1
|
Li H, Zhao H, Hu T, Meng L, Mo X, Gong M, Liao Y. The Cdk5 inhibitor β-butyrolactone impairs reconsolidation of heroin-associated memory in the rat basolateral amygdala. Addict Biol 2023; 28:e13326. [PMID: 37644892 DOI: 10.1111/adb.13326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/31/2023]
Abstract
The persistence of maladaptive heroin-associated memory, which is triggered by drug-related stimuli that remind the individual of the drug's pleasurable and rewarding effects, can impede abstinence efforts. Cyclin-dependent kinase 5 (Cdk5), a neuronal serine/threonine protein kinase that plays a role in multiple neuronal functions, has been demonstrated to be involved in drug addiction and learning and memory. Here, we aimed to investigate the role of cdk5 activity in the basolateral amygdala (BLA) in relapse to heroin seeking, using a self-administration rat model. Male rats underwent 10 days of heroin self-administration training, during which an active nose poke resulted in an intravenous infusion of heroin that was accompanied by a cue. The rats then underwent nose poke extinction for 10 days, followed by subsequent tests of heroin-seeking behaviour. We found that intra-BLA infusion of β-butyrolactone (100 ng/side), a Cdk5 inhibitor, administered 5 min after reactivation, led to a subsequent decrease in heroin-seeking behaviour. Further experiments demonstrated that the effects of β-butyrolactone are dependent on reactivated memories, temporal-specific and long-lasting on relapse of heroin-associated memory. Results provide suggestive evidence that the activity of Cdk5 in BLA is critical for heroin-associated memory and that the specific inhibitor, β-butyrolactone, may hold potential as a substance for the treatment of heroin abuse.
Collapse
Affiliation(s)
- Haoyu Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- The Institute of Skull Base Surgery and Neurooncology at Hunan Province, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Haiting Zhao
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Ting Hu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- The Institute of Skull Base Surgery and Neurooncology at Hunan Province, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Li Meng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- The Institute of Skull Base Surgery and Neurooncology at Hunan Province, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Mo
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Mengqi Gong
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- The Institute of Skull Base Surgery and Neurooncology at Hunan Province, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yiwei Liao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- The Institute of Skull Base Surgery and Neurooncology at Hunan Province, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
2
|
Wang J, Jia C, Gao Q, Zhang J, Gu X. iASPP regulates neurite development by interacting with Spectrin proteins. Front Mol Neurosci 2023; 16:1154770. [PMID: 37284462 PMCID: PMC10240065 DOI: 10.3389/fnmol.2023.1154770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/24/2023] [Indexed: 06/08/2023] Open
Abstract
Introduction Since its discovery in 1999, a substantial body of research has shown that iASPP is highly expressed in various kinds of tumors, interacts with p53, and promotes cancer cell survival by antagonizing the apoptotic activity of p53. However, its role in neurodevelopment is still unknown. Methods We studied the role of iASPP in neuronal differentiation through different neuronal differentiation cellular models, combined with immunohistochemistry, RNA interference and gene overexpression, and studied the molecular mechanism involved in the regulation of neuronal development by iASPP through coimmunoprecipitation coupled with mass spectrometry (CoIP-MS) and coimmunoprecipitation (CoIP). Results In this study, we found that the expression of iASPP gradually decreased during neuronal development. iASPP silencing promotes neuronal differentiation, while its overexpression inhibited neurite differentiation in a variety of neuronal differentiation cellular models. iASPP associated with the cytoskeleton-related protein Sptan1 and dephosphorylated the serine residues in the last spectrin repeat domain of Sptan1 by recruiting PP1. The non-phosphorylated and phosphomimetic mutant form of Sptbn1 inhibited and promoted neuronal cell development respectively. Conclusion Overall, we demonstrate that iASPP suppressed neurite development by inhibiting phosphorylation of Sptbn1.
