1
|
Hoerter A, Petrucciani A, Bonifacio J, Arnett E, Schlesinger LS, Pienaar E. Timing matters in macrophage/CD4+ T cell interactions: an agent-based model comparing Mycobacterium tuberculosis host-pathogen interactions between latently infected and naïve individuals. mSystems 2025; 10:e0129024. [PMID: 39918314 PMCID: PMC11915833 DOI: 10.1128/msystems.01290-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/17/2024] [Indexed: 03/19/2025] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a significant health challenge. Clinical manifestations of TB exist across a spectrum with a majority of infected individuals remaining asymptomatic, commonly referred to as latent TB infection (LTBI). In vitro models have demonstrated that cells from individuals with LTBI can better control Mtb growth and form granuloma-like structures more quickly, compared to cells from uninfected (Mtb-naïve) individuals. These in vitro results agree with animal and clinical evidence that LTBI protects, to some degree, against reinfection. However, the mechanisms by which LTBI might offer protection against reinfection remain unclear, and quantifying the relative contributions of multiple control mechanisms is challenging using experimental methods alone. To complement in vitro models, we have developed an in silico agent-based model to help elucidate host responses that might contribute to protection against reinfection. Our simulations indicate that earlier contact between macrophages and CD4+ T cells leads to LTBI simulations having more activated CD4+ T cells and, in turn, more activated infected macrophages, all of which contribute to a decreased bacterial load early on. Our simulations also demonstrate that granuloma-like structures support this early macrophage activation in LTBI simulations. We find that differences between LTBI and Mtb-naïve simulations are driven by TNFα and IFNγ-associated mechanisms as well as macrophage phagocytosis and killing mechanisms. Together, our simulations show how important the timing of the first interactions between innate and adaptive immune cells is, how this impacts infection progression, and why cells from LTBI individuals might be faster to respond to reinfection.IMPORTANCETuberculosis (TB) remains a significant global health challenge, with millions of new infections and deaths annually. Despite extensive research, the mechanisms by which latent TB infection (LTBI) confers protection against reinfection remain unclear. In this study, we developed an in silico agent-based model to simulate early immune responses to Mycobacterium tuberculosis infection based on experimental in vitro infection of human donor cells. Our simulations reveal that early interactions between macrophages and CD4+ T cells, driven by TNFα and IFNγ, are critical for bacterial control and granuloma formation in LTBI. These findings offer new insights into the immune processes involved in TB, which could inform the development of targeted vaccines and host-directed therapies. By integrating experimental data with computational predictions, our research provides a robust framework for understanding TB immunity and guiding future interventions to mitigate the global TB burden.
Collapse
Affiliation(s)
- Alexis Hoerter
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Alexa Petrucciani
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | | | - Eusondia Arnett
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | | | - Elsje Pienaar
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
- Regenstrief Center for Healthcare Engineering, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
2
|
Ryu T, Yoshino M, Tse WKF, Ansai S, Iguchi T, Kumar A, Somamoto T, Nakao M, Ogino Y. Local immune response induced by intra-fin antigen injection in Japanese medaka (Oryzias latipes) is a useful model for immunological studies. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 165:105344. [PMID: 39961406 DOI: 10.1016/j.dci.2025.105344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/12/2025] [Accepted: 02/12/2025] [Indexed: 02/28/2025]
Abstract
Teleost fishes play a pivotal role in advancing our understanding of immune system evolution because they retain the ancient characteristics of vertebrate immunity, encompassing both innate and adaptive immune systems. Among these, innate immunity plays a critical role in fish as the first line of defense, coordinating rapid responses to pathogen infections. However, the lack of fish-specific immunological methodologies has limited progress in elucidating fish immune mechanisms. To better understand how the innate immune response develops and resolves in fish, detailed observation and integrative analysis of leukocytes at multiple time points is necessary. In the present study, an intra-fin injection method for observing local immune responses in Japanese medaka (Oryzias latipes) was tested and optimized to analyze the progression of zymosan-induced innate immune responses. Zymosan-injected medaka showed a rapid immune response characterized by leukocyte recruitment and phagocytosis. Using TG(FmpxP:mCherry) transgenic medaka with mCherry fluorescence driven by myeloperoxidase (mpx) promoter, granulocyte chemotaxis towards the site of zymosan entry was successfully visualized. The rapid increase in tumor necrosis factor α (tnfa), interleukin-1β (il1b), interleukin-6 (il6), and CXC motif chemokine ligand 8 (cxcl8) expressions in zymosan-injected anal fins provided a molecular basis for the visualized tissue-specific cellular response. Our study underscores the dynamic orchestration of immune components during the innate immune response in Japanese medaka and highlights their potential as a promising model for immunological research.
Collapse
Affiliation(s)
- Tsukasa Ryu
- Graduate School of Bioresource and Bioenvironmental Sciences, Laboratory of Marine Biochemistry, Kyushu University, Fukuoka, 819-0395, Japan
| | - Mizuki Yoshino
- Graduate School of Bioresource and Bioenvironmental Sciences, Laboratory of Marine Biology, Kyushu University, Fukuoka, 819-0395, Japan
| | - William Ka Fai Tse
- Graduate School of Bioresource and Bioenvironmental Sciences, Laboratory of Developmental Disorders and Toxicology, Kyushu University, Fukuoka, 819-0395, Japan; Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | - Satoshi Ansai
- Ushimado Marine Institute, Faculty of Science, Okayama University, Ushimado, Setouchi, Okayama, 701-4303, Japan
| | - Taisen Iguchi
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa, 236-0027, Japan
| | - Anu Kumar
- Commonwealth Scientific and Industrial Research Organisation, CSIRO Environment, 40 Waite Road, Gate 4 Reception, Urrbrae, 5064, South Australia, Australia
| | - Tomonori Somamoto
- Graduate School of Bioresource and Bioenvironmental Sciences, Laboratory of Marine Biochemistry, Kyushu University, Fukuoka, 819-0395, Japan
| | - Miki Nakao
- Graduate School of Bioresource and Bioenvironmental Sciences, Laboratory of Marine Biochemistry, Kyushu University, Fukuoka, 819-0395, Japan; Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | - Yukiko Ogino
- Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan; Graduate School of Bioresource and Bioenvironmental Sciences, Laboratory of Aquatic Molecular Developmental Biology, Kyushu University, Fukuoka, 819-0395, Japan.
| |
Collapse
|
3
|
Petrucciani A, Hoerter A, Kotze L, Du Plessis N, Pienaar E. Agent-based model predicts that layered structure and 3D movement work synergistically to reduce bacterial load in 3D in vitro models of tuberculosis granuloma. PLoS Comput Biol 2024; 20:e1012266. [PMID: 38995971 PMCID: PMC11288457 DOI: 10.1371/journal.pcbi.1012266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 07/30/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Tuberculosis (TB) remains a global public health threat. Understanding the dynamics of host-pathogen interactions within TB granulomas will assist in identifying what leads to the successful elimination of infection. In vitro TB models provide a controllable environment to study these granuloma dynamics. Previously we developed a biomimetic 3D spheroid granuloma model that controls bacteria better than a traditional monolayer culture counterpart. We used agent-based simulations to predict the mechanistic reason for this difference. Our calibrated simulations were able to predict heterogeneous bacterial dynamics that are consistent with experimental data. In one group of simulations, spheroids are found to have higher macrophage activation than their traditional counterparts, leading to better bacterial control. This higher macrophage activation in the spheroids was not due to higher counts of activated T cells, instead fewer activated T cells were able to activate more macrophages due to the proximity of these cells to each other within the spheroid. In a second group of simulations, spheroids again have more macrophage activation but also more T cell activation, specifically CD8+ T cells. This higher level of CD8+ T cell activation is predicted to be due to the proximity of these cells to the cells that activate them. Multiple mechanisms of control were predicted. Simulations removing individual mechanisms show that one group of simulations has a CD4+ T cell dominant response, while the other has a mixed/CD8+ T cell dominant response. Lastly, we demonstrated that in spheroids the initial structure and movement rules work synergistically to reduce bacterial load. These findings provide valuable insights into how the structural complexity of in vitro models impacts immune responses. Moreover, our study has implications for engineering more physiologically relevant in vitro models and advancing our understanding of TB pathogenesis and potential therapeutic interventions.
Collapse
Affiliation(s)
- Alexa Petrucciani
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Alexis Hoerter
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Leigh Kotze
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medical and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Nelita Du Plessis
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medical and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Elsje Pienaar
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
- Regenstrief Center for Healthcare Engineering, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
4
|
Petrucciani A, Hoerter A, Kotze L, Du Plessis N, Pienaar E. In silico agent-based modeling approach to characterize multiple in vitro tuberculosis infection models. PLoS One 2024; 19:e0299107. [PMID: 38517920 PMCID: PMC10959380 DOI: 10.1371/journal.pone.0299107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/05/2024] [Indexed: 03/24/2024] Open
Abstract
In vitro models of Mycobacterium tuberculosis (Mtb) infection are a valuable tool for examining host-pathogen interactions and screening drugs. With the development of more complex in vitro models, there is a need for tools to help analyze and integrate data from these models. To this end, we introduce an agent-based model (ABM) representation of the interactions between immune cells and bacteria in an in vitro setting. This in silico model was used to simulate both traditional and spheroid cell culture models by changing the movement rules and initial spatial layout of the cells in accordance with the respective in vitro models. The traditional and spheroid simulations were calibrated to published experimental data in a paired manner, by using the same parameters in both simulations. Within the calibrated simulations, heterogeneous outputs are seen for bacterial count and T cell infiltration into the macrophage core of the spheroid. The simulations also predict that equivalent numbers of activated macrophages do not necessarily result in similar bacterial reductions; that host immune responses can control bacterial growth in both spheroid structure dependent and independent manners; that STAT1 activation is the limiting step in macrophage activation in spheroids; and that drug screening and macrophage activation studies could have different outcomes depending on the in vitro culture used. Future model iterations will be guided by the limitations of the current model, specifically which parts of the output space were harder to reach. This ABM can be used to represent more in vitro Mtb infection models due to its flexible structure, thereby accelerating in vitro discoveries.
