1
|
Wang J, Gao S, Li G, Shi J, Deng W, Wu Q, Mei W. DNA-based nanosized functional ruthenium(II) complex as potential phosphorescent probe to track tumor cells. Mol Divers 2025; 29:1161-1173. [PMID: 38878213 DOI: 10.1007/s11030-024-10898-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/14/2024] [Indexed: 03/15/2025]
Abstract
Identifying tumor cells can be challenging due to cancer's complex and heterogeneous nature. Here, an efficacious phosphorescent probe that can precisely highlight tumor cells has been created. By combining the ruthenium(II) complex with oligonucleotides, we have developed a nanosized functional ruthenium(II) complex (Ru@DNA) with dimensions ranging from 300 to 500 nm. Our research demonstrates that Ru@DNA can readily traverse biomembranes via ATP-dependent endocytosis without carriers. Notably, the nanosized ruthenium(II) complex exhibits rapid and selective accumulation within tumor cells, possibly attributed to the nanoparticles' enhanced permeation and retention (EPR) effect. Ru@DNA can also effectively discern and label the transplanted cancer cells in the zebrafish model. Moreover, Ru@DNA is efficiently absorbed into the intestine and further distributed in the pancreas. Our findings underscore the potential of Ru@DNA as a DNA-based nanodevice derived from a functional ruthenium(II) complex. This innovative nanodevice holds promise as an efficient phosphorescent probe for both in vitro and in vivo imaging of living tumor cells.
Collapse
Affiliation(s)
- Jiacheng Wang
- School of Pharmacy, Guangdong Province Engineering Centre for Molecular Probe & Biomedicine Imaging, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Shiqi Gao
- School of Pharmacy, Guangdong Province Engineering Centre for Molecular Probe & Biomedicine Imaging, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Guohu Li
- School of Pharmacy, Guangdong Province Engineering Centre for Molecular Probe & Biomedicine Imaging, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jiahui Shi
- School of Pharmacy, Guangdong Province Engineering Centre for Molecular Probe & Biomedicine Imaging, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Wenhui Deng
- School of Pharmacy, Guangdong Province Engineering Centre for Molecular Probe & Biomedicine Imaging, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Qiong Wu
- School of Pharmacy, Guangdong Province Engineering Centre for Molecular Probe & Biomedicine Imaging, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 530316, China.
| | - Wenjie Mei
- School of Pharmacy, Guangdong Province Engineering Centre for Molecular Probe & Biomedicine Imaging, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Aldous N, Elsayed AK, Memon B, Ijaz S, Hayat S, Abdelalim EM. Deletion of RFX6 impairs iPSC-derived islet organoid development and survival, with no impact on PDX1 +/NKX6.1 + progenitors. Diabetologia 2024; 67:2786-2803. [PMID: 39080045 PMCID: PMC11604831 DOI: 10.1007/s00125-024-06232-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/11/2024] [Indexed: 11/29/2024]
Abstract
AIMS/HYPOTHESIS Homozygous mutations in RFX6 lead to neonatal diabetes accompanied by a hypoplastic pancreas, whereas heterozygous mutations cause MODY. Recent studies have also shown RFX6 variants to be linked with type 2 diabetes. Despite RFX6's known function in islet development, its specific role in diabetes pathogenesis remains unclear. Here, we aimed to understand the mechanisms underlying the impairment of pancreatic islet development and subsequent hypoplasia due to loss-of-function mutations in RFX6. METHODS We examined regulatory factor X6 (RFX6) expression during human embryonic stem cell (hESC) differentiation into pancreatic islets and re-analysed a single-cell RNA-seq dataset to identify RFX6-specific cell populations during islet development. Furthermore, induced pluripotent stem cell (iPSC) lines lacking RFX6 were generated using CRISPR/Cas9. Various approaches were then employed to explore the consequences of RFX6 loss across different developmental stages. Subsequently, we evaluated transcriptional changes resulting from RFX6 loss through RNA-seq of pancreatic progenitors (PPs) and endocrine progenitors (EPs). RESULTS RFX6 expression was detected in PDX1+ cells in the hESC-derived posterior foregut (PF). However, in the PPs, RFX6 did not co-localise with pancreatic and duodenal homeobox 1 (PDX1) or NK homeobox 1 (NKX6.1) but instead co-localised with neurogenin 3, NK2 homeobox 2 and islet hormones in the EPs and islets. Single-cell analysis revealed high RFX6 expression levels in endocrine clusters across various hESC-derived pancreatic differentiation stages. Upon differentiating iPSCs lacking RFX6 into pancreatic islets, a significant decrease in PDX1 expression at the PF stage was observed, although this did not affect PPs co-expressing PDX1 and NKX6.1. RNA-seq analysis showed the downregulation of essential genes involved in pancreatic endocrine differentiation, insulin secretion and ion transport due to RFX6 deficiency. Furthermore, RFX6 deficiency resulted in the formation of smaller islet organoids due to increased cellular apoptosis, linked to reduced catalase expression, implying a protective role for RFX6. Overexpression of RFX6 reversed defective phenotypes in RFX6-knockout PPs, EPs and islets. CONCLUSIONS/INTERPRETATION These findings suggest that pancreatic hypoplasia and reduced islet cell formation associated with RFX6 mutations are not due to alterations in PDX1+/NKX6.1+ PPs but instead result from cellular apoptosis and downregulation of pancreatic endocrine genes. DATA AVAILABILITY RNA-seq datasets have been deposited in the Zenodo repository with accession link (DOI: https://doi.org/10.5281/zenodo.10656891 ).
Collapse
Affiliation(s)
- Noura Aldous
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Education City, Doha, Qatar
- Laboratory of Pluripotent Stem Cell Disease Modeling, Translational Medicine Department, Research Branch, Sidra Medicine, Doha, Qatar
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Ahmed K Elsayed
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Education City, Doha, Qatar
- Laboratory of Pluripotent Stem Cell Disease Modeling, Translational Medicine Department, Research Branch, Sidra Medicine, Doha, Qatar
- Stem Cell Core, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Bushra Memon
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Sadaf Ijaz
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology and Hypertension), RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Sikander Hayat
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology and Hypertension), RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Essam M Abdelalim
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Education City, Doha, Qatar.
- Laboratory of Pluripotent Stem Cell Disease Modeling, Translational Medicine Department, Research Branch, Sidra Medicine, Doha, Qatar.
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar.
| |
Collapse
|
3
|
Mi J, Ren L, Andersson O. Leveraging zebrafish to investigate pancreatic development, regeneration, and diabetes. Trends Mol Med 2024; 30:932-949. [PMID: 38825440 DOI: 10.1016/j.molmed.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 06/04/2024]
Abstract
The zebrafish has become an outstanding model for studying organ development and tissue regeneration, which is prominently leveraged for studies of pancreatic development, insulin-producing β-cells, and diabetes. Although studied for more than two decades, many aspects remain elusive and it has only recently been possible to investigate these due to technical advances in transcriptomics, chemical-genetics, genome editing, drug screening, and in vivo imaging. Here, we review recent findings on zebrafish pancreas development, β-cell regeneration, and how zebrafish can be used to provide novel insights into gene functions, disease mechanisms, and therapeutic targets in diabetes, inspiring further use of zebrafish for the development of novel therapies for diabetes.
Collapse
Affiliation(s)
- Jiarui Mi
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, China.
| | - Lipeng Ren
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Uppsala, Sweden
| | - Olov Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Uppsala, Sweden.
| |
Collapse
|
4
|
Sheethal G, Verma A, Mall R, Parsa KV, Tokala RK, Bynigeri R, Pondugala PK, Vemula K, Sai Latha S, Sowpati DT, Singh SS, Rao GV, Talukdar R, Kanneganti TD, Reddy DN, Sasikala M. Modulation of Nuclear Receptor 4A1 Expression Improves Insulin Secretion in a Mouse Model of Chronic Pancreatitis. Pancreas 2024; 53:e760-e773. [PMID: 38710022 DOI: 10.1097/mpa.0000000000002370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
OBJECTIVES Diabetes secondary to chronic pancreatitis (CP) presents clinical challenges due to lack of understanding on factor(s) triggering insulin secretory defects. Therefore, we aimed to delineate the molecular mechanism of β-cell dysfunction in CP. MATERIALS AND METHODS Transcriptomic analysis was conducted to identify endocrine-specific receptor expression in mice and human CP on microarray. The identified receptor (NR4A1) was overexpressed in MIN6 cells using PEI linear transfection. RNA-Seq analysis of NR4A1-overexpressed (OE) MIN6 cells on NovaSeq6000 identified aberrant metabolic pathways. Upstream trigger for NR4A1OE was studied by InBio Discover and cytokine exposure, whereas downstream effect was examined by Fura2 AM-based fluorimetric and imaging studies. Mice with CP were treated with IFN-γ-neutralizing monoclonal antibodies to assess NR4A1 expression and insulin secretion. RESULTS Increased expression of NR4A1 associated with decreased insulin secretion in islets (humans: controls 9 ± 0.2, CP 3.7 ± 0.2, mice: controls 8.5 ± 0.2, CP 2.1 ± 0.1 μg/L). NR4A1OE in MIN6 cells (13.2 ± 0.1) showed reduction in insulin secretion (13 ± 5 to 0.2 ± 0.1 μg/mg protein per minute, P = 0.001) and downregulation of calcium and cAMP signaling pathways. IFN-γ was identified as upstream signal for NR4A1OE in MIN6. Mice treated with IFN-γ-neutralizing antibodies showed decreased NR4A1 expression 3.4 ± 0.11-fold ( P = 0.03), showed improved insulin secretion (4.4 ± 0.2-fold, P = 0.01), and associated with increased Ca 2+ levels (2.39 ± 0.06-fold, P = 0.009). CONCLUSIONS Modulating NR4A1 expression can be a promising therapeutic strategy to improve insulin secretion in CP.
Collapse
Affiliation(s)
| | - Archana Verma
- CSIR-CCMB, Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Raghvendra Mall
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN
| | - Kishore Vl Parsa
- Centre for Innovation in Molecular and Pharmaceutical Sciences, Dr Reddy's Institute of Life Sciences
| | | | - Ratnakar Bynigeri
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN
| | | | | | - S Sai Latha
- Centre for Innovation in Molecular and Pharmaceutical Sciences, Dr Reddy's Institute of Life Sciences
| | - Divya Tej Sowpati
- CSIR-CCMB, Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | - G V Rao
- Asian Institute of Gastroenterology (AIG Hospitals), Hyderabad, India
| | - Rupjyoti Talukdar
- Asian Institute of Gastroenterology (AIG Hospitals), Hyderabad, India
| | | | - D Nageshwar Reddy
- Asian Institute of Gastroenterology (AIG Hospitals), Hyderabad, India
| | | |
Collapse
|
5
|
Hasballa I, Maggi D. MODY Only Monogenic? A Narrative Review of the Novel Rare and Low-Penetrant Variants. Int J Mol Sci 2024; 25:8790. [PMID: 39201476 PMCID: PMC11354648 DOI: 10.3390/ijms25168790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/26/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
Maturity-onset diabetes of the young (MODY) represents the most frequent form of monogenic diabetes mellitus (DM), currently classified in 14 distinct subtypes according to single gene mutations involved in the differentiation and function of pancreatic β-cells. A significant proportion of MODY has unknown etiology, suggesting that the genetic landscape is still to be explored. Recently, novel potentially MODY-causal genes, involved in the differentiation and function of β-cells, have been identified, such as RFX6, NKX2.2, NKX6.1, WFS1, PCBD1, MTOR, TBC1D4, CACNA1E, MNX1, AKT2, NEUROG3, EIF2AK3, GLIS3, HADH, and PTF1A. Genetic and clinical features of MODY variants remain highly heterogeneous, with no direct genotype-phenotype correlation, especially in the low-penetrant subtypes. This is a narrative review of the literature aimed at describing the current state-of-the-art of the novel likely MODY-associated variants. For a deeper understanding of MODY complexity, we also report some related controversies concerning the etiological role of some of the well-known pathological genes and MODY inheritance pattern, as well as the rare association of MODY with autoimmune diabetes. Due to the limited data available, the assessment of MODY-related genes pathogenicity remains challenging, especially in the setting of rare and low-penetrant subtypes. In consideration of the crucial importance of an accurate diagnosis, prognosis and management of MODY, more studies are warranted to further investigate its genetic landscape and the genotype-phenotype correlation, as well as the pathogenetic contribution of the nongenetic modifiers in this cohort of patients.
Collapse
Affiliation(s)
- Iderina Hasballa
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, 16132 Genoa, Italy
| | - Davide Maggi
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, 16132 Genoa, Italy
- Diabetes Clinic, IRCCS Ospedale Policlinico San Martino Genoa, 16132 Genoa, Italy
| |
Collapse
|
6
|
Ibrahim H, Balboa D, Saarimäki-Vire J, Montaser H, Dyachok O, Lund PE, Omar-Hmeadi M, Kvist J, Dwivedi OP, Lithovius V, Barsby T, Chandra V, Eurola S, Ustinov J, Tuomi T, Miettinen PJ, Barg S, Tengholm A, Otonkoski T. RFX6 haploinsufficiency predisposes to diabetes through impaired beta cell function. Diabetologia 2024; 67:1642-1662. [PMID: 38743124 PMCID: PMC11343796 DOI: 10.1007/s00125-024-06163-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/21/2024] [Indexed: 05/16/2024]
Abstract
AIMS/HYPOTHESIS Regulatory factor X 6 (RFX6) is crucial for pancreatic endocrine development and differentiation. The RFX6 variant p.His293LeufsTer7 is significantly enriched in the Finnish population, with almost 1:250 individuals as a carrier. Importantly, the FinnGen study indicates a high predisposition for heterozygous carriers to develop type 2 and gestational diabetes. However, the precise mechanism of this predisposition remains unknown. METHODS To understand the role of this variant in beta cell development and function, we used CRISPR technology to generate allelic series of pluripotent stem cells. We created two isogenic stem cell models: a human embryonic stem cell model; and a patient-derived stem cell model. Both were differentiated into pancreatic islet lineages (stem-cell-derived islets, SC-islets), followed by implantation in immunocompromised NOD-SCID-Gamma mice. RESULTS Stem cell models of the homozygous variant RFX6-/- predictably failed to generate insulin-secreting pancreatic beta cells, mirroring the phenotype observed in Mitchell-Riley syndrome. Notably, at the pancreatic endocrine stage, there was an upregulation of precursor markers NEUROG3 and SOX9, accompanied by increased apoptosis. Intriguingly, heterozygous RFX6+/- SC-islets exhibited RFX6 haploinsufficiency (54.2% reduction in protein expression), associated with reduced beta cell maturation markers, altered calcium signalling and impaired insulin secretion (62% and 54% reduction in basal and high glucose conditions, respectively). However, RFX6 haploinsufficiency did not have an impact on beta cell number or insulin content. The reduced insulin secretion persisted after in vivo implantation in mice, aligning with the increased risk of variant carriers to develop diabetes. CONCLUSIONS/INTERPRETATION Our allelic series isogenic SC-islet models represent a powerful tool to elucidate specific aetiologies of diabetes in humans, enabling the sensitive detection of aberrations in both beta cell development and function. We highlight the critical role of RFX6 in augmenting and maintaining the pancreatic progenitor pool, with an endocrine roadblock and increased cell death upon its loss. We demonstrate that RFX6 haploinsufficiency does not affect beta cell number or insulin content but does impair function, predisposing heterozygous carriers of loss-of-function variants to diabetes. DATA AVAILABILITY Ultra-deep bulk RNA-seq data for pancreatic differentiation stages 3, 5 and 7 of H1 RFX6 genotypes are deposited in the Gene Expression Omnibus database with accession code GSE234289. Original western blot images are deposited at Mendeley ( https://data.mendeley.com/datasets/g75drr3mgw/2 ).