Collapse
Affiliation(s)
- Junhao Wang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Chunhong Jia
- Department of Neonatology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiong Gao
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Jiwen Zhang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xi Gu
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
3
|
Shi C, Zeng J, Li Z, Chen Q, Hang W, Xia L, Wu Y, Chen J, Shi A. Melatonin Mitigates Kainic Acid-Induced Neuronal Tau Hyperphosphorylation and Memory Deficits through Alleviating ER Stress. Front Mol Neurosci 2018; 11:5. [PMID: 29416502 PMCID: PMC5787934 DOI: 10.3389/fnmol.2018.00005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/04/2018] [Indexed: 12/21/2022] Open
Abstract
Kainic acid (KA) exposure causes neuronal degeneration featured by Alzheimer-like tau hyperphosphorylation and memory deficits. Melatonin (Mel) is known to protect hippocampal neurons against KA-induced damage. However, the underlying mechanisms remain elusive. In the current study, we investigated the protective effect of melatonin on KA-induced tau hyperphosphorylation by focusing on endoplasmic reticulum (ER) stress-mediated signaling pathways. By using primary hippocampal neurons and mouse brain, we showed that KA treatment specifically induced ER stress and activated GSK-3β and CDK5, two major kinases responsible for tau phosphorylation. Inhibition of ER stress efficiently inactivated GSK-3β and CDK5. Mechanistically, we found that KA-induced ER stress significantly activated calpain, a calcium-dependent protease. Inhibition of ER stress or calpain leads to the reduction in KA-induced GSK-3β and CDK5 activities and tau phosphorylation. Moreover, GSK-3β or CDK5 inhibition failed to downregulate ER stress efficiently, suggesting that ER stress functions upstream of GSK-3β or CDK5. Notably, our results revealed that melatonin acts against KA-induced neuronal degeneration and tau hyperphosphorylation via easing ER stress, further highlighting the protective role of melatonin in the KA-induced neuronal defects.
Collapse
Affiliation(s)
- Cai Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zixi Li
- Department of Clinical Laboratory, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingjie Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weijian Hang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liangtao Xia
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Anbing Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Villarroel-Campos D, Gonzalez-Billault C. The MAP1B case: an old MAP that is new again. Dev Neurobiol 2014; 74:953-71. [PMID: 24700609 DOI: 10.1002/dneu.22178] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/27/2014] [Accepted: 03/31/2014] [Indexed: 12/24/2022]
Abstract
The functions of microtubule-associated protein 1B (MAP1B) have historically been linked to the development of the nervous system, based on its very early expression in neurons and glial cells. Moreover, mice in which MAP1B is genetically inactivated have been used extensively to show its role in axonal elongation, neuronal migration, and axonal guidance. In the last few years, it has become apparent that MAP1B has other cellular and molecular functions that are not related to its microtubule-stabilizing properties in the embryonic and adult brain. In this review, we present a systematic review of the canonical and novel functions of MAP1B and propose that, in addition to regulating the polymerization of microtubule and actin microfilaments, MAP1B also acts as a signaling protein involved in normal physiology and pathological conditions in the nervous system.
Collapse
Affiliation(s)
- David Villarroel-Campos
- Laboratory of Cell and Neuronal Dynamics (Cenedyn), Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | | |
Collapse
|
5
|
Contreras-Vallejos E, Utreras E, Bórquez DA, Prochazkova M, Terse A, Jaffe H, Toledo A, Arruti C, Pant HC, Kulkarni AB, González-Billault C. Searching for novel Cdk5 substrates in brain by comparative phosphoproteomics of wild type and Cdk5-/- mice. PLoS One 2014; 9:e90363. [PMID: 24658276 PMCID: PMC3962345 DOI: 10.1371/journal.pone.0090363] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 01/28/2014] [Indexed: 01/07/2023] Open
Abstract
Protein phosphorylation is the most common post-translational modification that regulates several pivotal functions in cells. Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase which is mostly active in the nervous system. It regulates several biological processes such as neuronal migration, cytoskeletal dynamics, axonal guidance and synaptic plasticity among others. In search for novel substrates of Cdk5 in the brain we performed quantitative phosphoproteomics analysis, isolating phosphoproteins from whole brain derived from E18.5 Cdk5+/+ and Cdk5−/− embryos, using an Immobilized Metal-Ion Affinity Chromatography (IMAC), which specifically binds to phosphorylated proteins. The isolated phosphoproteins were eluted and isotopically labeled for relative and absolute quantitation (iTRAQ) and mass spectrometry identification. We found 40 proteins that showed decreased phosphorylation at Cdk5−/− brains. In addition, out of these 40 hypophosphorylated proteins we characterized two proteins, :MARCKS (Myristoylated Alanine-Rich protein Kinase C substrate) and Grin1 (G protein regulated inducer of neurite outgrowth 1). MARCKS is known to be phosphorylated by Cdk5 in chick neural cells while Grin1 has not been reported to be phosphorylated by Cdk5. When these proteins were overexpressed in N2A neuroblastoma cell line along with p35, serine phosphorylation in their Cdk5 motifs was found to be increased. In contrast, treatments with roscovitine, the Cdk5 inhibitor, resulted in an opposite effect on serine phosphorylation in N2A cells and primary hippocampal neurons transfected with MARCKS. In summary, the results presented here identify Grin 1 as novel Cdk5 substrate and confirm previously identified MARCKS as a a bona fide Cdk5 substrate.
