1
|
Torres AN, Tavares L, Pereira MJ, Eriksson JW, Jones JG. Positional and compositional analysis of saturated, monounsaturated, and polyunsaturated fatty acids in human adipose tissue triglyceride by 13 C nuclear magnetic resonance. NMR IN BIOMEDICINE 2023; 36:e4632. [PMID: 34676601 DOI: 10.1002/nbm.4632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/31/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
The synthesis and turnover of triglyceride in adipose tissue involves enzymes with preferences for specific fatty acid classes and/or regioselectivity regarding the fatty acid position within the glycerol moiety. The focus of the current study was to characterize both the composition of fatty acids and their positional distribution in triglycerides of biopsied human subcutaneous adipose tissue, from subjects with wide ranges of body mass index (BMI) and insulin sensitivity, using 13 C nuclear magnetic resonance (NMR) spectroscopy. The triglyceride sn2 position was significantly more enriched with monounsaturated fatty acids compared with that of sn1,3, while the abundance of saturated fatty acids was significantly lower in the sn2 position compared with that of sn1,3. Furthermore, the analysis revealed significant positive correlations between the total fraction of palmitoleic acid with both BMI and insulin sensitivity scores (homeostatic model assessment of insulin resistance index). Additionally, we established that 13 C NMR chemical shifts for ω-3 signals, centered at 31.9 ppm, provided superior resolution of the most abundant fatty acid species, including palmitoleate, compared with the ω-2 signals that were used previously. 13 C NMR spectroscopy reveals for the first time a highly nonhomogenous distribution of fatty acids in the glycerol sites of human adipose tissue triglyceride, and that these distributions are correlated with different phenotypes, such as BMI and insulin sensitivity.
Collapse
Affiliation(s)
- Alejandra N Torres
- Metabolism, Aging and Disease, Center for Neurosciences and Cell Biology, University of Coimbra, UC-Biotech, Biocant Park, Cantanhede, Portugal
| | - Ludgero Tavares
- Metabolism, Aging and Disease, Center for Neurosciences and Cell Biology, University of Coimbra, UC-Biotech, Biocant Park, Cantanhede, Portugal
- CIVG - Vasco da Gama Research Center, University School Vasco da Gama - EUVG, Coimbra, Portugal
| | - Maria J Pereira
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Jan W Eriksson
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - John G Jones
- Metabolism, Aging and Disease, Center for Neurosciences and Cell Biology, University of Coimbra, UC-Biotech, Biocant Park, Cantanhede, Portugal
| |
Collapse
|
2
|
Trinh L, Stenkula KG, Olsson LE, Svensson J, Peterson P, Bennet L, Månsson S. Favorable fatty acid composition in adipose tissue in healthy Iraqi- compared to Swedish-born men - a pilot study using MRI assessment. Adipocyte 2022; 11:153-163. [PMID: 35291924 PMCID: PMC8928862 DOI: 10.1080/21623945.2022.2042963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Middle Eastern immigrants are at high-risk for insulin resistance. Fatty acid composition (FAC) plays an important role in the development of insulin resistance but has not been investigated in people of Middle Eastern ancestry. Here, the aim was to assess the FAC in visceral and subcutaneous adipose tissue (VAT and SAT) in healthy Iraqi- and Swedish-born men using a magnetic resonance imaging (MRI) method.This case-control study included 23 Iraqi- and 15 Swedish-born middle-aged men, without cardiometabolic disease. Using multi-echo MRI of the abdomen, the fractions of saturated, monounsaturated, and polyunsaturated fatty acids (fSFA, fMUFA, and fPUFA) were estimated in VAT and SAT. SAT was further analyzed in deep and superficial compartments (dSAT and sSAT). In all depots, fPUFA was significantly higher and fSFA significantly lower in Iraqi men, independently of age and BMI. In both Iraqi- and Swedish-born men, higher fPUFA and lower fMUFA were found in sSAT vs. dSAT. Among Iraqi men only, higher fPUFA and lower fMUFA were found in SAT vs. VAT.Iraqi-born men presented a more favorable abdominal FAC compared to Swedish-born men. This MRI method also revealed different FACs in different abdominal depots. Our results may reflect a beneficial FAC in Middle Eastern immigrants.
Collapse
Affiliation(s)
- Lena Trinh
- Medical Radiation Physics, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Karin G Stenkula
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Lars E Olsson
- Medical Radiation Physics, Department of Translational Medicine, Lund University, Malmö, Sweden
- Hematology, Oncology and Radiation Physics, Skåne University Hospital, Malmö, Sweden
| | - Jonas Svensson
- Medical Radiation Physics, Department of Translational Medicine, Lund University, Malmö, Sweden
- Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden
| | - Pernilla Peterson
- Medical Radiation Physics, Department of Translational Medicine, Lund University, Malmö, Sweden
- Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden
| | - Louise Bennet
- Department of Clinical Sciences, Lund University, Malmö, Sweden
- Clinical Research and Trial Centre, Lund University Hospital, Lund, Sweden
| | - Sven Månsson
- Medical Radiation Physics, Department of Translational Medicine, Lund University, Malmö, Sweden
- Hematology, Oncology and Radiation Physics, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
3
|
Sivelli G, Conley GM, Herrera C, Marable K, Rodriguez KJ, Bollwein H, Sudano MJ, Brugger J, Simpson AJ, Boero G, Grisi M. NMR spectroscopy of a single mammalian early stage embryo. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 335:107142. [PMID: 34999310 DOI: 10.1016/j.jmr.2021.107142] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/22/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
The resolving power, chemical sensitivity and non-invasive nature of NMR have made it an established technique for in vivo studies of large organisms both for research and clinical applications. NMR would clearly be beneficial for analysis of entities at the microscopic scale of about 1 nL (the nanoliter scale), typical of early development of mammalian embryos, microtissues and organoids: the scale where the building blocks of complex organisms could be observed. However, the handling of such small samples (about 100 µm) and sensitivity issues have prevented a widespread adoption of NMR. In this article we show how these limitations can be overcome to obtain NMR spectra of a mammalian embryo in its early stage. To achieve this we employ ultra-compact micro-chip technologies in combination with 3D-printed micro-structures. Such device is packaged for use as plug & play sensor and it shows sufficient sensitivity to resolve NMR signals from individual bovine pre-implantation embryos. The embryos in this study are obtained through In Vitro Fertilization (IVF) techniques, transported cryopreserved to the NMR laboratory, and measured shortly after thawing. In less than 1 h these spherical samples of just 130-190 µm produce distinct spectral peaks, largely originating from lipids contained inside them. We further observe how the spectra vary from one sample to another despite their optical and morphological similarities, suggesting that the method can further develop into a non-invasive embryo assay for selection prior to embryo transfer.
Collapse
Affiliation(s)
| | | | - Carolina Herrera
- Clinic of Reproductive Medicine, Department for Farm Animals, University of Zurich, 8057 Zurich, Switzerland
| | | | - Kyle J Rodriguez
- Microsystems Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Heinrich Bollwein
- Clinic of Reproductive Medicine, Department for Farm Animals, University of Zurich, 8057 Zurich, Switzerland
| | - Mateus J Sudano
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Jürgen Brugger
- Microsystems Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Andre J Simpson
- Environmental NMR Center, University of Toronto, Scarborough Campus, 1265 Military Trail, Toronto M1C1A5, Canada
| | - Giovanni Boero
- Environmental NMR Center, University of Toronto, Scarborough Campus, 1265 Military Trail, Toronto M1C1A5, Canada
| | - Marco Grisi
- Annaida Technologies SA, Lausanne, Switzerland.
| |
Collapse
|
4
|
Fat unsaturation measures in tibial, subcutaneous and breast adipose tissue using short and long TE MRS at 3 T. Magn Reson Imaging 2021; 86:61-69. [PMID: 34808305 DOI: 10.1016/j.mri.2021.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/30/2021] [Accepted: 11/15/2021] [Indexed: 11/22/2022]
Abstract
Fat unsaturation and poly-unsaturation measures can be obtained in vivo with magnetic resonance spectroscopy (MRS) through the olefinic (≈5.4 ppm) and diallylic (≈2.8 ppm) resonances, respectively. Long echo time (TE) MRS sequences have been previously optimized for olefinic/methylene (≈1.3 ppm) or olefinic/methyl (≈0.9 ppm) measures. The objectives of this work, using a Point RESolved Spectroscopy (PRESS) sequence, are to: 1) Investigate olefinic, methyl and methylene resonance decay in subcutaneous, tibial, and breast adipose tissue to determine if a direct comparison of unsaturation measures can be made without correction for T2 losses. 2) Assess intra-individual fat unsaturation and poly-unsaturation measures in the three adipose tissues. 3) Estimate correction factors for olefinic to methylene ratios to compensate for J-coupling and T2 relaxation losses that take place when increasing PRESS TE from 40 ms to 200 ms (previously optimized long-TE). 4) Investigate the utility of an inversion recovery for resolving the olefinic resonance from water in adipose tissue. PRESS spectra were acquired from the three adipose regions (breast in female only) in healthy volunteers at 3 T. It was found that olefinic and methyl signal decays faster in breast tissue compared to in tibial bone marrow. Poly-unsaturation measures (diallylic/methylene) differ for tibial bone marrow compared to subcutaneous and breast adipose tissue, with average values of 1.7 ± 0.4, 2.2 ± 0.4, and 2.3 ± 0.8%, respectively. PRESS (TE = 40 ms) with an inversion recovery resolves the olefinic and water resonances in breast tissue with a signal to noise ratio approximately six times greater than that using PRESS with a TE of 200 ms. Stimulated Echo Acquisition Mode (STEAM) with a TE of 20 ms (mixing time of 20 ms) was also combined with IR to resolve the olefinic resonance from that of water is spinal bone marrow.
Collapse
|
5
|
Burian M, Hajek M, Sedivy P, Mikova I, Trunecka P, Dezortova M. Lipid Profile and Hepatic Fat Content Measured by 1H MR Spectroscopy in Patients before and after Liver Transplantation. Metabolites 2021; 11:metabo11090625. [PMID: 34564441 PMCID: PMC8469029 DOI: 10.3390/metabo11090625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/11/2022] Open
Abstract
Increased hepatic fat content (HFC) is a hallmark of non-alcoholic fatty liver (NAFL) disease, a common condition in liver transplant recipients. Proton MR spectroscopy (1H MRS) and MR imaging-based proton density fat fraction as the only diagnosis modality enable precise non-invasive measurement of HFC and, also, fatty acid profiles in vivo. Using 1H MRS at 3T, we examined 47 liver transplantation candidates and 101 liver graft recipients. A point-resolved spectroscopy sequence was used to calculate the steatosis grade along with the saturated, unsaturated and polyunsaturated fractions of fatty acids in the liver. The steatosis grade measured by MRS was compared with the histological steatosis grade. HFC, represented by fat fraction values, is adept at distinguishing non-alcoholic steatohepatitis (NASH), NAFL and non-steatotic liver transplant patients. Relative hepatic lipid saturation increases while unsaturation decreases in response to increased HFC. Additionally, relative hepatic lipid saturation increases while unsaturation and polyunsaturation both decrease in liver recipients with histologically proven post-transplant NASH or NAFL compared to non-steatotic patients. HFC, measured by in vivo 1H MRS, correlated well with histological results. 1H MRS is a simple and fast method for in vivo analysis of HFC and its composition. It provides non-invasive support for NAFL and NASH diagnoses.
Collapse
Affiliation(s)
- Martin Burian
- MR-Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (M.B.); (M.H.); (P.S.)
| | - Milan Hajek
- MR-Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (M.B.); (M.H.); (P.S.)
| | - Petr Sedivy
- MR-Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (M.B.); (M.H.); (P.S.)
| | - Irena Mikova
- Department of Hepatogastroenterology, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (I.M.); (P.T.)
| | - Pavel Trunecka
- Department of Hepatogastroenterology, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (I.M.); (P.T.)
| | - Monika Dezortova
- MR-Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (M.B.); (M.H.); (P.S.)
- Correspondence: ; Tel.: +420-236055245
| |
Collapse
|
6
|
Crandall JP, Wahl RL. Perspectives on Brown Adipose Tissue Imaging: Insights from Preclinical and Clinical Observations from the Last and Current Century. J Nucl Med 2021; 62:34S-43S. [PMID: 34230071 DOI: 10.2967/jnumed.120.246991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/22/2020] [Indexed: 11/16/2022] Open
Abstract
Brown adipose tissue (BAT) was first described in the 16th century, but until late last century had mainly been considered a tissue with the function of nonshivering thermogenesis, maintaining body temperature in key organs in newborns who have high body surface areas relative to their weight and thus marked radiative heat loss. BAT was believed to have substantially disappeared by adulthood. Molecular imaging with 18F-FDG PET and PET combined with CT, as well as imaging with 131I-metaiodobenzylguanidine (MIBG) beginning late last century have shown BAT to be present and active well into adulthood. This review highlights key aspects of BAT biology, early empiric observations misidentifying BAT, pitfalls in image interpretation, and methods to intentionally reduce BAT uptake, and outlines multiple imaging methods used to identify BAT in vivo. The therapeutic potential of increasing the amount or activity of BAT for weight loss and improvement of glucose and lipid profiles is highlighted as a major opportunity. Molecular imaging can help dissect the physiology of this complex dynamic tissue and offers the potential for addressing challenges separating "active BAT" from "total BAT." Research in BAT has grown extensively, and 18F-FDG PET is the key imaging procedure against which all other BAT imaging methods must be compared. Given the multiple functions of BAT, it is reasonable to consider it a previously unrecognized endocrine tissue and thus an appropriate topic for review in this supplement to The Journal of Nuclear Medicine.