Collapse
Affiliation(s)
- Hazem Ibrahim
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Diego Balboa
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jonna Saarimäki-Vire
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Hossam Montaser
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Oleg Dyachok
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Per-Eric Lund
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | | - Jouni Kvist
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Om P Dwivedi
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, Helsinki, Finland
- Research Program of Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| | - Väinö Lithovius
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tom Barsby
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Vikash Chandra
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Solja Eurola
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jarkko Ustinov
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tiinamaija Tuomi
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, Helsinki, Finland
- Research Program of Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Finland
- Abdominal Center, Endocrinology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Päivi J Miettinen
- Department of Pediatrics, Helsinki University Hospital, Helsinki, Finland
| | - Sebastian Barg
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Anders Tengholm
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Timo Otonkoski
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Department of Pediatrics, Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
7
|
Sanchez JG, Rankin S, Paul E, McCauley HA, Kechele DO, Enriquez JR, Jones NH, Greeley SAW, Letourneau-Friedberg L, Zorn AM, Krishnamurthy M, Wells JM. RFX6 regulates human intestinal patterning and function upstream of PDX1. Development 2024; 151:dev202529. [PMID: 38587174 PMCID: PMC11128285 DOI: 10.1242/dev.202529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/12/2024] [Indexed: 04/09/2024]
Abstract
The gastrointestinal (GI) tract is complex and consists of multiple organs with unique functions. Rare gene variants can cause congenital malformations of the human GI tract, although the molecular basis of these has been poorly studied. We identified a patient with compound-heterozygous variants in RFX6 presenting with duodenal malrotation and atresia, implicating RFX6 in development of the proximal intestine. To identify how mutations in RFX6 impact intestinal patterning and function, we derived induced pluripotent stem cells from this patient to generate human intestinal organoids (HIOs). We identified that the duodenal HIOs and human tissues had mixed regional identity, with gastric and ileal features. CRISPR-mediated correction of RFX6 restored duodenal identity. We then used gain- and loss-of-function and transcriptomic approaches in HIOs and Xenopus embryos to identify that PDX1 is a downstream transcriptional target of RFX6 required for duodenal development. However, RFX6 had additional PDX1-independent transcriptional targets involving multiple components of signaling pathways that are required for establishing early regional identity in the GI tract. In summary, we have identified RFX6 as a key regulator in intestinal patterning that acts by regulating transcriptional and signaling pathways.
Collapse
Affiliation(s)
- J. Guillermo Sanchez
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
| | - Scott Rankin
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
| | - Emily Paul
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
| | - Heather A. McCauley
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Daniel O. Kechele
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
| | - Jacob R. Enriquez
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
| | - Nana-Hawa Jones
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Siri A. W. Greeley
- Division of Endocrinology, University of Chicago, Chicago, IL 60637, USA
| | | | - Aaron M. Zorn
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
| | - Mansa Krishnamurthy
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - James M. Wells
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
8
|
Coykendall VM, Qian MF, Tellez K, Bautista A, Bevacqua RJ, Gu X, Hang Y, Neukam M, Zhao W, Chang C, MacDonald PE, Kim SK. RFX6 Maintains Gene Expression and Function of Adult Human Islet α-Cells. Diabetes 2024; 73:448-460. [PMID: 38064570 PMCID: PMC10882151 DOI: 10.2337/db23-0483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/21/2023] [Indexed: 02/22/2024]
Abstract
Mutations in the gene encoding the transcription factor regulatory factor X-box binding 6 (RFX6) are associated with human diabetes. Within pancreatic islets, RFX6 expression is most abundant in islet α-cells, and α-cell RFX6 expression is altered in diabetes. However, the roles of RFX6 in regulating gene expression, glucagon output, and other crucial human adult α-cell functions are not yet understood. We developed a method for selective genetic targeting of human α-cells and assessed RFX6-dependent α-cell function. RFX6 suppression with RNA interference led to impaired α-cell exocytosis and dysregulated glucagon secretion in vitro and in vivo. By contrast, these phenotypes were not observed with RFX6 suppression across all islet cells. Transcriptomics in α-cells revealed RFX6-dependent expression of genes governing nutrient sensing, hormone processing, and secretion, with some of these exclusively expressed in human α-cells. Mapping of RFX6 DNA-binding sites in primary human islet cells identified a subset of direct RFX6 target genes. Together, these data unveil RFX6-dependent genetic targets and mechanisms crucial for regulating adult human α-cell function. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Vy M.N. Coykendall
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| | - Mollie F. Qian
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| | - Krissie Tellez
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| | - Austin Bautista
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Romina J. Bevacqua
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| | - Xueying Gu
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| | - Yan Hang
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA
| | - Martin Neukam
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| | - Weichen Zhao
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| | - Charles Chang
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| | - Patrick E. MacDonald
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Seung K. Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
9
|
Nakamura T, Fujikura J, Ito R, Keidai Y, Inagaki N. Human RFX6 regulates endoderm patterning at the primitive gut tube stage. PNAS NEXUS 2024; 3:pgae001. [PMID: 38239755 PMCID: PMC10794167 DOI: 10.1093/pnasnexus/pgae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 12/26/2023] [Indexed: 01/22/2024]
Abstract
Transcriptional factor RFX6 is known to be a causal gene of Mitchell-Riley syndrome (MRS), an autosomal recessive neonatal diabetes associated with pancreatic hypoplasia and intestinal atresia/malformation. The morphological defects are limited to posterior foregut and mid-hindgut endodermal lineages and do not occur in the anterior foregut lineage; the mechanism remains to be fully elucidated. In this study, we generated RFX6+/eGFP heterozygous knockin and RFX6eGFP/eGFP homozygous knockin/knockout human-induced pluripotent stem cell (hiPSC) lines and performed in vitro endoderm differentiation to clarify the role of RFX6 in early endoderm development. RFX6 expression was found to surge at the primitive gut tube (PGT) stage in comparison with that in the undifferentiated or definitive endoderm stage. At the PGT stage, the expression of PDX1 and CDX2, posterior foregut and mid-hindgut master regulators, respectively, was decreased by the RFX6 deficit. PDX1+ and CDX2+ cells were mostly green fluorescent protein (GFP)+ in RFX6+/eGFP hiPSCs, but their cell number was markedly decreased in RFX6eGFP/eGFP hiPSCs. The expression of SOX2, an anterior foregut marker, was not affected by the RFX6 deficit. In addition, we found a putative RFX6-binding X-box motif using cap analysis of gene expression-seq and the motif-containing sequences in the enhancer regions of PDX1 and CDX2 bound to RFX6 in vitro. Thus, RFX6 regulates the ParaHox genes PDX1 and CDX2 but does not affect SOX2 in early endodermal differentiation, suggesting that defects in early stage endoderm patterning account for the morphological pathology of MRS.
Collapse
Affiliation(s)
- Toshihiro Nakamura
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Junji Fujikura
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Ryo Ito
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Yamato Keidai
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
- Medical Research Institute, Kitano Hospital, PIIF Tazuke-kofukai, Osaka 530-8480, Japan
| |
Collapse
|
10
|
Qiu Z, Wang C, Huang P, Yuan Y, Shi Y, Lin Z, Huang Z, Zuo D, Qiu J, He W, Shen J, Niu Y, Yuan Y, Li B. RFX6 facilitates aerobic glycolysis-mediated growth and metastasis of hepatocellular carcinoma through targeting PGAM1. Clin Transl Med 2023; 13:e1511. [PMID: 38093528 PMCID: PMC10719540 DOI: 10.1002/ctm2.1511] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) cells undergo reprogramming of glucose metabolism to support uncontrolled proliferation, of which the intrinsic mechanism still merits further investigation. Although regulatory factor X6 (RFX6) is aberrantly expressed in different cancers, its precise role in cancer development remains ambiguous. METHODS Microarrays of HCC tissues were employed to investigate the expression of RFX6 in tumour and adjacent non-neoplastic tissues. Functional assays were employed to explore the role of RFX6 in HCC development. Chromatin immunoprecipitation, untargeted metabolome profiling and sequencing were performed to identify potential downstream genes and pathways regulated by RFX6. Metabolic assays were employed to investigate the effect of RFX6 on glycolysis in HCC cells. Bioinformatics databases were used to validate the above findings. RESULTS HCC tissues exhibited elevated expression of RFX6. High RFX6 expression represented as an independent hazard factor correlated to poor prognosis in patients with HCC. RFX6 deficiency inhibited HCC development in vitro and in vivo, while its overexpression exerted opposite functions. Mechanistically, RFX6 bound to the promoter area of phosphoglycerate mutase 1 (PGAM1) and upregulated its expression. The increased PGAM1 protein levels enhanced glycolysis and further promoted the development of HCC. CONCLUSIONS RFX6 acted as a novel driver for HCC development by promoting aerobic glycolysis, disclosing the potential of the RFX6-PGAM1 axis for therapeutic targeting.
Collapse
Affiliation(s)
- Zhiyu Qiu
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer MedicineSun Yat‐Sen University Cancer CenterSun Yat‐Sen UniversityGuangzhouP. R. China
- Department of Liver SurgerySun Yat‐Sen University Cancer CenterSun Yat‐Sen UniversityGuangzhouP. R. China
| | - Chenwei Wang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer MedicineSun Yat‐Sen University Cancer CenterSun Yat‐Sen UniversityGuangzhouP. R. China
- Department of Liver SurgerySun Yat‐Sen University Cancer CenterSun Yat‐Sen UniversityGuangzhouP. R. China
| | - Pinzhu Huang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease and Department of Colon and Rectum SurgeryThe Sixth Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouP. R. China
| | - Yichuan Yuan
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer MedicineSun Yat‐Sen University Cancer CenterSun Yat‐Sen UniversityGuangzhouP. R. China
- Department of Liver SurgerySun Yat‐Sen University Cancer CenterSun Yat‐Sen UniversityGuangzhouP. R. China
| | - Yunxing Shi
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer MedicineSun Yat‐Sen University Cancer CenterSun Yat‐Sen UniversityGuangzhouP. R. China
- Department of Liver SurgerySun Yat‐Sen University Cancer CenterSun Yat‐Sen UniversityGuangzhouP. R. China
| | - Zhu Lin
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer MedicineSun Yat‐Sen University Cancer CenterSun Yat‐Sen UniversityGuangzhouP. R. China
- Department of Liver SurgerySun Yat‐Sen University Cancer CenterSun Yat‐Sen UniversityGuangzhouP. R. China
| | - Zhenkun Huang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer MedicineSun Yat‐Sen University Cancer CenterSun Yat‐Sen UniversityGuangzhouP. R. China
- Department of Liver SurgerySun Yat‐Sen University Cancer CenterSun Yat‐Sen UniversityGuangzhouP. R. China
| | - Dinglan Zuo
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer MedicineSun Yat‐Sen University Cancer CenterSun Yat‐Sen UniversityGuangzhouP. R. China
| | - Jiliang Qiu
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer MedicineSun Yat‐Sen University Cancer CenterSun Yat‐Sen UniversityGuangzhouP. R. China
- Department of Liver SurgerySun Yat‐Sen University Cancer CenterSun Yat‐Sen UniversityGuangzhouP. R. China
| | - Wei He
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer MedicineSun Yat‐Sen University Cancer CenterSun Yat‐Sen UniversityGuangzhouP. R. China
- Department of Liver SurgerySun Yat‐Sen University Cancer CenterSun Yat‐Sen UniversityGuangzhouP. R. China
| | - Jingxian Shen
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer MedicineSun Yat‐Sen University Cancer CenterSun Yat‐Sen UniversityGuangzhouP. R. China
- Department of RadiologySun Yat‐Sen University Cancer CenterSun Yat‐Sen UniversityGuangzhouP. R. China
| | - Yi Niu
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer MedicineSun Yat‐Sen University Cancer CenterSun Yat‐Sen UniversityGuangzhouP. R. China
| | - Yunfei Yuan
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer MedicineSun Yat‐Sen University Cancer CenterSun Yat‐Sen UniversityGuangzhouP. R. China
- Department of Liver SurgerySun Yat‐Sen University Cancer CenterSun Yat‐Sen UniversityGuangzhouP. R. China
| | - Binkui Li
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer MedicineSun Yat‐Sen University Cancer CenterSun Yat‐Sen UniversityGuangzhouP. R. China
- Department of Liver SurgerySun Yat‐Sen University Cancer CenterSun Yat‐Sen UniversityGuangzhouP. R. China
| |
Collapse
|
11
|
Brooks EP, Sussel L. Not the second fiddle: α cell development, identity, and function in health and diabetes. J Endocrinol 2023; 258:e220297. [PMID: 37171828 PMCID: PMC10524258 DOI: 10.1530/joe-22-0297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/12/2023] [Indexed: 05/13/2023]
Abstract
Historic and emerging studies provide evidence for the deterioration of pancreatic α cell function and identity in diabetes mellitus. Increased access to human tissue and the availability of more sophisticated molecular technologies have identified key insights into how α cell function and identity are preserved in healthy conditions and how they become dysfunctional in response to stress. These studies have revealed evidence of impaired glucagon secretion, shifts in α cell electrophysiology, changes in α cell mass, dysregulation of α cell transcription, and α-to-β cell conversion prior to and during diabetes. In this review, we outline the current state of research on α cell identity in health and disease. Evidence in model organisms and humans suggests that in addition to β cell dysfunction, diabetes is associated with a fundamental dysregulation of α cell identity. Importantly, epigenetic studies have revealed that α cells retain more poised and open chromatin at key cell-specific and diabetes-dysregulated genes, supporting the model that the inherent epigenetic plasticity of α cells makes them susceptible to the transcriptional changes that potentiate the loss of identity and function seen in diabetes. Thus, additional research into the maintenance of α cell identity and function is critical to fully understanding diabetes. Furthermore, these studies suggest α cells could represent an alternative source of new β cells for diabetes treatment.
Collapse
Affiliation(s)
- Elliott P Brooks
- Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lori Sussel
- Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
12
|
Mattis KK, Krentz NAJ, Metzendorf C, Abaitua F, Spigelman AF, Sun H, Ikle JM, Thaman S, Rottner AK, Bautista A, Mazzaferro E, Perez-Alcantara M, Manning Fox JE, Torres JM, Wesolowska-Andersen A, Yu GZ, Mahajan A, Larsson A, MacDonald PE, Davies B, den Hoed M, Gloyn AL. Loss of RREB1 in pancreatic beta cells reduces cellular insulin content and affects endocrine cell gene expression. Diabetologia 2023; 66:674-694. [PMID: 36633628 PMCID: PMC9947029 DOI: 10.1007/s00125-022-05856-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/17/2022] [Indexed: 01/13/2023]
Abstract
AIMS/HYPOTHESIS Genome-wide studies have uncovered multiple independent signals at the RREB1 locus associated with altered type 2 diabetes risk and related glycaemic traits. However, little is known about the function of the zinc finger transcription factor Ras-responsive element binding protein 1 (RREB1) in glucose homeostasis or how changes in its expression and/or function influence diabetes risk. METHODS A zebrafish model lacking rreb1a and rreb1b was used to study the effect of RREB1 loss in vivo. Using transcriptomic and cellular phenotyping of a human beta cell model (EndoC-βH1) and human induced pluripotent stem cell (hiPSC)-derived beta-like cells, we investigated how loss of RREB1 expression and activity affects pancreatic endocrine cell development and function. Ex vivo measurements of human islet function were performed in donor islets from carriers of RREB1 type 2 diabetes risk alleles. RESULTS CRISPR/Cas9-mediated loss of rreb1a and rreb1b function in zebrafish supports an in vivo role for the transcription factor in beta cell mass, beta cell insulin expression and glucose levels. Loss of RREB1 also reduced insulin gene expression and cellular insulin content in EndoC-βH1 cells and impaired insulin secretion under prolonged stimulation. Transcriptomic analysis of RREB1 knockdown and knockout EndoC-βH1 cells supports RREB1 as a novel regulator of genes involved in insulin secretion. In vitro differentiation of RREB1KO/KO hiPSCs revealed dysregulation of pro-endocrine cell genes, including RFX family members, suggesting that RREB1 also regulates genes involved in endocrine cell development. Human donor islets from carriers of type 2 diabetes risk alleles in RREB1 have altered glucose-stimulated insulin secretion ex vivo, consistent with a role for RREB1 in regulating islet cell function. CONCLUSIONS/INTERPRETATION Together, our results indicate that RREB1 regulates beta cell function by transcriptionally regulating the expression of genes involved in beta cell development and function.
Collapse
Affiliation(s)
- Katia K Mattis
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Nicole A J Krentz
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Division of Endocrinology, Department of Pediatrics, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Christoph Metzendorf
- Beijer Laboratory and Department of Immunology, Genetics and Pathology, Uppsala University and SciLifeLab, Uppsala, Sweden
| | - Fernando Abaitua
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Aliya F Spigelman
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Han Sun
- Division of Endocrinology, Department of Pediatrics, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Jennifer M Ikle
- Division of Endocrinology, Department of Pediatrics, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Swaraj Thaman
- Division of Endocrinology, Department of Pediatrics, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Antje K Rottner
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Austin Bautista
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Eugenia Mazzaferro
- Beijer Laboratory and Department of Immunology, Genetics and Pathology, Uppsala University and SciLifeLab, Uppsala, Sweden
| | | | - Jocelyn E Manning Fox
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Jason M Torres
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | | | - Grace Z Yu
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Anubha Mahajan
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Genentech, South San Francisco, CA, USA
| | - Anders Larsson
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
| | - Patrick E MacDonald
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Benjamin Davies
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Marcel den Hoed
- Beijer Laboratory and Department of Immunology, Genetics and Pathology, Uppsala University and SciLifeLab, Uppsala, Sweden
| | - Anna L Gloyn
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK.