Collapse
Affiliation(s)
- Erick Contreras-Vallejos
- Laboratory of Cellular and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Elías Utreras
- Laboratory of Cellular and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Daniel A. Bórquez
- Laboratory of Cellular and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Michaela Prochazkova
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda MD, USA
| | - Anita Terse
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda MD, USA
| | - Howard Jaffe
- Protein and Peptide Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda MD, USA
| | - Andrea Toledo
- Laboratorio de Cultivo de Tejidos, Sección Biología Celular, Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Cristina Arruti
- Laboratorio de Cultivo de Tejidos, Sección Biología Celular, Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Harish C. Pant
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda MD, USA
| | - Ashok B. Kulkarni
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda MD, USA
- * E-mail: (CGB); (ABK)
| | - Christian González-Billault
- Laboratory of Cellular and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
- * E-mail: (CGB); (ABK)
| |
Collapse
|
6
|
Moon HM, Wynshaw-Boris A. Cytoskeleton in action: lissencephaly, a neuronal migration disorder. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2014; 2:229-45. [PMID: 23495356 DOI: 10.1002/wdev.67] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
During neocortical development, the extensive migratory movements of neurons from their place of birth to their final location are essential for the coordinated wiring of synaptic circuits and proper neurological function. Failure or delay in neuronal migration causes severe abnormalities in cortical layering, which consequently results in human lissencephaly ('smooth brain'), a neuronal migration disorder. The brains of lissencephaly patients have less-convoluted gyri in the cerebral cortex with impaired cortical lamination of neurons. Since microtubule (MT) and actin-associated proteins play important functions in regulating the dynamics of MT and actin cytoskeletons during neuronal migration, genetic mutations or deletions of crucial genes involved in cytoskeletal processes lead to lissencephaly in human and neuronal migration defects in mouse. During neuronal migration, MT organization and transport are controlled by platelet-activating factor acetylhydrolase isoform 1b regulatory subunit 1 (PAFAH1B1, formerly known as LIS1, Lissencephaly-1), doublecortin (DCX), YWHAE, and tubulin. Actin stress fibers are modulated by PAFAH1B1 (LIS1), DCX, RELN, and VLDLR (very low-density lipoprotein receptor)/LRP8 (low-density lipoprotein-related receptor 8, formerly known as APOER2). There are several important levels of crosstalk between these two cytoskeletal systems to establish accurate cortical patterning in development. The recent understanding of the protein networks that govern neuronal migration by regulating cytoskeletal dynamics, from human and mouse genetics as well as molecular and cellular analyses, provides new insights on neuronal migration disorders and may help us devise novel therapeutic strategies for such brain malformations.
Collapse
|
7
|
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a multifaceted serine/threonine kinase protein with important roles in the nervous system. Two related proteins, p35 and p39, activate Cdk5 upon direct binding. Over the past decade, Cdk5 activity has been demonstrated to regulate many events during brain development, including neuronal migration as well as axon and dendrite development. Recent evidence also suggests a pivotal role for Cdk5 in synaptic plasticity, behavior, and cognition. Dysfunction of Cdk5 has been implicated in a number of neurological disorders and neurodegenerative diseases including Alzheimer's disease, amyotrophic lateral sclerosis, Niemann-Pick type C disease, and ischemia. Hyperactivation of Cdk5 due to the conversion of p35 to p25 by the calcium-dependent protease calpain during neurotoxicity also contributes to the pathological state. This review surveys recent literature surrounding Cdk5 in synaptic plasticity and homeostasis, with particular emphasis on Cdk5 kinase activity under neurodegenerative conditions.
