1
|
Song SJ, Wu GC, Yi L, Liu X, Jiang MM, Zhang XC, Yin ZF, Gu W, Ruan Y. Heat shock proteins in hypothermia: a review. Front Mol Biosci 2025; 12:1564364. [PMID: 40417060 PMCID: PMC12098039 DOI: 10.3389/fmolb.2025.1564364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/08/2025] [Indexed: 05/27/2025] Open
Abstract
Hypothermia is a serious condition marked by a significant decrease in core body temperature, posing considerable risks to biological systems. In response to thermal stress, cells activate protective mechanisms, often synthesizing heat shock proteins (HSPs). These highly conserved proteins are crucial in cellular stress responses, primarily functioning as chaperones. HSPs facilitate correct protein folding and prevent misfolding and aggregation, thereby protecting cellular integrity during adverse conditions. This paper explains how HSPs alleviate stress responses related to low body temperature, focusing on energy metabolism, apoptosis, cellular membrane fluidity and stability, and stress signaling pathways. By enhancing cellular repair mechanisms, HSPs help maintain cellular balance and prevent further harm to the organism. Ultimately, the review emphasizes the complex relationship between cellular stress responses and HSPs in hypothermia, highlighting their potential as therapeutic targets for enhancing resistance to the harmful effects of extreme cold exposure. A deeper understanding of these mechanisms could lead to strategies that improve survival rates in hypothermic patients. It may also reveal ways to modulate HSPs' activity for enhanced cellular protection.
Collapse
Affiliation(s)
- Shang-Jin Song
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai, China
- Xingcheng Special Duty Sanatorium of Joint Logistics Support Force, Xingcheng, Liaoning, China
| | - Guo-Cheng Wu
- Xingcheng Special Duty Sanatorium of Joint Logistics Support Force, Xingcheng, Liaoning, China
| | - Li Yi
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai, China
- PLA Naval Medical Center, Shanghai, China
| | - Xin Liu
- Xingcheng Special Duty Sanatorium of Joint Logistics Support Force, Xingcheng, Liaoning, China
| | - Ming-Min Jiang
- Xingcheng Special Duty Sanatorium of Joint Logistics Support Force, Xingcheng, Liaoning, China
| | - Xiao-Chen Zhang
- Xingcheng Special Duty Sanatorium of Joint Logistics Support Force, Xingcheng, Liaoning, China
| | - Zi-Fei Yin
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai, China
| | - Wei Gu
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai, China
| | - Yi Ruan
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai, China
- PLA Naval Medical Center, Shanghai, China
| |
Collapse
|
2
|
Adler J, Bernhem K, Parmryd I. Membrane topography and the overestimation of protein clustering in single molecule localisation microscopy - identification and correction. Commun Biol 2024; 7:791. [PMID: 38951588 PMCID: PMC11217499 DOI: 10.1038/s42003-024-06472-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024] Open
Abstract
According to single-molecule localisation microscopy almost all plasma membrane proteins are clustered. We demonstrate that clusters can arise from variations in membrane topography where the local density of a randomly distributed membrane molecule to a degree matches the variations in the local amount of membrane. Further, we demonstrate that this false clustering can be differentiated from genuine clustering by using a membrane marker to report on local variations in the amount of membrane. In dual colour live cell single molecule localisation microscopy using the membrane probe DiI alongside either the transferrin receptor or the GPI-anchored protein CD59, we found that pair correlation analysis reported both proteins and DiI as being clustered, as did its derivative pair correlation-photoactivation localisation microscopy and nearest neighbour analyses. After converting the localisations into images and using the DiI image to factor out topography variations, no CD59 clusters were visible, suggesting that the clustering reported by the other methods is an artefact. However, the TfR clusters persisted after topography variations were factored out. We demonstrate that membrane topography variations can make membrane molecules appear clustered and present a straightforward remedy suitable as the first step in the cluster analysis pipeline.
Collapse
Affiliation(s)
- Jeremy Adler
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kristoffer Bernhem
- Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, Stockholm, Sweden
| | - Ingela Parmryd
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
3
|
Mastrangelo R, Okada T, Ogura T, Ogura T, Baglioni P. Direct observation of the effects of chemical fixation in MNT-1 cells: A SE-ADM and Raman study. Proc Natl Acad Sci U S A 2023; 120:e2308088120. [PMID: 38091295 PMCID: PMC10743460 DOI: 10.1073/pnas.2308088120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/16/2023] [Indexed: 12/18/2023] Open
Abstract
Aldehydes fixation was accidentally discovered in the early 20th century and soon became a widely adopted practice in the histological field, due to an excellent staining enhancement in tissues imaging. However, the fixation process itself entails cell proteins denaturation and crosslinking. The possible presence of artifacts, that depends on the specific system under observation, must therefore be considered to avoid data misinterpretation. This contribution takes advantage of scanning electron assisted-dielectric microscopy (SE-ADM) and Raman 2D imaging to reveal the possible presence and the nature of artifacts in unstained, and paraformldehyde, PFA, fixed MNT-1 cells. The high resolution of the innovative SE-ADM technique allowed the identification of globular protein clusters in the cell cytoplasm, formed after protein denaturation and crosslinking. Concurrently, SE-ADM images showed a preferential melanosome adsorption on the cluster's outer surface. The micron-sized aggregates were discernible in Raman 2D images, as the melanosomes signal, extracted through 2D principal component analysis, unequivocally mapped their location and distribution within the cells, appearing randomly distributed in the cytoplasm. Protein clusters were not observed in living MNT-1 cells. In this case, mature melanosomes accumulate preferentially at the cell periphery and are more closely packed than in fixed cells. Our results show that, although PFA does not affect the melanin structure, it disrupts melanosome distribution within the cells. Proteins secondary structure, conversely, is partially lost, as shown by the Raman signals related to α-helix, β-sheets, and specific amino acids that significantly decrease after the PFA treatment.
Collapse
Affiliation(s)
- Rosangela Mastrangelo
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba305-8566, Japan
- NIKKOL GROUP Nikko Chemicals Co., Ltd., Tokyo174-0046, Japan
- Department of Chemistry and Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (Center for Colloid and Surface Science), University of Florence, FlorenceI-50019, Italy
| | - Tomoko Okada
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba305-8566, Japan
| | - Taku Ogura
- NIKKOL GROUP Nikko Chemicals Co., Ltd., Tokyo174-0046, Japan
| | - Toshihiko Ogura
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba305-8566, Japan
| | - Piero Baglioni
- Department of Chemistry and Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (Center for Colloid and Surface Science), University of Florence, FlorenceI-50019, Italy
| |
Collapse
|
4
|
Haack F, Köster T, Uhrmacher AM. Receptor/Raft Ratio Is a Determinant for LRP6 Phosphorylation and WNT/β-Catenin Signaling. Front Cell Dev Biol 2021; 9:706731. [PMID: 34485292 PMCID: PMC8416303 DOI: 10.3389/fcell.2021.706731] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/12/2021] [Indexed: 11/21/2022] Open
Abstract
Microdomains or lipid rafts greatly affect the distribution of proteins and peptides in the membrane and play a vital role in the formation and activation of receptor/protein complexes. A prominent example for the decisive impact of lipid rafts on signaling is LRP6, whose localization to the same lipid rafts domain as the kinase CK1γ is crucial for its successful phosphorylation and the subsequent activation of the signalosome, hence WNT/β-catenin signaling. However, according to various experimental measurements, approximately 25 to 35 % of the cell plasma membrane is covered by nanoscopic raft domains with diameters ranging between 10 to 200 nm. Extrapolating/Translating these values to the membrane of a “normal sized” cell yields a raft abundance, that, by far, outnumbers the membrane-associated pathway components of most individual signaling pathway, such as receptor and kinases. To analyze whether and how the quantitative ratio between receptor and rafts affects LRP6 phosphorylation and WNT/β-catenin pathway activation, we present a computational modeling study, that for the first time employs realistic raft numbers in a compartment-based pathway model. Our simulation experiments indicate, that for receptor/raft ratios smaller than 1, i.e., when the number of raft compartments clearly exceeds the number of pathway specific membrane proteins, we observe significant decrease in LRP6 phosphorylation and downstream pathway activity. Our results suggest that pathway specific targeting and sorting mechanism are required to significantly narrow down the receptor/raft ratio and to enable the formation of the LRP6 signalosome, hence signaling.
