1
|
Ma X, Shi Y, Shang Z. Epiberberine Improves Hyperglycemia and Ameliorates Insulin Sensitivity in Type 2 Diabetic Mice. Nephrology (Carlton) 2025; 30:e14430. [PMID: 39888160 DOI: 10.1111/nep.14430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 12/26/2024] [Accepted: 12/31/2024] [Indexed: 02/01/2025]
Abstract
AIM Type 2 diabetes mellitus (T2DM) is a metabolic syndrome characterised by absolute or relative insufficiency of insulin secretion. The alkaloids from Rhizoma coptidis have potential hypoglycemic effects. Epiberberine (EPI), a protoberberine alkaloid extracted from Rhizome coptidis, has been found to regulate lipid metabolism. Our study aimed to investigate the antidiabetic effects of EPI on mice with T2DM, as well as its underlying mechanism. METHODS The T2DM model in mice was established using a combination of high-fat diet and streptozotocin. Animals were divided into the control, T2DM, EPI-low dose (50 mg/kg EPI), EPI-medium dose (100 mg/kg EPI), EPI-high dose (200 mg/kg EPI) and metformin (MTF) (200 mg/kg MTF) groups. Body weight, water/food intake, serum lipids, blood glucose tolerance, insulin sensitivity, histopathological alterations, insulin signalling pathway and inflammation-related pathways in each group were detected. RESULTS EPI significantly reduced blood glucose levels and water/food intake in T2DM mice. EPI reduced the levels of total cholesterol, total triglyceride, low-density lipoprotein cholesterol, aspartate aminotransferase and alanine aminotransferase, and elevated the levels of high-density lipoprotein cholesterol in serum. EPI effectively improved oral glucose tolerance, alleviated hepatic insulin resistance, decreased glycosylated haemoglobin levels and increased liver glycogen content. EPI ameliorated the histopathological alterations of skeletal muscle and liver in T2DM mice. EPI stimulated the insulin signalling pathway by increasing glucose transporter type 4 levels and activating insulin receptor substrate-1, phosphatidylinositol 3-kinase and protein kinase B in skeletal muscle and liver. EPI reduced the levels of proinflammatory cytokine in serum and inhibited the activation of mitogen-activated protein kinase signalling in skeletal muscle and liver of diabetic mice. CONCLUSION Overall, these data demonstrate that EPI alleviates the symptoms of T2DM, providing new insights into EPI as a therapeutic compound for the alleviation of T2DM.
Collapse
Affiliation(s)
- Xiaohong Ma
- Nephrology Department, Shenzhen Bao'an Authentic Tcm Therapy Hospital, Shenzhen, China
| | - Yufeng Shi
- Internal Medicine Department, Shenzhen Bao'an Authentic Tcm Therapy Hospital, Shenzhen, China
| | - Zhitao Shang
- Internal Medicine Department, Shenzhen Bao'an Authentic Tcm Therapy Hospital, Shenzhen, China
| |
Collapse
|
2
|
Rabbani N, Thornalley PJ. Unraveling the impaired incretin effect in obesity and type 2 diabetes: Key role of hyperglycemia-induced unscheduled glycolysis and glycolytic overload. Diabetes Res Clin Pract 2024; 217:111905. [PMID: 39447679 DOI: 10.1016/j.diabres.2024.111905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/01/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Glucagon-like peptide-1 (GLP-1) agonists and GLP-1 and glucose-dependent insulinotropic polypeptide (GIP) co-agonists are major treatment options for subjects with obesity and patients with type 2 diabetes mellitus (T2DM). They counter without addressing the mechanistic cause of the impaired incretin effect associated with obesity and T2DM. Incretin effect impairment is characterized by decreased secretion of incretins from enteroendocrine cells and incretin resistance of pancreatic β-cells. It is linked to hyperglycemia. We present evidence that subversion of the gating of glucose entry into glycolysis, mainly by glucokinase (hexokinase-4), during persistent hyperglycemia in enteroendocrine cells, pancreatic β- and α-cells and appetite-regulating neurons contributes to the biochemical mechanism of the impaired incretin effect. Unscheduled glycolysis and glycolytic overload thereby produced decreases cell signalling of incretin secretion to glucose and other secretion stimuli and incretin receptor responses. This mechanism provides a guide for development of alternative therapies targeting recovery of the impaired incretin effect.
Collapse
Affiliation(s)
- Naila Rabbani
- QU Health, Qatar University, University Street, PO Box 2713, Doha, Qatar
| | - Paul J Thornalley
- College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, PO Box 34110, Doha, Qatar.
| |
Collapse
|
3
|
Zeng S, Wang Y, Ai L, Huang L, Liu Z, He C, Bai Q, Li Y. Chronic intermittent hypoxia-induced oxidative stress activates TRB3 and phosphorylated JNK to mediate insulin resistance and cell apoptosis in the pancreas. Clin Exp Pharmacol Physiol 2024; 51:e13843. [PMID: 38302075 DOI: 10.1111/1440-1681.13843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 02/03/2024]
Abstract
This study explores the potential mechanisms of obstructive sleep apnoea (OSA) complicates type 2 diabetes mellitus (T2DM) by which chronic intermittent hypoxia (CIH) induces insulin resistance and cell apoptosis in the pancreas through oxidative stress. Four- and eight-week CIH rat models were established, and Tempol (100 mg/kg/d), was used as an oxidative stress inhibitor. This study included five groups: 4-week CIH, 4-week CIH-Tempol, 8-week CIH, 8-week CIH-Tempol and normal control (NC) groups. Fasting blood glucose and insulin levels were measured in the serum. The expression levels of 8-hidroxy-2-deoxyguanosine (8-OHdG), tribbles homologue 3 (TRB3), c-Jun N-terminal kinase (JNK), phosphorylated JNK (p-JNK), insulin receptor substrate-1 (IRS-1), phosphorylated IRS-1 (Ser307) (p-IRS-1ser307 ), protein kinase B (AKT), phosphorylated AKT (Ser473) (p-AKTser473 ), B cell lymphoma protein-2 (Bcl-2), cleaved-caspase-3 (Cl-caspase-3), and the islet cell apoptosis were detected in the pancreas. CIH induced oxidative stress in the pancreas. Compared with that in the NC group and CIH-Tempol groups individually, the homeostasis model assessment of insulin resistance (HOMA-IR) and apoptosis of islet cells was increased in the CIH groups. CIH-induced oxidative stress increased the expression of p-IRS-1Ser307 and decreased the expression of p-AKTSer473 . The expression levels of TRB3 and p-JNK were higher in the CIH groups than in both the CIH-Tempol and NC groups. Meanwhile, the expressions of Cl-caspase-3 and Bcl-2 were upregulated and downregulated, respectively, in the CIH groups. Hence, the present study demonstrated that CIH-induced oxidative stress might not only induce insulin resistance but also islet cell apoptosis in the pancreas through TRB3 and p-JNK.
Collapse
Affiliation(s)
- Shan Zeng
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yeying Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Kunming Medical University, Kunming, China
| | - Li Ai
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Liwei Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Kunming Medical University, Kunming, China
| | - Zhijuan Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chunxia He
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qiaohui Bai
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yongxia Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
4
|
Martínez Báez A, Ayala G, Pedroza-Saavedra A, González-Sánchez HM, Chihu Amparan L. Phosphorylation Codes in IRS-1 and IRS-2 Are Associated with the Activation/Inhibition of Insulin Canonical Signaling Pathways. Curr Issues Mol Biol 2024; 46:634-649. [PMID: 38248343 PMCID: PMC10814773 DOI: 10.3390/cimb46010041] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Insulin receptor substrates 1 and 2 (IRS-1 and IRS-2) are signaling adaptor proteins that participate in canonical pathways, where insulin cascade activation occurs, as well as in non-canonical pathways, in which phosphorylation of substrates is carried out by a diverse array of receptors including integrins, cytokines, steroid hormones, and others. IRS proteins are subject to a spectrum of post-translational modifications essential for their activation, encompassing phosphorylation events in distinct tyrosine, serine, and threonine residues. Tyrosine residue phosphorylation is intricately linked to the activation of the insulin receptor cascade and its interaction with SH2 domains within a spectrum of proteins, including PI3K. Conversely, serine residue phosphorylation assumes a different function, serving to attenuate the effects of insulin. In this review, we have identified over 50 serine residues within IRS-1 that have been reported to undergo phosphorylation orchestrated by a spectrum of kinases, thereby engendering the activation or inhibition of different signaling pathways. Furthermore, we delineate the phosphorylation of over 10 distinct tyrosine residues at IRS-1 or IRS-2 in response to insulin, a process essential for signal transduction and the subsequent activation of PI3K.
Collapse
Affiliation(s)
- Anabel Martínez Báez
- Infection Disease Research Center, National Institute of Public Health, Cuernavaca 62100, Mexico; (A.M.B.); (G.A.); (A.P.-S.)
| | - Guadalupe Ayala
- Infection Disease Research Center, National Institute of Public Health, Cuernavaca 62100, Mexico; (A.M.B.); (G.A.); (A.P.-S.)
| | - Adolfo Pedroza-Saavedra
- Infection Disease Research Center, National Institute of Public Health, Cuernavaca 62100, Mexico; (A.M.B.); (G.A.); (A.P.-S.)
| | - Hilda M. González-Sánchez
- CONAHCYT—Infection Disease Research Center, National Institute of Public Health, Cuernavaca 62100, Mexico;
| | - Lilia Chihu Amparan
- Infection Disease Research Center, National Institute of Public Health, Cuernavaca 62100, Mexico; (A.M.B.); (G.A.); (A.P.-S.)
| |
Collapse
|
5
|
Yudaeva AD, Stafeev IS, Michurina SS, Menshikov MY, Shestakova MV, Parfyonova YV. The interactions between inflammation and insulin resistance: molecular mechanisms in insulin-producing and insulin-dependent tissues. DIABETES MELLITUS 2023. [DOI: 10.14341/dm12981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
In the modern world the prevalence of obesity and type 2 diabetes mellitus (T2DM) significantly increases. In this light the risks of obesity-associated complications also grow up. The crucial linkage between obesity and its metabolic and cardiovascular complications is inflammatory process. The mechanism of this linkage is similar in pancreas and insulin-dependent tissues both on cells, cell-to-cell communication and signaling pathway levels: the catalysts are different lipids (cholesterol, free fatty acids, triglycerides), which are able to activate Toll-like receptors of innate immunity and inflammation. Nextly, IKK- and JNK-dependent cascades activate the secretion of inflammatory cytokines TNFa, IL-1b, IL-6 and others, which act by paracrine and autocrine manner and support inflammation both in local and systemic levels. Thus, insulin-producing and insulin-dependent tissues, which are involved in T2DM pathogenesis, through the inflammatory process integrate in pathogenic and self-maintaining cycle, which leads to the suppression of insulin secretion, pancreatic β-cell failure and the development of insulin-dependent tissues insulin resistance.
Collapse
Affiliation(s)
- A. D. Yudaeva
- National Medical Research Centre of Cardiology named after academician E.I.Chazov; Pirogov Russian National Research Medical University
| | - I. S. Stafeev
- National Medical Research Centre of Cardiology named after academician E.I.Chazov; Pirogov Russian National Research Medical University
| | - S. S. Michurina
- National Medical Research Centre of Cardiology named after academician E.I.Chazov; Lomonosov Moscow State University
| | - M. Yu. Menshikov
- National Medical Research Centre of Cardiology named after academician E.I.Chazov
| | | | - Y. V. Parfyonova
- National Medical Research Centre of Cardiology named after academician E.I.Chazov; Lomonosov Moscow State University
| |
Collapse
|
6
|
Essaouiba A, Jellali R, Gilard F, Gakière B, Okitsu T, Legallais C, Sakai Y, Leclerc E. Investigation of the Exometabolomic Profiles of Rat Islets of Langerhans Cultured in Microfluidic Biochip. Metabolites 2022; 12:metabo12121270. [PMID: 36557308 PMCID: PMC9786643 DOI: 10.3390/metabo12121270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Diabetes mellitus (DM) is a complex disease with high prevalence of comorbidity and mortality. DM is predicted to reach more than 700 million people by 2045. In recent years, several advanced in vitro models and analytical tools were developed to investigate the pancreatic tissue response to pathological situations and identify therapeutic solutions. Of all the in vitro promising models, cell culture in microfluidic biochip allows the reproduction of in-vivo-like micro-environments. Here, we cultured rat islets of Langerhans using dynamic cultures in microfluidic biochips. The dynamic cultures were compared to static islets cultures in Petri. The islets' exometabolomic signatures, with and without GLP1 and isradipine treatments, were characterized by GC-MS. Compared to Petri, biochip culture contributes to maintaining high secretions of insulin, C-peptide and glucagon. The exometabolomic profiling revealed 22 and 18 metabolites differentially expressed between Petri and biochip on Day 3 and 5. These metabolites illustrated the increase in lipid metabolism, the perturbation of the pentose phosphate pathway and the TCA cycle in biochip. After drug stimulations, the exometabolome of biochip culture appeared more perturbed than the Petri exometabolome. The GLP1 contributed to the increase in the levels of glycolysis, pentose phosphate and glutathione pathways intermediates, whereas isradipine led to reduced levels of lipids and carbohydrates.