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
- Division of Endocrinology, Department of Pediatrics, Stanford School of Medicine, Stanford University, Stanford, CA, USA.
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, UK.
| |
Collapse
|
13
|
Broadaway KA, Yin X, Williamson A, Parsons VA, Wilson EP, Moxley AH, Vadlamudi S, Varshney A, Jackson AU, Ahuja V, Bornstein SR, Corbin LJ, Delgado GE, Dwivedi OP, Fernandes Silva L, Frayling TM, Grallert H, Gustafsson S, Hakaste L, Hammar U, Herder C, Herrmann S, Højlund K, Hughes DA, Kleber ME, Lindgren CM, Liu CT, Luan J, Malmberg A, Moissl AP, Morris AP, Perakakis N, Peters A, Petrie JR, Roden M, Schwarz PEH, Sharma S, Silveira A, Strawbridge RJ, Tuomi T, Wood AR, Wu P, Zethelius B, Baldassarre D, Eriksson JG, Fall T, Florez JC, Fritsche A, Gigante B, Hamsten A, Kajantie E, Laakso M, Lahti J, Lawlor DA, Lind L, März W, Meigs JB, Sundström J, Timpson NJ, Wagner R, Walker M, Wareham NJ, Watkins H, Barroso I, O'Rahilly S, Grarup N, Parker SC, Boehnke M, Langenberg C, Wheeler E, Mohlke KL. Loci for insulin processing and secretion provide insight into type 2 diabetes risk. Am J Hum Genet 2023; 110:284-299. [PMID: 36693378 PMCID: PMC9943750 DOI: 10.1016/j.ajhg.2023.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/03/2023] [Indexed: 01/25/2023] Open
Abstract
Insulin secretion is critical for glucose homeostasis, and increased levels of the precursor proinsulin relative to insulin indicate pancreatic islet beta-cell stress and insufficient insulin secretory capacity in the setting of insulin resistance. We conducted meta-analyses of genome-wide association results for fasting proinsulin from 16 European-ancestry studies in 45,861 individuals. We found 36 independent signals at 30 loci (p value < 5 × 10-8), which validated 12 previously reported loci for proinsulin and ten additional loci previously identified for another glycemic trait. Half of the alleles associated with higher proinsulin showed higher rather than lower effects on glucose levels, corresponding to different mechanisms. Proinsulin loci included genes that affect prohormone convertases, beta-cell dysfunction, vesicle trafficking, beta-cell transcriptional regulation, and lysosomes/autophagy processes. We colocalized 11 proinsulin signals with islet expression quantitative trait locus (eQTL) data, suggesting candidate genes, including ARSG, WIPI1, SLC7A14, and SIX3. The NKX6-3/ANK1 proinsulin signal colocalized with a T2D signal and an adipose ANK1 eQTL signal but not the islet NKX6-3 eQTL. Signals were enriched for islet enhancers, and we showed a plausible islet regulatory mechanism for the lead signal in the MADD locus. These results show how detailed genetic studies of an intermediate phenotype can elucidate mechanisms that may predispose one to disease.
Collapse
Affiliation(s)
- K Alaine Broadaway
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Xianyong Yin
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA; Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Alice Williamson
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK; University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Department of Clinical Biochemistry, University of Cambridge, Cambridge, UK
| | - Victoria A Parsons
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Emma P Wilson
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Anne H Moxley
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | | | - Arushi Varshney
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Anne U Jackson
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Vasudha Ahuja
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Stefan R Bornstein
- Department of Internal Medicine, Metabolic and Vascular Medicine, MedicCal Faculty Carl Gustav Carus, Dresden, Germany; Helmholtz Zentrum München, Paul Langerhans Institute Dresden, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Laura J Corbin
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Bristol, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | | | - Om P Dwivedi
- University of Helsinki, Helsinki, Finland; Folkhälsan Research Center, Helsinki, Finland
| | | | | | - Harald Grallert
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany; Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Stefan Gustafsson
- Department of Medical Sciences, Clinical Epidemiology, Uppsala University, Uppsala, Sweden
| | - Liisa Hakaste
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Ulf Hammar
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Christian Herder
- German Center for Diabetes Research, Neuherberg, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sandra Herrmann
- Department of Internal Medicine, Prevention and Care of Diabetes, Medical Faculty Carl Gustav Carus, Dresden, Germany; Helmholtz Zentrum München, Paul Langerhans Institute Dresden, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany
| | | | - David A Hughes
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Bristol, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Marcus E Kleber
- Medical Faculty Mannheim, Heidelberg University, Mannheim, BW, Germany; SYNLAB MVZ Humangenetik Mannheim, Mannheim, BW, Germany
| | - Cecilia M Lindgren
- Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK; Nuffield Department of Population Health, University of Oxford, Oxford, UK; Wellcome Trust Centre Human Genetics, University of Oxford, Oxford, UK; Broad Institute, Cambridge, MA, USA
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Jian'an Luan
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Anni Malmberg
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Angela P Moissl
- Institute of Nutritional Sciences, Friedrich-Schiller-University, Jena, Germany; Competence Cluster for Nutrition and Cardiovascular Health, Halle-Jena-Leipzig, Germany; Medical Faculty Mannheim, Heidelberg University, Mannheim, BW, Germany
| | - Andrew P Morris
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, UK
| | - Nikolaos Perakakis
- Department of Internal Medicine, Metabolic and Vascular Medicine, MedicCal Faculty Carl Gustav Carus, Dresden, Germany; Helmholtz Zentrum München, Paul Langerhans Institute Dresden, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - John R Petrie
- School of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Peter E H Schwarz
- Department of Internal Medicine, Prevention and Care of Diabetes, Medical Faculty Carl Gustav Carus, Dresden, Germany; Helmholtz Zentrum München, Paul Langerhans Institute Dresden, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Sapna Sharma
- German Center for Diabetes Research, Neuherberg, Germany; Research Unit of Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany; Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany; Chair of Food Chemistry and Molecular Sensory Science, Technische Universität München, Freising, Germany
| | - Angela Silveira
- Department of Medicine Solna, Division of Cardiovascular Medicine, Karolinska Institutet, Stockholm, Sweden; Oxford Biomedical Research Centre, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Rona J Strawbridge
- Institute of Health and Wellbeing, Mental Health and Wellbeing, University of Glasgow, Glasgow, UK; Department of Medicine Solna, Division of Cardiovascular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tiinamaija Tuomi
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland; Folkhälsan Research Center, Helsinki, Finland; Abdominal Center, Endocrinology, Helsinki University Hospital, Helsinki, Finland
| | - Andrew R Wood
- Genetics of Complex Traits, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Peitao Wu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Björn Zethelius
- Department of Geriatrics, Uppsala University, Uppsala, Sweden
| | - Damiano Baldassarre
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy; Cardiovascular Prevention Area, Centro Cardiologico Monzino I.R.C.C.S., Milan, Italy
| | - Johan G Eriksson
- Department of General Practice and Primary Health Care, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Folkhälsan Research Centre, Helsinki, Finland; Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Tove Fall
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jose C Florez
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Programs in Metabolism and Medical & Population Genetics, Broad Institute, Cambridge, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Andreas Fritsche
- Department of Internal Medicine, Diabetology, Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, University of Tübingen, Tübingen, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Bruna Gigante
- Department of Medicine Solna, Division of Cardiovascular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anders Hamsten
- Department of Medicine Solna, Division of Cardiovascular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Eero Kajantie
- Population Health Unit, Finnish Institute for Health and Welfare, Helsinki, Finland; PEDEGO Research Unit, MRC Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland; Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway; Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Markku Laakso
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Jari Lahti
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Deborah A Lawlor
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Bristol, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Lars Lind
- Department of Medical Sciences, Clinical Epidemiology, Uppsala University, Uppsala, Sweden
| | - Winfried März
- Synlab Academy, SYNLAB Holding Deutschland GmbH, Mannheim, BW, Germany; Medical Faculty Mannheim, Heidelberg University, Mannheim, BW, Germany
| | - James B Meigs
- Department of Medicine, Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Johan Sundström
- Department of Medical Sciences, Clinical Epidemiology, Uppsala University, Uppsala, Sweden
| | - Nicholas J Timpson
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Bristol, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Robert Wagner
- Department of Internal Medicine, Diabetology, Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, University of Tübingen, Tübingen, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Mark Walker
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Nicholas J Wareham
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK; Health Data Research UK, Gibbs Building, London, UK
| | - Hugh Watkins
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Inês Barroso
- Exeter Centre of Excellence for Diabetes Research, Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Stephen O'Rahilly
- MRC Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stephen Cj Parker
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA; Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Michael Boehnke
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA; Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Claudia Langenberg
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK; Computational Medicine, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany; Precision Healthcare University Research Institute, Queen Mary University of London, London, UK
| | - Eleanor Wheeler
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK.
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
14
|
Is IIIG9 a New Protein with Exclusive Ciliary Function? Analysis of Its Potential Role in Cancer and Other Pathologies. Cells 2022; 11:cells11203327. [PMID: 36291193 PMCID: PMC9600092 DOI: 10.3390/cells11203327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/23/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
The identification of new proteins that regulate the function of one of the main cellular phosphatases, protein phosphatase 1 (PP1), is essential to find possible pharmacological targets to alter phosphatase function in various cellular processes, including the initiation and development of multiple diseases. IIIG9 is a regulatory subunit of PP1 initially identified in highly polarized ciliated cells. In addition to its ciliary location in ependymal cells, we recently showed that IIIG9 has extraciliary functions that regulate the integrity of adherens junctions. In this review, we perform a detailed analysis of the expression, localization, and function of IIIG9 in adult and developing normal brains. In addition, we provide a 3D model of IIIG9 protein structure for the first time, verifying that the classic structural and conformational characteristics of the PP1 regulatory subunits are maintained. Our review is especially focused on finding evidence linking IIIG9 dysfunction with the course of some pathologies, such as ciliopathies, drug dependence, diseases based on neurological development, and the development of specific high-malignancy and -frequency brain tumors in the pediatric population. Finally, we propose that IIIG9 is a relevant regulator of PP1 function in physiological and pathological processes in the CNS.
Collapse
|
15
|
Yong HJ, Toledo MP, Nowakowski RS, Wang YJ. Sex Differences in the Molecular Programs of Pancreatic Cells Contribute to the Differential Risks of Type 2 Diabetes. Endocrinology 2022; 163:bqac156. [PMID: 36130190 PMCID: PMC10409906 DOI: 10.1210/endocr/bqac156] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Indexed: 11/19/2022]
Abstract
Epidemiology studies demonstrate that women are at a significantly lower risk of developing type 2 diabetes (T2D) compared to men. However, the molecular basis of this risk difference is not well understood. In this study, we examined the sex differences in the genetic programs of pancreatic endocrine cells. We combined pancreas perifusion data and single-cell genomic data from our laboratory and from publicly available data sets to investigate multiple axes of the sex differences in the human pancreas at the single-cell type and single-cell level. We systematically compared female and male islet secretion function, gene expression program, and regulatory principles of pancreatic endocrine cells. The perifusion data indicate that female endocrine cells have a higher secretion capacity than male endocrine cells. Single-cell RNA-sequencing analysis suggests that endocrine cells in male controls have molecular signatures that resemble T2D. In addition, we identified genomic elements associated with genome-wide association study T2D loci to have differential accessibility between female and male delta cells. These genomic elements may play a sex-specific causal role in the pathogenesis of T2D. We provide molecular mechanisms that explain the differential risk of T2D between women and men. Knowledge gained from our study will accelerate the development of diagnostics and therapeutics in sex-aware precision medicine for diabetes.
Collapse
Affiliation(s)
- Hyo Jeong Yong
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306, USA
| | - Maria Pilar Toledo
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306, USA
| | - Richard S Nowakowski
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306, USA
| | - Yue J Wang
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306, USA
| |
Collapse
|
16
|
Darden CM, Vasu S, Mattke J, Liu Y, Rhodes CJ, Naziruddin B, Lawrence MC. Calcineurin/NFATc2 and PI3K/AKT signaling maintains β-cell identity and function during metabolic and inflammatory stress. iScience 2022; 25:104125. [PMID: 35402865 PMCID: PMC8983383 DOI: 10.1016/j.isci.2022.104125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/02/2021] [Accepted: 03/16/2022] [Indexed: 11/19/2022] Open
Abstract
Pancreatic islets respond to metabolic and inflammatory stress by producing hormones and other factors that induce adaptive cellular and systemic responses. Here we show that intracellular Ca2+ ([Ca2+]i) and ROS signals generated by high glucose and cytokine-induced ER stress activate calcineurin (CN)/NFATc2 and PI3K/AKT to maintain β-cell identity and function. This was attributed in part by direct induction of the endocrine differentiation gene RFX6 and suppression of several β-cell "disallowed" genes, including MCT1. CN/NFATc2 targeted p300 and HDAC1 to RFX6 and MCT1 promoters to induce and suppress gene transcription, respectively. In contrast, prolonged exposure to stress, hyperstimulated [Ca2+]i, or perturbation of CN/NFATc2 resulted in downregulation of RFX6 and induction of MCT1. These findings reveal that CN/NFATc2 and PI3K/AKT maintain β-cell function during acute stress, but β-cells dedifferentiate to a dysfunctional state upon loss or exhaustion of Ca2+/CN/NFATc2 signaling. They further demonstrate the utility of targeting CN/NFATc2 to restore β-cell function.
Collapse
Affiliation(s)
- Carly M. Darden
- Islet Cell Laboratory, Baylor Scott & White Research Institute, Dallas, TX 75204, USA
- Institute of Biomedical Studies, Baylor University, Waco, TX 76706, USA
| | - Srividya Vasu
- Islet Cell Laboratory, Baylor Scott & White Research Institute, Dallas, TX 75204, USA
| | - Jordan Mattke
- Islet Cell Laboratory, Baylor Scott & White Research Institute, Dallas, TX 75204, USA
- Institute of Biomedical Studies, Baylor University, Waco, TX 76706, USA
| | - Yang Liu
- Annette C. and Harold C. Simmons Transplant Institute, Baylor University Medical Center, Dallas, TX 75246, USA
| | - Christopher J. Rhodes
- Kovler Diabetes Center, Department of Medicine, Section of Endocrinology, Diabetes & Metabolism, University of Chicago, Chicago, IL 60637, USA
- Research and Early Development, Cardiovascular, Renal and Metabolic Diseases, BioPharmaceuticals R&D, AstraZeneca Ltd, Gaithersburg, MD 20878, USA
| | - Bashoo Naziruddin
- Annette C. and Harold C. Simmons Transplant Institute, Baylor University Medical Center, Dallas, TX 75246, USA
| | - Michael C. Lawrence
- Islet Cell Laboratory, Baylor Scott & White Research Institute, Dallas, TX 75204, USA
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW The intestinal enteroendocrine cells (EECs) are specialized hormone-secreting cells that respond to both circulating and luminal cues. Collectively, EECs constitute the largest endocrine organ of the body and signal to a multitude of targets including locally to neighboring intestinal cells, enteric neurons, as well as systemically to other organs, such as the pancreas and brain. To accomplish their wide range of downstream signaling effects, EECs secrete multiple hormones; however, the mechanisms that influence EEC development in the embryo and differentiation in adults are not well defined. RECENT FINDINGS This review highlights the recent discoveries in EEC differentiation and function while also discussing newly revealed roles of transcription factors and signaling networks involved in the allocation of EEC subtypes that were discovered using a combination of novel intestinal model systems and genetic sequencing. We also discuss the potential of these new experimental models that study the mechanisms regulating EEC function and development both to uncover novel therapeutic targets. SUMMARY Several EEC hormones are being used to treat various metabolic disorders, such as type 2 diabetes and obesity. Therefore, understanding the signaling pathways and gene regulatory networks that facilitate EEC formation is paramount to the development of novel therapies.