Collapse
Affiliation(s)
- John P Crandall
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Richard L Wahl
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
7
|
Rothe M, Wessel C, Cames S, Szendroedi J, Burkart V, Hwang JH, Roden M. In vivo absolute quantification of hepatic γ-ATP concentration in mice using 31 P MRS at 11.7 T. NMR IN BIOMEDICINE 2021; 34:e4422. [PMID: 33025629 DOI: 10.1002/nbm.4422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
Measurement of ATP concentrations and synthesis in humans indicated abnormal hepatic energy metabolism in obesity, non-alcoholic fatty liver disease (NAFLD) and Type 2 diabetes. Further mechanistic studies on energy metabolism require the detailed phenotyping of specific mouse models. Thus, this study aimed to establish and evaluate a robust and fast single voxel 31 P MRS method to quantify hepatic γ-ATP concentrations at 11.7 T in three mouse models with different insulin sensitivities and liver fat contents (72-week-old C57BL/6 control mice, 72-week-old insulin resistant sterol regulatory-element binding protein-1c overexpressing (SREBP-1c+ ) mice and 10-12-week-old prediabetic non-obese diabetic (NOD) mice). Absolute quantification was performed by employing an external reference and a matching replacement ATP phantom with 3D image selected in vivo spectroscopy 31 P MRS. This single voxel 31 P MRS method non-invasively quantified hepatic γ-ATP within 17 min and the repeatability tests provided a coefficient of variation of 7.8 ± 1.1%. The mean hepatic γ-ATP concentrations were markedly lower in SREBP-1c+ mice (1.14 ± 0.10 mM) than in C57BL/6 mice (2.15 ± 0.13 mM; p < 0.0002) and NOD mice (1.78 ± 0.13 mM; p < 0.006, one-way ANOVA test). In conclusion, this method allows us to rapidly and precisely measure hepatic γ-ATP concentrations, and thereby to non-invasively detect abnormal hepatic energy metabolism in mice with different degrees of insulin resistance and NAFLD. Thus, this 31 P MRS will also be useful for future mechanistic as well as therapeutic translational studies in other murine models.
Collapse
Affiliation(s)
- Maik Rothe
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich Heine University, Leibniz Institute for Diabetes Research, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Corinna Wessel
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich Heine University, Leibniz Institute for Diabetes Research, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Sandra Cames
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich Heine University, Leibniz Institute for Diabetes Research, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Julia Szendroedi
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich Heine University, Leibniz Institute for Diabetes Research, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Volker Burkart
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich Heine University, Leibniz Institute for Diabetes Research, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Jong-Hee Hwang
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich Heine University, Leibniz Institute for Diabetes Research, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich Heine University, Leibniz Institute for Diabetes Research, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
8
|
Fallone CJ, Tessier AG, Field CJ, Yahya A. Resolving the omega-3 methyl resonance with long echo time magnetic resonance spectroscopy in mouse adipose tissue at 9.4 T. NMR IN BIOMEDICINE 2021; 34:e4455. [PMID: 33269481 DOI: 10.1002/nbm.4455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/27/2020] [Accepted: 11/11/2020] [Indexed: 06/12/2023]
Abstract
Tissue omega-3 (ω-3) content is biologically important to disease; however, its quantification with magnetic resonance spectroscopy in vivo is challenging due to its low concentration. In addition, the ω-3 methyl resonance (≈ 0.98 ppm) overlaps that of the non-ω-3 (≈ 0.90 ppm), even at 9.4 T. We demonstrate that a Point-RESolved Spectroscopy (PRESS) sequence with an echo time (TE) of 109 ms resolves the ω-3 and non-ω-3 methyl peaks at 9.4 T. Sequence efficacy was verified on five oils with differing ω-3 fat content; the ω-3 content obtained correlated with that measured using 16.5 T NMR (R2 = 0.97). The PRESS sequence was also applied to measure ω-3 content in visceral adipose tissue of three different groups (all n = 3) of mice, each of which were fed a different 20% w/w fat diet. The fat portion of the diet consisted of low (1.4%), medium (9.0%) or high (16.4%) ω-3 fat. The sequence was also applied to a control mouse fed a standard chow diet (5.6% w/w fat, which was 5.9% ω-3). Gas chromatography (GC) analysis of excised tissue was performed for each mouse. The ω-3 fat content obtained with the PRESS sequence correlated with the GC measures (R2 = 0.96). Apparent T2 times of methyl protons were assessed by obtaining spectra from the oils and another group of four mice (fed the high ω-3 diet) with TE values of 109 and 399 ms. Peak areas were fit to a mono-exponentially decaying function and the apparent T2 values of the ω-3 and non-ω-3 methyl protons were 906 ± 148 and 398 ± 78 ms, respectively, in the oils. In mice, the values were 410 ± 68 and 283 ± 57 ms for ω-3 and non-ω-3 fats, respectively.
Collapse
Affiliation(s)
- Clara J Fallone
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Anthony G Tessier
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Physics, Cross Cancer Institute, Edmonton, Alberta, Canada
| | - Catherine J Field
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Atiyah Yahya
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Physics, Cross Cancer Institute, Edmonton, Alberta, Canada
| |
Collapse
|
9
|
Savva C, Helguero LA, González-Granillo M, Couto D, Melo T, Li X, Angelin B, Domingues MR, Kutter C, Korach-André M. Obese mother offspring have hepatic lipidic modulation that contributes to sex-dependent metabolic adaptation later in life. Commun Biol 2021; 4:14. [PMID: 33398027 PMCID: PMC7782679 DOI: 10.1038/s42003-020-01513-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/24/2020] [Indexed: 02/05/2023] Open
Abstract
With the increasing prevalence of obesity in women of reproductive age, there is an urgent need to understand the metabolic impact on the fetus. Sex-related susceptibility to liver diseases has been demonstrated but the underlying mechanism remains unclear. Here we report that maternal obesity impacts lipid metabolism differently in female and male offspring. Males, but not females, gained more weight and had impaired insulin sensitivity when born from obese mothers compared to control. Although lipid mass was similar in the livers of female and male offspring, sex-specific modifications in the composition of fatty acids, triglycerides and phospholipids was observed. These overall changes could be linked to sex-specific regulation of genes controlling metabolic pathways. Our findings revised the current assumption that sex-dependent susceptibility to metabolic disorders is caused by sex-specific postnatal regulation and instead we provide molecular evidence supporting in utero metabolic adaptations in the offspring of obese mothers.
Collapse
Affiliation(s)
- Christina Savva
- Department of Medicine, Cardio Metabolic Unit (CMU) and KI/AZ Integrated Cardio Metabolic Center (ICMC), Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
- Clinical Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Luisa A Helguero
- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Marcela González-Granillo
- Department of Medicine, Cardio Metabolic Unit (CMU) and KI/AZ Integrated Cardio Metabolic Center (ICMC), Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
- Clinical Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Daniela Couto
- CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| | - Tânia Melo
- CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| | - Xidan Li
- Department of Medicine, Cardio Metabolic Unit (CMU) and KI/AZ Integrated Cardio Metabolic Center (ICMC), Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Bo Angelin
- Department of Medicine, Cardio Metabolic Unit (CMU) and KI/AZ Integrated Cardio Metabolic Center (ICMC), Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
- Clinical Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Maria Rosário Domingues
- CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| | - Claudia Kutter
- Department of Microbiology, Tumor and Cell Biology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Marion Korach-André
- Department of Medicine, Cardio Metabolic Unit (CMU) and KI/AZ Integrated Cardio Metabolic Center (ICMC), Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden.
- Clinical Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital Huddinge, Stockholm, Sweden.
| |
Collapse
|
10
|
MR spectroscopy differences between lipomatosis of nerve and neuromuscular choristoma: a potential adjunctive diagnostic tool. Skeletal Radiol 2020; 49:2051-2057. [PMID: 32535774 DOI: 10.1007/s00256-020-03479-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To describe differences between lipomatosis of nerve (LN) and neuromuscular choristoma (NMC) evaluated with MR spectroscopy (MRS). MATERIALS AND METHODS Eight patients were included in this prospective pilot study: three patients with LNs and five with NMCs. Single voxel PRESS MRS of the tumors were acquired with 3 T MRI. MRS data were processed with LCModel version 6.3-1J using the internal "lipid-8" basis set. From individual lipid peak and water content measurements, total fatty acid molecules (TFAM), unsaturated fatty acid molecules (UFAM), and glycerol molecules (GM) were computed and analyzed, as well as ratios of UFAM/TFAM, TFAM/GM, and a fatty-acid chain-length index (CLI). RESULTS The LN group included two men and one woman (average age 58.3 years); the NMC group included two men and three women (average age 20.4 years). Lipid composition analysis showed that LN had considerably more fat than NMC: TFAM: LN = 15.29 vs NMC = 7.14; UFAM: LN = 4.48 vs NMC = 2.63; GM: LN = 5.20 vs NMC = 1.02. Both tumors had a similar fraction of unsaturated fatty acids: UFAM/TFAM: LN = 0.29 vs NMC = 0.37. LN had the usual number of FA molecules/glycerol molecule, while NMC had considerably more: TFAM/GM: LN = 2.94 vs NMC = 6.98. Finally, average FA chains were longer in NMC: CLI: LN = 17.39 vs NMC = 22.55. CONCLUSION Our analysis suggests measurable differences in the amount and composition of lipid in LN and NMC. While a larger, statistically powered study is needed, these initial findings may be helpful to properly diagnose ambiguous cases and thereby avoid surgical intervention such as biopsy.
Collapse
|
11
|
Yu Q, Huang S, Xu TT, Wang YC, Ju S. Measuring Brown Fat Using MRI and Implications in the Metabolic Syndrome. J Magn Reson Imaging 2020; 54:1377-1392. [PMID: 33047448 DOI: 10.1002/jmri.27340] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 01/04/2023] Open
Abstract
Metabolic syndrome is presently becoming a global health concern. Brown adipose tissue (BAT) has the potential for managing the risk factors of metabolic syndrome by adjusting plasma lipids and glucose. Magnetic resonance imaging (MRI) is a noninvasive and radiation-free imaging modality for BAT research and clinical applications in both animals and humans. In the past decade, MRI technologies for detecting and characterizing BAT have developed rapidly, with progress in MRI sequencing and the emerging understanding of BAT. In this review, we focus on the main MRI methods for BAT including currently used imaging techniques and new methods and their implications for the symptoms and complications of metabolic syndrome. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Qian Yu
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Shan Huang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Ting-Ting Xu
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Yuan-Cheng Wang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Shenghong Ju
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| |
Collapse
|
12
|
Pravdivtsev AN, Sönnichsen FD, Hövener JB. In vitro singlet state and zero-quantum encoded magnetic resonance spectroscopy: Illustration with N-acetyl-aspartate. PLoS One 2020; 15:e0239982. [PMID: 33002045 PMCID: PMC7529218 DOI: 10.1371/journal.pone.0239982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 09/16/2020] [Indexed: 12/20/2022] Open
Abstract
Magnetic resonance spectroscopy (MRS) allows the analysis of biochemical processes non-invasively and in vivo. Still, its application in clinical diagnostics is rare. Routine MRS is limited to spatial, chemical and temporal resolutions of cubic centimetres, mM and minutes. In fact, the signal of many metabolites is strong enough for detection, but the resonances significantly overlap, exacerbating identification and quantification. Besides, the signals of water and lipids are much stronger and dominate the entire spectrum. To suppress the background and isolate selected signals, usually, relaxation times, J-coupling and chemical shifts are used. Here, we propose methods to isolate the signals of selected molecular groups within endogenous metabolites by using long-lived spin states (LLS). We exemplify the method by preparing the LLSs of coupled protons in the endogenous molecules N-acetyl-L-aspartic acid (NAA). First, we store polarization in long-lived, double spin states, followed by saturation pulses before the spin order is converted back to observable magnetization or double quantum filters to suppress background signals. We show that LLS and zero-quantum coherences can be used to selectively prepare and measure the signals of chosen metabolites or drugs in the presence of water, inhomogeneous field and highly concentrated fatty solutions. The strong suppression of unwanted signals achieved allowed us to measure pH as a function of chemical shift difference.
Collapse
Affiliation(s)
- Andrey N Pravdivtsev
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Kiel, Germany
| | - Frank D Sönnichsen
- Otto Diels Institute for Organic Chemistry, Kiel University, Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Kiel, Germany
| |
Collapse
|
13
|
Bao J, Zhuang Y, Chen Z, Cheng J, Zhong J. Detection of fatty acid composition of trabecular bone marrow by localized iDQC MRS at 3 T: A pilot study in healthy volunteers. Magn Reson Imaging 2020; 77:28-35. [PMID: 32926992 DOI: 10.1016/j.mri.2020.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Although a growing body of research shows that the bone marrow adipose tissue (BMAT) may play an essential role in bone inflammation and energy metabolism, available noninvasive methods for distinguishing different fatty acids in BMAT are still limited, in spite of their potential to provide novel biomarkers for bone related diseases. PURPOSE To assess the ability of a localized intermolecular double quantum coherence (iDQC) spectroscopy sequence to resolve more fatty acid peaks than conventional MR spectroscopy (MRS), like polyunsaturated fatty acids (PUFA), from the human BMAT in the presence of trabecular bone; To preliminarily investigate whether the fatty acids composition is different between different regions and groups. RESULTS Compared with conventional MRS results, additional four fatty acids peaks were well resolved using the proposed method in human BMAT in the presence of trabecular bone. In addition, a different fat composition was found between distal femur and proximal tibia: fat was more unsaturated (vinyl, *p < 0.01; diallylic, *p < 0.01) in distal femur bone marrow than in proximal tibia, and this higher unsaturation level was caused by PUFA (r = 0.67, diallylic, *p < 0.01). No significant difference in fatty acid composition were found either between left and right legs, or between female and male in the healthy young subjects studied. CONCLUSION This study demonstrated that the unsaturated fatty acids information of human BMAT in the presence of trabecular bone can be clearly identified with the localized iDQC at 3 T. The resolved peaks, especially PUFA, may serve as additional diagnostic biomarkers for BMAT related diseases in the future.