Collapse
Affiliation(s)
- Fiete Haack
- Modeling and Simulation Group, Institute for Visual and Analytic Computing, Institute of Electric Engineering and Computer Science, University of Rostock, Rostock, Germany
| | - Till Köster
- Modeling and Simulation Group, Institute for Visual and Analytic Computing, Institute of Electric Engineering and Computer Science, University of Rostock, Rostock, Germany
| | - Adelinde M Uhrmacher
- Modeling and Simulation Group, Institute for Visual and Analytic Computing, Institute of Electric Engineering and Computer Science, University of Rostock, Rostock, Germany
| |
Collapse
|
5
|
Jung Y, Wen L, Altman A, Ley K. CD45 pre-exclusion from the tips of T cell microvilli prior to antigen recognition. Nat Commun 2021; 12:3872. [PMID: 34162836 PMCID: PMC8222282 DOI: 10.1038/s41467-021-23792-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 05/11/2021] [Indexed: 12/18/2022] Open
Abstract
The tyrosine phosphatase CD45 is a major gatekeeper for restraining T cell activation. Its exclusion from the immunological synapse (IS) is crucial for T cell receptor (TCR) signal transduction. Here, we use expansion super-resolution microscopy to reveal that CD45 is mostly pre-excluded from the tips of microvilli (MV) on primary T cells prior to antigen encounter. This pre-exclusion is diminished by depleting cholesterol or by engineering the transmembrane domain of CD45 to increase its membrane integration length, but is independent of the CD45 extracellular domain. We further show that brief MV-mediated contacts can induce Ca2+ influx in mouse antigen-specific T cells engaged by antigen-pulsed antigen presenting cells (APC). We propose that the scarcity of CD45 phosphatase activity at the tips of MV enables or facilitates TCR triggering from brief T cell-APC contacts before formation of a stable IS, and that these MV-mediated contacts represent the earliest step in the initiation of a T cell adaptive immune response.
Collapse
Affiliation(s)
- Yunmin Jung
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, USA.
| | - Lai Wen
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Amnon Altman
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Klaus Ley
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
6
|
Pereira PM, Albrecht D, Culley S, Jacobs C, Marsh M, Mercer J, Henriques R. Fix Your Membrane Receptor Imaging: Actin Cytoskeleton and CD4 Membrane Organization Disruption by Chemical Fixation. Front Immunol 2019; 10:675. [PMID: 31024536 PMCID: PMC6460894 DOI: 10.3389/fimmu.2019.00675] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/12/2019] [Indexed: 12/25/2022] Open
Abstract
Single-molecule localization microscopy (SMLM) techniques allow near molecular scale resolution (~ 20 nm) as well as precise and robust analysis of protein organization at different scales. SMLM hardware, analytics and probes have been the focus of a variety of studies and are now commonly used in laboratories across the world. Protocol reliability and artifact identification are increasingly seen as important aspects of super-resolution microscopy. The reliability of these approaches thus requires in-depth evaluation so that biological findings are based on solid foundations. Here we explore how different fixation approaches that disrupt or preserve the actin cytoskeleton affect membrane protein organization. Using CD4 as a model, we show that fixation-mediated disruption of the actin cytoskeleton correlates with changes in CD4 membrane organization. We highlight how these artifacts are easy to overlook and how careful sample preparation is essential for extracting meaningful results from super-resolution microscopy.
Collapse
Affiliation(s)
- Pedro M. Pereira
- MRC-Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | - David Albrecht
- MRC-Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Siân Culley
- MRC-Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- Institute for the Physics of Living Systems, University College London, London, United Kingdom
| | - Caron Jacobs
- MRC-Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Mark Marsh
- MRC-Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Jason Mercer
- MRC-Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Ricardo Henriques
- MRC-Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- Institute for the Physics of Living Systems, University College London, London, United Kingdom
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| |
Collapse
|
7
|
Sharma N, Baek K, Shimokawa N, Takagi M. Effect of temperature on raft-dependent endocytic cluster formation during activation of Jurkat T cells by concanavalin A. J Biosci Bioeng 2018; 127:479-485. [PMID: 30355461 DOI: 10.1016/j.jbiosc.2018.09.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/18/2018] [Accepted: 09/21/2018] [Indexed: 01/28/2023]
Abstract
Temperature plays an important role in the immune response. Acclimatization occurs when there are changes in ambient temperature over a long period. In this study, we used the human leukemic Jurkat T cell line to study the effect of temperature on the immune system using concanavalin A (ConA), a plant-derived immunostimulant, as a trigger for T-cell activation. Previously, we have reported endocytic intracellular cluster formation during T-cell activation by ConA with the aid of rafts and polymerization of the cytoskeleton (actin and microtubules). Here, we investigated the effect of temperature on cluster formation (with the aid of three-dimensional images of the cells) and on the stability of rafts, actin, and microtubules. When the temperature was changed between 23°C and 37°C (physiological temperature), clusters could be observed throughout this temperature range. Raft structure was stabilized at lower temperatures but destabilized at higher temperatures. Actin was stable when the temperature was higher than 27°C. When actin was depolymerized, clustering was not observed at 37°C but could be observed at 23°C. There were no changes in microtubules within this temperature range. Thus, raft clustering may be associated with raft stability at lower temperatures (<27°C) and with actin at higher temperatures (≥27°C). Hence, we provided insight into the associations between temperature, rafts, actin, and microtubules in the immune response.
Collapse
Affiliation(s)
- Neha Sharma
- School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - KeangOK Baek
- School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Naofumi Shimokawa
- School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Masahiro Takagi
- School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.
| |
Collapse
|
8
|
Ueda A, Shima S, Murate K, Kikuchi K, Nagao R, Maeda T, Muto E, Niimi Y, Mizutani Y, Mutoh T. Anti-GM1 ganglioside antibodies modulate membrane-associated sphingomyelin metabolism by altering neutral sphingomyelinase activity. Mol Cell Neurosci 2018; 89:42-48. [PMID: 29601870 DOI: 10.1016/j.mcn.2018.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 01/24/2018] [Accepted: 03/25/2018] [Indexed: 11/24/2022] Open
Abstract
Previous studies have shown that patients with Guillain-Barré syndrome express autoantibodies against ganglioside GM1 (GM1), although its pathogenic significance for the development of the disease remains to be elucidated. nSMase2 is the best characterized neutral sphingomyelinase (nSMase) found in neuronal cells. Activation of this enzyme leads to ceramide production, which is a known second messenger of the cell-death program in neuronal cells. We have explored the effects of anti-GM1 antibodies on sphingomyelin metabolism of PC12 cells stably transfected with human trk cDNA (PCtrk cells) by determining their effects on nSMase2 activity. The data we present here strongly suggest that anti-GM1 caused a significant change in sphingomyelin content of the membrane fraction in PCtrk cells. Both nSMase2 activity and the level of nSMase2 protein were significantly decreased by anti-GM1 treatment of PCtrk cells, while acidic SMase activities remained unchanged. Our results indicate, for the first time, that anti-GM1 may produce profound impacts on lipid metabolism in neuronal cell membranes.