Collapse
Affiliation(s)
- Amal Essaouiba
- Biomechanics and Bioengineering, CNRS, Université de Technologie de Compiègne, Centre de Recherche Royallieu CS 60319, 60203 Compiègne, France
- CNRS IRL 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Rachid Jellali
- Biomechanics and Bioengineering, CNRS, Université de Technologie de Compiègne, Centre de Recherche Royallieu CS 60319, 60203 Compiègne, France
- Correspondence: (R.J.); (E.L.)
| | - Françoise Gilard
- Plateforme Métabolisme-Métabolome, Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, Université Paris Cité, Bâtiment 360, Avenue des Sciences, 91190 Gif sur Yvette, France
| | - Bertrand Gakière
- Plateforme Métabolisme-Métabolome, Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, Université Paris Cité, Bâtiment 360, Avenue des Sciences, 91190 Gif sur Yvette, France
| | - Teru Okitsu
- Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Cécile Legallais
- Biomechanics and Bioengineering, CNRS, Université de Technologie de Compiègne, Centre de Recherche Royallieu CS 60319, 60203 Compiègne, France
| | - Yasuyuki Sakai
- CNRS IRL 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
- Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
- Department of Chemical Engineering, Faculty of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Eric Leclerc
- Biomechanics and Bioengineering, CNRS, Université de Technologie de Compiègne, Centre de Recherche Royallieu CS 60319, 60203 Compiègne, France
- CNRS IRL 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
- Correspondence: (R.J.); (E.L.)
| |
Collapse
|
7
|
Biondi G, Marrano N, Dipaola L, Borrelli A, Rella M, D'Oria R, Genchi VA, Caccioppoli C, Porreca I, Cignarelli A, Perrini S, Marchetti P, Vincenti L, Laviola L, Giorgino F, Natalicchio A. The p66Shc Protein Mediates Insulin Resistance and Secretory Dysfunction in Pancreatic β-Cells Under Lipotoxic Conditions. Diabetes 2022; 71:1763-1771. [PMID: 35612429 DOI: 10.2337/db21-1066] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 05/16/2022] [Indexed: 11/13/2022]
Abstract
We evaluated the role of the p66Shc redox adaptor protein in pancreatic β-cell insulin resistance that develops under lipotoxic conditions and with excess body fat. Prolonged exposure to palmitate in vitro or the presence of overweight/obesity augmented p66Shc expression levels and caused an impaired ability of exogenous insulin to increase cellular insulin content and secreted C-peptide levels in INS-1E cells and human and murine islets. In INS-1E cells, p66Shc knockdown resulted in enhanced insulin-induced augmentation of insulin content and C-peptide secretion and prevented the ability of palmitate to impair these effects of insulin. Conversely, p66Shc overexpression impaired insulin-induced augmentation of insulin content and C-peptide secretion in both the absence and presence of palmitate. Under lipotoxic condition, the effects of p66Shc are mediated by a p53-induced increase in p66Shc protein levels and JNK-induced p66Shc phosphorylation at Ser36 and appear to involve the phosphorylation of the ribosomal protein S6 kinase at Thr389 and of insulin receptor substrate 1 at Ser307, resulting in the inhibition of insulin-stimulated protein kinase B phosphorylation at Ser473. Thus, the p66Shc protein mediates the impaired β-cell function and insulin resistance induced by saturated fatty acids and excess body fat.
Collapse
Affiliation(s)
- Giuseppina Biondi
- Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Nicola Marrano
- Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Lucia Dipaola
- Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Anna Borrelli
- Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Martina Rella
- Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Rossella D'Oria
- Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Valentina A Genchi
- Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Cristina Caccioppoli
- Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Immacolata Porreca
- Genetic Research Centre "Gaetano Salvatore" BioGeM, Ariano Irpino, Italy
| | - Angelo Cignarelli
- Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Sebastio Perrini
- Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Leonardo Vincenti
- Division of General Surgery, University Hospital Polyclinic, Bari, Italy
| | - Luigi Laviola
- Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Francesco Giorgino
- Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Annalisa Natalicchio
- Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| |
Collapse
|
8
|
Dierschke SK, Dennis MD. Retinal Protein O-GlcNAcylation and the Ocular Renin-angiotensin System: Signaling Cross-roads in Diabetic Retinopathy. Curr Diabetes Rev 2022; 18:e011121190177. [PMID: 33430751 PMCID: PMC8272735 DOI: 10.2174/1573399817999210111205933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 01/23/2023]
Abstract
It is well established that diabetes and its associated hyperglycemia negatively impact retinal function, yet we know little about the role played by augmented flux through the Hexosamine Biosynthetic Pathway (HBP). This offshoot of the glycolytic pathway produces UDP-Nacetyl- glucosamine, which serves as the substrate for post-translational O-linked modification of proteins in a process referred to as O-GlcNAcylation. HBP flux and subsequent protein O-GlcNAcylation serve as nutrient sensors, enabling cells to integrate metabolic information to appropriately modulate fundamental cellular processes including gene expression. Here we summarize the impact of diabetes on retinal physiology, highlighting recent studies that explore the role of O-GlcNAcylation- induced variation in mRNA translation in retinal dysfunction and the pathogenesis of Diabetic Retinopathy (DR). Augmented O-GlcNAcylation results in wide variation in the selection of mRNAs for translation, in part, due to O-GlcNAcylation of the translational repressor 4E-BP1. Recent studies demonstrate that 4E-BP1 plays a critical role in regulating O-GlcNAcylation-induced changes in the translation of the mRNAs encoding Vascular Endothelial Growth Factor (VEGF), a number of important mitochondrial proteins, and CD40, a key costimulatory molecule involved in diabetes-induced retinal inflammation. Remarkably, 4E-BP1/2 ablation delays the onset of diabetes- induced visual dysfunction in mice. Thus, pharmacological interventions to prevent the impact of O-GlcNAcylation on 4E-BP1 may represent promising therapeutics to address the development and progression of DR. In this regard, we discuss the potential interplay between retinal O-GlcNAcylation and the ocular renin-angiotensin system as a potential therapeutic target of future interventions.
Collapse
Affiliation(s)
- Sadie K. Dierschke
- Department of Cellular and Molecular Physiology, Penn State College of Medicine
| | - Michael D. Dennis
- Department of Cellular and Molecular Physiology, Penn State College of Medicine
- Department of Ophthalmology, Penn State College of Medicine
- Address correspondence to this author at the Department of Cellular and Molecular Physiology, H166, Penn State College of Medicine, 500 University Drive Hershey, PA 17033; Tel: (717)531-0003 Ext-282596; Fax: (717)531-7667;
| |
Collapse
|
9
|
Ullah R, Yin Q, Snell AH, Wan L. RAF-MEK-ERK pathway in cancer evolution and treatment. Semin Cancer Biol 2021; 85:123-154. [PMID: 33992782 DOI: 10.1016/j.semcancer.2021.05.010] [Citation(s) in RCA: 247] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022]
Abstract
The RAF-MEK-ERK signaling cascade is a well-characterized MAPK pathway involved in cell proliferation and survival. The three-layered MAPK signaling cascade is initiated upon RTK and RAS activation. Three RAF isoforms ARAF, BRAF and CRAF, and their downstream MEK1/2 and ERK1/2 kinases constitute a coherently orchestrated signaling module that directs a range of physiological functions. Genetic alterations in this pathway are among the most prevalent in human cancers, which consist of numerous hot-spot mutations such as BRAFV600E. Oncogenic mutations in this pathway often override otherwise tightly regulated checkpoints to open the door for uncontrolled cell growth and neoplasia. The crosstalk between the RAF-MEK-ERK axis and other signaling pathways further extends the proliferative potential of this pathway in human cancers. In this review, we summarize the molecular architecture and physiological functions of the RAF-MEK-ERK pathway with emphasis on its dysregulations in human cancers, as well as the efforts made to target the RAF-MEK-ERK module using small molecule inhibitors.
Collapse
Affiliation(s)
- Rahim Ullah
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Qing Yin
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Aidan H Snell
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Lixin Wan
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA; Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
10
|
Mazzoli A, Sardi C, Breasson L, Theilig F, Becattini B, Solinas G. JNK1 ablation improves pancreatic β-cell mass and function in db/db diabetic mice without affecting insulin sensitivity and adipose tissue inflammation. FASEB Bioadv 2021; 3:94-107. [PMID: 33615154 PMCID: PMC7876705 DOI: 10.1096/fba.2020-00081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/12/2020] [Accepted: 12/16/2020] [Indexed: 12/15/2022] Open
Abstract
The cJun N‐terminal Kinases (JNK) emerged as a major link between obesity and insulin resistance, but their role in the loss of pancreatic β‐cell mass and function driving the progression from insulin resistance to type‐2 diabetes and in the complications of diabetes was not investigated to the same extent. Furthermore, it was shown that pan‐JNK inhibition exacerbates kidney damage in the db/db model of obesity‐driven diabetes. Here we investigate the role of JNK1 in the db/db model of obesity‐driven type‐2 diabetes. Mice with systemic ablation of JNK1 (JNK1−/−) were backcrossed for more than 10 generations in db/+ C57BL/KS mice to generate db/db‐JNK1−/− mice and db/db control mice. To define the role of JNK1 in the loss of β‐cell mass and function occurring during obesity‐driven diabetes we performed comprehensive metabolic phenotyping, evaluated steatosis and metabolic inflammation, performed morphometric and cellular composition analysis of pancreatic islets, and evaluated kidney function in db/db‐JNK1−/− mice and db/db controls. db/db‐JNK1−/− mice and db/db control mice developed insulin resistance, fatty liver, and metabolic inflammation to a similar extent. However, db/db‐JNK1−/− mice displayed better glucose tolerance and improved insulin levels during glucose tolerance test, higher pancreatic insulin content, and larger pancreatic islets with more β‐cells than db/db mice. Finally, albuminuria, kidney histopathology, kidney inflammation and oxidative stress in db/db‐JNK1−/− mice and in db/db mice were similar. Our data indicate that selective JNK1 ablation improves glucose tolerance in db/db mice by reducing the loss of functional β‐cells occurring in the db/db mouse model of obesity‐driven diabetes, without significantly affecting metabolic inflammation, steatosis, and insulin sensitivity. Furthermore, we have found that, differently from what previously reported for pan‐JNK inhibitors, selective JNK1 ablation does not exacerbate kidney dysfunction in db/db mice. We conclude that selective JNK1 inactivation may have a superior therapeutic index than pan‐JNK inhibition in obesity‐driven diabetes.
Collapse
Affiliation(s)
- Arianna Mazzoli
- The Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research Department of Molecular and Clinical Medicine Institute of Medicine University of Gothenburg Gothenburg Sweden
| | - Claudia Sardi
- The Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research Department of Molecular and Clinical Medicine Institute of Medicine University of Gothenburg Gothenburg Sweden
| | - Ludovic Breasson
- The Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research Department of Molecular and Clinical Medicine Institute of Medicine University of Gothenburg Gothenburg Sweden
| | - Franziska Theilig
- Institute of Anatomy Christian Albrechts-University Kiel Kiel Germany
| | - Barbara Becattini
- The Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research Department of Molecular and Clinical Medicine Institute of Medicine University of Gothenburg Gothenburg Sweden
| | - Giovanni Solinas
- The Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research Department of Molecular and Clinical Medicine Institute of Medicine University of Gothenburg Gothenburg Sweden
| |
Collapse
|
11
|
Understanding Diabetic Neuropathy: Focus on Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9524635. [PMID: 32832011 PMCID: PMC7422494 DOI: 10.1155/2020/9524635] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023]
Abstract
Diabetic neuropathy is one of the clinical syndromes characterized by pain and substantial morbidity primarily due to a lesion of the somatosensory nervous system. The burden of diabetic neuropathy is related not only to the complexity of diabetes but also to the poor outcomes and difficult treatment options. There is no specific treatment for diabetic neuropathy other than glycemic control and diligent foot care. Although various metabolic pathways are impaired in diabetic neuropathy, enhanced cellular oxidative stress is proposed as a common initiator. A mechanism-based treatment of diabetic neuropathy is challenging; a better understanding of the pathophysiology of diabetic neuropathy will help to develop strategies for the new and correct diagnostic procedures and personalized interventions. Thus, we review the current knowledge of the pathophysiology in diabetic neuropathy. We focus on discussing how the defects in metabolic and vascular pathways converge to enhance oxidative stress and how they produce the onset and progression of nerve injury present in diabetic neuropathy. We discuss if the mechanisms underlying neuropathy are similarly operated in type I and type II diabetes and the progression of antioxidants in treating diabetic neuropathy.