Collapse
Affiliation(s)
- Jianfeng Bao
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, China
| | - Yuchuan Zhuang
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester 14627, USA
| | - Zhong Chen
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance Research, Xiamen University, Xiamen 361000, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, China.
| | - Jianhui Zhong
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester 14627, USA.
| |
Collapse
|
14
|
Peterson P, Trinh L, Månsson S. Quantitative 1 H MRI and MRS of fatty acid composition. Magn Reson Med 2020; 85:49-67. [PMID: 32844500 DOI: 10.1002/mrm.28471] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/08/2020] [Accepted: 07/20/2020] [Indexed: 12/22/2022]
Abstract
Adipose tissue as well as other depots of fat (triglycerides) are increasingly being recognized as active contributors to the human function and metabolism. In addition to the fat concentration, also the fatty acid chemical composition (FAC) of the triglyceride molecules may play an important part in diseases such as obesity, insulin resistance, hepatic steatosis, osteoporosis, and cancer. MR spectroscopy and chemical-shift-encoded imaging (CSE-MRI) are established methods for non-invasive quantification of fat concentration in tissue. More recently, similar techniques have been developed for assessment also of the FAC in terms of the number of double bonds, the fraction of saturated, monounsaturated, and polyunsaturated fatty acids, or semi-quantitative unsaturation indices. The number of papers focusing on especially CSE-MRI-based techniques has steadily increased during the past few years, introducing a range of acquisition protocols and reconstruction algorithms. However, a number of potential sources of bias have also been identified. Furthermore, the measures used to characterize the FAC using both MRI and MRS differ, making comparisons between different techniques difficult. The aim of this paper is to review MRS- and MRI-based methods for in vivo quantification of the FAC. We describe the chemical composition of triglycerides and discuss various potential FAC measures. Furthermore, we review acquisition and reconstruction methodology and finally, some existing and potential applications are summarized. We conclude that both MRI and MRS provide feasible non-invasive alternatives to the gold standard gas chromatography for in vivo measurements of the FAC. Although both are associated with gas chromatography, future studies are warranted.
Collapse
Affiliation(s)
- Pernilla Peterson
- Medical Radiation Physics, Malmö, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden.,Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden
| | - Lena Trinh
- Medical Radiation Physics, Malmö, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Sven Månsson
- Medical Radiation Physics, Malmö, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
15
|
García-Eguren G, Sala-Vila A, Giró O, Vega-Beyhart A, Hanzu FA. Long-term hypercortisolism induces lipogenesis promoting palmitic acid accumulation and inflammation in visceral adipose tissue compared with HFD-induced obesity. Am J Physiol Endocrinol Metab 2020; 318:E995-E1003. [PMID: 32315213 DOI: 10.1152/ajpendo.00516.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glucocorticoids (GCs) play critical roles in adipose tissue metabolism. Here, we compare in a mouse model the effects of chronic glucocorticoid excess and diet-induced obesity on white adipose tissue mass and distribution, by focusing on visceral adipose tissue (VAT) fatty acid composition changes, the role of de novo lipogenesis (DNL) and the inflammatory state. We used a noninvasive mouse model of hypercortisolism to compare GC-induced effects on adipose tissue with diet-induced obesity [high-fat diet (HFD) 45%] and control mice after 10 wk of treatment. Subcutaneous adipose tissue (SAT) and VAT mass and distribution were measured by nuclear magnetic resonance imaging (NMRI). Fatty acid composition in VAT was analyzed by NMR spectroscopy and gas chromatography. Gene expression of key enzymes involved in DNL was analyzed in liver and VAT. Macrophage infiltration markers and proinflammatory cytokines were measured by gene expression in VAT. HFD or GC treatment induced similar fat mass expansion with comparable distribution between SAT and VAT depots. However, in VAT, GCs induce DNL, higher palmitic acid (PA), macrophage infiltration, and proinflammatory cytokine levels, accompanied by systemic nonesterified fatty acid (NEFA) elevation, hyperinsulinemia, and higher homeostatic model assessment for insulin resistance (HOMA-IR) levels compared with diet-induced obesity. Thus, chronic hypercortisolism induces DNL and fatty acid composition changes toward increased SFA and reduced polyunsaturated fatty acid (PUFA) levels in VAT, promoting macrophage recruitment and proinflammatory cytokines, suggesting a worse cardiometabolic profile even compared with HFD mice.
Collapse
Affiliation(s)
| | - Aleix Sala-Vila
- Lipid Clinic, Endocrinology and Nutrition Service, Hospital Clínic, IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Oriol Giró
- Group of Endocrine Disorders, IDIBAPS, Barcelona, Spain
| | | | - Felicia A Hanzu
- Group of Endocrine Disorders, IDIBAPS, Barcelona, Spain
- Endocrinology and Nutrition Service, Hospital Clínic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Medicine, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
16
|
Kaflak A, Moskalewski S, Kolodziejski W. The solid-state proton NMR study of bone using a dipolar filter: apatite hydroxyl contentversusanimal age. RSC Adv 2019; 9:16909-16918. [PMID: 35516370 PMCID: PMC9064436 DOI: 10.1039/c9ra01902b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/13/2019] [Indexed: 12/24/2022] Open
Abstract
The hydroxyl content of bone apatite mineral has been measured using proton solid-state NMR performed with a multiple-pulse dipolar filter under slow magic angle spinning (MAS). This new method succeeded in resolving and relatively enhancing the main hydroxyl peak at ca. 0 ppm from whole bone, making it amenable to rigorous quantitative analysis. The proposed methodology, involving line fitting, the measurement of the apatite concentration in the studied material and adequate calibration, was proved to be convenient and suitable for monitoring bone mineral hydroxylation in different species and over the lifetime of the animal. It was found that the hydroxyl content in the cranial bone mineral of pig and rats remained in the 5–10% range, with reference to stoichiometric hydroxyapatite. In rats, the hydroxyl content showed a non-monotonic increase with age, which was governed by biological processes rather than by chemical, thermodynamically driven apatite maturation. Mineral hydroxylation in whole bone can be accurately studied using proton MAS NMR with a multiple-pulse dipolar filter.![]()
Collapse
Affiliation(s)
- Agnieszka Kaflak
- Medical University of Warsaw
- Faculty of Pharmacy
- Department of Analytical Chemistry and Biomaterials
- Warsaw 02-097
- Poland
| | - Stanisław Moskalewski
- Medical University of Warsaw
- Department of Histology and Embryology
- Warsaw 02-004
- Poland
| | - Waclaw Kolodziejski
- Medical University of Warsaw
- Faculty of Pharmacy
- Department of Analytical Chemistry and Biomaterials
- Warsaw 02-097
- Poland
| |
Collapse
|
17
|
Karampinos DC, Weidlich D, Wu M, Hu HH, Franz D. Techniques and Applications of Magnetic Resonance Imaging for Studying Brown Adipose Tissue Morphometry and Function. Handb Exp Pharmacol 2019; 251:299-324. [PMID: 30099625 DOI: 10.1007/164_2018_158] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The present review reports on the current knowledge and recent findings in magnetic resonance imaging (MRI) and spectroscopy (MRS) of brown adipose tissue (BAT). The work summarizes the features and mechanisms that allow MRI to differentiate BAT from white adipose tissue (WAT) by making use of their distinct morphological appearance and the functional characteristics of BAT. MR is a versatile imaging modality with multiple contrast mechanisms as potential candidates in the study of BAT, targeting properties of 1H, 13C, or 129Xe nuclei. Techniques for assessing BAT morphometry based on fat fraction and markers of BAT microstructure, including intermolecular quantum coherence and diffusion imaging, are first described. Techniques for assessing BAT function based on the measurement of BAT metabolic activity, perfusion, oxygenation, and temperature are then presented. The application of the above methods in studies of BAT in animals and humans is described, and future directions in MR study of BAT are finally discussed.
Collapse
Affiliation(s)
- Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
| | - Dominik Weidlich
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Mingming Wu
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Houchun H Hu
- Department of Radiology, Nationwide Children's Hospital, Columbus, OH, USA
| | - Daniela Franz
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
18
|
Lee O, Lee SJ, Yu SM. Determination of an Optimized Weighting Factor of Liver Parenchyma for Six-point Interference Dixon Fat Percentage Imaging Accuracy in Nonalcoholic Fatty Liver Disease Rat Model. Acad Radiol 2018; 25:1595-1602. [PMID: 29803754 DOI: 10.1016/j.acra.2018.03.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/22/2018] [Accepted: 03/25/2018] [Indexed: 01/14/2023]
Abstract
RATIONALE AND OBJECTIVES The aim of this study was to determine the optimal weighting factor (WF) for precise quantification using six-point interference Dixon fat percentage imaging by analyzing changes in WFs of fatty acid metabolites (FMs) in high-fat-induced fatty liver disease rat model. MATERIALS AND METHODS Individual FM-related WFs were calculated based on concentration ratios of integrated areas of seven peak FMs with four phantom series. Ten 8-week-old male Sprague-Dawley rats were used for baseline quantification of fat in liver magnetic resonance imaging or magnetic resonance spectroscopy data. These seven lipid metabolites were then quantitatively analyzed. Spearman test was used for correlation analysis of different lipid proton concentrations. The most accurate WF for six-point interference Dixon fat percentage imaging was then determined. RESULTS The seven lipid resonance WF values obtained from magnetic resonance spectroscopy data for three different oils (oleic, linoleic, and soybean) were different from each other. In lipid phantoms, except for the phantom containing oleic acid, changes in FP values were significantly different when WFs were changed in six-point interference Dixon fat percentage image. The seven lipid resonance WF values for the nonalcoholic fatty liver animal model were different from human subcutaneous adipose tissue lipid WF values. CONCLUSIONS WF affected the calculation of six-point interference Dixon-based fat percentage imaging value in phantom experiment. If WF of liver parenchyma FM which is specific to each liver disease is applied, the accuracy of six-point interference Dixon fat percentage imaging can be further increased.
Collapse
Affiliation(s)
- Onseok Lee
- Department of Medical IT Engineering, College of Medical Sciences, Soonchunhyang University, Asan City, Chungnam, Republic of Korea
| | - Suk-Jun Lee
- Department of Biomedical Laboratory Science, College of Health Science, Cheongju University, Cheongju City 28503, Republic of Korea.
| | - Seung-Man Yu
- Department of Radiological Science, College of Health Science, Gimcheon University, Gimcheon City 39528, Republic of Korea.
| |
Collapse
|
19
|
Schneider M, Janas G, Lugauer F, Hoppe E, Nickel D, Dale BM, Kiefer B, Maier A, Bashir MR. Accurate fatty acid composition estimation of adipose tissue in the abdomen based on bipolar multi‐echo MRI. Magn Reson Med 2018; 81:2330-2346. [DOI: 10.1002/mrm.27557] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/18/2018] [Accepted: 09/11/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Manuel Schneider
- Pattern Recognition Lab, Department of Computer Science Friedrich‐Alexander‐Universität Erlangen‐Nürnberg Erlangen Germany
| | - Gemini Janas
- Radiology Duke University Medical Center Durham North Carolina
- Center for Advanced Magnetic Resonance Development Duke University Medical Center Durham North Carolina
| | - Felix Lugauer
- Pattern Recognition Lab, Department of Computer Science Friedrich‐Alexander‐Universität Erlangen‐Nürnberg Erlangen Germany
| | - Elisabeth Hoppe
- Pattern Recognition Lab, Department of Computer Science Friedrich‐Alexander‐Universität Erlangen‐Nürnberg Erlangen Germany
| | - Dominik Nickel
- MR Applications Predevelopment Siemens Healthcare GmbH Erlangen Germany
| | - Brian M. Dale
- MR R&D Collaborations Siemens Healthineers Cary North Carolina
| | - Berthold Kiefer
- MR Applications Predevelopment Siemens Healthcare GmbH Erlangen Germany
| | - Andreas Maier
- Pattern Recognition Lab, Department of Computer Science Friedrich‐Alexander‐Universität Erlangen‐Nürnberg Erlangen Germany
| | - Mustafa R. Bashir
- Radiology Duke University Medical Center Durham North Carolina
- Center for Advanced Magnetic Resonance Development Duke University Medical Center Durham North Carolina
| |
Collapse
|
20
|
Antonacci MA, Zhang L, Degan S, Erdmann D, Branca RT. Calibration of methylene-referenced lipid-dissolved xenon frequency for absolute MR temperature measurements. Magn Reson Med 2018; 81:765-772. [PMID: 30216528 DOI: 10.1002/mrm.27441] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/11/2018] [Accepted: 06/11/2018] [Indexed: 12/25/2022]
Abstract
PURPOSE Absolute MR temperature measurements are currently difficult because they require precalibration procedures specific for tissue types and conditions. Reference of the lipid-dissolved 129 Xe resonance frequency to temperature-insensitive methylene protons (rLDX) has been proposed to remove the effect of macro- and microscopic susceptibility gradients to obtain absolute temperature information. The scope of this work is to evaluate the rLDX chemical shift (CS) dependence on lipid composition to estimate the precision of absolute temperature measurements in lipids. METHODS Neat triglycerides, vegetable oils, and samples of freshly excised human and rodent adipose tissue (AT) are prepared under 129 Xe atmosphere and studied using high-resolution NMR. The rLDX CS is measured as a function of temperature. 1 H spectra are also acquired and the consistency of methylene-referenced water proton and rLDX CS values are compared in human AT. RESULTS Although rLDX CS shows a dependence on lipid composition, in human and rodent AT samples the rLDX shows consistent CS values with a similar temperature dependence (-0.2058 ± 0.0010) ppm/°C × T (°C) + (200.15 ± 0.03) ppm, enabling absolute temperature measurements with an accuracy of 0.3°C. Methylene-referenced water CS values present variations of up to 4°C, even under well-controlled conditions. CONCLUSIONS The rLDX can be used to obtain accurate absolute temperature measurements in AT, opening new opportunities for hyperpolarized 129 Xe MR to measure tissue absolute temperature.