Collapse
Affiliation(s)
- Akihiro Ueda
- Department of Neurology, Fujita Health University School of Medicine, Aichi, Japan
| | - Sayuri Shima
- Department of Neurology, Fujita Health University School of Medicine, Aichi, Japan
| | - Kenitiroh Murate
- Department of Neurology, Fujita Health University School of Medicine, Aichi, Japan
| | - Kouichi Kikuchi
- Department of Neurology, Fujita Health University School of Medicine, Aichi, Japan
| | - Ryunosuke Nagao
- Department of Neurology, Fujita Health University School of Medicine, Aichi, Japan
| | - Toshiki Maeda
- Department of Neurology, Fujita Health University School of Medicine, Aichi, Japan
| | - Eri Muto
- Department of Neurology, Fujita Health University School of Medicine, Aichi, Japan
| | - Yoshiki Niimi
- Department of Neurology, Fujita Health University School of Medicine, Aichi, Japan
| | - Yasuaki Mizutani
- Department of Neurology, Fujita Health University School of Medicine, Aichi, Japan
| | - Tatsuro Mutoh
- Department of Neurology, Fujita Health University School of Medicine, Aichi, Japan.
| |
Collapse
|
9
|
Cornell CE, McCarthy NLC, Levental KR, Levental I, Brooks NJ, Keller SL. n-Alcohol Length Governs Shift in L o-L d Mixing Temperatures in Synthetic and Cell-Derived Membranes. Biophys J 2017; 113:1200-1211. [PMID: 28801104 PMCID: PMC5607138 DOI: 10.1016/j.bpj.2017.06.066] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/07/2017] [Accepted: 06/29/2017] [Indexed: 11/30/2022] Open
Abstract
A persistent challenge in membrane biophysics has been to quantitatively predict how membrane physical properties change upon addition of new amphiphiles (e.g., lipids, alcohols, peptides, or proteins) in order to assess whether the changes are large enough to plausibly result in biological ramifications. Because of their roles as general anesthetics, n-alcohols are perhaps the best-studied amphiphiles of this class. When n-alcohols are added to model and cell membranes, changes in membrane parameters tend to be modest. One striking exception is found in the large decrease in liquid-liquid miscibility transition temperatures (Tmix) observed when short-chain n-alcohols are incorporated into giant plasma membrane vesicles (GPMVs). Coexisting liquid-ordered and liquid-disordered phases are observed at temperatures below Tmix in GPMVs as well as in giant unilamellar vesicles (GUVs) composed of ternary mixtures of a lipid with a low melting temperature, a lipid with a high melting temperature, and cholesterol. Here, we find that when GUVs of canonical ternary mixtures are formed in aqueous solutions of short-chain n-alcohols (n ≤ 10), Tmix increases relative to GUVs in water. This shift is in the opposite direction from that reported for cell-derived GPMVs. The increase in Tmix is robust across GUVs of several types of lipids, ratios of lipids, types of short-chain n-alcohols, and concentrations of n-alcohols. However, as chain lengths of n-alcohols increase, nonmonotonic shifts in Tmix are observed. Alcohols with chain lengths of 10-14 carbons decrease Tmix in ternary GUVs of dioleoyl-PC/dipalmitoyl-PC/cholesterol, whereas 16 carbons increase Tmix again. Gray et al. observed a similar influence of the length of n-alcohols on the direction of the shift in Tmix. These results are consistent with a scenario in which the relative partitioning of n-alcohols between liquid-ordered and liquid-disordered phases evolves as the chain length of the n-alcohol increases.
Collapse
Affiliation(s)
- Caitlin E Cornell
- University of Washington, Department of Chemistry, Seattle, Washington
| | | | - Kandice R Levental
- Department of Integrative Biology and Pharmacology, McGovern Medical School at The University of Texas Medical Center, Houston, Texas
| | - Ilya Levental
- Department of Integrative Biology and Pharmacology, McGovern Medical School at The University of Texas Medical Center, Houston, Texas
| | - Nicholas J Brooks
- Department of Chemistry, Imperial College London, London, United Kingdom
| | - Sarah L Keller
- University of Washington, Department of Chemistry, Seattle, Washington.
| |
Collapse
|
10
|
Fujimoto T, Parmryd I. Interleaflet Coupling, Pinning, and Leaflet Asymmetry-Major Players in Plasma Membrane Nanodomain Formation. Front Cell Dev Biol 2017; 4:155. [PMID: 28119914 PMCID: PMC5222840 DOI: 10.3389/fcell.2016.00155] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 12/27/2016] [Indexed: 01/26/2023] Open
Abstract
The plasma membrane has a highly asymmetric distribution of lipids and contains dynamic nanodomains many of which are liquid entities surrounded by a second, slightly different, liquid environment. Contributing to the dynamics is a continuous repartitioning of components between the two types of liquids and transient links between lipids and proteins, both to extracellular matrix and cytoplasmic components, that temporarily pin membrane constituents. This make plasma membrane nanodomains exceptionally challenging to study and much of what is known about membrane domains has been deduced from studies on model membranes at equilibrium. However, living cells are by definition not at equilibrium and lipids are distributed asymmetrically with inositol phospholipids, phosphatidylethanolamines and phosphatidylserines confined mostly to the inner leaflet and glyco- and sphingolipids to the outer leaflet. Moreover, each phospholipid group encompasses a wealth of species with different acyl chain combinations whose lateral distribution is heterogeneous. It is becoming increasingly clear that asymmetry and pinning play important roles in plasma membrane nanodomain formation and coupling between the two lipid monolayers. How asymmetry, pinning, and interdigitation contribute to the plasma membrane organization is only beginning to be unraveled and here we discuss their roles and interdependence.
Collapse
Affiliation(s)
- Toyoshi Fujimoto
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine Nagoya, Japan
| | - Ingela Parmryd
- Science for Life Laboratory, Medical Cell Biology, Uppsala University Uppsala, Sweden
| |
Collapse
|
11
|
Thompson LA, Romano TA. Pressure Induced Changes in Adaptive Immune Function in Belugas ( Delphinapterus leucas); Implications for Dive Physiology and Health. Front Physiol 2016; 7:442. [PMID: 27746745 PMCID: PMC5043014 DOI: 10.3389/fphys.2016.00442] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/16/2016] [Indexed: 12/18/2022] Open
Abstract
Increased pressure, associated with diving, can alter cell function through several mechanisms and has been shown to impact immune functions performed by peripheral blood mononuclear cells (PBMC) in humans. While marine mammals possess specific adaptations which protect them from dive related injury, it is unknown how their immune system is adapted to the challenges associated with diving. The purpose of this study was to measure PBMC activation (IL2R expression) and Concanavalin A induced lymphocyte proliferation (BrdU incorporation) in belugas following in vitro pressure exposures during baseline, Out of Water Examination (OWE) and capture/release conditions. Beluga blood samples (n = 4) were obtained from animals at the Mystic Aquarium and from free ranging animals in Alaska (n = 9). Human blood samples (n = 4) (Biological Specialty Corporation) were run for comparison. In vivo catecholamines and cortisol were measured in belugas to characterize the neuroendocrine response. Comparison of cellular responses between controls and pressure exposed cells, between conditions in belugas, between belugas and humans as well as between dive profiles, were run using mixed generalized linear models (α = 0.05). Cortisol was significantly higher in Bristol Bay belugas and OWE samples as compared with baseline for aquarium animals. Both IL2R expression and proliferation displayed significant pressure induced changes, and these responses varied between conditions in belugas. Both belugas and humans displayed increased IL2R expression, while lymphocyte proliferation decreased for aquarium animals and increased for humans and Bristol Bay belugas. Results suggest beluga PBMC function is altered during diving and changes may represent dive adaptation as the response differs from humans, a non-dive adapted mammal. In addition, characteristics of a dive (i.e., duration, depth) as well as neuroendocrine activity can alter the response of beluga cells, potentially impacting the ability of animals to fight infection or avoid dive related pathologies.
