326) did not significantly change across the menstrual cycle. Transcriptomic analysis highlighted differential expression of histone and metallothionein genes that correlated between paired UF-EVs and endometrial tissues in each tested menstrual cycle phase. Principal component analysis of miRNomes of paired UF-EVs and endometrial tissue samples resulted in similar clustering patterns, where mid- and late-secretory samples clustered closely, and proliferative and early-secretory phase samples clustered separately. Half of the differentially expressed miRNAs in each phase in UF-EVs were also differentially expressed in the endometrium. Importantly, nine mid-secretory phase UF-EV DE miRNAs were identified, five of which were common between UF-EVs and endometrial biopsies, including hsa-miR-30d-5p and hsa-miR-200b-3p, both of which were previously implicated in implantation. Notably, three of the nine miRNAs, hsa-miR-200b-3p, hsa-miR-141-3p, and hsa-miR-200a-3p, were predicted to regulate mRNAs in the endometrial tissue and the pre-implantation embryo trophectoderm. LARGE SCALE DATA N/A. LIMITATIONS REASONS FOR CAUTION The clinical dating of the menstrual cycle phase is based on the first day of menstruation and the time of the LH peak, which does not exclude the possibility that the expected endometrial phase was not reached. The wider limitation of our study is the lack of standardized procedures for collecting UF samples in gynaecological practice, which could challenge the replication of our findings. WIDER IMPLICATIONS OF THE FINDINGS Evidence that UF-EVs reflect endometrial phases of menstrual cycle supports the use of UF-EVs in endometrial receptivity testing. Additionally, further studies of UF-EVs in endometrial pathologies could be beneficial for diagnostics, considering that more invasive tissue biopsies only reflect the biopsy site and not the full endometrium. STUDY FUNDING/COMPETING INTERESTS This study was supported by the European Regional Development Fund Enterprise Estonia's Applied Research Program under the grant agreement number 2014-2020.4.02.21-0398 (EVREM), the Estonian Research Council (grant nos. PRG1076 and PSG1082), the Horizon Europe NESTOR grant (grant no. 101120075) of the European Commission, the Swedish Research Council (grant no. 2024-02530), the Novo Nordisk Fonden (grant no. NNF24OC0092384), and the National Recovery and Resilience Plan of the Republic of Bulgaria, project number BG-RRP-2.004-0001-C01. A.S.L. received funding from the Becas Fundación Ramón Areces para Estudios Postdoctorales. All the authors declare no conflict of interest.
Collapse
Affiliation(s)
- Apostol Apostolov
- Celvia CC, Competence Centre on Health Technologies, Tartu, Estonia
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Danilo Mladenović
- HansaBioMed Life Sciences Ltd., Tallinn, Estonia
- School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia
| | - Kadi Tilk
- Celvia CC, Competence Centre on Health Technologies, Tartu, Estonia
| | | | - Vesselin Baev
- Department of Molecular Biology, University of Plovdiv, Plovdiv, Bulgaria
| | - Galina Yahubyan
- Department of Molecular Biology, University of Plovdiv, Plovdiv, Bulgaria
| | - Alberto Sola-Leyva
- Celvia CC, Competence Centre on Health Technologies, Tartu, Estonia
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Mathilde Bergamelli
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - André Görgens
- Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Huddinge, Sweden
- Karolinska ATMP Center, ANA Futura, Huddinge, Sweden
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Cheng Zhao
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Samir E L Andaloussi
- Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Huddinge, Sweden
- Karolinska ATMP Center, ANA Futura, Huddinge, Sweden
| | | | - Ganesh Acharya
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden
- Center for Fetal Medicine, Karolinska University Hospital, Stockholm, Sweden
- Women’s Health and Perinatology Research Group, Department of Clinical Medicine, UiT—The Arctic University of Norway, Tromsø, Norway
| | - Fredrik Lanner
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Merli Saare
- Celvia CC, Competence Centre on Health Technologies, Tartu, Estonia
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Maire Peters
- Celvia CC, Competence Centre on Health Technologies, Tartu, Estonia
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Paola Piomboni
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Alice Luddi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Andres Salumets
- Celvia CC, Competence Centre on Health Technologies, Tartu, Estonia
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Elina Aleksejeva
- Celvia CC, Competence Centre on Health Technologies, Tartu, Estonia
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
15
|
Liu GS, Chen HA, Chang CY, Chen YJ, Wu YY, Widhibrata A, Yang YH, Hsieh EH, Delila L, Lin IC, Burnouf T, Tseng CL. Platelet-derived extracellular vesicle drug delivery system loaded with kaempferol for treating corneal neovascularization. Biomaterials 2025; 319:123205. [PMID: 40023929 DOI: 10.1016/j.biomaterials.2025.123205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 02/15/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
Platelet-derived extracellular vesicles (PEVs) have drawn attention due to their multifunctionality, ease of procurement, and abundant supply from clinical-grade platelet concentrates. PEVs can be readily endocytosed due to their lipid bilayer membrane and nanoscale structure, enhancing the bioavailability and efficacy of their therapeutic effects. PEVs also contain various trophic factors that enhance their effectiveness as therapeutic agents. Given that nanomedicine provides benefits over traditional treatments for eye diseases by surpassing physical ocular barriers, PEVs combined with the anti-angiogenic agent, kaempferol (KM), were assessed for their capacity to inhibit abnormal blood vessel formation in the cornea. Characterization of the nanoparticles suggested the successful preparation of KM-loaded PEVs (PEV-KM) with a mean diameter of approximately 160 nm and an encapsulation efficiency of around 61 %. PEV-KM was effectively internalized into human vascular endothelial cells, resulting in inhibited function, as evidenced by lower wound closure rates, decreased tube formation capacity, and downregulation of angiogenesis-related gene expression. Moreover, prolonged ocular retention was observed following the topical application of PEV and PEV-KM in mouse eyes. In an alkali-burned corneal neovascularization (CoNV) mouse model, PEV (1 %) was found to decrease vessel formation in the injured cornea. However, the combination of PEV and KM (1 % PEV with KM 6 μg/mL) showed an even stronger effect in inhibiting CoNV and decreasing the expression of proangiogenic and inflammatory cytokines. Overall, our data suggests that the topical administration of PEVs, either alone or alongside KM (PEV-KM), is a promising therapy for the management of CoNV.
Collapse
Affiliation(s)
- Guei-Sheung Liu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia; Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City, Taiwan; Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, Australia; Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Huai-An Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City, Taiwan
| | - Che-Yi Chang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City, Taiwan
| | - Yin-Ju Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Yi Wu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City, Taiwan
| | - Ariel Widhibrata
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
| | - Ya-Han Yang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City, Taiwan
| | - Erh-Hsuan Hsieh
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City, Taiwan
| | - Liling Delila
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City, Taiwan
| | - I-Chan Lin
- Department of Ophthalmology, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan; Department of Ophthalmology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City, Taiwan; International Ph. D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City, Taiwan; Research Center of Biomedical Device, College of Biomedical Engineering, Taipei Medical University, Taipei City, Taiwan; International Ph. D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan.
| | - Ching-Li Tseng
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City, Taiwan; International Ph. D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City, Taiwan; Research Center of Biomedical Device, College of Biomedical Engineering, Taipei Medical University, Taipei City, Taiwan; International Ph. D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan.
| |
Collapse
|
16
|
Lago-Baameiro N, Camino T, Vazquez-Durán A, Sueiro A, Couto I, Santos F, Baltar J, Falcón-Pérez JM, Pardo M. Intra and inter-organ communication through extracellular vesicles in obesity: functional role of obesesomes and steatosomes. J Transl Med 2025; 23:207. [PMID: 39979938 PMCID: PMC11844161 DOI: 10.1186/s12967-024-06024-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/22/2024] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) represent a sophisticated mechanism of intercellular communication that is implicated in health and disease. Specifically, the role of EVs in metabolic regulation and their implications in metabolic pathologies, such as obesity and its comorbidities, remain unclear. METHODS Extracellular vesicles (EVs) were isolated through serial ultracentrifugation from murine adipocytes treated with palmitate or oleic acid, whole visceral and subcutaneous adipose tissue (obesesomes) of bariatric surgery obese donors, and human hepatocytes under steatosis (steatosomes) for functional in vitro experiments. Functional effects on inflammation and glucose and lipid metabolism of target cells (human and murine macrophages and hepatocytes) were assessed using ELISA, RT-PCR, and immunodetection. Isolated EVs from human steatotic (steatosomes) and control hepatocytes (hepatosomes) were characterized for quantity, size, and tetraspanin profile by NTA and Single Particle Interferometric Reflectance Imaging Sensor (SP-IRIS), and their protein cargo analyzed by qualitative (DDA) and quantitative (DIA-SWATH) proteomics using LC-MS/MS. Proteins identified by proteomics were validated by capturing EVs on functionalized chips by SP-IRIS. RESULTS AND CONCLUSIONS In this study, we investigated the role of EVs in the local communication between obese adipocytes and immune cells within adipose tissue, and the interaction of steatotic and healthy hepatocytes in the context of fatty liver disease progression. Furthermore, we analyzed obese adipose tissue-to-liver interactions through EV-obesesomes to elucidate their role in obesity-associated hepatic metabolic dysregulation. Our findings reveal that obesesomes promote inflammation and the secretion of pro-inflammatory cytokines upon interaction with macrophages, exerting a significant impact on reducing insulin resistance and altering lipid and glucose metabolism upon interaction with hepatocytes; in both cases, EVs from palmitate-loaded adipocytes and obesesomes from human visceral adipose depots demonstrated the most deleterious effect. Additionally, EVs secreted by steatotic hepatocytes (steatosomes) induced insulin resistance and altered lipid and glucose metabolism in healthy hepatocytes, suggesting their involvement in MASLD development. Proteomic analysis of steatosomes revealed that these vesicles contain liver disease-associated proteins, rendering them significant repositories of real-time biomarkers for the early stages and progression of MASLD.
Collapse
Affiliation(s)
- N Lago-Baameiro
- Grupo Obesidómica, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela/SERGAS, Santiago de Compostela, Travesía da Choupana s/n, 15706, Santiago de Compostela, A Coruña, Spain
| | - T Camino
- Grupo Obesidómica, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela/SERGAS, Santiago de Compostela, Travesía da Choupana s/n, 15706, Santiago de Compostela, A Coruña, Spain
| | - A Vazquez-Durán
- Grupo Obesidómica, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela/SERGAS, Santiago de Compostela, Travesía da Choupana s/n, 15706, Santiago de Compostela, A Coruña, Spain
| | - A Sueiro
- Grupo Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela/SERGAS, Santiago de Compostela, Spain
| | - I Couto
- Grupo Obesidómica, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela/SERGAS, Santiago de Compostela, Travesía da Choupana s/n, 15706, Santiago de Compostela, A Coruña, Spain
- Servicio de Cirugía Plástica y Reparadora, Complexo Hospitalario Universitario de Santiago de Compostela/SERGAS, Santiago de Compostela, Spain
| | - F Santos
- Grupo Obesidómica, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela/SERGAS, Santiago de Compostela, Travesía da Choupana s/n, 15706, Santiago de Compostela, A Coruña, Spain
- Servicio de Cirugía General, Complexo Hospitalario Universitario de Santiago de Compostela/SERGAS, Santiago de Compostela, Spain
| | - J Baltar
- Grupo Obesidómica, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela/SERGAS, Santiago de Compostela, Travesía da Choupana s/n, 15706, Santiago de Compostela, A Coruña, Spain
- Servicio de Cirugía General, Complexo Hospitalario Universitario de Santiago de Compostela/SERGAS, Santiago de Compostela, Spain
| | - J M Falcón-Pérez
- Exosomes Laboratory and Metabolomics Platform, CIC bioGUNE-BRTA, CIBERehd, Derio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - M Pardo
- Grupo Obesidómica, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela/SERGAS, Santiago de Compostela, Travesía da Choupana s/n, 15706, Santiago de Compostela, A Coruña, Spain.