Collapse
Affiliation(s)
- Michael A Antonacci
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Le Zhang
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Simone Degan
- Center for Molecular and Biomolecular Imaging, Department of Radiology and Dermatology, Duke University, Durham, North Carolina
| | - Detlev Erdmann
- Division of Plastic, Reconstructive, Maxillofacial and Oral Surgery, Duke University Medical Center, Durham, North Carolina
| | - Rosa T Branca
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
21
|
Nemeth A, Segrestin B, Leporq B, Coum A, Gambarota G, Seyssel K, Laville M, Beuf O, Ratiney H. Comparison of MRI-derived vs. traditional estimations of fatty acid composition from MR spectroscopy signals. NMR IN BIOMEDICINE 2018; 31:e3991. [PMID: 30040156 DOI: 10.1002/nbm.3991] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 05/29/2018] [Accepted: 06/07/2018] [Indexed: 06/08/2023]
Abstract
INTRODUCTION The composition of fatty acids in the body is gaining increasing interest, and can be followed up noninvasively by quantitative magnetic resonance spectroscopy (MRS). However, current MRS quantification methods have been shown to provide different quantitative results in terms of lipid signals, with possible varying outcomes for a given biological examination. Quantitative magnetic resonance imaging using multigradient echo sequence (MGE-MRI) has recently been added to MRS approaches. In contrast, these methods fit the undersampled magnetic resonance temporal signal with a simplified model function (expressing the triglyceride [TG] spectrum with only three TG parameters), specific implementations and prior knowledge. In this study, an adaptation of an MGE-MRI method to MRS lipid quantification is proposed. METHODS Several versions of the method - with time data fully or undersampled, including or excluding the spectral peak T2 knowledge in the fitting - were compared theoretically and on Monte Carlo studies with a time-domain, peak-fitting approach. Robustness, repeatability and accuracy were also inspected on in vitro oil acquisitions and test-retest in vivo subcutaneous adipose tissue acquisitions, adding results from the reference LCModel method. RESULTS On simulations, the proposed method provided TG parameter estimates with the smallest variability, but with a possible bias, which was mitigated by fitting on undersampled data and considering peak T2 values. For in vitro measurements, estimates for all approaches were correlated with theoretical values and the best concordance was found for the usual MRS method (LCModel and peak fitting). Limited in vivo test-retest variability was found (4.1% for PUFAindx, 0.6% for MUFAindx and 3.6% for SFAindx), as for LCModel (7.6% for PUFAindx, 7.8% for MUFAindx and 3.0% for SFAindx). CONCLUSION This study shows that fitting the three TG parameters directly on MRS data is one valuable solution to circumvent the poor conditioning of the MRS quantification problem.
Collapse
Affiliation(s)
- Angeline Nemeth
- Université Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France
| | - Bérénice Segrestin
- Centre de Recherche en Nutrition Humaine Rhône-Alpes (CRNH-RA), Centre Hospitalier Lyon Sud, Pierre-Bénite, Lyon, France
| | - Benjamin Leporq
- Université Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France
| | - Amandine Coum
- INSERM, UMR 1099, Rennes, France
- Université Rennes 1, LTSI, Rennes, France
| | - Giulio Gambarota
- INSERM, UMR 1099, Rennes, France
- Université Rennes 1, LTSI, Rennes, France
| | - Kevin Seyssel
- Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Martine Laville
- Centre de Recherche en Nutrition Humaine Rhône-Alpes (CRNH-RA), Centre Hospitalier Lyon Sud, Pierre-Bénite, Lyon, France
| | - Olivier Beuf
- Université Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France
| | - Hélène Ratiney
- Université Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France
| |
Collapse
|
22
|
He D, Mustafi D, Fan X, Fernandez S, Markiewicz E, Zamora M, Mueller J, Sachleben JR, Brady MJ, Conzen SD, Karczmar GS. Magnetic resonance spectroscopy detects differential lipid composition in mammary glands on low fat, high animal fat versus high fructose diets. PLoS One 2018; 13:e0190929. [PMID: 29324859 PMCID: PMC5764316 DOI: 10.1371/journal.pone.0190929] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/24/2017] [Indexed: 11/18/2022] Open
Abstract
The effects of consumption of different diets on the fatty acid composition in the mammary glands of SV40 T-antigen (Tag) transgenic mice, a well-established model of human triple-negative breast cancer, were investigated with magnetic resonance spectroscopy and spectroscopic imaging. Female C3(1) SV40 Tag transgenic mice (n = 12) were divided into three groups at 4 weeks of age: low fat diet (LFD), high animal fat diet (HAFD), and high fructose diet (HFruD). MRI scans of mammary glands were acquired with a 9.4 T scanner after 8 weeks on the diet. 1H spectra were acquired using point resolved spectroscopy (PRESS) from two 1 mm3 boxes on each side of inguinal mammary gland with no cancers, lymph nodes, or lymph ducts. High spectral and spatial resolution (HiSS) images were also acquired from nine 1-mm slices. A combination of Gaussian and Lorentzian functions was used to fit the spectra. The percentages of poly-unsaturated fatty acids (PUFA), mono-unsaturated fatty acids (MUFA), and saturated fatty acids (SFA) were calculated from each fitted spectrum. Water and fat peak height images (maps) were generated from HiSS data. The results showed that HAFD mice had significantly lower PUFA than both LFD (p < 0.001) and HFruD (p < 0.01) mice. The mammary lipid quantity calculated from 1H spectra was much larger in HAFD mice than in LFD (p = 0.03) but similar to HFruD mice (p = 0.10). The average fat signal intensity over the mammary glands calculated from HiSS fat maps was ~60% higher in HAFD mice than in LFD (p = 0.04) mice. The mean or median of calculated parameters for the HFruD mice were between those for LFD and HAFD mice. Therefore, PRESS spectroscopy and HiSS MRI demonstrated water and fat composition changes in mammary glands due to a Western diet, which was low in potassium, high in sodium, animal fat, and simple carbohydrates. Measurements of PUFA with MRI could be used to evaluate cancer risk, improve cancer detection and diagnosis, and guide preventative therapy.
Collapse
Affiliation(s)
- Dianning He
- Department of Radiology, The University of Chicago, Chicago, Illinois, United States of America
- Sino-Dutch Biomedical and Information Engineering School, Northeastern University, Shenyang, China
| | - Devkumar Mustafi
- Department of Radiology, The University of Chicago, Chicago, Illinois, United States of America
| | - Xiaobing Fan
- Department of Radiology, The University of Chicago, Chicago, Illinois, United States of America
| | - Sully Fernandez
- Department of Medicine, Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, The University of Chicago, Chicago, Illinois, United States of America
| | - Erica Markiewicz
- Department of Radiology, The University of Chicago, Chicago, Illinois, United States of America
| | - Marta Zamora
- Department of Radiology, The University of Chicago, Chicago, Illinois, United States of America
| | - Jeffrey Mueller
- Department of Pathology, The University of Chicago, Chicago, Illinois, United States of America
| | - Joseph R. Sachleben
- Biomolecular NMR Core Facility, The University of Chicago, Chicago, Illinois, United States of America
| | - Matthew J. Brady
- Department of Medicine, Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, The University of Chicago, Chicago, Illinois, United States of America
| | - Suzanne D. Conzen
- Department of Medicine, Hematology/Oncology, Hematology/Oncology, The University of Chicago, Chicago, Illinois, United States of America
| | - Gregory S. Karczmar
- Department of Radiology, The University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
23
|
Li X, Shet K, Xu K, Rodríguez JP, Pino AM, Kurhanewicz J, Schwartz A, Rosen CJ. Unsaturation level decreased in bone marrow fat of postmenopausal women with low bone density using high resolution magic angle spinning (HRMAS) 1H NMR spectroscopy. Bone 2017; 105:87-92. [PMID: 28823880 PMCID: PMC5650928 DOI: 10.1016/j.bone.2017.08.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 08/03/2017] [Accepted: 08/16/2017] [Indexed: 10/19/2022]
Abstract
There are increasing evidences suggesting bone marrow adiposity tissue (MAT) plays a critical role in affecting both bone quantity and quality. However, very limited studies that have investigated the association between the composition of MAT and bone mineral density (BMD). The goal of this study was to quantify MAT unsaturation profile of marrow samples from post-menopausal women using ex vivo high-resolution magic angle spinning (HRMAS) proton nuclear magnetic resonance (1H NMR) spectroscopy, and to investigate the relationship between MAT composition and BMD. Bone marrow samples were obtained by iliac crest aspiration during surgical procedures from 24 postmenopausal women (65-89years) who had hip surgery due to bone fracture or arthroplasty. Marrow fat composition parameters, in particular, unsaturation level (UL), mono-unsaturation level (MUL) and saturation level (SL), were quantified using HRMAS 1H NMR spectroscopy. The patients were classified into three groups based on the DXA BMD T-scores: controls, osteopenia and osteoporosis. Marrow fat composition was compared between these three groups as well as between subjects with and without factures using ANOCOVA, adjusted for age. Subjects with lower BMD (n=17) had significantly lower MUL (P=0.003) and UL (P=0.039), and significantly higher SL (P=0.039) compared to controls (n=7). When separating lower BMD into osteopenia (n=9) and osteoporosis (n=8) groups, subjects with osteopenia had significantly lower MUL (P=0.002) and UL (P=0.010), and significantly higher SL (P=0.010) compared to healthy controls. No significant difference was observed between subjects with osteopenia and osteoporosis. Using HRMAS 1H NMR, significantly lower unsaturation and significantly higher saturation levels were observed in the marrow fat of subjects with lower BMD. HRMAS 1H NMR was shown to be a powerful tool for identifying novel MR markers of marrow fat composition that are associated with bone quality and potentially fracture, and other bone pathologies and changes after treatment. A better understanding of the relationship between bone marrow composition and bone quality in humans may identify novel treatment targets, and provide guidance on novel interventions and therapeutic strategies for bone preservation.
Collapse
Affiliation(s)
- Xiaojuan Li
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA.
| | - Keerthi Shet
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
| | - Kaipin Xu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA.
| | - Juan Pablo Rodríguez
- Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile.
| | - Ana María Pino
- Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile.
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA.
| | - Ann Schwartz
- Department of Epidemiology and Biostatistics, University of California, San Francisco, USA.
| | | |
Collapse
|
24
|
Jelenik T, Kaul K, Séquaris G, Flögel U, Phielix E, Kotzka J, Knebel B, Fahlbusch P, Hörbelt T, Lehr S, Reinbeck AL, Müller-Wieland D, Esposito I, Shulman GI, Szendroedi J, Roden M. Mechanisms of Insulin Resistance in Primary and Secondary Nonalcoholic Fatty Liver. Diabetes 2017; 66:2241-2253. [PMID: 28490610 PMCID: PMC5521856 DOI: 10.2337/db16-1147] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 04/30/2017] [Indexed: 12/11/2022]
Abstract
Nonalcoholic fatty liver disease is associated with hepatic insulin resistance and may result primarily from increased hepatic de novo lipogenesis (PRIM) or secondarily from adipose tissue lipolysis (SEC). We studied mice with hepatocyte- or adipocyte-specific SREBP-1c overexpression as models of PRIM and SEC. PRIM mice featured increased lipogenic gene expression in the liver and adipose tissue. Their selective, liver-specific insulin resistance was associated with increased C18:1-diacylglycerol content and protein kinase Cε translocation. SEC mice had decreased lipogenesis mediated by hepatic cholesterol responsive element-binding protein and featured portal/lobular inflammation along with total, whole-body insulin resistance. Hepatic mitochondrial respiration transiently increased and declined with aging along with higher muscle reactive oxygen species production. In conclusion, hepatic insulin resistance originates from lipotoxicity but not from lower mitochondrial capacity, which can even transiently adapt to increased peripheral lipolysis. Peripheral insulin resistance is prevented during increased hepatic lipogenesis only if adipose tissue lipid storage capacity is preserved.