Collapse
|
12
|
Role of c-Jun N-terminal Kinase (JNK) in Obesity and Type 2 Diabetes. Cells 2020; 9:cells9030706. [PMID: 32183037 PMCID: PMC7140703 DOI: 10.3390/cells9030706] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/16/2020] [Accepted: 03/11/2020] [Indexed: 12/13/2022] Open
Abstract
Obesity has been described as a global epidemic and is a low-grade chronic inflammatory disease that arises as a consequence of energy imbalance. Obesity increases the risk of type 2 diabetes (T2D), by mechanisms that are not entirely clarified. Elevated circulating pro-inflammatory cytokines and free fatty acids (FFA) during obesity cause insulin resistance and ß-cell dysfunction, the two main features of T2D, which are both aggravated with the progressive development of hyperglycemia. The inflammatory kinase c-jun N-terminal kinase (JNK) responds to various cellular stress signals activated by cytokines, free fatty acids and hyperglycemia, and is a key mediator in the transition between obesity and T2D. Specifically, JNK mediates both insulin resistance and ß-cell dysfunction, and is therefore a potential target for T2D therapy.
Collapse
|
13
|
Tang C, Yeung LSN, Koulajian K, Zhang L, Tai K, Volchuk A, Giacca A. Glucose-Induced β-Cell Dysfunction In Vivo: Evidence for a Causal Role of C-jun N-terminal Kinase Pathway. Endocrinology 2018; 159:3643-3654. [PMID: 30215691 PMCID: PMC6195676 DOI: 10.1210/en.2018-00566] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 08/26/2018] [Indexed: 11/19/2022]
Abstract
Prolonged elevation of glucose can adversely affect β-cell function. Oxidative stress, which has been implicated in glucose-induced β-cell dysfunction, can activate c-jun N-terminal kinase (JNK). However, whether JNK is causal in glucose-induced β-cell dysfunction in vivo is unclear. Therefore, we aimed at investigating the causal role of JNK activation in in vivo models of glucose-induced β-cell dysfunction. Glucose-induced β-cell dysfunction was investigated in the presence or absence of JNK inhibition. JNK inhibition was achieved using either (i) the JNK-specific inhibitor SP600125 or (ii) JNK-1-null mice. (i) Rats or mice were infused intravenously with saline or glucose with or without SP600125. (ii) JNK-1 null mice and their littermate wild-type controls were infused intravenously with saline or glucose. Following the glucose infusion periods in rats and mice, β-cell function was assessed in isolated islets or in vivo using hyperglycemic clamps. Forty-eight-hour hyperglycemia at ~20 mM in rats or 96-hour hyperglycemia at ~13 mM in mice impaired β-cell function in isolated islets and in vivo. Inhibition of JNK using either SP600125 or JNK-1-null mice prevented glucose-induced β-cell dysfunction in isolated islets and in vivo. Islets of JNK-1-null mice exposed to hyperglycemia in vivo showed an increase in Pdx-1 and insulin 2 mRNA, whereas islets of wild-type mice did not. Together, these data show that JNK pathway is involved in glucose-induced β-cell dysfunction in vivo and is thus a potential therapeutic target for type 2 diabetes.
Collapse
Affiliation(s)
- Christine Tang
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Lucy Shu Nga Yeung
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Khajag Koulajian
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Liling Zhang
- Division of Cellular and Molecular Biology, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Kevin Tai
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Allen Volchuk
- Keenan Research Centre for Biomedical Science, St. Michael Hospital, Toronto, Ontario, Canada
| | - Adria Giacca
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
- Correspondence: Adria Giacca, MD, Medical Sciences Building, 3336-1 King’s College Circle, Toronto, Ontario M5S 1A8, Canada. E-mail:
| |
Collapse
|
14
|
Miki A, Ricordi C, Sakuma Y, Yamamoto T, Misawa R, Mita A, Molano RD, Vaziri ND, Pileggi A, Ichii H. Divergent antioxidant capacity of human islet cell subsets: A potential cause of beta-cell vulnerability in diabetes and islet transplantation. PLoS One 2018; 13:e0196570. [PMID: 29723228 PMCID: PMC5933778 DOI: 10.1371/journal.pone.0196570] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 04/16/2018] [Indexed: 01/09/2023] Open
Abstract
Background Type 1 and Type 2 diabetes mellitus (T1DM and T2DM) are caused by beta(β)-cell loss and functional impairment. Identification of mechanisms of β-cell death and therapeutic interventions to enhance β-cell survival are essential for prevention and treatment of diabetes. Oxidative stress is a common feature of both T1DM and T2DM; elevated biomarkers of oxidative stress are detected in blood, urine and tissues including pancreas of patients with DM. Islet transplantation is a promising treatment for diabetes. However, exposure to stress (chemical and mechanical) and ischemia-reperfusion during isolation and transplantation causes islet loss by generation of reactive oxygen species (ROS). Human intracellular antioxidant enzymes and related molecules are essential defenses against ROS. Antioxidant enzyme levels including superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPX) have been shown to be low in islet cells. However, little is known about the expression and function of antioxidant enzymes within islet cell subsets. We evaluated the expression of the key antioxidant enzymes in β- and alpha(α)-cell and accessed effects of oxidative stress, islet isolation and transplantation on β/α-cell ratio and viability in human islets. Methods Human pancreata from T1DM, T2DM and non-diabetic deceased donors were obtained and analyzed by confocal microscopy. Isolated islets were (I) transplanted in the renal sub-capsular space of streptozotocin-induced diabetic nude mice (in vivo bioassay), or (II) exposed to oxidative (H2O2) and nitrosative (NO donor) stress for 24 hrs in vitro. The ratio, % viability and death of β- and α-cells, and DNA damage (8OHdG) were measured. Results and conclusions Catalase and GPX expression was much lower in β- than α-cells. The β/α-cell ratio fells significantly following islet isolation and transplantation. Exposure to oxidative stress caused a significantly lower survival and viability, with higher DNA damage in β- than α-cells. These findings identified the weakness of β-cell antioxidant capacity as a main cause of vulnerability to oxidative stress. Potential strategies to enhance β-cell antioxidant capacity might be effective in prevention/treatment of diabetes.
Collapse
Affiliation(s)
- Atsushi Miki
- Cell Transplant Center, Diabetes Research Institute, University of Miami, Miami, Florida, United States of America
| | - Camillo Ricordi
- Cell Transplant Center, Diabetes Research Institute, University of Miami, Miami, Florida, United States of America
| | - Yasunaru Sakuma
- Cell Transplant Center, Diabetes Research Institute, University of Miami, Miami, Florida, United States of America
| | - Toshiyuki Yamamoto
- Cell Transplant Center, Diabetes Research Institute, University of Miami, Miami, Florida, United States of America
| | - Ryosuke Misawa
- Cell Transplant Center, Diabetes Research Institute, University of Miami, Miami, Florida, United States of America
| | - Atsuyoshi Mita
- Cell Transplant Center, Diabetes Research Institute, University of Miami, Miami, Florida, United States of America
| | - Ruth D Molano
- Cell Transplant Center, Diabetes Research Institute, University of Miami, Miami, Florida, United States of America
| | - Nosratola D Vaziri
- Department of Medicine, University of California, Irvine, United States of America
| | - Antonello Pileggi
- Cell Transplant Center, Diabetes Research Institute, University of Miami, Miami, Florida, United States of America
| | - Hirohito Ichii
- Cell Transplant Center, Diabetes Research Institute, University of Miami, Miami, Florida, United States of America.,Department of Surgery, University of California, Irvine, United States of America
| |
Collapse
|
15
|
Baumann C, Ullrich A, Torka R. GAS6-expressing and self-sustaining cancer cells in 3D spheroids activate the PDK-RSK-mTOR pathway for survival and drug resistance. Mol Oncol 2017; 11:1430-1447. [PMID: 28675785 PMCID: PMC5623821 DOI: 10.1002/1878-0261.12109] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 12/14/2022] Open
Abstract
AXL receptor tyrosine kinase (RTK) inhibition presents a promising therapeutic strategy for aggressive tumor subtypes, as AXL signaling is upregulated in many cancers resistant to first-line treatments. Furthermore, the AXL ligand growth arrest-specific gene 6 (GAS6) has recently been linked to cancer drug resistance. Here, we established that challenging conditions, such as serum deprivation, divide AXL-overexpressing tumor cell lines into non-self-sustaining and self-sustaining subtypes in 3D spheroid culture. Self-sustaining cells are characterized by excessive GAS6 secretion and TAM-PDK-RSK-mTOR pathway activation. In 3D spheroid culture, the activation of the TAM-PDK-RSK-mTOR pathway proves crucial following treatment with AXL/MET inhibitor BMS777607, when the self-sustaining tumor cells react with TAM-RSK hyperactivation and enhanced SRC-AKT-mTOR signaling. Thus, bidirectional activated mTOR leads to enhanced proliferation and counteracts the drug effect. mTOR activation is accompanied by an enhanced AXL expression and hyperphosphorylation following 24 h of treatment with BMS777607. Therefore, we elucidate a double role of AXL that can be assigned to RSK-mTOR as well as SRC-AKT-mTOR pathway activation, specifically through AXL Y779 phosphorylation. This phosphosite fuels the resistance mechanism in 3D spheroids, alongside further SRC-dependent EGFR Y1173 and/or MET Y1349 phosphorylation which is defined by the cell-specific addiction. In conclusion, self-sustenance in cancer cells is based on a signaling synergy, individually balanced between GAS6 TAM-dependent PDK-RSK-mTOR survival pathway and the AXLY779/EGFR/MET-driven SRC-mTOR pathway.
Collapse
Affiliation(s)
- Christine Baumann
- Department of Molecular BiologyMax‐Planck‐Institute of BiochemistryMartinsriedGermany
| | - Axel Ullrich
- Department of Molecular BiologyMax‐Planck‐Institute of BiochemistryMartinsriedGermany
| | - Robert Torka
- Department of Molecular BiologyMax‐Planck‐Institute of BiochemistryMartinsriedGermany,Institute of Physiological ChemistryUniversity Halle‐WittenbergHalle (Saale)Germany
| |
Collapse
|
16
|
Obaid NM, Bedard K, Huang WY. Strategies for Overcoming Resistance in Tumours Harboring BRAF Mutations. Int J Mol Sci 2017; 18:ijms18030585. [PMID: 28282860 PMCID: PMC5372601 DOI: 10.3390/ijms18030585] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/07/2017] [Accepted: 02/23/2017] [Indexed: 12/19/2022] Open
Abstract
The development of resistance to previously effective treatments has been a challenge for health care providers and a fear for patients undergoing cancer therapy. This is an unfortunately frequent occurrence for patients undergoing targeted therapy for tumours harboring the activating V600E mutation of the BRAF gene. Since the initial identification of the BRAF mutation in 2002, a series of small molecular inhibitors that target the BRAFV600E have been developed, but intrinsic and acquired resistance to these drugs has presented an ongoing challenge. More recently, improvements in therapy have been achieved by combining the use of BRAF inhibitors with other drugs, such as inhibitors of the downstream effector mitogen activated protein kinase (MAPK)/extracellular-signal regulated kinase (ERK) kinase (MEK). Despite improved success in response rates and in delaying resistance using combination therapy, ultimately, the acquisition of resistance remains a concern. Recent research articles have shed light on some of the underlying mechanisms of this resistance and have proposed numerous strategies that might be employed to overcome or avoid resistance to targeted therapies. This review will explore some of the resistance mechanisms, compare what is known in melanoma cancer to colorectal cancer, and discuss strategies under development to manage the development of resistance.
