1
|
Hong J, Li J, Zhang Y, Wang J, Li C, Liu JL, Liu J. Integrative role of CTPS cytoophidia in polyploid tissue growth and nutrient adaptation. INSECT SCIENCE 2025. [PMID: 40287929 DOI: 10.1111/1744-7917.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/19/2025] [Accepted: 03/24/2025] [Indexed: 04/29/2025]
Abstract
Tissue growth and development are fundamental to organismal survival, requiring precise coordination of metabolic processes, nutrient availability, and signaling pathways. Cytidine triphosphate synthase (CTPS) is a rate-limiting enzyme in nucleotide biosynthesis and assembles filamentous cytoophidia, conserved across species. Despite increasing interest in cytoophidia, how CTPS filaments integrate metabolic and signaling cues to drive cell size and tissue growth remains incompletely understood. Using RNA interference and clustered regularly interspaces short palindromic repeats (CRISPR) / CRISPR-associate nuclease 9 gene editing, we generated CTPS-knockdown and point-mutated mutants to investigate the role of cytoophidia in cell growth. Specifically, we introduced the H355A mutation, which disrupts CTPS filament formation without affecting its enzymatic activity. Our findings revealed that CTPS depletion or filament disruption significantly impairs growth in polyploid organs, such as the fat body and salivary glands, underscoring the pivotal role of CTPS cytoophidia in cell growth regulation. Mutants lacking cytoophidia exhibited reduced DNA replication activity and smaller cell sizes compared to wild-type controls. Mechanistically, we found that nutrient-sensing pathways, particularly insulin-PI3K-Akt signaling pathway, regulate CTPS expression and cytoophidia formation in response to nutrient availability. Activation of the sterol regulatory element-binding protein partially rescued the growth defects caused by CTPS depletion. These findings provide new insights into the molecular mechanisms of the regulation of CTPS filaments, highlighting their role as critical mediators of tissue growth by integrating environmental demands, metabolism, and signaling pathways to regulate cell size and nutrient adaptation.
Collapse
Affiliation(s)
- Jiayi Hong
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Jiamin Li
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yuanbing Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jing Wang
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Chengui Li
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jingnan Liu
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
2
|
Wang Q, Liu JL, Liu J. CTPS cytoophidia in Drosophila: distribution, regulation, and physiological roles. Exp Cell Res 2025; 447:114536. [PMID: 40122502 DOI: 10.1016/j.yexcr.2025.114536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 03/25/2025]
Abstract
Intracellular compartmentalization plays a critical role in maintaining cellular homeostasis and regulating metabolic processes. A growing body of evidence suggests that various metabolic enzymes, including CTP synthase (CTPS), can dynamically assemble into membraneless filamentous structures. The formation of these membraneless organelles is precisely regulated by the cellular metabolic state. CTPS, a rate-limiting enzyme in the de novo biosynthesis of CTP, has been shown to assemble into filamentous structures known as cytoophidium. First identified in 2010 by three independent research groups, cytoophidia are evolutionarily conserved across diverse organisms, including bacteria, archaea, yeast, mammals, and plants, suggesting a fundamental biological function. Given the well-established advantages of Drosophila melanogaster as a genetic model, this organism provides a powerful system for investigating the physiological roles of cytoophidia. This review synthesizes current findings on CTPS cytoophidia in Drosophila, with a particular focus on their spatiotemporal distribution in tissues and their regulatory roles in three key biological processes: intestinal homeostasis, lipid metabolism, and reproductive physiology. Furthermore, we discuss the challenges and future directions in cytoophidia research, offering insights into their broader implications in cellular metabolism and physiology.
Collapse
Affiliation(s)
- Qingyi Wang
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jingnan Liu
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
3
|
Liu L, Chen W, Luo H, Zhang W, Zhang Z, Huang X, Fu X. HSPD1-facilitated formation of CTPS cytoophidia promotes proliferation in C2C12 cells. Exp Cell Res 2025; 446:114462. [PMID: 39971178 DOI: 10.1016/j.yexcr.2025.114462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/16/2025] [Accepted: 02/16/2025] [Indexed: 02/21/2025]
Abstract
CTP synthase (CTPS) is a rate-limiting enzyme that controls CTP synthesis and can polymerize to form a filamentous structure called cytoophidia. The presence of cytoophidia affects the enzymatic activity of CTPS. However, whether CTPS can form cytoophidia in C2C12 cells and whether it affects the proliferation of skeletal muscle satellite cells needs to be further studied. In this study, we found that CTPS could form cytoophidia during C2C12 cell proliferation, and that overexpression of CTPS significantly promoted the formation of CTPS cytoophidia and increased the viability and proliferation rate of C2C12 cells. However, the CTPS H355A mutation hindered the formation of CTPS cytoophidia and inhibited the viability and proliferation of C2C12 cells. In addition, we found that the HSPD1 protein could interact with the CTPS protein and interference with Hspd1 gene expression inhibited the formation of CTPS cytoophidia, even with the overexpression of the CTPS gene. Subsequently, it inhibited C2C12 cells proliferation. Thus, these findings reveal the role of CTPS cytoophidia formation in C2C12 cells proliferation.
Collapse
Affiliation(s)
- Lili Liu
- Department of Life Science and Agroforestry, Qiqihar University, No. 42 Wenhua Street, JianHua District, Qiqihar, Heilongjiang Province, China
| | - Wen Chen
- Department of Life Science and Agroforestry, Qiqihar University, No. 42 Wenhua Street, JianHua District, Qiqihar, Heilongjiang Province, China
| | - Haijing Luo
- Department of Life Science and Agroforestry, Qiqihar University, No. 42 Wenhua Street, JianHua District, Qiqihar, Heilongjiang Province, China
| | - Weiwei Zhang
- Department of Life Science and Agroforestry, Qiqihar University, No. 42 Wenhua Street, JianHua District, Qiqihar, Heilongjiang Province, China.
| | - Zhenzhu Zhang
- Department of Life Science and Agroforestry, Qiqihar University, No. 42 Wenhua Street, JianHua District, Qiqihar, Heilongjiang Province, China; Heilongjiang Agricultural Engineering Vocational College, Haerbing, No.2, Qunying Street, Limin Avenue, Harbin City, China
| | - Xin Huang
- Department of Life Science and Agroforestry, Qiqihar University, No. 42 Wenhua Street, JianHua District, Qiqihar, Heilongjiang Province, China
| | - Xuepeng Fu
- Department of Life Science and Agroforestry, Qiqihar University, No. 42 Wenhua Street, JianHua District, Qiqihar, Heilongjiang Province, China
| |
Collapse
|
4
|
Horton NC, Lyumkis D. Structures, mechanisms, and kinetic advantages of the SgrAI filament forming mechanism. Crit Rev Biochem Mol Biol 2024; 59:363-401. [PMID: 39699272 DOI: 10.1080/10409238.2024.2440315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024]
Abstract
This review documents investigations leading to the unprecedented discovery of filamentation as a mode of enzyme regulation in the type II restriction endonuclease SgrAI. Filamentation is defined here as linear or helical polymerization of a single enzyme as occurs for SgrAI, and has now been shown to occur in many other enzyme systems, including conserved metabolic enzymes. In the case of SgrAI, filamentation activates the DNA cleavage rate by up to 1000-fold and also alters the enzyme's DNA sequence specificity. The investigations began with the observation that SgrAI cleaves two types of recognition sequences, primary and secondary, but cleaves the secondary sequences only when present on the same DNA as at least one primary. DNA cleavage rate measurements showed how the primary sequence is both a substrate and an allosteric effector of SgrAI. Biophysical measurements indicated that the activated form of SgrAI, stimulated by binding to the primary sequence, consisted of varied numbers of the SgrAI bound to DNA. Structural studies revealed the activated state of SgrAI as a left-handed helical filament which stabilizes an altered enzyme conformation, which binds a second divalent cation in the active site. Efforts to determine the mechanism of DNA sequence specificity alteration are ongoing and current models are discussed. Finally, global kinetic modeling of the filament mediated DNA cleavage reaction and simulations of in vivo activity suggest that the filament mechanism evolved to rapidly cleave invading DNA while protecting the Streptomyces host genome.
Collapse
Affiliation(s)
- Nancy C Horton
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | - Dmitry Lyumkis
- The Salk Institute for Biological Studies, La Jolla, California, USA
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, California, USA
- Graduate School of Biological Sciences, Section of Molecular Biology, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
5
|
Deng R, Li YL, Liu JL. Differential Cytoophidium Assembly between Saccharomyces cerevisiae and Schizosaccharomyces pombe. Int J Mol Sci 2024; 25:10092. [PMID: 39337578 PMCID: PMC11432714 DOI: 10.3390/ijms251810092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
The de novo synthesis of cytidine 5'-triphosphate (CTP) is catalyzed by the enzyme CTP synthase (CTPS), which is known to form cytoophidia across all three domains of life. In this study, we use the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe as model organisms to compare cytoophidium assembly under external environmental and intracellular CTPS alterations. We observe that under low and high temperature conditions, cytoophidia in fission yeast gradually disassemble, while cytoophidia in budding yeast remain unaffected. The effect of pH changes on cytoophidia maintenance in the two yeast species is different. When cultured in the yeast-saturated cultured medium, cytoophidia in fission yeast disassemble, while cytoophidia in budding yeast gradually form. Overexpression of CTPS results in the presence and maintenance of cytoophidia in both yeast species from the log phase to the stationary phase. In summary, our results demonstrate differential cytoophidium assembly between Saccharomyces cerevisiae and Schizosaccharomyces pombe, the two most studied yeast species.
Collapse
Affiliation(s)
- Ruolan Deng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Lan Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| |
Collapse
|
6
|
Zhang Y, Liu JL. The Impact of Developmental and Metabolic Cues on Cytoophidium Formation. Int J Mol Sci 2024; 25:10058. [PMID: 39337544 PMCID: PMC11432437 DOI: 10.3390/ijms251810058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
The cytoophidium, composed mainly of CTP synthase (CTPS), is a newly discovered dynamic filamentous structure in various organisms such as archaea, bacteria, and humans. These filamentous structures represent a fascinating example of intracellular compartmentation and dynamic regulation of metabolic enzymes. Currently, cytoophidia have been proven to be tightly regulated and highly dynamic, responding rapidly to developmental and metabolic cues and playing a critical role in maintaining cellular homeostasis. In this review, we would like to discuss in detail the characteristics, mechanisms, functions, and potential applications of this conservative but promising organelle.