Collapse
Affiliation(s)
- Tomas Jelenik
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Kirti Kaul
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Gilles Séquaris
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Ulrich Flögel
- Department of Molecular Cardiology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Esther Phielix
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Jörg Kotzka
- German Center for Diabetes Research, München-Neuherberg, Germany
- Institute for Biochemistry and Pathobiochemistry, German Diabetes Center, Düsseldorf, Germany
| | - Birgit Knebel
- German Center for Diabetes Research, München-Neuherberg, Germany
- Institute for Biochemistry and Pathobiochemistry, German Diabetes Center, Düsseldorf, Germany
| | - Pia Fahlbusch
- German Center for Diabetes Research, München-Neuherberg, Germany
- Institute for Biochemistry and Pathobiochemistry, German Diabetes Center, Düsseldorf, Germany
| | - Tina Hörbelt
- German Center for Diabetes Research, München-Neuherberg, Germany
- Institute for Biochemistry and Pathobiochemistry, German Diabetes Center, Düsseldorf, Germany
| | - Stefan Lehr
- German Center for Diabetes Research, München-Neuherberg, Germany
- Institute for Biochemistry and Pathobiochemistry, German Diabetes Center, Düsseldorf, Germany
| | - Anna Lena Reinbeck
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany
| | - Dirk Müller-Wieland
- Department of Internal Medicine I, University Hospital Aachen, Aachen, Germany
| | - Irene Esposito
- Institute of Pathology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Gerald I Shulman
- Departments of Internal Medicine and Cellular & Molecular Physiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT
| | - Julia Szendroedi
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
- Department of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
- Department of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
25
|
Pershina AG, Ivanov VV, Efimova LV, Shevelev OB, Vtorushin SV, Perevozchikova TV, Sazonov AE, Ogorodova LM. Magnetic resonance imaging and spectroscopy for differential assessment of liver abnormalities induced by Opisthorchis felineus in an animal model. PLoS Negl Trop Dis 2017; 11:e0005778. [PMID: 28708894 PMCID: PMC5529022 DOI: 10.1371/journal.pntd.0005778] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/26/2017] [Accepted: 07/05/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND European liver fluke Opisthorchis felineus, causing opisthorchiasis disease, is widespread in Russia, Ukraine, Kazakhstan and sporadically detected in the EU countries. O. felineus infection leads to hepatobiliary pathological changes, cholangitis, fibrosis and, in severe cases, malignant transformation of bile ducts. Due to absence of specific symptoms, the infection is frequently neglected for a long period. The association of opisthorchiasis with almost incurable bile duct cancer and rising international migration of people that increases the risk of the parasitic etiology of liver fibrosis in non-endemic regions determine high demand for development of approaches to opisthorchiasis detection. METHODOLOGY/PRINCIPAL FINDINGS In vivo magnetic resonance imaging and spectroscopy (MRI and MRS) were applied for differential assessment of hepatic abnormalities induced by O. felineus in an experimental animal model. Correlations of the MR-findings with the histological data as well as the data of the biochemical analysis of liver tissue were found. MRI provides valuable information about the severity of liver impairments induced by opisthorchiasis. An MR image of O. felineus infected liver has a characteristic pattern that differs from that of closely related liver fluke infections. 1H and 31P MRS in combination with biochemical analysis data showed that O. felineus infection disturbed hepatic metabolism of the host, which was accompanied by cholesterol accumulation in the liver. CONCLUSIONS A non-invasive approach based on the magnetic resonance technique is very advantageous and may be successfully used not only for diagnosing and evaluating liver damage induced by O. felineus, but also for investigating metabolic changes arising in the infected organ. Since damages induced by the liver fluke take place in different liver lobes, MRI has the potential to overcome liver biopsy sampling variability that limits predictive validity of biopsy analysis for staging liver fluke-induced fibrosis.
Collapse
Affiliation(s)
- Alexandra G. Pershina
- Central Research Laboratory, Siberian State Medical University, Tomsk, Russia
- Department of Biotechnology and Organic Chemistry, National Research Tomsk Polytechnic University, Tomsk, Russia
- * E-mail:
| | - Vladimir V. Ivanov
- Central Research Laboratory, Siberian State Medical University, Tomsk, Russia
| | - Lina V. Efimova
- Central Research Laboratory, Siberian State Medical University, Tomsk, Russia
| | - Oleg B. Shevelev
- Center for Genetic Resources of Laboratory Animals, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Sergey V. Vtorushin
- Central Research Laboratory, Siberian State Medical University, Tomsk, Russia
| | | | - Alexey E. Sazonov
- Central Research Laboratory, Siberian State Medical University, Tomsk, Russia
| | | |
Collapse
|
26
|
Verma SK, Nagashima K, Yaligar J, Michael N, Lee SS, Xianfeng T, Gopalan V, Sadananthan SA, Anantharaj R, Velan SS. Differentiating brown and white adipose tissues by high-resolution diffusion NMR spectroscopy. J Lipid Res 2016; 58:289-298. [PMID: 27845688 DOI: 10.1194/jlr.d072298] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/13/2016] [Indexed: 01/14/2023] Open
Abstract
There are two types of fat tissues, white adipose tissue (WAT) and brown adipose tissue (BAT), which essentially perform opposite functions in whole body energy metabolism. There is a large interest in identifying novel biophysical properties of WAT and BAT by a quantitative and easy-to-run technique. In this work, we used high-resolution pulsed field gradient diffusion NMR spectroscopy to study the apparent diffusion coefficient (ADC) of fat molecules in rat BAT and WAT samples. The ADC of fat in BAT and WAT from rats fed with a chow diet was compared with that of rats fed with a high-fat diet to monitor how the diffusion properties change due to obesity-associated parameters such as lipid droplet size, fatty acid chain length, and saturation. Feeding a high-fat diet resulted in increased saturation, increased chain lengths, and reduced ADC of fat in WAT. The ADC of fat was lower in BAT relative to WAT in rats fed both chow and high-fat diets. Diffusion of fat was restricted in BAT due to the presence of small multilocular lipid droplets. Our findings indicate that in vivo diffusion might be a potential way for better delineation of BAT and WAT in both lean and obese states.
Collapse
Affiliation(s)
- Sanjay Kumar Verma
- Laboratory of Molecular Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore
| | - Kaz Nagashima
- Laboratory of Molecular Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore
| | - Jadegoud Yaligar
- Laboratory of Molecular Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore
| | - Navin Michael
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research (A*STAR), Singapore
| | - Swee Shean Lee
- Laboratory of Molecular Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore
| | - Tian Xianfeng
- Laboratory of Molecular Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore
| | - Venkatesh Gopalan
- Laboratory of Molecular Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore
| | - Suresh Anand Sadananthan
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research (A*STAR), Singapore
| | - Rengaraj Anantharaj
- Laboratory of Molecular Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore
| | - S Sendhil Velan
- Laboratory of Molecular Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore .,Singapore Institute for Clinical Sciences, Agency for Science Technology and Research (A*STAR), Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
27
|
Petritsch B, Köstler H, Weng AM, Horn M, Gassenmaier T, Kunz AS, Weidemann F, Wanner C, Bley TA, Beer M. Myocardial lipid content in Fabry disease: a combined 1H-MR spectroscopy and MR imaging study at 3 Tesla. BMC Cardiovasc Disord 2016; 16:205. [PMID: 27793097 PMCID: PMC5084400 DOI: 10.1186/s12872-016-0382-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 10/22/2016] [Indexed: 04/11/2023] Open
Abstract
BACKGROUND Fabry disease is characterized by a progressive deposition of sphingolipids in different organ systems, whereby cardiac involvement leads to death. We hypothesize that lysosomal storage of sphingolipids in the heart as occurring in Fabry disease does not reflect in higher cardiac lipid concentrations detectable by 1H magnetic resonance spectroscopy (MRS) at 3 Tesla. METHODS Myocardial lipid content was quantified in vivo by 1H-MRS in 30 patients (12 male, 18 female; 18 patients treated with enzyme replacement therapy) with genetically proven Fabry disease and in 30 healthy controls. The study protocol combined 1H-MRS with cardiac cine imaging and LGE MRI in a single examination. RESULTS Myocardial lipid content was not significantly elevated in Fabry disease (p = 0.225). Left ventricular (LV) mass was significantly higher in patients suffering from Fabry disease compared to controls (p = 0.019). Comparison of patients without signs of myocardial fibrosis in MRI (LGE negative; n = 12) to patients with signs of fibrosis (LGE positive; n = 18) revealed similar myocardial lipid content in both groups (p > 0.05), while the latter showed a trend towards elevated LV mass (p = 0.076). CONCLUSIONS This study demonstrates the potential of lipid metabolic investigation embedded in a comprehensive examination of cardiac morphology and function in Fabry disease. There was no evidence that lysosomal storage of sphingolipids influences cardiac lipid content as measured by 1H-MRS. Finally, the authors share the opinion that a comprehensive cardiac examination including three subsections (LGE; 1H-MRS; T1 mapping), could hold the highest potential for the final assessment of early and late myocardial changes in Fabry disease.
Collapse
Affiliation(s)
- B Petritsch
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany.
| | - H Köstler
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany.,University of Würzburg, Comprehensive Heart Failure Center, 97080, Würzburg, Germany
| | - A M Weng
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - M Horn
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - T Gassenmaier
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - A S Kunz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - F Weidemann
- University of Würzburg, Comprehensive Heart Failure Center, 97080, Würzburg, Germany.,Department of Internal Medicine II/Cardiology, Katharinen-Hospital Unna, Obere Husemannstr.2, 59423, Unna, Germany
| | - C Wanner
- Department of Internal Medicine I, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - T A Bley
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - M Beer
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| |
Collapse
|
28
|
Tondera C, Hauser S, Krüger-Genge A, Jung F, Neffe AT, Lendlein A, Klopfleisch R, Steinbach J, Neuber C, Pietzsch J. Gelatin-based Hydrogel Degradation and Tissue Interaction in vivo: Insights from Multimodal Preclinical Imaging in Immunocompetent Nude Mice. Theranostics 2016; 6:2114-2128. [PMID: 27698944 PMCID: PMC5039684 DOI: 10.7150/thno.16614] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/05/2016] [Indexed: 12/11/2022] Open
Abstract
Hydrogels based on gelatin have evolved as promising multifunctional biomaterials. Gelatin is crosslinked with lysine diisocyanate ethyl ester (LDI) and the molar ratio of gelatin and LDI in the starting material mixture determines elastic properties of the resulting hydrogel. In order to investigate the clinical potential of these biopolymers, hydrogels with different ratios of gelatin and diisocyanate (3-fold (G10_LNCO3) and 8-fold (G10_LNCO8) molar excess of isocyanate groups) were subcutaneously implanted in mice (uni- or bilateral implantation). Degradation and biomaterial-tissue-interaction were investigated in vivo (MRI, optical imaging, PET) and ex vivo (autoradiography, histology, serum analysis). Multimodal imaging revealed that the number of covalent net points correlates well with degradation time, which allows for targeted modification of hydrogels based on properties of the tissue to be replaced. Importantly, the degradation time was also dependent on the number of implants per animal. Despite local mechanisms of tissue remodeling no adverse tissue responses could be observed neither locally nor systemically. Finally, this preclinical investigation in immunocompetent mice clearly demonstrated a complete restoration of the original healthy tissue.
Collapse
Affiliation(s)
- Christoph Tondera
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Dresden, Germany
- Technische Universität Dresden, Department of Chemistry and Food Chemistry, Dresden, Germany
| | - Sandra Hauser
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Dresden, Germany
| | - Anne Krüger-Genge
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Friedrich Jung
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
- Helmholtz Virtual Institute “Multifunctional Biomaterials for Medicine”, Teltow and Berlin
| | - Axel T. Neffe
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
- Helmholtz Virtual Institute “Multifunctional Biomaterials for Medicine”, Teltow and Berlin
| | - Andreas Lendlein
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
- Helmholtz Virtual Institute “Multifunctional Biomaterials for Medicine”, Teltow and Berlin
| | - Robert Klopfleisch
- Freie Universität Berlin, Institute of Veterinary Pathology, Berlin, Germany
| | - Jörg Steinbach
- Technische Universität Dresden, Department of Chemistry and Food Chemistry, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Christin Neuber
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Dresden, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Dresden, Germany
- Technische Universität Dresden, Department of Chemistry and Food Chemistry, Dresden, Germany
| |
Collapse
|
29
|
Burgeiro A, Fuhrmann A, Cherian S, Espinoza D, Jarak I, Carvalho RA, Loureiro M, Patrício M, Antunes M, Carvalho E. Glucose uptake and lipid metabolism are impaired in epicardial adipose tissue from heart failure patients with or without diabetes. Am J Physiol Endocrinol Metab 2016; 310:E550-64. [PMID: 26814014 PMCID: PMC4824138 DOI: 10.1152/ajpendo.00384.2015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 01/20/2016] [Indexed: 01/25/2023]
Abstract
Type 2 diabetes mellitus is a complex metabolic disease, and cardiovascular disease is a leading complication of diabetes. Epicardial adipose tissue surrounding the heart displays biochemical, thermogenic, and cardioprotective properties. However, the metabolic cross-talk between epicardial fat and the myocardium is largely unknown. This study sought to understand epicardial adipose tissue metabolism from heart failure patients with or without diabetes. We aimed to unravel possible differences in glucose and lipid metabolism between human epicardial and subcutaneous adipocytes and elucidate the potential underlying mechanisms involved in heart failure. Insulin-stimulated [(14)C]glucose uptake and isoproterenol-stimulated lipolysis were measured in isolated epicardial and subcutaneous adipocytes. The expression of genes involved in glucose and lipid metabolism was analyzed by reverse transcription-polymerase chain reaction in adipocytes. In addition, epicardial and subcutaneous fatty acid composition was analyzed by high-resolution proton nuclear magnetic resonance spectroscopy. The difference between basal and insulin conditions in glucose uptake was significantly decreased (P= 0.006) in epicardial compared with subcutaneous adipocytes. Moreover, a significant (P< 0.001) decrease in the isoproterenol-stimulated lipolysis was also observed when the two fat depots were compared, and it was strongly correlated with lipolysis, lipid storage, and inflammation-related gene expression. Moreover, the fatty acid composition of these tissues was significantly altered by diabetes. These results emphasize potential metabolic differences between both fat depots in the presence of heart failure and highlight epicardial fat as a possible therapeutic target in situ in the cardiac microenvironment.