Collapse
Affiliation(s)
- Laura A Thompson
- Research and Veterinary Services, Mystic Aquarium, A Division of Sea Research Foundation Inc. Mystic, CT, USA
| | - Tracy A Romano
- Research and Veterinary Services, Mystic Aquarium, A Division of Sea Research Foundation Inc. Mystic, CT, USA
| |
Collapse
|
12
|
Bernardino de la Serna J, Schütz GJ, Eggeling C, Cebecauer M. There Is No Simple Model of the Plasma Membrane Organization. Front Cell Dev Biol 2016; 4:106. [PMID: 27747212 PMCID: PMC5040727 DOI: 10.3389/fcell.2016.00106] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/14/2016] [Indexed: 12/29/2022] Open
Abstract
Ever since technologies enabled the characterization of eukaryotic plasma membranes, heterogeneities in the distributions of its constituents were observed. Over the years this led to the proposal of various models describing the plasma membrane organization such as lipid shells, picket-and-fences, lipid rafts, or protein islands, as addressed in numerous publications and reviews. Instead of emphasizing on one model we in this review give a brief overview over current models and highlight how current experimental work in one or the other way do not support the existence of a single overarching model. Instead, we highlight the vast variety of membrane properties and components, their influences and impacts. We believe that highlighting such controversial discoveries will stimulate unbiased research on plasma membrane organization and functionality, leading to a better understanding of this essential cellular structure.
Collapse
Affiliation(s)
- Jorge Bernardino de la Serna
- Science and Technology Facilities Council, Rutherford Appleton Laboratory, Central Laser Facility, Research Complex at Harwell Harwell, UK
| | - Gerhard J Schütz
- Institute of Applied Physics, Technische Universität Wien Wien, Austria
| | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford Headley Way, UK
| | - Marek Cebecauer
- Department of Biophysical Chemistry, J.Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences Prague, Czech Republic
| |
Collapse
|
13
|
Stanly TA, Fritzsche M, Banerji S, García E, Bernardino de la Serna J, Jackson DG, Eggeling C. Critical importance of appropriate fixation conditions for faithful imaging of receptor microclusters. Biol Open 2016; 5:1343-50. [PMID: 27464671 PMCID: PMC5051640 DOI: 10.1242/bio.019943] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Receptor clustering is known to trigger signalling events that contribute to critical changes in cellular functions. Faithful imaging of such clusters by means of fluorescence microscopy relies on the application of adequate cell fixation methods prior to immunolabelling in order to avoid artefactual redistribution by the antibodies themselves. Previous work has highlighted the inadequacy of fixation with paraformaldehyde (PFA) alone for efficient immobilisation of membrane-associated molecules, and the advantages of fixation with PFA in combination with glutaraldehyde (GA). Using fluorescence microscopy, we here highlight how inadequate fixation can lead to the formation of artefactual clustering of receptors in lymphatic endothelial cells, focussing on the transmembrane hyaluronan receptors LYVE-1 and CD44, and the homotypic adhesion molecule CD31, each of which displays their native diffuse surface distribution pattern only when visualised with the right fixation techniques, i.e. PFA/GA in combination. Fluorescence recovery after photobleaching (FRAP) confirms that the artefactual receptor clusters are indeed introduced by residual mobility. In contrast, we observed full immobilisation of membrane proteins in cells that were fixed and then subsequently permeabilised, irrespective of whether the fixative was PFA or PFA/GA in combination. Our study underlines the importance of choosing appropriate sample preparation protocols for preserving authentic receptor organisation in advanced fluorescence microscopy. Summary: Commonly used fixation protocols during immunolabelling can result in artefactual protein distribution. We highlight the artefacts in images and provide fixation conditions for studying membrane receptor organisation.
Collapse
Affiliation(s)
- Tess A Stanly
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Marco Fritzsche
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Suneale Banerji
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Esther García
- Wolfson Imaging Centre, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Jorge Bernardino de la Serna
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK Science & Technology Facilities Council, Rutherford Appleton Laboratory, Central Laser Facility, Research Complex at Harwell, Harwell-Oxford Campus, Oxford OX11 0FA, UK
| | - David G Jackson
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK Wolfson Imaging Centre, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| |
Collapse
|
14
|
Villar VAM, Cuevas S, Zheng X, Jose PA. Localization and signaling of GPCRs in lipid rafts. Methods Cell Biol 2016; 132:3-23. [DOI: 10.1016/bs.mcb.2015.11.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
15
|
Fujimoto T, Parmryd I. Interleaflet Coupling, Pinning, and Leaflet Asymmetry-Major Players in Plasma Membrane Nanodomain Formation. Front Cell Dev Biol 2016. [PMID: 28119914 DOI: 10.3389/fcell.2016.0015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
The plasma membrane has a highly asymmetric distribution of lipids and contains dynamic nanodomains many of which are liquid entities surrounded by a second, slightly different, liquid environment. Contributing to the dynamics is a continuous repartitioning of components between the two types of liquids and transient links between lipids and proteins, both to extracellular matrix and cytoplasmic components, that temporarily pin membrane constituents. This make plasma membrane nanodomains exceptionally challenging to study and much of what is known about membrane domains has been deduced from studies on model membranes at equilibrium. However, living cells are by definition not at equilibrium and lipids are distributed asymmetrically with inositol phospholipids, phosphatidylethanolamines and phosphatidylserines confined mostly to the inner leaflet and glyco- and sphingolipids to the outer leaflet. Moreover, each phospholipid group encompasses a wealth of species with different acyl chain combinations whose lateral distribution is heterogeneous. It is becoming increasingly clear that asymmetry and pinning play important roles in plasma membrane nanodomain formation and coupling between the two lipid monolayers. How asymmetry, pinning, and interdigitation contribute to the plasma membrane organization is only beginning to be unraveled and here we discuss their roles and interdependence.
Collapse
Affiliation(s)
- Toyoshi Fujimoto
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine Nagoya, Japan
| | - Ingela Parmryd
- Science for Life Laboratory, Medical Cell Biology, Uppsala University Uppsala, Sweden
| |
Collapse
|
16
|
Abstract
Membrane nanodomains are dynamic liquid entities surrounded by another type of dynamic liquid. Diffusion can take place inside, around and in and out of the domains, and membrane components therefore continuously shift between domains and their surroundings. In the plasma membrane, there is the further complexity of links between membrane lipids and proteins both to the extracellular matrix and to intracellular proteins such as actin filaments. In addition, new membrane components are continuously delivered and old ones removed. On top of this, cells move. Taking all of this into account imposes great methodological challenges, and in the present chapter we discuss some methods that are currently used for membrane nanodomain studies, what information they can provide and their weaknesses.
Collapse
|
17
|
Abstract
Plasma membrane dynamics are an important ruler of cellular activity, particularly through the interaction and diffusion dynamics of membrane-embedded proteins and lipids. FCS (fluorescence correlation spectroscopy) on an optical (confocal) microscope is a popular tool for investigating such dynamics. Unfortunately, its full applicability is constrained by the limited spatial resolution of a conventional optical microscope. The present chapter depicts the combination of optical super-resolution STED (stimulated emission depletion) microscopy with FCS, and why it is an important tool for investigating molecular membrane dynamics in living cells. Compared with conventional FCS, the STED-FCS approach demonstrates an improved possibility to distinguish free from anomalous molecular diffusion, and thus to give new insights into lipid-protein interactions and the traditional lipid 'raft' theory.