Collapse
Affiliation(s)
- J. Guillermo Sanchez
- Division of Developmental Biology, Cincinnati Children’s Medical Center, 3333 Burnet Ave Cincinnati OH, 45229, USA
- Center for Stem Cell and Organoid Medicine, Cincinnati Children’s Medical Center, 3333 Burnet Ave Cincinnati OH, 45229, USA
| | - Jacob R. Enriquez
- Division of Developmental Biology, Cincinnati Children’s Medical Center, 3333 Burnet Ave Cincinnati OH, 45229, USA
- Center for Stem Cell and Organoid Medicine, Cincinnati Children’s Medical Center, 3333 Burnet Ave Cincinnati OH, 45229, USA
| | - James M. Wells
- Division of Developmental Biology, Cincinnati Children’s Medical Center, 3333 Burnet Ave Cincinnati OH, 45229, USA
- Center for Stem Cell and Organoid Medicine, Cincinnati Children’s Medical Center, 3333 Burnet Ave Cincinnati OH, 45229, USA
- Division of Endocrinology, Cincinnati Children’s Medical Center, 3333 Burnet Ave Cincinnati OH, 45229, USA
| |
Collapse
|
18
|
Gaudreau MC, Gudi RR, Li G, Johnson BM, Vasu C. Gastrin producing syngeneic mesenchymal stem cells protect non-obese diabetic mice from type 1 diabetes. Autoimmunity 2022; 55:95-108. [PMID: 34882054 PMCID: PMC9875811 DOI: 10.1080/08916934.2021.2012165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Progressive destruction of pancreatic islet β-cells by immune cells is a primary feature of type 1 diabetes (T1D) and therapies that can restore the functional β-cell mass are needed to alleviate disease progression. Here, we report the use of mesenchymal stromal/stem cells (MSCs) for the production and delivery of Gastrin, a peptide hormone that is produced by intestinal cells and foetal islets and can increase β-Cell mass, to promote protection from T1D. A single injection of syngeneic MSCs that were engineered to express Gastrin (Gastrin-MSCs) caused a significant delay in hyperglycaemia in non-obese diabetic (NOD) mice compared to engineered control-MSCs. Similar treatment of early-hyperglycaemic mice caused the restoration of euglycemia for a considerable duration, and these therapeutic effects were associated with the protection of, and/or higher frequencies of, insulin-producing islets and less severe insulitis. While the overall immune cell phenotype was not affected profoundly upon treatment using Gastrin-MSCs or upon in vitro culture, pancreatic lymph node cells from Gastrin-MSC treated mice, upon ex vivo challenge with self-antigen, showed a Th2 and Th17 bias, and diminished the diabetogenic property in NOD-Rag1 deficient mice suggesting a disease protective immune modulation under Gastrin-MSC treatment associated protection from hyperglycaemia. Overall, this study shows the potential of production and delivery of Gastrin in vivo, by MSCs, in protecting insulin-producing β-cells and ameliorating the disease progression in T1D.
Collapse
Affiliation(s)
- Marie-Claude Gaudreau
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC-29425
| | - Radhika R. Gudi
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC-29425
| | - Gongbo Li
- Department of Surgery, University of Illinois at Chicago, Chicago, IL-60612
| | - Benjamin M. Johnson
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC-29425
| | - Chenthamarakshan Vasu
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC-29425,Department of Surgery, University of Illinois at Chicago, Chicago, IL-60612,Address Correspondence: Chenthamarakshan Vasu, Medical University of South Carolina, Microbiology and Immunology, 173 Ashley Avenue, MSC 509, BSB214B, Charleston, SC-29425, Phone: 843-792-1032, Fax: 843-792-9588,
| |
Collapse
|
19
|
Memon B, Abdelalim EM. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:704-714. [PMID: 35640144 PMCID: PMC9299517 DOI: 10.1093/stcltm/szac030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 04/09/2022] [Indexed: 11/14/2022] Open
Abstract
Although genome profiling provides important genetic and phenotypic details for applying precision medicine to diabetes, it is imperative to integrate in vitro human cell models, accurately recapitulating the genetic alterations associated with diabetes. The absence of the appropriate preclinical human models and the unavailability of genetically relevant cells substantially limit the progress in developing personalized treatment for diabetes. Human pluripotent stem cells (hPSCs) provide a scalable source for generating diabetes-relevant cells carrying the genetic signatures of the patients. Remarkably, allogenic hPSC-derived pancreatic progenitors and β cells are being used in clinical trials with promising preliminary results. Autologous hiPSC therapy options exist for those with monogenic and type 2 diabetes; however, encapsulation or immunosuppression must be accompanied with in the case of type 1 diabetes. Furthermore, genome-wide association studies-identified candidate variants can be introduced in hPSCs for deciphering the associated molecular defects. The hPSC-based disease models serve as excellent resources for drug development facilitating personalized treatment. Indeed, hPSC-based diabetes models have successfully provided valuable knowledge by modeling different types of diabetes, which are discussed in this review. Herein, we also evaluate their strengths and shortcomings in dissecting the underlying pathogenic molecular mechanisms and discuss strategies for improving hPSC-based disease modeling investigations.
Collapse
Affiliation(s)
- Bushra Memon
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Education City, Doha, Qatar
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Essam M Abdelalim
- Corresponding author: Essam M. Abdelalim, Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa, University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar. Tel: +974 445 46432; Fax: +974 445 41770;
| |
Collapse
|
20
|
Passone CDGB, Vermillac G, Staels W, Besancon A, Kariyawasam D, Godot C, Lambe C, Talbotec C, Girard M, Chardot C, Berteloot L, Hachem T, Lapillonne A, Poidvin A, Storey C, Neve M, Stan C, Dugelay E, Fauret-Amsellem AL, Capri Y, Cavé H, Ybarra M, Chandra V, Scharfmann R, Bismuth E, Polak M, Carel JC, Pigneur B, Beltrand J. Mitchell-Riley Syndrome: Improving Clinical Outcomes and Searching for Functional Impact of RFX-6 Mutations. Front Endocrinol (Lausanne) 2022; 13:802351. [PMID: 35813646 PMCID: PMC9257252 DOI: 10.3389/fendo.2022.802351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
AIMS/HYPOTHESIS Caused by biallelic mutations of the gene encoding the transcription factor RFX6, the rare Mitchell-Riley syndrome (MRS) comprises neonatal diabetes, pancreatic hypoplasia, gallbladder agenesis or hypoplasia, duodenal atresia, and severe chronic diarrhea. So far, sixteen cases have been reported, all with a poor prognosis. This study discusses the multidisciplinary intensive clinical management of 4 new cases of MRS that survived over the first 2 years of life. Moreover, it demonstrates how the mutations impair the RFX6 function. METHODS Clinical records were analyzed and described in detail. The functional impact of two RFX6R181W and RFX6V506G variants was assessed by measuring their ability to transactivate insulin transcription and genes that encode the L-type calcium channels required for normal pancreatic beta-cell function. RESULTS All four patients were small for gestational age (SGA) and prenatally diagnosed with duodenal atresia. They presented with neonatal diabetes early in life and were treated with intravenous insulin therapy before switching to subcutaneous insulin pump therapy. All patients faced recurrent hypoglycemic episodes, exacerbated when parenteral nutrition (PN) was disconnected. A sensor-augmented insulin pump therapy with a predictive low-glucose suspension system was installed with good results. One patient had a homozygous c.1517T>G (p.Val506Gly) mutation, two patients had a homozygous p.Arg181Trp mutation, and one patient presented with new compound heterozygosity. The RFX6V506G and RFX6R181W mutations failed to transactivate the expression of insulin and genes that encode L-type calcium channel subunits required for normal pancreatic beta-cell function. CONCLUSIONS/INTERPRETATION Multidisciplinary and intensive disease management improved the clinical outcomes in four patients with MRS, including adjustment of parenteral/oral nutrition progression and advanced diabetes technologies. A better understanding of RFX6 function, in both intestine and pancreas cells, may break ground in new therapies, particularly regarding the use of drugs that modulate the enteroendocrine system.
Collapse
Affiliation(s)
- Caroline de Gouveia Buff Passone
- Department of Endocrinology, Metabolism and Diabetes, Inserm U1016, Cochin Institute, Paris, France
- Pediatric Endocrinology, Gynecology and Diabetology, Centre de Référence des Pathologies Gynécologiques Rares et des Maladies Endocriniennes Rares de la Croissance et du Développement, Hôpital Universitaire Necker Enfants Malades, Université Paris Descartes, Paris, France
- *Correspondence: Caroline de Gouveia Buff Passone, ; orcid.org/0000-0003-2639-352X
| | - Gaëlle Vermillac
- Pediatric Endocrinology, Gynecology and Diabetology, Centre de Référence des Pathologies Gynécologiques Rares et des Maladies Endocriniennes Rares de la Croissance et du Développement, Hôpital Universitaire Necker Enfants Malades, Université Paris Descartes, Paris, France
| | - Willem Staels
- Department of Endocrinology, Metabolism and Diabetes, Inserm U1016, Cochin Institute, Paris, France
- Beta Cell Neogenesis (BENE) Research Group, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Division of Pediatric Endocrinology, Department of Pediatrics, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Alix Besancon
- Pediatric Endocrinology, Gynecology and Diabetology, Centre de Référence des Pathologies Gynécologiques Rares et des Maladies Endocriniennes Rares de la Croissance et du Développement, Hôpital Universitaire Necker Enfants Malades, Université Paris Descartes, Paris, France
| | - Dulanjalee Kariyawasam
- Pediatric Endocrinology, Gynecology and Diabetology, Centre de Référence des Pathologies Gynécologiques Rares et des Maladies Endocriniennes Rares de la Croissance et du Développement, Hôpital Universitaire Necker Enfants Malades, Université Paris Descartes, Paris, France
- Imagine Institute, Hôpital Universitaire Necker Enfants Malades, Université Paris Descartes, Paris, France
| | - Cécile Godot
- Pediatric Endocrinology, Gynecology and Diabetology, Centre de Référence des Pathologies Gynécologiques Rares et des Maladies Endocriniennes Rares de la Croissance et du Développement, Hôpital Universitaire Necker Enfants Malades, Université Paris Descartes, Paris, France
| | - Cécile Lambe
- Pediatric Gastroentherology Hepatology and Nutrition Unit, Hôpital Universitaire Necker Enfants Malades, Université Paris Descartes, Paris, France
| | - Cécile Talbotec
- Pediatric Gastroentherology Hepatology and Nutrition Unit, Hôpital Universitaire Necker Enfants Malades, Université Paris Descartes, Paris, France
- INSERM UMR S 1139, Faculté de Pharmacie de Paris, Université de Paris, Paris, France
| | - Muriel Girard
- Hepatology Unit, Hôpital Universitaire Necker Enfants Malades, Université de Paris, Inserm U1151, Centre de Référence Maladie rares Atresie des voies biliaires et cholestases génétiques et Filière de soin Filfoie, Paris, France
| | - Christophe Chardot
- Pediatric Surgery Department, Hôpital Universitaire Necker Enfants Malades, Université Paris Descartes, Paris, France
| | - Laureline Berteloot
- Pediatric Radiology Department, Hôpital Universitaire Necker Enfants Malades, Université Paris Descartes, Paris, France/INSERM U1163, Institut Imagine, Paris, France
| | - Taymme Hachem
- Neonatal Intensive Care Unit, Hôpital Universitaire Necker Enfants Malades, EHU 7328 Université Paris Descartes, Paris, France
| | - Alexandre Lapillonne
- Neonatal Intensive Care Unit, Hôpital Universitaire Necker Enfants Malades, EHU 7328 Université Paris Descartes, Paris, France
| | - Amélie Poidvin
- Université Paris Cité, Hôpital Universitaire Robert-Debré, Service d’Endocrinologie Diabétologie Pédiatrique et CRMR Prisis, Paris, France
| | - Caroline Storey
- Université Paris Cité, Hôpital Universitaire Robert-Debré, Service d’Endocrinologie Diabétologie Pédiatrique et CRMR Prisis, Paris, France
| | - Mathieu Neve
- Pediatric Department Hôpital d’Enfants de Margency Croix-Rouge française, Margency, France
| | - Cosmina Stan
- Pediatric Department Hôpital d’Enfants de Margency Croix-Rouge française, Margency, France
| | - Emmanuelle Dugelay
- Department of Pediatric Gastroenterology and Nutrition, Hôpital Universitaire Robert-Debré, Paris, France
| | | | - Yline Capri
- Genetic Department, Hopital Universitaire Robert Debré, Paris, France
| | - Hélène Cavé
- Genetic Department, Hopital Universitaire Robert Debré, Paris, France
| | - Marina Ybarra
- Research Center of Sainte Justine University Hospital, Université de Montréal, Montreal, QC, Canada
| | - Vikash Chandra
- Department of Endocrinology, Metabolism and Diabetes, Inserm U1016, Cochin Institute, Paris, France
- Biomedicum Stem Cell Center, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Raphaël Scharfmann
- Department of Endocrinology, Metabolism and Diabetes, Inserm U1016, Cochin Institute, Paris, France
| | - Elise Bismuth
- Université Paris Cité, Hôpital Universitaire Robert-Debré, Service d’Endocrinologie Diabétologie Pédiatrique et CRMR Prisis, Paris, France
| | - Michel Polak
- Pediatric Endocrinology, Gynecology and Diabetology, Centre de Référence des Pathologies Gynécologiques Rares et des Maladies Endocriniennes Rares de la Croissance et du Développement, Hôpital Universitaire Necker Enfants Malades, Université Paris Descartes, Paris, France
| | - Jean Claude Carel
- Université Paris Cité, Hôpital Universitaire Robert-Debré, Service d’Endocrinologie Diabétologie Pédiatrique et CRMR Prisis, Paris, France
| | - Bénédicte Pigneur
- Pediatric Gastroentherology Hepatology and Nutrition Unit, Hôpital Universitaire Necker Enfants Malades, Université Paris Descartes, Paris, France
| | - Jacques Beltrand
- Department of Endocrinology, Metabolism and Diabetes, Inserm U1016, Cochin Institute, Paris, France
- Pediatric Endocrinology, Gynecology and Diabetology, Centre de Référence des Pathologies Gynécologiques Rares et des Maladies Endocriniennes Rares de la Croissance et du Développement, Hôpital Universitaire Necker Enfants Malades, Université Paris Descartes, Paris, France
- Imagine Institute, Hôpital Universitaire Necker Enfants Malades, Université Paris Descartes, Paris, France
| |
Collapse
|
21
|
Tosur M, Soler-Alfonso C, Chan KM, Khayat MM, Jhangiani SN, Meng Q, Refaey A, Muzny D, Gibbs RA, Murdock DR, Posey JE, Balasubramanyam A, Redondo MJ, Sabo A. Exome sequencing in children with clinically suspected maturity-onset diabetes of the young. Pediatr Diabetes 2021; 22:960-968. [PMID: 34387403 PMCID: PMC8530905 DOI: 10.1111/pedi.13257] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 08/09/2021] [Indexed: 01/24/2023] Open
Abstract
OBJECTIVE Commercial gene panels identify pathogenic variants in as low as 27% of patients suspected to have MODY, suggesting the role of yet unidentified pathogenic variants. We sought to identify novel gene variants associated with MODY. RESEARCH DESIGN AND METHODS We recruited 10 children with a clinical suspicion of MODY but non-diagnostic commercial MODY gene panels. We performed exome sequencing (ES) in them and their parents. RESULTS Mean age at diabetes diagnosis was 10 (± 3.8) years. Six were females; 4 were non-Hispanic white, 5 Hispanic, and 1 Asian. Our variant prioritization analysis identified a pathogenic, de novo variant in INS (c.94G > A, p.Gly32Ser), confirmed by Sanger sequencing, in a proband who was previously diagnosed with "autoantibody-negative type 1 diabetes (T1D)" at 3 y/o. This rare variant, absent in the general population (gnomAD database), has been reported previously in neonatal diabetes. We also identified a frameshift deletion (c.2650delC, p.Gln884AsnfsTer57) in RFX6 in a child with a previous diagnosis of "autoantibody-negative T1D" at 12 y/o. The variant was inherited from the mother, who was diagnosed with "thin type 2 diabetes" at 25 y/o. Heterozygous protein-truncating variants in RFX6 gene have been recently reported in individuals with MODY. CONCLUSIONS We diagnosed two patients with MODY using ES in children initially classified as "T1D". One has a likely pathogenic novel gene variant not previously associated with MODY. We demonstrate the clinical utility of ES in patients with clinical suspicion of MODY.