Collapse
Affiliation(s)
- Ana Burgeiro
- Center of Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Amelia Fuhrmann
- Center of Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Sam Cherian
- Faculty of Integrative Sciences and Technology, Quest International University Perak, Perak, Malaysia
| | - Daniel Espinoza
- Center of Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ivana Jarak
- Center of Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Rui A Carvalho
- Center of Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal;
| | - Marisa Loureiro
- Laboratory of Biostatistics and Medical Informatics, IBILI - Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Miguel Patrício
- Laboratory of Biostatistics and Medical Informatics, IBILI - Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Manuel Antunes
- Cardiothroracic Surgery Unit at the University Hospital of Coimbra, Coimbra, Portugal
| | - Eugénia Carvalho
- Center of Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Portuguese Diabetes Association, Lisbon, Portugal; Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas; and Arkansas Children's Hospital Research Institute, Little Rock, Arkansas
| |
Collapse
|
30
|
Bhanu Prakash KN, Srour H, Velan SS, Chuang KH. A method for the automatic segmentation of brown adipose tissue. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2016; 29:287-99. [DOI: 10.1007/s10334-015-0517-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 12/02/2015] [Accepted: 12/03/2015] [Indexed: 01/24/2023]
|
31
|
Bhanu Prakash KN, Verma SK, Yaligar J, Goggi J, Gopalan V, Lee SS, Tian X, Sugii S, Leow MKS, Bhakoo K, Velan SS. Segmentation and characterization of interscapular brown adipose tissue in rats by multi-parametric magnetic resonance imaging. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2016; 29:277-86. [DOI: 10.1007/s10334-015-0514-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 11/18/2015] [Accepted: 11/20/2015] [Indexed: 12/28/2022]
|
32
|
Coum A, Noury F, Bannier E, Begriche K, Fromenty B, Gandon Y, Saint-Jalmes H, Gambarota G. The effect of water suppression on the hepatic lipid quantification, as assessed by the LCModel, in a preclinical and clinical scenario. MAGMA (NEW YORK, N.Y.) 2015; 29:29-37. [PMID: 26590825 DOI: 10.1007/s10334-015-0508-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To investigate the effect of water suppression on the hepatic lipid quantification, using the LCModel. MATERIALS AND METHODS MR spectra with and without water suppression were acquired in the liver of mice at 4.7 T and patients at 3 T, and processed with the LCModel. The Cramér-Rao Lower Bound (CRLB) values of the seven lipid resonances were determined to assess the impact of water suppression on hepatic lipid quantification. A paired t test was used for comparison between the CRLBs obtained with and without water suppression. RESULTS For the preclinical data, in the high (low) fat fraction subset an overall impairment in hepatic lipid quantification, i.e. an increase of CRLBs (no significant change of CRLBs) was observed in spectra acquired with water suppression. For the clinical data, there were no substantial changes in the CRLB with water suppression. Because (1) the water suppression does not overall improve the quantification of the lipid resonances and (2) the MR spectrum without water suppression is always acquired for fat fraction calculation, the optimal data-acquisition strategy for liver MRS is to acquire only the MR spectrum without water suppression. CONCLUSION For quantification of hepatic lipid resonances, it is advantageous to perform MR spectroscopy without water suppression in a clinical and preclinical scenario (at moderate fields).
Collapse
Affiliation(s)
- Amandine Coum
- LTSI, Laboratoire du Traitement du Signal et de l'Image, Université de Rennes 1, 35043, Rennes Cedex, France. .,INSERM, UMR 1099, Université de Rennes 1, 35000, Rennes, France.
| | - Fanny Noury
- LTSI, Laboratoire du Traitement du Signal et de l'Image, Université de Rennes 1, 35043, Rennes Cedex, France.,INSERM, UMR 1099, Université de Rennes 1, 35000, Rennes, France
| | - Elise Bannier
- Département de Radiologie, CHU de Rennes, 35000, Rennes, France
| | | | | | - Yves Gandon
- Département de Radiologie, CHU de Rennes, 35000, Rennes, France
| | - Hervé Saint-Jalmes
- LTSI, Laboratoire du Traitement du Signal et de l'Image, Université de Rennes 1, 35043, Rennes Cedex, France.,INSERM, UMR 1099, Université de Rennes 1, 35000, Rennes, France.,CRLCC, Centre Eugène Marquis, 35000, Rennes, France
| | - Giulio Gambarota
- LTSI, Laboratoire du Traitement du Signal et de l'Image, Université de Rennes 1, 35043, Rennes Cedex, France.,INSERM, UMR 1099, Université de Rennes 1, 35000, Rennes, France
| |
Collapse
|
33
|
Yu SM, Ki SH, Baek HM. Nonalcoholic Fatty Liver Disease: Correlation of the Liver Parenchyma Fatty Acid with Intravoxel Incoherent Motion MR Imaging-An Experimental Study in a Rat Model. PLoS One 2015; 10:e0139874. [PMID: 26460614 PMCID: PMC4603664 DOI: 10.1371/journal.pone.0139874] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 08/31/2015] [Indexed: 02/07/2023] Open
Abstract
Purpose To prospectively evaluate the changes in fatty acid concentration after administrating a 60% high-fat diet to a non-alcoholic fatty liver disease rat model and to perform a correlation analysis between fatty acid with molecular diffusion (Dtrue), perfusion-related diffusion (Dfast), and perfusion fraction (Pfraction). Material and Methods This prospective study was approved by the appropriate ethics committee. Ten male Sprague-Dawley rats were fed a 60% high-fat diet until the study was finished. Point-resolved spectroscopy sequence 1H-MRS with TR = 1,500 msec, TE = 35 msec, NEX = 64, and 8×8×8 mm3 voxel was used to acquire magnetic resonance spectroscopy (MRS) data. Diffusion-weighted imaging was performed on a two-dimensional multi-b value spin echo planar image with the following parameters: repetition time msec/echo time msec, 4500 /63; field of view, 120×120 msec2; matrix, 128×128; section thickness, 3 mm; number of repetition, 8; and multiple b value, 0, 25, 50, 75, 100, 200, 500, 1000 sec/mm2. Baseline magnetic resonance imaging and magnetic resonance spectroscopy data (control) were acquired. 1H proton MRS and diffusion-weighted imaging were obtained every 2 weeks for 8 weeks. The individual contributions of the true molecular diffusion and the incoherent motions of water molecules in the capillary network to the apparent diffusion changes were estimated using a least-square nonlinear fitting in MatLab. A Wilcoxon signed-rank test with the Kruskal-Wallis test was used to compare each week’s fatty acid mean quantification. Spearman’s correlation coefficient was used to evaluate the correlation between each fatty acid (e.g., total lipid (TL), total saturated fatty acid (TSFA), total unsaturated fatty acid (TUSFA), total unsaturated bond (TUSB), and polyunsaturated bond (PUSB)) and intravoxel incoherent motion (IVIM) mapping images (e.g., Dtrue, Dfast, and Pfraction). Results The highest mean TL value was at week 8 (0.278 ± 0.10) after the administration of the 60% high-fat diet, followed by weeks 6, 4, 2, and 0. The concentration level (16.99±2.29) of TSFA at week 4 was the highest. No significant differences in the concentrations of TUSFA, TUSB, or PUSB were observed in different weeks. Conclusion After the administration of the 60% high-fat diet in nonalcoholic fatty liver disease model, TL and TSFA depositions had significant changes. The mean concentrations of TUSFA, TUSB, PUSB did not significantly change. Total unsaturated fatty acid and polyunsaturated bond showed positive correlations with Dtrue and Pfraction.
Collapse
Affiliation(s)
- Seung-Man Yu
- Department of Biomedical Engineering, Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul, Korea; Department of Radiological Science, Gimcheon University, Gimcheon, Gyeongsangbuk-do, Korea
| | - Sung Hwan Ki
- Department of Toxicology, College of pharmacy, Chosun University, Gwangju, Korea
| | - Hyeon-Man Baek
- Korea Basic Science Institute, Yeongudanji-Ro, Ochang-eup, Cheongwon-gun, Chungbuk, Korea
| |
Collapse
|
34
|
Bao J, Cui X, Huang Y, Zhong J, Chen Z. Resolution enhancement in MR spectroscopy of red bone marrow fat via intermolecular double-quantum coherences. Phys Med Biol 2015; 60:6391-406. [DOI: 10.1088/0031-9155/60/16/6391] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
35
|
Soares AF, Lei H, Gruetter R. Characterization of hepatic fatty acids in mice with reduced liver fat by ultra-short echo time (1)H-MRS at 14.1 T in vivo. NMR IN BIOMEDICINE 2015; 28:1009-1020. [PMID: 26119835 DOI: 10.1002/nbm.3345] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 05/19/2015] [Accepted: 05/20/2015] [Indexed: 06/04/2023]
Abstract
Alterations in the hepatic lipid content (HLC) and fatty acid composition are associated with disruptions in whole body metabolism, both in humans and in rodent models, and can be non-invasively assessed by (1)H-MRS in vivo. We used (1)H-MRS to characterize the hepatic fatty-acyl chains of healthy mice and to follow changes caused by streptozotocin (STZ) injection. Using STEAM at 14.1 T with an ultra-short TE of 2.8 ms, confounding effects from T2 relaxation and J-coupling were avoided, allowing for accurate estimations of the contribution of unsaturated (UFA), saturated (SFA), mono-unsaturated (MUFA) and poly-unsaturated (PUFA) fatty-acyl chains, number of double bonds, PU bonds and mean chain length. Compared with in vivo (1) H-MRS, high resolution NMR performed in vitro in hepatic lipid extracts reported longer fatty-acyl chains (18 versus 15 carbons) with a lower contribution from UFA (61 ± 1% versus 80 ± 5%) but a higher number of PU bonds per UFA (1.39 ± 0.03 versus 0.58 ± 0.08), driven by the presence of membrane species in the extracts. STZ injection caused a decrease of HLC (from 1.7 ± 0.3% to 0.7 ± 0.1%), an increase in the contribution of SFA (from 21 ± 2% to 45 ± 6%) and a reduction of the mean length (from 15 to 13 carbons) of cytosolic fatty-acyl chains. In addition, SFAs were also likely to have increased in membrane lipids of STZ-induced diabetic mice, along with a decrease of the mean chain length. These studies show the applicability of (1)H-MRS in vivo to monitor changes in the composition of the hepatic fatty-acyl chains in mice even when they exhibit reduced HLC, pointing to the value of this methodology to evaluate lipid-lowering interventions in the scope of metabolic disorders.
Collapse
Affiliation(s)
- Ana Francisca Soares
- Laboratory for Functional and Metabolic Imaging (LIFMET), École Polytechinque Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Hongxia Lei
- Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
- Department of Radiology, University of Geneva (UNIGE), Geneva, Switzerland
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging (LIFMET), École Polytechinque Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Department of Radiology, University of Geneva (UNIGE), Geneva, Switzerland
- Department of Radiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
36
|
Hwang JH, Choi CS. Use of in vivo magnetic resonance spectroscopy for studying metabolic diseases. Exp Mol Med 2015; 47:e139. [PMID: 25656949 PMCID: PMC4346484 DOI: 10.1038/emm.2014.101] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 10/29/2014] [Indexed: 12/31/2022] Open
Abstract
Owing to the worldwide obesity epidemic and the sedentary lifestyle in industrialized countries, the number of people with metabolic diseases is explosively increasing. Magnetic resonance spectroscopy (MRS), which is fundamentally similar to magnetic resonance imaging, can detect metabolic changes in vivo noninvasively. With its noninvasive nature, (1)H, (13)C and (31)P MRS are being actively utilized in clinical and biomedical metabolic studies to detect lipids and important metabolites without ionizing radiation. (1)H MRS can quantify lipid content in liver and muscle and can detect other metabolites, such as 2-hydroxyglutarate, in vivo. Of interest, many studies have indicated that hepatic and intramyocellular lipid content is inversely correlated with insulin sensitivity in humans. Thus, lipid content can be utilized as an in vivo biomarker for detecting early insulin resistance. Employing (13)C MRS, hepatic glycogen synthesis and breakdown can be directly detected, whereas (31)P MRS provides in vivo adenosine triphosphate (ATP) synthesis rates by saturation transfer methods in addition to ATP content. These in vivo data can be very difficult to assess by other methods and offer a critical piece of metabolic information. To aid the reader in understanding these new methods, fundamentals of MRS are described in this review in addition to promising future applications of MRS and its limitations.