- CIBER Fisiopatología Obesidad y Nutrición, Instituto de Salud Carlos III, Santiago de Compostela, Spain.
| |
Collapse
|
17
|
Kong G, Liu J, Wang J, Yu X, Li C, Deng M, Liu M, Wang S, Tang C, Xiong W, Fan J. Engineered Extracellular Vesicles Modified by Angiopep-2 Peptide Promote Targeted Repair of Spinal Cord Injury and Brain Inflammation. ACS NANO 2025; 19:4582-4600. [PMID: 39853366 PMCID: PMC11803916 DOI: 10.1021/acsnano.4c14675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/26/2025]
Abstract
Engineered extracellular vesicles play an increasingly important role in the treatment of spinal cord injury. In order to prepare more effective engineered extracellular vesicles, we biologically modified M2 microglia. Angiopep-2 (Ang2) is an oligopeptide that can target the blood-brain barrier. Through single-cell sequencing and immunofluorescence experiments, we confirmed that the expression of LRP-1, the targeted receptor of Ang2, was elevated after spinal cord injury. Subsequently, we integrated the Ang2 peptide segment into M2 microglia to obtain Ang2-EVs, which could successfully target the site of spinal cord injury. However, in order to improve the function of Ang2-EVs, we pretreated M2 microglia with melatonin, which has anti-inflammatory effects, to obtain M-Ang2-EVs. The results of single-nucleus sequencing of the mouse spinal cord verified that neurons and OPCs gradually transformed into subtypes related to nerve repair functions after treatment with M-Ang2-EVs. This is consistent with the sequencing and enrichment analysis of miRNAs contained in M-Ang2-EVs. We further verified through experiments that M-Ang2-EVs can promote microglia/macrophages to phagocytose sphingomyelin, promote axon remyelination and axon elongation, and maintain the integrity of the blood-spinal barrier. Since Ang2 can also target the blood-brain barrier, we found that M-Ang2-EVs can also reduce brain inflammation that results from spinal cord injury. Our study applied the Angiopep-2 peptide to spinal cord injury to enhance the targeting of injured cells, and successfully construct engineered extracellular vesicles that can target the spinal cord injury site and the brain.
Collapse
Affiliation(s)
- Guang Kong
- Department
of Orthopedics, Xijing Hospital, Fourth
Military Medical University, Xi’an 710000 Shaanxi, China
| | - Jie Liu
- Department
of Orthopedics, The Affiliated Taizhou People’s
Hospital of Nanjing Medical University, Taizhou School of Clinical
Medicine, Nanjing Medical University, 366 Taihu Road, Taizhou 225300 Jiangsu, China
| | - Juan Wang
- Department
of Human Anatomy, School of Basic Medicine, Nanjing Medical University, Nanjing 210000 Jiangsu, China
| | - Xiaohu Yu
- Department
of Orthopedics, The First Affiliated Hospital
of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210000 Jiangsu, China
| | - Cong Li
- Department
of Orthopedics, The First Affiliated Hospital
of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210000 Jiangsu, China
| | - Mingyang Deng
- Department
of Orthopedics, The First Affiliated Hospital
of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210000 Jiangsu, China
| | - Minhao Liu
- Department
of Orthopedics, The First Affiliated Hospital
of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210000 Jiangsu, China
| | - Siming Wang
- Department
of Orthopedics, The First Affiliated Hospital
of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210000 Jiangsu, China
| | - Chunming Tang
- Department
of Pharmaceutics, School of Pharmacy, Nanjing
Medical University, 300
Guangzhou Road, Nanjing 210000 Jiangsu, China
| | - Wu Xiong
- Department
of Orthopedics, The First Affiliated Hospital
of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210000 Jiangsu, China
| | - Jin Fan
- Department
of Orthopedics, The First Affiliated Hospital
of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210000 Jiangsu, China
| |
Collapse
|
18
|
Crooke PS, Tossberg JT, Aune TM. Increased unedited Alu RNA patterns found in cortex extracellular vesicles in Alzheimer's disease resemble hippocampus vasculature Alu RNA editing patterns but not cortex Alu RNA editing patterns. J Alzheimers Dis 2025; 103:1216-1225. [PMID: 39865681 DOI: 10.1177/13872877241313054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
BACKGROUND Endogenous Alu RNAs form double-stranded RNAs recognized by double-stranded RNA sensors and activate IRF and NF-kB transcriptional paths and innate immunity. Deamination of adenosines to inosines by the ADAR family of enzymes, a process termed A-to-I editing, disrupts double-stranded RNA structure and prevents innate immune activation. Innate immune activation is observed in Alzheimer's disease, the most common form of dementia. We have previously reported loss of A-to-I editing in hippocampus vasculature, but no change in cortex or cortex vasculature, associated with Alzheimer's disease. OBJECTIVE Here, we investigated the status of Alu RNA A-to-I editing in cortex extracellular vesicles in Alzheimer's disease. METHODS We used existing RNA-seq data sets and the SPRINT software package to determine levels of Alu RNA A-to-I editing in cortex extracellular vesicles in Alzheimer's disease and control groups and compared these editing profiles to those found in both total cortex and hippocampus vasculature. RESULTS We find substantial loss of Alu A-to-I editing in cortex extracellular vesicles in Alzheimer's disease. By measuring editing patterns on a gene-by-gene basis, we determined that editing patterns in cortex extracellular vesicles resemble editing patterns in hippocampus vasculature rather than total cortex. CONCLUSIONS We conclude that hippocampus vasculature unedited Alu RNAs are packaged in extracellular vesicles, travel to the cortex, deliver their cargo and stimulate innate immunity and alter other basic biological processes contributing to Alzheimer's disease progression.
Collapse
Affiliation(s)
- Philip S Crooke
- Department of Mathematics, Vanderbilt University, Nashville, TN, USA
| | - John T Tossberg
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Thomas M Aune
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
19
|
Kögel D, Temme A, Aigner A. Recent advances in development and delivery of non-viral nucleic acid therapeutics for brain tumor therapy. Pharmacol Ther 2025; 266:108762. [PMID: 39603349 DOI: 10.1016/j.pharmthera.2024.108762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/07/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
High grade gliomas (HGG) are a group of CNS tumors refractory to currently existing therapies, which routinely leads to early recurrence and a dismal prognosis. Recent advancements in nucleic acid-based therapy using a wide variety of different molecular targets and non-viral nanocarrier systems suggest that this approach holds significant potential to meet the urgent demand for improved therapeutic options for the treatment of these tumors. This review provides a comprehensive and up-to-date overview on the current landscape and progress of preclinical and clinical developments in this rapidly evolving and exciting field of research, including optimized nanocarrier delivery systems, promising therapeutic targets and tailor-made therapeutic strategies for individualized HGG patient treatment.
Collapse
Affiliation(s)
- Donat Kögel
- Department of Neurosurgery, Experimental Neurosurgery, University Hospital, Goethe University, Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt am Main, Germany; German Cancer Research Center DKFZ, Heidelberg, Germany.
| | - Achim Temme
- Department of Neurosurgery, Section Experimental Neurosurgery/Tumor Immunology, University Hospital Carl Gustav Carus, TU Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, Germany; National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig, Germany; Comprehensive Cancer Center Central Germany (CCCG), Site Leipzig, Leipzig, Germany
| |
Collapse
|
20
|
Hong CT, Chung CC, Hsieh YC, Chan L. Plasma extracellular vesicle neurofilament light chain as the biomarkers of the progression of Parkinson's disease. BIOMOLECULES & BIOMEDICINE 2025; 25:588-594. [PMID: 39652080 PMCID: PMC12010974 DOI: 10.17305/bb.2024.11502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/01/2024] [Accepted: 12/01/2024] [Indexed: 01/31/2025]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by progressive symptoms, underscoring the urgent need for predictive blood biomarkers. Plasma extracellular vesicles (EVs) offer a promising platform for biomarker development, with neurofilament light chain (NfL) emerging as a potential candidate for neurological diseases. This study evaluated plasma EV NfL as a biomarker for disease progression in a PD cohort.A total of 55 patients with PD (PwP) and 58 healthy controls (HCs) were followed, with PwP completing an average of 3.96 visits and HCs 2.25 visits. Plasma EVs were isolated and validated, and EV NfL levels were measured using an immunomagnetic reduction assay. Generalized estimating equations and Spearman correlations assessed relationships between clinical symptom progression and biomarkers. Although no significant differences in plasma EV NfL levels were observed between PwP and HCs over time, changes in plasma EV NfL significantly correlated with motor symptom progression, specifically with adjusted-total and akinetic-rigidity subscores of the Unified PD Rating Scale (UPDRS) Part III. Additionally, changes in UPDRS Part II scores were significantly associated with plasma EV NfL levels. These findings suggest that plasma EV NfL reflects motor symptom progression in PwP, highlighting its potential as a valuable biomarker for monitoring disease progression and guiding clinical trials in PD.
Collapse
Affiliation(s)
- Chien-Tai Hong
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
| | - Chen-Chih Chung
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
| | - Yi-Chen Hsieh
- College of Medical Science and Technology, Graduate Institute of Neural Regenerative Medicine, Taipei Medical University, Taipei, Taiwan
| | - Lung Chan
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
21
|
Kalia V, Jackson G, Dominguez RJ, Pinto-Pacheco B, Bloomquist T, Furnari J, Banu M, Volpert O, Manz KE, Walker DI, Pennell KD, Canoll PD, Bruce JN, Eitan E, Wu H, Baccarelli AA. Molecular profiling of neuronal extracellular vesicles reveals brain tissue specific signals. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.23.25320909. [PMID: 39974146 PMCID: PMC11839008 DOI: 10.1101/2025.01.23.25320909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Extracellular vesicles (EVs) released by neurons (nEVs) provide an opportunity to measure biomarkers from the brain circulating in the periphery. No study yet has directly compared molecular cargo in brain tissue to nEVs found in circulation in humans. We compared the levels microRNAs and environmental chemicals because microRNAs are one of the most studied nEV cargoes and offer great potential as biomarkers and environmental chemical load in nEVs is understudied and could reveal levels of chemicals in the brain. To do so, we leveraged matched sets of brain tissue and serum, and isolated serum total EVs and serum nEVs. We also generated and compared metabolomic profiles in a different set of matched serum, serum total EVs, and serum nEVs since metabolite cargo in nEVs is also understudied but could offer potential biomarkers. Highly expressed brain tissue miRNAs showed stronger correlations with nEVs than serum or total EVs. We detected several environmental chemical pollutant classes in nEVs. The chemical pollutant concentrations in nEVs were more strongly correlated with brain tissue levels than those observed between brain tissue and serum or total EVs. We also detected several endogenous metabolite classes in nEVs. Compared to serum and total EVs, there was enrichment of metabolites with known signaling roles, such as bile acids, oleic acid, phosphatidylserine, and isoprenoids. We provide evidence that nEV cargo is closely correlated to brain tissue content, further supporting their utility as a brain liquid biopsy.
Collapse
Affiliation(s)
- Vrinda Kalia
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Gabriela Jackson
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Regina J. Dominguez
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Brismar Pinto-Pacheco
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tessa Bloomquist
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Julia Furnari
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Matei Banu
- Stanford Neuroscience Health Center, Stanford Medicine, Palo Alto, CA, USA
| | | | - Katherine E. Manz
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Douglas I. Walker
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Kurt D. Pennell
- School of Engineering, Brown University, Providence, RI, USA
| | - Peter D. Canoll
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jeffrey N. Bruce
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Haotian Wu
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Andrea A. Baccarelli
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| |
Collapse
|
22
|
Doktor F, Antounians L, Figueira RL, Khalaj K, Duci M, Zani A. Amniotic fluid stem cell extracellular vesicles as a novel fetal therapy for pulmonary hypoplasia: a review on mechanisms and translational potential. Stem Cells Transl Med 2025; 14:szae095. [PMID: 39823257 PMCID: PMC11740888 DOI: 10.1093/stcltm/szae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/30/2024] [Indexed: 01/30/2025] Open
Abstract
Disruption of developmental processes affecting the fetal lung leads to pulmonary hypoplasia. Pulmonary hypoplasia results from several conditions including congenital diaphragmatic hernia (CDH) and oligohydramnios. Both entities have high morbidity and mortality, and no effective therapy that fully restores normal lung development. Hypoplastic lungs have impaired growth (arrested branching morphogenesis), maturation (decreased epithelial/mesenchymal differentiation), and vascularization (endothelial dysfunction and vascular remodeling leading to postnatal pulmonary hypertension). Herein, we discuss the pathogenesis of pulmonary hypoplasia and the role of microRNAs (miRNAs) during normal and pathological lung development. Since multiple cells and pathways are altered, the ideal strategy for hypoplastic lungs is to deliver a therapy that addresses all aspects of abnormal lung development. In this review, we report on a novel regenerative approach based on the administration of extracellular vesicles derived from amniotic fluid stem cells (AFSC-EVs). Specifically, we describe the effects of AFSC-EVs in rodent and human models of pulmonary hypoplasia, their mechanism of action via release of their cargo, including miRNAs, and their anti-inflammatory properties. We also compare cargo contents and regenerative effects of EVs from AFSCs and mesenchymal stromal cells (MSCs). Overall, there is compelling evidence that antenatal administration of AFSC-EVs rescues multiple features of fetal lung development in experimental models of pulmonary hypoplasia. Lastly, we discuss the steps that need to be taken to translate this promising EV-based therapy from the bench to the bedside. These include strategies to overcome barriers commonly associated with EV therapeutics and specific challenges related to stem cell-based therapies in fetal medicine.