Collapse
Affiliation(s)
- Yuanbing Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Center for Experimental Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai 201210, China
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| |
Collapse
|
7
|
Lynch EM, Lu Y, Park JH, Shao L, Kollman J, Rego EH. Evolutionarily divergent Mycobacterium tuberculosis CTP synthase filaments are under selective pressure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.25.605180. [PMID: 39091829 PMCID: PMC11291164 DOI: 10.1101/2024.07.25.605180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The final and rate-limiting enzyme in pyrimidine biosynthesis, CTP synthase (CTPS) , is essential for the viability of Mycobacterium tuberculosis and other mycobacteria. Its product, CTP, is critical for RNA, DNA, lipid and cell wall synthesis, and is involved in chromosome segregation. In various organisms across the tree of life, CTPS assembles into higher-order filaments, leading us to hypothesize that M. tuberculosis CTPS (mtCTPS) also forms higher-order structures. Here, we show that mtCTPS does assemble into filaments but with an unusual architecture not seen in other organisms. Through a combination of structural, biochemical, and cellular techniques, we show that polymerization stabilizes the active conformation of the enzyme and resists product inhibition, potentially allowing for the highly localized production of CTP within the cell. Indeed, CTPS filaments localize near the CTP-dependent complex needed for chromosome segregation, and cells expressing mutant enzymes unable to polymerize are altered in their ability to robustly form this complex. Intriguingly, mutants that alter filament formation are under positive selection in clinical isolates of M. tuberculosis, pointing to a critical role needed to withstand pressures imposed by the host and/or antibiotics. Taken together, our data reveal an unexpected mechanism for the spatially organized production of a critical nucleotide in M. tuberculosis, which may represent a vulnerability of the pathogen that can be exploited with chemotherapy.
Collapse
Affiliation(s)
- Eric M. Lynch
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Yao Lu
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519
| | - Jin Ho Park
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519
| | - Lin Shao
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519
| | - Justin Kollman
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - E. Hesper Rego
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519
| |
Collapse
|
8
|
Yin Y, Yu H, Wang X, Hu Q, Liu Z, Luo D, Yang X. Cytoophidia: a conserved yet promising mode of enzyme regulation in nucleotide metabolism. Mol Biol Rep 2024; 51:245. [PMID: 38300325 DOI: 10.1007/s11033-024-09208-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024]
Abstract
Nucleotide biosynthesis encompasses both de novo and salvage synthesis pathways, each characterized by significant material and procedural distinctions. Despite these differences, cells with elevated nucleotide demands exhibit a preference for the more intricate de novo synthesis pathway, intricately linked to modes of enzyme regulation. In this study, we primarily scrutinize the biological importance of a conserved yet promising mode of enzyme regulation in nucleotide metabolism-cytoophidia. Cytoophidia, comprising cytidine triphosphate synthase or inosine monophosphate dehydrogenase, is explored across diverse biological models, including yeasts, Drosophila, mice, and human cancer cell lines. Additionally, we delineate potential biomedical applications of cytoophidia. As our understanding of cytoophidia deepens, the roles of enzyme compartmentalization and polymerization in various biochemical processes will unveil, promising profound impacts on both research and the treatment of metabolism-related diseases.
Collapse
Affiliation(s)
- Yue Yin
- School of Queen Mary, Jiangxi Medical College, Nanchang University, Jiangxi, China
| | - Huanhuan Yu
- First School of Clinical Medicine, Jiangxi Medical College, Nanchang University, Jiangxi, China
| | - Xinyi Wang
- Thyroid Surgery Center, West China Hospital of Sichuan University, Chengdu, China
| | - Qiaohao Hu
- The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, China
| | - Zhuoqi Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Jiangxi Medical College, Nanchang University, Jiangxi, China
| | - Daya Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Jiangxi Medical College, Nanchang University, Jiangxi, China.
| | - Xiaohong Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Jiangxi Medical College, Nanchang University, Jiangxi, China.
| |
Collapse
|
9
|
Weng RY, Zhang L, Liu JL. Connecting Hippo Pathway and Cytoophidia in Drosophila Posterior Follicle Cells. Int J Mol Sci 2024; 25:1453. [PMID: 38338731 PMCID: PMC10855297 DOI: 10.3390/ijms25031453] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
CTP synthase (CTPS), the rate-limiting enzyme in the de novo synthesis of CTP, assembles into a filamentous structure termed the cytoophidium. The Hippo pathway regulates cell proliferation and apoptosis. The relationship of the nucleotide metabolism with the Hippo pathway is little known. Here, we study the impact of the Hippo pathway on the cytoophidium in Drosophila melanogaster posterior follicle cells (PFCs). We find that the inactivation of the Hippo pathway correlates with reduced cytoophidium length and number within PFCs. During the overexpression of CTPS, the presence of Hippo mutations also reduces the length of cytoophidia in PFCs. In addition, we observe that knocking down CTPS mitigates hpo (Hippo)-associated over-proliferation. In summary, our results suggest that there is a connection between the Hippo pathway and the nucleotide biosynthesis enzyme CTPS in PFCs.
Collapse
Affiliation(s)
- Rui-Yu Weng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; (R.-Y.W.)
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Lei Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; (R.-Y.W.)
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; (R.-Y.W.)
| |
Collapse
|
10
|
Deng R, Li YL, Liu JL. Cytoophidia Influence Cell Cycle and Size in Schizosaccharomyces pombe. Int J Mol Sci 2024; 25:608. [PMID: 38203781 PMCID: PMC10779087 DOI: 10.3390/ijms25010608] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/09/2023] [Accepted: 11/27/2023] [Indexed: 01/12/2024] Open
Abstract
Cytidine triphosphate synthase (CTPS) forms cytoophidia in all three domains of life. Here we focus on the function of cytoophidia in cell proliferation using Schizosaccharomyces pombe as a model system. We find that converting His359 of CTPS into Ala359 leads to cytoophidium disassembly. By reducing the level of CTPS protein or specific mutation, the loss of cytoophidia prolongs the G2 phase and expands cell size. In addition, the loss-filament mutant of CTPS leads to a decrease in the expression of genes related to G2/M transition and cell growth, including histone chaperone slm9. The overexpression of slm9 alleviates the G2 phase elongation and cell size enlargement induced by CTPS loss-filament mutants. Overall, our results connect cytoophidia with cell cycle and cell size control in Schizosaccharomyces pombe.
Collapse
Affiliation(s)
- Ruolan Deng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Lan Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| |
Collapse
|
11
|
Liu J, Zhang Y, Wang QQ, Zhou Y, Liu JL. Fat body-specific reduction of CTPS alleviates HFD-induced obesity. eLife 2023; 12:e85293. [PMID: 37695169 PMCID: PMC10495109 DOI: 10.7554/elife.85293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 08/25/2023] [Indexed: 09/12/2023] Open
Abstract
Obesity induced by high-fat diet (HFD) is a multi-factorial disease including genetic, physiological, behavioral, and environmental components. Drosophila has emerged as an effective metabolic disease model. Cytidine 5'-triphosphate synthase (CTPS) is an important enzyme for the de novo synthesis of CTP, governing the cellular level of CTP and the rate of phospholipid synthesis. CTPS is known to form filamentous structures called cytoophidia, which are found in bacteria, archaea, and eukaryotes. Our study demonstrates that CTPS is crucial in regulating body weight and starvation resistance in Drosophila by functioning in the fat body. HFD-induced obesity leads to increased transcription of CTPS and elongates cytoophidia in larval adipocytes. Depleting CTPS in the fat body prevented HFD-induced obesity, including body weight gain, adipocyte expansion, and lipid accumulation, by inhibiting the PI3K-Akt-SREBP axis. Furthermore, a dominant-negative form of CTPS also prevented adipocyte expansion and downregulated lipogenic genes. These findings not only establish a functional link between CTPS and lipid homeostasis but also highlight the potential role of CTPS manipulation in the treatment of HFD-induced obesity.
Collapse
Affiliation(s)
- Jingnan Liu
- School of Life Science and Technology, ShanghaiTech UniversityShanghaiChina
- College of Life Sciences, Shanghai Normal UniversityShanghaiChina
| | - Yuanbing Zhang
- School of Life Science and Technology, ShanghaiTech UniversityShanghaiChina
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qiao-Qi Wang
- School of Life Science and Technology, ShanghaiTech UniversityShanghaiChina
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Youfang Zhou
- School of Life Science and Technology, ShanghaiTech UniversityShanghaiChina
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech UniversityShanghaiChina
- Department of Physiology, Anatomy and Genetics, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
12
|
You DD, Zhou XL, Wang QQ, Liu JL. Cytoophidia safeguard binucleation of Drosophila male accessory gland cells. Exp Cell Res 2023; 422:113433. [PMID: 36423659 DOI: 10.1016/j.yexcr.2022.113433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022]
Abstract
Although most cells are mononuclear, the nucleus can exist in the form of binucleate or even multinucleate to respond to different physiological processes. The male accessory gland of Drosophila is the organ that produces semen, and its main cells are binucleate. Here we observe that CTP synthase (CTPS) forms filamentous cytoophidia in binuclear main cells, primarily located at the cell boundary. In CTPSH355A, a point mutation that destroys the formation of cytoophidia, we find that the nucleation mode of the main cells changes, including mononucleates and vertical distribution of binucleates. Although the overexpression of CTPSH355A can restore the level of CTPS protein, it will neither form cytoophidia nor eliminate the abnormal nucleation pattern. Therefore, our data indicate that there is an unexpected functional link between the formation of cytoophidia and the maintenance of binucleation in Drosophila main cells.