Collapse
Affiliation(s)
- Alexa Petrucciani
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States of America
| | - Alexis Hoerter
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States of America
| | - Leigh Kotze
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medical and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Nelita Du Plessis
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medical and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Elsje Pienaar
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States of America
- Regenstrief Center for Healthcare Engineering, Purdue University, West Lafayette, IN, United States of America
| |
Collapse
|
5
|
Zhao J, Ghallab A, Hassan R, Dooley S, Hengstler JG, Drasdo D. A liver digital twin for in silico testing of cellular and inter-cellular mechanisms in regeneration after drug-induced damage. iScience 2024; 27:108077. [PMID: 38371522 PMCID: PMC10869925 DOI: 10.1016/j.isci.2023.108077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 02/22/2023] [Accepted: 09/25/2023] [Indexed: 02/20/2024] Open
Abstract
This communication presents a mathematical mechanism-based model of the regenerating liver after drug-induced pericentral lobule damage resolving tissue microarchitecture. The consequence of alternative hypotheses about the interplay of different cell types on regeneration was simulated. Regeneration dynamics has been quantified by the size of the damage-induced dead cell area, the hepatocyte density and the spatial-temporal profile of the different cell types. We use deviations of observed trajectories from the simulated system to identify branching points, at which the systems behavior cannot be explained by the underlying set of hypotheses anymore. Our procedure reflects a successful strategy for generating a fully digital liver twin that, among others, permits to test perturbations from the molecular up to the tissue scale. The model simulations are complementing current knowledge on liver regeneration by identifying gaps in mechanistic relationships and guiding the system toward the most informative (lacking) parameters that can be experimentally addressed.
Collapse
Affiliation(s)
- Jieling Zhao
- Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund (IfADo), 44139 Dortmund, Germany
- Group SIMBIOTX, INRIA Saclay, 91120 Palaiseau, France
| | - Ahmed Ghallab
- Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund (IfADo), 44139 Dortmund, Germany
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Reham Hassan
- Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund (IfADo), 44139 Dortmund, Germany
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Steven Dooley
- Molecular Hepatology Section, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Jan Georg Hengstler
- Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund (IfADo), 44139 Dortmund, Germany
| | - Dirk Drasdo
- Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund (IfADo), 44139 Dortmund, Germany
- Group SIMBIOTX, INRIA Saclay, 91120 Palaiseau, France
| |
Collapse
|
6
|
Pérez-Rodríguez S, Borau C, García-Aznar JM, Gonzalo-Asensio J. A microfluidic-based analysis of 3D macrophage migration after stimulation by Mycobacterium, Salmonella and Escherichia. BMC Microbiol 2022; 22:211. [PMID: 36045335 PMCID: PMC9429415 DOI: 10.1186/s12866-022-02623-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
Macrophages play an essential role in the process of recognition and containment of microbial infections. These immune cells are recruited to infectious sites to reach and phagocytose pathogens. Specifically, in this article, bacteria from the genus Mycobacterium, Salmonella and Escherichia, were selected to study the directional macrophage movement towards different bacterial fractions. We recreated a three-dimensional environment in a microfluidic device, using a collagen-based hydrogel that simulates the mechanical microarchitecture associated to the Extra Cellular Matrix (ECM). First, we showed that macrophage migration is affected by the collagen concentration of their environment, migrating greater distances at higher velocities with decreasing collagen concentrations. To recreate the infectious microenvironment, macrophages were exposed to lateral gradients of bacterial fractions obtained from the intracellular pathogens M. tuberculosis and S. typhimurium. Our results showed that macrophages migrated directionally, and in a concentration-dependent manner, towards the sites where bacterial fractions are located, suggesting the presence of attractants molecules in all the samples. We confirmed that purified M. tuberculosis antigens, as ESAT-6 and CFP-10, stimulated macrophage recruitment in our device. Finally, we also observed that macrophages migrate towards fractions from non-pathogenic bacteria, such as M. smegmatis and Escherichia coli. In conclusion, our microfluidic device is a useful tool which opens new perspectives to study the recognition of specific antigens by innate immune cells.
Collapse
|
7
|
Bartha L, Eftimie R. Mathematical investigation into the role of macrophage heterogeneity on the temporal and spatio-temporal dynamics of non-small cell lung cancers. J Theor Biol 2022; 549:111207. [PMID: 35772491 DOI: 10.1016/j.jtbi.2022.111207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/23/2022] [Accepted: 06/21/2022] [Indexed: 10/17/2022]
Abstract
Non Small Cell Lung Cancer (NSCLC) is the most common type of lung cancer, and represents the leading cause of cancer-related deaths worldwide. Experimental studies have shown that these solid cancers are heavily infiltrated with macrophages: anti-tumour M1 macrophages, pro-tumour M2 macrophages, and macrophage subtypes sharing both M1 and M2 properties. In this study we aim to investigate qualitatively the role of macrophages with different functional phenotypes (especially those with mixed phenotypes) on cancer dynamics and the success of different immunotherapies for cancer. To this end, we start with two time-evolving mathematical models for cancer-immune interactions that consider: (i) the effect of the two extreme phenotypes, M1 and M2 cells; (ii) the effect of M1 and M2 cells, as well as a macrophage sub-population with a mixed phenotype (throughout this theoretical study we call these cells "M12 cells"). We compare the dynamics of the two models using computational approaches, paying particular attention to the effect of different anti-cancer immunotherapies that focus on macrophages. Since data available for NSCLC and macrophage interactions are incomplete, we perform a global sensitivity analysis to see the influence of input parameters on model outcomes. Finally, we consider extensions of the previous two models to include also the spatial movement of cells, and investigate the role of macrophages with extreme phenotypes and with mixed phenotypes, on the invasion of cancer cells into the surrounding extracellular matrix (ECM). We use numerical simulations to investigate the macrophages phenotypes at the tumour center versus the invasive margin. Again, we examine the impact of immunotherapies for cancer on the spatial dynamics of cancers and immune cells, and observe a shift in the phenotype of macrophages distributed at the tumour center and invasive margin.
Collapse
Affiliation(s)
- Liza Bartha
- Former address: Mathematics, University of Dundee, Dundee, DD1 4HN, United Kingdom
| | - Raluca Eftimie
- Former address: Mathematics, University of Dundee, Dundee, DD1 4HN, United Kingdom; Laboratoire Mathématiques de Besançon, UMR-CNRS 6623, Université de Bourgogne Franche-Comté, 16 Route de Gray, 25200 Besançon, France.
| |
Collapse
|
8
|
Chowdhury K, Lin S, Lai SL. Comparative Study in Zebrafish and Medaka Unravels the Mechanisms of Tissue Regeneration. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.783818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Tissue regeneration has been in the spotlight of research for its fascinating nature and potential applications in human diseases. The trait of regenerative capacity occurs diversely across species and tissue contexts, while it seems to decline over evolution. Organisms with variable regenerative capacity are usually distinct in phylogeny, anatomy, and physiology. This phenomenon hinders the feasibility of studying tissue regeneration by directly comparing regenerative with non-regenerative animals, such as zebrafish (Danio rerio) and mice (Mus musculus). Medaka (Oryzias latipes) is a fish model with a complete reference genome and shares a common ancestor with zebrafish approximately 110–200 million years ago (compared to 650 million years with mice). Medaka shares similar features with zebrafish, including size, diet, organ system, gross anatomy, and living environment. However, while zebrafish regenerate almost every organ upon experimental injury, medaka shows uneven regenerative capacity. Their common and distinct biological features make them a unique platform for reciprocal analyses to understand the mechanisms of tissue regeneration. Here we summarize current knowledge about tissue regeneration in these fish models in terms of injured tissues, repairing mechanisms, available materials, and established technologies. We further highlight the concept of inter-species and inter-organ comparisons, which may reveal mechanistic insights and hint at therapeutic strategies for human diseases.
Collapse
|
9
|
Woitzik P, Linder S. Molecular Mechanisms of Borrelia burgdorferi Phagocytosis and Intracellular Processing by Human Macrophages. BIOLOGY 2021; 10:567. [PMID: 34206480 PMCID: PMC8301104 DOI: 10.3390/biology10070567] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/16/2021] [Accepted: 06/20/2021] [Indexed: 12/21/2022]
Abstract
Lyme disease is the most common vector-borne illness in North America and Europe. Its causative agents are spirochetes of the Borrelia burgdorferi sensu latu complex. Infection with borreliae can manifest in different tissues, most commonly in the skin and joints, but in severe cases also in the nervous systems and the heart. The immune response of the host is a crucial factor for preventing the development or progression of Lyme disease. Macrophages are part of the innate immune system and thus one of the first cells to encounter infecting borreliae. As professional phagocytes, they are capable of recognition, uptake, intracellular processing and final elimination of borreliae. This sequence of events involves the initial capture and internalization by actin-rich cellular protrusions, filopodia and coiling pseudopods. Uptake into phagosomes is followed by compaction of the elongated spirochetes and degradation in mature phagolysosomes. In this review, we discuss the current knowledge about the processes and molecular mechanisms involved in recognition, capturing, uptake and intracellular processing of Borrelia by human macrophages. Moreover, we highlight interactions between macrophages and other cells of the immune system during these processes and point out open questions in the intracellular processing of borreliae, which include potential escape strategies of Borrelia.
Collapse
Affiliation(s)
| | - Stefan Linder
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, 20246 Hamburg, Germany;
| |
Collapse
|
10
|
Morimoto N, Okamura Y, Kono T, Sakai M, Hikima JI. Characterization and expression analysis of tandemly-replicated asc genes in the Japanese medaka, Oryzias latipes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 115:103894. [PMID: 33080274 DOI: 10.1016/j.dci.2020.103894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/10/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
ASC is a component of the inflammasome playing crucial roles in the inflammatory response. In mammals, ASC induces pyroptosis and inflammatory cytokine production. In this study, three asc genes (asc1, asc2, and asc3) from the Japanese medaka (Oryzias latipes) were identified and characterized. These asc genes were tandem replicates on chromosome 16, and their exon-intron structures differed between them. All three ASCs conserved the pyrin and caspase-recruitment domains, which are important for inflammasome formation. In phylogenetic analysis, all ASCs clustered with those of other teleosts. The asc1 expression levels were significantly higher in several organs than those of asc2 and asc3, suggesting that asc1 may act as a dominant asc in the Japanese medaka. Expression of the three asc genes showed different patterns during Aeromonas hydrophila and Edwardsiella piscicida infections. Furthermore, their expression was adequately down-regulated in the medaka fin-derived cells stimulated with ATP for 12 h, while asc2 expression was statistically up-regulated after nigericin stimulation for 24 h. Moreover, the expression of asc2 and asc3 was significantly higher in the skin of ASC-1-knockout medaka than in that of the wild type medaka during A. hydrophila infection.