Collapse
Affiliation(s)
- Fabian Doktor
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada M5G 0A4
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, Canada M5G 1X8
- Department of Pediatric Surgery, Leipzig University, Leipzig 04109, Germany
| | - Lina Antounians
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada M5G 0A4
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, Canada M5G 1X8
| | - Rebeca Lopes Figueira
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada M5G 0A4
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, Canada M5G 1X8
| | - Kasra Khalaj
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada M5G 0A4
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, Canada M5G 1X8
| | - Miriam Duci
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada M5G 0A4
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, Canada M5G 1X8
| | - Augusto Zani
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada M5G 0A4
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, Canada M5G 1X8
- Department of Surgery, University of Toronto, Toronto, ON, Canada M5T 1P5
| |
Collapse
|
23
|
Lerussi G, Villagrasa-Araya V, Moltó-Abad M, del Toro M, Pintos-Morell G, Seras-Franzoso J, Abasolo I. Extracellular Vesicles as Tools for Crossing the Blood-Brain Barrier to Treat Lysosomal Storage Diseases. Life (Basel) 2025; 15:70. [PMID: 39860010 PMCID: PMC11766495 DOI: 10.3390/life15010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/03/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Extracellular vesicles (EVs) are nanosized, membrane-bound structures that have emerged as promising tools for drug delivery, especially in the treatment of lysosomal storage disorders (LSDs) with central nervous system (CNS) involvement. This review highlights the unique properties of EVs, such as their biocompatibility, capacity to cross the blood-brain barrier (BBB), and potential for therapeutic cargo loading, including that of enzymes and genetic material. Current therapies for LSDs, like enzyme replacement therapy (ERT), often fail to address neurological symptoms due to their inability to cross the BBB. EVs offer a viable alternative, allowing for targeted delivery to the CNS and improving therapeutic outcomes. We discuss recent advancements in the engineering and modification of EVs to enhance targeting, circulation time and cargo stability, and provide a detailed overview of their application in LSDs, such as Gaucher and Fabry diseases, and Sanfilippo syndrome. Despite their potential, challenges remain in scaling production, ensuring isolation purity, and meeting regulatory requirements. Future developments will focus on overcoming these barriers, paving the way for the clinical translation of EV-based therapies in LSDs and other CNS disorders.
Collapse
Affiliation(s)
- Giovanni Lerussi
- Clinical Biochemistry, Drug Delivery & Therapy (CB-DDT), Vall d’Hebron Institute of Research (VHIR), 08035 Barcelona, Spain; (G.L.); (V.V.-A.); (M.M.-A.); (G.P.-M.); (J.S.-F.)
| | - Verónica Villagrasa-Araya
- Clinical Biochemistry, Drug Delivery & Therapy (CB-DDT), Vall d’Hebron Institute of Research (VHIR), 08035 Barcelona, Spain; (G.L.); (V.V.-A.); (M.M.-A.); (G.P.-M.); (J.S.-F.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 08035 Barcelona, Spain
- Institute of Advanced Chemistry of Catalonia (IQAC), Centro Superior de Investigaciones Científicas (CSIC), 08034 Barcelona, Spain
| | - Marc Moltó-Abad
- Clinical Biochemistry, Drug Delivery & Therapy (CB-DDT), Vall d’Hebron Institute of Research (VHIR), 08035 Barcelona, Spain; (G.L.); (V.V.-A.); (M.M.-A.); (G.P.-M.); (J.S.-F.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 08035 Barcelona, Spain
| | - Mireia del Toro
- Pediatric Neurology Unit, Hospital Universitari Vall d’Hebron and MetabERN, 08035 Barcelona, Spain;
- Networking Research Center on Rare Diseases (CIBERER), 08035 Barcelona, Spain
| | - Guillem Pintos-Morell
- Clinical Biochemistry, Drug Delivery & Therapy (CB-DDT), Vall d’Hebron Institute of Research (VHIR), 08035 Barcelona, Spain; (G.L.); (V.V.-A.); (M.M.-A.); (G.P.-M.); (J.S.-F.)
| | - Joaquin Seras-Franzoso
- Clinical Biochemistry, Drug Delivery & Therapy (CB-DDT), Vall d’Hebron Institute of Research (VHIR), 08035 Barcelona, Spain; (G.L.); (V.V.-A.); (M.M.-A.); (G.P.-M.); (J.S.-F.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 08035 Barcelona, Spain
| | - Ibane Abasolo
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 08035 Barcelona, Spain
- Institute of Advanced Chemistry of Catalonia (IQAC), Centro Superior de Investigaciones Científicas (CSIC), 08034 Barcelona, Spain
| |
Collapse
|
24
|
Lach MS, Wróblewska JP, Michalak M, Budny B, Wrotkowska E, Suchorska WM. The Effect of Ionising Radiation on the Properties of Tumour-Derived Exosomes and Their Ability to Modify the Biology of Non-Irradiated Breast Cancer Cells-An In Vitro Study. Int J Mol Sci 2025; 26:376. [PMID: 39796230 PMCID: PMC11719956 DOI: 10.3390/ijms26010376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
The vast majority of breast cancer patients require radiotherapy but some of them will develop local recurrences and potentially metastases in the future. Recent data show that exosomal cargo is essential in these processes. Thus, we investigated the influence of ionising radiation on exosome properties and their ability to modify the sensitivity and biology of non-irradiated cells. Exosomes were isolated from breast cancer cell lines (MDA-MB-231, MCF7, and SKBR3) irradiated with 2 Gy (Exo 2 Gy) or no irradiation (Exo 0 Gy). Despite some differences in their molecular profiles, they did not affect cell viability, proliferation, cell cycle phase distribution, and radioresistance; however, both populations showed the ability to modify cell migration and invasion potential, as confirmed by the downregulation of β-catenin, which is responsible for maintaining the epithelial phenotype. Interestingly, exosomes from irradiated BCa cells were more actively deposited in the endothelial cells (EA.hy926). Furthermore, exosomes tend to lower the expression of CD31, which is responsible for maintaining intact vascularity. This preliminary study demonstrates the vital role of exosomes and their altered profile due to irradiation in the pathobiology of breast cancer.
Collapse
Affiliation(s)
- Michał Stefan Lach
- Department of Electroradiology, Poznan University of Medical Sciences, Garbary 15, 61-866 Poznan, Poland;
- Radiobiology Lab, The Greater Poland Cancer Centre, Garbary 15 Street, 61-866 Poznan, Poland
| | - Joanna Patrycja Wróblewska
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, 6, Avenue du Swing, 4367 Belvaux, Luxembourg;
| | - Marcin Michalak
- Surgical, Oncological and Endoscopic Gynaecology Department, The Greater Poland Cancer Centre, Garbary 15 Street, 61-866 Poznan, Poland;
| | - Bartłomiej Budny
- Department of Endocrinology, Metabolism and Internal Diseases, Poznan University of Medical Sciences, Przybyszewskiego 49 Street, 60-355 Poznan, Poland; (B.B.); (E.W.)
| | - Elżbieta Wrotkowska
- Department of Endocrinology, Metabolism and Internal Diseases, Poznan University of Medical Sciences, Przybyszewskiego 49 Street, 60-355 Poznan, Poland; (B.B.); (E.W.)
| | - Wiktoria Maria Suchorska
- Department of Electroradiology, Poznan University of Medical Sciences, Garbary 15, 61-866 Poznan, Poland;
- Radiobiology Lab, The Greater Poland Cancer Centre, Garbary 15 Street, 61-866 Poznan, Poland
| |
Collapse
|
25
|
Špilak A, Brachner A, Friedl HP, Klepe A, Nöhammer C, Neuhaus W. Effects of small extracellular vesicles derived from normoxia- and hypoxia-treated prostate cancer cells on the submandibular salivary gland epithelium in vitro. Tissue Barriers 2025; 13:2347062. [PMID: 38721756 PMCID: PMC11875469 DOI: 10.1080/21688370.2024.2347062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 03/03/2025] Open
Abstract
Small extracellular vesicles (sEVs) are an important part of intercellular communication. They are phospholipid bilayer particles that carry active biomolecules such as proteins, various nucleic acids, and lipids. In recipient cells, sEVs can alter cellular functions, including cancer development and premetastatic niche formation in distant organs. Moreover, sEVs can carry cancer-specific features, which makes them promising biomarker candidates. However, the interactions of sEVs with biological barriers and consequences thereof, are not clarified yet. The blood-saliva barrier is crucial for preventing the entry of pathogens and (in)organic substances into the bloodstream, as well as molecule filtration from blood to saliva. The effects of brain derived DU145 prostate cancer (PCa) sEVs on a human submandibular salivary gland barrier (SSGB) in vitro were investigated. Small EVs were harvested from normoxic (N, atmospheric O2) or hypoxic (H, 1% O2) conditions, fluorescently labeled with CellTrackerTM Orange and thoroughly characterized. HTB-41 B2 cells were used as SSGB model cultured on 24-well ThinCert® inserts. After model optimization indicating effects of serum and serum-sEVs on barrier properties, PCa sEVs were applied to the basolateral (blood) side in either 10% serum, or serum-free conditions, and barrier integrity was continuously monitored for 40 hours. This study found that H and N PCa sEVs were uptaken by the SSGB in vitro model in similar quantities regardless of the media composition in the basolateral compartment. Permeation of fluorescent PCa sEVs into the apical compartment was not detectable with the applied methods. However, treatment with H and N sEVs under different serum conditions revealed distinct molecular clusters after hierarchical analysis of mRNA data measured by high-throughput qPCR, which were partly reflected at the protein level. For example, serum-reduction dependent decrease of barrier properties was accompanied with the decrease of CDH1 or Claudin-7 expression. Interestingly, the presence of H sEVs significantly increased the number of sEV-sized particles in the apical compartment of the SSGB model compared to basolaterally added N sEVs. This functional effect on the number of particles in the saliva (apical) compartment induced by different sEVs applied in the blood (basolateral) compartment might be a new approach to understand one possible mechanism how differences of salivary EVs might occur which then could be used as biomarker.
Collapse
Affiliation(s)
- Ana Špilak
- Competence Unit Molecular Diagnostics, Center for Health and Bioresources, AIT - Austrian Institute of Technology GmbH, Vienna, Austria
| | - Andreas Brachner
- Competence Unit Molecular Diagnostics, Center for Health and Bioresources, AIT - Austrian Institute of Technology GmbH, Vienna, Austria
| | - Heinz-Peter Friedl
- Competence Unit Molecular Diagnostics, Center for Health and Bioresources, AIT - Austrian Institute of Technology GmbH, Vienna, Austria
| | - Adrián Klepe
- Competence Unit Molecular Diagnostics, Center for Health and Bioresources, AIT - Austrian Institute of Technology GmbH, Vienna, Austria
| | - Christa Nöhammer
- Competence Unit Molecular Diagnostics, Center for Health and Bioresources, AIT - Austrian Institute of Technology GmbH, Vienna, Austria
| | - Winfried Neuhaus
- Competence Unit Molecular Diagnostics, Center for Health and Bioresources, AIT - Austrian Institute of Technology GmbH, Vienna, Austria
- Faculty of Medicine and Dentistry, Danube Private University, Krems, Austria
| |
Collapse
|
26
|
Weiss L, Macleod H, Maguire PB. Platelet-derived extracellular vesicles in cardiovascular disease and treatment - from maintaining homeostasis to targeted drug delivery. Curr Opin Hematol 2025; 32:4-13. [PMID: 39377239 PMCID: PMC11620325 DOI: 10.1097/moh.0000000000000845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
PURPOSE OF REVIEW Cardiovascular disease (CVD) remains a major global health burden. Rising incidences necessitate improved understanding of the pathophysiological processes underlying disease progression to foster the development of novel therapeutic strategies. Besides their well recognized role in CVD, platelet-derived extracellular vesicles (PEVs) mediate inter-organ cross talk and contribute to various inflammatory diseases. RECENT FINDINGS PEVs are readily accessible diagnostic biomarkers that mirror pathophysiological disease progression but also may confer cardioprotective properties. Monitoring the effects of modulation of PEV signatures through pharmacotherapies has also provided novel insights into treatment efficacy. Furthermore, exploiting their inherent ability to infiltrate thrombi, atherosclerotic plaques and solid tumours, PEVs as well as platelet-membrane coated nanoparticles are emerging as novel effective and targeted treatment options for CVD and cancer. SUMMARY Collectively, in-depth characterization of PEVs in various diseases ultimately enhances their use as diagnostic or prognostic biomarkers and potential therapeutic targets, making them clinically relevant candidates to positively impact patient outcomes.