Collapse
Affiliation(s)
- Dong-Dong You
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xiao-Li Zhou
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Qiao-Qi Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom.
| |
Collapse
|
13
|
Andreadis C, Li T, Liu JL. Ubiquitination regulates cytoophidium assembly in Schizosaccharomyces pombe. Exp Cell Res 2022; 420:113337. [PMID: 36087798 DOI: 10.1016/j.yexcr.2022.113337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 12/30/2022]
Abstract
CTP synthase (CTPS), a metabolic enzyme responsible for the de novo synthesis of CTP, can form filamentous structures termed cytoophidia, which are evolutionarily conserved from bacteria to humans. Here we used Schizosaccharomyces pombe to study the cytoophidium assembly regulation by ubiquitination. We tested the CTP synthase's capacity to be post-translationally modified by ubiquitin or be affected by the ubiquitination state of the cell and showed that ubiquitination is important for the maintenance of the CTPS filamentous structure in fission yeast. We have identified proteins which are in complex with CTPS, including specific ubiquitination regulators which significantly affect CTPS filamentation, and mapped probable ubiquitination targets on CTPS. Furthermore, we discovered that a cohort of deubiquitinating enzymes is important for the regulation of cytoophidium's filamentous morphology. Our study provides a framework for the analysis of the effects that ubiquitination and deubiquitination have on the formation of cytoophidia.
Collapse
Affiliation(s)
- Christos Andreadis
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Tianhao Li
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom.
| |
Collapse
|
14
|
Darekar S, Laín S. Asymmetric inheritance of cytoophidia could contribute to determine cell fate and plasticity: The onset of alternative differentiation patterns in daughter cells may rely on the acquisition of either CTPS or IMPDH cytoophidia: The onset of alternative differentiation patterns in daughter cells may rely on the acquisition of either CTPS or IMPDH cytoophidia. Bioessays 2022; 44:e2200128. [PMID: 36209393 DOI: 10.1002/bies.202200128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/26/2022] [Accepted: 09/21/2022] [Indexed: 12/20/2022]
Abstract
Two enzymes involved in the synthesis of pyrimidine and purine nucleotides, CTP synthase (CTPS) and IMP dehydrogenase (IMPDH), can assemble into a single or very few large filaments called rods and rings (RR) or cytoophidia. Most recently, asymmetric cytoplasmic distribution of organelles during cell division has been described as a decisive event in hematopoietic stem cell fate. We propose that cytoophidia, which could be considered as membrane-less organelles, may also be distributed asymmetrically during mammalian cell division as previously described for Schizosaccharomyces pombe. Furthermore, because each type of nucleotide intervenes in distinct processes (e.g., membrane synthesis, glycosylation, and G protein-signaling), alterations in the rate of synthesis of specific nucleotide types could influence cell differentiation in multiple ways. Therefore, we hypothesize that whether a daughter cell inherits or not CTPS or IMPDH filaments determines its fate and that this asymmetric inheritance, together with the dynamic nature of these structures enables plasticity in a cell population.
Collapse
Affiliation(s)
- Suhas Darekar
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Sonia Laín
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
15
|
Fang YF, Li YL, Li XM, Liu JL. Super-Resolution Imaging Reveals Dynamic Reticular Cytoophidia. Int J Mol Sci 2022; 23:11698. [PMID: 36233000 PMCID: PMC9569780 DOI: 10.3390/ijms231911698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
CTP synthase (CTPS) can form filamentous structures termed cytoophidia in cells in all three domains of life. In order to study the mesoscale structure of cytoophidia, we perform fluorescence recovery after photobleaching (FRAP) and stimulated emission depletion (STED) microscopy in human cells. By using an EGFP dimeric tag as a tool to explore the physical properties of cytoophidia, we find that cytoophidia are dynamic and reticular. The reticular structure of CTPS cytoophidia may provide space for other components, such as IMPDH. In addition, we observe CTPS granules with tentacles.
Collapse
Affiliation(s)
- Yi-Fan Fang
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Yi-Lan Li
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Xiao-Ming Li
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Ji-Long Liu
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| |
Collapse
|
16
|
Fu X, Chen W, Pan Y, Liu C, Zhang Z, Shao S, Zhang W. CTPS cytoophidia formation affects cell cycle progression and promotes TSN‑induced apoptosis of MKN45 cells. Mol Med Rep 2022; 26:319. [PMID: 36043523 PMCID: PMC9471557 DOI: 10.3892/mmr.2022.12835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/03/2022] [Indexed: 11/06/2022] Open
Abstract
Cytidine triphosphate synthase (CTPS) forms filamentous structures termed cytoophidia in numerous types of cell. Toosendanin (TSN) is a tetracyclic triterpenoid and induces CTPS to form cytoophidia in MKN45 cells. However, the effects of CTPS cytoophidia on the proliferation and apoptosis of human gastric cancer cells remain poorly understood. In the present study, CTPS‑overexpression and R294D‑CTPS mutant vectors were generated to assess the effect of CTPS cytoophidia on the proliferation and apoptosis of gastric cancer MKN45 cells. Formation of CTPS cytoophidia significantly inhibited MKN45 cell proliferation (evaluated using EdU incorporation assay), significantly blocked the cell cycle in G1 phase (assessed using flow cytometry) and significantly decreased mRNA and protein expression levels of cyclin D1 (assessed by reverse transcription‑quantitative PCR and western blotting, respectively). Furthermore, the number of apoptotic bodies and apoptosis rate were markedly elevated and mitochondrial membrane potential was markedly decreased. Moreover, mRNA and protein expression levels of Bax increased and Bcl‑2 decreased markedly in MKN45 cells following transfection with the CTPS‑overexpression vector. The proliferation rate increased, percentage of G1/G0‑phase cells decreased and apoptosis was attenuated in cells transfected with the R294D‑CTPS mutant vector and this mutation did not lead to formation of cytoophidia. The results of the present study suggested that formation of CTPS cytoophidia inhibited proliferation and promoted apoptosis in MKN45 cells. These results may provide insights into the role of CTPS cytoophidia in cancer cell proliferation and apoptosis.
Collapse
Affiliation(s)
- Xuepeng Fu
- Department of Life Science and Agroforestry, Qiqihar University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Wen Chen
- Department of Life Science and Agroforestry, Qiqihar University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Yang Pan
- Department of Life Science and Agroforestry, Qiqihar University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Chang Liu
- Department of Life Science and Agroforestry, Qiqihar University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Zhenzhu Zhang
- Department of Life Science and Agroforestry, Qiqihar University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Shuli Shao
- Department of Life Science and Agroforestry, Qiqihar University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Weiwei Zhang
- Department of Life Science and Agroforestry, Qiqihar University, Qiqihar, Heilongjiang 161006, P.R. China
| |
Collapse
|
17
|
Wang PY, Chakraborty A, Ma HJ, Wu JW, Jang ACC, Lin WC, Pi HW, Yeh CT, Cheng ML, Yu JS, Pai LM. Drosophila CTP synthase regulates collective cell migration by controlling the polarized endocytic cycle. Development 2022; 149:276132. [DOI: 10.1242/dev.200190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 07/12/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Phosphatidylinositol (PI) 4,5-bisphosphate (PIP2) is involved in many biological functions. However, the mechanisms of PIP2 in collective cell migration remain elusive. This study highlights the regulatory role of cytidine triphosphate synthase (CTPsyn) in collective border cell migration through regulating the asymmetrical distribution of PIP2. We demonstrated that border cell clusters containing mutant CTPsyn cells suppressed migration. CTPsyn was co-enriched with Actin at the leading edge of the Drosophila border cell cluster where PIP2 was enriched, and this enrichment depended on the CTPsyn activity. Genetic interactions of border cell migration were found between CTPsyn mutant and genes in PI biosynthesis. The CTPsyn reduction resulted in loss of the asymmetric activity of endocytosis recycling. Also, genetic interactions were revealed between components of the exocyst complex and CTPsyn mutant, indicating that CTPsyn activity regulates the PIP2-related asymmetrical exocytosis activity. Furthermore, CTPsyn activity is essential for RTK-polarized distribution in the border cell cluster. We propose a model in which CTPsyn activity is required for the asymmetrical generation of PIP2 to enrich RTK signaling through endocytic recycling in collective cell migration.
Collapse
Affiliation(s)
- Pei-Yu Wang
- College of Medicine, Chang Gung University 1 Department of Biochemistry and Molecular Biology , , Taoyuan 33302 , Taiwan
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University 2 , Taoyuan 33302 , Taiwan
| | - Archan Chakraborty
- College of Medicine, Chang Gung University 1 Department of Biochemistry and Molecular Biology , , Taoyuan 33302 , Taiwan
- Duke University 3 Pharmacology and Cancer Biology , , Durham, NC 27705 , USA
| | - Hsin-Ju Ma
- College of Medicine, Chang Gung University 1 Department of Biochemistry and Molecular Biology , , Taoyuan 33302 , Taiwan
| | - Jhen-Wei Wu
- National Cheng Kung University 4 Department of Biotechnology and Bioindustry Sciences , , Tainan City 701 , Taiwan
| | - Anna C.-C. Jang
- National Cheng Kung University 4 Department of Biotechnology and Bioindustry Sciences , , Tainan City 701 , Taiwan
| | - Wei-Cheng Lin
- College of Medicine, Chang Gung University 1 Department of Biochemistry and Molecular Biology , , Taoyuan 33302 , Taiwan
- Molecular Medicine Research Center, Chang Gung University 5 , Taoyuan 33302 , Taiwan
| | - Hai-Wei Pi
- Department of Biomedical Sciences, College of Medicine, Chang Gung University 6 , Taoyuan 33302 , Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University 7 , Taoyuan 33302 , Taiwan
| | - Chau-Ting Yeh
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University 7 , Taoyuan 33302 , Taiwan
- Liver Research Center, Chang Gung Memorial Hospital 8 , Linkou 333423 , Taiwan
| | - Mei-Ling Cheng
- Department of Biomedical Sciences, College of Medicine, Chang Gung University 6 , Taoyuan 33302 , Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University 7 , Taoyuan 33302 , Taiwan
- Healthy Aging Research Center, Chang Gung University 9 , Taoyuan 33302 , Taiwan
- Chang Gung Memorial Hospital 10 Clinical Metabolomics Core Laboratory , , Linkou 333423 , Taiwan
| | - Jau-Song Yu
- College of Medicine, Chang Gung University 1 Department of Biochemistry and Molecular Biology , , Taoyuan 33302 , Taiwan
- Molecular Medicine Research Center, Chang Gung University 5 , Taoyuan 33302 , Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University 7 , Taoyuan 33302 , Taiwan
- Liver Research Center, Chang Gung Memorial Hospital 8 , Linkou 333423 , Taiwan
| | - Li-Mei Pai
- College of Medicine, Chang Gung University 1 Department of Biochemistry and Molecular Biology , , Taoyuan 33302 , Taiwan
- Molecular Medicine Research Center, Chang Gung University 5 , Taoyuan 33302 , Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University 7 , Taoyuan 33302 , Taiwan
- Liver Research Center, Chang Gung Memorial Hospital 8 , Linkou 333423 , Taiwan
| |
Collapse
|
18
|
Hu HH, Lu GM, Chang CC, Li Y, Zhong J, Guo CJ, Zhou X, Yin B, Zhang T, Liu JL. Filamentation modulates allosteric regulation of PRPS. eLife 2022; 11:79552. [PMID: 35736577 PMCID: PMC9232217 DOI: 10.7554/elife.79552] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Phosphoribosyl pyrophosphate (PRPP) is a key intermediate in the biosynthesis of purine and pyrimidine nucleotides, histidine, tryptophan, and cofactors NAD and NADP. Abnormal regulation of PRPP synthase (PRPS) is associated with human disorders, including Arts syndrome, retinal dystrophy, and gouty arthritis. Recent studies have demonstrated that PRPS can form filamentous cytoophidia in eukaryotes. Here, we show that PRPS forms cytoophidia in prokaryotes both in vitro and in vivo. Moreover, we solve two distinct filament structures of E. coli PRPS at near-atomic resolution using Cryo-EM. The formation of the two types of filaments is controlled by the binding of different ligands. One filament type is resistant to allosteric inhibition. The structural comparison reveals conformational changes of a regulatory flexible loop, which may regulate the binding of the allosteric inhibitor and the substrate ATP. A noncanonical allosteric AMP/ADP binding site is identified to stabilize the conformation of the regulatory flexible loop. Our findings not only explore a new mechanism of PRPS regulation with structural basis, but also propose an additional layer of cell metabolism through PRPS filamentation.