Collapse
Affiliation(s)
- Mustafa Tosur
- Department of Pediatrics, The Section of Diabetes and Endocrinology, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX, USA
| | - Claudia Soler-Alfonso
- Department of Molecular and Human Genetics, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX, USA
| | - Katie M Chan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX, USA
| | - Michael M Khayat
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Qingchang Meng
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | | | - Donna Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Richard A Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - David R Murdock
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Ashok Balasubramanyam
- Baylor College of Medicine, Division of Diabetes, Endocrinology and Metabolism, Houston, TX, USA
| | - Maria J Redondo
- Department of Pediatrics, The Section of Diabetes and Endocrinology, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX, USA
| | - Aniko Sabo
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
22
|
Sanchez Caballero L, Gorgogietas V, Arroyo MN, Igoillo-Esteve M. Molecular mechanisms of β-cell dysfunction and death in monogenic forms of diabetes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 359:139-256. [PMID: 33832649 DOI: 10.1016/bs.ircmb.2021.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Monogenetic forms of diabetes represent 1%-5% of all diabetes cases and are caused by mutations in a single gene. These mutations, that affect genes involved in pancreatic β-cell development, function and survival, or insulin regulation, may be dominant or recessive, inherited or de novo. Most patients with monogenic diabetes are very commonly misdiagnosed as having type 1 or type 2 diabetes. The severity of their symptoms depends on the nature of the mutation, the function of the affected gene and, in some cases, the influence of additional genetic or environmental factors that modulate severity and penetrance. In some patients, diabetes is accompanied by other syndromic features such as deafness, blindness, microcephaly, liver and intestinal defects, among others. The age of diabetes onset may also vary from neonatal until early adulthood manifestations. Since the different mutations result in diverse clinical presentations, patients usually need different treatments that range from just diet and exercise, to the requirement of exogenous insulin or other hypoglycemic drugs, e.g., sulfonylureas or glucagon-like peptide 1 analogs to control their glycemia. As a consequence, awareness and correct diagnosis are crucial for the proper management and treatment of monogenic diabetes patients. In this chapter, we describe mutations causing different monogenic forms of diabetes associated with inadequate pancreas development or impaired β-cell function and survival, and discuss the molecular mechanisms involved in β-cell demise.
Collapse
Affiliation(s)
- Laura Sanchez Caballero
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Vyron Gorgogietas
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Maria Nicol Arroyo
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Mariana Igoillo-Esteve
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/.
| |
Collapse
|
23
|
Abdelalim EM. Modeling different types of diabetes using human pluripotent stem cells. Cell Mol Life Sci 2021; 78:2459-2483. [PMID: 33242105 PMCID: PMC11072720 DOI: 10.1007/s00018-020-03710-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/19/2020] [Accepted: 11/11/2020] [Indexed: 12/22/2022]
Abstract
Diabetes mellitus (DM) is a metabolic disease characterized by chronic hyperglycemia as a result of progressive loss of pancreatic β cells, which could lead to several debilitating complications. Different paths, triggered by several genetic and environmental factors, lead to the loss of pancreatic β cells and/or function. Understanding these many paths to β cell damage or dysfunction could help in identifying therapeutic approaches specific for each path. Most of our knowledge about diabetes pathophysiology has been obtained from studies on animal models, which do not fully recapitulate human diabetes phenotypes. Currently, human pluripotent stem cell (hPSC) technology is a powerful tool for generating in vitro human models, which could provide key information about the disease pathogenesis and provide cells for personalized therapies. The recent progress in generating functional hPSC-derived β cells in combination with the rapid development in genomic and genome-editing technologies offer multiple options to understand the cellular and molecular mechanisms underlying the development of different types of diabetes. Recently, several in vitro hPSC-based strategies have been used for studying monogenic and polygenic forms of diabetes. This review summarizes the current knowledge about different hPSC-based diabetes models and how these models improved our current understanding of the pathophysiology of distinct forms of diabetes. Also, it highlights the progress in generating functional β cells in vitro, and discusses the current challenges and future perspectives related to the use of the in vitro hPSC-based strategies.
Collapse
Affiliation(s)
- Essam M Abdelalim
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar.
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Education City, Doha, Qatar.
| |
Collapse
|
24
|
Yong HJ, Xie G, Liu C, Wang W, Naji A, Irianto J, Wang YJ. Gene Signatures of NEUROGENIN3+ Endocrine Progenitor Cells in the Human Pancreas. Front Endocrinol (Lausanne) 2021; 12:736286. [PMID: 34566896 PMCID: PMC8456125 DOI: 10.3389/fendo.2021.736286] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
NEUROGENIN3+ (NEUROG3+) cells are considered to be pancreatic endocrine progenitors. Our current knowledge on the molecular program of NEUROG3+ cells in humans is largely extrapolated from studies in mice. We hypothesized that single-cell RNA-seq enables in-depth exploration of the rare NEUROG3+ cells directly in humans. We aligned four large single-cell RNA-seq datasets from postnatal human pancreas. Our integrated analysis revealed 10 NEUROG3+ epithelial cells from a total of 11,174 pancreatic cells. Noticeably, human NEUROG3+ cells clustered with mature pancreatic cells and epsilon cells displayed the highest frequency of NEUROG3 positivity. We confirmed the co-expression of NEUROG3 with endocrine markers and the high percentage of NEUROG3+ cells among epsilon cells at the protein level based on immunostaining on pancreatic tissue sections. We further identified unique genetic signatures of the NEUROG3+ cells. Regulatory network inference revealed novel transcription factors including Prospero homeobox protein 1 (PROX1) may act jointly with NEUROG3. As NEUROG3 plays a central role in endocrine differentiation, knowledge gained from our study will accelerate the development of beta cell regeneration therapies to treat diabetes.
Collapse
Affiliation(s)
- Hyo Jeong Yong
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, United States
| | - Gengqiang Xie
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, United States
| | - Chengyang Liu
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Wei Wang
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Ali Naji
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Jerome Irianto
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, United States
| | - Yue J. Wang
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, United States
- *Correspondence: Yue J. Wang,
| |
Collapse
|
25
|
Trott J, Alpagu Y, Tan EK, Shboul M, Dawood Y, Elsy M, Wollmann H, Tano V, Bonnard C, Eng S, Narayanan G, Junnarkar S, Wearne S, Strutt J, Kumar A, Tomaz LB, Goy PA, Mzoughi S, Jennings R, Hagoort J, Eskin A, Lee H, Nelson SF, Al-Kazaleh F, El-Khateeb M, Fathallah R, Shah H, Goeke J, Langley SR, Guccione E, Hanley N, De Bakker BS, Reversade B, Dunn NR. Mitchell-Riley syndrome iPSCs exhibit reduced pancreatic endoderm differentiation due to a mutation in RFX6. Development 2020; 147:dev194878. [PMID: 33033118 DOI: 10.1242/dev.194878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022]
Abstract
Mitchell-Riley syndrome (MRS) is caused by recessive mutations in the regulatory factor X6 gene (RFX6) and is characterised by pancreatic hypoplasia and neonatal diabetes. To determine why individuals with MRS specifically lack pancreatic endocrine cells, we micro-CT imaged a 12-week-old foetus homozygous for the nonsense mutation RFX6 c.1129C>T, which revealed loss of the pancreas body and tail. From this foetus, we derived iPSCs and show that differentiation of these cells in vitro proceeds normally until generation of pancreatic endoderm, which is significantly reduced. We additionally generated an RFX6HA reporter allele by gene targeting in wild-type H9 cells to precisely define RFX6 expression and in parallel performed in situ hybridisation for RFX6 in the dorsal pancreatic bud of a Carnegie stage 14 human embryo. Both in vitro and in vivo, we find that RFX6 specifically labels a subset of PDX1-expressing pancreatic endoderm. In summary, RFX6 is essential for efficient differentiation of pancreatic endoderm, and its absence in individuals with MRS specifically impairs formation of endocrine cells of the pancreas head and tail.
Collapse
Affiliation(s)
- Jamie Trott
- Institute of Medical Biology, Agency for Science Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
| | - Yunus Alpagu
- Institute of Medical Biology, Agency for Science Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Ee Kim Tan
- Institute of Medical Biology, Agency for Science Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, 308232, Singapore
| | - Mohammad Shboul
- Institute of Medical Biology, Agency for Science Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid 2210, Jordan
| | - Yousif Dawood
- Department of Medical Biology, Section Clinical Anatomy and Embryology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Department of Obstetrics and Gynaecology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Michael Elsy
- Faculty of Biology, Medicine & Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Heike Wollmann
- Institute of Molecular and Cellular Biology, Agency for Science Technology and Research (A*STAR), 61 Biopolis Drive, 138673, Singapore
| | - Vincent Tano
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, 308232, Singapore
| | - Carine Bonnard
- Institute of Medical Biology, Agency for Science Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
| | - Shermaine Eng
- Institute of Medical Biology, Agency for Science Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
| | - Gunaseelan Narayanan
- Institute of Medical Biology, Agency for Science Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
| | - Seetanshu Junnarkar
- Institute of Medical Biology, Agency for Science Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
| | - Stephen Wearne
- Institute of Medical Biology, Agency for Science Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
| | - James Strutt
- Institute of Medical Biology, Agency for Science Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
| | - Aakash Kumar
- Institute of Medical Biology, Agency for Science Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, 308232, Singapore
| | - Lucian B Tomaz
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, 308232, Singapore
| | - Pierre-Alexis Goy
- Institute of Molecular and Cellular Biology, Agency for Science Technology and Research (A*STAR), 61 Biopolis Drive, 138673, Singapore
| | - Slim Mzoughi
- Institute of Molecular and Cellular Biology, Agency for Science Technology and Research (A*STAR), 61 Biopolis Drive, 138673, Singapore
| | - Rachel Jennings
- Faculty of Biology, Medicine & Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
- Endocrinology Department, Manchester University NHS Foundation Trust, Grafton Street, Manchester M13 9WU, UK
| | - Jaco Hagoort
- Department of Medical Biology, Section Clinical Anatomy and Embryology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Ascia Eskin
- Department of Human Genetics, David Geffen School of Medicine at UCLA, 695 Charles E. Young Drive South, Box 708822, Los Angeles, CA 90095-7088, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Hane Lee
- Department of Human Genetics, David Geffen School of Medicine at UCLA, 695 Charles E. Young Drive South, Box 708822, Los Angeles, CA 90095-7088, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Stanley F Nelson
- Department of Human Genetics, David Geffen School of Medicine at UCLA, 695 Charles E. Young Drive South, Box 708822, Los Angeles, CA 90095-7088, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Department of Pediatrics, UCLA Mattel Children's Hospital, Los Angeles, CA 90095, USA
| | - Fawaz Al-Kazaleh
- Department of Obstetrics and Gynecology, University of Jordan, Amman 19241, Jordan
| | - Mohammad El-Khateeb
- National Center for Diabetes, Endocrinology and Genetics, Amman 19241, Jordan
| | - Rajaa Fathallah
- National Center for Diabetes, Endocrinology and Genetics, Amman 19241, Jordan
| | - Harsha Shah
- Department of Obstetrics and Gynaecology, Queen Charlotte's & Chelsea Hospital, Imperial College London, Du Cane Road, London W12 0HS, UK
| | - Jonathan Goeke
- Genome Institute of Singapore, Agency for Science Technology and Research (A*STAR), 60 Biopolis Street, 138672, Singapore
| | - Sarah R Langley
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, 308232, Singapore
| | - Ernesto Guccione
- Institute of Molecular and Cellular Biology, Agency for Science Technology and Research (A*STAR), 61 Biopolis Drive, 138673, Singapore
| | - Neil Hanley
- Faculty of Biology, Medicine & Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
- Endocrinology Department, Manchester University NHS Foundation Trust, Grafton Street, Manchester M13 9WU, UK
| | - Bernadette S De Bakker
- Department of Medical Biology, Section Clinical Anatomy and Embryology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Bruno Reversade
- Institute of Medical Biology, Agency for Science Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
- Institute of Molecular and Cellular Biology, Agency for Science Technology and Research (A*STAR), 61 Biopolis Drive, 138673, Singapore
- Department of Paediatrics, National University of Singapore, Yong Loo Lin School of Medicine, 1E Kent Ridge Road, NUHS Tower Block, Level 12, 119228, Singapore
- Koç University School of Medicine, Medical Genetics Department, Istanbul 34450, Turkey
| | - N Ray Dunn
- Institute of Medical Biology, Agency for Science Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, 308232, Singapore
| |
Collapse
|
26
|
Lemeille S, Paschaki M, Baas D, Morlé L, Duteyrat JL, Ait-Lounis A, Barras E, Soulavie F, Jerber J, Thomas J, Zhang Y, Holtzman MJ, Kistler WS, Reith W, Durand B. Interplay of RFX transcription factors 1, 2 and 3 in motile ciliogenesis. Nucleic Acids Res 2020; 48:9019-9036. [PMID: 32725242 PMCID: PMC7498320 DOI: 10.1093/nar/gkaa625] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/08/2020] [Accepted: 07/16/2020] [Indexed: 12/16/2022] Open
Abstract
Cilia assembly is under strict transcriptional control during animal development. In vertebrates, a hierarchy of transcription factors (TFs) are involved in controlling the specification, differentiation and function of multiciliated epithelia. RFX TFs play key functions in the control of ciliogenesis in animals. Whereas only one RFX factor regulates ciliogenesis in C. elegans, several distinct RFX factors have been implicated in this process in vertebrates. However, a clear understanding of the specific and redundant functions of different RFX factors in ciliated cells remains lacking. Using RNA-seq and ChIP-seq approaches we identified genes regulated directly and indirectly by RFX1, RFX2 and RFX3 in mouse ependymal cells. We show that these three TFs have both redundant and specific functions in ependymal cells. Whereas RFX1, RFX2 and RFX3 occupy many shared genomic loci, only RFX2 and RFX3 play a prominent and redundant function in the control of motile ciliogenesis in mice. Our results provide a valuable list of candidate ciliary genes. They also reveal stunning differences between compensatory processes operating in vivo and ex vivo.
Collapse
Affiliation(s)
- Sylvain Lemeille
- Department of Pathology and Immunology, University of Geneva Medical School, CMU, Geneva, Switzerland
| | - Marie Paschaki
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, F-69008, Lyon, France
| | - Dominique Baas
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, F-69008, Lyon, France
| | - Laurette Morlé
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, F-69008, Lyon, France
| | - Jean-Luc Duteyrat
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, F-69008, Lyon, France
| | - Aouatef Ait-Lounis
- Department of Pathology and Immunology, University of Geneva Medical School, CMU, Geneva, Switzerland
| | - Emmanuèle Barras
- Department of Pathology and Immunology, University of Geneva Medical School, CMU, Geneva, Switzerland
| | - Fabien Soulavie
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, F-69008, Lyon, France
| | - Julie Jerber
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, F-69008, Lyon, France
| | - Joëlle Thomas
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, F-69008, Lyon, France
| | - Yong Zhang
- Department of Medicine and Department of Cell Biology, Washington University School of Medicine, St. Louis, Missouri
| | - Michael J Holtzman
- Department of Medicine and Department of Cell Biology, Washington University School of Medicine, St. Louis, Missouri
| | - W Stephen Kistler
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, United States of America
| | - Walter Reith
- Department of Pathology and Immunology, University of Geneva Medical School, CMU, Geneva, Switzerland
| | - Bénédicte Durand
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, F-69008, Lyon, France
| |
Collapse
|
27
|
Jennings RE, Scharfmann R, Staels W. Transcription factors that shape the mammalian pancreas. Diabetologia 2020; 63:1974-1980. [PMID: 32894307 PMCID: PMC7476910 DOI: 10.1007/s00125-020-05161-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/03/2020] [Indexed: 12/19/2022]
Abstract
Improving our understanding of mammalian pancreas development is crucial for the development of more effective cellular therapies for diabetes. Most of what we know about mammalian pancreas development stems from mouse genetics. We have learnt that a unique set of transcription factors controls endocrine and exocrine cell differentiation. Transgenic mouse models have been instrumental in studying the function of these transcription factors. Mouse and human pancreas development are very similar in many respects, but the devil is in the detail. To unravel human pancreas development in greater detail, in vitro cellular models (including directed differentiation of stem cells, human beta cell lines and human pancreatic organoids) are used; however, in vivo validation of these results is still needed. The current best 'model' for studying human pancreas development are individuals with monogenic forms of diabetes. In this review, we discuss mammalian pancreas development, highlight some discrepancies between mouse and human, and discuss selected transcription factors that, when mutated, cause permanent neonatal diabetes. Graphical abstract.
Collapse
Affiliation(s)
- Rachel E Jennings
- Division of Diabetes, Endocrinology & Gastroenterology, Faculty of Biology, Medicine & Health, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, UK.