Collapse
Affiliation(s)
- Natsuki Morimoto
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Yo Okamura
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Tomoya Kono
- Department of Biochemistry and Applied Bioscience, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Masahiro Sakai
- Department of Biochemistry and Applied Bioscience, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Jun-Ichi Hikima
- Department of Biochemistry and Applied Bioscience, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan.
| |
Collapse
|
11
|
How Have Leukocyte In Vitro Chemotaxis Assays Shaped Our Ideas about Macrophage Migration? BIOLOGY 2020; 9:biology9120439. [PMID: 33276594 PMCID: PMC7761587 DOI: 10.3390/biology9120439] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/15/2022]
Abstract
Simple Summary The migration of immune cells is vital during inflammatory responses. Macrophages, which are a subset of immune cells, are unique in the ways they migrate because they can switch between different mechanism of migration. This crucial feature of macrophage migration has been underappreciated in the literature because technologies used to study macrophage migration were not able to efficiently detect those subtle differences between macrophages and other immune cells. This review article describes popular technologies used to study macrophage migration and critically assesses their advantages and disadvantages in macrophage migration studies. Abstract Macrophage chemotaxis is crucial during both onset and resolution of inflammation and unique among all leukocytes. Macrophages are able to switch between amoeboid and mesenchymal migration to optimise their migration through 3D environments. This subtle migration phenotype has been underappreciated in the literature, with macrophages often being grouped and discussed together with other leukocytes, possibly due to the limitations of current chemotaxis assays. Transwell assays were originally designed in the 1960s but despite their long-known limitations, they are still one of the most popular methods of studying macrophage migration. This review aims to critically evaluate transwell assays, and other popular chemotaxis assays, comparing their advantages and limitations in macrophage migration studies.
Collapse
|
12
|
Zhu Y, Crowley SC, Latimer AJ, Lewis GM, Nash R, Kucenas S. Migratory Neural Crest Cells Phagocytose Dead Cells in the Developing Nervous System. Cell 2019; 179:74-89.e10. [PMID: 31495570 DOI: 10.1016/j.cell.2019.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/16/2019] [Accepted: 08/01/2019] [Indexed: 12/20/2022]
Abstract
During neural tube closure and spinal cord development, many cells die in both the central and peripheral nervous systems (CNS and PNS, respectively). However, myeloid-derived professional phagocytes have not yet colonized the trunk region during early neurogenesis. How apoptotic cells are removed from this region during these stages remains largely unknown. Using live imaging in zebrafish, we demonstrate that neural crest cells (NCCs) respond rapidly to dying cells and phagocytose cellular debris around the neural tube. Additionally, NCCs have the ability to enter the CNS through motor exit point transition zones and clear debris in the spinal cord. Surprisingly, NCCs phagocytosis mechanistically resembles macrophage phagocytosis and their recruitment toward cellular debris is mediated by interleukin-1β. Taken together, our results reveal a role for NCCs in phagocytosis of debris in the developing nervous system before the presence of professional phagocytes.
Collapse
Affiliation(s)
- Yunlu Zhu
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Samantha C Crowley
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Andrew J Latimer
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Gwendolyn M Lewis
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Rebecca Nash
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Sarah Kucenas
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA.
| |
Collapse
|
13
|
Rauff A, LaBelle SA, Strobel HA, Hoying JB, Weiss JA. Imaging the Dynamic Interaction Between Sprouting Microvessels and the Extracellular Matrix. Front Physiol 2019; 10:1011. [PMID: 31507428 PMCID: PMC6713949 DOI: 10.3389/fphys.2019.01011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/22/2019] [Indexed: 12/21/2022] Open
Abstract
Thorough understanding of growth and evolution of tissue vasculature is fundamental to many fields of medicine including cancer therapy, wound healing, and tissue engineering. Angiogenesis, the growth of new vessels from existing ones, is dynamically influenced by a variety of environmental factors, including mechanical and biophysical factors, chemotactic factors, proteolysis, and interaction with stromal cells. Yet, dynamic interactions between neovessels and their environment are difficult to study with traditional fixed time imaging techniques. Advancements in imaging technologies permit time-series and volumetric imaging, affording the ability to visualize microvessel growth over 3D space and time. Time-lapse imaging has led to more informative investigations of angiogenesis. The environmental factors implicated in angiogenesis span a wide range of signals. Neovessels advance through stromal matrices by forming attachments and pulling and pushing on their microenvironment, reorganizing matrix fibers, and inducing large deformations of the surrounding stroma. Concurrently, neovessels secrete proteolytic enzymes to degrade their basement membrane, create space for new vessels to grow, and release matrix-bound cytokines. Growing neovessels also respond to a host of soluble and matrix-bound growth factors, and display preferential growth along a cytokine gradient. Lastly, stromal cells such as macrophages and mesenchymal stem cells (MSCs) interact directly with neovessels and their surrounding matrix to facilitate sprouting, vessel fusion, and tissue remodeling. This review highlights how time-lapse imaging techniques advanced our understanding of the interaction of blood vessels with their environment during sprouting angiogenesis. The technology provides means to characterize the evolution of microvessel behavior, providing new insights and holding great promise for further research on the process of angiogenesis.
Collapse
Affiliation(s)
- Adam Rauff
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, United States
| | - Steven A. LaBelle
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, United States
| | - Hannah A. Strobel
- Innovations Laboratory, Advanced Solutions Life Sciences, Manchester, NH, United States
| | - James B. Hoying
- Innovations Laboratory, Advanced Solutions Life Sciences, Manchester, NH, United States
| | - Jeffrey A. Weiss
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
14
|
SoRelle ED, Yecies DW, Liba O, Bennett FC, Graef CM, Dutta R, Mitra S, Joubert LM, Cheshier S, Grant GA, de la Zerda A. Spatiotemporal Tracking of Brain-Tumor-Associated Myeloid Cells in Vivo through Optical Coherence Tomography with Plasmonic Labeling and Speckle Modulation. ACS NANO 2019; 13:7985-7995. [PMID: 31259527 PMCID: PMC8144904 DOI: 10.1021/acsnano.9b02656] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
By their nature, tumors pose a set of profound challenges to the immune system with respect to cellular recognition and response coordination. Recent research indicates that leukocyte subpopulations, especially tumor-associated macrophages (TAMs), can exert substantial influence on the efficacy of various cancer immunotherapy treatment strategies. To better study and understand the roles of TAMs in determining immunotherapeutic outcomes, significant technical challenges associated with dynamically monitoring single cells of interest in relevant live animal models of solid tumors must be overcome. However, imaging techniques with the requisite combination of spatiotemporal resolution, cell-specific contrast, and sufficient signal-to-noise at increasing depths in tissue are exceedingly limited. Here we describe a method to enable high-resolution, wide-field, longitudinal imaging of TAMs based on speckle-modulating optical coherence tomography (SM-OCT) and spectral scattering from an optimized contrast agent. The approach's improvements to OCT detection sensitivity and noise reduction enabled high-resolution OCT-based observation of individual cells of a specific host lineage in live animals. We found that large gold nanorods (LGNRs) that exhibit a narrow-band, enhanced scattering cross-section can selectively label TAMs and activate microglia in an in vivo orthotopic murine model of glioblastoma multiforme. We demonstrated near real-time tracking of the migration of cells within these myeloid subpopulations. The intrinsic spatiotemporal resolution, imaging depth, and contrast sensitivity reported herein may facilitate detailed studies of the fundamental behaviors of TAMs and other leukocytes at the single-cell level in vivo, including intratumoral distribution heterogeneity and roles in modulating cancer proliferation.
Collapse
Affiliation(s)
- Elliott Daniel SoRelle
- Department of Structural Biology, Stanford University, 299 Campus Dr., Stanford, CA 94305, USA
- Biophysics Program, Stanford University, 299 Campus Dr., Stanford, CA 94305, USA
- Molecular Imaging Program (MIPS), Stanford University, 299 Campus Dr., Stanford, CA 94305, USA
- Bio-X Program, Stanford University, 299 Campus Dr., Stanford, CA 94305, USA
| | - Derek William Yecies
- Department of Structural Biology, Stanford University, 299 Campus Dr., Stanford, CA 94305, USA
- Department of Neurosurgery, Division of Pediatric Neurosurgery, Stanford University, 299 Campus Dr., Stanford, CA 94305, USA
| | - Orly Liba
- Department of Structural Biology, Stanford University, 299 Campus Dr., Stanford, CA 94305, USA
- Molecular Imaging Program (MIPS), Stanford University, 299 Campus Dr., Stanford, CA 94305, USA
- Bio-X Program, Stanford University, 299 Campus Dr., Stanford, CA 94305, USA
- Department of Electrical Engineering, Stanford University, 299 Campus Dr., Stanford, CA 94305, USA
| | | | - Claus Moritz Graef
- Department of Neurosurgery, Division of Pediatric Neurosurgery, Stanford University, 299 Campus Dr., Stanford, CA 94305, USA
| | - Rebecca Dutta
- Department of Structural Biology, Stanford University, 299 Campus Dr., Stanford, CA 94305, USA
- Molecular Imaging Program (MIPS), Stanford University, 299 Campus Dr., Stanford, CA 94305, USA
- Bio-X Program, Stanford University, 299 Campus Dr., Stanford, CA 94305, USA
| | - Siddhartha Mitra
- Department of Neurosurgery, Division of Pediatric Neurosurgery, Stanford University, 299 Campus Dr., Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine and the Ludwig Cancer Center, Stanford University, 299 Campus Dr., Stanford, CA 94305, USA
| | - Lydia-Marie Joubert
- Cell Sciences Imaging Facility, Stanford University, 299 Campus Dr., Stanford, CA 94305, USA
| | - Samuel Cheshier
- Department of Neurosurgery, Division of Pediatric Neurosurgery, Stanford University, 299 Campus Dr., Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine and the Ludwig Cancer Center, Stanford University, 299 Campus Dr., Stanford, CA 94305, USA
| | - Gerald A. Grant
- Department of Neurosurgery, Division of Pediatric Neurosurgery, Stanford University, 299 Campus Dr., Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine and the Ludwig Cancer Center, Stanford University, 299 Campus Dr., Stanford, CA 94305, USA
| | - Adam de la Zerda
- Department of Structural Biology, Stanford University, 299 Campus Dr., Stanford, CA 94305, USA
- Biophysics Program, Stanford University, 299 Campus Dr., Stanford, CA 94305, USA
- Molecular Imaging Program (MIPS), Stanford University, 299 Campus Dr., Stanford, CA 94305, USA
- Bio-X Program, Stanford University, 299 Campus Dr., Stanford, CA 94305, USA
- Department of Electrical Engineering, Stanford University, 299 Campus Dr., Stanford, CA 94305, USA
- The Chan Zuckerberg Biohub, 499 Illinois St., San Francisco, CA 94158, USA
- To whom correspondence should be addressed:
| |
Collapse
|
15
|
Septiadi D, Abdussalam W, Rodriguez-Lorenzo L, Spuch-Calvar M, Bourquin J, Petri-Fink A, Rothen-Rutishauser B. Revealing the Role of Epithelial Mechanics and Macrophage Clearance during Pulmonary Epithelial Injury Recovery in the Presence of Carbon Nanotubes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1806181. [PMID: 30370701 DOI: 10.1002/adma.201806181] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/03/2018] [Indexed: 06/08/2023]
Abstract
Wound healing assays are extensively used to study tissue repair mechanisms; they are typically performed by means of physical (i.e., mechanical, electrical, or optical) detachment of the cells in order to create an open space in which live cells can lodge. Herein, an advanced system based on extensive photobleaching-induced apoptosis; providing a powerful tool to understand the repair response of lung epithelial tissue, consisting of a small injury area where apoptotic cells are still intact, is developed. Notably, the importance of epithelial mechanics and the presence of macrophages during the repair can be understood. The findings reveal that individual epithelial cells are able to clear the apoptotic cells by applying a pushing force, whilst macrophages actively phagocytose the dead cells to create an empty space. It is further shown that this repair mechanism is hampered when carbon nanotubes (CNTs) are introduced: formation of aberrant (i.e., thickening) F-actins, maturation of focal adhesion, and increase in traction force leading to retardation in cell migration are observed. The results provide a mechanistic view of how CNTs can interfere with lung repair.