Collapse
Affiliation(s)
- Huan-Huan Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Guang-Ming Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Chia-Chun Chang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yilan Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jiale Zhong
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Chen-Jun Guo
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xian Zhou
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Boqi Yin
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Tianyi Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
19
|
Wu Z, Liu JL. CTP synthase does not form cytoophidia in Drosophila interfollicular stalks. Exp Cell Res 2022; 418:113250. [PMID: 35691380 DOI: 10.1016/j.yexcr.2022.113250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 11/26/2022]
Abstract
CTP synthase (CTPS) catalyzes the final step of de novo synthesis of the nucleotide CTP. In 2010, CTPS has been found to form filamentous structures termed cytoophidia in Drosophila follicle cells and germline cells. Subsequently, cytoophidia have been reported in many species across three domains of life: bacteria, eukaryotes and archaea. Forming cytoophidia appears to be a highly conserved and ancient property of CTPS. To our surprise, here we find that polar cells and stalk cells, two specialized types of cells composing Drosophila interfollicular stalks, do not possess obvious cytoophidia. We show that Myc level is low in these two types of cells. Treatment with a glutamine analog, 6-diazo-5-oxo-l-norleucine (DON), increases cytoophidium assembly in main follicle cells, but not in polar cells or stalk cells. Moreover, overexpressing Myc induces cytoophidium formation in stalk cells. When CTPS is overexpressed, cytoophidia can be observed both in stalk cells and polar cells. Our findings provide an interesting paradigm for the in vivo study of cytoophidium assembly and disassembly among different populations of follicle cells.
Collapse
Affiliation(s)
- Zheng Wu
- School of Life Science and Technology, ShanghaiTech University, 230 Haike Road, 201210, Shanghai, China
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, 230 Haike Road, 201210, Shanghai, China; Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3PT, United Kingdom.
| |
Collapse
|
20
|
Connecting Ras and CTP synthase in Drosophila. Exp Cell Res 2022; 416:113155. [DOI: 10.1016/j.yexcr.2022.113155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/03/2022] [Accepted: 04/08/2022] [Indexed: 11/04/2022]
|
21
|
Miura N. Condensate Formation by Metabolic Enzymes in Saccharomyces cerevisiae. Microorganisms 2022; 10:232. [PMID: 35208686 PMCID: PMC8876316 DOI: 10.3390/microorganisms10020232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/31/2022] Open
Abstract
Condensate formation by a group of metabolic enzymes in the cell is an efficient way of regulating cell metabolism through the formation of "membrane-less organelles." Because of the use of green fluorescent protein (GFP) for investigating protein localization, various enzymes were found to form condensates or filaments in living Saccharomyces cerevisiae, mammalian cells, and in other organisms, thereby regulating cell metabolism in the certain status of the cells. Among different environmental stresses, hypoxia triggers the spatial reorganization of many proteins, including more than 20 metabolic enzymes, to form numerous condensates, including "Glycolytic body (G-body)" and "Purinosome." These individual condensates are collectively named "Metabolic Enzymes Transiently Assembling (META) body". This review overviews condensate or filament formation by metabolic enzymes in S. cerevisiae, focusing on the META body, and recent reports in elucidating regulatory machinery of META body formation.
Collapse
Affiliation(s)
- Natsuko Miura
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Japan
| |
Collapse
|
22
|
Thangadurai S, Bajgiran M, Manickam S, Mohana-Kumaran N, Azzam G. CTP synthase: the hissing of the cellular serpent. Histochem Cell Biol 2022; 158:517-534. [PMID: 35881195 PMCID: PMC9314535 DOI: 10.1007/s00418-022-02133-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2022] [Indexed: 12/24/2022]
Abstract
CTP biosynthesis is carried out by two pathways: salvage and de novo. CTPsyn catalyzes the latter. The study of CTPsyn activity in mammalian cells began in the 1970s, and various fascinating discoveries were made regarding the role of CTPsyn in cancer and development. However, its ability to fit into a cellular serpent-like structure, termed 'cytoophidia,' was only discovered a decade ago by three independent groups of scientists. Although the self-assembly of CTPsyn into a filamentous structure is evolutionarily conserved, the enzyme activity upon this self-assembly varies in different species. CTPsyn is required for cellular development and homeostasis. Changes in the expression of CTPsyn cause developmental changes in Drosophila melanogaster. A high level of CTPsyn activity and formation of cytoophidia are often observed in rapidly proliferating cells such as in stem and cancer cells. Meanwhile, the deficiency of CTPsyn causes severe immunodeficiency leading to immunocompromised diseases caused by bacteria, viruses, and parasites, making CTPsyn an attractive therapeutic target. Here, we provide an overview of the role of CTPsyn in cellular and disease perspectives along with its potential as a drug target.
Collapse
Affiliation(s)
- Shallinie Thangadurai
- grid.11875.3a0000 0001 2294 3534School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Morteza Bajgiran
- grid.11875.3a0000 0001 2294 3534School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Sharvin Manickam
- grid.11875.3a0000 0001 2294 3534School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Nethia Mohana-Kumaran
- grid.11875.3a0000 0001 2294 3534School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Ghows Azzam
- grid.11875.3a0000 0001 2294 3534School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia ,grid.454125.3Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, 43000 Kajang, Selangor Malaysia
| |
Collapse
|
23
|
Drosophila intestinal homeostasis requires CTP synthase. Exp Cell Res 2021; 408:112838. [PMID: 34560103 DOI: 10.1016/j.yexcr.2021.112838] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 11/22/2022]
Abstract
CTP synthase (CTPS) senses all four nucleotides and forms filamentous structures termed cytoophidia in all three domains of life. How CTPS and cytoophidia function in a developmental context, however, remains underexplored. We report that CTPS forms cytoophidia in a subset of cells in the Drosophila midgut. We found that cytoophidia exist in intestinal stem cells (ISC) and enteroblasts in similar proportions. Both refeeding after starvation and feeding with dextran sulfate sodium (DSS) induce ISC proliferation and elongate cytoophidia. Knockdown of CTPS inhibits ISC proliferation. Remarkably, disruption of CTPS cytoophidia inhibits DSS-induced ISC proliferation. Taken together, these data suggest that both the expression level and the filament-form property of CTPS are crucial for intestinal homeostasis in Drosophila.
Collapse
|
24
|
Yoon J, Cho L, Kim S, Tun W, Peng X, Pasriga R, Moon S, Hong W, Ji H, Jung K, Jeon J, An G. CTP synthase is essential for early endosperm development by regulating nuclei spacing. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2177-2191. [PMID: 34058048 PMCID: PMC8541778 DOI: 10.1111/pbi.13644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/04/2021] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
Cereal grain endosperms are an important source of human nutrition. Nuclear division in early endosperm development plays a major role in determining seed size; however, this development is not well understood. We identified the rice mutant endospermless 2 (enl2), which shows defects in the early stages of endosperm development. These phenotypes arise from mutations in OsCTPS1 that encodes a cytidine triphosphate synthase (CTPS). Both wild-type and mutant endosperms were normal at 8 h after pollination (HAP). In contrast, at 24 HAP, enl2 endosperm had approximately 10-16 clumped nuclei while wild-type nuclei had increased in number and migrated to the endosperm periphery. Staining of microtubules in endosperm at 24 HAP revealed that wild-type nuclei were evenly distributed by microtubules while the enl2-2 nuclei were tightly packed due to their reduction in microtubule association. In addition, OsCTPS1 interacts with tubulins; thus, these observations suggest that OsCTPS1 may be involved in microtubule formation. OsCTPS1 transiently formed macromolecular structures in the endosperm during early developmental stages, further supporting the idea that OsCTPS1 may function as a structural component during endosperm development. Finally, overexpression of OsCTPS1 increased seed weight by promoting endosperm nuclear division, suggesting that this trait could be used to increase grain yield.