Collapse
|
18
|
Abstract
The organization of the T-cell's plasma membrane continues to nourish the curiosity of immunologists, cell biologists and biophysicists. The main reason is the biological and biomedical interest to understand the workings of the cell-cell communication network activated by T-cells during an immune response. The molecular armamentarium of the T-cell plasma membrane helps to identify with high sensitivity, specificity and rapidity antigens from invading microbial pathogens and prepare adequate countermeasures to fend them off, while protecting from attacks against our normal tissues. Many T-cell membrane proteins act as receptors to carry out and finely tune these complex tasks. However, the TCR (T-cell receptor) holds a decisive hegemony for its crucial contribution in steering T-cell function and fate. An emerging notion is that TCR proximal signalling occurs at submicrometre-scale membrane domains. In the present chapter, we discuss the current knowledge on the TCR structure and the associated signal transduction machinery and how the notion of membrane nanodomains has decisively contributed to further understand the molecular basis of T-cell activation.
Collapse
|
19
|
Clausen MP, Sezgin E, Bernardino de la Serna J, Waithe D, Lagerholm BC, Eggeling C. A straightforward approach for gated STED-FCS to investigate lipid membrane dynamics. Methods 2015; 88:67-75. [PMID: 26123184 PMCID: PMC4641872 DOI: 10.1016/j.ymeth.2015.06.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/29/2015] [Accepted: 06/24/2015] [Indexed: 11/06/2022] Open
Abstract
Recent years have seen the development of multiple technologies to investigate, with great spatial and temporal resolution, the dynamics of lipids in cellular and model membranes. One of these approaches is the combination of far-field super-resolution stimulated-emission-depletion (STED) microscopy with fluorescence correlation spectroscopy (FCS). STED-FCS combines the diffraction-unlimited spatial resolution of STED microscopy with the statistical accuracy of FCS to determine sub-millisecond-fast molecular dynamics with single-molecule sensitivity. A unique advantage of STED-FCS is that the observation spot for the FCS data recordings can be tuned to sub-diffraction scales, i.e. <200 nm in diameter, in a gradual manner to investigate fast diffusion of membrane-incorporated labelled entities. Unfortunately, so far the STED-FCS technology has mostly been applied on a few custom-built setups optimised for far-red fluorescent emitters. Here, we summarise the basics of the STED-FCS technology and highlight how it can give novel details into molecular diffusion modes. Most importantly, we present a straightforward way for performing STED-FCS measurements on an unmodified turnkey commercial system using a time-gated detection scheme. Further, we have evaluated the STED-FCS performance of different commonly used green emitting fluorescent dyes applying freely available, custom-written analysis software.
Collapse
Affiliation(s)
- Mathias P Clausen
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, United Kingdom
| | - Erdinc Sezgin
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, United Kingdom
| | - Jorge Bernardino de la Serna
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, United Kingdom
| | - Dominic Waithe
- Wolfson Imaging Centre, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, United Kingdom
| | - B Christoffer Lagerholm
- Wolfson Imaging Centre, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, United Kingdom
| | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, United Kingdom; Wolfson Imaging Centre, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, United Kingdom.
| |
Collapse
|
20
|
Dinic J, Riehl A, Adler J, Parmryd I. The T cell receptor resides in ordered plasma membrane nanodomains that aggregate upon patching of the receptor. Sci Rep 2015; 5:10082. [PMID: 25955440 PMCID: PMC5386217 DOI: 10.1038/srep10082] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 03/27/2015] [Indexed: 01/17/2023] Open
Abstract
Two related models for T cell signalling initiation suggest either that T cell receptor (TCR) engagement leads to its recruitment to ordered membrane domains, often referred to as lipid rafts, where signalling molecules are enriched or that ordered TCR-containing membrane nanodomains coalesce upon TCR engagement. That ordered domains form upon TCR engagement, as they do upon lipid raft marker patching, has not been considered. The target of this study was to differentiate between those three options. Plasma membrane order was followed in live T cells at 37 °C using laurdan to report on lipid packing. Patching of the TCR that elicits a signalling response resulted in aggregation, not formation, of ordered plasma membrane domains in both Jurkat and primary T cells. The TCR colocalised with actin filaments at the plasma membrane in unstimulated Jurkat T cells, consistent with it being localised to ordered membrane domains. The colocalisation was most prominent in cells in G1 phase when the cells are ready to commit to proliferation. At other cell cycle phases the TCR was mainly found at perinuclear membranes. Our study suggests that the TCR resides in ordered plasma membrane domains that are linked to actin filaments and aggregate upon TCR engagement.
Collapse
Affiliation(s)
- Jelena Dinic
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, 751 23 Uppsala, Sweden
| | - Astrid Riehl
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, 751 23 Uppsala, Sweden
| | - Jeremy Adler
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, 751 23 Uppsala, Sweden
| | - Ingela Parmryd
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, 751 23 Uppsala, Sweden
| |
Collapse
|
21
|
Ji Q, Salomon AR. Wide-scale quantitative phosphoproteomic analysis reveals that cold treatment of T cells closely mimics soluble antibody stimulation. J Proteome Res 2015; 14:2082-9. [PMID: 25839225 DOI: 10.1021/pr501172u] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The activation of T lymphocytes through antigen-mediated T cell receptor (TCR) clustering is vital in regulating the adaptive immune response. Although T cell receptor signaling has been extensively studied, the fundamental mechanisms for signal initiation are not fully understood. Reduced temperatures have initiated some of the hallmarks of TCR signaling, such as increased phosphorylation and activation on ERK and calcium release from the endoplasmic reticulum, as well as coalesced the T cell membrane microdomains. The precise mechanism of the TCR signaling initiation due to temperature change remains obscure. One critical question is whether the signaling initiated by the cold treatment of T cells differs from the signaling initiated by the cross-linking of the T cell receptor. To address this uncertainty, we performed a wide-scale, quantitative mass-spectrometry-based phosphoproteomic analysis on T cells stimulated either by temperature shifts or through the cross-linking of the TCR. Careful statistical comparisons between the two stimulations revealed a striking level of identity among the subset of 339 sites that changed significantly with both stimulations. This study demonstrates for the first time, in unprecedented detail, that T cell cold treatment was sufficient to initiate signaling patterns that were nearly identical to those of soluble antibody stimulation, shedding new light on the mechanism of activation of these critically important immune cells.
Collapse
Affiliation(s)
- Qinqin Ji
- †Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Arthur R Salomon
- †Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States.,‡Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02903, United States
| |
Collapse
|
22
|
AFM of the Ultrastructural and Mechanical Properties of Lipid-Raft-Disrupted and/or Cold-Treated Endothelial Cells. J Membr Biol 2014; 247:189-200. [DOI: 10.1007/s00232-013-9624-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 12/26/2013] [Indexed: 01/08/2023]
|
23
|
Owen DM, Gaus K. Imaging lipid domains in cell membranes: the advent of super-resolution fluorescence microscopy. FRONTIERS IN PLANT SCIENCE 2013; 4:503. [PMID: 24376453 PMCID: PMC3859905 DOI: 10.3389/fpls.2013.00503] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 11/24/2013] [Indexed: 05/08/2023]
Abstract
The lipid bilayer of model membranes, liposomes reconstituted from cell lipids, and plasma membrane vesicles and spheres can separate into two distinct liquid phases to yield lipid domains with liquid-ordered and liquid-disordered properties. These observations are the basis of the lipid raft hypothesis that postulates the existence of cholesterol-enriched ordered-phase lipid domains in cell membranes that could regulate protein mobility, localization and interaction. Here we review the evidence that nano-scaled lipid complexes and meso-scaled lipid domains exist in cell membranes and how new fluorescence microscopy techniques that overcome the diffraction limit provide new insights into lipid organization in cell membranes.