Collapse
Affiliation(s)
- Luisa Weiss
- Conway SPHERE Research Group, Conway Institute
- School of Biomolecular and Biomedical Science
- AI for Healthcare Hub, Institute for Discovery, O’Brien Centre of Science, University College Dublin, Dublin, Ireland
| | - Hayley Macleod
- Conway SPHERE Research Group, Conway Institute
- School of Biomolecular and Biomedical Science
| | - Patricia B. Maguire
- Conway SPHERE Research Group, Conway Institute
- School of Biomolecular and Biomedical Science
- AI for Healthcare Hub, Institute for Discovery, O’Brien Centre of Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
27
|
Xin X, Koenen RR. Assessing platelet-derived extracellular vesicles for potential as therapeutic targets in cardiovascular diseases. Expert Opin Ther Targets 2025; 29:17-28. [PMID: 39817690 DOI: 10.1080/14728222.2025.2454617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/17/2024] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
INTRODUCTION Cardiovascular disease (CVD) is the leading cause of death worldwide. Platelet-derived extracellular vesicles (PEV) have attracted extensive attention in cardiovascular disease research in recent years because their cargo is involved in a variety of pathophysiological processes, such as thrombosis, immune response, promotion or inhibition of inflammatory response, promotion of angiogenesis as well as cell proliferation and migration. AREAS COVERED This review explores the role of PEV in various cardiovascular diseases (such as atherosclerosis, myocardial infarction, ischemia-reperfusion injury, and heart failure), with relation to its molecular cargo (nucleic acids, bioactive lipids, proteins) and aims to provide new insights in the pathophysiologic role of PEV, and methods for preventing and treating cardiovascular diseases based on PEV. EXPERT OPINION Studies have shown that the cargo of PEV may be dysregulated during cardiovascular disease and delivery to tissues can result in detrimental pathophysiologic effects. Counteracting this process might have the potential to inhibit inflammation, promote angiogenesis, and inhibit cardiomyocyte death. In addition, PEV have potential as biocompatible and autologous drug carriers. Therefore, better research on the mechanisms how PEV act during cardiovascular disease and could be implemented as a therapeutic will provide new perspectives for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Xin Xin
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Rory R Koenen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
28
|
Zhang L, Zhao G, Dalrymple T, Husiev Y, Bronkhorst H, Forn-Cuní G, Lopes-Bastos B, Snaar-Jagalska E, Bonnet S. Cyclic Ruthenium-Peptide Prodrugs Penetrate the Blood-Brain Barrier and Attack Glioblastoma upon Light Activation in Orthotopic Zebrafish Tumor Models. ACS CENTRAL SCIENCE 2024; 10:2294-2311. [PMID: 39735314 PMCID: PMC11672551 DOI: 10.1021/acscentsci.4c01173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/24/2024] [Accepted: 11/18/2024] [Indexed: 12/31/2024]
Abstract
The blood-brain barrier (BBB) presents one of the main obstacles to delivering anticancer drugs in glioblastoma. Herein, we investigated the potential of a series of cyclic ruthenium-peptide conjugates as photoactivated therapy candidates for the treatment of this aggressive tumor. The three compounds studied, Ru-p(HH), Ru-p(MH), and Ru-p(MM) ([Ru(Ph2phen)2 (Ac-X1RGDX2-NH2)]Cl2 with Ph2phen = 4,7-diphenyl-1,10-phenanthroline and X1, X2 = His or Met), include an integrin-targeted pentapeptide coordinated to a ruthenium warhead via two photoactivated ruthenium-X1,2 bonds. Their photochemistry, activation mechanism, tumor targeting, and antitumor activity were meticulously addressed. A combined in vitro and in vivo study revealed that the photoactivated cell-killing mechanism and their O2 dependence were strongly influenced by the nature of X1 and X2. Ru-p(MM) was shown to be a photoactivated chemotherapy (PACT) drug, while Ru-p(HH) behaved as a photodynamic therapy (PDT) drug. All conjugates, however, showed comparable antitumor targeting and efficacy toward human glioblastoma 3D spheroids and orthotopic glioblastoma tumor models in zebrafish embryos. Most importantly, in this model, all three compounds could effectively cross the BBB, resulting in excellent targeting of the tumors in the brain.
Collapse
Affiliation(s)
- Liyan Zhang
- Leiden
Institute of Chemistry, Universiteit Leiden, Einsteinweg 55, 2333 CC Leiden, Netherlands
| | - Gangyin Zhao
- Leiden
Institute of Biology, Universiteit Leiden, Einsteinweg 55, 2333 CC Leiden, Netherlands
| | - Trevor Dalrymple
- Leiden
Institute of Chemistry, Universiteit Leiden, Einsteinweg 55, 2333 CC Leiden, Netherlands
| | - Yurii Husiev
- Leiden
Institute of Chemistry, Universiteit Leiden, Einsteinweg 55, 2333 CC Leiden, Netherlands
| | - Hildert Bronkhorst
- Leiden
Institute of Chemistry, Universiteit Leiden, Einsteinweg 55, 2333 CC Leiden, Netherlands
| | - Gabriel Forn-Cuní
- Leiden
Institute of Biology, Universiteit Leiden, Einsteinweg 55, 2333 CC Leiden, Netherlands
| | - Bruno Lopes-Bastos
- Leiden
Institute of Biology, Universiteit Leiden, Einsteinweg 55, 2333 CC Leiden, Netherlands
| | - Ewa Snaar-Jagalska
- Leiden
Institute of Biology, Universiteit Leiden, Einsteinweg 55, 2333 CC Leiden, Netherlands
| | - Sylvestre Bonnet
- Leiden
Institute of Chemistry, Universiteit Leiden, Einsteinweg 55, 2333 CC Leiden, Netherlands
| |
Collapse
|
29
|
Gillett DA, Tigro H, Wang Y, Suo Z. FMR1 Disorders: Basics of Biology and Therapeutics in Development. Cells 2024; 13:2100. [PMID: 39768191 PMCID: PMC11674747 DOI: 10.3390/cells13242100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Fragile X Syndrome (FXS) presents with a constellation of phenotypes, including trouble regulating emotion and aggressive behaviors, disordered sleep, intellectual impairments, and atypical physical development. Genetic study of the X chromosome revealed that substantial repeat expansion of the 5' end of the gene fragile X messenger ribonucleoprotein 1 (FMR1) promoted DNA methylation and, consequently, silenced expression of FMR1. Further analysis proved that shorter repeat expansions in FMR1 also manifested in disease at later stages in life. Treatment and therapy options do exist, but they only manage symptoms. Up to now, no cure for FMR1 disorders exists. In this review, we aim to provide an overview of FMR1 biology and the latest research focused on developing therapeutic interventions that can potentially prevent and/or reverse FXS.
Collapse
Affiliation(s)
| | | | | | - Zucai Suo
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
30
|
Diez-Roda P, Perez-Navarro E, Garcia-Martin R. Adipose Tissue as a Major Launch Spot for Circulating Extracellular Vesicle-Carried MicroRNAs Coordinating Tissue and Systemic Metabolism. Int J Mol Sci 2024; 25:13488. [PMID: 39769251 PMCID: PMC11677924 DOI: 10.3390/ijms252413488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/07/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Circulating microRNAs (miRNAs), especially transported by extracellular vesicles (EVs), have recently emerged as major new participants in interorgan communication, playing an important role in the metabolic coordination of our tissues. Among these, adipose tissue displays an extraordinary ability to secrete a vast list of EV-carried miRNAs into the circulation, representing new hormone-like factors. Despite the limitations of current methodologies for the unequivocal identification of the origin and destination of EV-carried miRNAs in vivo, recent investigations clearly support the important regulatory role of adipose-derived circulating miRNAs in shaping the metabolism and function of other tissues including the liver, muscle, endocrine pancreas, cardiovascular system, gastrointestinal tract, and brain. Here, we review the most recent findings regarding miRNAs transported by adipose-derived EVs (AdEVs) targeting other major metabolic organs and the implications of this dialog for physiology and pathology. We also review here the current and potential future diagnostic and therapeutic applications of AdEV-carried miRNAs.
Collapse
Affiliation(s)
| | | | - Ruben Garcia-Martin
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, 28049 Madrid, Spain; (P.D.-R.); (E.P.-N.)
| |
Collapse
|
31
|
D’Amico G, Carista A, Manna OM, Paladino L, Picone D, Sarullo S, Sausa M, Cappello F, Vitale AM, Caruso Bavisotto C. Brain-Periphery Axes: The Potential Role of Extracellular Vesicles-Delivered miRNAs. BIOLOGY 2024; 13:1056. [PMID: 39765723 PMCID: PMC11673379 DOI: 10.3390/biology13121056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/10/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025]
Abstract
Bidirectional communication between the central nervous system (CNS) and peripheral organs and tissue has been widely documented in physiological and pathological conditions. This communication relies on the bilateral transmission of signaling molecules and substances that circulate throughout the body and reach their target site(s) via the blood and other biological fluids (e.g., the cerebrospinal fluid, the lymph). One of the mechanisms by which these molecular messengers are exchanged is through the secretion of extracellular vesicles (EVs). EVs are known to mediate cell-to-cell communication by delivering biological molecules, including nucleic acids, proteins, lipids, and various other bioactive regulators. Moreover, EVs can cross the blood-brain barrier (BBB), enabling direct communication between the periphery and the brain. In particular, the delivery of microRNAs (miRNAs) can modulate the expression profiles of recipient cells, thereby influencing their functions. This review synthesizes current findings about the brain-periphery cross-talk mediated by EVs-delivered miRNAs. Although this mechanism has been definitively shown in a few cases, much evidence indirectly indicates that it could mediate brain-peripherical organs/tissue communication, especially in pathological conditions. Therefore, understanding this process could provide valuable insights for the treatment and management of neurological and systemic diseases.
Collapse
Affiliation(s)
- Giuseppa D’Amico
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.D.); (A.C.); (O.M.M.); (L.P.); (D.P.); (S.S.); (F.C.); (C.C.B.)
| | - Adelaide Carista
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.D.); (A.C.); (O.M.M.); (L.P.); (D.P.); (S.S.); (F.C.); (C.C.B.)
| | - Olga Maria Manna
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.D.); (A.C.); (O.M.M.); (L.P.); (D.P.); (S.S.); (F.C.); (C.C.B.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Via Michele Miraglia 20, 90139 Palermo, Italy
| | - Letizia Paladino
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.D.); (A.C.); (O.M.M.); (L.P.); (D.P.); (S.S.); (F.C.); (C.C.B.)
| | - Domiziana Picone
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.D.); (A.C.); (O.M.M.); (L.P.); (D.P.); (S.S.); (F.C.); (C.C.B.)
| | - Silvia Sarullo
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.D.); (A.C.); (O.M.M.); (L.P.); (D.P.); (S.S.); (F.C.); (C.C.B.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Via Michele Miraglia 20, 90139 Palermo, Italy
| | - Martina Sausa
- Department of Theoretical and Applied Sciences, eCampus University, 22060 Novedrate, Italy;
| | - Francesco Cappello
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.D.); (A.C.); (O.M.M.); (L.P.); (D.P.); (S.S.); (F.C.); (C.C.B.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Via Michele Miraglia 20, 90139 Palermo, Italy
| | - Alessandra Maria Vitale
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.D.); (A.C.); (O.M.M.); (L.P.); (D.P.); (S.S.); (F.C.); (C.C.B.)
| | - Celeste Caruso Bavisotto
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.D.); (A.C.); (O.M.M.); (L.P.); (D.P.); (S.S.); (F.C.); (C.C.B.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Via Michele Miraglia 20, 90139 Palermo, Italy
| |
Collapse
|
32
|
Strum S, Evdokimova V, Radvanyi L, Spreafico A. Extracellular Vesicles and Their Applications in Tumor Diagnostics and Immunotherapy. Cells 2024; 13:2031. [PMID: 39682778 PMCID: PMC11639792 DOI: 10.3390/cells13232031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
Extracellular vesicles (EVs) are cell-derived nanoparticles that have attracted significant attention in the investigation of human health and disease, including cancer biology and its clinical management. Concerning cancer, EVs have been shown to influence numerous aspects of oncogenesis, including tumor proliferation and metastasis. EVs can augment the immune system and have been implicated in virtually all aspects of innate and adaptive immunity. With immunotherapy changing the landscape of cancer treatment across multiple disease sites, it is paramount to understand their mechanisms of action and to further improve upon their efficacy. Despite a rapidly growing body of evidence supporting of the utility of EVs in cancer diagnostics and therapeutics, their application in clinical trials involving solid tumors and immunotherapy remains limited. To date, relatively few trials are known to incorporate EVs in this context, mainly employing them as biomarkers. To help address this gap, this review summarizes known applications of EVs in clinical trials and provides a brief overview of the roles that EVs play in cancer biology, immunology, and their proposed implications in immunotherapy. The impetus to leverage EVs in future clinical trials and correlative studies is crucial, as they are ideally positioned to synergize with advancements in multi-omics research to further therapeutic discovery and our understanding of cancer biology.