Collapse
Affiliation(s)
- Jinmi Yoon
- Crop Biotech Institute and Graduate School of BiotechnologyKyung Hee UniversityYonginRepublic of Korea
- Department of Plant BioscienceCollege of Natural Resources and Life SciencePusan National UniversityMiryangRepublic of Korea
| | - Lae‐Hyeon Cho
- Crop Biotech Institute and Graduate School of BiotechnologyKyung Hee UniversityYonginRepublic of Korea
- Department of Plant BioscienceCollege of Natural Resources and Life SciencePusan National UniversityMiryangRepublic of Korea
| | - Sung‐Ryul Kim
- Gene Identification and Validation GroupGenetic Design and Validation UnitInternational Rice Research Institute (IRRI)Metro ManilaPhilippines
| | - Win Tun
- Crop Biotech Institute and Graduate School of BiotechnologyKyung Hee UniversityYonginRepublic of Korea
| | - Xin Peng
- Crop Biotech Institute and Graduate School of BiotechnologyKyung Hee UniversityYonginRepublic of Korea
- Institution of Genomics and BioinformaticsSouth China Agricultural UniversityGuangzhouChina
| | - Richa Pasriga
- Crop Biotech Institute and Graduate School of BiotechnologyKyung Hee UniversityYonginRepublic of Korea
| | - Sunok Moon
- Crop Biotech Institute and Graduate School of BiotechnologyKyung Hee UniversityYonginRepublic of Korea
| | - Woo‐Jong Hong
- Crop Biotech Institute and Graduate School of BiotechnologyKyung Hee UniversityYonginRepublic of Korea
| | - Hyeonso Ji
- National Institute of Agricultural Sciences, Rural Development AdministrationJeonjuRepublic of Korea
| | - Ki‐Hong Jung
- Crop Biotech Institute and Graduate School of BiotechnologyKyung Hee UniversityYonginRepublic of Korea
| | - Jong‐Seong Jeon
- Crop Biotech Institute and Graduate School of BiotechnologyKyung Hee UniversityYonginRepublic of Korea
| | - Gynheung An
- Crop Biotech Institute and Graduate School of BiotechnologyKyung Hee UniversityYonginRepublic of Korea
| |
Collapse
|
25
|
Structural basis for isoform-specific inhibition of human CTPS1. Proc Natl Acad Sci U S A 2021; 118:2107968118. [PMID: 34583994 PMCID: PMC8501788 DOI: 10.1073/pnas.2107968118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2021] [Indexed: 12/17/2022] Open
Abstract
An effective immune response depends on the proliferation of T cells, a process that requires the enzyme CTP synthase 1 (CTPS1). Individuals lacking CTPS1 due to a rare genetic disorder exhibit severe immunodeficiencies but lack other major clinical consequences; the requirement for CTP synthase outside of the immune response is met by a second isoform, CTPS2. Inhibiting CTPS1 without affecting CTPS2 is therefore a promising strategy for treating autoimmune disorders and T cell cancers while avoiding off-target effects. We characterize both CTPS1-selective and nonselective inhibitors. Structures of CTPS bound to inhibitors reveal the mechanisms of inhibition and CTPS1 selectivity. Differences in product feedback inhibition between CTPS1 and CTPS2 explain how CTPS1 may sustain enzymatic activity required for T cell proliferation. Cytidine triphosphate synthase 1 (CTPS1) is necessary for an effective immune response, as revealed by severe immunodeficiency in CTPS1-deficient individuals [E. Martin et al.], [Nature] [510], [288–292] ([2014]). CTPS1 expression is up-regulated in activated lymphocytes to expand CTP pools [E. Martin et al.], [Nature] [510], [288–292] ([2014]), satisfying increased demand for nucleic acid and lipid synthesis [L. D. Fairbanks, M. Bofill, K. Ruckemann, H. A. Simmonds], [J. Biol. Chem. ] [270], [29682–29689] ([1995]). Demand for CTP in other tissues is met by the CTPS2 isoform and nucleoside salvage pathways [E. Martin et al.], [Nature] [510], [288–292] ([2014]). Selective inhibition of the proliferative CTPS1 isoform is therefore desirable in the treatment of immune disorders and lymphocyte cancers, but little is known about differences in regulation of the isoforms or mechanisms of known inhibitors. We show that CTP regulates both isoforms by binding in two sites that clash with substrates. CTPS1 is less sensitive to CTP feedback inhibition, consistent with its role in increasing CTP levels in proliferation. We also characterize recently reported small-molecule inhibitors, both CTPS1 selective and nonselective. Cryo-electron microscopy (cryo-EM) structures reveal these inhibitors mimic CTP binding in one inhibitory site, where a single amino acid substitution explains selectivity for CTPS1. The inhibitors bind to CTPS assembled into large-scale filaments, which for CTPS1 normally represents a hyperactive form of the enzyme [E. M. Lynch et al.], [Nat. Struct. Mol. Biol.] [24], [507–514] ([2017]). This highlights the utility of cryo-EM in drug discovery, particularly for cases in which targets form large multimeric assemblies not amenable to structure determination by other techniques. Both inhibitors also inhibit the proliferation of human primary T cells. The mechanisms of selective inhibition of CTPS1 lay the foundation for the design of immunosuppressive therapies.
Collapse
|
26
|
Zhang B, Zhang Y, Liu JL. Highly effective proximate labeling in Drosophila. G3-GENES GENOMES GENETICS 2021; 11:6173991. [PMID: 33724396 PMCID: PMC8104946 DOI: 10.1093/g3journal/jkab077] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/05/2021] [Indexed: 12/16/2022]
Abstract
The protein-protein interaction (PPI) is a basic strategy for life to operate. The analysis of PPIs in multicellular organisms is very important but extremely challenging because PPIs are particularly dynamic and variable among different development stages, tissues, cells, and even organelles. Therefore, understanding PPI needs a good resolution of time and space. More importantly, understanding in vivo PPI needs to be realized in situ. Proximity-based biotinylation combined with mass spectrometry (MS) has emerged as a powerful approach to study PPI networks and protein subcellular compartmentation. TurboID, the newly engineered promiscuous ligase, has been reported to label proximate proteins effectively in various species. In Drosophila, we systematically apply TurboID-mediated biotinylation in a wide range of developmental stages and tissues, and demonstrate the feasibility of TurboID-mediated labeling system in desired cell types. For a proof-of-principle, we use the TurboID-mediated biotinylation coupled with MS to distinguish CTP synthase with or without the ability to form filamentous cytoophidia, retrieving two distinct sets of proximate proteomes. Therefore, this makes it possible to map PPIs in vivo and in situ at a defined spatiotemporal resolution, and demonstrates a referable resource for cytoophidium proteome in Drosophila.
Collapse
Affiliation(s)
- Bo Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.,Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanbing Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.,Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.,Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| |
Collapse
|
27
|
Zhang S, Feng HC, Liu JL. ASNS disruption shortens CTPS cytoophidia in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2021; 11:6080684. [PMID: 33561249 PMCID: PMC8022725 DOI: 10.1093/g3journal/jkaa060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 12/09/2020] [Indexed: 02/07/2023]
Abstract
Asparagine synthetase (ASNS) and CTP synthase (CTPS) are two metabolic enzymes that catalyze the biosynthesis of asparagine and CTP, respectively. Both CTPS and ASNS have been identified to form cytoophidia in Saccharomyces cerevisiae. Glutamine is a common substrate for both these enzymes, and they play an important role in glutamine homeostasis. Here, we find that the ASNS cytoophidia are shorter than the CTPS cytoophidia, and that disruption of ASNS shortens the length of CTPS cytoophidia. However, the deletion of CTPS has no effect on the formation and length of ASNS cytoophidia, or on the ASNS protein level. We also find that Asn1 overexpression induces the formation of a multi-dot structure in diauxic phase which suggests that the increased protein level may trigger cytoophidia formation. Collectively, our results reveal a connection between ASNS cytoophidia and CTPS cytoophidia.
Collapse
Affiliation(s)
- Shanshan Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Han-Chao Feng
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.,Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| |
Collapse
|
28
|
Simonet JC, Burrell AL, Kollman JM, Peterson JR. Freedom of assembly: metabolic enzymes come together. Mol Biol Cell 2021; 31:1201-1205. [PMID: 32463766 PMCID: PMC7353150 DOI: 10.1091/mbc.e18-10-0675] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Many different enzymes in intermediate metabolism dynamically assemble filamentous polymers in cells, often in response to changes in physiological conditions. Most of the enzyme filaments known to date have only been observed in cells, but in a handful of cases structural and biochemical studies have revealed the mechanisms and consequences of assembly. In general, enzyme polymerization functions as a mechanism to allosterically tune enzyme kinetics, and it may play a physiological role in integrating metabolic signaling. Here, we highlight some principles of metabolic filaments by focusing on two well-studied examples in nucleotide biosynthesis pathways—inosine-5’-monophosphate (IMP) dehydrogenase and cytosine triphosphate (CTP) synthase.
Collapse
Affiliation(s)
| | - Anika L Burrell
- Department of Biochemistry, University of Washington, Seattle, Washington 98195
| | - Justin M Kollman
- Department of Biochemistry, University of Washington, Seattle, Washington 98195
| | | |
Collapse
|
29
|
Peng M, Chang CC, Liu JL, Sung LY. CTPS and IMPDH form cytoophidia in developmental thymocytes. Exp Cell Res 2021; 405:112662. [PMID: 34022203 DOI: 10.1016/j.yexcr.2021.112662] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 02/06/2023]
Abstract
The cytoophidium, a filamentous structure formed by metabolic enzymes, has emerged as a novel regulatory machinery for certain proteins. The rate-limiting enzymes of de novo CTP and GTP synthesis, cytidine triphosphate synthase (CTPS) and inosine monophosphate dehydrogenase (IMPDH), are the most characterized cytoophidium-forming enzymes in mammalian models. Although the assembly of CTPS cytoophidia has been demonstrated in various organisms including multiple human cancers, a systemic survey for the presence of CTPS cytoophidia in mammalian tissues in normal physiological conditions has not yet been reported. Herein, we examine major organs of adult mouse and observe that CTPS cytoophidia are displayed by a specific thymocyte population ranging between DN3 to early DP stages. Most of these cytoophidium-presenting cells have both CTPS and IMPDH cytoophidia and undergo rapid cell proliferation. In addition, we show that cytoophidium formation is associated with active glycolytic metabolism as the cytoophidium-presenting cells exhibit higher levels of c-Myc, phospho-Akt and PFK. Inhibition of glycolysis with 2DG, however, disrupts most of cytoophidium structures and impairs cell proliferation. Our findings not only indicate that the regulation of CTPS and IMPDH cytoophidia are correlated with the metabolic switch triggered by pre-TCR signaling, but also suggest physiological roles of the cytoophidium in thymocyte development.