Collapse
Affiliation(s)
| | - Karen Bedard
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| | - Weei-Yuarn Huang
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
- Department of Pathology, Nova Scotia Health Authority, Halifax, NS B3H 1V8, Canada.
| |
Collapse
|
17
|
Solinas G, Becattini B. JNK at the crossroad of obesity, insulin resistance, and cell stress response. Mol Metab 2016; 6:174-184. [PMID: 28180059 PMCID: PMC5279903 DOI: 10.1016/j.molmet.2016.12.001] [Citation(s) in RCA: 290] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 11/28/2016] [Accepted: 12/02/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The cJun-N-terminal-kinase (JNK) plays a central role in the cell stress response, with outcomes ranging from cell death to cell proliferation and survival, depending on the specific context. JNK is also one of the most investigated signal transducers in obesity and insulin resistance, and studies have identified new molecular mechanisms linking obesity and insulin resistance. Emerging evidence indicates that whereas JNK1 and JNK2 isoforms promote the development of obesity and insulin resistance, JNK3 activity protects from excessive adiposity. Furthermore, current evidence indicates that JNK activity within specific cell types may, in specific stages of disease progression, promote cell tolerance to the stress associated with obesity and type-2 diabetes. SCOPE OF REVIEW This review provides an overview of the current literature on the role of JNK in the progression from obesity to insulin resistance, NAFLD, type-2 diabetes, and diabetes complications. MAJOR CONCLUSION Whereas current evidence indicates that JNK1/2 inhibition may improve insulin sensitivity in obesity, the role of JNK in the progression from insulin resistance to diabetes, and its complications is largely unresolved. A better understanding of the role of JNK in the stress response to obesity and type-2 diabetes, and the development of isoform-specific inhibitors with specific tissue distribution will be necessary to exploit JNK as possible drug target for the treatment of type-2 diabetes.
Collapse
Affiliation(s)
- Giovanni Solinas
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, 41345 Gothenburg, Sweden.
| | - Barbara Becattini
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, 41345 Gothenburg, Sweden
| |
Collapse
|
18
|
Metabolomics applied to the pancreatic islet. Arch Biochem Biophys 2015; 589:120-30. [PMID: 26116790 DOI: 10.1016/j.abb.2015.06.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/19/2015] [Accepted: 06/21/2015] [Indexed: 01/18/2023]
Abstract
Metabolomics, the characterization of the set of small molecules in a biological system, is advancing research in multiple areas of islet biology. Measuring a breadth of metabolites simultaneously provides a broad perspective on metabolic changes as the islets respond dynamically to metabolic fuels, hormones, or environmental stressors. As a result, metabolomics has the potential to provide new mechanistic insights into islet physiology and pathophysiology. Here we summarize advances in our understanding of islet physiology and the etiologies of type-1 and type-2 diabetes gained from metabolomics studies.
Collapse
|
19
|
Japtok L, Schmitz EI, Fayyaz S, Krämer S, Hsu LJ, Kleuser B. Sphingosine 1-phosphate counteracts insulin signaling in pancreatic β-cells via the sphingosine 1-phosphate receptor subtype 2. FASEB J 2015; 29:3357-69. [PMID: 25911610 DOI: 10.1096/fj.14-263194] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 04/16/2015] [Indexed: 01/04/2023]
Abstract
Glucolipotoxic stress has been identified as a key player in the progression of pancreatic β-cell dysfunction contributing to insulin resistance and the development of type 2 diabetes mellitus (T2D). It has been suggested that bioactive lipid intermediates, formed under lipotoxic conditions, are involved in these processes. Here, we show that sphingosine 1-phosphate (S1P) levels are not only increased in palmitate-stimulated pancreatic β-cells but also regulate β-cell homeostasis in a divergent manner. Although S1P possesses a prosurvival effect in β-cells, an enhanced level of the sphingolipid antagonizes insulin-mediated cell growth and survival via the sphingosine 1-phosphate receptor subtype 2 (S1P2) followed by an inhibition of Akt-signaling. In an attempt to investigate the role of the S1P/S1P2 axis in vivo, the New Zealand obese (NZO) diabetic mouse model, characterized by β-cell loss under high-fat diet (HFD) conditions, was used. The occurrence of T2D was accompanied by an increase of plasma S1P levels. To examine whether S1P contributes to the morphologic changes of islets via S1P2, the receptor antagonist JTE-013 was administered. Most interestingly, JTE-013 rescued β-cell damage clearly indicating an important role of the S1P2 in β-cell homeostasis. Therefore, the present study provides a new therapeutic strategy to diminish β-cell dysfunction and the development of T2D.
Collapse
Affiliation(s)
- Lukasz Japtok
- *Faculty of Mathematics and Natural Science, Institute of Nutritional Science, Department of Toxicology, University of Potsdam, Potsdam, Germany; German Institute of Human Nutrition, Max Rubner Laboratory, Nuthetal, Germany; and Lpath Incorporated, San Diego, California, USA
| | - Elisabeth I Schmitz
- *Faculty of Mathematics and Natural Science, Institute of Nutritional Science, Department of Toxicology, University of Potsdam, Potsdam, Germany; German Institute of Human Nutrition, Max Rubner Laboratory, Nuthetal, Germany; and Lpath Incorporated, San Diego, California, USA
| | - Susann Fayyaz
- *Faculty of Mathematics and Natural Science, Institute of Nutritional Science, Department of Toxicology, University of Potsdam, Potsdam, Germany; German Institute of Human Nutrition, Max Rubner Laboratory, Nuthetal, Germany; and Lpath Incorporated, San Diego, California, USA
| | - Stephanie Krämer
- *Faculty of Mathematics and Natural Science, Institute of Nutritional Science, Department of Toxicology, University of Potsdam, Potsdam, Germany; German Institute of Human Nutrition, Max Rubner Laboratory, Nuthetal, Germany; and Lpath Incorporated, San Diego, California, USA
| | - Leigh J Hsu
- *Faculty of Mathematics and Natural Science, Institute of Nutritional Science, Department of Toxicology, University of Potsdam, Potsdam, Germany; German Institute of Human Nutrition, Max Rubner Laboratory, Nuthetal, Germany; and Lpath Incorporated, San Diego, California, USA
| | - Burkhard Kleuser
- *Faculty of Mathematics and Natural Science, Institute of Nutritional Science, Department of Toxicology, University of Potsdam, Potsdam, Germany; German Institute of Human Nutrition, Max Rubner Laboratory, Nuthetal, Germany; and Lpath Incorporated, San Diego, California, USA
| |
Collapse
|
20
|
Lou PH, Lucchinetti E, Zhang L, Affolter A, Gandhi M, Zhakupova A, Hersberger M, Hornemann T, Clanachan AS, Zaugg M. Propofol (Diprivan®) and Intralipid® exacerbate insulin resistance in type-2 diabetic hearts by impairing GLUT4 trafficking. Anesth Analg 2015; 120:329-40. [PMID: 25437926 DOI: 10.1213/ane.0000000000000558] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND The IV anesthetic, propofol, when administered as fat emulsion-based formulation (Diprivan) promotes insulin resistance, but the direct effects of propofol and its solvent, Intralipid, on cardiac insulin resistance are unknown. METHODS Hearts of healthy and type-2 diabetic rats (generated by fructose feeding) were aerobically perfused for 60 minutes with 10 μM propofol in the formulation of Diprivan or an equivalent concentration of its solvent Intralipid (25 μM) ± insulin (100 mU•L). Glucose uptake, glycolysis, and glycogen metabolism were measured using [H]glucose. Activation of Akt, GSK3β, AMPK, ERK1/2, p38MAPK, S6K1, JNK, protein kinase Cθ (PKCθ), and protein kinase CCβII (PKCβII) was determined using immunoblotting. GLUT4 trafficking and phosphorylations of insulin receptor substrate-1 (IRS-1) at Ser307(h312), Ser1100(h1101), and Tyr608(hTyr612) were measured. Mass spectrometry was used to determine acylcarnitines, phospholipids, and sphingolipids. RESULTS Diprivan and Intralipid reduced insulin-induced glucose uptake and redirected glucose to glycogen stores in diabetic hearts. Reduced glucose uptake was accompanied by lower GLUT4 trafficking to the sarcolemma. Diprivan and Intralipid inactivated GSK3β but activated AMPK and ERK1/2 in diabetic hearts. Only Diprivan increased phosphorylation of Akt(Ser473/Thr308) and translocated PKCθ and PKCβII to the sarcolemma in healthy hearts, whereas it activated S6K1 and p38MAPK and translocated PKCβII in diabetic hearts. Furthermore, only Diprivan phosphorylated IRS-1 at Ser1100(h1101) in healthy and diabetic hearts. JNK expression, phosphorylation of Ser307(h312) of IRS-1, and PKCθ expression and translocation were increased, whereas GLUT4 expression was reduced in insulin-treated diabetic hearts. Phosphatidylglycerol, phosphatidylethanolamine, and C18-sphingolipids accumulated in Diprivan-perfused and Intralipid-perfused diabetic hearts. CONCLUSIONS Propofol and Intralipid promote insulin resistance predominantly in type-2 diabetic hearts.
Collapse
Affiliation(s)
- Phing-How Lou
- From the *Department of Anesthesiology and Pain Medicine and Department of Pharmacology, University of Alberta, Edmonton, Canada; †Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, Canada; ‡Department of Clinical Chemistry, University Children's Hospital Zurich, Zurich, Switzerland; §Department of Pharmacology, University of Alberta, Edmonton, Canada; and ‖Department of Clinical Chemistry, University Hospital Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Glucosamine for osteoarthritis: biological effects, clinical efficacy, and safety on glucose metabolism. ARTHRITIS 2014; 2014:432463. [PMID: 24678419 PMCID: PMC3941227 DOI: 10.1155/2014/432463] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 12/20/2013] [Indexed: 01/01/2023]
Abstract
Osteoarthritis is a chronic degenerative disorder that currently represents one of the main causes of disability within the elderly population and an important presenting complaint overall. The pathophysiologic basis of osteoarthritis entails a complex group of interactions among biochemical and mechanical factors that have been better characterized in light of a recent spike in research on the subject. This has led to an ongoing search for ideal therapeutic management schemes for these patients, where glucosamine is one of the most frequently used alternatives worldwide due to their chondroprotective properties and their long-term effects. Its use in the treatment of osteoarthritis is well established; yet despite being considered effective by many research groups, controversy surrounds their true effectiveness. This situation stems from several methodological aspects which hinder appropriate data analysis and comparison in this context, particularly regarding objectives and target variables. Similar difficulties surround the assessment of the potential ability of glucosamine formulations to alter glucose metabolism. Nevertheless, evidence supporting diabetogenesis by glucosamine remains scarce in humans, and to date, this association should be considered only a theoretical possibility.
Collapse
|
22
|
Wallace M, Whelan H, Brennan L. Metabolomic analysis of pancreatic beta cells following exposure to high glucose. Biochim Biophys Acta Gen Subj 2013; 1830:2583-90. [PMID: 23153904 DOI: 10.1016/j.bbagen.2012.10.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 10/03/2012] [Accepted: 10/29/2012] [Indexed: 11/17/2022]
Abstract
BACKGROUND Chronic exposure to hyperglycaemic conditions has been shown to have detrimental effects on beta cell function. The resulting glucotoxicity is a contributing factor to the development of type 2 diabetes. The objective of this study was to combine a metabolomics approach with functional assays to gain insight into the mechanism by which glucotoxicity exerts its effects. METHODS The BRIN-BD11 and INS-1E beta cell lines were cultured in 25 mM glucose for 20 h to mimic glucotoxic effects. PDK-2 protein expression, intracellular glutathione levels and the change in mitochondrial membrane potential and intracellular calcium following glucose stimulation were determined. Metabolomic analysis of beta cell metabolite extracts was performed using GC-MS, 1H NMR and 13C NMR. RESULTS Conditions to mimic glucotoxicity were established and resulted in no loss of cellular viability in either cell line while causing a decrease in insulin secretion. Metabolomic analysis of beta cells following exposure to high glucose revealed a change in amino acids, an increase in glucose and a decrease in phospho-choline, n-3 and n-6 PUFAs during glucose stimulated insulin secretion relative to cells cultured under control conditions. However, no changes in calcium handling or mitochondrial membrane potential were evident. CONCLUSIONS Results indicate that a decrease in TCA cycle metabolism in combination with an alteration in fatty acid composition and phosphocholine levels may play a role in glucotoxicity induced impairment of glucose stimulated insulin secretion. GENERAL SIGNIFICANCE Alterations in certain metabolic pathways play a role in glucotoxicity in the pancreatic beta cell.