Collapse
Affiliation(s)
- Scott Strum
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
- Division of Medical Oncology and Hematology, Department of Medicine, University of Toronto, Toronto, ON M5S 3H2, Canada
| | | | - Laszlo Radvanyi
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Anna Spreafico
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
- Division of Medical Oncology and Hematology, Department of Medicine, University of Toronto, Toronto, ON M5S 3H2, Canada
| |
Collapse
|
33
|
Massarotti M, Corna P, Mallik A, Milanesi G, Casali C, Magrassi L, Comincini S. Development and Biological Characterization of Cancer Biomimetic Membrane Nanovesicles for Enhancing Therapy Efficacy in Human Glioblastoma Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1779. [PMID: 39591021 PMCID: PMC11597144 DOI: 10.3390/nano14221779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024]
Abstract
As nanocarriers of a new generation, biomimetic nanovesicles are an emerging class of therapeutic tools whose surface is integrated or fabricated with biomaterials capable of mimicking the biological features and functions of native cells. Thanks to this, biomimetic nanovesicles, in particular, those made by plasma membrane moieties, possess greatly improved biocompatibility, high target specificity, a long retention time, and minimal undesired immune responses. For these reasons, a multitude of progenitor cells including cancer ones were employed as templates to generate biomimetic or membrane-camouflaged nanovesicles hosting different therapeutic compounds. In this contribution, different membrane-derived biomimetic vesicles (M-NVs) were generated by osmotic lysis or plasma membrane isolation approaches from normal and cancer cell lines and assayed against in vitro models of human glioblastoma. M-NVs were compared in their cellular internalization degrees of DNA and proteins, morphologically and molecularly characterized, expressing an extracellular membrane-associated marker. Then, Rose Bengal (RB), a photoactivable drug characterized by a relatively low cellular uptake, was incorporated into nascent glioblastoma-derived M-NVs and finally administered to homotypic receiving cells, showing an increased degree of internalization as well as induced cytotoxic effects, even in the absence of photodynamic direct stimulation. Similar results were also obtained assaying lyophilized M-NVs loaded with RB. In conclusion, M-NVs generated by cell membranes effectively deliver several cargoes, including therapeutic molecules, maintain functionality after lyophilization, and show significant internalization effects, making them a promising strategy for therapeutic applications against human glioblastoma cells.
Collapse
Affiliation(s)
- Martina Massarotti
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (M.M.); (A.M.); (G.M.); (C.C.)
| | - Paola Corna
- Department of Clinical Surgical Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (P.C.); (L.M.)
| | - Aromita Mallik
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (M.M.); (A.M.); (G.M.); (C.C.)
| | - Gloria Milanesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (M.M.); (A.M.); (G.M.); (C.C.)
| | - Claudio Casali
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (M.M.); (A.M.); (G.M.); (C.C.)
| | - Lorenzo Magrassi
- Department of Clinical Surgical Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (P.C.); (L.M.)
| | - Sergio Comincini
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (M.M.); (A.M.); (G.M.); (C.C.)
| |
Collapse
|
34
|
Matamoros‐Angles A, Karadjuzovic E, Mohammadi B, Song F, Brenna S, Meister SC, Siebels B, Voß H, Seuring C, Ferrer I, Schlüter H, Kneussel M, Altmeppen HC, Schweizer M, Puig B, Shafiq M, Glatzel M. Efficient enzyme-free isolation of brain-derived extracellular vesicles. J Extracell Vesicles 2024; 13:e70011. [PMID: 39508423 PMCID: PMC11541858 DOI: 10.1002/jev2.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 11/15/2024] Open
Abstract
Extracellular vesicles (EVs) have gained significant attention as pathology mediators and potential diagnostic tools for neurodegenerative diseases. However, isolation of brain-derived EVs (BDEVs) from tissue remains challenging, often involving enzymatic digestion steps that may compromise the integrity of EV proteins and overall functionality. Here, we describe that collagenase digestion, commonly used for BDEV isolation, produces undesired protein cleavage of EV-associated proteins in brain tissue homogenates and cell-derived EVs. In order to avoid this effect, we studied the possibility of isolating BDEVs with a reduced amount of collagenase or without any protease. Characterization of the isolated BDEVs from mouse and human samples (both female and male) revealed their characteristic morphology and size distribution with both approaches. However, we show that even minor enzymatic digestion induces 'artificial' proteolytic processing in key BDEV markers, such as Flotillin-1, CD81, and the cellular prion protein (PrPC), whereas avoiding enzymatic treatment completely preserves their integrity. We found no major differences in mRNA and protein content between non-enzymatically and enzymatically isolated BDEVs, suggesting that the same BDEV populations are purified with both approaches. Intriguingly, the lack of Golgi marker GM130 signal, often referred to as contamination indicator (or negative marker) in EV preparations, seems to result from enzymatic digestion rather than from its actual absence in BDEV samples. Overall, we show that non-enzymatic isolation of EVs from brain tissue is possible and avoids artificial pruning of proteins while achieving an overall high BDEV yield and purity. This protocol will help to understand the functions of BDEV and their associated proteins in a near-physiological setting, thus opening new research approaches.
Collapse
Affiliation(s)
| | - Emina Karadjuzovic
- Institute of NeuropathologyUniversity Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
| | - Behnam Mohammadi
- Institute of NeuropathologyUniversity Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
| | - Feizhi Song
- Institute of NeuropathologyUniversity Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
| | - Santra Brenna
- Department of Neurology, Experimental Research in Stroke and Inflammation (ERSI)University Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
| | | | - Bente Siebels
- Section Mass Spectrometry and ProteomicsUniversity Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
| | - Hannah Voß
- Section Mass Spectrometry and ProteomicsUniversity Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
| | - Carolin Seuring
- Multi‐User‐CryoEM‐FacilityCentre for Structural Systems Biology (CSSB)HamburgGermany
- Department of ChemistryUniversität HamburgHamburgGermany
- Leibniz Institute of Virology (LIV)HamburgGermany
| | - Isidre Ferrer
- IDIBELLUniversity of BarcelonaL'Hospitalet de LlobregatSpain
| | - Hartmut Schlüter
- Section Mass Spectrometry and ProteomicsUniversity Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
| | - Matthias Kneussel
- Institute for Molecular Neurogenetics, Center for Molecular Neurobiology Hamburg (ZMNH)University Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
| | | | - Michaela Schweizer
- Electron Microscopy Core Facility, Center for Molecular Neurobiology (ZMNH)University Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
| | - Berta Puig
- Department of Neurology, Experimental Research in Stroke and Inflammation (ERSI)University Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
| | - Mohsin Shafiq
- Institute of NeuropathologyUniversity Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
| | - Markus Glatzel
- Institute of NeuropathologyUniversity Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
| |
Collapse
|
35
|
Ramos-Zaldívar HM, Polakovicova I, Salas-Huenuleo E, Yefi CP, Silva-Ancahuail D, Jara-Guajardo P, Oyarzún JE, Neira-Troncoso Á, Burgos PV, Cavieres VA, Arias-Muñoz E, Martínez C, Riveros AL, Corvalán AH, Kogan MJ, Andia ME. The Cervical and Meningeal Lymphatic Network as a Pathway for Retrograde Nanoparticle Transport to the Brain. Int J Nanomedicine 2024; 19:10725-10743. [PMID: 39469450 PMCID: PMC11514706 DOI: 10.2147/ijn.s477159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/05/2024] [Indexed: 10/30/2024] Open
Abstract
Introduction The meningeal lymphatic vessels have been described as a pathway that transports cerebrospinal fluid and interstitial fluid in a unidirectional manner towards the deep cervical lymph nodes. However, these vessels exhibit anatomical and molecular characteristics typical of initial lymphatic vessels, with the absence of surrounding smooth muscle and few or absent valves. Given its structure, this network could theoretically allow for bidirectional motion. Nevertheless, it has not been assessed as a potential route for nanoparticles to travel from peripheral tissues to the brain. Methods We employed superparamagnetic iron oxide nanoparticles (SPIONs), exosomes loaded with SPIONs, gold nanorods, and Chinese ink nanoparticles. SPIONs were prepared via chemical coprecipitation, while exosomes were isolated from the B16F10 melanoma cell line through the Exo-Spin column protocol and loaded with SPIONs through electroporation. Gold nanorods were functionalized with polyethylene glycol. We utilized C57BL/6 mice for post-mortem and in vivo procedures. To evaluate the retrograde directional flow, we injected each nanoparticle solution in the deep cervical lymph node. The head and neck were fixed for magnetic resonance imaging and histological analysis. Results Here we show that extracellular vesicles derived from the B16F10 melanoma cell line, along with superparamagnetic iron oxide nanoparticles, gold nanorods, and Chinese ink nanoparticles can reach the meningeal lymphatic vessels and the brain of C57BL/6 mice after administration within the deep cervical lymph nodes post-mortem and in vivo, exclusively through lymphatic structures. Discussion The functional anatomy of dural lymphatics has been found to be conserved between mice and humans, suggesting that our findings may have significant implications for advancing targeted drug delivery systems using nanoparticles. Understanding the retrograde transport of nanoparticles through the meningeal lymphatic network could lead to novel therapeutic approaches in nanomedicine, offering new insights into fluid dynamics in both physiological and neuropathological contexts. Further research into this pathway may unlock new strategies for treating neurological diseases or enhancing drug delivery to the brain.
Collapse
Affiliation(s)
- Héctor M Ramos-Zaldívar
- Doctoral Program in Medical Sciences, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Iva Polakovicova
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Department of Hematology and Oncology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Claudia P Yefi
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Naturaleza, Universidad San Sebastián, Santiago, Chile
| | - David Silva-Ancahuail
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Laboratorio de Nanobiotecnología, Universidad de Chile, Santiago, Chile
| | - Pedro Jara-Guajardo
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Laboratorio de Nanobiotecnología, Universidad de Chile, Santiago, Chile
| | - Juan Esteban Oyarzún
- Millennium Institute for Intelligent Healthcare Engineering, Santiago, Chile
- Biomedical Imaging Center, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Álvaro Neira-Troncoso
- Department of Hematology and Oncology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Patricia V Burgos
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Viviana A Cavieres
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Eloísa Arias-Muñoz
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Carlos Martínez
- Experimental Surgery and Simulation Center, Department of Digestive Surgery, Clinic Hospital, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ana L Riveros
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Laboratorio de Nanobiotecnología, Universidad de Chile, Santiago, Chile
| | - Alejandro H Corvalán
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Department of Hematology and Oncology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marcelo J Kogan
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Laboratorio de Nanobiotecnología, Universidad de Chile, Santiago, Chile
| | - Marcelo E Andia
- Millennium Institute for Intelligent Healthcare Engineering, Santiago, Chile
- Biomedical Imaging Center, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
36
|
Daga KR, Larey AM, Morfin MG, Chen K, Bitarafan S, Carpenter JM, Hynds HM, Hines KM, Wood LB, Marklein RA. Microglia morphological response to mesenchymal stromal cell extracellular vesicles demonstrates EV therapeutic potential for modulating neuroinflammation. J Biol Eng 2024; 18:58. [PMID: 39420399 PMCID: PMC11488223 DOI: 10.1186/s13036-024-00449-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Mesenchymal stromal cell derived extracellular vesicles (MSC-EVs) are a promising therapeutic for neuroinflammation. MSC-EVs can interact with microglia, the resident immune cells of the brain, to exert their immunomodulatory effects. In response to inflammatory cues, such as cytokines, microglia undergo phenotypic changes indicative of their function e.g. morphology and secretion. However, these changes in response to MSC-EVs are not well understood. Additionally, no disease-relevant screening tools to assess MSC-EV bioactivity exist, which has further impeded clinical translation. Here, we developed a quantitative, high throughput morphological profiling approach to assess the response of microglia to neuroinflammation- relevant signals and whether this morphological response can be used to indicate the bioactivity of MSC-EVs. RESULTS Using an immortalized human microglia cell-line, we observed increased size (perimeter, major axis length) and complexity (form factor) upon stimulation with interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α). Upon treatment with MSC-EVs, the overall morphological score (determined using principal component analysis) shifted towards the unstimulated morphology, indicating that MSC-EVs are bioactive and modulate microglia. The morphological effects of MSC-EVs in TNF-α /IFN-γ stimulated cells were concomitant with reduced secretion of 14 chemokines/cytokines (e.g. CXCL6, CXCL9) and increased secretion of 12 chemokines/cytokines (e.g. CXCL8, CXCL10). Proteomic analysis of cell lysates revealed significant increases in 192 proteins (e.g. HIBADH, MEAK7, LAMC1) and decreases in 257 proteins (e.g. PTEN, TOM1, MFF) with MSC-EV treatment. Of note, many of these proteins are involved in regulation of cell morphology and migration. Gene Set Variation Analysis revealed upregulation of pathways associated with immune response, such as regulation of cytokine production, immune cell infiltration (e.g. T cells, NK cells) and morphological changes (e.g. Semaphorin, RHO/Rac signaling). Additionally, changes in microglia mitochondrial morphology were measured suggesting that MSC-EV modulate mitochondrial metabolism. CONCLUSION This study comprehensively demonstrates the effects of MSC-EVs on human microglial morphology, cytokine secretion, cellular proteome, and mitochondrial content. Our high-throughput, rapid, low-cost morphometric approach enables screening of MSC-EV batches and manufacturing conditions to enhance EV function and mitigate EV functional heterogeneity in a disease relevant manner. This approach is highly generalizable and can be further adapted and refined based on selection of the disease-relevant signal, target cell, and therapeutic product.