Collapse
Affiliation(s)
- Min Peng
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan
| | - Chia-Chun Chang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Li-Ying Sung
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan; Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan; Animal Resource Center, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
30
|
Morimune T, Tano A, Tanaka Y, Yukiue H, Yamamoto T, Tooyama I, Maruo Y, Nishimura M, Mori M. Gm14230 controls Tbc1d24 cytoophidia and neuronal cellular juvenescence. PLoS One 2021; 16:e0248517. [PMID: 33886577 PMCID: PMC8062039 DOI: 10.1371/journal.pone.0248517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 02/28/2021] [Indexed: 11/19/2022] Open
Abstract
It is not fully understood how enzymes are regulated in the tiny reaction field of a cell. Several enzymatic proteins form cytoophidia, a cellular macrostructure to titrate enzymatic activities. Here, we show that the epileptic encephalopathy-associated protein Tbc1d24 forms cytoophidia in neuronal cells both in vitro and in vivo. The Tbc1d24 cytoophidia are distinct from previously reported cytoophidia consisting of inosine monophosphate dehydrogenase (Impdh) or cytidine-5'-triphosphate synthase (Ctps). Tbc1d24 cytoophidia is induced by loss of cellular juvenescence caused by depletion of Gm14230, a juvenility-associated lncRNA (JALNC) and zeocin treatment. Cytoophidia formation is associated with impaired enzymatic activity of Tbc1d24. Thus, our findings reveal the property of Tbc1d24 to form cytoophidia to maintain neuronal cellular juvenescence.
Collapse
Affiliation(s)
- Takao Morimune
- Molecular Neuroscience Research Center (MNRC), Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, Japan
- Department of Pediatrics, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, Japan
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Ayami Tano
- Molecular Neuroscience Research Center (MNRC), Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, Japan
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Yuya Tanaka
- Molecular Neuroscience Research Center (MNRC), Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, Japan
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Haruka Yukiue
- Molecular Neuroscience Research Center (MNRC), Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, Japan
| | - Takefumi Yamamoto
- Central Research Laboratory, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, Japan
| | - Ikuo Tooyama
- Molecular Neuroscience Research Center (MNRC), Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, Japan
| | - Yoshihiro Maruo
- Department of Pediatrics, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, Japan
| | - Masaki Nishimura
- Molecular Neuroscience Research Center (MNRC), Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, Japan
| | - Masaki Mori
- Molecular Neuroscience Research Center (MNRC), Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, Japan
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| |
Collapse
|
31
|
Histone transcription regulator Slm9 is required for cytoophidium biogenesis. Exp Cell Res 2021; 403:112582. [PMID: 33812868 DOI: 10.1016/j.yexcr.2021.112582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/25/2021] [Accepted: 03/28/2021] [Indexed: 11/23/2022]
Abstract
The cytoophidium, a subcellular structure composed of CTP synthase, can be observed during the division of Schizosaccharomyces pombe. Cytoophidium formation changes periodically with the cell cycle of yeast cells. Here, we find that histone chaperone Slm9 is required for the integrity of cytoophidia in fission yeast. When the slm9 gene is knocked out, we observe that morphological characteristics, the abundance of cytoophidia and the division of the yeast cells are significantly affected. Fragmented cytoophidia occur in slm9 mutant cells, a phenomenon rarely observed in wild-type cells. Our study reveals a potential link between a chromosomal regulatory factor and cytoophidium biogenesis.
Collapse
|
32
|
Wang QQ, Zhao PA, Tastan ÖY, Liu JL. Polarised maintenance of cytoophidia in Drosophila follicle epithelia. Exp Cell Res 2021; 402:112564. [PMID: 33737069 DOI: 10.1016/j.yexcr.2021.112564] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 12/20/2022]
Abstract
The metabolic enzyme CTP synthase (CTPS) can form filamentous structures named cytoophidia in numerous types of cells, including follicle cells. However, the regulation of cytoophidium assembly remains elusive. The apicobasal polarity, a defining characteristic of Drosophila follicle epithelium, is established and regulated by a variety of membrane domains. Here we show that CTPS can form cytoophidia in Drosophila epithelial follicle cells. Cytoophidia localise to the basolateral side of follicle cells. If apical polarity regulators are knocked down, cytoophidia become unstable and distribute abnormally. Knockdown of basolateral polarity regulators has no significant effect on cytoophidia, even though the polarity is disturbed. Our results indicate that cytoophidia are maintained via polarised distribution on the basolateral side of Drosophila follicle epithelia, which is primarily achieved through the apical polarity regulators.
Collapse
Affiliation(s)
- Qiao-Qi Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China; Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Peiyao A Zhao
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom
| | - Ömür Y Tastan
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China; MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom.
| |
Collapse
|
33
|
Ma K, Li N, Yan X, Zhu Y, Zhang C. Energy deficiency caused by CTPS downregulation in decidua may contribute to pre-eclampsia by impairing decidualization. J Cell Physiol 2021; 236:6520-6533. [PMID: 33576499 DOI: 10.1002/jcp.30326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 11/10/2022]
Abstract
Pre-eclampsia (PE) is a pregnancy-related disorder that occurs after 20 weeks of gestation. It seriously affects the health of maternity and the fetus. However, the pathogenesis of PE is still unknown. Decidualization deficiency is considered a contributing factor to the development of PE. CTP synthetase (CTPS) which is the rate-limiting enzyme in the CTP de novo biosynthesis, is essential for nucleic acid synthesis and cellular energy metabolism, and often appears as cytoophidium in many cell types. Here, we found that the expression of CTPS was significantly downregulated in decidual tissues of patients with severe PE compared with healthy pregnant women. During in vitro decidualization, changes in CTPS were accompanied by opposite fluctuation of the AMPK signaling pathway. Moreover, the downregulation of CTPS by glutamine analogs or CTPS small interfering RNA inhibited the decidualization process and the AMPK signaling pathway. Investigating the underlying mechanism of action by co-immunoprecipitation coupled with mass spectrometry showed that CTPS interacted with ATP synthase (ATPS) and maintained the content of ATP on Day 3 of decidualization. However, when combined with mitochondrial stress protein STRESS-70 instead of ATPS, the concentration of ATP on Day 6 of induction was reduced. Corresponding to this, CTPS was mainly distributes in the cytoplasm on Day 3 of induction, while it appeared both in the cytoplasm and the nucleus on Day 6 in decidualized cells, which was similar to that in cells before induction. In summary, we believe that CTPS plays an important role in decidualization by participating in energy metabolism. Abnormal expression of CTPS in decidualization would lead to abnormal decidualization and consequently result in the occurrence of PE.
Collapse
Affiliation(s)
- Ke Ma
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, China
| | - Na Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, China
| | - Xingyu Yan
- School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yunqing Zhu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, China
| | - Cong Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, China.,Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| |
Collapse
|
34
|
Abstract
Live-cell imaging is widely used by researchers to study cellular dynamics and obtain a deep understanding of cell biological processes. Keeping cells in the proper growing environment and immobilizing the cells are essential for the imaging of live yeast cells. Here we describe a protocol for monitoring cytoophidia in Saccharomyces cerevisiae and Schizosaccharomyces pombe using inverted confocal fluorescence microscopy. This protocol includes yeast culture, sample preparation, fluorescence imaging, and data analysis.
Collapse
Affiliation(s)
- Shanshan Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Hui Li
- School of Systems Science, Beijing Normal University, Beijing, China
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
35
|
Montrose K, López Cabezas RM, Paukštytė J, Saarikangas J. Winter is coming: Regulation of cellular metabolism by enzyme polymerization in dormancy and disease. Exp Cell Res 2020; 397:112383. [PMID: 33212148 DOI: 10.1016/j.yexcr.2020.112383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/12/2020] [Accepted: 11/14/2020] [Indexed: 12/20/2022]
Abstract
Metabolism feeds growth. Accordingly, metabolism is regulated by nutrient-sensing pathways that converge growth promoting signals into biosynthesis by regulating the activity of metabolic enzymes. When the environment does not support growth, organisms invest in survival. For cells, this entails transitioning into a dormant, quiescent state (G0). In dormancy, the activity of biosynthetic pathways is dampened, and catabolic metabolism and stress tolerance pathways are activated. Recent work in yeast has demonstrated that dormancy is associated with alterations in the physicochemical properties of the cytoplasm, including changes in pH, viscosity and macromolecular crowding. Accompanying these changes, numerous metabolic enzymes transition from soluble to polymerized assemblies. These large-scale self-assemblies are dynamic and depolymerize when cells resume growth. Here we review how enzyme polymerization enables metabolic plasticity by tuning carbohydrate, nucleic acid, amino acid and lipid metabolic pathways, with particular focus on its potential adaptive value in cellular dormancy.
Collapse
Affiliation(s)
- Kristopher Montrose
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, Finland; Research Programme in Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland
| | - Rosa María López Cabezas
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, Finland; Research Programme in Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland
| | - Jurgita Paukštytė
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, Finland; Research Programme in Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland
| | - Juha Saarikangas
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, Finland; Research Programme in Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland; Neuroscience Center, University of Helsinki, Finland.
| |
Collapse
|
36
|
Zhang Y, Liu J, Liu JL. The atlas of cytoophidia in Drosophila larvae. J Genet Genomics 2020; 47:321-331. [PMID: 32912804 DOI: 10.1016/j.jgg.2020.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/07/2020] [Accepted: 06/21/2020] [Indexed: 02/08/2023]
Abstract
In 2010, cytidine 5'-triphosphate synthase (CTPS) was reported to form the filamentous or serpentine structure in Drosophila, which we termed the cytoophidium. In the last decade, CTPS filaments/cytoophidia have been found in bacteria, budding yeast, human cells, mice, fission yeast, plants, and archaea, indicating that this mechanism is highly conserved in evolution. In addition to CTPS, other metabolic enzymes have been identified to have the characteristics of forming cytoophidia or similar advanced structures, demonstrating that this is a basic strategy of cells. Nevertheless, our understanding of the physiological function of the cytoophidium remains incomplete and elusive. Here, we took the larva of Drosophila melanogaster as a model to systematically describe the localization and distribution of cytoophidia in different tissues during larval development. We found that the distribution pattern of CTPS cytoophidia is dynamic and heterogenic in larval tissues. Our study provides a road map for further understanding of the function and regulatory mechanism of cytoophidia.