Collapse
Affiliation(s)
- Dylan M. Owen
- Department of Physics and Randall Division of Cell and Molecular Biophysics, King’s College LondonLondon, UK
| | - Katharina Gaus
- Centre for Vascular Research and Australian Centre for Nanomedicine, University of New South WalesSydney, NSW, Australia
- *Correspondence: Katharina Gaus, Centre for Vascular Research, University of New South Wales, Sydney, NSW 2052, Australia e-mail:
| |
Collapse
|
24
|
Hovanyecz P, Guibert E, Pellegrino J, Rodriguez J, Sigot V. Extended cold storage of cultured hepatocytes impairs endocytic uptake during normothermic rewarming. Cryobiology 2013; 66:112-20. [DOI: 10.1016/j.cryobiol.2012.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/23/2012] [Accepted: 12/15/2012] [Indexed: 12/27/2022]
|
25
|
Dinic J, Ashrafzadeh P, Parmryd I. Actin filaments attachment at the plasma membrane in live cells cause the formation of ordered lipid domains. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:1102-11. [DOI: 10.1016/j.bbamem.2012.12.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Revised: 12/03/2012] [Accepted: 12/04/2012] [Indexed: 11/29/2022]
|
26
|
Bastos AE, Scolari S, Stöckl M, de Almeida RF. Applications of Fluorescence Lifetime Spectroscopy and Imaging to Lipid Domains In Vivo. Methods Enzymol 2012; 504:57-81. [DOI: 10.1016/b978-0-12-391857-4.00003-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
Owen DM, Oddos S, Kumar S, Davis DM, Neil MA, French PM, Dustin ML, Magee AI, Cebecauer M. High plasma membrane lipid order imaged at the immunological synapse periphery in live T cells. Mol Membr Biol 2010; 27:178-89. [PMID: 20540668 PMCID: PMC3870023 DOI: 10.3109/09687688.2010.495353] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cholesterol- and glycosphingolipid-enriched membrane lipid microdomains, frequently called lipid rafts, are thought to play an important role in the spatial and temporal organization of immunological synapses. Higher ordering of lipid acyl chains was suggested for these entities and imaging of membrane order in living cells during activation can therefore help to understand the mechanisms responsible for the supramolecular organization of molecules involved in the activation of T cells. Here, we employ the phase-sensitive membrane dye di-4-ANEPPDHQ together with a variety of spectrally-resolved microscopy techniques, including 2-channel ratiometric TIRF microscopy and fluorescence lifetime imaging, to characterize membrane order at the T cell immunological synapse at high spatial and temporal resolution in live cells at physiological temperature. We find that higher membrane order resides at the immunological synapse periphery where proximal signalling through the immunoreceptors and accessory proteins in microclusters has previously been shown to take place. The observed spatial patterning of membrane order in the immunological synapse depends on active receptor signalling.
Collapse
Affiliation(s)
- Dylan M. Owen
- Chemical Biology Centre, Imperial College, London, UK
| | | | - Sunil Kumar
- Chemical Biology Centre, Imperial College, London, UK
| | - Daniel M. Davis
- Division of Cell and Molecular Biology, Imperial College, London, UK
| | | | | | - Michael L. Dustin
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, USA
| | | | - Marek Cebecauer
- National Heart and Lung Institute, Imperial College, London, UK
| |
Collapse
|
28
|
Sphingolipid topology and the dynamic organization and function of membrane proteins. FEBS Lett 2009; 584:1800-5. [DOI: 10.1016/j.febslet.2009.10.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 10/09/2009] [Indexed: 02/08/2023]
|
29
|
Chen Y, Qin J, Cai J, Chen ZW. Cold induces micro- and nano-scale reorganization of lipid raft markers at mounds of T-cell membrane fluctuations. PLoS One 2009; 4:e5386. [PMID: 19404395 PMCID: PMC2671402 DOI: 10.1371/journal.pone.0005386] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Accepted: 03/23/2009] [Indexed: 02/06/2023] Open
Abstract
Whether and how cold causes changes in cell-membrane or lipid rafts remain poorly characterized. Using the NSOM/QD and confocal imaging systems, we found that cold caused microscale redistribution of lipid raft markers, GM1 for lipid and CD59 for protein, from the peripheral part of microdomains to the central part on Jurkat T cells, and that cold also induced the nanoscale size-enlargement (1/3- to 2/3-fold) of the nanoclusters of lipid raft markers and even the colocalization of GM1 and CD59 nanoclusters. These findings indicate cold-induced lateral rearrangement/coalescence of raft-related membrane heterogeneity. The cold-induced re-distribution of lipid raft markers under a nearly-natural condition provide clues for their alternations, and help to propose a model in which raft lipids associate themselves or interact with protein components to generate functional membrane heterogeneity in response to stimulus. The data also underscore the possible cold-induced artifacts in early-described cold-related experiments and the detergent-resistance-based analyses of lipid rafts at 4°C, and provide a biophysical explanation for recently-reported cold-induced activation of signaling pathways in T cells. Importantly, our fluorescence-topographic NSOM imaging demonstrated that GM1/CD59 raft markers distributed and re-distributed at mounds but not depressions of T-cell membrane fluctuations. Such mound-top distribution of lipid raft markers or lipid rafts provides spatial advantage for lipid rafts or contact molecules interacting readily with neighboring cells or free molecules.
Collapse
Affiliation(s)
- Yong Chen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi, China
| | - Jie Qin
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Jiye Cai
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- Department of Chemistry, Jinan University, Guangzhou, Guangdong, China
| | - Zheng W. Chen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
30
|
Szymańska E, Korzeniowski M, Raynal P, Sobota A, Kwiatkowska K. Contribution of PIP-5 kinase Iα to raft-based FcγRIIA signaling. Exp Cell Res 2009; 315:981-95. [DOI: 10.1016/j.yexcr.2009.01.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 01/23/2009] [Accepted: 01/23/2009] [Indexed: 01/18/2023]
|
31
|
Abstract
The immune response to cancer has been long recognized, including both innate and adaptive responses, showing that the immune system can recognize protein products of genetic and epigenetic changes in transformed cells. The accumulation of antigen-specific T cells within the tumor, the draining lymph node, and the circulation, either in newly diagnosed patients or resultant from experimental immunotherapy, proves that tumors produce antigens and that priming occurs. Unfortunately, just as obviously, tumors grow, implying that anti-tumor immune responses are either not sufficiently vigorous to eliminate the cancer or that anti-tumor immunity is suppressed. Both possibilities are supported by current data. In experimental animal models of cancer and also in patients, systemic immunity is usually not dramatically suppressed, because tumor-bearing animals and patients develop T-cell-dependent immune responses to microbes and to either model antigens or experimental cancer vaccines. However, inhibition of specific anti-tumor immunity is common, and several possible explanations of tolerance to tumor antigens or tumor-induced immunesuppression have been proposed. Inhibition of effective anti-tumor immunity results from the tumor or the host response to tumor growth, inhibiting the activation, differentiation, or function of anti-tumor immune cells. As a consequence, anti-tumor T cells cannot respond productively to developmental, targeting, or activation cues. While able to enhance the number and phenotype of anti-tumor T cells, the modest success of immunotherapy has shown the necessity to attempt to reverse tolerance in anti-tumor T cells, and the vanguard of experimental therapy now focuses on vaccination in combination with blockade of immunosuppressive mechanisms. This review discusses several potential mechanisms by which anti-tumor T cells may be inhibited in function.