Collapse
Affiliation(s)
- Dedy Septiadi
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Wildan Abdussalam
- Department of High Energy Density, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Laura Rodriguez-Lorenzo
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Miguel Spuch-Calvar
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Joël Bourquin
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Alke Petri-Fink
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700, Fribourg, Switzerland
| | | |
Collapse
|
16
|
Seemann F, Peterson DR, Chiang MWL, Au DWT. The development of cellular immune defence in marine medaka Oryzias melastigma. Comp Biochem Physiol C Toxicol Pharmacol 2017; 199:81-89. [PMID: 28347744 DOI: 10.1016/j.cbpc.2017.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/14/2017] [Accepted: 03/19/2017] [Indexed: 12/12/2022]
Abstract
Environmentally induced alterations of the immune system during sensitive developmental stages may manifest as abnormalities in immune organ configuration and/or immune cell differentiation. These not only render the early life stages more vulnerable to pathogens, but may also affect the adult immune competence. Knowledge of these sensitive periods in fish would provide an important prognostic/diagnostic tool for aquatic risk assessment of immunotoxicants. The marine medaka Oryzias melastigma is an emerging seawater fish model for immunotoxicology. Here, the presence and onset of four potentially sensitive periods during the development of innate and adaptive cellular immune defence were revealed in O. melastigma: 1.) initiation of phagocyte differentiation, 2.) migration and expansion of lymphoid progenitor cells, 3.) colonization of immune organs through lymphocyte progenitors and 4.) establishment of immune competence in the thymus. By using an established bacterial resistance assay for O. melastigma, larval immune competence (from newly hatched 1dph to 14dph) was found concomitantly increased with advanced thymus development and the presence of mature T-lymphocytes. A comparison between the marine O. melastigma and the freshwater counterpart Oryzias latipes disclosed a disparity in the T-lymphocyte maturation pattern, resulting in differences in the length of T-lymphocyte maturation. The results shed light on a potential difference between seawater and freshwater medaka in their sensitivity to environmental immunotoxicants. Further, medaka immune system development was compared and contrasted to economically important fish. The present study has provided a strong scientific basis for advanced investigation of critical windows for immune system development in fish.
Collapse
Affiliation(s)
- Frauke Seemann
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Hong Kong Special Administrative Region
| | - Drew Ryan Peterson
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Hong Kong Special Administrative Region
| | - Michael Wai Lun Chiang
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Hong Kong Special Administrative Region
| | - Doris Wai Ting Au
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
17
|
Dezfuli BS, DePasquale JA, Castaldelli G, Giari L, Bosi G. A fish model for the study of the relationship between neuroendocrine and immune cells in the intestinal epithelium: Silurus glanis infected with a tapeworm. FISH & SHELLFISH IMMUNOLOGY 2017; 64:243-250. [PMID: 28330806 DOI: 10.1016/j.fsi.2017.03.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/15/2017] [Accepted: 03/17/2017] [Indexed: 06/06/2023]
Abstract
Immunohistochemical, immunofluorescence and ultrastructural studies were conducted on a sub-population of 20 wels catfish Silurus glanis from a tributary of the River Po (Northern Italy). Fish were examined for the presence of ecto- and endo-parasites; in the intestine of 5 fish, 11 specimens of cestode Glanitaenia osculata were noted and was the only helminth species encountered. The architecture of intestine and its cellular features were nearly identical in either the uninfected S. glanis or in those harboring G. osculata. Near the site of worm's attachment, mucous cells, several mast cells (MCs), few neutrophils and some endocrine cells (ECs) were found to co-occur within the intestinal epithelium. MCs and neutrophils were abundant also in the submucosa. Immunohistochemical staining revealed that enteric ECs were immunoreactive to met-enkephalin, galanin and serotonin anti-bodies. The numbers of ECs, mucous cells and MCs were significantly higher in infected wels catfish (Mann-Whitney U test, p < 0.05). Dual immunofluorescence staining with the biotinylated lectin Sambucus nigra Agglutinin and the rabbit polyclonal anti-met-enkephalin or anti-serotonin, with parallel transmission electron microscopy, showed that ECs often made intimate contact with the mucous cells and epithelial MCs. The presence of numerous MCs in intestinal epithelium shows S. glanis to be an interesting model fish to study processes underlying intestinal inflammation elicited by an enteric worm. Immune cells, ECs and mucous cells of the intestinal epithelium have been described at the ultrastructural level and their possible functions and interactions together will be discussed.
Collapse
Affiliation(s)
- B Sayyaf Dezfuli
- Department of Life Sciences and Biotechnology, University of Ferrara, Borsari St. 46, 44121 Ferrara, Italy
| | - J A DePasquale
- Morphogenyx Inc, PO Box 717, East Northport, NY 11731, USA
| | - G Castaldelli
- Department of Life Sciences and Biotechnology, University of Ferrara, Borsari St. 46, 44121 Ferrara, Italy
| | - L Giari
- Department of Life Sciences and Biotechnology, University of Ferrara, Borsari St. 46, 44121 Ferrara, Italy.
| | - G Bosi
- Department of Veterinary Sciences and Technologies for Food Safety, Università degli Studi di Milano, St. Trentacoste 2, 20134 Milan, Italy
| |
Collapse
|
18
|
Perinuclear Arp2/3-driven actin polymerization enables nuclear deformation to facilitate cell migration through complex environments. Nat Commun 2016; 7:10997. [PMID: 26975831 PMCID: PMC4796365 DOI: 10.1038/ncomms10997] [Citation(s) in RCA: 254] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/09/2016] [Indexed: 12/27/2022] Open
Abstract
Cell migration has two opposite faces: although necessary for physiological processes such as immune responses, it can also have detrimental effects by enabling metastatic cells to invade new organs. In vivo, migration occurs in complex environments and often requires a high cellular deformability, a property limited by the cell nucleus. Here we show that dendritic cells, the sentinels of the immune system, possess a mechanism to pass through micrometric constrictions. This mechanism is based on a rapid Arp2/3-dependent actin nucleation around the nucleus that disrupts the nuclear lamina, the main structure limiting nuclear deformability. The cells' requirement for Arp2/3 to pass through constrictions can be relieved when nuclear stiffness is decreased by suppressing lamin A/C expression. We propose a new role for Arp2/3 in three-dimensional cell migration, allowing fast-moving cells such as leukocytes to rapidly and efficiently migrate through narrow gaps, a process probably important for their function.
Collapse
|
19
|
Marina S, Anna-Lila K, Benjamin M, Raquel L, Komisarczuk AZ, Alejo RS, Adrien J, Alicia L, Nicolas T, Shinji O, Keiko A, Becker TS, Marika K. Diversity in cell motility reveals the dynamic nature of the formation of zebrafish taste sensory organs. Development 2016; 143:2012-24. [DOI: 10.1242/dev.134817] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 04/12/2016] [Indexed: 12/16/2022]
Abstract
Taste buds are sensory organs in jawed vertebrates, composed of distinct cell types that detect and transduce specific taste qualities. Taste bud cells differentiate from oropharyngeal epithelial progenitors localized mainly in proximity of the forming organs. Despite recent progress in elucidating the molecular interactions required for taste bud cell development and function, the cell behaviour underlying the organ assembly is poorly defined. Here, we used time-lapse imaging to observe the formation of taste buds in live zebrafish larvae. We found that tg(fgf8a.dr17) expressing cells form taste buds and get rearranged within the forming organs. In addition, differentiating cells move from the epithelium to the forming organs and can be displaced between developing organs. During organ formation, taste bud tg(fgf8a.dr17) and Type-II cells are displaced in random, directed or confined mode relative to the taste bud they join or are maintained. Finally, ascl1a activity in the 5-HT/Type-III cell is required to direct and maintain tg(fgf8a.dr17) expressing cells into the taste bud. We propose diversity in displacement modes of differentiating cells as a key mechanism for the highly dynamic process of taste bud assembly.