Collapse
Affiliation(s)
- Martina Wallace
- UCD Conway Institute, UCD School of Agriculture, Food Science and Veterinary Medicine, UCD, Belfield, Dublin 4, Ireland
| | | | | |
Collapse
|
23
|
Tassone EJ, Sciacqua A, Andreozzi F, Presta I, Perticone M, Carnevale D, Casaburo M, Hribal ML, Sesti G, Perticone F. Angiotensin (1-7) counteracts the negative effect of angiotensin II on insulin signalling in HUVECs. Cardiovasc Res 2013; 99:129-36. [PMID: 23524303 DOI: 10.1093/cvr/cvt065] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
AIMS Angiotensin II participates to the regulation of cardiovascular physiology and it is involved in molecular mechanisms of insulin resistance. Angiotensin (1-7), derived from angiotensin II metabolism, is able to counteract many of the haemodynamic and non-haemodynamic actions of angiotensin II. In this study, we investigated in human umbilical vein endothelial cells (HUVECs) the possible action of angiotensin (1-7) on the insulin signalling pathway. METHODS AND RESULTS We stimulated HUVECs with insulin, angiotensin II and angiotensin (1-7), testing the effects on endothelial nitric oxide synthase (eNOS) enzyme activation and on insulin receptor substrate-1 (IRS1) phosphorylation. Moreover, we analysed the involvement of angiotensin type1, type2, and Mas receptors in these actions. Finally, we measured the nitric oxide (NO) production, the intracellular cGMP and the PKG-related activity in HUVECs, and the subsequent functional vasoactive effect of angiotensin (1-7) in mesenteric arteries of mice. Angiotensin II inhibits the insulin-induced Akt and eNOS phosphorylation, reducing the NO production. On the other hand, angiotensin (1-7) counteracts the inhibitory effect of angiotensin II, being able to restore the insulin-induced Akt/eNOS activation and the NO production. This effect is mediated by the Mas receptor. The inhibitory effects of angiotensin II on insulin signalling are, at least in part, mediated by an increased serine phosphorylation of IRS₁. Angiotensin (1-7) inhibits the serine phosphorylation of IRS1 induced by angiotensin II. CONCLUSION In endothelial cells angiotensin (1-7) counteracts the negative effects of angiotensin II on insulin signalling and NO production. The balance between angiotensin II and angiotensin (1-7) could represent a key mechanism in the pathophysiological processes leading to endothelial dysfunction and insulin-resistance.
Collapse
Affiliation(s)
- Eliezer Joseph Tassone
- Department of Surgical and Medical Sciences, University Magna Græcia of Catanzaro, Campus Universitario di Germaneto, V.le Europa, 88100 Catanzaro, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Peptide hormones are powerful regulators of various biological processes. To guarantee continuous availability and function, peptide hormone secretion must be tightly coupled to its biosynthesis. A simple but efficient way to provide such regulation is through an autocrine feedback mechanism in which the secreted hormone is "sensed" by its respective receptor and initiates synthesis at the level of transcription and/or translation. Such a secretion-biosynthesis coupling has been demonstrated for insulin; however, because of insulin's unique role as the sole blood glucose-decreasing peptide hormone, this coupling is considered an exception rather than a more generally used mechanism. Here we provide evidence of a secretion-biosynthesis coupling for glucagon, one of several peptide hormones that increase blood glucose levels. We show that glucagon, secreted by the pancreatic α cell, up-regulates the expression of its own gene by signaling through the glucagon receptor, PKC, and PKA, supporting the more general applicability of an autocrine feedback mechanism in regulation of peptide hormone synthesis.
Collapse
|
25
|
Yeo RWY, Yang K, Li G, Lim SK. High glucose predisposes gene expression and ERK phosphorylation to apoptosis and impaired glucose-stimulated insulin secretion via the cytoskeleton. PLoS One 2012; 7:e44988. [PMID: 23024780 PMCID: PMC3443235 DOI: 10.1371/journal.pone.0044988] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 08/11/2012] [Indexed: 01/09/2023] Open
Abstract
Chronic high glucose (HG) inflicts glucotoxicity on vulnerable cell types such as pancreatic β cells and contributes to insulin resistance and impaired insulin secretion in diabetic patients. To identify HG-induced cellular aberrations that are candidate mediators of glucotoxicity in pancreatic β cells, we analyzed gene expression in ERoSHK6, a mouse insulin-secreting cell line after chronic HG exposure (six-day exposure to 33.3 mM glucose). Chronic HG exposure which reduced glucose-stimulated insulin secretion (GSIS) increased transcript levels of 185 genes that clustered primarily in 5 processes namely cellular growth and proliferation; cell death; cellular assembly and organization; cell morphology; and cell-to-cell signaling and interaction. The former two were validated by increased apoptosis of ERoSHK6 cells after chronic HG exposure and reaffirmed the vulnerability of β cells to glucotoxicity. The three remaining processes were partially substantiated by changes in cellular morphology and structure, and instigated an investigation of the cytoskeleton and cell-cell adhesion. These studies revealed a depolymerized actin cytoskeleton that lacked actin stress fibers anchored at vinculin-containing focal adhesion sites as well as loss of E-cadherin-mediated cell-cell adherence after exposure to chronic HG, and were concomitant with constitutive ERK1/2 phosphorylation that was refractory to serum and glucose deprivation. Although inhibition of ERK phosphorylation by PD98059 promoted actin polymerization, it increased apoptosis and GSIS impairment. These findings suggest that ERK phosphorylation is a proximate regulator of cellular processes targeted by chronic HG-induced gene expression and that dynamic actin polymerization and depolymerization is important in β cell survival and function. Therefore, chronic HG alters gene expression and signal transduction to predispose the cytoskeleton towards apoptosis and GSIS impairment.
Collapse
Affiliation(s)
- Ronne Wee Yeh Yeo
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | | | - GuoDong Li
- Department of Clinical Research, Singapore General Hospital, Singapore, Singapore
| | - Sai Kiang Lim
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
26
|
Irace C, Rossetti M, Carallo C, Morano S, Vespertini V, Mandosi E, Maranghi M, Fiorentino R, Filetti S, Gnasso A. Transaminase levels in the upper normal range are associated with oral hypoglycemic drug therapy failure in patients with type 2 diabetes. Acta Diabetol 2012; 49:193-7. [PMID: 21305325 DOI: 10.1007/s00592-011-0261-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 01/22/2011] [Indexed: 01/09/2023]
Abstract
Incident diabetes and the worsening of diabetes have recently been linked to hepatic steatosis. Aim of our study was to determine whether oral hypoglycemic agent failure is associated with higher transaminase levels (valid measure of liver steatosis). We selected 200 patients, attenders (3 consecutive annual evaluations) in our clinic, with type 2 diabetes among which 100 with oral hypoglycemic agents failure and 100 who were still responsive to oral therapy. Failure to therapy was defined as glycated hemoglobin >7.5% despite maximal-dose oral therapy. We analyzed patient histories and laboratory data. Compared with oral-therapy-responsive patients, those with failure had a significantly higher level mostly of alanine aminotransferase at the time of therapy failure and 2 years before. They were more likely to have had symptoms of hyperglycemia at the time of diabetes diagnosis. Regression analysis indicated that each 5-unit increase in transaminase levels independently increased the risk for oral hypoglycemic agents failure by 1.70. Higher liver transaminase levels, especially in patients who had symptomatic hyperglycemia at diabetes diagnosis, associate with oral hypoglycemic agent failure. The possible pathogenetic link between transaminase and declining islet function might consist of insulin resistance and increased circulating fatty acid levels, in turn causing liver steatosis and beta-cell dysfunction.
Collapse
Affiliation(s)
- Concetta Irace
- Gaetano Salvatore Department of Clinical and Experimental Medicine, Magna Græcia University, Catanzaro University Campus S. Venuta, 88100, Catanzaro, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Tang C, Koulajian K, Schuiki I, Zhang L, Desai T, Ivovic A, Wang P, Robson-Doucette C, Wheeler MB, Minassian B, Volchuk A, Giacca A. Glucose-induced beta cell dysfunction in vivo in rats: link between oxidative stress and endoplasmic reticulum stress. Diabetologia 2012; 55:1366-79. [PMID: 22396011 DOI: 10.1007/s00125-012-2474-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 12/07/2011] [Indexed: 11/29/2022]
Abstract
AIMS/HYPOTHESIS Endoplasmic reticulum (ER) stress has been implicated in glucose-induced beta cell dysfunction. However, its causal role has not been established in vivo. Our objective was to determine the causal role of ER stress and its link to oxidative stress in glucose-induced beta cell dysfunction in vivo. METHODS Healthy Wistar rats were infused i.v. with glucose for 48 h to achieve 20 mmol/l hyperglycaemia with or without the co-infusion of the superoxide dismutase mimetic tempol (TPO), or the chemical chaperones 4-phenylbutyrate (PBA) or tauroursodeoxycholic acid (TUDCA). This was followed by assessment of beta cell function and measurement of ER stress markers and superoxide in islets. RESULTS Glucose infusion for 48 h increased mitochondrial superoxide and ER stress markers and impaired beta cell function. Co-infusion of TPO, which we previously found to reduce mitochondrial superoxide and prevent glucose-induced beta cell dysfunction, reduced ER stress markers. Similar to findings with TPO, co-infusion of PBA, which decreases mitochondrial superoxide, prevented glucose-induced beta cell dysfunction in isolated islets. TUDCA was also effective. Also similar to findings with TPO, PBA prevented beta cell dysfunction during hyperglycaemic clamps in vivo and after hyperglycaemia (15 mmol/l) for 96 h. CONCLUSIONS/INTERPRETATION Here, we causally implicate ER stress in hyperglycaemia-induced beta cell dysfunction in vivo. We show that: (1) there is a positive feedback cycle between oxidative stress and ER stress in glucose-induced beta cell dysfunction, which involves mitochondrial superoxide; and (2) this cycle can be interrupted by superoxide dismutase mimetics as well as chemical chaperones, which are of potential interest to preserve beta cell function in type 2 diabetes.
Collapse
Affiliation(s)
- C Tang
- Department of Physiology, University of Toronto, Medical Science Building, Room 3336, 1 King's College Circle, Toronto, ON, Canada M5S 1A8
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Asrih M, Pellieux C, Papageorgiou I, Lerch R, Montessuit C. Role of ERK1/2 activation in microtubule stabilization and glucose transport in cardiomyocytes. Am J Physiol Endocrinol Metab 2011; 301:E836-43. [PMID: 21771966 DOI: 10.1152/ajpendo.00160.2011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously demonstrated that microtubule disruption impairs stimulation of glucose uptake in cardiomyocytes and that 9-cis retinoic acid (9cRA) treatment preserved both microtubule integrity and stimulated glucose transport. Herein we investigated whether 1) activation of the extracellular signal-regulated kinases (ERK1/2) is responsible for microtubule destabilization and 2) ERK1/2 inactivation may explain the positive effects of 9cRA on glucose uptake and microtubule stabilization. Adult rat cardiomyocytes in primary culture showed increased basal ERK1/2 phosphorylation. Cardiomyocytes exposed to inhibitors of the ERK1/2 kinase mitogen/extracellular signal-regulated kinase (MEK) 1/2 had preserved microtubular scaffold, including microtubule-organizing centers (MTOC), together with increased insulin and metabolic stress-stimulated glucose transport as well as signaling, thus replicating the effects of 9cRA treatment. Although 9cRA treatment did not significantly reduce global ERK1/2 activation, it markedly reduced perinuclear-activated ERK1/2 at the location of MTOC. 9cRA also triggered relocation of the ERK1/2 phosphatase mitogen-activated protein kinase phosphatase-3 from the cytosol to the nucleus. These results indicate that, in cardiomyocytes, microtubule destabilization, leading to impaired stimulation of glucose transport, is mediated by ERK1/2 activation, impacting on the MTOC. 9cRA acid restores stimulated glucose transport indirectly through compartmentalized inactivation of ERK1/2.
Collapse
Affiliation(s)
- Mohamed Asrih
- Division of Cardiology, Geneva University Hospitals, Geneva, Switzerland
| | | | | | | | | |
Collapse
|
29
|
Abstract
Studies of epilepsy have mainly focused on the membrane proteins that control neuronal excitability. Recently, attention has been shifting to intracellular proteins and their interactions, signaling cascades and feedback regulation as they relate to epilepsy. The mTOR (mammalian target of rapamycin) signal transduction pathway, especially, has been suggested to play an important role in this regard. These pathways are involved in major physiological processes as well as in numerous pathological conditions. Here, involvement of the mTOR pathway in epilepsy will be reviewed by presenting; an overview of the pathway, a brief description of key signaling molecules, a summary of independent reports and possible implications of abnormalities of those molecules in epilepsy, a discussion of the lack of experimental data, and questions raised for the understanding its epileptogenic mechanism.