Collapse
Affiliation(s)
- Susan C Su
- Howard Hughes Medical Institute, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
8
|
Tymanskyj SR, Lin S, Gordon-Weeks PR. Evolution of the spatial distribution of MAP1B phosphorylation sites in vertebrate neurons. J Anat 2010; 216:692-704. [PMID: 20408908 PMCID: PMC2952382 DOI: 10.1111/j.1469-7580.2010.01228.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2010] [Indexed: 12/14/2022] Open
Abstract
The microtubule-associated protein MAP1B has important roles in neural development, particularly in migrating and differentiating neurons. MAP1B is phosphorylated by glycogen synthase kinase 3beta (GSK-3beta) at a site that requires prior phosphorylation by another kinase four amino acid residues downstream of the GSK-3beta site, a so-called primed site, and at non-primed sites that have no such requirement. In developing mammalian neurons, MAP1B phosphorylated by GSK-3beta at primed and non-primed sites is distributed in spatially distinct patterns. Non-primed GSK-3beta-phosphorylated MAP1B sites are only expressed in axons and are present in the form of a gradient that is highest distally, towards the growth cone. In contrast, primed GSK-3beta-phosphorylated MAP1B sites are present throughout the neuron including the somato-dendritic compartment and uniformly throughout the axon. To examine the function of these two sites, we explored the evolutionary conservation of the spatial distribution of GSK-3beta primed and non-primed sites on MAP1B in vertebrate neurons. We immunostained spinal cord sections from embryonic or newly hatched representatives of all of the main vertebrate groups using phospho-specific antibodies to GSK-3beta primed and non-primed sites on MAP1B. This revealed a remarkable evolutionary conservation of the distribution of primed and non-primed GSK-3beta-phosphorylated MAP1B sites in developing vertebrate neurons. By analysing amino acid sequences of MAP1B we found that non-primed GSK-3beta sites are more highly conserved than primed sites throughout the vertebrates, suggesting that the latter evolved later. Finally, distinct distribution patterns of GSK-3beta primed and non-primed sites on MAP1B were preserved in cultured rat embryonic cortical neurons, opening up the possibility of studying the two sites in vitro.
Collapse
Affiliation(s)
- Stephen R Tymanskyj
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London, UK
| | | | | |
Collapse
|
9
|
Crews L, Masliah E. Molecular mechanisms of neurodegeneration in Alzheimer's disease. Hum Mol Genet 2010; 19:R12-20. [PMID: 20413653 PMCID: PMC2875049 DOI: 10.1093/hmg/ddq160] [Citation(s) in RCA: 510] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 04/19/2010] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by cognitive impairment, progressive neurodegeneration and formation of amyloid-beta (Abeta)-containing plaques and neurofibrillary tangles composed of hyperphosphorylated tau. The neurodegenerative process in AD is initially characterized by synaptic damage accompanied by neuronal loss. In addition, recent evidence suggests that alterations in adult neurogenesis in the hippocampus might play a role. Synaptic loss is one of the strongest correlates to the cognitive impairment in patients with AD. Several lines of investigation support the notion that the synaptic pathology and defective neurogenesis in AD are related to progressive accumulation of Abeta oligomers rather than fibrils. Abnormal accumulation of Abeta resulting in the formation of toxic oligomers is the result of an imbalance between the levels of Abeta production, aggregation and clearance. Abeta oligomers might lead to synaptic damage by forming pore-like structures with channel activity; alterations in glutamate receptors; circuitry hyper-excitability; mitochondrial dysfunction; lysosomal failure and alterations in signaling pathways related to synaptic plasticity, neuronal cell and neurogenesis. A number of signaling proteins, including fyn kinase; glycogen synthase kinase-3beta (GSK3beta) and cyclin-dependent kinase-5 (CDK5), are involved in the neurodegenerative progression of AD. Therapies for AD might require the development of anti-aggregation compounds, pro-clearance pathways and blockers of hyperactive signaling pathways.