- Endocrinology Department, Manchester University NHS Foundation Trust, Manchester, UK.
| | - Raphael Scharfmann
- Institut Cochin, INSERM, U1016, CNRS, UMR8104, Université de Paris, 75014, Paris, France.
| | - Willem Staels
- Institut Cochin, INSERM, U1016, CNRS, UMR8104, Université de Paris, 75014, Paris, France.
- Beta Cell Neogenesis (BENE), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
- Department of Pediatrics, Division of Pediatric Endocrinology, University Hospital of Brussels, Jette, Belgium.
| |
Collapse
|
28
|
Solorzano-Vargas RS, Bjerknes M, Wang J, Wu SV, Garcia-Careaga MG, Pitukcheewanont P, Cheng H, German MS, Georgia S, Martín MG. Null mutations of NEUROG3 are associated with delayed-onset diabetes mellitus. JCI Insight 2020; 5:127657. [PMID: 31805014 DOI: 10.1172/jci.insight.127657] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 11/21/2019] [Indexed: 01/15/2023] Open
Abstract
Biallelic mutations of the gene encoding the transcription factor NEUROG3 are associated with a rare disorder that presents in neonates as generalized malabsorption - due to a complete absence of enteroendocrine cells - followed, in early childhood or beyond, by insulin-dependent diabetes mellitus (IDDM). The commonly delayed onset of IDDM suggests a differential requirement for NEUROG3 in endocrine cell generation in the human pancreas versus the intestine. However, previously identified human mutations were hypomorphic and, hence, may have had residual function in pancreas. We report 2 patients with biallelic functionally null variants of the NEUROG3 gene who nonetheless did not present with IDDM during infancy but instead developed permanent IDDM during middle childhood ages. The variants showed no evidence of function in traditional promoter-based assays of NEUROG3 function and also failed to exhibit function in a variety of potentially novel in vitro and in vivo molecular assays designed to discern residual NEUROG3 function. These findings imply that, unlike in mice, pancreatic endocrine cell generation in humans is not entirely dependent on NEUROG3 expression and, hence, suggest the presence of unidentified redundant in vivo pathways in human pancreas capable of yielding β cell mass sufficient to maintain euglycemia until early childhood.
Collapse
Affiliation(s)
- R Sergio Solorzano-Vargas
- Division of Gastroenterology and Nutrition, Department of Pediatrics, Mattel Children's Hospital and David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Matthew Bjerknes
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jiafang Wang
- Division of Gastroenterology and Nutrition, Department of Pediatrics, Mattel Children's Hospital and David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - S Vincent Wu
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA.,Department of Medicine, UCLA, Los Angeles, California, USA
| | | | - Pisit Pitukcheewanont
- Division of Endocrinology, Department of Pediatrics, Children's Hospital Los Angeles and University of Southern California, Los Angeles, California, USA
| | - Hazel Cheng
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Michael S German
- Diabetes Center and.,Department of Medicine, UCSF, San Francisco, California, USA
| | - Senta Georgia
- Division of Endocrinology, Department of Pediatrics, Children's Hospital Los Angeles and University of Southern California, Los Angeles, California, USA
| | - Martín G Martín
- Division of Gastroenterology and Nutrition, Department of Pediatrics, Mattel Children's Hospital and David Geffen School of Medicine at UCLA, Los Angeles, California, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Los Angeles, California, USA
| |
Collapse
|
29
|
Piccand J, Vagne C, Blot F, Meunier A, Beucher A, Strasser P, Lund ML, Ghimire S, Nivlet L, Lapp C, Petersen N, Engelstoft MS, Thibault-Carpentier C, Keime C, Correa SJ, Schreiber V, Molina N, Schwartz TW, De Arcangelis A, Gradwohl G. Rfx6 promotes the differentiation of peptide-secreting enteroendocrine cells while repressing genetic programs controlling serotonin production. Mol Metab 2019; 29:24-39. [PMID: 31668390 PMCID: PMC6728766 DOI: 10.1016/j.molmet.2019.08.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/01/2019] [Accepted: 08/10/2019] [Indexed: 12/16/2022] Open
Abstract
Objective Enteroendocrine cells (EECs) of the gastro-intestinal tract sense gut luminal factors and release peptide hormones or serotonin (5-HT) to coordinate energy uptake and storage. Our goal is to decipher the gene regulatory networks controlling EECs specification from enteroendocrine progenitors. In this context, we studied the role of the transcription factor Rfx6 which had been identified as the cause of Mitchell–Riley syndrome, characterized by neonatal diabetes and congenital malabsorptive diarrhea. We previously reported that Rfx6 was essential for pancreatic beta cell development and function; however, the role of Rfx6 in EECs differentiation remained to be elucidated. Methods We examined the molecular, cellular, and metabolic consequences of constitutive and conditional deletion of Rfx6 in the embryonic and adult mouse intestine. We performed single cell and bulk RNA-Seq to characterize EECs diversity and identify Rfx6-regulated genes. Results Rfx6 is expressed in the gut endoderm; later, it is turned on in, and restricted to, enteroendocrine progenitors and persists in hormone-positive EECs. In the embryonic intestine, the constitutive lack of Rfx6 leads to gastric heterotopia, suggesting a role in the maintenance of intestinal identity. In the absence of intestinal Rfx6, EECs differentiation is severely impaired both in the embryo and adult. However, the number of serotonin-producing enterochromaffin cells and mucosal 5-HT content are increased. Concomitantly, Neurog3-positive enteroendocrine progenitors accumulate. Combined analysis of single-cell and bulk RNA-Seq data revealed that enteroendocrine progenitors differentiate in two main cell trajectories, the enterochromaffin (EC) cells and the Peptidergic Enteroendocrine (PE) cells, the differentiation programs of which are differentially regulated by Rfx6. Rfx6 operates upstream of Arx, Pax6 and Isl1 to trigger the differentiation of peptidergic EECs such as GIP-, GLP-1-, or CCK-secreting cells. On the contrary, Rfx6 represses Lmx1a and Tph1, two genes essential for serotonin biosynthesis. Finally, we identified transcriptional changes uncovering adaptive responses to the prolonged lack of enteroendocrine hormones and leading to malabsorption and lower food efficiency ratio in Rfx6-deficient mouse intestine. Conclusion These studies identify Rfx6 as an essential transcriptional regulator of EECs specification and shed light on the molecular mechanisms of intestinal failures in human RFX6-deficiencies such as Mitchell–Riley syndrome. The lack of Rfx6 impairs the differentiation of peptide-producing enteroendocrine cells. The number of 5-HT-expressing-cells is increased in Rfx6-deficient intestine. Intestinal inactivation of Rfx6 leads to lipid malabsorption and decreased food efficiency.
Collapse
Affiliation(s)
- Julie Piccand
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR7104, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Constance Vagne
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR7104, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Florence Blot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR7104, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Aline Meunier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR7104, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Anthony Beucher
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR7104, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Perrine Strasser
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR7104, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Mari L Lund
- Centre for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health Science, University of Copenhagen, Denmark
| | - Sabitri Ghimire
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR7104, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Laure Nivlet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR7104, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Céline Lapp
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR7104, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Natalia Petersen
- Centre for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health Science, University of Copenhagen, Denmark
| | - Maja S Engelstoft
- Centre for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health Science, University of Copenhagen, Denmark
| | - Christelle Thibault-Carpentier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR7104, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Céline Keime
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR7104, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Sara Jimenez Correa
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR7104, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Valérie Schreiber
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR7104, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Nacho Molina
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR7104, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Thue W Schwartz
- Centre for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health Science, University of Copenhagen, Denmark
| | - Adèle De Arcangelis
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR7104, Illkirch, France; Université de Strasbourg, Illkirch, France.
| | - Gérard Gradwohl
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR7104, Illkirch, France; Université de Strasbourg, Illkirch, France.
| |
Collapse
|
30
|
Zhang X, McGrath PS, Salomone J, Rahal M, McCauley HA, Schweitzer J, Kovall R, Gebelein B, Wells JM. A Comprehensive Structure-Function Study of Neurogenin3 Disease-Causing Alleles during Human Pancreas and Intestinal Organoid Development. Dev Cell 2019; 50:367-380.e7. [PMID: 31178402 DOI: 10.1016/j.devcel.2019.05.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 02/25/2019] [Accepted: 05/06/2019] [Indexed: 01/09/2023]
Abstract
Neurogenin3 (NEUROG3) is required for endocrine lineage formation of the pancreas and intestine. Patients with NEUROG3 mutations are born with congenital malabsorptive diarrhea due to complete loss of enteroendocrine cells, whereas endocrine pancreas development varies in an allele-specific manner. These findings suggest a context-dependent requirement for NEUROG3 in pancreas versus intestine. We utilized human tissue differentiated from NEUROG3-/- pluripotent stem cells for functional analyses. Most disease-associated alleles had hypomorphic or null phenotype in both tissues, whereas the S171fsX68 mutation had reduced activity in the pancreas but largely null in the intestine. Biochemical studies revealed NEUROG3 variants have distinct molecular defects with altered protein stability, DNA binding, and gene transcription. Moreover, NEUROG3 was highly unstable in the intestinal epithelium, explaining the enhanced sensitivity of intestinal defects relative to the pancreas. These studies emphasize that studies of human mutations in the endogenous tissue context may be required to assess structure-function relationships.
Collapse
Affiliation(s)
- Xinghao Zhang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Patrick S McGrath
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Joseph Salomone
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Mohamed Rahal
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Heather A McCauley
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jamie Schweitzer
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Rhett Kovall
- Department of Molecular Genetics, Biochemistry, & Microbiology, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Brian Gebelein
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - James M Wells
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
31
|
Identification of Enteroendocrine Regulators by Real-Time Single-Cell Differentiation Mapping. Cell 2019; 176:1158-1173.e16. [PMID: 30712869 DOI: 10.1016/j.cell.2018.12.029] [Citation(s) in RCA: 218] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 09/21/2018] [Accepted: 12/17/2018] [Indexed: 01/22/2023]
Abstract
Homeostatic regulation of the intestinal enteroendocrine lineage hierarchy is a poorly understood process. We resolved transcriptional changes during enteroendocrine differentiation in real time at single-cell level using a novel knockin allele of Neurog3, the master regulator gene briefly expressed at the onset of enteroendocrine specification. A bi-fluorescent reporter, Neurog3Chrono, measures time from the onset of enteroendocrine differentiation and enables precise positioning of single-cell transcriptomes along an absolute time axis. This approach yielded a definitive description of the enteroendocrine hierarchy and its sub-lineages, uncovered differential kinetics between sub-lineages, and revealed time-dependent hormonal plasticity in enterochromaffin and L cells. The time-resolved map of transcriptional changes predicted multiple novel molecular regulators. Nine of these were validated by conditional knockout in mice or CRISPR modification in intestinal organoids. Six novel candidate regulators (Sox4, Rfx6, Tox3, Myt1, Runx1t1, and Zcchc12) yielded specific enteroendocrine phenotypes. Our time-resolved single-cell transcriptional map presents a rich resource to unravel enteroendocrine differentiation.
Collapse
|
32
|
Liu J, Banerjee A, Herring CA, Attalla J, Hu R, Xu Y, Shao Q, Simmons AJ, Dadi PK, Wang S, Jacobson DA, Liu B, Hodges E, Lau KS, Gu G. Neurog3-Independent Methylation Is the Earliest Detectable Mark Distinguishing Pancreatic Progenitor Identity. Dev Cell 2019; 48:49-63.e7. [PMID: 30620902 PMCID: PMC6327977 DOI: 10.1016/j.devcel.2018.11.048] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 08/26/2018] [Accepted: 11/29/2018] [Indexed: 12/15/2022]
Abstract
In the developing pancreas, transient Neurog3-expressing progenitors give rise to four major islet cell types: α, β, δ, and γ; when and how the Neurog3+ cells choose cell fate is unknown. Using single-cell RNA-seq, trajectory analysis, and combinatorial lineage tracing, we showed here that the Neurog3+ cells co-expressing Myt1 (i.e., Myt1+Neurog3+) were biased toward β cell fate, while those not simultaneously expressing Myt1 (Myt1-Neurog3+) favored α fate. Myt1 manipulation only marginally affected α versus β cell specification, suggesting Myt1 as a marker but not determinant for islet-cell-type specification. The Myt1+Neurog3+ cells displayed higher Dnmt1 expression and enhancer methylation at Arx, an α-fate-promoting gene. Inhibiting Dnmts in pancreatic progenitors promoted α cell specification, while Dnmt1 overexpression or Arx enhancer hypermethylation favored β cell production. Moreover, the pancreatic progenitors contained distinct Arx enhancer methylation states without transcriptionally definable sub-populations, a phenotype independent of Neurog3 activity. These data suggest that Neurog3-independent methylation on fate-determining gene enhancers specifies distinct endocrine-cell programs.
Collapse
Affiliation(s)
- Jing Liu
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Amrita Banerjee
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Charles A Herring
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Program in Chemical and Physical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Jonathan Attalla
- Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Biochemistry and the Vanderbilt Genetic Institute, Vanderbilt University, Nashville, TN 37232, USA
| | - Ruiying Hu
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Yanwen Xu
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Qiujia Shao
- Center for AIDS Health Disparities Research, Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN 37208, USA
| | - Alan J Simmons
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Prasanna K Dadi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Sui Wang
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - David A Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Bindong Liu
- Center for AIDS Health Disparities Research, Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN 37208, USA
| | - Emily Hodges
- Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Biochemistry and the Vanderbilt Genetic Institute, Vanderbilt University, Nashville, TN 37232, USA
| | - Ken S Lau
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Program in Chemical and Physical Biology, Vanderbilt University, Nashville, TN 37232, USA.
| | - Guoqiang Gu
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
33
|
Cheng C, Lu J, Cao X, Yang FY, Liu JY, Song LN, Shen H, Liu C, Zhu XR, Zhou JB, Yang JK. Identification of Rfx6 target genes involved in pancreas development and insulin translation by ChIP-seq. Biochem Biophys Res Commun 2019; 508:556-562. [DOI: 10.1016/j.bbrc.2018.11.133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 11/20/2018] [Indexed: 01/02/2023]
|
34
|
Liu M, Peng J, Tai N, Pearson JA, Hu C, Guo J, Hou L, Zhao H, Wong FS, Wen L. Toll-like receptor 9 negatively regulates pancreatic islet beta cell growth and function in a mouse model of type 1 diabetes. Diabetologia 2018; 61:2333-2343. [PMID: 30094467 PMCID: PMC6182661 DOI: 10.1007/s00125-018-4705-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/02/2018] [Indexed: 12/12/2022]
Abstract
AIMS/HYPOTHESIS Innate immune effectors interact with the environment to contribute to the pathogenesis of the autoimmune disease, type 1 diabetes. Although recent studies have suggested that innate immune Toll-like receptors (TLRs) are involved in tissue development, little is known about the role of TLRs in tissue development, compared with autoimmunity. We aimed to fill the knowledge gap by investigating the role of TLR9 in the development and function of islet beta cells in type 1 diabetes, using NOD mice. METHODS We generated Tlr9-/- NOD mice and examined them for type 1 diabetes development and beta cell function, including insulin secretion and glucose tolerance. We assessed islet and beta cell number and characterised CD140a expression on beta cells by flow cytometry. We also tested beta cell function in Tlr9-/- C57BL/6 mice. Finally, we used TLR9 antagonists to block TLR9 signalling in wild-type NOD mice to verify the role of TLR9 in beta cell development and function. RESULTS TLR9 deficiency promoted pancreatic islet development and beta cell differentiation, leading to enhanced glucose tolerance, improved insulin sensitivity and enhanced first-phase insulin secretory response. This was, in part, mediated by upregulation of CD140a (also known as platelet-derived growth factor receptor-α [PDGFRα]). In the absence of TLR9, induced by either genetic targeting or treatment with TLR9 antagonists, which had similar effects on ontogenesis and function of beta cells, NOD mice were protected from diabetes. CONCLUSIONS/INTERPRETATION Our study links TLR9 and the CD140a pathway in regulating islet beta cell development and function and indicates a potential therapeutic target for diabetes prevention and/or treatment.