Collapse
Affiliation(s)
- Chang Hoon Cho
- Epilepsy Research Laboratory Department of Pediatrics Children's Hospital of Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
30
|
Solinas G, Karin M. JNK1 and IKKbeta: molecular links between obesity and metabolic dysfunction. FASEB J 2010; 24:2596-611. [PMID: 20371626 DOI: 10.1096/fj.09-151340] [Citation(s) in RCA: 253] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Inflammation is thought to underlie the pathogenesis of many chronic diseases. It is now established that obesity results in a state of chronic low-grade inflammation thought to contribute to several metabolic disorders, including insulin resistance and pancreatic islet dysfunction. The protein kinases JNK1 and IKKbeta have been found to serve as critical molecular links between obesity, metabolic inflammation, and disorders of glucose homeostasis. The precise mechanisms of these linkages are still being investigated. However, as we discuss here, JNK1 and IKKbeta are activated by almost all forms of metabolic stress that have been implicated in insulin resistance or islet dysfunction. Furthermore, both JNK1 and IKKbeta are critically involved in the promotion of diet-induced obesity, metabolic inflammation, insulin resistance, and beta-cell dysfunction. Understanding the molecular mechanisms by which JNK1 and IKKbeta mediate obesity-induced metabolic stress is likely to be of importance for the development of new treatments for a variety of obesity-associated diseases.
Collapse
Affiliation(s)
- Giovanni Solinas
- Laboratory of Metabolic Stress Biology, Department of Medicine, Physiology, University of Fribourg, Chemin du Musée 5, CH-1700 Fribourg, Switzerland.
| | | |
Collapse
|
31
|
NAPDH oxidase mediates glucolipotoxicity-induced beta cell dysfunction – Clinical implications. Med Hypotheses 2010; 74:596-600. [DOI: 10.1016/j.mehy.2008.09.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 09/12/2008] [Accepted: 09/27/2008] [Indexed: 01/09/2023]
|
32
|
Sutton-McDowall ML, Gilchrist RB, Thompson JG. The pivotal role of glucose metabolism in determining oocyte developmental competence. Reproduction 2010; 139:685-95. [PMID: 20089664 DOI: 10.1530/rep-09-0345] [Citation(s) in RCA: 364] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The environment that the cumulus oocyte complex (COC) is exposed to during either in vivo or in vitro maturation (IVM) can have profound effects on the success of fertilisation and subsequent embryo development. Glucose is a pivotal metabolite for the COC and is metabolised by glycolysis, the pentose phosphate pathway (PPP), the hexosamine biosynthesis pathway (HBP) and the polyol pathway. Over the course of oocyte maturation, a large proportion of total glucose is metabolised via the glycolytic pathway to provide substrates such as pyruvate for energy production. Glucose is also the substrate for many cellular functions during oocyte maturation, including regulation of nuclear maturation and redox state via the PPP and for the synthesis of substrates of extracellular matrices (cumulus expansion) and O-linked glycosylation (cell signalling) via the HBP. However, the oocyte is susceptible to glucose concentration-dependent perturbations in nuclear and cytoplasmic maturation, leading to poor embryonic development post-fertilisation. For example, glucose concentrations either too high or too low result in precocious resumption of nuclear maturation. This review will discuss the relevant pathways of glucose metabolism by COCs during in vivo maturation and IVM, including the relative contribution of the somatic and gamete compartments of the COC to glucose metabolism. The consequences of exposing COCs to abnormal glucose concentrations will also be examined, either during IVM or by altered maternal environments, such as during hyperglycaemia induced by diabetes and obesity.
Collapse
Affiliation(s)
- Melanie L Sutton-McDowall
- School of Paediatrics and Reproductive Health, The Robinson Institute, Research Centre for Reproductive Health, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| | | | | |
Collapse
|
33
|
Klein AL, Berkaw MN, Buse MG, Ball LE. O-linked N-acetylglucosamine modification of insulin receptor substrate-1 occurs in close proximity to multiple SH2 domain binding motifs. Mol Cell Proteomics 2009; 8:2733-45. [PMID: 19671924 DOI: 10.1074/mcp.m900207-mcp200] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Insulin receptor substrate-1 (IRS-1) is a highly phosphorylated adaptor protein critical to insulin and IGF-1 receptor signaling. Ser/Thr kinases impact the metabolic and mitogenic effects elicited by insulin and IGF-1 through feedback and feed forward regulation at the level of IRS-1. Ser/Thr residues of IRS-1 are also O-GlcNAc-modified, which may influence the phosphorylation status of the protein. To facilitate the understanding of the functional effects of O-GlcNAc modification on IRS-1-mediated signaling, we identified the sites of O-GlcNAc modification of rat and human IRS-1. Tandem mass spectrometric analysis of IRS-1, exogenously expressed in HEK293 cells, revealed that the C terminus, which is rich in docking sites for SH2 domain-containing proteins, was O-GlcNAc-modified at multiple residues. Rat IRS-1 was O-GlcNAc-modified at Ser(914), Ser(1009), Ser(1036), and Ser(1041). Human IRS-1 was O-GlcNAc-modified at Ser(984) or Ser(985), at Ser(1011), and possibly at multiple sites within residues 1025-1045. O-GlcNAc modification at a conserved residue in rat (Ser(1009)) and human (Ser(1011)) IRS-1 is adjacent to a putative binding motif for the N-terminal SH2 domains of p85alpha and p85beta regulatory subunits of phosphatidylinositol 3-kinase and the tyrosine phosphatase SHP2 (PTPN11). Immunoblot analysis using an antibody generated against human IRS-1 Ser(1011) GlcNAc further confirmed the site of attachment and the identity of the +203.2-Da mass shift as beta-N-acetylglucosamine. The accumulation of IRS-1 Ser(1011) GlcNAc in HEPG2 liver cells and MC3T3-E1 preosteoblasts upon inhibition of O-GlcNAcase indicates that O-GlcNAcylation of endogenously expressed IRS-1 is a dynamic process that occurs at normal glucose concentrations (5 mm). O-GlcNAc modification did not occur at any known or newly identified Ser/Thr phosphorylation sites and in most cases occurred simultaneously with phosphorylation of nearby residues. These findings suggest that O-GlcNAc modification represents an additional layer of posttranslational regulation that may impact the specificity of effects elicited by insulin and IGF-1.
Collapse
Affiliation(s)
- Amanda L Klein
- Department of Molecular and Cellular Pharmacology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | |
Collapse
|
34
|
Ma QL, Yang F, Rosario ER, Ubeda OJ, Beech W, Gant DJ, Chen PP, Hudspeth B, Chen C, Zhao Y, Vinters HV, Frautschy SA, Cole GM. Beta-amyloid oligomers induce phosphorylation of tau and inactivation of insulin receptor substrate via c-Jun N-terminal kinase signaling: suppression by omega-3 fatty acids and curcumin. J Neurosci 2009; 29:9078-89. [PMID: 19605645 PMCID: PMC3849615 DOI: 10.1523/jneurosci.1071-09.2009] [Citation(s) in RCA: 413] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 05/29/2009] [Accepted: 06/15/2009] [Indexed: 12/25/2022] Open
Abstract
Both insulin resistance (type II diabetes) and beta-amyloid (Abeta) oligomers are implicated in Alzheimer's disease (AD). Here, we investigate the role of Abeta oligomer-induced c-Jun N-terminal kinase (JNK) activation leading to phosphorylation and degradation of the adaptor protein insulin receptor substrate-1 (IRS-1). IRS-1 couples insulin and other trophic factor receptors to downstream kinases and neuroprotective signaling. Increased phospho-IRS-1 is found in AD brain and insulin-resistant tissues from diabetics. Here, we report Abeta oligomers significantly increased active JNK and phosphorylation of IRS-1 (Ser616) and tau (Ser422) in cultured hippocampal neurons, whereas JNK inhibition blocked these responses. The omega-3 fatty acid docosahexaenoic acid (DHA) similarly inhibited JNK and the phosphorylation of IRS-1 and tau in cultured hippocampal neurons. Feeding 3xTg-AD transgenic mice a diet high in saturated and omega-6 fat increased active JNK and phosphorylated IRS-1 and tau. Treatment of the 3xTg-AD mice on high-fat diet with fish oil or curcumin or a combination of both for 4 months reduced phosphorylated JNK, IRS-1, and tau and prevented the degradation of total IRS-1. This was accompanied by improvement in Y-maze performance. Mice fed with fish oil and curcumin for 1 month had more significant effects on Y-maze, and the combination showed more significant inhibition of JNK, IRS-1, and tau phosphorylation. These data indicate JNK mediates Abeta oligomer inactivation of IRS-1 and phospho-tau pathology and that dietary treatment with fish oil/DHA, curcumin, or a combination of both has the potential to improve insulin/trophic signaling and cognitive deficits in AD.
Collapse
Affiliation(s)
- Qiu-Lan Ma
- Department of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Chang GR, Chiu YS, Wu YY, Chen WY, Liao JW, Chao TH, Mao FC. Rapamycin protects against high fat diet-induced obesity in C57BL/6J mice. J Pharmacol Sci 2009; 109:496-503. [PMID: 19372632 DOI: 10.1254/jphs.08215fp] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Rapamycin (RAPA), an immunosuprpressive drug used extensively to prevent graft rejection in transplant patients, has been reported to inhibit adipogenesis in vitro. In this study, we investigated the anti-obesity effects of RAPA in C57BL/6J mice on a high-fat diet (HFD). Mice treated with RAPA (2 mg/kg per week for 16 weeks) had reduced body weight and epididymal fat pads/body weight, reduced daily food efficiency, and lower serum leptin and insulin levels compared with the HFD control mice. However, RAPA-treated mice were hyperphagic, demonstrating an increase in food intake. Dissection of RAPA-treated mice revealed a marked reduction in fatty liver scores, average fat cell size, and percentage of large adipocytes of retroperitoneal and epididymal white adipose tissue (RWAT and EWAT), compared to the HFD control mice. These results suggest that RAPA prevented the effect of the high-fat diet on the rate of accretion in body weight via reducing lipid accumulation, despite greater food intake. It is likely that RAPA may serve as a potential strategy for body weight control and/or anti-obesity therapy.
Collapse
Affiliation(s)
- Geng-Ruei Chang
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
36
|
Defronzo RA. Banting Lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes 2009; 58:773-95. [PMID: 19336687 PMCID: PMC2661582 DOI: 10.2337/db09-9028] [Citation(s) in RCA: 1931] [Impact Index Per Article: 120.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ralph A Defronzo
- Diabetes Division, University of Texas Health Science Center, San Antonio, Texas, USA.
| |
Collapse
|
37
|
Abstract
The appropriate function of insulin-producing pancreatic beta-cells is crucial for the regulation of glucose homeostasis, and its impairment leads to diabetes mellitus, the most common metabolic disorder in man. In addition to glucose, the major nutrient factor, inputs from the nervous system, humoral components, and cell-cell communication within the islet of Langerhans act together to guarantee the release of appropriate amounts of insulin in response to changes in blood glucose levels. Data obtained within the past decade in several laboratories have revitalized controversy over the autocrine feedback action of secreted insulin on beta-cell function. Although insulin historically has been suggested to exert a negative effect on beta-cells, recent data provide evidence for a positive role of insulin in transcription, translation, ion flux, insulin secretion, proliferation, and beta-cell survival. Current insights on the role of insulin on pancreatic beta-cell function are discussed.
Collapse
Affiliation(s)
- Ingo B Leibiger
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden.
| | | | | |
Collapse
|
38
|
Soesanto YA, Luo B, Jones D, Taylor R, Gabrielsen JS, Parker G, McClain DA. Regulation of Akt signaling by O-GlcNAc in euglycemia. Am J Physiol Endocrinol Metab 2008; 295:E974-80. [PMID: 18728220 PMCID: PMC2575895 DOI: 10.1152/ajpendo.90366.2008] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The hexosamine biosynthesis pathway (HBP) regulates the posttranslational modification of nuclear and cytoplasmic protein by O-linked N-acetylglucosamine (O-GlcNAc). Numerous studies have demonstrated that, in hyperglycemic conditions, excessive glucose flux through this pathway contributes to the development of insulin resistance. The role of the HBP in euglycemia, however, remains largely unknown. Here we investigated the effect of O-GlcNAc on hepatic Akt signaling at physiological concentrations of glucose. In HepG2 cells cultured in 5 mM glucose, removal of O-GlcNAc by adenoviral-mediated overexpression of O-GlcNAcase increased Akt activity and phosphorylation. We also observed that Akt was recognized by succinylated wheat germ agglutinin (sWGA), which specifically binds O-GlcNAc. Overexpression of O-GlcNAcase in HepG2 cells reduced the levels of Akt in sWGA precipitates. The increased Akt activity was accompanied by increased phosphorylation of Akt substrates and reduced mRNA for glucose-6-phosphatase and phosphoenolpyruvate carboxykinase (PEPCK). The increased Akt activity was not a result of activation of its upstream activator phosphoinositide 3-kinase (PI 3-kinase). Further demonstrating Akt regulation by O-GlcNAc, we found that overexpression of O-GlcNAcase in the livers of euglycemic mice also significantly increased Akt activity, resulting in increased phosphorylation of downstream targets and decreased mRNA for glucose-6-phosphatase. Together, these data suggest that O-GlcNAc regulates Akt signaling in hepatic models under euglycemic conditions.