Collapse
Affiliation(s)
- Kanupriya R Daga
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Andrew M Larey
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Maria G Morfin
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA
| | - Kailin Chen
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Franklin College of Arts and Sciences, University of Georgia, Athens, GA, USA
| | - Sara Bitarafan
- George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | | | - Hannah M Hynds
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Kelly M Hines
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Levi B Wood
- George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ross A Marklein
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA.
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA.
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD, 20903, USA.
| |
Collapse
|
37
|
Shanmugam I, Radhakrishnan S, Santosh S, Ramnath A, Anil M, Devarajan Y, Maheswaran S, Narayanan V, Pitchaimani A. Emerging role and translational potential of small extracellular vesicles in neuroscience. Life Sci 2024; 355:122987. [PMID: 39151884 DOI: 10.1016/j.lfs.2024.122987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Small extracellular vesicles (sEV) are endogenous lipid-bound membrane vesicles secreted by both prokaryotic and eukaryotic cells into the extracellular environment, performs several biological functions such as cell-cell communication, transfer of proteins, mRNA, and ncRNA to target cells in distant sites. Due to their role in molecular pathogenesis and its potential to deliver biological cargo to target cells, it has become a prominent area of interest in recent research in the field of Neuroscience. However, their role in neurological disorders, like neurodegenerative diseases is more complex and still unaddressed. Thus, this review focuses on the role of sEV in neurodegenerative and neurodevelopmental diseases, including their biogenesis, classification, and pathogenesis, with translational advantages and limitations in the area of neurobiology.
Collapse
Affiliation(s)
- Iswarya Shanmugam
- Precision Nanomedicine and Microfluidic Lab, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology, Vellore. TN, India; School of Biosciences and Technology, Vellore Institute of Technology, Vellore Campus, Tiruvalam Rd, Katpadi, Vellore, Tamil Nadu 632014, India
| | - Sivani Radhakrishnan
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore Campus, Tiruvalam Rd, Katpadi, Vellore, Tamil Nadu 632014, India
| | - Shradha Santosh
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore Campus, Tiruvalam Rd, Katpadi, Vellore, Tamil Nadu 632014, India
| | - Akansha Ramnath
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore Campus, Tiruvalam Rd, Katpadi, Vellore, Tamil Nadu 632014, India
| | - Meghna Anil
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore Campus, Tiruvalam Rd, Katpadi, Vellore, Tamil Nadu 632014, India
| | - Yogesh Devarajan
- Precision Nanomedicine and Microfluidic Lab, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology, Vellore. TN, India; School of Biosciences and Technology, Vellore Institute of Technology, Vellore Campus, Tiruvalam Rd, Katpadi, Vellore, Tamil Nadu 632014, India
| | - Saravanakumar Maheswaran
- Precision Nanomedicine and Microfluidic Lab, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology, Vellore. TN, India; School of Biosciences and Technology, Vellore Institute of Technology, Vellore Campus, Tiruvalam Rd, Katpadi, Vellore, Tamil Nadu 632014, India
| | - Vaibav Narayanan
- Precision Nanomedicine and Microfluidic Lab, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology, Vellore. TN, India; School of Biosciences and Technology, Vellore Institute of Technology, Vellore Campus, Tiruvalam Rd, Katpadi, Vellore, Tamil Nadu 632014, India
| | - Arunkumar Pitchaimani
- Precision Nanomedicine and Microfluidic Lab, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology, Vellore. TN, India; School of Biosciences and Technology, Vellore Institute of Technology, Vellore Campus, Tiruvalam Rd, Katpadi, Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
38
|
Torres Iglesias G, López-Molina M, Botella L, Laso-García F, Chamorro B, Fernández-Fournier M, Puertas I, Bravo SB, Alonso-López E, Díez-Tejedor E, Gutiérrez-Fernández M, Otero-Ortega L. Differential Protein Expression in Extracellular Vesicles Defines Treatment Responders and Non-Responders in Multiple Sclerosis. Int J Mol Sci 2024; 25:10761. [PMID: 39409091 PMCID: PMC11477160 DOI: 10.3390/ijms251910761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
Multiple sclerosis (MS) remains the leading cause of neurological disability among young adults worldwide, underscoring the urgent need to define the best therapeutic strategy. Recent advances in proteomics have deepened our understanding of treatment mechanisms and revealed promising biomarkers for predicting therapeutic outcomes. This study focuses on the identification of a protein profile of circulating extracellular vesicles (EVs) derived from neurons, oligodendrocytes, and B and T cells able to differentiate treatment responders and non-responders in 80 patients with MS. In the patients who responded to treatment, T cell-derived EVs were enriched in LV151, a protein involved in the promotion of anti-inflammatory cytokines, whereas Bcell-derived EVs showed elevated PSMD6 and PTPRC, related to immunoproteasome function. Oligodendrocyte- and neuron-derived EVs showed upregulated CO6A1 and COEA1, involved in extracellular matrix reorganisation, as well as LAMA5, NonO, SPNT, and NCAM, which are critical for brain repair. In contrast, non-responders showed higher levels of PSMD7 and PRS10 from B cell-derived EVs, associated with DNA damage, and increased levels of PERM and PERL from T cell-derived EVs, linked to nuclear factor kappa B activation and drug-resistant proteins such as HS90A and RASK. These findings highlight a distinct panel of proteins in EVs that could serve as an early indicator of treatment efficacy in MS.
Collapse
Affiliation(s)
- Gabriel Torres Iglesias
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research—IdiPAZ (La Paz University Hospital—Universidad Autónoma de Madrid), 28046 Madrid, Spain; (G.T.I.); (M.L.-M.); (L.B.); (F.L.-G.); (B.C.); (M.F.-F.); (I.P.); (E.A.-L.); (E.D.-T.); (M.G.-F.)
| | - MariPaz López-Molina
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research—IdiPAZ (La Paz University Hospital—Universidad Autónoma de Madrid), 28046 Madrid, Spain; (G.T.I.); (M.L.-M.); (L.B.); (F.L.-G.); (B.C.); (M.F.-F.); (I.P.); (E.A.-L.); (E.D.-T.); (M.G.-F.)
| | - Lucía Botella
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research—IdiPAZ (La Paz University Hospital—Universidad Autónoma de Madrid), 28046 Madrid, Spain; (G.T.I.); (M.L.-M.); (L.B.); (F.L.-G.); (B.C.); (M.F.-F.); (I.P.); (E.A.-L.); (E.D.-T.); (M.G.-F.)
| | - Fernando Laso-García
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research—IdiPAZ (La Paz University Hospital—Universidad Autónoma de Madrid), 28046 Madrid, Spain; (G.T.I.); (M.L.-M.); (L.B.); (F.L.-G.); (B.C.); (M.F.-F.); (I.P.); (E.A.-L.); (E.D.-T.); (M.G.-F.)
| | - Beatriz Chamorro
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research—IdiPAZ (La Paz University Hospital—Universidad Autónoma de Madrid), 28046 Madrid, Spain; (G.T.I.); (M.L.-M.); (L.B.); (F.L.-G.); (B.C.); (M.F.-F.); (I.P.); (E.A.-L.); (E.D.-T.); (M.G.-F.)
| | - Mireya Fernández-Fournier
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research—IdiPAZ (La Paz University Hospital—Universidad Autónoma de Madrid), 28046 Madrid, Spain; (G.T.I.); (M.L.-M.); (L.B.); (F.L.-G.); (B.C.); (M.F.-F.); (I.P.); (E.A.-L.); (E.D.-T.); (M.G.-F.)
| | - Inmaculada Puertas
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research—IdiPAZ (La Paz University Hospital—Universidad Autónoma de Madrid), 28046 Madrid, Spain; (G.T.I.); (M.L.-M.); (L.B.); (F.L.-G.); (B.C.); (M.F.-F.); (I.P.); (E.A.-L.); (E.D.-T.); (M.G.-F.)
| | - Susana B. Bravo
- Proteomics Unit, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain;
| | - Elisa Alonso-López
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research—IdiPAZ (La Paz University Hospital—Universidad Autónoma de Madrid), 28046 Madrid, Spain; (G.T.I.); (M.L.-M.); (L.B.); (F.L.-G.); (B.C.); (M.F.-F.); (I.P.); (E.A.-L.); (E.D.-T.); (M.G.-F.)
| | - Exuperio Díez-Tejedor
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research—IdiPAZ (La Paz University Hospital—Universidad Autónoma de Madrid), 28046 Madrid, Spain; (G.T.I.); (M.L.-M.); (L.B.); (F.L.-G.); (B.C.); (M.F.-F.); (I.P.); (E.A.-L.); (E.D.-T.); (M.G.-F.)
| | - María Gutiérrez-Fernández
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research—IdiPAZ (La Paz University Hospital—Universidad Autónoma de Madrid), 28046 Madrid, Spain; (G.T.I.); (M.L.-M.); (L.B.); (F.L.-G.); (B.C.); (M.F.-F.); (I.P.); (E.A.-L.); (E.D.-T.); (M.G.-F.)
| | - Laura Otero-Ortega
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research—IdiPAZ (La Paz University Hospital—Universidad Autónoma de Madrid), 28046 Madrid, Spain; (G.T.I.); (M.L.-M.); (L.B.); (F.L.-G.); (B.C.); (M.F.-F.); (I.P.); (E.A.-L.); (E.D.-T.); (M.G.-F.)
| |
Collapse
|
39
|
Janpipatkul K, Sutjarit N, Tangprasittipap A, Chaiamarit T, Innachai P, Suksen K, Chokpanuwat T, Tim-Aroon T, Anurathapan U, Jearawiriyapaisarn N, Tubsuwan A, Bowornpinyo S, Asavapanumas N, Chairoungdua A, Bhukhai K, Hongeng S. Therapeutic delivery of recombinant glucocerebrosidase enzyme-containing extracellular vesicles to human cells from Gaucher disease patients. Orphanet J Rare Dis 2024; 19:363. [PMID: 39358794 PMCID: PMC11445852 DOI: 10.1186/s13023-024-03376-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 09/22/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Gaucher disease (GD) is one of the most common types of lysosomal storage diseases (LSDs) caused by pathogenic variants of lysosomal β-glucocerebrosidase gene (GBA1), resulting in the impairment of Glucocerebrosidase (GCase) enzyme function and the accumulation of a glycolipid substrate, glucosylceramide (GlcCer) within lysosomes. Current therapeutic approaches such as enzyme replacement therapy and substrate reduction therapy cannot fully rescue GD pathologies, especially neurological symptoms. Meanwhile, delivery of lysosomal enzymes to the endocytic compartment of affected human cells is a promising strategy for treating neuropathic LSDs. RESULT Here, we describe a novel approach to restore GCase enzyme in cells from neuropathic GD patients by producing extracellular vesicle (EVs)-containing GCase from cells overexpressing GBA1 gene. Lentiviral vectors containing modified GBA1 were introduced into HEK293T cells to produce a stable cell line that provides a sustainable source of functional GCase enzyme. The GBA1-overexpressing cells released EV-containing GCase enzyme, that is capable of entering into and localizing in the endocytic compartment of recipient cells, including THP-1 macrophage, SH-SY5Y neuroblastoma, and macrophages and neurons derived from induced pluripotent stem cells (iPSCs) of neuropathic GD patients. Importantly, the recipient cells exhibit higher GCase enzyme activity. CONCLUSION This study presents a promising therapeutic strategy to treat severe types of LSDs. It involves delivering lysosomal enzymes to the endocytic compartment of human cells affected by conditions such as GDs with neurological symptoms, as well as potentially other neurological disorders impacting lysosomes.