Collapse
Affiliation(s)
- Mengju Liu
- Section of Endocrinology, Department of Internal Medicine, Yale School of Medicine, Yale University, 300 Cedar Street, New Haven, CT, 06520, USA
| | - Jian Peng
- Section of Endocrinology, Department of Internal Medicine, Yale School of Medicine, Yale University, 300 Cedar Street, New Haven, CT, 06520, USA
| | - Ningwen Tai
- Section of Endocrinology, Department of Internal Medicine, Yale School of Medicine, Yale University, 300 Cedar Street, New Haven, CT, 06520, USA
| | - James A Pearson
- Section of Endocrinology, Department of Internal Medicine, Yale School of Medicine, Yale University, 300 Cedar Street, New Haven, CT, 06520, USA
| | - Changyun Hu
- Section of Endocrinology, Department of Internal Medicine, Yale School of Medicine, Yale University, 300 Cedar Street, New Haven, CT, 06520, USA
- Jounce Therapeutics Inc., Cambridge, MA, USA
| | - Junhua Guo
- Section of Endocrinology, Department of Internal Medicine, Yale School of Medicine, Yale University, 300 Cedar Street, New Haven, CT, 06520, USA
- Department of Rheumatology, PLA General Hospital, Beijing, People's Republic of China
| | - Lin Hou
- Jounce Therapeutics Inc., Cambridge, MA, USA
| | - Hongyu Zhao
- Department of Bioinformatics, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - F Susan Wong
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK.
| | - Li Wen
- Section of Endocrinology, Department of Internal Medicine, Yale School of Medicine, Yale University, 300 Cedar Street, New Haven, CT, 06520, USA.
| |
Collapse
|
35
|
Scavuzzo MA, Hill MC, Chmielowiec J, Yang D, Teaw J, Sheng K, Kong Y, Bettini M, Zong C, Martin JF, Borowiak M. Endocrine lineage biases arise in temporally distinct endocrine progenitors during pancreatic morphogenesis. Nat Commun 2018; 9:3356. [PMID: 30135482 PMCID: PMC6105717 DOI: 10.1038/s41467-018-05740-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/20/2018] [Indexed: 12/22/2022] Open
Abstract
Decoding the molecular composition of individual Ngn3 + endocrine progenitors (EPs) during pancreatic morphogenesis could provide insight into the mechanisms regulating hormonal cell fate. Here, we identify population markers and extensive cellular diversity including four EP subtypes reflecting EP maturation using high-resolution single-cell RNA-sequencing of the e14.5 and e16.5 mouse pancreas. While e14.5 and e16.5 EPs are constantly born and share select genes, these EPs are overall transcriptionally distinct concomitant with changes in the underlying epithelium. As a consequence, e16.5 EPs are not the same as e14.5 EPs: e16.5 EPs have a higher propensity to form beta cells. Analysis of e14.5 and e16.5 EP chromatin states reveals temporal shifts, with enrichment of beta cell motifs in accessible regions at later stages. Finally, we provide transcriptional maps outlining the route progenitors take as they make cell fate decisions, which can be applied to advance the in vitro generation of beta cells. Endocrine progenitors form early in pancreatic development but the diversity of this cell population is unclear. Here, the authors use single cell RNA sequencing of the mouse pancreas at e14.5 and e16.5 to show that endocrine progenitors are temporally distinct and those formed later are more likely to become beta cells
Collapse
Affiliation(s)
- Marissa A Scavuzzo
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Matthew C Hill
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jolanta Chmielowiec
- Center for Cell and Gene Therapy, Texas Children's Hospital, and Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, 77030, USA.,Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, 77030, USA.,Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Diane Yang
- Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jessica Teaw
- Center for Cell and Gene Therapy, Texas Children's Hospital, and Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, 77030, USA.,Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, 77030, USA.,Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kuanwei Sheng
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yuelin Kong
- Department of Pediatrics, Section of Diabetes and Endocrinology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Maria Bettini
- Department of Pediatrics, Section of Diabetes and Endocrinology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA.,McNair Medical Institute, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Chenghang Zong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.,McNair Medical Institute, Baylor College of Medicine, Houston, TX, 77030, USA
| | - James F Martin
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA. .,The Texas Heart Institute, Houston, TX, 77030, USA. .,Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Malgorzata Borowiak
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Center for Cell and Gene Therapy, Texas Children's Hospital, and Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, 77030, USA. .,Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, 77030, USA. .,Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX, 77030, USA. .,Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA. .,McNair Medical Institute, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
36
|
Vieira A, Vergoni B, Courtney M, Druelle N, Gjernes E, Hadzic B, Avolio F, Napolitano T, Navarro Sanz S, Mansouri A, Collombat P. Neurog3 misexpression unravels mouse pancreatic ductal cell plasticity. PLoS One 2018; 13:e0201536. [PMID: 30092080 PMCID: PMC6084906 DOI: 10.1371/journal.pone.0201536] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 07/17/2018] [Indexed: 11/19/2022] Open
Abstract
In the context of type 1 diabetes research and the development of insulin-producing β-cell replacement strategies, whether pancreatic ductal cells retain their developmental capability to adopt an endocrine cell identity remains debated, most likely due to the diversity of models employed to induce pancreatic regeneration. In this work, rather than injuring the pancreas, we developed a mouse model allowing the inducible misexpression of the proendocrine gene Neurog3 in ductal cells in vivo. These animals developed a progressive islet hypertrophy attributed to a proportional increase in all endocrine cell populations. Lineage tracing experiments indicated a continuous neo-generation of endocrine cells exhibiting a ductal ontogeny. Interestingly, the resulting supplementary β-like cells were found to be functional. Based on these findings, we suggest that ductal cells could represent a renewable source of new β-like cells and that strategies aiming at controlling the expression of Neurog3, or of its molecular targets/co-factors, may pave new avenues for the improved treatments of diabetes.
Collapse
Affiliation(s)
- Andhira Vieira
- Univ. Nice Sophia Antipolis, Inserm, CNRS, iBV, Nice, France
| | - Bastien Vergoni
- Univ. Nice Sophia Antipolis, Inserm, CNRS, iBV, Nice, France
| | - Monica Courtney
- Univ. Nice Sophia Antipolis, Inserm, CNRS, iBV, Nice, France
| | - Noémie Druelle
- Univ. Nice Sophia Antipolis, Inserm, CNRS, iBV, Nice, France
| | | | - Biljana Hadzic
- Univ. Nice Sophia Antipolis, Inserm, CNRS, iBV, Nice, France
| | - Fabio Avolio
- Univ. Nice Sophia Antipolis, Inserm, CNRS, iBV, Nice, France
| | | | | | - Ahmed Mansouri
- Max-Planck Institute for Biophysical Chemistry, Department of Molecular Cell Biology, Am Fassberg, Göttingen, Germany
- Department of Clinical Neurophysiology, University of Göttingen, Göttingen, Germany
| | - Patrick Collombat
- Univ. Nice Sophia Antipolis, Inserm, CNRS, iBV, Nice, France
- * E-mail:
| |
Collapse
|
37
|
Neelankal John A, Jiang FX. An overview of type 2 diabetes and importance of vitamin D3-vitamin D receptor interaction in pancreatic β-cells. J Diabetes Complications 2018; 32:429-443. [PMID: 29422234 DOI: 10.1016/j.jdiacomp.2017.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 12/03/2017] [Accepted: 12/07/2017] [Indexed: 02/07/2023]
Abstract
One significant health issue that plagues contemporary society is that of Type 2 diabetes (T2D). This disease is characterised by higher-than-average blood glucose levels as a result of a combination of insulin resistance and insufficient insulin secretions from the β-cells of pancreatic islets of Langerhans. Previous developmental research into the pancreas has identified how early precursor genes of pancreatic β-cells, such as Cpal, Ngn3, NeuroD, Ptf1a, and cMyc, play an essential role in the differentiation of these cells. Furthermore, β-cell molecular characterization has also revealed the specific role of β-cell-markers, such as Glut2, MafA, Ins1, Ins2, and Pdx1 in insulin expression. The expression of these genes appears to be suppressed in the T2D β-cells, along with the reappearance of the early endocrine marker genes. Glucose transporters transport glucose into β-cells, thereby controlling insulin release during hyperglycaemia. This stimulates glycolysis through rises in intracellular calcium (a process enhanced by vitamin D) (Norman et al., 1980), activating 2 of 4 proteinases. The rise in calcium activates half of pancreatic β-cell proinsulinases, thus releasing free insulin from granules. The synthesis of ATP from glucose by glycolysis, Krebs cycle and oxidative phosphorylation plays a role in insulin release. Some studies have found that the β-cells contain high levels of the vitamin D receptor; however, the role that this plays in maintaining the maturity of the β-cells remains unknown. Further research is required to develop a more in-depth understanding of the role VDR plays in β-cell function and the processes by which the beta cell function is preserved.
Collapse
Affiliation(s)
- Abraham Neelankal John
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, Western Australia, Australia; School of Medicine and Pharmacology, University of Western Australia, Carwley, Western Australia, Australia
| | - Fang-Xu Jiang
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, Western Australia, Australia; School of Medicine and Pharmacology, University of Western Australia, Carwley, Western Australia, Australia.
| |
Collapse
|
38
|
Sugiaman-Trapman D, Vitezic M, Jouhilahti EM, Mathelier A, Lauter G, Misra S, Daub CO, Kere J, Swoboda P. Characterization of the human RFX transcription factor family by regulatory and target gene analysis. BMC Genomics 2018; 19:181. [PMID: 29510665 PMCID: PMC5838959 DOI: 10.1186/s12864-018-4564-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/21/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Evolutionarily conserved RFX transcription factors (TFs) regulate their target genes through a DNA sequence motif called the X-box. Thereby they regulate cellular specialization and terminal differentiation. Here, we provide a comprehensive analysis of all the eight human RFX genes (RFX1-8), their spatial and temporal expression profiles, potential upstream regulators and target genes. RESULTS We extracted all known human RFX1-8 gene expression profiles from the FANTOM5 database derived from transcription start site (TSS) activity as captured by Cap Analysis of Gene Expression (CAGE) technology. RFX genes are broadly (RFX1-3, RFX5, RFX7) and specifically (RFX4, RFX6) expressed in different cell types, with high expression in four organ systems: immune system, gastrointestinal tract, reproductive system and nervous system. Tissue type specific expression profiles link defined RFX family members with the target gene batteries they regulate. We experimentally confirmed novel TSS locations and characterized the previously undescribed RFX8 to be lowly expressed. RFX tissue and cell type specificity arises mainly from differences in TSS architecture. RFX transcript isoforms lacking a DNA binding domain (DBD) open up new possibilities for combinatorial target gene regulation. Our results favor a new grouping of the RFX family based on protein domain composition. We uncovered and experimentally confirmed the TFs SP2 and ESR1 as upstream regulators of specific RFX genes. Using TF binding profiles from the JASPAR database, we determined relevant patterns of X-box motif positioning with respect to gene TSS locations of human RFX target genes. CONCLUSIONS The wealth of data we provide will serve as the basis for precisely determining the roles RFX TFs play in human development and disease.
Collapse
Affiliation(s)
| | - Morana Vitezic
- Department of Biology, Bioinformatics Centre, Section for Computational and RNA Biology, University of Copenhagen, Copenhagen, Denmark
| | - Eeva-Mari Jouhilahti
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Anthony Mathelier
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, Canada
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL partnership, University of Oslo, Oslo, Norway
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Gilbert Lauter
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Sougat Misra
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Carsten O Daub
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- School of Basic and Medical Biosciences, King's College London, London, UK
- Folkhälsan Institute of Genetics and Molecular Neurology Research Program, University of Helsinki, Helsinki, Finland
| | - Peter Swoboda
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.
| |
Collapse
|
39
|
Late-stage differentiation of embryonic pancreatic β-cells requires Jarid2. Sci Rep 2017; 7:11643. [PMID: 28912479 PMCID: PMC5599523 DOI: 10.1038/s41598-017-11691-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 08/24/2017] [Indexed: 02/04/2023] Open
Abstract
Jarid2 is a component of the Polycomb Repressor complex 2 (PRC2), which is responsible for genome-wide H3K27me3 deposition, in embryonic stem cells. However, Jarid2 has also been shown to exert pleiotropic PRC2-independent actions during embryogenesis. Here, we have investigated the role of Jarid2 during pancreas development. Conditional ablation of Jarid2 in pancreatic progenitors results in reduced endocrine cell area at birth due to impaired endocrine cell differentiation and reduced prenatal proliferation. Inactivation of Jarid2 in endocrine progenitors demonstrates that Jarid2 functions after endocrine specification. Furthermore, genome-wide expression analysis reveals that Jarid2 is required for the complete activation of the insulin-producing β-cell differentiation program. Jarid2-deficient pancreases exhibit impaired deposition of RNAPII-Ser5P, the initiating form of RNAPII, but no changes in H3K27me3, at the promoters of affected endocrine genes. Thus, our study identifies Jarid2 as a fine-tuner of gene expression during late stages of pancreatic endocrine cell development. These findings are relevant for generation of transplantable stem cell-derived β-cells.
Collapse
|
40
|
Petersen MBK, Azad A, Ingvorsen C, Hess K, Hansson M, Grapin-Botton A, Honoré C. Single-Cell Gene Expression Analysis of a Human ESC Model of Pancreatic Endocrine Development Reveals Different Paths to β-Cell Differentiation. Stem Cell Reports 2017; 9:1246-1261. [PMID: 28919263 PMCID: PMC5639261 DOI: 10.1016/j.stemcr.2017.08.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/16/2017] [Accepted: 08/17/2017] [Indexed: 01/05/2023] Open
Abstract
The production of insulin-producing β cells from human embryonic stem cells (hESCs) in vitro represents a promising strategy for a cell-based therapy for type 1 diabetes mellitus. To explore the cellular heterogeneity and temporal progression of endocrine progenitors and their progeny, we performed single-cell qPCR on more than 500 cells across several stages of in vitro differentiation of hESCs and compared them with human islets. We reveal distinct subpopulations along the endocrine differentiation path and an early lineage bifurcation toward either polyhormonal cells or β-like cells. We uncover several similarities and differences with mouse development and reveal that cells can take multiple paths to the same differentiation state, a principle that could be relevant to other systems. Notably, activation of the key β-cell transcription factor NKX6.1 can be initiated before or after endocrine commitment. The single-cell temporal resolution we provide can be used to improve the production of functional β cells. Single-cell qPCR identifies subpopulations on hESC to endocrine differentiation paths All hESC-derived endocrine cells transcribe multiple hormones in vitro A subpopulation of hESC-derived INS+ cells transcriptionally resembles adult β cells NKX6.1 onset before or after endocrine commitment leads to β-cell differentiation
Collapse
Affiliation(s)
- Maja Borup Kjær Petersen
- Department of Stem Cell Biology, Novo Nordisk A/S, Novo Nordisk Park, 2760 Måløv, Denmark; DanStem, University of Copenhagen, 3B Blegdamsvej, 2200 Copenhagen N, Denmark
| | - Ajuna Azad
- DanStem, University of Copenhagen, 3B Blegdamsvej, 2200 Copenhagen N, Denmark
| | - Camilla Ingvorsen
- Histology and Imaging, Novo Nordisk A/S, Novo Nordisk Park, 2760 Måløv, Denmark
| | - Katja Hess
- DanStem, University of Copenhagen, 3B Blegdamsvej, 2200 Copenhagen N, Denmark
| | - Mattias Hansson
- Global Research External Affairs, Novo Nordisk A/S, Novo Nordisk Park, 2760 Måløv, Denmark
| | - Anne Grapin-Botton
- DanStem, University of Copenhagen, 3B Blegdamsvej, 2200 Copenhagen N, Denmark.
| | - Christian Honoré
- Department of Stem Cell Biology, Novo Nordisk A/S, Novo Nordisk Park, 2760 Måløv, Denmark.
| |
Collapse
|
41
|
Abdul-Wahed A, Guilmeau S, Postic C. Sweet Sixteenth for ChREBP: Established Roles and Future Goals. Cell Metab 2017; 26:324-341. [PMID: 28768172 DOI: 10.1016/j.cmet.2017.07.004] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 06/01/2017] [Accepted: 07/12/2017] [Indexed: 12/25/2022]
Abstract
With the identification of ChREBP in 2001, our interest in understanding the molecular control of carbohydrate sensing has surged. While ChREBP was initially studied as a master regulator of lipogenesis in liver and fat tissue, it is now clear that ChREBP functions as a central metabolic coordinator in a variety of cell types in response to environmental and hormonal signals, with wide implications in health and disease. Celebrating its sweet sixteenth birthday, we review here the current knowledge about the function and regulation of ChREBP throughout usual and less explored tissues, to recapitulate ChREBP's role as a whole-body glucose sensor.