Collapse
Affiliation(s)
- Soulika Marina
- IBENS, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Paris, France
| | - Kaushik Anna-Lila
- IBENS, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Paris, France
| | - Mathieu Benjamin
- IBENS, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Paris, France
| | - Lourenço Raquel
- IBENS, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Paris, France
| | - Anna Z. Komisarczuk
- Developmental Neurobiology and Genomics, Brain and Mind Research Institute, University of Sydney, Australia
| | | | - Jouary Adrien
- IBENS, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Paris, France
| | - Lardennois Alicia
- IBENS, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Paris, France
| | - Tissot Nicolas
- Institut Jacques Monod, CNRS UMR7592, University Paris Diderot, Paris, France
| | - Okada Shinji
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | - Abe Keiko
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | - Thomas S. Becker
- Developmental Neurobiology and Genomics, Brain and Mind Research Institute, University of Sydney, Australia
| | - Kapsimali Marika
- IBENS, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Paris, France
| |
Collapse
|
20
|
Substrate elasticity regulates the behavior of human monocyte-derived macrophages. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 45:301-9. [PMID: 26613613 DOI: 10.1007/s00249-015-1096-8] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 11/04/2015] [Indexed: 01/25/2023]
Abstract
Macrophages play a key role in atherosclerosis, cancer, and in the response to implanted medical devices. In each of these situations, the mechanical environment of a macrophage can vary from soft to stiff. However, how stiffness affects macrophage behavior remains uncertain. Using substrates of varying stiffness, we show macrophage phenotype and function depends on substrate stiffness. Notably, the cell area increases slightly from a sphere after 18 h on substrates mimicking healthy arterial stiffness (1-5 kPa), whereas macrophages on stiffer substrates (280 kPa-70 GPa) increased in area by nearly eight-fold. Macrophage migration is random regardless of substrate stiffness. The total average track speed was 7.8 ± 0.5 μm/h, with macrophages traveling fastest on the 280-kPa substrate (12.0 ± 0.5 μm/h) and slowest on the 3-kPa substrate (5.0 ± 0.4 μm/h). In addition F-actin organization in macrophages depends on substrate stiffness. On soft substrates, F-actin is spread uniformly throughout the cytoplasm, whereas on stiff substrates F-actin is functionalized into stress fibers. The proliferation rate of macrophages was faster on stiff substrates. Cells plated on the 280-kPa gel had a significantly shorter doubling time than those plated on the softer substrate. However, the ability of macrophages to phagocytose 1-μm particles did not depend on substrate stiffness. In conclusion, the results herein show macrophages are mechanosensitive; they respond to changes in stiffness by modifying their area, migration speed, actin organization, and proliferation rate. These results are important to understanding how macrophages respond in complex mechanical environments such as an atherosclerotic plaque.
Collapse
|
21
|
Schubert M, Steude A, Liehm P, Kronenberg NM, Karl M, Campbell EC, Powis SJ, Gather MC. Lasing within Live Cells Containing Intracellular Optical Microresonators for Barcode-Type Cell Tagging and Tracking. NANO LETTERS 2015; 15:5647-52. [PMID: 26186167 DOI: 10.1021/acs.nanolett.5b02491] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We report on a laser that is fully embedded within a single live cell. By harnessing natural endocytosis of the cell, we introduce a fluorescent whispering gallery mode (WGM) microresonator into the cell cytoplasm. On pumping with nanojoule light pulses, green laser emission is generated inside the cells. Our approach can be applied to different cell types, and cells with microresonators remain viable for weeks under standard conditions. The characteristics of the lasing spectrum provide each cell with a barcode-type label which enables uniquely identifying and tracking individual migrating cells. Self-sustained lasing from cells paves the way to new forms of cell tracking, intracellular sensing, and adaptive imaging.
Collapse
Affiliation(s)
- Marcel Schubert
- †SUPA, School of Physics and Astronomy and ‡School of Medicine, University of St Andrews, St Andrews, Fife, Scotland, United Kingdom
| | - Anja Steude
- †SUPA, School of Physics and Astronomy and ‡School of Medicine, University of St Andrews, St Andrews, Fife, Scotland, United Kingdom
| | - Philipp Liehm
- †SUPA, School of Physics and Astronomy and ‡School of Medicine, University of St Andrews, St Andrews, Fife, Scotland, United Kingdom
| | - Nils M Kronenberg
- †SUPA, School of Physics and Astronomy and ‡School of Medicine, University of St Andrews, St Andrews, Fife, Scotland, United Kingdom
| | - Markus Karl
- †SUPA, School of Physics and Astronomy and ‡School of Medicine, University of St Andrews, St Andrews, Fife, Scotland, United Kingdom
| | - Elaine C Campbell
- †SUPA, School of Physics and Astronomy and ‡School of Medicine, University of St Andrews, St Andrews, Fife, Scotland, United Kingdom
| | - Simon J Powis
- †SUPA, School of Physics and Astronomy and ‡School of Medicine, University of St Andrews, St Andrews, Fife, Scotland, United Kingdom
| | - Malte C Gather
- †SUPA, School of Physics and Astronomy and ‡School of Medicine, University of St Andrews, St Andrews, Fife, Scotland, United Kingdom
| |
Collapse
|
22
|
Paredes R, Ishibashi S, Borrill R, Robert J, Amaya E. Xenopus: An in vivo model for imaging the inflammatory response following injury and bacterial infection. Dev Biol 2015; 408:213-28. [PMID: 25823652 PMCID: PMC4685038 DOI: 10.1016/j.ydbio.2015.03.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 03/05/2015] [Accepted: 03/10/2015] [Indexed: 11/05/2022]
Abstract
A major goal in regenerative medicine is to identify therapies to facilitate our body׳s innate abilities to repair and regenerate following injury, disease or aging. In the past decade it has become apparent that the innate immune system is able to affect the speed and quality of the regenerative response through mechanisms that are not entirely clear. For this reason there has been a resurgent interest in investigating the role of inflammation during tissue repair and regeneration. Remarkably, there have only been a handful of such studies using organisms with high regenerative capacity. Here we perform a study of the inflammatory response following injury in Xenopus larvae, which are able to achieve scarless wound healing and to regenerate appendages, as a preamble into understanding the role that inflammation plays during tissue repair and regeneration in this organism. We characterized the morphology and migratory behavior of granulocytes and macrophages following sterile and infected wounding regimes, using various transgenic lines that labeled different types of myeloid lineages, including granulocytes and macrophages. Using this approach we found that the inflammatory response following injury and infection in Xenopus larvae is very similar to that seen in humans, suggesting that this model provides an easily tractable and medically relevant system to investigate inflammation following injury and infection in vivo. Xenopus larvae is an ideal model to study injury-induced inflammation in vivo. Xenopus larvae provides an easily tractable model of human inflammation. Xenopus larvae provides a powerful model for investigating cell migration in vivo.
Collapse
Affiliation(s)
- Roberto Paredes
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom; The Healing Foundation Centre, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom
| | - Shoko Ishibashi
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom; The Healing Foundation Centre, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom
| | - Roisin Borrill
- The Healing Foundation Centre, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY 14642, USA
| | - Enrique Amaya
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom; The Healing Foundation Centre, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom.
| |
Collapse
|
23
|
Maiuri P, Rupprecht JF, Wieser S, Ruprecht V, Bénichou O, Carpi N, Coppey M, De Beco S, Gov N, Heisenberg CP, Lage Crespo C, Lautenschlaeger F, Le Berre M, Lennon-Dumenil AM, Raab M, Thiam HR, Piel M, Sixt M, Voituriez R. Actin flows mediate a universal coupling between cell speed and cell persistence. Cell 2015; 161:374-86. [PMID: 25799384 DOI: 10.1016/j.cell.2015.01.056] [Citation(s) in RCA: 282] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 11/25/2014] [Accepted: 01/22/2015] [Indexed: 12/13/2022]
Abstract
Cell movement has essential functions in development, immunity, and cancer. Various cell migration patterns have been reported, but no general rule has emerged so far. Here, we show on the basis of experimental data in vitro and in vivo that cell persistence, which quantifies the straightness of trajectories, is robustly coupled to cell migration speed. We suggest that this universal coupling constitutes a generic law of cell migration, which originates in the advection of polarity cues by an actin cytoskeleton undergoing flows at the cellular scale. Our analysis relies on a theoretical model that we validate by measuring the persistence of cells upon modulation of actin flow speeds and upon optogenetic manipulation of the binding of an actin regulator to actin filaments. Beyond the quantitative prediction of the coupling, the model yields a generic phase diagram of cellular trajectories, which recapitulates the full range of observed migration patterns.
Collapse
Affiliation(s)
- Paolo Maiuri
- Institut Curie, CNRS UMR 144, 26 rue d'Ulm, 75005 Paris, France
| | - Jean-François Rupprecht
- Laboratoire de Physique Théorique de la Matière Condensée, UMR 7600 CNRS /UPMC, 4 Place Jussieu, 75255 Paris Cedex, France
| | - Stefan Wieser
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Verena Ruprecht
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Olivier Bénichou
- Laboratoire de Physique Théorique de la Matière Condensée, UMR 7600 CNRS /UPMC, 4 Place Jussieu, 75255 Paris Cedex, France
| | - Nicolas Carpi
- Institut Curie, CNRS UMR 144, 26 rue d'Ulm, 75005 Paris, France
| | - Mathieu Coppey
- Institut Curie, CNRS UMR 168, 26 rue d'Ulm, 75005 Paris, France
| | - Simon De Beco
- Institut Curie, CNRS UMR 168, 26 rue d'Ulm, 75005 Paris, France
| | - Nir Gov
- Department of Chemical Physics, Weizmann Institute of Science, 76100 Rehovot, Israel
| | | | - Carolina Lage Crespo
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | - Maël Le Berre
- Institut Curie, CNRS UMR 144, 26 rue d'Ulm, 75005 Paris, France
| | | | - Matthew Raab
- Institut Curie, CNRS UMR 144, 26 rue d'Ulm, 75005 Paris, France
| | | | - Matthieu Piel
- Institut Curie, CNRS UMR 144, 26 rue d'Ulm, 75005 Paris, France.
| | - Michael Sixt
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria.
| | - Raphaël Voituriez
- Laboratoire de Physique Théorique de la Matière Condensée, UMR 7600 CNRS /UPMC, 4 Place Jussieu, 75255 Paris Cedex, France; Laboratoire Jean Perrin, UMR 8237 CNRS /UPMC, 4 Place Jussieu, 75255 Paris Cedex, France.