Collapse
Affiliation(s)
| | - Eliezer Masliah
- Department of Pathology and
- Department of Neurosciences, University of California – San Diego, 9500 Gilman Drive, La Jolla, CA 92003-0624, USA
| |
Collapse
|
10
|
Scales TME, Lin S, Kraus M, Goold RG, Gordon-Weeks PR. Nonprimed and DYRK1A-primed GSK3 beta-phosphorylation sites on MAP1B regulate microtubule dynamics in growing axons. J Cell Sci 2009; 122:2424-35. [PMID: 19549690 PMCID: PMC2704879 DOI: 10.1242/jcs.040162] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2009] [Indexed: 12/26/2022] Open
Abstract
MAP1B is a developmentally regulated microtubule-associated phosphoprotein that regulates microtubule dynamics in growing axons and growth cones. We used mass spectrometry to map 28 phosphorylation sites on MAP1B, and selected for further study a putative primed GSK3 beta site and compared it with two nonprimed GSK3 beta sites that we had previously characterised. We raised a panel of phosphospecific antibodies to these sites on MAP1B and used it to assess the distribution of phosphorylated MAP1B in the developing nervous system. This showed that the nonprimed sites are restricted to growing axons, whereas the primed sites are also expressed in the neuronal cell body. To identify kinases phosphorylating MAP1B, we added kinase inhibitors to cultured embryonic cortical neurons and monitored MAP1B phosphorylation with our panel of phosphospecific antibodies. These experiments identified dual-specificity tyrosine-phosphorylation-regulated kinase (DYRK1A) as the kinase that primes sites of GSK3 beta phosphorylation in MAP1B, and we confirmed this by knocking down DYRK1A in cultured embryonic cortical neurons by using shRNA. DYRK1A knockdown compromised neuritogenesis and was associated with alterations in microtubule stability. These experiments demonstrate that MAP1B has DYRK1A-primed and nonprimed GSK3 beta sites that are involved in the regulation of microtubule stability in growing axons.
Collapse
Affiliation(s)
- Timothy M E Scales
- The MRC Centre for Developmental Neurobiology, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| | | | | | | | | |
Collapse
|
11
|
Mlewski EC, Krapacher FA, Ferreras S, Paglini G. Transient enhanced expression of Cdk5 activator p25 after acute and chronic d-amphetamine administration. Ann N Y Acad Sci 2008; 1139:89-102. [PMID: 18991853 DOI: 10.1196/annals.1432.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The cellular and molecular mechanisms of sensitization in the addictive process are still unclear. Recently, chronic treatment with cocaine has been shown to upregulate the expression of cyclin-dependent kinase 5 (cdk5) and its specific activator, p35, in the striatum, as a downstream target gene of DeltaFosB, and has been implicated in compensatory adaptive changes associated with psychostimulants. Cdk5 is a serine/threonine kinase and its activation is achieved through association with a regulatory subunit, either p35 or p39. P35 is cleaved by the protease calpain, which results in the generation of a truncated product termed p25, which contains all elements necessary for cdk5 activation. The cdk5/p35 complex plays an essential role in neuronal development and survival. It has also been involved in neuronal trafficking and transport and in dopaminergic transmission, indicating its role either in presynaptic and postsynaptic signaling. In this study we report that the cdk5/p35 complex participates in acute and chronic d-amphetamine (AMPH)-evoked behavioral events, and we show a surprisingly transient enhanced expression of p25 and a lasting increased expression of p35 in dorsal striatal synaptosomes after acute and chronic AMPH administration. Pak1, a substrate for cdk5, is also enriched in the synaptosomal fraction of acute AMPH-treated rats. Our data suggest that the transient upregulation of p25 may regulate the activity of cdk5 in phosphorylating particular substrates, such as Pak1, implicated in the compensatory adaptive morphophysiologic changes associated with the process of behavioral sensitization to psychostimulants.
Collapse
Affiliation(s)
- Estela Cecilia Mlewski
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Córdoba, Argentina
| | | | | | | |
Collapse
|
12
|
Nikolic M. Unravelling the complex role of Cdk5 in the developing cerebral cortex. FUTURE NEUROLOGY 2008. [DOI: 10.2217/14796708.3.6.729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The normal development of the mammalian CNS is entirely dependent on the coordinated behavior of its cellular components. Particular importance is attributed to the correct morphology, migration and communication of neurons. Recent years have seen the identification of many extracellular, cell surface and intracellular signaling molecules that are important for normal CNS development, consequently triggering huge progress in our understanding of the complex processes involved. A key molecule to emerge is Cdk5. To date, Cdk5 has been functionally linked with controlled neuronal morphology, migration, synaptic function, cognition, drug addiction, neuronal death and neurodegeneration. The complexity of its function has been confirmed by the ever increasing number of diverse upstream regulators, protein substrates and biological consequences of altered catalytic function. The aim of this review is to consolidate recent findings concerning the role of Cdk5 in the developing nervous system, particularly the cerebral cortex, where its importance is most clearly evidenced.