Collapse
Affiliation(s)
- Yuanbing Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jingnan Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
37
|
Chakraborty A, Lin WC, Lin YT, Huang KJ, Wang PY, Chang IYF, Wang HI, Ma KT, Wang CY, Huang XR, Lee YH, Chen BC, Hsieh YJ, Chien KY, Lin TY, Liu JL, Sung LY, Yu JS, Chang YS, Pai LM. SNAP29 mediates the assembly of histidine-induced CTP synthase filaments in proximity to the cytokeratin network. J Cell Sci 2020; 133:jcs240200. [PMID: 32184263 DOI: 10.1242/jcs.240200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 03/06/2020] [Indexed: 01/08/2023] Open
Abstract
Under metabolic stress, cellular components can assemble into distinct membraneless organelles for adaptation. One such example is cytidine 5'-triphosphate synthase (CTPS, for which there are CTPS1 and CTPS2 forms in mammals), which forms filamentous structures under glutamine deprivation. We have previously demonstrated that histidine (His)-mediated methylation regulates the formation of CTPS filaments to suppress enzymatic activity and preserve the CTPS protein under glutamine deprivation, which promotes cancer cell growth after stress alleviation. However, it remains unclear where and how these enigmatic structures are assembled. Using CTPS-APEX2-mediated in vivo proximity labeling, we found that synaptosome-associated protein 29 (SNAP29) regulates the spatiotemporal filament assembly of CTPS along the cytokeratin network in a keratin 8 (KRT8)-dependent manner. Knockdown of SNAP29 interfered with assembly and relaxed the filament-induced suppression of CTPS enzymatic activity. Furthermore, APEX2 proximity labeling of keratin 18 (KRT18) revealed a spatiotemporal association of SNAP29 with cytokeratin in response to stress. Super-resolution imaging suggests that during CTPS filament formation, SNAP29 interacts with CTPS along the cytokeratin network. This study links the cytokeratin network to the regulation of metabolism by compartmentalization of metabolic enzymes during nutrient deprivation.
Collapse
Affiliation(s)
- Archan Chakraborty
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Wei-Cheng Lin
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yu-Tsun Lin
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Kuang-Jing Huang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan
| | - Pei-Yu Wang
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Ian Yi-Feng Chang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan
- Bioinformatics Core Laboratory, Chang Gung University, Taoyuan 33302, Taiwan
| | - Hsiang-Iu Wang
- Bioinformatics Core Laboratory, Chang Gung University, Taoyuan 33302, Taiwan
| | - Kung-Ting Ma
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chun-Yen Wang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Xuan-Rong Huang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yen-Hsien Lee
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Bi-Chang Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Ya-Ju Hsieh
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan
| | - Kun-Yi Chien
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Clinical Proteomics Core laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Tzu-Yang Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ji-Long Liu
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Li-Ying Sung
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan
| | - Jau-Song Yu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Yu-Sun Chang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan
| | - Li-Mei Pai
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
| |
Collapse
|
38
|
Zhou S, Xiang H, Liu JL. CTP synthase forms cytoophidia in archaea. J Genet Genomics 2020; 47:213-223. [DOI: 10.1016/j.jgg.2020.03.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/12/2020] [Accepted: 03/18/2020] [Indexed: 12/14/2022]
|
39
|
Zhang B, Tastan ÖY, Zhou X, Guo CJ, Liu X, Thind A, Hu HH, Zhao S, Liu JL. The proline synthesis enzyme P5CS forms cytoophidia in Drosophila. J Genet Genomics 2020; 47:131-143. [PMID: 32317150 DOI: 10.1016/j.jgg.2020.02.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/25/2020] [Accepted: 02/29/2020] [Indexed: 01/26/2023]
Abstract
Compartmentation of enzymes via filamentation has arisen as a mechanism for the regulation of metabolism. In 2010, three groups independently reported that CTP synthase (CTPS) can assemble into a filamentous structure termed the cytoophidium. In searching for CTPS-interacting proteins, here we perform a yeast two-hybrid screening of Drosophila proteins and identify a putative CTPS-interacting protein, △1-pyrroline-5-carboxylate synthase (P5CS). Using the Drosophila follicle cell as the in vivo model, we confirm that P5CS forms cytoophidia, which are associated with CTPS cytoophidia. Overexpression of P5CS increases the length of CTPS cytoophidia. Conversely, filamentation of CTPS affects the morphology of P5CS cytoophidia. Finally, in vitro analyses confirm the filament-forming property of P5CS. Our work links CTPS with P5CS, two enzymes involved in the rate-limiting steps in pyrimidine and proline biosynthesis, respectively.
Collapse
Affiliation(s)
- Bo Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ömür Y Tastan
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom
| | - Xian Zhou
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Chen-Jun Guo
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xuyang Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Aaron Thind
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom
| | - Huan-Huan Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Suwen Zhao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom.
| |
Collapse
|
40
|
Lynch EM, Kollman JM. Coupled structural transitions enable highly cooperative regulation of human CTPS2 filaments. Nat Struct Mol Biol 2019; 27:42-48. [PMID: 31873303 PMCID: PMC6954954 DOI: 10.1038/s41594-019-0352-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/15/2019] [Indexed: 01/26/2023]
Abstract
Many enzymes assemble into defined oligomers, providing a mechanism for cooperatively regulating activity. Recent studies have described a mode of regulation in which enzyme activity is modulated by polymerization into large-scale filaments. Here we describe an ultrasensitive form of polymerization-based regulation employed by human CTP synthase 2 (CTPS2). Cryo-EM structures reveal that CTPS2 filaments dynamically switch between active and inactive forms in response to changes in substrate and product levels. Linking the conformational state of many CTPS2 subunits in a filament results in highly cooperative regulation, greatly exceeding the limits of cooperativity for the CTPS2 tetramer alone. The structures reveal a link between conformation and control of ammonia channeling between the enzyme’s active sites, and explain differences in regulation of human CTPS isoforms. This filament-based mechanism of enhanced cooperativity demonstrates how the widespread phenomenon of enzyme polymerization can be adapted to achieve different regulatory outcomes.
Collapse
Affiliation(s)
- Eric M Lynch
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Justin M Kollman
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
| |
Collapse
|
41
|
Holič R, Pokorná L, Griač P. Metabolism of phospholipids in the yeast
Schizosaccharomyces pombe. Yeast 2019; 37:73-92. [DOI: 10.1002/yea.3451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 12/28/2022] Open
Affiliation(s)
- Roman Holič
- Centre of Biosciences, Slovak Academy of Sciences Institute of Animal Biochemistry and Genetics Dúbravská cesta 9 Bratislava Slovakia
| | - Lucia Pokorná
- Centre of Biosciences, Slovak Academy of Sciences Institute of Animal Biochemistry and Genetics Dúbravská cesta 9 Bratislava Slovakia
| | - Peter Griač
- Centre of Biosciences, Slovak Academy of Sciences Institute of Animal Biochemistry and Genetics Dúbravská cesta 9 Bratislava Slovakia
| |
Collapse
|
42
|
Park CK, Horton NC. Structures, functions, and mechanisms of filament forming enzymes: a renaissance of enzyme filamentation. Biophys Rev 2019; 11:927-994. [PMID: 31734826 PMCID: PMC6874960 DOI: 10.1007/s12551-019-00602-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/24/2019] [Indexed: 12/19/2022] Open
Abstract
Filament formation by non-cytoskeletal enzymes has been known for decades, yet only relatively recently has its wide-spread role in enzyme regulation and biology come to be appreciated. This comprehensive review summarizes what is known for each enzyme confirmed to form filamentous structures in vitro, and for the many that are known only to form large self-assemblies within cells. For some enzymes, studies describing both the in vitro filamentous structures and cellular self-assembly formation are also known and described. Special attention is paid to the detailed structures of each type of enzyme filament, as well as the roles the structures play in enzyme regulation and in biology. Where it is known or hypothesized, the advantages conferred by enzyme filamentation are reviewed. Finally, the similarities, differences, and comparison to the SgrAI endonuclease system are also highlighted.
Collapse
Affiliation(s)
- Chad K. Park
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721 USA
| | - Nancy C. Horton
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721 USA
| |
Collapse
|
43
|
Zhou X, Guo CJ, Hu HH, Zhong J, Sun Q, Liu D, Zhou S, Chang CC, Liu JL. Drosophila CTP synthase can form distinct substrate- and product-bound filaments. J Genet Genomics 2019; 46:537-545. [PMID: 31902586 DOI: 10.1016/j.jgg.2019.11.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/07/2019] [Accepted: 11/10/2019] [Indexed: 01/26/2023]
Abstract
Intracellular compartmentation is a key strategy for the functioning of a cell. In 2010, several studies revealed that the metabolic enzyme CTP synthase (CTPS) can form filamentous structures termed cytoophidia in prokaryotic and eukaryotic cells. However, recent structural studies showed that CTPS only forms inactive product-bound filaments in bacteria while forming active substrate-bound filaments in eukaryotic cells. In this study, using negative staining and cryo-electron microscopy, we demonstrate that Drosophila CTPS, whether in substrate-bound or product-bound form, can form filaments. Our results challenge the previous model and indicate that substrate-bound and product-bound filaments can coexist in the same species. We speculate that the ability to switch between active and inactive cytoophidia in the same cells provides an additional layer of metabolic regulation.
Collapse
Affiliation(s)
- Xian Zhou
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Chen-Jun Guo
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Huan-Huan Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiale Zhong
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qianqian Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Dandan Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Shuang Zhou
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chia Chun Chang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
44
|
Zhang J, Liu JL. Temperature-sensitive cytoophidium assembly in Schizosaccharomyces pombe. J Genet Genomics 2019; 46:423-432. [PMID: 31611173 PMCID: PMC6868507 DOI: 10.1016/j.jgg.2019.09.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/29/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022]
Abstract
The metabolic enzyme CTP synthase (CTPS) is able to compartmentalize into filaments, termed cytoophidia, in a variety of organisms including bacteria, budding yeast, fission yeast, fruit flies and mammals. A previous study in budding yeast shows that the filament-forming process of CTPS is not sensitive to temperature shift. Here we study CTPS filamentation in the fission yeast Schizosaccharomyces pombe. To our surprise, we find that both the length and the occurrence of cytoophidia in S. pombe decrease upon cold shock or heat shock. The temperature-dependent changes of cytoophidia are fast and reversible. Taking advantage of yeast genetics, we demonstrate that heat-shock proteins are required for cytoophidium assembly in S. pombe. Temperature sensitivity of cytoophidia makes S. pombe an attractive model system for future investigations of this novel membraneless organelle.