Collapse
Affiliation(s)
- Jong-Hee Hwang
- Korea Mouse Metabolic Phenotyping Center (KMMPC), Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
| | - Cheol Soo Choi
- Korea Mouse Metabolic Phenotyping Center (KMMPC), Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
- Division of Endocrinology, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Korea
| |
Collapse
|
37
|
Brennick MJ, Delikatny J, Pack AI, Pickup S, Shinde S, Zhu JX, Roscoe I, Kim DY, Buxbaum LU, Cater JR, Schwab RJ. Tongue fat infiltration in obese versus lean Zucker rats. Sleep 2014; 37:1095-102, 1102A-1102C. [PMID: 24882904 PMCID: PMC4015383 DOI: 10.5665/sleep.3768] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
STUDY OBJECTIVES Obesity is the most important risk factor for obstructive sleep apnea (OSA), and the effects of obesity may be mediated by tongue fat. Our objective was to examine the effects of obesity on upper airway structures in obese (OBZ) and non-obese (NBZ) Zucker rats. DESIGN Animal study. SETTING Academic Medical Center. PARTICIPANTS OBZ (638.2 ± 39 g; 14.9 ± 1.1 w) and age-matched NBZ Zucker (442.6 ± 37 g, 15.1 ± 1.5 w) rats. INTERVENTIONS TONGUE FAT AND VOLUME AND WERE ASSESSED USING: in vivo magnetic resonance spectroscopy (MRS), magnetic resonance imaging including Dixon imaging for tongue fat volume, ex vivo biochemistry (fat quantification; triglyceride (mg)/tissue (g), and histology (Oil Red O stain). MEASUREMENTS AND RESULTS MRS: overall OBZ tongue fat/water ratio was 2.9 times greater than NBZ (P < 0.002) with the anterior OBZ tongue up to 3.3 times greater than NBZ (P < 0.002). Biochemistry: Triglyceride (TG) in the tongue was 4.4 times greater in OBZ versus NBZ (P < 0.0006). TG was greater in OBZ tongue (3.57 ± 1.7 mg/g) than OBZ masseter muscle (0.28 ± 0.1; P < 0.0001) but tongue and masseter TG were not different in NBZ rats (0.82 ± 0.3 versus 0.28 ± 0.1 mg/g, P = 0.67). Dixon fat volume was significantly increased in OBZ (56 ± 15 mm3) versus NBZ (34 ± 5 mm3, P < 0.004). Histology demonstrated a greater degree of intracellular muscle fat and extramuscular fat infiltration in OBZ versus NBZ rats. CONCLUSIONS Genetically obese rats had a large degree of fat infiltration in the tongue compared to both skeletal muscle and tongue tissues of the non-obese age-matched littermates. The significant fat increase and sequestration in the obese tongue may play a role in altered tongue neuromuscular function, tongue stiffness or metabolic function.
Collapse
Affiliation(s)
| | | | - Allan I. Pack
- Center for Sleep and Circadian Neurobiology
- Division of Sleep Medicine
| | | | | | | | | | | | - Laurence U. Buxbaum
- Philadephia Research and Education Foundation, Philadelphia, PA
- Division of Infectious Disease, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | - Richard J. Schwab
- Center for Sleep and Circadian Neurobiology
- Division of Sleep Medicine
| |
Collapse
|
38
|
Mosconi E, Sima DM, Osorio Garcia MI, Fontanella M, Fiorini S, Van Huffel S, Marzola P. Different quantification algorithms may lead to different results: a comparison using proton MRS lipid signals. NMR IN BIOMEDICINE 2014; 27:431-43. [PMID: 24493129 DOI: 10.1002/nbm.3079] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 01/01/2014] [Accepted: 01/02/2014] [Indexed: 05/24/2023]
Abstract
Proton magnetic resonance spectroscopy (MRS) is a sensitive method for investigating the biochemical compounds in a tissue. The interpretation of the data relies on the quantification algorithms applied to MR spectra. Each of these algorithms has certain underlying assumptions and may allow one to incorporate prior knowledge, which could influence the quality of the fit. The most commonly considered types of prior knowledge include the line-shape model (Lorentzian, Gaussian, Voigt), knowledge of the resonating frequencies, modeling of the baseline, constraints on the damping factors and phase, etc. In this article, we study whether the statistical outcome of a biological investigation can be influenced by the quantification method used. We chose to study lipid signals because of their emerging role in the investigation of metabolic disorders. Lipid spectra, in particular, are characterized by peaks that are in most cases not Lorentzian, because measurements are often performed in difficult body locations, e.g. in visceral fats close to peristaltic movements in humans or very small areas close to different tissues in animals. This leads to spectra with several peak distortions. Linear combination of Model spectra (LCModel), Advanced Method for Accurate Robust and Efficient Spectral fitting (AMARES), quantitation based on QUantum ESTimation (QUEST), Automated Quantification of Short Echo-time MRS (AQSES)-Lineshape and Integration were applied to simulated spectra, and area under the curve (AUC) values, which are proportional to the quantity of the resonating molecules in the tissue, were compared with true values. A comparison between techniques was also carried out on lipid signals from obese and lean Zucker rats, for which the polyunsaturation value expressed in white adipose tissue should be statistically different, as confirmed by high-resolution NMR measurements (considered the gold standard) on the same animals. LCModel, AQSES-Lineshape, QUEST and Integration gave the best results in at least one of the considered groups of simulated or in vivo lipid signals. These outcomes highlight the fact that quantification methods can influence the final result and its statistical significance.
Collapse
Affiliation(s)
- E Mosconi
- Department of Computer Science, University of Verona, Verona, Italy
| | | | | | | | | | | | | |
Collapse
|
39
|
Grimpo K, Völker MN, Heppe EN, Braun S, Heverhagen JT, Heldmaier G. Brown adipose tissue dynamics in wild-type and UCP1-knockout mice: in vivo insights with magnetic resonance. J Lipid Res 2014; 55:398-409. [PMID: 24343897 PMCID: PMC3934725 DOI: 10.1194/jlr.m042895] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 12/06/2013] [Indexed: 01/12/2023] Open
Abstract
We used noninvasive magnetic resonance imaging (MRI) and magnetic resonance spectroscopy to compare interscapular brown adipose tissue (iBAT) of wild-type (WT) and uncoupling protein 1 (UCP1)-knockout mice lacking UCP1-mediated nonshivering thermogenesis (NST). Mice were sequentially acclimated to an ambient temperature of 30°C, 18°C, and 5°C. We detected a remodeling of iBAT and a decrease in its lipid content in all mice during cold exposure. Ratios of energy-rich phosphates (ATP/ADP, phosphocreatine/ATP) in iBAT were maintained stable during noradrenergic stimulation of thermogenesis in cold- and warm-adapted mice and no difference between the genotypes was observed. As free fatty acids (FFAs) serve as fuel for thermogenesis and activate UCP1 for uncoupling of oxidative phosphorylation, brown adipose tissue is considered to be a main acceptor and consumer of FFAs. We measured a major loss of FFAs from iBAT during noradrenergic stimulation of thermogenesis. This mobilization of FFAs was observed in iBAT of WT mice as well as in mice lacking UCP1. The high turnover and the release of FFAs from iBAT suggests an enhancement of lipid metabolism, which in itself contributes to the sympathetically activated NST and which is independent from uncoupled respiration mediated by UCP1. Our study demonstrates that MRI, besides its potential for visualizing and quantification of fat tissue, is a valuable tool for monitoring functional in vivo processes like lipid and phosphate metabolism during NST.
Collapse
Affiliation(s)
- Kirsten Grimpo
- Faculty of Biology, Department of Animal Physiology, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Maximilian N. Völker
- Faculty of Medicine, Department of Diagnostic Radiology, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Eva N. Heppe
- Faculty of Biology, Department of Animal Physiology, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Steve Braun
- Faculty of Medicine, Department of Diagnostic Radiology, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Johannes T. Heverhagen
- Institute for Diagnostic, Interventional, and Paediatric Radiology, University Hospital Inselspital, Bern, Switzerland
| | - Gerhard Heldmaier
- Faculty of Biology, Department of Animal Physiology, Philipps-Universität Marburg, 35043 Marburg, Germany
| |
Collapse
|
40
|
Harry H, Kan HE. Quantitative proton MR techniques for measuring fat. NMR IN BIOMEDICINE 2013; 26:1609-29. [PMID: 24123229 PMCID: PMC4001818 DOI: 10.1002/nbm.3025] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 07/13/2013] [Accepted: 08/19/2013] [Indexed: 05/09/2023]
Abstract
Accurate, precise and reliable techniques for the quantification of body and organ fat distributions are important tools in physiology research. They are critically needed in studies of obesity and diseases involving excess fat accumulation. Proton MR methods address this need by providing an array of relaxometry-based (T1, T2) and chemical shift-based approaches. These techniques can generate informative visualizations of regional and whole-body fat distributions, yield measurements of fat volumes within specific body depots and quantify fat accumulation in abdominal organs and muscles. MR methods are commonly used to investigate the role of fat in nutrition and metabolism, to measure the efficacy of short- and long-term dietary and exercise interventions, to study the implications of fat in organ steatosis and muscular dystrophies and to elucidate pathophysiological mechanisms in the context of obesity and its comorbidities. The purpose of this review is to provide a summary of mainstream MR strategies for fat quantification. The article succinctly describes the principles that differentiate water and fat proton signals, summarizes the advantages and limitations of various techniques and offers a few illustrative examples. The article also highlights recent efforts in the MR of brown adipose tissue and concludes by briefly discussing some future research directions.
Collapse
Affiliation(s)
- Houchun Harry
- Corresponding Author Houchun Harry Hu, PhD Children's Hospital Los Angeles University of Southern California 4650 Sunset Boulevard Department of Radiology, MS #81 Los Angeles, California, USA. 90027 , Office: +1 (323) 361-2688 Fax: +1 (323) 361-1510
| | - Hermien E. Kan
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
41
|
Hu HH, Wu TW, Yin L, Kim MS, Chia JM, Perkins TG, Gilsanz V. MRI detection of brown adipose tissue with low fat content in newborns with hypothermia. Magn Reson Imaging 2013; 32:107-17. [PMID: 24239336 DOI: 10.1016/j.mri.2013.10.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 08/05/2013] [Accepted: 10/08/2013] [Indexed: 10/26/2022]
Abstract
PURPOSE To report the observation of brown adipose tissue (BAT) with low fat content in neonates with hypoxic-ischemic encephalopathy (HIE) after they have undergone hypothermia therapy. MATERIALS AND METHODS The local ethics committee approved the imaging study. Ten HIE neonates (3 males, 7 females, age range: 2-3days) were studied on a 3-T MRI system using a low-flip-angle (3°) six-echo proton-density-weighted chemical-shift-encoded water-fat pulse sequence. Fat-signal fraction (FF) measurements of supraclavicular and interscapular (nape) BAT and adjacent subcutaneous white adipose tissues (WAT) were compared to those from five non-HIE neonates, two recruited for the present investigation and three from a previous study. RESULTS In HIE neonates, the FF range for the supraclavicular, interscapular, and subcutaneous regions was 10.3%-29.9%, 28.0%-57.9%, and 62.6%-88.0%, respectively. In non-HIE neonates, the values were 23.7%-42.2% (p=0.01), 45.4%-59.5% (p=0.06), and 67.8%-86.3% (p=0.38), respectively. On an individual basis, supraclavicular BAT FF was consistently the lowest, interscapular BAT values were higher, and subcutaneous WAT values were the highest (p<0.01). CONCLUSION We speculate that hypothermia therapy in HIE neonates likely promotes BAT-mediated non-shivering thermogenesis, which subsequently leads to a depletion of the tissue's intracellular fat stores. We believe that this is consequently reflected in lower FF values, particularly in the supraclavicular BAT depot, in contrast to non-HIE neonates.
Collapse
Affiliation(s)
- Houchun H Hu
- Radiology, Children's Hospital Los Angeles, Los Angeles, CA, USA.
| | - Tai-Wei Wu
- Neonatology, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Larry Yin
- Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Mimi S Kim
- Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | | | | | - Vicente Gilsanz
- Radiology, Children's Hospital Los Angeles, Los Angeles, CA, USA; Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
42
|
Ye Q, Danzer CF, Fuchs A, Vats D, Wolfrum C, Rudin M. Longitudinal evaluation of hepatic lipid deposition and composition in ob/ob and ob/+ control mice. NMR IN BIOMEDICINE 2013; 26:1079-1088. [PMID: 23355481 DOI: 10.1002/nbm.2921] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 11/05/2012] [Accepted: 12/17/2012] [Indexed: 06/01/2023]
Abstract
Obesity is associated with insulin resistance (IR) and hepatosteatosis. Understanding the link between IR and hepatosteatosis could be relevant to chronic clinical outcomes. The objective of this study was to quantitatively assess lipid deposition (fractional lipid mass, fLM) and composition (fraction of polyunsaturated lipids, fPUL and mean chain length, MCL) in livers of ob/ob mice, a genetic model of obesity and mild diabetes, and ob/+ heterozygous control animals in a noninvasive manner using (1) H-MRS at 9.4T. For accurate quantification, intensity values were corrected for differences in T2 values while T1 effects were considered minimal due to the long TR values used. Values of fLM, fPUL and MCL were derived from T2 -corrected signal intensities of lipids and water resonance. Hepatic lipid signals were compared with fasted plasma insulin, glucose and lipid levels. Statistically significant correlations between fPUL and fasting plasma insulin/glucose levels were found in adolescent ob/ob mice. A similar correlation was found between fLM and fasting plasma insulin levels; however, the correlation between fLM and fasting plasma glucose levels was less obvious in adolescent ob/ob mice. These correlations were lost in adult ob/ob mice. The study showed that in adolescent ob/ob mice, there was an obvious link between lipid deposition/composition in the liver and plasma insulin/glucose levels. This correlation was lost in adult animals, probably due to the limited lipid storage capacity of the liver.