Collapse
Affiliation(s)
- Keatdamrong Janpipatkul
- Department of Basic Medical Science, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand
| | - Nareerat Sutjarit
- Graduate Program in Nutrition, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Amornrat Tangprasittipap
- Office of Research, Academic Affairs and Innovations, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Tai Chaiamarit
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Pawarit Innachai
- Office of Research, Academic Affairs and Innovations, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Kanoknetr Suksen
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Tanida Chokpanuwat
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Thipwimol Tim-Aroon
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Ratchathewi, Thailand
| | - Usanarat Anurathapan
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Ratchathewi, Thailand
| | | | - Alisa Tubsuwan
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Supareak Bowornpinyo
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Excellent Center for Drug Discovery, Mahidol University, Bangkok, Thailand
| | - Nithi Asavapanumas
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Pla, Bang Phli, Samut Prakan, Thailand
| | - Arthit Chairoungdua
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Excellent Center for Drug Discovery, Mahidol University, Bangkok, Thailand
| | - Kanit Bhukhai
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand.
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Ratchathewi, Thailand
- Excellent Center for Drug Discovery, Mahidol University, Bangkok, Thailand
| |
Collapse
|
40
|
Cunha Silva L, Branco F, Cunha J, Vitorino C, Gomes C, Carrascal MA, Falcão A, Miguel Neves B, Teresa Cruz M. The potential of exosomes as a new therapeutic strategy for glioblastoma. Eur J Pharm Biopharm 2024; 203:114460. [PMID: 39218361 DOI: 10.1016/j.ejpb.2024.114460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 07/30/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Glioblastoma (GBM) stands for the most common and aggressive type of brain tumour in adults. It is highly invasive, which explains its short rate of survival. Little is known about its risk factors, and current therapy is still ineffective. Hence, efforts are underway to develop novel and effective treatment approaches against this type of cancer. Exosomes are being explored as a promising strategy for conveying and delivering therapeutic cargo to GBM cells. They can fuse with the GBM cell membrane and, consequently, serve as delivery systems in this context. Due to their nanoscale size, exosomes can cross the blood-brain barrier (BBB), which constitutes a significant hurdle to most chemotherapeutic drugs used against GBM. They can subsequently inhibit oncogenes, activate tumour suppressor genes, induce immune responses, and control cell growth. However, despite representing a promising tool for the treatment of GBM, further research and clinical studies regarding exosome biology, engineering, and clinical applications still need to be completed. Here, we sought to review the application of exosomes in the treatment of GBM through an in-depth analysis of the scientific and clinical studies on the entire process, from the isolation and purification of exosomes to their design and transformation into anti-oncogenic drug delivery systems. Surface modification of exosomes to enhance BBB penetration and GBM-cell targeting is also a topic of discussion.
Collapse
Affiliation(s)
- Leonor Cunha Silva
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal
| | - Francisco Branco
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal
| | - Joana Cunha
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal
| | - Carla Vitorino
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, Coimbra 3004 535, Portugal
| | - Célia Gomes
- Coimbra Institute for Clinical and Biomedical Research, iCBR, Faculty of Medicine, University of Coimbra, Coimbra 3000-548, Portugal; Center for Innovation in Biomedicine and Biotechnology, CIBB, University of Coimbra, Coimbra 3000-504, Portugal
| | - Mylène A Carrascal
- Tecnimede Group, Sintra 2710-089, Portugal; Center for Neuroscience and Cell Biology, CNC, University of Coimbra, Coimbra 3004-504, Portugal
| | - Amílcar Falcão
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal; Coimbra Institute for Biomedical Imaging and Translational Research, CIBIT, University of Coimbra, Coimbra 3000-548, Portugal
| | - Bruno Miguel Neves
- Department of Medical Sciences and Institute of Biomedicine, iBiMED, University of Aveiro, Aveiro 3810-193, Portugal
| | - Maria Teresa Cruz
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal; Coimbra Institute for Clinical and Biomedical Research, iCBR, Faculty of Medicine, University of Coimbra, Coimbra 3000-548, Portugal; Center for Neuroscience and Cell Biology, CNC, University of Coimbra, Coimbra 3004-504, Portugal.
| |
Collapse
|
41
|
Zhang W, Uyemura R, Zhong K, Guo R, Zhong L. Current Advances and Future Perspectives on Mesenchymal Stem Cell-Derived Extracellular Vesicles in Alzheimer's Disease. Aging Dis 2024; 15:2015-2027. [PMID: 38270122 PMCID: PMC11346404 DOI: 10.14336/ad.2023.1206] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/06/2023] [Indexed: 01/26/2024] Open
Abstract
The incidence of Alzheimer's disease (AD) has been increasing in recent years as the world's population ages, which poses a significant challenge to public health. Due to the complexity of pathogenesis of AD, currently there is no effective treatment for it. In recent years, cell and gene therapy has attracted widespread attention in the treatment of neurodegenerative diseases. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) represent a novel cell-free therapy with numerous advantages over cell-based therapies owing to their low immunogenicity and high safety profile. We summarize recent progress in the application of EVs for treating AD and the specific mechanisms and outline the underlying mechanisms. We also explore various methods for optimizing the function of MSC-EVs, including gene editing, modifying stem cell culture conditions and peptide modification. In addition, we discuss the therapeutic potentials of MSC-EVs, as well as the obstacles that currently impede their clinical utilization.
Collapse
Affiliation(s)
- Wenjing Zhang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Russell Uyemura
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California 91766, USA
| | - Kun Zhong
- American Center of Stem Cell Research and Regenerative Medicine, Farmington Hills, Michigan 48336, USA
| | - Rui Guo
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Li Zhong
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California 91766, USA
| |
Collapse
|
42
|
Wu Q, Zhang YN, Zhang NN, Liu QY, Cai JR, Chen HS. Age affects the association of red blood cell indices with efficacy of remote ischemic conditioning in patients with acute moderate ischemic stroke. Sci Rep 2024; 14:22561. [PMID: 39343777 PMCID: PMC11439910 DOI: 10.1038/s41598-024-74293-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024] Open
Abstract
We conducted a post hoc analysis of Remote Ischemic Conditioning for Acute Moderate Ischemic Stroke (RICAMIS) to investigate whether red blood cell (RBC) indices are associated with efficacy of remote ischemic conditioning (RIC), and whether the association is affected by age. In this post hoc analysis, patients with RBC indices at admission were enrolled. RBC indices including RBC count, hematocrit (HCT), mean corpuscular volume (MCV), hemoglobin (HB), mean corpuscular hemoglobin (MCH), and mean corpuscular hemoglobin concentration (MCHC) were analyzed. According to the median of these RBC indices, eligible patients were divided into high and low groups, which were further subdivided into RIC and control subgroups. Primary endpoint was excellent functional outcome defined as a modified Rankin Scale score of 0-1 at 90 days, which was used to evaluate RIC efficacy. RIC efficacy as well as effect of age on RIC efficacy were analyzed across the high and low groups of different RBC indices, and the interaction effects of RBC indices on RIC efficacy were evaluated. A total of 1640 patients were enrolled in the final analysis. In overall patients, no significant interaction effects of RIC intervention by all RBC indices were found, although there was a trend in interaction effect of RIC intervention by MCH (p = 0.116). However, we found an effect of age on the association of MCH with RIC efficacy. In patients over 60 years old, MCH significantly affected RIC efficacy (p = 0.006) and RIC significantly produced a higher proportion of primary outcome in high MCH (72.6% vs. 59.1%, P < 0.001) vs. low MCH group (61.2% vs. 62%, P = 0.829), which was not identified in patients under 60 years old. Furthermore, RIC efficacy decreased with increasing age in patients with low MCH with significant interaction effect (p = 0.012), while RIC efficacy increased with increasing age in patients with high MCH although no significant interaction (p = 0.126). No significant interaction effects of RIC intervention by RBC count, HCT, MCV, HB, and MCHC were found regardless of age. This secondary analysis of RICAMIS suggested that RIC exhibited more obvious benefit in AIS patients over 60 years old with high MCH compared with those with low MCH group, but RBC count, HCT, MCV, HB, and MCHC were not associated with the efficacy of RIC treatment regardless of age.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Neurology, General Hospital of Northern Theater Command, 83 Wen Hua Road, Shenyang, 110016, China
| | - Yi-Na Zhang
- Department of Neurology, General Hospital of Northern Theater Command, 83 Wen Hua Road, Shenyang, 110016, China
| | - Nan-Nan Zhang
- Department of Neurology, General Hospital of Northern Theater Command, 83 Wen Hua Road, Shenyang, 110016, China
| | - Quan-Ying Liu
- Department of Neurology, General Hospital of Northern Theater Command, 83 Wen Hua Road, Shenyang, 110016, China
| | - Ji-Ru Cai
- Department of Neurology, General Hospital of Northern Theater Command, 83 Wen Hua Road, Shenyang, 110016, China
| | - Hui-Sheng Chen
- Department of Neurology, General Hospital of Northern Theater Command, 83 Wen Hua Road, Shenyang, 110016, China.
| |
Collapse
|
43
|
Yoon HJ, Won JP, Lee HG, Seo HG. Green Onion-Derived Exosome-like Nanoparticles Prevent Ferroptotic Cell Death Triggered by Glutamate: Implication for GPX4 Expression. Nutrients 2024; 16:3257. [PMID: 39408223 PMCID: PMC11478619 DOI: 10.3390/nu16193257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
In recent years, alongside research on mammalian-derived exosomes, there has been increasing interest in the physiological activities of plant-derived exosome-like nanoparticles (PDEN). The biocompatibility, minimal side effects, and diverse bioactive ingredients contained in PDEN make them valuable as potential therapeutic agents for an extensive range of diseases. In this study, we cost-effectively isolated exosome-like nanoparticles from green onion (Allium fistulosum) using polyethylene glycol and examined their biological activity in HT-22 cells exposed to glutamate. The isolated green onion-derived exosome-like nanoparticle (GDEN) had an average diameter of 167.4 nm and a zeta potential of -16.06 mV. GDEN effectively inhibited glutamate-induced Ca2+ influx and lipid peroxidation, thereby preventing ferroptotic cell death in HT-22 mouse hippocampal cells. Additionally, GDEN reduced the intracellular iron accumulation by modulating the expression of proteins associated with iron metabolism, including transferrin receptor 1, ferroportin 1, divalent metal transporter 1, and ferritin. Notably, GDEN upregulated the expression of glutathione peroxidase 4, a potent antioxidant protein involved in ferroptosis, along with an increase in glutathione synthesis. These findings indicate that GDENs have the potential to serve as bioactives from natural sources against glutamate-induced neuronal cell death, like ferroptosis. This study advances the investigation into the potential medical applications of GDEN and may provide a new approach for the utilization of these bioactive components against neuronal disorders.