Collapse
Affiliation(s)
- Yudi A Soesanto
- Division of Endocrinology, University of Utah School of Medicine, Salt Lake City, Utah 84132, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Lu HT, Liang YC, Sheu MT, Ho HO, Lin YT, Hsieh MS, Chen CH. Disease-modifying effects of glucosamine HCl involving regulation of metalloproteinases and chemokines activated by interleukin-1beta in human primary synovial fibroblasts. J Cell Biochem 2008; 104:38-50. [PMID: 18080321 DOI: 10.1002/jcb.21597] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The purpose of this study was to investigate the possible involvement of synovium in cartilage destruction in osteoarthritis (OA) patients. Using human primary synovial fibroblasts (HPSFs), we examined the effects of glucosamine (GLN) on the regulation of the expression of matrix metalloproteinases (MMP-1, -2, and -13) and chemokines (IL-8, MCP-1, and RANTES) as well as the involvement of MAPK signal pathways (JNK, ERK, and p-38) and the transcription factor of NF-kappaB on the present or absence of interleukin (IL)-1beta. Our experiments showed that protein production and mRNA expressions of MMP-1, MMP-3, MMP-13, IL-8, MCP-1, and RANTES were downregulated by treatment with glucosamine in HPSFs. The results further showed that GLN could inhibit IkappaBalpha phosphorylation and IkappaBalpha degradation leading to inhibition of the translocation of NF-kappaB to nuclei. However, GLN upregulated MAPKs pathways in HPSFs cells with or without IL-1beta. The results suggest that the inhibition of MMP-1, -3, and -13 expressions as well as IL-8, MCP-1, and RANTES productions by GLN might mediate suppression of NF-kappaB signal pathways, and HPSFs seem to have a potential functions as an alternative source of MMPs and chemokines for inducing the degradation of cartilage in OA.
Collapse
Affiliation(s)
- Hsien-Tsung Lu
- Department of Orthopedics and Traumatology, Taipei Medical University Hospital, Taipei, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
40
|
Kuo M, Zilberfarb V, Gangneux N, Christeff N, Issad T. O-GlcNAc modification of FoxO1 increases its transcriptional activity: a role in the glucotoxicity phenomenon? Biochimie 2008; 90:679-85. [PMID: 18359296 DOI: 10.1016/j.biochi.2008.03.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Accepted: 03/14/2008] [Indexed: 10/22/2022]
Abstract
O-GlcNAc glycosylations on serines or threonines are reversible post-translational modifications that control the localisation, the activity or the stability of cytosolic and nuclear proteins. These dynamic modifications are tightly dependent on the availability of glucose and on its flux through the hexosamine biosynthetic pathway. We recently showed that treatments that increase protein O-GlcNAc glycosylation (high-glucose concentrations, glucosamine) or inhibit their deglycosylation (PUGNAc), induced O-GlcNAc modification of FoxO1 in HEK293 cells. O-GlcNAc glycosylation of FoxO1 resulted in an increased of its activity towards a glucose 6-phosphatase promoter-luciferase reporter gene (G6Pase-luc). This effect appeared to be independent of FoxO1 sub-cellular re-localisation, since it was also observed with the constitutively nuclear FoxO1-AAA mutant. In liver-derived HepG2 cells, glucosamine and PUGNAc increased the expression of G6Pase mRNA, and synergistic effects were observed when both agents were present together. In addition, the expression of PGC1 alpha gene, which is known to be under the control of FoxO1, was also increased by glucosamine and PUGNAc. In HepG2 cells stably expressing the G6Pase-luc reporter gene, glucosamine and PUGNAc also increased the activity of the G6Pase promoter. The stimulation of the G6Pase reporter gene by these agents was abolished by two different FoxO1 siRNAs, thereby demonstrating the involvement of endogenous FoxO1 in the observed effects. Since G6Pase plays a key role in glucose production by the liver, increased in its expression through FoxO1 O-GlcNAc modification may be of considerable importance in the context of glucotoxicity associated with chronic hyperglycaemia. Moreover, since FoxO1 also plays important roles in several aspects of cell biology, including cell proliferation, survival and apoptosis, the regulation of FoxO1 activity by O-GlcNAc modification may have implications for other crucial biological processes.
Collapse
Affiliation(s)
- MeiShiue Kuo
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France
| | | | | | | | | |
Collapse
|
41
|
Marchetti P, Dotta F, Lauro D, Purrello F. An overview of pancreatic beta-cell defects in human type 2 diabetes: Implications for treatment. ACTA ACUST UNITED AC 2008; 146:4-11. [PMID: 17889380 DOI: 10.1016/j.regpep.2007.08.017] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2007] [Revised: 08/07/2007] [Accepted: 08/09/2007] [Indexed: 12/12/2022]
Abstract
Type 2 diabetes is the most common form of diabetes in humans. It results from a combination of factors that impair beta-cell function and tissue insulin sensitivity. However, growing evidence is showing that the beta-cell is central to the development and progression of this form of diabetes. Reduced islet and/or insulin-containing cell mass or volume in Type 2 diabetes has been reported by several authors. Furthermore, studies with isolated Type 2 diabetic islets have consistently shown both quantitative and qualitative defects of glucose-stimulated insulin secretion. The impact of genotype in affecting beta-cell function and survival is a very fast growing field or research, and several gene polymorphisms have been associated with this form of diabetes. Among acquired factors, glucotoxicity, lipotoxicity and altered IAPP processing are likely to play an important role. Interestingly, however, pharmacological intervention can improve several defects of Type 2 diabetes islet cells in vitro, suggesting that progression of the disease might not be relentless.
Collapse
Affiliation(s)
- Piero Marchetti
- Department of Endocrinology and Metabolism, Metabolic Unit, University of Pisa, Pisa, Italy.
| | | | | | | |
Collapse
|
42
|
Singh LP, Cheng DW, Kowluru R, Levi E, Jiang Y. Hexosamine induction of oxidative stress, hypertrophy and laminin expression in renal mesangial cells: effect of the anti-oxidant alpha-lipoic acid. Cell Biochem Funct 2007; 25:537-50. [PMID: 16892452 DOI: 10.1002/cbf.1358] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have previously shown that one of the potential mediators of the deleterious effects of high glucose on extracellular matrix protein (ECM) expression in renal mesangial cells is its metabolic flux through the hexosamine biosynthesis pathway (HBP). Here, we investigate further whether the hexosamines induce oxidative stress, cell-cycle arrest and ECM expression using SV-40-transformed rat mesangial (MES) cells and whether the anti-oxidant alpha-lipoic acid will reverse some of these effects. Culturing renal MES cells with high glucose (HG, 25 mM) or glucosamine (GlcN, 1.5 mM) for 48 h stimulates laminin gamma1 subunit expression significantly approximately 1.5 +/- 0.2- and 1.9 +/- 0.3-fold, respectively, when compared to low glucose (LG, 5 mM). Similarly, HG and GlcN increase the level of G0/G1 cell-cycle progression factor cyclin D1 significantly approximately 1.7 +/- 0.2- and 1.4 +/- 0.04-fold, respectively, versus LG (p < 0.01 for both). Azaserine, an inhibitor of glutamine:fruc-6-PO(4) amidotransferase (GFAT) in the HBP, blocks the HG-induced expression of laminin gamma1 and cyclin D1, but not GlcN's effect because it exerts its metabolic function distal to GFAT. HG and GlcN also elevate reactive oxygen species (ROS) generation, pro-apoptotic caspase-3 activity, and lead to mesangial cell death as revealed by TUNEL and Live/Dead assays. FACS analysis of cell-cycle progression shows that the cells are arrested at G1 phase; however, they undergo cell growth and hypertrophy as the RNA/DNA ratio is significantly (p < 0.05) increased in HG or GlcN-treated cells relative to LG. The anti-oxidant alpha-lipoic acid (150 microM) reverses ROS generation and mesangial cell death induced by HG and GlcN. Alpha-lipoic acid also reduces HG and GlcN-induced laminin gamma1 and cyclin D1 expression in MES cells. In addition, induction of diabetes in rats by streptozotocin (STZ) increases both laminin gamma1 and cyclin D1 expression in the renal cortex and treatment of the diabetic rats with alpha-lipoic acid (400 mg kg(-1) body weight) reduces the level of both proteins significantly (p < 0.05) when compared to untreated diabetic rats. These results support the hypothesis that the hexosamine pathway mediates mesangial cell oxidative stress, ECM expression and apoptosis. Anti-oxidant alpha-lipoic acid reverses the effects of high glucose, hexosamine and diabetes on oxidative stress and ECM expression in mesangial cells and rat kidney.
Collapse
Affiliation(s)
- Lalit P Singh
- Department of Anatomy/Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | | | | | |
Collapse
|
43
|
Sharma S, Guthrie P, Chan S, Haq S, Taegtmeyer H. Glucose phosphorylation is required for insulin-dependent mTOR signalling in the heart. Cardiovasc Res 2007; 76:71-80. [PMID: 17553476 PMCID: PMC2257479 DOI: 10.1016/j.cardiores.2007.05.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Revised: 04/26/2007] [Accepted: 05/07/2007] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE Insulin regulates both glucose uptake and postnatal cardiac growth. The anabolic effects of insulin are mediated by the mammalian target of rapamycin (mTOR), an evolutionarily conserved kinase which is also a convergence point between nutrient sensing and cell growth. We postulated that mTOR signalling in the heart requires the metabolism of glucose. METHODS We interrogated the insulin-mediated mTOR signalling pathway in response to different metabolic interventions regulating substrate metabolism in the isolated working rat heart and in isolated cardiomyocytes. RESULTS Although insulin enhanced Akt activity, phosphorylation of mTOR and its downstream targets (p70S6K and 4EBP1) required the addition of glucose. Glucose-dependent p70S6K phosphorylation was independent of the hexosamine biosynthetic pathway, the AMP kinase pathway, and the pentose phosphate pathway. However, inhibition of glycolysis downstream of hexokinase markedly enhanced p70S6K phosphorylation. Furthermore, 2-deoxyglucose activated p70S6K suggesting that phosphorylation of glucose is required for carbohydrate-mediated mTOR signalling in the heart. Lastly, we also found enhanced p70S6K phosphorylation in the hearts of diabetic rats. CONCLUSION Phosphorylation of glucose is necessary for insulin-dependent mTOR activity in the heart, suggesting a link between intermediary metabolism and cardiac growth.
Collapse
Affiliation(s)
- Saumya Sharma
- Division of Cardiology, The University of Texas Houston Medical School, Houston, Texas
| | - Patrick Guthrie
- Division of Cardiology, The University of Texas Houston Medical School, Houston, Texas
| | - Suzanne Chan
- Division of Cardiology, The University of Texas Houston Medical School, Houston, Texas
| | - Syed Haq
- Molecular Cardiology Research Institute, Tufts-New England Medical Center and Department of Medicine, Tufts University
| | - Heinrich Taegtmeyer
- Division of Cardiology, The University of Texas Houston Medical School, Houston, Texas
| |
Collapse
|
44
|
Oh HJ, Lee JS, Song DK, Shin DH, Jang BC, Suh SI, Park JW, Suh MH, Baek WK. D-glucosamine inhibits proliferation of human cancer cells through inhibition of p70S6K. Biochem Biophys Res Commun 2007; 360:840-5. [PMID: 17624310 DOI: 10.1016/j.bbrc.2007.06.137] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Accepted: 06/27/2007] [Indexed: 01/26/2023]
Abstract
Although D-glucosamine has been reported as an inhibitor of tumor growth both in vivo and in vitro, the mechanism for the anticancer effect of D-glucosamine is still unclear. Since there are several reports suggesting D-glucosamine inhibits protein synthesis, we examined whether D-glucosamine affects p70S6K activity, an important signaling molecule involved in protein translation. In the present study, we found D-glucosamine inhibited the activity of p70S6K and the proliferation of DU145 prostate cancer cells and MDA-MB-231 breast cancer cells. D-glucosamine decreased phosphorylation of p70S6K, and its downstream substrates RPS6, and eIF-4B, but not mTOR and 4EBP1 in DU145 cells, suggesting that D-glucosamine induced inhibition of p70S6K is not through the inhibition of mTOR. In addition, D-glucosamine enhanced the growth inhibitory effects of rapamycin, a specific inhibitor of mTOR. These findings suggest that D-glucosamine can inhibit growth of cancer cells through dephosphorylation of p70S6K.