| |
Collapse
|
24
|
Dzik JM. Evolutionary roots of arginase expression and regulation. Front Immunol 2014; 5:544. [PMID: 25426114 PMCID: PMC4224125 DOI: 10.3389/fimmu.2014.00544] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 10/13/2014] [Indexed: 12/11/2022] Open
Abstract
Two main types of macrophage functions are known: classical (M1), producing nitric oxide, NO, and M2, in which arginase activity is primarily expressed. Ornithine, the product of arginase, is a substrate for synthesis of polyamines and collagen, important for growth and ontogeny of animals. M2 macrophages, expressing high level of mitochondrial arginase, have been implicated in promoting cell division and deposition of collagen during ontogeny and wound repair. Arginase expression is the default mode of tissue macrophages, but can also be amplified by signals, such as IL-4/13 or transforming growth factor-β (TGF-β) that accelerates wound healing and tissue repair. In worms, the induction of collagen gene is coupled with induction of immune response genes, both depending on the same TGF-β-like pathway. This suggests that the main function of M2 “heal” type macrophages is originally connected with the TGF-β superfamily of proteins, which are involved in regulation of tissue and organ differentiation in embryogenesis. Excretory–secretory products of metazoan parasites are able to induce M2-type of macrophage responses promoting wound healing without participation of Th2 cytokines IL-4/IL-13. The expression of arginase in lower animals can be induced by the presence of parasite antigens and TGF-β signals leading to collagen synthesis. This also means that the main proteins, which, in primitive metazoans, are involved in regulation of tissue and organ differentiation in embryogenesis are produced by innate immunity. The signaling function of NO is known already from the sponge stage of animal evolution. The cytotoxic role of NO molecule appeared later, as documented in immunity of marine mollusks and some insects. This implies that the M2-wound healing promoting function predates the defensive role of NO, a characteristic of M1 macrophages. Understanding when and how the M1 and M2 activities came to be in animals is useful for understanding how macrophage immunity, and immune responses operate.
Collapse
Affiliation(s)
- Jolanta Maria Dzik
- Department of Biochemistry, Faculty of Agriculture and Biology, Warsaw University of Life Sciences - SGGW , Warszawa , Poland
| |
Collapse
|
25
|
Crespo CL, Vernieri C, Keller PJ, Garrè M, Bender JR, Wittbrodt J, Pardi R. The PAR complex controls the spatiotemporal dynamics of F-actin and the MTOC in directionally migrating leukocytes. J Cell Sci 2014; 127:4381-95. [PMID: 25179599 PMCID: PMC4197085 DOI: 10.1242/jcs.146217] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Inflammatory cells acquire a polarized phenotype to migrate towards sites of infection or injury. A conserved polarity complex comprising PAR-3, PAR-6 and atypical protein kinase C (aPKC) relays extracellular polarizing cues to control cytoskeletal and signaling networks affecting morphological and functional polarization. However, there is no evidence that myeloid cells use PAR signaling to migrate vectorially in three-dimensional (3D) environments in vivo. Using genetically encoded bioprobes and high-resolution live imaging, we reveal the existence of F-actin oscillations in the trailing edge and constant repositioning of the microtubule organizing center (MTOC) to direct leukocyte migration in wounded medaka fish larvae (Oryzias latipes). Genetic manipulation in live myeloid cells demonstrates that the catalytic activity of aPKC and the regulated interaction with PAR-3 and PAR-6 are required for consistent F-actin oscillations, MTOC perinuclear mobility, aPKC repositioning and wound-directed migration upstream of Rho kinase (also known as ROCK or ROK) activation. We propose that the PAR complex coordinately controls cytoskeletal changes affecting both the generation of traction force and the directionality of leukocyte migration to sites of injury.
Collapse
Affiliation(s)
- Carolina Lage Crespo
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Claudio Vernieri
- IFOM Foundation, Institute FIRC of Molecular Oncology, 20139 Milan, Italy
| | - Philipp J Keller
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, 20147 VI, USA
| | - Massimiliano Garrè
- IFOM Foundation, Institute FIRC of Molecular Oncology, 20139 Milan, Italy
| | - Jeffrey R Bender
- Department of Medicine, Raymond and Beverly Sackler Foundation Cardiovascular Laboratory, Yale University, New Haven, 06511 CT, USA
| | - Joachim Wittbrodt
- Center for Organismal Studies Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany
| | - Ruggero Pardi
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20132 Milan, Italy Vita-Salute San Raffaele University School of Medicine, 20132 Milan, Italy
| |
Collapse
|
26
|
Zheng PP, van der Weiden M, Kros JM. Fast tracking of co-localization of multiple markers by using the nanozoomer slide scanner and NDPViewer. J Cell Physiol 2014; 229:967-73. [PMID: 24374845 DOI: 10.1002/jcp.24538] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 12/12/2013] [Indexed: 12/20/2022]
Abstract
The detection of co-localization of immunohistochemical markers in tissues or cells requires the application of the confocal laser scanning microscope (CLSM) to multiple immunofluorescence (MIF) stainings. CLSM is operationally sophisticated but requires time-consuming procedures of imaging and reconstruction, and a professional operator is required for manipulation of the microscopic system. Therefore, this technique is less suitable for the examination of many samples in a short time. Moreover, the technique only allows imaging of selected areas of a sample at one time and is not practical for fast panoramic mapping and tracking of whole tissue sections. Here we show a powerful high-throughput and operationally simple histological approach using the Hamamatsu NDP slide scanner (Hamamatsu Nanozoomer 2.0HT) and its viewing platform (NDP.Viewer). The approach not only enables fast mapping and tracking of overlapping spots or regions stained with multiple markers, but also offers panoramic screening of whole tissue sections with fully electronic manipulation for the visualization and analysis of any individual regions.
Collapse
Affiliation(s)
- Ping-Pin Zheng
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | |
Collapse
|
27
|
Bastounis E, Meili R, Álvarez-González B, Francois J, del Álamo JC, Firtel RA, Lasheras JC. Both contractile axial and lateral traction force dynamics drive amoeboid cell motility. ACTA ACUST UNITED AC 2014; 204:1045-61. [PMID: 24637328 PMCID: PMC3998796 DOI: 10.1083/jcb.201307106] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chemotaxing Dictyostelium discoideum cells adapt their morphology and migration speed in response to intrinsic and extrinsic cues. Using Fourier traction force microscopy, we measured the spatiotemporal evolution of shape and traction stresses and constructed traction tension kymographs to analyze cell motility as a function of the dynamics of the cell's mechanically active traction adhesions. We show that wild-type cells migrate in a step-wise fashion, mainly forming stationary traction adhesions along their anterior-posterior axes and exerting strong contractile axial forces. We demonstrate that lateral forces are also important for motility, especially for migration on highly adhesive substrates. Analysis of two mutant strains lacking distinct actin cross-linkers (mhcA(-) and abp120(-) cells) on normal and highly adhesive substrates supports a key role for lateral contractions in amoeboid cell motility, whereas the differences in their traction adhesion dynamics suggest that these two strains use distinct mechanisms to achieve migration. Finally, we provide evidence that the above patterns of migration may be conserved in mammalian amoeboid cells.
Collapse
Affiliation(s)
- Effie Bastounis
- Department of Mechanical and Aerospace Engineering and 2 Department of Bioengineering, Jacobs School of Engineering; 3 Section of Cell and Developmental Biology, Division of Biological Sciences; and 4 Institute for Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093
| | | | | | | | | | | | | |
Collapse
|
28
|
Comber K, Huelsmann S, Evans I, Sánchez-Sánchez BJ, Chalmers A, Reuter R, Wood W, Martín-Bermudo MD. A dual role for the βPS integrin myospheroid in mediating Drosophila embryonic macrophage migration. J Cell Sci 2013; 126:3475-84. [PMID: 23704353 PMCID: PMC3730248 DOI: 10.1242/jcs.129700] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Throughout embryonic development, macrophages not only act as the first line of defence against infection but also help to sculpt organs and tissues of the embryo by removing dead cells and secreting extracellular matrix components. Key to their function is the ability of embryonic macrophages to migrate and disperse throughout the embryo. Despite these important developmental functions, little is known about the molecular mechanisms underlying embryonic macrophage migration in vivo. Integrins are key regulators of many of the adult macrophage responses, but their role in embryonic macrophages remains poorly characterized. Here, we have used Drosophila macrophages (haemocytes) as a model system to address the role of integrins during embryonic macrophage dispersal in vivo. We show that the main βPS integrin, myospheroid, affects haemocyte migration in two ways; by shaping the three-dimensional environment in which haemocytes migrate and by regulating the migration of haemocytes themselves. Live imaging revealed a requirement for myospheroid within haemocytes to coordinate the microtubule and actin dynamics, and to enable haemocyte developmental dispersal, contact repulsion and inflammatory migration towards wounds.
Collapse
Affiliation(s)
- Kate Comber
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Textor J, Sinn M, de Boer RJ. Analytical results on the Beauchemin model of lymphocyte migration. BMC Bioinformatics 2013; 14 Suppl 6:S10. [PMID: 23734948 PMCID: PMC3633013 DOI: 10.1186/1471-2105-14-s6-s10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Beauchemin model is a simple particle-based description of stochastic lymphocyte migration in tissue, which has been successfully applied to studying immunological questions. In addition to being easy to implement, the model is also to a large extent mathematically tractable. This article provides a comprehensive overview of both existing and new analytical results on the Beauchemin model within a common mathematical framework. Specifically, we derive the motility coefficient, the mean square displacement, and the confinement ratio, and discuss four different methods for simulating biased migration of pre-defined speed. The results provide new insight into published studies and a reference point for future research based on this simple and popular lymphocyte migration model.