Collapse
Affiliation(s)
- Jing Zhang
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom
| | - Ji-Long Liu
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
45
|
Andreadis C, Hulme L, Wensley K, Liu JL. The TOR pathway modulates cytoophidium formation in Schizosaccharomyces pombe. J Biol Chem 2019; 294:14686-14703. [PMID: 31431504 PMCID: PMC6779450 DOI: 10.1074/jbc.ra119.009913] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/09/2019] [Indexed: 12/30/2022] Open
Abstract
CTP synthase (CTPS) has been demonstrated to form evolutionarily-conserved filamentous structures termed cytoophidia whose exact cellular functions remain unclear, but they may play a role in intracellular compartmentalization. We have previously shown that the mammalian target of rapamycin complex 1 (mTORC1)-S6K1 pathway mediates cytoophidium assembly in mammalian cells. Here, using the fission yeast Schizosaccharomyces pombe as a model of a unicellular eukaryote, we demonstrate that the target of rapamycin (TOR)-signaling pathway regulates cytoophidium formation (from the S. pombe CTPS ortholog Cts1) also in S. pombe Conducting a systematic analysis of all viable single TOR subunit-knockout mutants and of several major downstream effector proteins, we found that Cts1 cytoophidia are significantly shortened and often dissociate when TOR is defective. We also found that the activities of the downstream effector kinases of the TORC1 pathway, Sck1, Sck2, and Psk1 S6, as well as of the S6K/AGC kinase Gad8, the major downstream effector kinase of the TORC2 pathway, are necessary for proper cytoophidium filament formation. Interestingly, we observed that the Crf1 transcriptional corepressor for ribosomal genes is a strong effector of Cts1 filamentation. Our findings connect TOR signaling, a major pathway required for cell growth, with the compartmentalization of the essential nucleotide synthesis enzyme CTPS, and we uncover differences in the regulation of its filamentation among higher multicellular and unicellular eukaryotic systems.
Collapse
Affiliation(s)
- Christos Andreadis
- School of Life Sciences and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Lydia Hulme
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Katherine Wensley
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Ji-Long Liu
- School of Life Sciences and Technology, ShanghaiTech University, 201210 Shanghai, China .,MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| |
Collapse
|
46
|
Sun Z, Liu JL. Forming cytoophidia prolongs the half-life of CTP synthase. Cell Discov 2019; 5:32. [PMID: 31240110 PMCID: PMC6579761 DOI: 10.1038/s41421-019-0098-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 01/27/2023] Open
Affiliation(s)
- Zhe Sun
- 1School of Life Science and Technology, ShanghaiTech University, 230 Haike Road, 201210 Shanghai, China
| | - Ji-Long Liu
- 1School of Life Science and Technology, ShanghaiTech University, 230 Haike Road, 201210 Shanghai, China.,2Department of Physiology, Anatomy, and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3PT UK
| |
Collapse
|
47
|
Wu Z, Liu JL. Cytoophidia respond to nutrient stress in Drosophila. Exp Cell Res 2019; 376:159-167. [PMID: 30768932 PMCID: PMC6403103 DOI: 10.1016/j.yexcr.2019.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/13/2019] [Accepted: 02/09/2019] [Indexed: 01/08/2023]
Abstract
CTP synthase (CTPsyn) is a metabolic enzyme essential for the de novo synthesis of CTP the nucleotide. CTPsyn can be compartmented into filamentous structures named cytoophidia. Cytoophidia are conserved in a wide range of species and are highly abundant in Drosophila ovaries. Here we report that cytoophidia elongate upon nutrient deprivation, CTPsyn overexpression or heat shock in Drosophila ovaries. We also show that the curvature of cytoophidia changes during apoptosis. Moreover, cytoophidia can be transported from nurse cells to the oocyte via ring canals. Our study demonstrates that cytoophidia can respond to stress and are very dynamic in Drosophila ovaries.
Collapse
Affiliation(s)
- Zheng Wu
- School of Life Science and Technology, ShanghaiTech University, 230 Haike Road, 201210 Shanghai, China
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, 230 Haike Road, 201210 Shanghai, China; MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3PT, United Kingdom.
| |
Collapse
|
48
|
Sun Z, Liu JL. mTOR-S6K1 pathway mediates cytoophidium assembly. J Genet Genomics 2019; 46:65-74. [PMID: 30857853 PMCID: PMC6459811 DOI: 10.1016/j.jgg.2018.11.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 11/21/2018] [Accepted: 11/30/2018] [Indexed: 01/17/2023]
Abstract
CTP synthase (CTPS), the rate-limiting enzyme in de novo CTP biosynthesis, has been demonstrated to assemble into evolutionarily conserved filamentous structures, termed cytoophidia, in Drosophila, bacteria, yeast and mammalian cells. However, the regulation and function of the cytoophidium remain elusive. Here, we provide evidence that the mechanistic target of rapamycin (mTOR) pathway controls cytoophidium assembly in mammalian and Drosophila cells. In mammalian cells, we find that inhibition of mTOR pathway attenuates cytoophidium formation. Moreover, CTPS cytoophidium assembly appears to be dependent on the mTOR complex 1 (mTORC1) mainly. In addition, knockdown of the mTORC1 downstream target S6K1 can inhibit cytoophidium formation, while overexpression of the constitutively active S6K1 reverses mTOR knockdown-induced cytoophidium disassembly. Finally, reducing mTOR protein expression results in a decrease of the length of cytoophidium in Drosophila follicle cells. Therefore, our study connects CTPS cytoophidium formation with the mTOR signaling pathway.
Collapse
Affiliation(s)
- Zhe Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom.
| |
Collapse
|
49
|
Zhang S, Ding K, Shen QJ, Zhao S, Liu JL. Filamentation of asparagine synthetase in Saccharomyces cerevisiae. PLoS Genet 2018; 14:e1007737. [PMID: 30365499 PMCID: PMC6221361 DOI: 10.1371/journal.pgen.1007737] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 11/07/2018] [Accepted: 10/03/2018] [Indexed: 11/24/2022] Open
Abstract
Asparagine synthetase (ASNS) and CTP synthase (CTPS) are two metabolic enzymes crucial for glutamine homeostasis. A genome-wide screening in Saccharomyces cerevisiae reveal that both ASNS and CTPS form filamentous structures termed cytoophidia. Although CTPS cytoophidia were well documented in recent years, the filamentation of ASNS is less studied. Using the budding yeast as a model system, here we confirm that two ASNS proteins, Asn1 and Asn2, are capable of forming cytoophidia in diauxic and stationary phases. We find that glucose deprivation induces ASNS filament formation. Although ASNS and CTPS form distinct cytoophidia with different lengths, both structures locate adjacently to each other in most cells. Moreover, we demonstrate that the Asn1 cytoophidia colocalize with the Asn2 cytoophidia, while Asn2 filament assembly is largely dependent on Asn1. In addition, we are able to alter Asn1 filamentation by mutagenizing key sites on the dimer interface. Finally, we show that ASN1D330V promotes filamentation. The ASN1D330V mutation impedes cell growth in an ASN2 knockout background, while growing normally in an ASN2 wild-type background. Together, this study reveals a connection between ASNS and CTPS cytoophidia and the differential filament-forming capability between two ASNS paralogs. Asparagine synthetase (ASNS) is an essential enzyme for biosynthesis of asparagine. We have recently shown that ASNS, similar to CTP synthase (CTPS), can assemble into snake-shaped structures termed cytoophidia. In this study, we reveal that the ASNS cytoophidium stays close with the CTPS cytoophidium in most cells. Two ASNS proteins, Asn1 and Asn2, localize in the same structure. The Asn1 protein is important for the formation of the Asn2 filaments. Mutant cells with branching Asn1 cytoophidia grow slower than wild-type cells. Our findings provide a better understanding of the ASNS cytoophidium as well as its relationship with the CTPS cytoophidium.
Collapse
Affiliation(s)
- Shanshan Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Shanghai Institute of Biochemistry and Cell biology, Chinese Academy of Sciences, Shanghai, China
| | - Kang Ding
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Qing-Ji Shen
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Suwen Zhao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- * E-mail: ,
| |
Collapse
|
50
|
Chang C, Keppeke GD, Sung L, Liu J. Interfilament interaction between IMPDH and CTPS cytoophidia. FEBS J 2018; 285:3753-3768. [PMID: 30085408 PMCID: PMC6220823 DOI: 10.1111/febs.14624] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 07/03/2018] [Accepted: 08/03/2018] [Indexed: 11/30/2022]
Abstract
Inosine monophosphate dehydrogenase (IMPDH) and cytidine triphosphate synthase (CTPS) are two metabolic enzymes that perform rate-limiting steps in the de novo synthesis of purine and pyrimidine nucleotides, respectively. It has been shown that IMPDH and CTPS can comprise a filamentous macrostructure termed the cytoophidium, which may play a role in regulation of their catalytic activity. Although these two proteins may colocalise in the same cytoophidium, how they associate with one another is still elusive. As reported herein, we established a model HeLa cell line coexpressing OFP-tagged IMPDH2 and GFP-tagged CTPS1 and recorded the assembly, disassembly and movement of the cytoophidium in live cells. Moreover, by using super-resolution confocal imaging, we demonstrate how IMPDH- and CTPS-based filaments are aligned or intertwined in the mixed cytoophidium. Collectively, our findings provide a panorama of cytoophidium dynamics and suggest that IMPDH and CTPS cytoophidia may coordinate by interfilament interaction.
Collapse
Affiliation(s)
- Chia‐Chun Chang
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordUK
- Institute of BiotechnologyNational Taiwan UniversityTaipeiTaiwan
| | - Gerson D. Keppeke
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordUK
| | - Li‐Ying Sung
- Institute of BiotechnologyNational Taiwan UniversityTaipeiTaiwan
- Agricultural Biotechnology Research CenterAcademia SinicaTaipeiTaiwan
| | - Ji‐Long Liu
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordUK
- School of Life Science and TechnologyShanghaiTech UniversityChina
| |
Collapse
|