Collapse
Affiliation(s)
- Hyun-Ji Oh
- Chronic Disease Research Center and Institute for Medical Science, School of Medicine, Keimyung University, Daegu 700-712, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Morino K, Petersen KF, Shulman GI. Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunction. Diabetes 2006; 55 Suppl 2:S9-S15. [PMID: 17130651 PMCID: PMC2995546 DOI: 10.2337/db06-s002] [Citation(s) in RCA: 610] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent studies using magnetic resonance spectroscopy have shown that decreased insulin-stimulated muscle glycogen synthesis due to a defect in insulin-stimulated glucose transport activity is a major factor in the pathogenesis of type 2 diabetes. The molecular mechanism underlying defective insulin-stimulated glucose transport activity can be attributed to increases in intramyocellular lipid metabolites such as fatty acyl CoAs and diacylglycerol, which in turn activate a serine/threonine kinase cascade, thus leading to defects in insulin signaling through Ser/Thr phosphorylation of insulin receptor substrate (IRS)-1. A similar mechanism is also observed in hepatic insulin resistance associated with nonalcoholic fatty liver, which is a common feature of type 2 diabetes, where increases in hepatocellular diacylglycerol content activate protein kinase C-epsilon, leading to reduced insulin-stimulated tyrosine phosphorylation of IRS-2. More recently, magnetic resonance spectroscopy studies in healthy lean elderly subjects and healthy lean insulin-resistant offspring of parents with type 2 diabetes have demonstrated that reduced mitochondrial function may predispose these individuals to intramyocellular lipid accumulation and insulin resistance. Further analysis has found that the reduction in mitochondrial function in the insulin-resistant offspring can be mostly attributed to reductions in mitochondrial density. By elucidating the cellular and molecular mechanisms responsible for insulin resistance, these studies provide potential new targets for the treatment and prevention of type 2 diabetes.
Collapse
Affiliation(s)
- Katsutaro Morino
- Howard Hughes Medical Institute, Yale University School of Medicine, P.O. Box 9812, New Haven, CT 06536-8012, USA.
| | | | | |
Collapse
|
46
|
Matthews JA, Belof JL, Acevedo-Duncan M, Potter RL. Glucosamine-induced increase in Akt phosphorylation corresponds to increased endoplasmic reticulum stress in astroglial cells. Mol Cell Biochem 2006; 298:109-23. [PMID: 17136481 DOI: 10.1007/s11010-006-9358-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Accepted: 10/25/2006] [Indexed: 11/28/2022]
Abstract
Increased glucose flux through the hexosamine biosynthetic pathway (HBP) is known to affect the activity of a number of signal transduction pathways and lead to insulin resistance. Although widely studied in insulin responsive tissues, the effect of increased HBP activity on largely insulin unresponsive tissues, such as the brain, remains relatively unknown. Herein, we investigate the effects of increased HBP flux on Akt activation in a human astroglial cells line using glucosamine, a compound commonly used to mimic hyperglycemic conditions by increasing HBP flux. Cellular treatment with 8 mM glucosamine resulted in a 96.8% +/- 24.6 increase in Akt phosphorylation after 5 h of treatment that remained elevated throughout the 9-h time course. Glucosamine treatment also resulted in modest increases in global levels of the O-GlcNAc protein modification. Increasing O-GlcNAc levels using the O-GlcNAcase inhibitor streptozotocin (STZ) also increased Akt phosphorylation by 96.8% +/- 11.0 after only 3 h although for a shorter duration than glucosamine; however, the more potent O-GlcNAcase inhibitors O-(2-acetamido-2-deoxy-D-glucopyranosylidene)amino-N-phenylcarbamate (PUGNAc) and 1,2-dideoxy-2'-propyl-alpha-D-glucopyranoso-[2,1-d]-Delta2'-thiazoline (NAGBT) failed to mimic the increases in phospho-Akt indicating that the Akt phosphorylation is not a result of increased O-GlcNAc protein modification. Further analysis indicated that this increased phosphorylation was also not due to increased osmotic stress and was not attenuated by N-acetylcysteine eliminating the potential role of oxidative stress in the observed phospho-Akt increases. Glucosamine treatment, but not STZ treatment, did correlate with a large increase in the expression of the endoplasmic reticulum (ER) stress marker GRP 78. Altogether, these results indicate that increased HBP flux in human astroglial cells results in a rapid, short-term phosphorylation of Akt that is likely a result of increased ER stress. The mechanism by which STZ increases Akt phosphorylation, however, remains unknown.
Collapse
Affiliation(s)
- J Aaron Matthews
- Department of Chemistry, University of South Florida, 4202 East Fowler Ave, SCA 400, Tampa, FL 33620, USA
| | | | | | | |
Collapse
|
47
|
Cheng DW, Jiang Y, Shalev A, Kowluru R, Crook ED, Singh LP. An analysis of high glucose and glucosamine-induced gene expression and oxidative stress in renal mesangial cells. Arch Physiol Biochem 2006; 112:189-218. [PMID: 17178593 DOI: 10.1080/13813450601093518] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Renal mesangial cells play an important role in the development of diabetic kidney disease. We have previously demonstrated that some of the effects of high glucose on mesangial extracellular matrix (ECM) protein expression are mediated by the hexosamine biosynthesis pathway (HBP) in which fructose-6-phosphate is converted to glucosamine-6-phosphate by the rate-limiting enzyme glutamine:fructose-6-phosphate amidotransferase (GFAT). Using Affymetrix murine expression U430 2.0 oligochips, we examined the global effects of high glucose (HG) and glucosamine (GlcN) on mRNA expression of a mouse mesangial cell line (MES-13). We sought to determine the portion of mRNA expression in MES-13 cells, which is mediated both by high glucose and glucosamine, i.e., via the HBP. Of the 34,000 genes on the chip, approximately 55.7 - 60.8% genes are detected in MES-13 cells. Culturing MES-13 cells for 48 h with HG alters the expression of approximately 389 genes at our preset threshold levels (at least 2-fold change) where 263 genes are up-regulated and 126 genes are down-regulated. GlcN also increases the expression of 106 genes and decreases 94 genes during the same period of incubation. Seventy-two genes in the chip are commonly regulated by HG and GlcN, in which 33 genes are up and 39 genes are down. The mRNA level of thioredoxin interacting protein (TXNIP), an inhibitor of thioredoxin activity, is maximally increased approximately 18.8 and 9.9-fold respectively by HG and GlcN. The differential expression of several genes found in the microarray analysis is further validated by real-time quantitative PCR. Significant biological processes commonly targeted by HG and GlcN are the TXNIP-thioredoxin system, oxidative stress, endoplasmic reticulum (ER) stress, extracellular matrix genes, and interferon-inducible genes. Stable overexpression of TXNIP in MES-13 cells increases glucose and glucosamine-mediated ECM gene expression and oxidative stress. We conclude from these results that the HBP mediates several effects of high glucose on mesangial cell metabolism, which promotes reactive oxygen species generation to cause cellular oxidative stress, ECM gene expression and apoptosis.
Collapse
Affiliation(s)
- Davis W Cheng
- Department of Anatomy, Wayne State University School of Medicine, MI 48201, USA
| | | | | | | | | | | |
Collapse
|
48
|
Zachara NE, Hart GW. Cell signaling, the essential role of O-GlcNAc! Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:599-617. [PMID: 16781888 DOI: 10.1016/j.bbalip.2006.04.007] [Citation(s) in RCA: 296] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2005] [Revised: 04/20/2006] [Accepted: 04/24/2006] [Indexed: 11/28/2022]
Abstract
An increasing body of evidence points to a central regulatory role for glucose in mediating cellular processes and expands the role of glucose well beyond its traditional role(s) in energy metabolism. Recently, it has been recognized that one downstream effector produced from glucose is UDP-GlcNAc. Levels of UDP-GlcNAc, and the subsequent addition of O-linked beta-N-acetylglucosamine (O-GlcNAc) to Ser/Thr residues, is involved in regulating nuclear and cytoplasmic proteins in a manner analogous to protein phosphorylation. O-GlcNAc protein modification is essential for life in mammalian cells, highlighting the importance of this simple post-translational modification in basic cellular regulation. Recent research has highlighted key roles for O-GlcNAc serving as a nutrient sensor in regulating insulin signaling, the cell cycle, and calcium handling, as well as the cellular stress response.
Collapse
Affiliation(s)
- Natasha E Zachara
- Department of Biological Chemistry, Johns Hopkins Singapore, 31 Biopolis Way, #02-01 The Nanos, 138669 Singapore
| | | |
Collapse
|
49
|
Imoto K, Kukidome D, Nishikawa T, Matsuhisa T, Sonoda K, Fujisawa K, Yano M, Motoshima H, Taguchi T, Tsuruzoe K, Matsumura T, Ichijo H, Araki E. Impact of mitochondrial reactive oxygen species and apoptosis signal-regulating kinase 1 on insulin signaling. Diabetes 2006; 55:1197-204. [PMID: 16644673 DOI: 10.2337/db05-1187] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Tumor necrosis factor (TNF)-alpha inhibits insulin action; however, the precise mechanisms are unknown. It was reported that TNF-alpha could increase mitochondrial reactive oxygen species (ROS) production, and apoptosis signal-regulating kinase 1 (ASK1) was reported to be required for TNF-alpha-induced apoptosis. Here, we examined roles of mitochondrial ROS and ASK1 in TNF-alpha-induced impaired insulin signaling in cultured human hepatoma (Huh7) cells. Using reduced MitoTracker Red probe, we confirmed that TNF-alpha increased mitochondrial ROS production, which was suppressed by overexpression of either uncoupling protein-1 (UCP)-1 or manganese superoxide dismutase (MnSOD). TNF-alpha significantly activated ASK1, increased serine phosphorylation of insulin receptor substrate (IRS)-1, and decreased insulin-stimulated tyrosine phosphorylation of IRS-1 and serine phosphorylation of Akt, and all of these effects were inhibited by overexpression of either UCP-1 or MnSOD. Similar to TNF-alpha, overexpression of wild-type ASK1 increased serine phosphorylation of IRS-1 and decreased insulin-stimulated tyrosine phosphorylation of IRS-1, whereas overexpression of dominant-negative ASK1 ameliorated these TNF-alpha-induced events. In addition, TNF-alpha activated c-jun NH(2)-terminal kinases (JNKs), and this observation was partially inhibited by overexpression of UCP-1, MnSOD, or dominant-negative ASK1. These results suggest that TNF-alpha increases mitochondrial ROS and activates ASK1 in Huh7 cells and that these TNF-alpha-induced phenomena contribute, at least in part, to impaired insulin signaling.
Collapse
Affiliation(s)
- Koujiro Imoto
- Department of Metabolic Medicine, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Riboulet-Chavey A, Pierron A, Durand I, Murdaca J, Giudicelli J, Van Obberghen E. Methylglyoxal impairs the insulin signaling pathways independently of the formation of intracellular reactive oxygen species. Diabetes 2006; 55:1289-99. [PMID: 16644685 DOI: 10.2337/db05-0857] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nonenzymatic glycation is increased in diabetes and leads to elevated levels of advanced glycation end products (AGEs), which link hyperglycemia to the induction of insulin resistance. In hyperglycemic conditions, intracellularly formed alpha-ketoaldehydes, such as methylglyoxal, are an essential source of intracellular AGEs, and the abnormal accumulation of methylglyoxal is related to the development of diabetes complications in various tissues and organs. We have previously shown in skeletal muscle that AGEs induce insulin resistance at the level of metabolic responses. Therefore, it was important to extend our work to intermediates of the biosynthetic pathway leading to AGEs. Hence, we asked the question whether the reactive alpha-ketoaldehyde methylglyoxal has deleterious effects on insulin action similar to AGEs. We analyzed the impact of methylglyoxal on insulin-induced signaling in L6 muscle cells. We demonstrate that a short exposure to methylglyoxal induces an inhibition of insulin-stimulated phosphorylation of protein kinase B and extracellular-regulated kinase 1/2, without affecting insulin receptor tyrosine phosphorylation. Importantly, these deleterious effects of methylglyoxal are independent of reactive oxygen species produced by methylglyoxal but appear to be the direct consequence of an impairment of insulin-induced insulin receptor substrate-1 tyrosine phosphorylation subsequent to the binding of methylglyoxal to these proteins. Our data suggest that an increase in intracellular methylglyoxal content hampers a key molecule, thereby leading to inhibition of insulin-induced signaling. By such a mechanism, methylglyoxal may not only induce the debilitating complications of diabetes but may also contribute to the pathophysiology of diabetes in general.
Collapse
|