Collapse
Affiliation(s)
- Johannes Textor
- Theoretical Biology & Bioinformatics, Utrecht University, Utrecht, The Netherlands.
| | | | | |
Collapse
|
30
|
Phase geometries of two-dimensional excitable waves govern self-organized morphodynamics of amoeboid cells. Proc Natl Acad Sci U S A 2013; 110:5016-21. [PMID: 23479620 DOI: 10.1073/pnas.1218025110] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In both randomly moving Dictyostelium and mammalian cells, phosphatidylinositol (3,4,5)-trisphosphate and F-actin are known to propagate as waves at the membrane and act to push out the protruding edge. To date, however, the relationship between the wave geometry and the patterns of amoeboid shape change remains elusive. Here, by using phase map analysis, we show that morphology dynamics of randomly moving Dictyostelium discoideum cells can be characterized by the number, topology, and position of spatial phase singularities, i.e., points that represent organizing centers of rotating waves. A single isolated singularity near the cellular edge induced a rotational protrusion, whereas a pair of singularities supported a symmetric extension. These singularities appeared by strong phase resetting due to de novo nucleation at the back of preexisting waves. Analysis of a theoretical model indicated excitability of the system that is governed by positive feedback from phosphatidylinositol (3,4,5)-trisphosphate to PI3-kinase activation, and we showed experimentally that this requires F-actin. Furthermore, by incorporating membrane deformation into the model, we demonstrated that geometries of competing waves explain most of the observed semiperiodic changes in amoeboid morphology.
Collapse
|
31
|
Macrophage Migration and Its Regulation by CSF-1. Int J Cell Biol 2012; 2012:501962. [PMID: 22505929 PMCID: PMC3296313 DOI: 10.1155/2012/501962] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 11/04/2011] [Accepted: 11/04/2011] [Indexed: 02/06/2023] Open
Abstract
Macrophages are terminally differentiated cells of the mononuclear phagocytic lineage and develop under the stimulus of their primary growth and differentiation factor, CSF-1. Although they differentiate into heterogeneous populations, depending upon their tissue of residence, motility is an important aspect of their function. To facilitate their migration through tissues, macrophages express a unique range of adhesion and cytoskeletal proteins. Notably, macrophages do not form large, stable adhesions or actin stress fibers but rely on small, short lived point contacts, focal complexes and podosomes for traction. Thus, macrophages are built to respond rapidly to migratory stimuli. As well as triggering growth and differentiation, CSF-1 is also a chemokine that regulates macrophage migration via activation the CSF-1 receptor tyrosine kinase. CSF-1R autophosphorylation of several intracellular tyrosine residues leads to association and activation of many downstream signaling molecules. However, phosphorylation of just one residue, Y721, mediates association of PI3K with the receptor to activate the major motility signaling pathways in macrophages. Dissection of these pathways will identify drug targets for the inhibition of diseases in which macrophages contribute to adverse outcomes.
Collapse
|
32
|
Nenasheva TA, Carter T, Mashanov GI. Automatic tracking of individual migrating cells using low-magnification dark-field microscopy. J Microsc 2012; 246:83-8. [PMID: 22260196 DOI: 10.1111/j.1365-2818.2011.03590.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Many fundamental biological processes, such as the search for food, immunological responses and wound healing, depend on cell migration. Video microscopy allows the magnitude and direction of cell migration to be documented. Here, we present a simple and inexpensive method for simultaneous tracking of hundreds of migrating cells over periods of several days. Low-magnification dark-field microscopy was used to visualize individual cells whereas time-lapse video images were acquired by computer for future analysis. We employed an automated tracking algorithm to identify individual cells on each video image allowing migration paths to be tracked using a nearest neighbour algorithm. To test the method, we followed the time-course of migration of 3T3 fibroblasts, endothelial cells and individual amoeba in the absence of any chemical stimulus gradient. All cell types showed a 'random walk' behaviour in which mean squared displacement in position increased linearly with time. We defined a 'migration coefficient' (D(mig)), analogous to a diffusion coefficient, which gave an estimate of cell migration rate. D(mig) depended on cell type and temperature. When amoebas were made to undergo chemotaxis, the cells no longer followed a random walk but instead moved at a near constant velocity (V(av)) towards the chemotactic stimulus.
Collapse
Affiliation(s)
- T A Nenasheva
- MRC National Institute for Medical Research, London, United Kingdom
| | | | | |
Collapse
|
33
|
Steven P, Bock F, Hüttmann G, Cursiefen C. Intravital two-photon microscopy of immune cell dynamics in corneal lymphatic vessels. PLoS One 2011; 6:e26253. [PMID: 22028842 PMCID: PMC3197633 DOI: 10.1371/journal.pone.0026253] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 09/23/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The role of lymphatic vessels in tissue and organ transplantation as well as in tumor growth and metastasis has drawn great attention in recent years. METHODOLOGY/PRINCIPAL FINDINGS We now developed a novel method using non-invasive two-photon microscopy to simultaneously visualize and track specifically stained lymphatic vessels and autofluorescent adjacent tissues such as collagen fibrils, blood vessels and immune cells in the mouse model of corneal neovascularization in vivo. The mouse cornea serves as an ideal tissue for this technique due to its easy accessibility and its inducible and modifiable state of pathological hem- and lymphvascularization. Neovascularization was induced by suture placement in corneas of Balb/C mice. Two weeks after treatment, lymphatic vessels were stained intravital by intrastromal injection of a fluorescently labeled LYVE-1 antibody and the corneas were evaluated in vivo by two-photon microscopy (TPM). Intravital TPM was performed at 710 nm and 826 nm excitation wavelengths to detect immunofluorescence and tissue autofluorescence using a custom made animal holder. Corneas were then harvested, fixed and analyzed by histology. Time lapse imaging demonstrated the first in vivo evidence of immune cell migration into lymphatic vessels and luminal transport of individual cells. Cells immigrated within 1-5.5 min into the vessel lumen. Mean velocities of intrastromal corneal immune cells were around 9 µm/min and therefore comparable to those of T-cells and macrophages in other mucosal surfaces. CONCLUSIONS To our knowledge we here demonstrate for the first time the intravital real-time transmigration of immune cells into lymphatic vessels. Overall this study demonstrates the valuable use of intravital autofluorescence two-photon microscopy in the model of suture-induced corneal vascularizations to study interactions of immune and subsequently tumor cells with lymphatic vessels under close as possible physiological conditions.
Collapse
Affiliation(s)
- Philipp Steven
- Department of Ophthalmology, University of Lübeck, Lübeck, Germany.
| | | | | | | |
Collapse
|
34
|
Bastounis E, Meili R, Alonso-Latorre B, del Álamo JC, Lasheras JC, Firtel RA. The SCAR/WAVE complex is necessary for proper regulation of traction stresses during amoeboid motility. Mol Biol Cell 2011; 22:3995-4003. [PMID: 21900496 PMCID: PMC3204062 DOI: 10.1091/mbc.e11-03-0278] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A combination of traction force and F-actin measurements shows that cells lacking either of the SCAR/WAVE complex proteins SCAR and PIR121 exhibit an altered cell motility cycle and spatiotemporal distribution of tractions stresses, which correlate in magnitude with F-actin levels. Cell migration requires a tightly regulated, spatiotemporal coordination of underlying biochemical pathways. Crucial to cell migration is SCAR/WAVE–mediated dendritic F-actin polymerization at the cell's leading edge. Our goal is to understand the role the SCAR/WAVE complex plays in the mechanics of amoeboid migration. To this aim, we measured and compared the traction stresses exerted by Dictyostelium cells lacking the SCAR/WAVE complex proteins PIR121 (pirA−) and SCAR (scrA−) with those of wild-type cells while they were migrating on flat, elastic substrates. We found that, compared to wild type, both mutant strains exert traction stresses of different strengths that correlate with their F-actin levels. In agreement with previous studies, we found that wild-type cells migrate by repeating a motility cycle in which the cell length and strain energy exerted by the cells on their substrate vary periodically. Our analysis also revealed that scrA− cells display an altered motility cycle with a longer period and a lower migration velocity, whereas pirA− cells migrate in a random manner without implementing a periodic cycle. We present detailed characterization of the traction-stress phenotypes of the various cell lines, providing new insights into the role of F-actin polymerization in regulating cell–substratum interactions and stresses required for motility.
Collapse
Affiliation(s)
- Effie Bastounis
- Department of Bioengineering, Jacobs School of Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | |
Collapse
|
35
|
"Self-assisted" amoeboid navigation in complex environments. PLoS One 2011; 6:e21955. [PMID: 21829602 PMCID: PMC3150345 DOI: 10.1371/journal.pone.0021955] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 06/14/2011] [Indexed: 11/28/2022] Open
Abstract
Background Living cells of many types need to move in response to external stimuli in order to accomplish their functional tasks; these tasks range from wound healing to immune response to fertilization. While the directional motion is typically dictated by an external signal, the actual motility is also restricted by physical constraints, such as the presence of other cells and the extracellular matrix. The ability to successfully navigate in the presence of obstacles is not only essential for organisms, but might prove relevant in the study of autonomous robotic motion. Methodology/Principal Findings We study a computational model of amoeboid chemotactic navigation under differing conditions, from motion in an obstacle-free environment to navigation between obstacles and finally to moving in a maze. We use the maze as a simple stand-in for a motion task with severe constraints, as might be expected in dense extracellular matrix. Whereas agents using simple chemotaxis can successfully navigate around small obstacles, the presence of large barriers can often lead to agent trapping. We further show that employing a simple memory mechanism, namely secretion of a repulsive chemical by the agent, helps the agent escape from such trapping. Conclusions/Significance Our main conclusion is that cells employing simple chemotactic strategies will often be unable to navigate through maze-like geometries, but a simple chemical marker mechanism (which we refer to as “self-assistance”) significantly improves success rates. This realization provides important insights into mechanisms that might be employed by real cells migrating in complex environments as well as clues for the design of robotic navigation strategies. The results can be extended to more complicated multi-cellular systems and can be used in the study of mammalian cell migration and cancer metastasis.