Collapse
Affiliation(s)
- Aya Abdul-Wahed
- Inserm, U1016, Institut Cochin, 75014 Paris, France; CNRS UMR 8104, 75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Sandra Guilmeau
- Inserm, U1016, Institut Cochin, 75014 Paris, France; CNRS UMR 8104, 75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Catherine Postic
- Inserm, U1016, Institut Cochin, 75014 Paris, France; CNRS UMR 8104, 75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France.
| |
Collapse
|
42
|
Al-Khawaga S, Memon B, Butler AE, Taheri S, Abou-Samra AB, Abdelalim EM. Pathways governing development of stem cell-derived pancreatic β cells: lessons from embryogenesis. Biol Rev Camb Philos Soc 2017. [DOI: 10.1111/brv.12349] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sara Al-Khawaga
- Diabetes Research Center, Qatar Biomedical Research Institute; Hamad Bin Khalifa University, Qatar Foundation, Education City; Doha Qatar
| | - Bushra Memon
- Diabetes Research Center, Qatar Biomedical Research Institute; Hamad Bin Khalifa University, Qatar Foundation, Education City; Doha Qatar
| | - Alexandra E. Butler
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine; University of California; Los Angeles CA 90095 U.S.A
| | - Shahrad Taheri
- Department of Medicine; Weill Cornell Medicine in Qatar, Qatar Foundation, Education City, PO BOX 24144; Doha Qatar
- Department of Medicine; Qatar Metabolic Institute, Hamad Medical Corporation; Doha Qatar
| | - Abdul B. Abou-Samra
- Department of Medicine; Weill Cornell Medicine in Qatar, Qatar Foundation, Education City, PO BOX 24144; Doha Qatar
- Department of Medicine; Qatar Metabolic Institute, Hamad Medical Corporation; Doha Qatar
| | - Essam M. Abdelalim
- Diabetes Research Center, Qatar Biomedical Research Institute; Hamad Bin Khalifa University, Qatar Foundation, Education City; Doha Qatar
| |
Collapse
|
43
|
Golson ML, Kaestner KH. Epigenetics in formation, function, and failure of the endocrine pancreas. Mol Metab 2017; 6:1066-1076. [PMID: 28951829 PMCID: PMC5605720 DOI: 10.1016/j.molmet.2017.05.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/16/2017] [Accepted: 05/22/2017] [Indexed: 01/17/2023] Open
Abstract
Background Epigenetics, in the broadest sense, governs all aspects of the life of any multicellular organism, as it controls how differentiated cells arrive at their unique phenotype during development and differentiation, despite having a uniform (with some exceptions such as T-cells and germ cells) genetic make-up. The endocrine pancreas is no exception. Transcriptional regulators and epigenetic modifiers shape the differentiation of the five major endocrine cell types from their common precursor in the fetal pancreatic bud. Beyond their role in cell differentiation, interactions of the organism with the environment are also often encoded into permanent or semi-permanent epigenetic marks and affect cellular behavior and organismal health. Epigenetics is defined as any heritable – at least through one mitotic cell division – change in phenotype or trait that is not the result of a change in genomic DNA sequence, and it forms the basis that mediates the environmental impact on diabetes susceptibility and islet function. Scope of review We will summarize the impact of epigenetic regulation on islet cell development, maturation, function, and pathophysiology. We will briefly recapitulate the major epigenetic marks and their relationship to gene activity, and outline novel strategies to employ targeted epigenetic modifications as a tool to improve islet cell function. Major conclusions The improved understanding of the epigenetic underpinnings of islet cell differentiation, function and breakdown, as well as the development of innovative tools for their manipulation, is key to islet cell biology and the discovery of novel approaches to therapies for islet cell failure.
Collapse
Affiliation(s)
- Maria L Golson
- University of Pennsylvania, Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, Philadelphia, PA, USA
| | - Klaus H Kaestner
- University of Pennsylvania, Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, Philadelphia, PA, USA
| |
Collapse
|
44
|
Martin D, Grapin-Botton A. The Importance of REST for Development and Function of Beta Cells. Front Cell Dev Biol 2017; 5:12. [PMID: 28286748 PMCID: PMC5323410 DOI: 10.3389/fcell.2017.00012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/07/2017] [Indexed: 01/10/2023] Open
Abstract
Beta cells are defined by the genes they express, many of which are specific to this cell type, and ensure a specific set of functions. Beta cells are also defined by a set of genes they should not express (in order to function properly), and these genes have been called forbidden genes. Among these, the transcriptional repressor RE-1 Silencing Transcription factor (REST) is expressed in most cells of the body, excluding most populations of neurons, as well as pancreatic beta and alpha cells. In the cell types where it is expressed, REST represses the expression of hundreds of genes that are crucial for both neuronal and pancreatic endocrine function, through the recruitment of multiple transcriptional and epigenetic co-regulators. REST targets include genes encoding transcription factors, proteins involved in exocytosis, synaptic transmission or ion channeling, and non-coding RNAs. REST is expressed in the progenitors of both neurons and beta cells during development, but it is down-regulated as the cells differentiate. Although REST mutations and deregulation have yet to be connected to diabetes in humans, REST activation during both development and in adult beta cells leads to diabetes in mice.
Collapse
Affiliation(s)
- David Martin
- Service of Cardiology, Centre Hospitalier Universitaire Vaudois (CHUV) Lausanne, Switzerland
| | | |
Collapse
|
45
|
Genetic regulatory signatures underlying islet gene expression and type 2 diabetes. Proc Natl Acad Sci U S A 2017; 114:2301-2306. [PMID: 28193859 DOI: 10.1073/pnas.1621192114] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Genome-wide association studies (GWAS) have identified >100 independent SNPs that modulate the risk of type 2 diabetes (T2D) and related traits. However, the pathogenic mechanisms of most of these SNPs remain elusive. Here, we examined genomic, epigenomic, and transcriptomic profiles in human pancreatic islets to understand the links between genetic variation, chromatin landscape, and gene expression in the context of T2D. We first integrated genome and transcriptome variation across 112 islet samples to produce dense cis-expression quantitative trait loci (cis-eQTL) maps. Additional integration with chromatin-state maps for islets and other diverse tissue types revealed that cis-eQTLs for islet-specific genes are specifically and significantly enriched in islet stretch enhancers. High-resolution chromatin accessibility profiling using assay for transposase-accessible chromatin sequencing (ATAC-seq) in two islet samples enabled us to identify specific transcription factor (TF) footprints embedded in active regulatory elements, which are highly enriched for islet cis-eQTL. Aggregate allelic bias signatures in TF footprints enabled us de novo to reconstruct TF binding affinities genetically, which support the high-quality nature of the TF footprint predictions. Interestingly, we found that T2D GWAS loci were strikingly and specifically enriched in islet Regulatory Factor X (RFX) footprints. Remarkably, within and across independent loci, T2D risk alleles that overlap with RFX footprints uniformly disrupt the RFX motifs at high-information content positions. Together, these results suggest that common regulatory variations have shaped islet TF footprints and the transcriptome and that a confluent RFX regulatory grammar plays a significant role in the genetic component of T2D predisposition.
Collapse
|
46
|
Larsen HL, Grapin-Botton A. The molecular and morphogenetic basis of pancreas organogenesis. Semin Cell Dev Biol 2017; 66:51-68. [PMID: 28089869 DOI: 10.1016/j.semcdb.2017.01.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 01/08/2023]
Abstract
The pancreas is an essential endoderm-derived organ that ensures nutrient metabolism via its endocrine and exocrine functions. Here we review the essential processes governing the embryonic and early postnatal development of the pancreas discussing both the mechanisms and molecules controlling progenitor specification, expansion and differentiation. We elaborate on how these processes are orchestrated in space and coordinated with morphogenesis. We draw mainly from experiments conducted in the mouse model but also from investigations in other model organisms, complementing a recent comprehensive review of human pancreas development (Jennings et al., 2015) [1]. The understanding of pancreas development in model organisms provides a framework to interpret how human mutations lead to neonatal diabetes and may contribute to other forms of diabetes and to guide the production of desired pancreatic cell types from pluripotent stem cells for therapeutic purposes.
Collapse
Affiliation(s)
- Hjalte List Larsen
- DanStem, University of Copenhagen, 3 B Blegdamsvej, DK-2200 Copenhagen N, Denmark
| | - Anne Grapin-Botton
- DanStem, University of Copenhagen, 3 B Blegdamsvej, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
47
|
Martinez-Sanchez A, Rutter GA, Latreille M. MiRNAs in β-Cell Development, Identity, and Disease. Front Genet 2017; 7:226. [PMID: 28123396 PMCID: PMC5225124 DOI: 10.3389/fgene.2016.00226] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 12/21/2016] [Indexed: 12/22/2022] Open
Abstract
Pancreatic β-cells regulate glucose metabolism by secreting insulin, which in turn stimulates the utilization or storage of the sugar by peripheral tissues. Insulin insufficiency and a prolonged period of insulin resistance are usually the core components of type 2 diabetes (T2D). Although, decreased insulin levels in T2D have long been attributed to a decrease in β-cell function and/or mass, this model has recently been refined with the recognition that a loss of β-cell “identity” and dedifferentiation also contribute to the decline in insulin production. MicroRNAs (miRNAs) are key regulatory molecules that display tissue-specific expression patterns and maintain the differentiated state of somatic cells. During the past few years, great strides have been made in understanding how miRNA circuits impact β-cell identity. Here, we review current knowledge on the role of miRNAs in regulating the acquisition of the β-cell fate during development and in maintaining mature β-cell identity and function during stress situations such as obesity, pregnancy, aging, or diabetes. We also discuss how miRNA function could be harnessed to improve our ability to generate β-cells for replacement therapy for T2D.
Collapse
Affiliation(s)
- Aida Martinez-Sanchez
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London London, UK
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London London, UK
| | - Mathieu Latreille
- Cellular Identity and Metabolism Group, MRC London Institute of Medical SciencesLondon, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College LondonLondon, UK
| |
Collapse
|
48
|
Churchill AJ, Gutiérrez GD, Singer RA, Lorberbaum DS, Fischer KA, Sussel L. Genetic evidence that Nkx2.2 acts primarily downstream of Neurog3 in pancreatic endocrine lineage development. eLife 2017; 6:e20010. [PMID: 28071588 PMCID: PMC5224921 DOI: 10.7554/elife.20010] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 12/21/2016] [Indexed: 02/06/2023] Open
Abstract
Many pancreatic transcription factors that are essential for islet cell differentiation have been well characterized; however, because they are often expressed in several different cell populations, their functional hierarchy remains unclear. To parse out the spatiotemporal regulation of islet cell differentiation, we used a Neurog3-Cre allele to ablate Nkx2.2, one of the earliest and most broadly expressed islet transcription factors, specifically in the Neurog3+ endocrine progenitor lineage (Nkx2.2△endo). Remarkably, many essential components of the β cell transcriptional network that were down-regulated in the Nkx2.2KO mice, were maintained in the Nkx2.2△endo mice - yet the Nkx2.2△endo mice displayed defective β cell differentiation and recapitulated the Nkx2.2KO phenotype. This suggests that Nkx2.2 is not only required in the early pancreatic progenitors, but has additional essential activities within the endocrine progenitor population. Consistently, we demonstrate Nkx2.2 functions as an integral component of a modular regulatory program to correctly specify pancreatic islet cell fates.
Collapse
Affiliation(s)
- Angela J Churchill
- Naomi Berrie Diabetes Institute, Columbia University Medical School, New York, Columbia
- Department of Genetics and Development, Columbia University Medical School, New York, Columbia
- Genetics and Development Doctoral Program, Columbia University Medical School, New York, Columbia
| | - Giselle Dominguez Gutiérrez
- Naomi Berrie Diabetes Institute, Columbia University Medical School, New York, Columbia
- Department of Genetics and Development, Columbia University Medical School, New York, Columbia
- Nutritional and Metabolic Biology Doctoral Program, Columbia University Medical School, New York, Columbia
| | - Ruth A Singer
- Naomi Berrie Diabetes Institute, Columbia University Medical School, New York, Columbia
- Department of Genetics and Development, Columbia University Medical School, New York, Columbia
- The Integrated Graduate Program in Cellular, Molecular and Biomedical Studies, Columbia University Medical School, New York, Columbia
| | | | - Kevin A Fischer
- Barbara Davis Center, University of Colorado, Denver, United States
| | - Lori Sussel
- Naomi Berrie Diabetes Institute, Columbia University Medical School, New York, Columbia
- Department of Genetics and Development, Columbia University Medical School, New York, Columbia
- Genetics and Development Doctoral Program, Columbia University Medical School, New York, Columbia
- Nutritional and Metabolic Biology Doctoral Program, Columbia University Medical School, New York, Columbia
- The Integrated Graduate Program in Cellular, Molecular and Biomedical Studies, Columbia University Medical School, New York, Columbia
- Barbara Davis Center, University of Colorado, Denver, United States
| |
Collapse
|
49
|
Ediger BN, Lim HW, Juliana C, Groff DN, Williams LT, Dominguez G, Liu JH, Taylor BL, Walp ER, Kameswaran V, Yang J, Liu C, Hunter CS, Kaestner KH, Naji A, Li C, Sander M, Stein R, Sussel L, Won KJ, May CL, Stoffers DA. LIM domain-binding 1 maintains the terminally differentiated state of pancreatic β cells. J Clin Invest 2016; 127:215-229. [PMID: 27941246 DOI: 10.1172/jci88016] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 10/13/2016] [Indexed: 12/11/2022] Open
Abstract
The recognition of β cell dedifferentiation in type 2 diabetes raises the translational relevance of mechanisms that direct and maintain β cell identity. LIM domain-binding protein 1 (LDB1) nucleates multimeric transcriptional complexes and establishes promoter-enhancer looping, thereby directing fate assignment and maturation of progenitor populations. Many terminally differentiated endocrine cell types, however, remain enriched for LDB1, but its role is unknown. Here, we have demonstrated a requirement for LDB1 in maintaining the terminally differentiated status of pancreatic β cells. Inducible ablation of LDB1 in mature β cells impaired insulin secretion and glucose homeostasis. Transcriptomic analysis of LDB1-depleted β cells revealed the collapse of the terminally differentiated gene program, indicated by a loss of β cell identity genes and induction of the endocrine progenitor factor neurogenin 3 (NEUROG3). Lineage tracing confirmed that LDB1-depleted, insulin-negative β cells express NEUROG3 but do not adopt alternate endocrine cell fates. In primary mouse islets, LDB1 and its LIM homeodomain-binding partner islet 1 (ISL1) were coenriched at chromatin sites occupied by pancreatic and duodenal homeobox 1 (PDX1), NK6 homeobox 1 (NKX6.1), forkhead box A2 (FOXA2), and NK2 homeobox 2 (NKX2.2) - factors that co-occupy active enhancers in 3D chromatin domains in human islets. Indeed, LDB1 was enriched at active enhancers in human islets. Thus, LDB1 maintains the terminally differentiated state of β cells and is a component of active enhancers in both murine and human islets.
Collapse
|
50
|
Zhu Z, Li QV, Lee K, Rosen BP, González F, Soh CL, Huangfu D. Genome Editing of Lineage Determinants in Human Pluripotent Stem Cells Reveals Mechanisms of Pancreatic Development and Diabetes. Cell Stem Cell 2016; 18:755-768. [PMID: 27133796 PMCID: PMC4892994 DOI: 10.1016/j.stem.2016.03.015] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 02/11/2016] [Accepted: 03/23/2016] [Indexed: 01/12/2023]
Abstract
Directed differentiation of human pluripotent stem cells (hPSCs) into somatic counterparts is a valuable tool for studying disease. However, examination of developmental mechanisms in hPSCs remains challenging given complex multi-factorial actions at different stages. Here, we used TALEN and CRISPR/Cas-mediated gene editing and hPSC-directed differentiation for a systematic analysis of the roles of eight pancreatic transcription factors (PDX1, RFX6, PTF1A, GLIS3, MNX1, NGN3, HES1, and ARX). Our analysis not only verified conserved gene requirements between mice and humans but also revealed a number of previously unsuspected developmental mechanisms with implications for type 2 diabetes. These include a role of RFX6 in regulating the number of pancreatic progenitors, a haploinsufficient requirement for PDX1 in pancreatic β cell differentiation, and a potentially divergent role of NGN3 in humans and mice. Our findings support use of systematic genome editing in hPSCs as a strategy for understanding mechanisms underlying congenital disorders.
Collapse
Affiliation(s)
- Zengrong Zhu
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | - Qing V Li
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Kihyun Lee
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | - Bess P Rosen
- Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | - Federico González
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | - Chew-Li Soh
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | - Danwei Huangfu
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|