Collapse
Affiliation(s)
| | | | | | - Han Geuk Seo
- Department of Animal Food Resources, College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (H.J.Y.); (J.P.W.); (H.G.L.)
| |
Collapse
|
44
|
Tam S, Wear D, Morrone CD, Yu WH. The complexity of extracellular vesicles: Bridging the gap between cellular communication and neuropathology. J Neurochem 2024; 168:2391-2422. [PMID: 38650384 DOI: 10.1111/jnc.16108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/12/2024] [Accepted: 03/31/2024] [Indexed: 04/25/2024]
Abstract
Brain-derived extracellular vesicles (EVs) serve a prominent role in maintaining homeostasis and contributing to pathology in health and disease. This review establishes a crucial link between physiological processes leading to EV biogenesis and their impacts on disease. EVs are involved in the clearance and transport of proteins and nucleic acids, responding to changes in cellular processes associated with neurodegeneration, including autophagic disruption, organellar dysfunction, aging, and other cell stresses. In neurodegenerative disorders (e.g., Alzheimer's disease, Parkinson's disease, etc.), EVs contribute to the spread of pathological proteins like amyloid β, tau, ɑ-synuclein, prions, and TDP-43, exacerbating neurodegeneration and accelerating disease progression. Despite evidence for both neuropathological and neuroprotective effects of EVs, the mechanistic switch between their physiological and pathological functions remains elusive, warranting further research into their involvement in neurodegenerative disease. Moreover, owing to their innate ability to traverse the blood-brain barrier and their ubiquitous nature, EVs emerge as promising candidates for novel diagnostic and therapeutic strategies. The review uniquely positions itself at the intersection of EV cell biology, neurophysiology, and neuropathology, offering insights into the diverse biological roles of EVs in health and disease.
Collapse
Affiliation(s)
- Stephanie Tam
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Darcy Wear
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Christopher D Morrone
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Wai Haung Yu
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
45
|
Yang Y, Nie X, Wang Y, Sun J, Gao X, Zhang J. Evolving insights into erythrocytes in synucleinopathies. Trends Neurosci 2024; 47:693-707. [PMID: 39043489 DOI: 10.1016/j.tins.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/10/2024] [Accepted: 06/21/2024] [Indexed: 07/25/2024]
Abstract
Synucleinopathies, including Parkinson's disease (PD), multiple system atrophy (MSA), and dementia with Lewy bodies (DLB), are characterized by neuronal loss accompanied by α-synuclein (α-syn) accumulation in the brain. While research conventionally focused on brain pathology, there is growing interest in peripheral alterations. Erythrocytes, which are rich in α-syn, have emerged as a compelling site for synucleinopathies-related alterations. Erythrocyte-derived extracellular vesicles (EVs), containing pathological α-syn species, can traverse the blood-brain barrier (BBB) under certain conditions and the gastrointestinal tract, where α-syn and gut microbiota interact extensively. This review explores the accumulating evidence of erythrocyte involvement in synucleinopathies, as well as their potential in disease pathogenesis and diagnosis. Given their unique properties, erythrocytes and erythrocyte-derived EVs may also serve as an ideal therapeutic platform for treating synucleinopathies and beyond.
Collapse
Affiliation(s)
- Ying Yang
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoqian Nie
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Zhejiang, China
| | - Yajie Wang
- Department of Cell Biology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China; Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Zhejiang, China; Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Zhejiang, China
| | - Jie Sun
- Department of Cell Biology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China; Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Zhejiang, China; Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Zhejiang, China
| | - Xiaofei Gao
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Zhejiang, China.
| | - Jing Zhang
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; National Health and Disease Human Brain Tissue Resource Center, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
46
|
Kim J, Ro J, Cho YK. Vascularized platforms for investigating cell communication via extracellular vesicles. BIOMICROFLUIDICS 2024; 18:051504. [PMID: 39323481 PMCID: PMC11421861 DOI: 10.1063/5.0220840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024]
Abstract
The vascular network plays an essential role in the maintenance of all organs in the body via the regulated delivery of oxygen and nutrients, as well as tissue communication via the transfer of various biological signaling molecules. It also serves as a route for drug administration and affects pharmacokinetics. Due to this importance, engineers have sought to create physiologically relevant and reproducible vascular systems in tissue, considering cell-cell and extracellular matrix interaction with structural and physical conditions in the microenvironment. Extracellular vesicles (EVs) have recently emerged as important carriers for transferring proteins and genetic material between cells and organs, as well as for drug delivery. Vascularized platforms can be an ideal system for studying interactions between blood vessels and EVs, which are crucial for understanding EV-mediated substance transfer in various biological situations. This review summarizes recent advances in vascularized platforms, standard and microfluidic-based techniques for EV isolation and characterization, and studies of EVs in vascularized platforms. It provides insights into EV-related (patho)physiological regulations and facilitates the development of EV-based therapeutics.
Collapse
|
47
|
Dobolyi A, Cservenák M, Bagó AG, Chen C, Stepanova A, Paal K, Lee J, Palkovits M, Hudson G, Chinopoulos C. Cell-specific expression of key mitochondrial enzymes limits OXPHOS in astrocytes of the adult human neocortex and hippocampal formation. Commun Biol 2024; 7:1045. [PMID: 39181993 PMCID: PMC11344819 DOI: 10.1038/s42003-024-06751-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 08/16/2024] [Indexed: 08/27/2024] Open
Abstract
The astrocyte-to-neuron lactate shuttle model entails that, upon glutamatergic neurotransmission, glycolytically derived pyruvate in astrocytes is mainly converted to lactate instead of being entirely catabolized in mitochondria. The mechanism of this metabolic rewiring and its occurrence in human brain are unclear. Here by using immunohistochemistry (4 brains) and imaging mass cytometry (8 brains) we show that astrocytes of the adult human neocortex and hippocampal formation express barely detectable amounts of mitochondrial proteins critical for performing oxidative phosphorylation (OXPHOS). These data are corroborated by queries of transcriptomes (107 brains) of neuronal versus non-neuronal cells fetched from the Allen Institute for Brain Science for genes coding for a much larger repertoire of entities contributing to OXPHOS, showing that human non-neuronal elements barely expressed mRNAs coding for such proteins. With less OXPHOS, human brain astrocytes are thus bound to produce more lactate to avoid interruption of glycolysis.
Collapse
Affiliation(s)
- Arpád Dobolyi
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eotvos Lorand University, Budapest, Hungary
| | - Melinda Cservenák
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eotvos Lorand University, Budapest, Hungary
| | - Attila G Bagó
- National Institute of Mental Health, Neurology and Neurosurgery, Department of Surgical Neurooncology, Budapest, Hungary
| | - Chun Chen
- Wellcome Centre for Mitochondrial Research, Bioscience Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Anna Stepanova
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
| | - Krisztina Paal
- Institute of Biochemistry and Molecular Biology, Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Jeonghyoun Lee
- Institute of Biochemistry and Molecular Biology, Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Miklós Palkovits
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
- Human Brain Tissue Bank, Semmelweis University, Budapest, Hungary
| | - Gavin Hudson
- Wellcome Centre for Mitochondrial Research, Bioscience Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Christos Chinopoulos
- Institute of Biochemistry and Molecular Biology, Department of Biochemistry, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
48
|
Kumar N, Bidkhori HR, Yawno T, Lim R, Inocencio IM. Therapeutic potential of extracellular vesicles derived from human amniotic epithelial cells for perinatal cerebral and pulmonary injury. Stem Cells Transl Med 2024; 13:711-723. [PMID: 38895873 PMCID: PMC11328935 DOI: 10.1093/stcltm/szae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 04/19/2024] [Indexed: 06/21/2024] Open
Abstract
Lung and brain injury that occurs during the perinatal period leads to lifelong disability and is often driven and/or exacerbated by inflammation. Human amniotic epithelial cells (hAEC), which demonstrate immunomodulatory, anti-fibrotic, and regenerative capabilities, are being explored as a therapeutic candidate for perinatal injury. However, limitations regarding scalable manufacturing, storage, transport, and dose-related toxicity have impeded clinical translation. Isolated therapeutic extracellular vesicles (EVs) from stem and stem-like cells are thought to be key paracrine mediators of therapeutic efficacy. The unique characteristics of EVs suggest that they potentially circumvent the limitations of traditional cell-based therapies. However, given the novelty of EVs as a therapeutic, recommendations around ideal methods of production, isolation, storage, and delivery have not yet been created by regulatory agencies. In this concise review, we discuss the pertinence and limitations of cell-based therapeutics in perinatal medicine. We also review the preclinical evidence supporting the use of therapeutic EVs for perinatal therapy. Further, we summarize the arising considerations regarding adequate cell source, biodistribution, isolation and storage methods, and regulatory roadblocks for the development of therapeutic EVs.
Collapse
Affiliation(s)
- Naveen Kumar
- The Ritchie Centre, The Hudson Institute of Medical Research, Clayton 3168, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton 3168, Victoria, Australia
| | - Hamid Reza Bidkhori
- The Ritchie Centre, The Hudson Institute of Medical Research, Clayton 3168, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton 3168, Victoria, Australia
| | - Tamara Yawno
- The Ritchie Centre, The Hudson Institute of Medical Research, Clayton 3168, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton 3168, Victoria, Australia
- Department of Paediatrics, Monash University, Clayton 3168, Victoria, Australia
| | - Rebecca Lim
- The Ritchie Centre, The Hudson Institute of Medical Research, Clayton 3168, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton 3168, Victoria, Australia
| | - Ishmael Miguel Inocencio
- The Ritchie Centre, The Hudson Institute of Medical Research, Clayton 3168, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton 3168, Victoria, Australia
| |
Collapse
|
49
|
Muttiah B, Ng SL, Lokanathan Y, Ng MH, Law JX. Beyond Blood Clotting: The Many Roles of Platelet-Derived Extracellular Vesicles. Biomedicines 2024; 12:1850. [PMID: 39200314 PMCID: PMC11351396 DOI: 10.3390/biomedicines12081850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/23/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Platelet-derived extracellular vesicles (pEVs) are emerging as pivotal players in numerous physiological and pathological processes, extending beyond their traditional roles in hemostasis and thrombosis. As one of the most abundant vesicle types in human blood, pEVs transport a diverse array of bioactive molecules, including growth factors, cytokines, and clotting factors, facilitating crucial intercellular communication, immune regulation, and tissue healing. The unique ability of pEVs to traverse tissue barriers and their biocompatibility position them as promising candidates for targeted drug delivery and regenerative medicine applications. Recent studies have underscored their involvement in cancer progression, viral infections, wound healing, osteoarthritis, sepsis, cardiovascular diseases, rheumatoid arthritis, and atherothrombosis. For instance, pEVs promote tumor progression and metastasis, enhance tissue repair, and contribute to thrombo-inflammation in diseases such as COVID-19. Despite their potential, challenges remain, including the need for standardized isolation techniques and a comprehensive understanding of their mechanisms of action. Current research efforts are focused on leveraging pEVs for innovative anti-cancer treatments, advanced drug delivery systems, regenerative therapies, and as biomarkers for disease diagnosis and monitoring. This review highlights the necessity of overcoming technical hurdles, refining isolation methods, and establishing standardized protocols to fully unlock the therapeutic potential of pEVs. By understanding the diverse functions and applications of pEVs, we can advance their use in clinical settings, ultimately revolutionizing treatment strategies across various medical fields and improving patient outcomes.
Collapse
Affiliation(s)
- Barathan Muttiah
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| | - Sook Luan Ng
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Yogeswaran Lokanathan
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| | - Min Hwei Ng
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| | - Jia Xian Law
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| |
Collapse
|
50
|
Mulay AR, Hwang J, Kim DH. Microphysiological Blood-Brain Barrier Systems for Disease Modeling and Drug Development. Adv Healthc Mater 2024; 13:e2303180. [PMID: 38430211 PMCID: PMC11338747 DOI: 10.1002/adhm.202303180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/22/2024] [Indexed: 03/03/2024]
Abstract
The blood-brain barrier (BBB) is a highly controlled microenvironment that regulates the interactions between cerebral blood and brain tissue. Due to its selectivity, many therapeutics targeting various neurological disorders are not able to penetrate into brain tissue. Pre-clinical studies using animals and other in vitro platforms have not shown the ability to fully replicate the human BBB leading to the failure of a majority of therapeutics in clinical trials. However, recent innovations in vitro and ex vivo modeling called organs-on-chips have shown the potential to create more accurate disease models for improved drug development. These microfluidic platforms induce physiological stressors on cultured cells and are able to generate more physiologically accurate BBBs compared to previous in vitro models. In this review, different approaches to create BBBs-on-chips are explored alongside their application in modeling various neurological disorders and potential therapeutic efficacy. Additionally, organs-on-chips use in BBB drug delivery studies is discussed, and advances in linking brain organs-on-chips onto multiorgan platforms to mimic organ crosstalk are reviewed.
Collapse
Affiliation(s)
- Atharva R. Mulay
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218
| | - Jihyun Hwang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205
- Center for Microphysiological Systems, Johns Hopkins University School of Medicine, Baltimore, MD, 21205
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, 21218
| |
Collapse
|