Collapse
|
36
|
Dong W, Matsumura F, Kullman SW. TCDD induced pericardial edema and relative COX-2 expression in medaka (Oryzias Latipes) embryos. Toxicol Sci 2010; 118:213-23. [PMID: 20801906 DOI: 10.1093/toxsci/kfq254] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Exposure to dioxin and other aryl hydrocarbon receptor (AhR) ligands results in multiple, specific developmental cardiovascular phenotypes including pericardial edema and circulatory failure in small aquarium fish models. Although phenotypes are well described, mechanistic underpinnings for such toxicities remain elusive. Here we suggest that AhR activation results in stimulation of inflammation and "eicosanoid" pathways, which contribute to the observed developmental, cardiovascular phenotypes. We demonstrate that medaka embryos exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (0.05-1 ppb) during early development result in a dose-related increase in the prevalence of pericardial edema and that this phenotype correlates with an increase in cyclooxygenase-2 (COX-2) gene expression. Those individuals exhibiting the edema phenotype had significantly greater COX-2 mRNA than their nonedematous cohort. Selective pharmacological inhibition of COX-2, with NS-398, and genetic knock down of COX-2 with a translation initiation morpholino significantly attenuated prevalence and severity of edema phenotype. Subsequently, exposures of medaka embryos to arachidonic acid (AA) resulted in recapitulation of the pericardial edema phenotype and significantly increased COX-2 expression only in those individuals exhibiting the edema phenotype compared with their nonedematous cohort. AA exposure does not result in significant induction of cytochrome P450 1A expression, suggesting that pericardial edema can be induced independent of AhR/aryl hydrocarbon receptor nuclear translocator/dioxin response element interactions. Results from this study demonstrate that developmental exposure to TCDD results in an induction of inflammatory mediators including COX-2, which contribute to the onset, and progression of heart dysmorphogenesis in the medaka model.
Collapse
Affiliation(s)
- Wu Dong
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | | |
Collapse
|
37
|
Peri F. Breaking ranks: how leukocytes react to developmental cues and tissue injury. Curr Opin Genet Dev 2010; 20:416-9. [PMID: 20627699 DOI: 10.1016/j.gde.2010.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 04/27/2010] [Accepted: 05/04/2010] [Indexed: 01/08/2023]
Abstract
Leukocytes are arguably the most motile cells in metazoans. Besides their well-described ability to migrate rapidly toward sites of tissue injury, tissue-specific macrophages migrate already during embryogenesis, when they take up residence in a wide range of organs. The recent identification of molecules responsible for the guidance of leukocytes during development and in response to injury has revealed that these modes of migration are under the control of surprisingly different signaling systems. While the developmental migrations are regulated by hard-wired pre-patterns of secreted proteins, the rapid acute response to injury involves signals like hydrogen peroxide or extracellular nucleotides such as ATP. Ongoing work aims to understand how these distinct signals are integrated in the cell to determine different cellular responses.
Collapse
Affiliation(s)
- Francesca Peri
- EMBL Heidelberg, Meyerhofstrasse 1, Heidelberg, Germany.
| |
Collapse
|
38
|
Yoo SK, Deng Q, Cavnar PJ, Wu YI, Hahn KM, Huttenlocher A. Differential regulation of protrusion and polarity by PI3K during neutrophil motility in live zebrafish. Dev Cell 2010; 18:226-36. [PMID: 20159593 PMCID: PMC2824622 DOI: 10.1016/j.devcel.2009.11.015] [Citation(s) in RCA: 294] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2009] [Revised: 10/29/2009] [Accepted: 11/23/2009] [Indexed: 11/26/2022]
Abstract
Cell polarity is crucial for directed migration. Here we show that phosphoinositide 3-kinase (PI(3)K) mediates neutrophil migration in vivo by differentially regulating cell protrusion and polarity. The dynamics of PI(3)K products PI(3,4,5)P(3)-PI(3,4)P(2) during neutrophil migration were visualized in living zebrafish, revealing that PI(3)K activation at the leading edge is critical for neutrophil motility in intact tissues. A genetically encoded photoactivatable Rac was used to demonstrate that localized activation of Rac is sufficient to direct migration with precise temporal and spatial control in vivo. Similar stimulation of PI(3)K-inhibited cells did not direct migration. Localized Rac activation rescued membrane protrusion but not anteroposterior polarization of F-actin dynamics of PI(3)K-inhibited cells. Uncoupling Rac-mediated protrusion and polarization suggests a paradigm of two-tiered PI(3)K-mediated regulation of cell motility. This work provides new insight into how cell signaling at the front and back of the cell is coordinated during polarized cell migration in intact tissues within a multicellular organism.
Collapse
Affiliation(s)
- Sa Kan Yoo
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|
39
|
Niethammer P, Grabher C, Look AT, Mitchison TJ. A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature 2009; 459:996-9. [PMID: 19494811 PMCID: PMC2803098 DOI: 10.1038/nature08119] [Citation(s) in RCA: 1129] [Impact Index Per Article: 70.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Accepted: 04/23/2009] [Indexed: 12/17/2022]
Abstract
Barrier structures (for example, epithelia around tissues and plasma membranes around cells) are required for internal homeostasis and protection from pathogens. Wound detection and healing represent a dormant morphogenetic program that can be rapidly executed to restore barrier integrity and tissue homeostasis. In animals, initial steps include recruitment of leukocytes to the site of injury across distances of hundreds of micrometres within minutes of wounding. The spatial signals that direct this immediate tissue response are unknown. Owing to their fast diffusion and versatile biological activities, reactive oxygen species, including hydrogen peroxide (H(2)O(2)), are interesting candidates for wound-to-leukocyte signalling. Here we probe the role of H(2)O(2) during the early events of wound responses in zebrafish larvae expressing a genetically encoded H(2)O(2) sensor. This reporter revealed a sustained rise in H(2)O(2) concentration at the wound margin, starting approximately 3 min after wounding and peaking at approximately 20 min, which extended approximately 100-200 microm into the tail-fin epithelium as a decreasing concentration gradient. Using pharmacological and genetic inhibition, we show that this gradient is created by dual oxidase (Duox), and that it is required for rapid recruitment of leukocytes to the wound. This is the first observation, to our knowledge, of a tissue-scale H(2)O(2) pattern, and the first evidence that H(2)O(2) signals to leukocytes in tissues, in addition to its known antiseptic role.
Collapse
Affiliation(s)
- Philipp Niethammer
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02114, USA.
| | | | | | | |
Collapse
|
40
|
Abstract
Zebrafish have emerged as a powerful model organism to study neutrophil chemotaxis and inflammation in vivo. Studies of neutrophil chemotaxis in animal models have previously been hampered both by the limited number of specimens available for analysis and by the need for invasive procedures to perform intravital microscopy. Due to the transparency and cell permeability of zebrafish embryos these limitations are circumvented, and the zebrafish system is amenable to both live time-lapse imaging of neutrophil chemotaxis and for screening of the effects of chemical compounds on the inflammatory response in vivo. Here, we describe methods to analyze neutrophil-directed migration toward wounds using both fixed embryos by myeloperoxidase activity assay, and live embryos by time-lapse microscopy. Further, methods are described for the evaluation of the effects of chemical compounds on neutrophil motility and the innate immune responses in zebrafish embryos.
Collapse
Affiliation(s)
- Jonathan R Mathias
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA
| | | | | |
Collapse
|
41
|
Rojas-Muñoz A, Rajadhyksha S, Gilmour D, van Bebber F, Antos C, Rodríguez Esteban C, Nüsslein-Volhard C, Izpisúa Belmonte JC. ErbB2 and ErbB3 regulate amputation-induced proliferation and migration during vertebrate regeneration. Dev Biol 2008; 327:177-90. [PMID: 19133254 DOI: 10.1016/j.ydbio.2008.12.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 12/04/2008] [Accepted: 12/06/2008] [Indexed: 01/20/2023]
Abstract
Epimorphic regeneration is a unique and complex instance of postembryonic growth observed in certain metazoans that is usually triggered by severe injury [Akimenko et al., 2003; Alvarado and Tsonis, 2006; Brockes, 1997; Endo et al., 2004]. Cell division and migration are two fundamental biological processes required for supplying replacement cells during regeneration [Endo et al., 2004; Slack, 2007]. However, the connection between the early stimuli generated after injury and the signals regulating proliferation and migration during regeneration remain largely unknown. Here we show that the oncogenes ErbB2 and ErbB3, two members of the EGFR family, are essential for mounting a successful regeneration response in vertebrates. Importantly, amputation-induced progenitor proliferation and migration are significantly reduced upon genetic and/or chemical modulation of ErbB function. Moreover, we also found that NRG1 and PI3K functionally interact with ErbB2 and ErbB3 during regeneration and interfering with their function also abrogates the capacity of progenitor cells to regenerate lost structures upon amputation. Our findings suggest that ErbB, PI3K and NRG1 are components of a permissive switch for migration and proliferation continuously acting across the amputated fin from early stages of vertebrate regeneration onwards that regulate the expression of the transcription factors lef1 and msxB.
Collapse
Affiliation(s)
- Agustin Rojas-Muñoz
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Wang T, Hanington PC, Belosevic M, Secombes CJ. Two Macrophage Colony-Stimulating Factor Genes Exist in Fish That Differ in Gene Organization and Are Differentially Expressed. THE JOURNAL OF IMMUNOLOGY 2008; 181:3310-22. [DOI: 10.4049/jimmunol.181.5.3310] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
43
|
The zebrafish lysozyme C promoter drives myeloid-specific expression in transgenic fish. BMC DEVELOPMENTAL BIOLOGY 2007; 7:42. [PMID: 17477879 PMCID: PMC1877083 DOI: 10.1186/1471-213x-7-42] [Citation(s) in RCA: 464] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Accepted: 05/04/2007] [Indexed: 01/21/2023]
Abstract
Background How different immune cell compartments contribute to a successful immune response is central to fully understanding the mechanisms behind normal processes such as tissue repair and the pathology of inflammatory diseases. However, the ability to observe and characterize such interactions, in real-time, within a living vertebrate has proved elusive. Recently, the zebrafish has been exploited to model aspects of human disease and to study specific immune cell compartments using fluorescent reporter transgenic lines. A number of blood-specific lines have provided a means to exploit the exquisite optical clarity that this vertebrate system offers and provide a level of insight into dynamic inflammatory processes previously unavailable. Results We used regulatory regions of the zebrafish lysozyme C (lysC) gene to drive enhanced green fluorescent protein (EGFP) and DsRED2 expression in a manner that completely recapitulated the endogenous expression profile of lysC. Labeled cells were shown by co-expression studies and FACS analysis to represent a subset of macrophages and likely also granulocytes. Functional assays within transgenic larvae proved that these marked cells possess hallmark traits of myelomonocytic cells, including the ability to migrate to inflammatory sources and phagocytose bacteria. Conclusion These reporter lines will have utility in dissecting the genetic determinants of commitment to the myeloid lineage and in further defining how lysozyme-expressing cells participate during inflammation.
Collapse
|