Collapse
Affiliation(s)
- Qiong Ye
- Institute for Biomedical Engineering, ETH Zürich and University of Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
43
|
Chen YCI, Cypess AM, Chen YC, Palmer M, Kolodny G, Kahn CR, Kwong KK. Measurement of human brown adipose tissue volume and activity using anatomic MR imaging and functional MR imaging. J Nucl Med 2013; 54:1584-7. [PMID: 23868958 DOI: 10.2967/jnumed.112.117275] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
UNLABELLED The aim of this study was to assess the volume and function of human brown adipose tissue (BAT) in vivo using MR imaging. METHODS BAT volumes under thermoneutral conditions in the cervical areas were assessed via water-fat contrast using the Dixon method and via water-saturation efficiency using fast spin-echo and T2-weighted images. The existence of cervical BAT was also assessed by (18)F-FDG PET/CT scans in the same subjects. BAT functionality was assessed via functional MR imaging (fMRI) blood oxygenation level-dependent (BOLD) signal changes in response to a mild cold challenge. RESULTS Under thermoneutral conditions, we were able to distinguish BAT from white adipose tissue in the cervical and supraclavicular fat. BAT showed higher water-to-fat contrast and higher water-saturation efficiency in MR imaging scans. The location and volume of BAT assessed by MR imaging were comparable to the measurements by (18)F-FDG PET/CT scans. During mild cold challenge, BOLD fMRI signal increased in BAT by 10.7% ± 1.8% (P < 0.01). CONCLUSION We demonstrated the feasibility of using MR imaging and fMRI to assess BAT volume and BAT responses to mild cold stimulation in the cervical areas of human subjects.
Collapse
Affiliation(s)
- Yin-Ching Iris Chen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Mosconi E, Minicozzi A, Marzola P, Cordiano C, Sbarbati A. 1H-MR spectroscopy characterization of the adipose tissue associated with colorectal tumor. J Magn Reson Imaging 2013; 39:469-74. [DOI: 10.1002/jmri.24177] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 03/27/2013] [Indexed: 01/17/2023] Open
Affiliation(s)
- Elisa Mosconi
- Department of Computer Sciences; University of Verona; Italy
| | | | | | - Claudio Cordiano
- First Department of General Surgery; University of Verona, Maggiore Borgo Trento Hospital; Verona Italy
| | - Andrea Sbarbati
- DSNNMM, Section of Anatomy and Histology; University of Verona; Verona Italy
| |
Collapse
|
45
|
Peng XG, Ju S, Fang F, Wang Y, Fang K, Cui X, Liu G, Li P, Mao H, Teng GJ. Comparison of brown and white adipose tissue fat fractions in ob, seipin, and Fsp27 gene knockout mice by chemical shift-selective imaging and (1)H-MR spectroscopy. Am J Physiol Endocrinol Metab 2013; 304:E160-7. [PMID: 23149622 DOI: 10.1152/ajpendo.00401.2012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Brown adipose tissue (BAT) plays a key role in thermogenesis to protect the body from cold and obesity. White adipose tissue (WAT) stores excess energy in the form of triglycerides. To better understand the genetic effect on regulation of WAT and BAT, we investigated the fat fraction (FF) in two types of adipose tissues in ob/ob, human BSCL2/seipin gene knockout (SKO), Fsp27 gene knockout (Fsp27(-/-)), and wild-type (WT) mice in vivo using chemical shift selective imaging and (1)H-MR spectroscopy. We reported that the visceral fat volume in WAT was significantly larger in ob/ob mice, but visceral fat volumes were lower in SKO and Fsp27(-/-) mice compared with WT mice. BAT FF was significantly higher in ob/ob mice than the WT group and similar to that of WAT. In contrast, WAT FFs in SKO and Fsp27(-/-) mice were lower and similar to that of BAT. The adipocyte size of WAT in ob/ob mice and the BAT adipocyte size in ob/ob, SKO, and Fsp27 mice were significantly larger compared with WT mice. However, the WAT adipocyte size was significantly smaller in SKO mice than in WT mice. Positive correlations were observed between the adipocyte size and FFs of WAT and BAT. These results suggested that smaller adipocyte size correlates with lower FFs of WAT and BAT. In addition, the differences in FFs in WAT and BAT measured by MR methods in different mouse models were related to the different regulation effects of ob, seipin, or Fsp27 gene on developing WAT and BAT.
Collapse
Affiliation(s)
- Xin-Gui Peng
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Lee Y, Jee HJ, Noh H, Kang GH, Park J, Cho J, Cho JH, Ahn S, Lee C, Kim OH, Oh BC, Kim H. In vivo (1)H-MRS hepatic lipid profiling in nonalcoholic fatty liver disease: an animal study at 9.4 T. Magn Reson Med 2012; 70:620-9. [PMID: 23023916 DOI: 10.1002/mrm.24510] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 08/30/2012] [Accepted: 08/31/2012] [Indexed: 12/15/2022]
Abstract
The applicability of the in vivo proton magnetic resonance spectroscopy hepatic lipid profiling (MR-HLP) technique in nonalcoholic fatty liver disease was investigated. Using magnetic resonance spectroscopy, the relative fractions of diunsaturated (fdi), monounsaturated (fmono), and saturated (fsat) fatty acids as well as total hepatic lipid content were estimated in the livers of 8 control and 23 CCl4-treated rats at 9.4 T. The mean steatosis, necrosis, inflammation, and fibrosis scores of the treated group were all significantly higher than those of the control group (P < 0.01). There was a strong correlation between the histopathologic parameters and the MR-HLP parameters (r = 0.775, P < 0.01) where both steatosis and fibrosis are positively correlated with fmono and negatively correlated with fdi. Both necrosis and inflammation, however, were not correlated with any of the MR-HLP parameters. Hepatic lipid composition appears to be changed in association with the severity of steatosis and fibrosis in nonalcoholic fatty liver disease, and these changes can be depicted in vivo by using the MR-HLP method at 9.4 T. Thus, while it may not likely be that MR-HLP helps differentiate between steatohepatitis in its early stages and simple steatosis, these findings altogether are in support of potential applicability of in vivo MR-HLP at high field in nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Yunjung Lee
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Chen YI, Cypess AM, Sass CA, Brownell AL, Jokivarsi KT, Kahn CR, Kwong KK. Anatomical and functional assessment of brown adipose tissue by magnetic resonance imaging. Obesity (Silver Spring) 2012; 20:1519-26. [PMID: 22343821 PMCID: PMC4383098 DOI: 10.1038/oby.2012.22] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Brown adipose tissue (BAT) is the primary tissue responsible for nonshivering thermogenesis in mammals. The amount of BAT and its level of activation help regulate the utilization of excessive calories for thermogenesis as opposed to storage in white adipose tissue (WAT) which would lead to weight gain. Over the past several years, BAT activity in vivo has been primarily assessed by positron emission tomography-computed tomography (PET-CT) scan using 2-[18F]-fluoro-2-deoxy-D-glucose (18F-FDG) to measure glucose utilization associated with BAT mitochondrial respiration. In this study, we demonstrate the feasibility of mapping and estimating BAT volume and metabolic function in vivo in rats at a 9.4T magnetic resonance imaging (MRI) scanner using sequences available from clinical MR scanners. Based on the morphological characteristics of BAT, we measured the volume distribution of BAT with MRI sequences that have strong fat-water contrast. We also investigated BAT volume by utilizing spin-echo MRI sequences. The in vivo MRI-estimated BAT volumes were correlated with direct measurement of BAT mass from dissected samples. Using MRI, we also were able to map hemodynamic responses to changes in BAT metabolism induced pharmacologically by β3-adrenergic receptor agonist, CL-316,243 and compare this to BAT activity in response to CL-316,243 assessed by PET 18F-FDG. In conclusion, we demonstrate the feasibility of measuring BAT volume and function in vivo using routine MRI sequences. The MRI measurement of BAT volume is consistent with quantitative measurement of the tissue ex vivo.
Collapse
Affiliation(s)
- Y Iris Chen
- A. Martino's Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Stokes AM, Feng Y, Mitropoulos T, Warren WS. Enhanced refocusing of fat signals using optimized multipulse echo sequences. Magn Reson Med 2012; 69:1044-55. [PMID: 22627966 DOI: 10.1002/mrm.24340] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 04/09/2012] [Accepted: 04/24/2012] [Indexed: 02/05/2023]
Abstract
Endogenous magnetic resonance contrast based on the localized composition of fat in vivo can provide functional information. We found that the unequal pulse timings of the Uhrig's dynamical decoupling multipulse echo sequences significantly alter the signal intensity compared to conventional, equal-spaced Carr-Purcell-Meiboom-Gill sequences. The signal increases and decreases depending on the tissue and sequence parameters, as well as on the interpulse spacings; particularly strong differences were observed in fatty tissues, which have a highly structured morphology and a wide range of chemical shifts and J-couplings. We found that the predominant mechanism for fat refocusing under multipulse echo sequences is the chemical structure, with stimulated echoes playing a pivotal role. As a result, specialized pulse sequences can be designed to optimize refocusing of the fat chemical shifts and J-couplings, where the degree of refocusing can be tailored to specific types of fats. To determine the optimal time delays, we simulated various Uhrig dynamical decoupling and Carr-Purcell-Meiboom-Gill pulse sequence timings, and these results are compared to experimental results obtained on excised and in vivo fatty tissue. Applications to intermolecular multiple quantum coherence imaging, where the improved echo refocusing translates directly into signal enhancements, are presented as well.
Collapse
Affiliation(s)
- Ashley M Stokes
- Department of Chemistry, Center for Molecular and Biomolecular Imaging, Duke University, Durham, NC 27708-0346, USA
| | | | | | | |
Collapse
|
49
|
Hepatic lipid composition differs between ob/ob and ob/+ control mice as determined by using in vivo localized proton magnetic resonance spectroscopy. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2012; 25:381-9. [PMID: 22441585 DOI: 10.1007/s10334-012-0310-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 02/24/2012] [Accepted: 02/24/2012] [Indexed: 12/21/2022]
Abstract
OBJECT Hepatic lipid accumulation is associated with nonalcoholic fatty liver disease, and the metabolic syndrome constitutes an increasing medical problem. In vivo proton magnetic resonance spectroscopy ((1)H MRS) allows the assessment of hepatic lipid levels noninvasively and also yields information on the fat composition due to its high spectral resolution. MATERIALS AND METHODS We applied (1)H MRS at 9.4T to study lipid content and composition in eight leptin-deficient ob/ob mice as a model of obesity and in four lean ob/+ control mice at 24 weeks of age. PRESS sequence was used. For accurate estimation of signal intensity, differences in relaxation behavior of individual signals were accounted for each mouse individually. Also, in order to minimize spectral degrading due to motion artifacts, respiration gating was applied. RESULTS Significant differences between ob/ob and ob/+ control mice were found in both lipid content and composition. The mean chain length was found to be significantly longer in ob/ob mice with a higher fraction of monounsaturated lipids. CONCLUSION (1)H MRS enables accurate assessment in hepatic lipids in mice, which is attractive for mechanistic studies of altered metabolism given the large number of genetically engineered mouse models available.
Collapse
|
50
|
Shen ZW, Cao Z, You KZ, Yang ZX, Xiao YY, Cheng XF, Chen YW, Wu RH. Quantification of choline concentration following liver cell apoptosis using 1H magnetic resonance spectroscopy. World J Gastroenterol 2012; 18:1130-6. [PMID: 22416190 PMCID: PMC3296989 DOI: 10.3748/wjg.v18.i10.1130] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 07/27/2011] [Accepted: 10/14/2011] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the feasibility of quantifying liver choline concentrations in both normal and apoptotic rabbit livers in vivo, using 1H magnetic resonance spectroscopy (1H-MRS).
METHODS: 1H-MRS was performed in 18 rabbits using a 1.5T GE MR system with an eight-channel head/neck receiving coil. Fifteen rabbits were injected with sodium selenite at a dose of 10 μmol/kg to induce the liver cell apoptosis. Point-resolved spectroscopy sequence-localized spectra were obtained from 10 livers once before and once 24 h after sodium selenite injection in vivo. T1 and T2 relaxation time of water and choline was measured separately in the livers of three healthy rabbits and three selenite-treated rabbits. Hematoxylin and eosin and dUTP-biotin nick end labeling (TUNEL) staining was used to detect and confirm apoptosis. Choline peak areas were measured relative to unsuppressed water using LCModel. Relaxation attenuation was corrected using the average of T1 and T2 relaxation time. The choline concentration was quantified using a formula, which was tested by a phantom with a known concentration.
RESULTS: Apoptosis of hepatic cells was confirmed by TUNEL assay. In phantom experiment, the choline concentration (3.01 mmol/L), measured by 1H-MRS, was in good agreement with the actual concentration (3 mmol/L). The average T1 and T2 relaxation time of choline was 612 ± 15 ms and 74 ± 4 ms in the control group and 670 ± 27 ms and 78 ± 5 ms in apoptotic livers in vivo, respectively. Choline was quantified in 10 rabbits, once before and once after the injection with sodium selenite. The choline concentration decreased from 14.5 ± 7.57 mmol/L before sodium selenite injection to 10.8 ± 6.58 mmol/L (mean ± SD, n = 10) after treatment (Z = -2.395, P < 0.05, two-sample paired Wilcoxon test).
CONCLUSION: 1H-MRS can be used to quantify liver choline in vivo using unsuppressed water as an internal reference. Decreased liver choline concentrations are found in sodium selenite-treated rabbits undergoing liver cell apoptosis.
Collapse
|