Collapse
Affiliation(s)
- Alan B Frey
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA.
| | | |
Collapse
|
32
|
Lasserre R, Guo XJ, Conchonaud F, Hamon Y, Hawchar O, Bernard AM, Soudja SM, Lenne PF, Rigneault H, Olive D, Bismuth G, Nunès JA, Payrastre B, Marguet D, He HT. Raft nanodomains contribute to Akt/PKB plasma membrane recruitment and activation. Nat Chem Biol 2008; 4:538-47. [PMID: 18641634 DOI: 10.1038/nchembio.103] [Citation(s) in RCA: 233] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Accepted: 06/27/2008] [Indexed: 01/14/2023]
Abstract
Membrane rafts are thought to be sphingolipid- and cholesterol-dependent lateral assemblies involved in diverse cellular functions. Their biological roles and even their existence, however, remain controversial. Using an original fluorescence correlation spectroscopy strategy that recently enabled us to identify nanoscale membrane organizations in live cells, we report here that highly dynamic nanodomains exist in both the outer and inner leaflets of the plasma membrane. Through specific inhibition of biosynthesis, we show that sphingolipids and cholesterol are essential and act in concert for formation of nanodomains, thus corroborating their raft nature. Moreover, we find that nanodomains play a crucial role in triggering the phosphatidylinositol-3 kinase/Akt signaling pathway, by facilitating Akt recruitment and activation upon phosphatidylinositol-3,4,5-triphosphate accumulation in the plasma membrane. Thus, through direct monitoring and controlled alterations of rafts in living cells, we demonstrate that rafts are critically involved in the activation of a signaling axis that is essential for cell physiology.
Collapse
Affiliation(s)
- Rémi Lasserre
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Parc scientifique de Luminy, Case 906, F-13288 Marseille Cedex 09, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Mahammad S, Parmryd I. Cholesterol homeostasis in T cells. Methyl-beta-cyclodextrin treatment results in equal loss of cholesterol from Triton X-100 soluble and insoluble fractions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1251-8. [PMID: 18373974 DOI: 10.1016/j.bbamem.2008.02.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 02/05/2008] [Accepted: 02/25/2008] [Indexed: 01/17/2023]
Abstract
Methyl-beta-cyclodextrin (MBCD) is frequently used to acutely deplete cells of cholesterol. A widespread assumption is that MBCD preferentially targets cholesterol in lipid rafts and that sensitivity to MBCD is proof of lipid raft involvement in a cellular process. To analyse any MBCD preference systematically, progressive cholesterol depletion of Jurkat T cells was performed using MBCD and [3H]-cholesterol. It was found that at 37 degrees C, MBCD extracts similar proportions of cholesterol from the Triton X-100 resistant (lipid raft enriched) as it does from other cellular fractions and that the cells rapidly reestablish the relative differences in cholesterol concentration between different compartments. Moreover, cells restore the cholesterol level in the plasma membrane by mobilising cholesterol from intracellular cholesterol stores. Interestingly, mere incubation at 0 degrees C caused a loss of plasma membrane cholesterol with a concomitant increase in cholesteryl esters and adiposomes. Moreover, only 35% of total cholesterol could be extracted by MBCD at 0 degrees C and was accompanied by a complete loss of plasma membrane and endocytotic recycling centre filipin staining. This study clearly shows that MBCD does not specifically extract cholesterol from any cellular fraction, that cholesterol redistributes upon temperature changes and that intracellular cholesterol stores can be used to replenish plasma membrane cholesterol.
Collapse
Affiliation(s)
- Saleemulla Mahammad
- Department of Cell Biology, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | | |
Collapse
|
34
|
Lebduska P, Korb J, Tůmová M, Heneberg P, Dráber P. Topography of signaling molecules as detected by electron microscopy on plasma membrane sheets isolated from non-adherent mast cells. J Immunol Methods 2007; 328:139-51. [PMID: 17900607 DOI: 10.1016/j.jim.2007.08.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 08/16/2007] [Accepted: 08/29/2007] [Indexed: 01/03/2023]
Abstract
Immunolabeling of isolated plasma membrane (PM) sheets combined with high-resolution electron microscopy is a powerful technique for understanding the topography of PM-bound signaling molecules. However, this technique has been mostly confined to analysis of membrane sheets from adherent cells. Here we present a rapid, simple and versatile method for isolation of PM sheets from non-adherent cells, and show its use for examination of the topography of Fcepsilon receptor I (FcepsilonRI) and transmembrane adaptors, LAT (linker for activation of T cells) and NTAL (non-T cell activation linker), in murine bone marrow-derived mast cells (BMMC). The data were compared with those obtained from widely used but tumor-derived rat basophilic leukemia (RBL) cells. In non-activated cells, FcepsilonRI was distributed either individually or in small clusters of comparable size in both cell types. In multivalent antigen-activated BMMC as well as RBL cells, FcepsilonRI was internalized to a similar extent, but, strikingly, internalization in BMMC was not preceded by formation of large (~200 nm) aggregates of FcepsilonRI, described previously in activated RBL cells. On the other hand, downstream adaptor proteins, LAT and NTAL, were localized in independent domains in both BMMC and RBL cells before and after FcepsilonRI triggering. The combined data demonstrate unexpected properties of FcepsilonRI signaling assemblies in BMMC and emphasize the importance of studies of PM sheets isolated from non-tumor cells.
Collapse
Affiliation(s)
- Pavel Lebduska
- Department of Signal Transduction, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, vvi, Vídenská 1083, 142 20, Prague 4, Czech Republic
| | | | | | | | | |
Collapse
|
35
|
Veatch SL. From small fluctuations to large-scale phase separation: Lateral organization in model membranes containing cholesterol. Semin Cell Dev Biol 2007; 18:573-82. [DOI: 10.1016/j.semcdb.2007.08.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Revised: 08/23/2007] [Accepted: 08/29/2007] [Indexed: 01/09/2023]
|
36
|
Owen DM, Neil MAA, French PMW, Magee AI. Optical techniques for imaging membrane lipid microdomains in living cells. Semin Cell Dev Biol 2007; 18:591-8. [PMID: 17728161 DOI: 10.1016/j.semcdb.2007.07.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Accepted: 07/20/2007] [Indexed: 10/23/2022]
Abstract
Lateral organisation of cellular membranes, particularly the plasma membrane, is of benefit to the cell as it allows complicated cellular processes to be regulated and efficient. For example, trafficking and secretion of molecules can be targeted and directed, cells polarised and signalling events modulated and propagated. The fluid mosaic model allows for significant heterogeneity on the part of the lipids themselves and of membrane associated proteins. By exploiting the tendency of complex lipid bilayers to undergo spontaneous or induced phase-separation into non-miscible domains, the cell could achieve this desired spatial organisation. While phase-separation is readily observed in simple, artificial bilayers, its occurrence in physiological membranes remains controversial. This stems mainly from our inability to image lipid microdomains directly - possibly due to their small size, short lifespan and/or morphological similarity to the bulk membrane. In this review, we seek to examine the techniques used to try to image membrane lipid microdomains, concentrating mainly on optical microscopy techniques that are applicable to live cells. We also look at novel emerging instruments and methods that promise to overcome our current technological limitations and shed new light on these important structures.
Collapse
Affiliation(s)
- Dylan M Owen
- Chemical Biology Centre, Imperial College London, London, UK.
| | | | | | | |
Collapse
|
37
|
Xue M, Hsieh G, Raymond-Stintz MA, Pfeiffer J, Roberts D, Steinberg SL, Oliver JM, Prossnitz ER, Lidke DS, Wilson BS. Activated N-formyl peptide receptor and high-affinity IgE receptor occupy common domains for signaling and internalization. Mol Biol Cell 2007; 18:1410-20. [PMID: 17267694 PMCID: PMC1838997 DOI: 10.1091/mbc.e05-11-1073] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Revised: 01/08/2007] [Accepted: 01/24/2007] [Indexed: 12/12/2022] Open
Abstract
Immune cells display multiple cell surface receptors that integrate signals for survival, proliferation, migration, and degranulation. Here, immunogold labeling is used to map the plasma membrane distributions of two separate receptors, the N-formyl peptide receptor (FPR) and the high-affinity IgE receptor (FepsilonRI). We show that the FPR forms signaling clusters in response to monovalent ligand. These domains recruit Gi, followed by the negative regulatory molecule arrestin2. There are low levels of colocalization of FPR with FcepsilonRI in unstimulated cells, shown by computer simulation to be a consequence of receptor density. Remarkably, there is a large increase in receptor coclustering when cells are simultaneously treated with N-formyl-methionyl-leucyl-phenylalanine and IgE plus polyvalent antigen. The proximity of two active receptors may promote localized cross-talk, leading to enhanced inositol-(3,4,5)-trisphosphate production and secretion. Some cointernalization and trafficking of the two receptors can be detected by live cell imaging, but the bulk of FPR and FcepsilonRI segregates over time. This segregation is associated with more efficient internalization of cross-linked FcepsilonRI than of arrestin-desensitized FPR. The observation of receptors in lightly coated membrane invaginations suggests that, despite the lack of caveolin, hematopoietic cells harbor caveolae-like structures that are candidates for nonclathrin-mediated endocytosis.