Collapse
Affiliation(s)
- Margareta Nikolic
- Department of Cellular & Molecular Neuroscience, Division of Neuroscience & Mental Health, School of Medicine, Imperial College London, Burlington Danes Building, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| |
Collapse
|
13
|
Bignante EA, Rodriguez Manzanares PA, Mlewski EC, Bertotto ME, Bussolino DF, Paglini G, Molina VA. Involvement of septal Cdk5 in the emergence of excessive anxiety induced by stress. Eur Neuropsychopharmacol 2008; 18:578-88. [PMID: 18406108 DOI: 10.1016/j.euroneuro.2008.02.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 02/05/2008] [Accepted: 02/21/2008] [Indexed: 12/11/2022]
Abstract
The aim of the present study was to evaluate whether the activation of Cdk5, a protein that has been suggested to participate in higher cognitive functions, is required for the onset of a sensitized anxiety-related behavior induced by stress. The exposure to restraint enhanced both Cdk5 expression in certain subareas of the septohippocampal system, principally in the lateral septum (LS) and septal Cdk5 kinase activity in rats. Behaviorally, restrained wild type mice showed a behavior indicative of enhanced anxiety in the elevated plus maze (EPM). In contrast, unstressed mice and stressed knockout mice, which lacked the p35 protein, the natural activator of Cdk5, displayed similar anxiety-like behavior in the EPM. Finally, the intra-LS infusion of olomoucine - a Cdk5 inhibitor - blocked the enhanced anxiety in the EPM induced by prior stress in rats. All these data provide evidence that septal Cdk5 is required in the emergence of a sensitized emotional process induced by stress.
Collapse
Affiliation(s)
- Elena Anahi Bignante
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Argentina
| | | | | | | | | | | | | |
Collapse
|
14
|
He L, Hou Z, Qi RZ. Calmodulin Binding and Cdk5 Phosphorylation of p35 Regulate Its Effect on Microtubules. J Biol Chem 2008; 283:13252-60. [DOI: 10.1074/jbc.m706937200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
15
|
Utreras E, Jiménez-Mateos EM, Contreras-Vallejos E, Tortosa E, Pérez M, Rojas S, Saragoni L, Maccioni RB, Avila J, González-Billault C. Microtubule-Associated Protein 1B Interaction with Tubulin Tyrosine Ligase Contributes to the Control of Microtubule Tyrosination. Dev Neurosci 2007; 30:200-10. [DOI: 10.1159/000109863] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Accepted: 05/15/2007] [Indexed: 01/24/2023] Open
|
16
|
Soares S, Barnat M, Salim C, von Boxberg Y, Ravaille-Veron M, Nothias F. Extensive structural remodeling of the injured spinal cord revealed by phosphorylated MAP1B in sprouting axons and degenerating neurons. Eur J Neurosci 2007; 26:1446-61. [PMID: 17880387 DOI: 10.1111/j.1460-9568.2007.05794.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Spinal cord injury (SCI) results in loss of sensory and motor function because injured axons do not regenerate and neurons that die are not replaced. Nevertheless, there is evidence for spontaneous reorganization of spared pathways (i.e. sprouting) that could be exploited to improve functional recovery. The extent of morphological remodeling after spinal cord injury is, however, not understood. We have previously shown that a phosphorylated form of microtubule-associated protein-1B, MAP1B-P, is expressed by growing axons, but is detected in intact adult SC in fibers exhibiting a somatotopic distribution of myelinated sensory fibers. We now demonstrate that after adult SCI, MAP1B-P is up-regulated in other classes of axons. We used immunohistochemistry to show changing levels and distributions of MAP1B-P after a right thoracic hemisection of adult rat spinal cord. MAP1B-P labeling suggests rearrangements of the axonal circuitry that go well beyond previous descriptions. MAP1B-P-positive fibers are present in ectopic locations in gray matter in both dorsal and ventral horns and around the central canal. Double staining reveals that primary sensory and descending serotonergic and corticospinal axons are MAP1B-P positive. In white matter, high MAP1B-P expression is found on terminal enlargements near the injury, reflecting retraction of transected axons. MAP1B-P also accumulates in pre-apoptotic neuronal somata axotomized by the lesion, indicating association of MAP1B-P not only with axon extension and retraction, but also with neuronal degeneration. Finally, we provide evidence that MAP1B phosphorylation is correlated with activation of JNK MAP-kinase, providing a step towards unraveling the mechanisms of regulation of this plasticity-related cytoskeletal protein.