Collapse
Affiliation(s)
- Mei Xue
- Department of Pathology and Cancer Research and Treatment Center, University of New Mexico, Albuquerque, NM 87131, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Fujita A, Cheng J, Hirakawa M, Furukawa K, Kusunoki S, Fujimoto T. Gangliosides GM1 and GM3 in the living cell membrane form clusters susceptible to cholesterol depletion and chilling. Mol Biol Cell 2007; 18:2112-22. [PMID: 17392511 PMCID: PMC1877094 DOI: 10.1091/mbc.e07-01-0071] [Citation(s) in RCA: 187] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Presence of microdomains has been postulated in the cell membrane, but two-dimensional distribution of lipid molecules has been difficult to determine in the submicrometer scale. In the present paper, we examined the distribution of gangliosides GM1 and GM3, putative raft molecules in the cell membrane, by immunoelectron microscopy using quick-frozen and freeze-fractured specimens. This method physically immobilized molecules in situ and thus minimized the possibility of artifactual perturbation. By point pattern analysis of immunogold labeling, GM1 was shown to make clusters of <100 nm in diameter in normal mouse fibroblasts. GM1-null fibroblasts were not labeled, but developed a similar clustered pattern when GM1 was administered. On cholesterol depletion or chilling, the clustering of both endogenous and exogenously-loaded GM1 decreased significantly, but the distribution showed marked regional heterogeneity in the cells. GM3 also showed cholesterol-dependent clustering, and although clusters of GM1 and GM3 were found to occasionally coincide, these aggregates were separated in most cases, suggesting the presence of heterogeneous microdomains. The present method enabled to capture the molecular distribution of lipids in the cell membrane, and demonstrated that GM1 and GM3 form clusters that are susceptible to cholesterol depletion and chilling.
Collapse
Affiliation(s)
| | - Jinglei Cheng
- Departments of *Anatomy and Molecular Cell Biology and
| | - Minako Hirakawa
- Department of Neurology, Kinki University School of Medicine, Osaka 589-8511, Japan
| | - Koichi Furukawa
- Biochemistry II, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; and
| | - Susumu Kusunoki
- Department of Neurology, Kinki University School of Medicine, Osaka 589-8511, Japan
| | | |
Collapse
|
39
|
Barfod ET, Moore AL, Roe MW, Lidofsky SD. Ca2+-activated IK1 channels associate with lipid rafts upon cell swelling and mediate volume recovery. J Biol Chem 2007; 282:8984-8993. [PMID: 17264085 DOI: 10.1074/jbc.m607730200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Restoration of cell volume in the continued presence of osmotic stimuli is essential, particularly in hepatocytes, which swell upon nutrient uptake. Responses to swelling involve the Ca2+-dependent activation of K+ channels, which promote fluid efflux to drive volume recovery; however, the channels involved in hepatocellular volume regulation have not been identified. We found that hypotonic exposure of HTC hepatoma cells evoked the opening of 50 pS K+-permeable channels, consistent with intermediate conductance (IK) channels. We isolated from rat liver and HTC cells a cDNA with sequence identity to the coding region of IK1. Swelling-activated currents were inhibited by transfection with a dominant interfering IK1 mutant. The IK channel blockers clotrimazole and TRAM-34 inhibited whole cell swelling-activated K+ currents and volume recovery. To determine whether IK1 underwent volume-sensitive localization, we expressed a green fluorescent protein fusion of IK1 in HTC cells. The localization of IK1 was suggestive of distribution in lipid rafts. Consistent with this, there was a time-dependent increase in colocalization between IK1 and the lipid raft ganglioside GM1 on the plasma membrane, which subsequently decreased with volume recovery. Pharmacological disruption of lipid rafts altered the plasma membrane distribution of IK1 and inhibited volume recovery after hypotonic exposure. Collectively, these findings support the hypothesis that IK1 regulates compensatory responses to hepatocellular swelling and suggest that regulation of cell volume involves coordination of signaling from lipid rafts with IK1 function.
Collapse
Affiliation(s)
- Elisabeth T Barfod
- Department of Pharmacology, University of Vermont, Burlington, Vermont 05405, USA
| | | | | | | |
Collapse
|
40
|
Becker AM, DeFord-Watts LM, Wuelfing C, van Oers NSC. The Constitutive Tyrosine Phosphorylation of CD3ζ Results from TCR-MHC Interactions That Are Independent of Thymic Selection. THE JOURNAL OF IMMUNOLOGY 2007; 178:4120-8. [PMID: 17371967 DOI: 10.4049/jimmunol.178.7.4120] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The TCR complex, when isolated from thymocytes and peripheral T cells, contains a constitutively tyrosine-phosphorylated CD3zeta molecule termed p21. Previous investigations have shown that the constitutive phosphorylation of CD3zeta results from TCR interactions with MHC molecules occurring in both the thymus and the periphery. To determine what contribution the selection environment had on this constitutive phosphorylation, we analyzed CD3zeta from several distinct class I- and II-restricted TCR-transgenic mice where thymocyte development occurred in either a selecting or a nonselecting MHC environment. Herein, we report that constitutively phosphorylated CD3zeta (p21) was present in thymocytes that developed under nonselecting peptide-MHC conditions. These findings strongly support the model that the TCR has an inherent avidity for MHC molecules before repertoire selection. Biochemical analyses of the TCR complex before and after TCR stimulation suggested that the constitutively phosphorylated CD3zeta subunit did not contribute to de novo TCR signals. These findings may have important implications for T cell functions during self-MHC recognition under normal and autoimmune circumstances.
Collapse
Affiliation(s)
- Amy M Becker
- Department of Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA
| | | | | | | |
Collapse
|
41
|
Kusumi A, Suzuki K. Toward understanding the dynamics of membrane-raft-based molecular interactions. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1746:234-51. [PMID: 16368465 DOI: 10.1016/j.bbamcr.2005.10.001] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Revised: 10/10/2005] [Accepted: 10/11/2005] [Indexed: 11/30/2022]
Abstract
The cell membrane is a 2-dimensional non-ideal liquid containing dynamic structures on various time-space scales, and the raft domain is one of them. Existing literature supports the concept that raft dynamics may be important for its formation and function: the raft function may be supported by stimulation-induced raft association/coalescence and recruitment of various raftophilic molecules to coalesced rafts, and, importantly, they both may happen transiently. Thus, one must always consider the limited association time of a raft or a raftophilic molecule with another raft, even when one interprets the results of static experiments, such as immunofluorescence and pull-down assays. Critical considerations on the chemical fixation mechanism and immunocolocalization data suggest that the temporary nature of raft-based molecular interactions may explain why colocalization results are sensitive to subtle variations in experimental conditions employed in different laboratories.
Collapse
Affiliation(s)
- Akihiro Kusumi
- The Institute for Frontier Medical Sciences, Kyoto University, 606-8507, Japan.
| | | |
Collapse
|