Collapse
Affiliation(s)
- Sylvia Soares
- Université Pierre et Marie Curie-Paris6, UMR7101 NSI, Paris, F-75005 France
| | | | | | | | | | | |
Collapse
|
17
|
Juo P, Harbaugh T, Garriga G, Kaplan JM. CDK-5 regulates the abundance of GLR-1 glutamate receptors in the ventral cord of Caenorhabditis elegans. Mol Biol Cell 2007; 18:3883-93. [PMID: 17671168 PMCID: PMC1995742 DOI: 10.1091/mbc.e06-09-0818] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 06/21/2007] [Accepted: 07/20/2007] [Indexed: 11/11/2022] Open
Abstract
The proline-directed kinase Cdk5 plays a role in several aspects of neuronal development. Here, we show that CDK-5 activity regulates the abundance of the glutamate receptor GLR-1 in the ventral cord of Caenorhabditis elegans and that it produces corresponding changes in GLR-1-dependent behaviors. Loss of CDK-5 activity results in decreased abundance of GLR-1 in the ventral cord, accompanied by accumulation of GLR-1 in neuronal cell bodies. Genetic analysis of cdk-5 and the clathrin adaptin unc-11 AP180 suggests that CDK-5 functions prior to endocytosis at the synapse. The scaffolding protein LIN-10/Mint-1 also regulates GLR-1 abundance in the nerve cord. CDK-5 phosphorylates LIN-10/Mint-1 in vitro and bidirectionally regulates the abundance of LIN-10/Mint-1 in the ventral cord. We propose that CDK-5 promotes the anterograde trafficking of GLR-1 and that phosphorylation of LIN-10 may play a role in this process.
Collapse
Affiliation(s)
- Peter Juo
- Department of Molecular Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02114, USA.
| | | | | | | |
Collapse
|
18
|
Abstract
Since the isolation of cyclin-dependent kinase 5 (Cdk5), this proline-directed serine/threonine kinase has been demonstrated as an important regulator of neuronal migration, neuronal survival and synaptic functions. Recently, a number of players implicated in dendrite and synapse development have been identified as Cdk5 substrates. Neurite extension, synapse and spine maturation are all modulated by a myriad of extracellular guidance cues or trophic factors. Cdk5 was recently demonstrated to regulate signaling downstream of some of these extracellular factors, in addition to modulating Rho GTPase activity, which regulates cytoskeletal dynamics. In this communication, we summarize our existing knowledge on the pathways and mechanisms through which Cdk5 affects dendrite, synapse and spine development.
Collapse
Affiliation(s)
- Zelda H Cheung
- Department of Biochemistry, Biotechnology Research Institute and Molecular Neuroscience Center, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | | |
Collapse
|
19
|
Stroissnigg H, Trancíková A, Descovich L, Fuhrmann J, Kutschera W, Kostan J, Meixner A, Nothias F, Propst F. S-nitrosylation of microtubule-associated protein 1B mediates nitric-oxide-induced axon retraction. Nat Cell Biol 2007; 9:1035-45. [PMID: 17704770 DOI: 10.1038/ncb1625] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Accepted: 07/26/2007] [Indexed: 02/05/2023]
Abstract
Treatment of cultured vertebrate neurons with nitric oxide leads to growth-cone collapse, axon retraction and the reconfiguration of axonal microtubules. We show that the light chain of microtubule-associated protein (MAP) 1B is a substrate for S-nitrosylation in vivo, in cultured cells and in vitro. S-nitrosylation occurs at Cys 2457 in the COOH terminus. Nitrosylation of MAP1B leads to enhanced interaction with microtubules and correlates with the inhibition of neuroblastoma cell differentiation. We further show, in dorsal root ganglion neurons, that MAP1B is necessary for neuronal nitric oxide synthase control of growth-cone size, growth-cone collapse and axon retraction. These results reveal an S-nitrosylation-dependent signal-transduction pathway that is involved in regulation of the axonal cytoskeleton and identify MAP1B as a major component of this pathway. We propose that MAP1B acts by inhibiting a microtubule- and dynein-based mechanism that normally prevents axon retraction.
Collapse
Affiliation(s)
- Heike Stroissnigg
- Max F. Perutz Laboratories, Department of Molecular Cell Biology, University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Nguyen C, Nishi A, Kansy JW, Fernandez J, Hayashi K, Gillardon F, Hemmings HC, Nairn AC, Bibb JA. Regulation of protein phosphatase inhibitor-1 by cyclin-dependent kinase 5. J Biol Chem 2007; 282:16511-20. [PMID: 17400554 PMCID: PMC4296900 DOI: 10.1074/jbc.m701046200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Inhibitor-1, the first identified endogenous inhibitor of protein phosphatase 1 (PP-1), was previously reported to be a substrate for cyclin-dependent kinase 5 (Cdk5) at Ser67. Further investigation has revealed the presence of an additional Cdk5 site identified by mass spectrometry and confirmed by site-directed mutagenesis as Ser6. Basal levels of phospho-Ser6 inhibitor-1, as detected by a phosphorylation state-specific antibody against the site, existed in specific regions of the brain and varied with age. In the striatum, basal in vivo phosphorylation and dephosphorylation of Ser6 were mediated by Cdk5, PP-2A, and PP-1, respectively. Additionally, calcineurin contributed to dephosphorylation under conditions of high Ca2+. In biochemical assays the function of Cdk5-dependent phosphorylation of inhibitor-1 at Ser6 and Ser67 was demonstrated to be an intramolecular impairment of the ability of inhibitor-1 to be dephosphorylated at Thr35; this effect was recapitulated in two systems in vivo. Dephosphorylation of inhibitor-1 at Thr35 is equivalent to inactivation of the protein, as inhibitor-1 only serves as an inhibitor of PP-1 when phosphorylated by cAMP-dependent kinase (PKA) at Thr35. Thus, inhibitor-1 serves as a critical junction between kinase- and phosphatase-signaling pathways, linking PP-1 to not only PKA and calcineurin but also Cdk5.
Collapse
Affiliation(s)
- Chan Nguyen
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Akinori Nishi
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Janice W. Kansy
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Joseph Fernandez
- Protein/DNA Technology Center, Rockefeller University, New York, New York 10021
| | - Kanehiro Hayashi
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Frank Gillardon
- Central Nervous System Research, Boehringer Ingelheim Pharma KG, 88397 Biberach an der Riss, Germany
| | - Hugh C. Hemmings
- Departments of Anesthesiology and Pharmacology, Weill Medical College of Cornell University, New York, New York 10021
| | - Angus C. Nairn
- Laboratory of Cellular and Molecular Neuroscience, Rockefeller University, New York, New York 10021
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06508
| | - James A. Bibb
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
- To whom correspondence should be addressed: Dept. of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9070. Tel.: 214-648-4168; Fax: 214-648-1293;
| |
Collapse
|
21
|
Muñoz JP, Huichalaf CH, Orellana D, Maccioni RB. cdk5 modulates beta- and delta-catenin/Pin1 interactions in neuronal cells. J Cell Biochem 2007; 100:738-49. [PMID: 17009320 DOI: 10.1002/jcb.21041] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The cdk5/p35 complex has been implicated in a variety of functions related to brain development, including axonal outgrown and neuronal migration. In this study, by co-immunoprecipitation and pull-down experiments, we have shown that the cdk5/p35 complex associates with and phosphorylates the neuronal delta-catenin. Immunocytochemical studies of delta-catenin and the cdk5-activator p35 in primary cortical neurons indicated that these proteins co-localize in the cell body of neuronal cells. In addition, cdk5 co-localized with beta-catenin in the cell-cell contacts and plasma membrane of undifferentiated and differentiated N2A cells. In this context, we identified Ser(191) and Ser(246) on beta-catenin structure as specific phosphorylation sites for cdk5/p35 complex. Moreover, Pin1, a peptidyl-prolyl isomerase (PPIase) directly bound to both, beta- and delta-catenin, once they have been phosphorylated by the cdk5/p35 complex. Studies indicate that the cdk5/p35 protein kinase system is directly involved in the regulatory mechanisms of neuronal beta- and delta-catenin.
Collapse
Affiliation(s)
- Juan P Muñoz
- Laboratory of Cellular, Molecular Biology and Neurosciences, Faculty of Sciences, Millennium Institute for Advanced Studies in Cell Biology and Biotechnology, Department of Neurological Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | | | | | | |
Collapse
|
22
|
Mingorance-Le Meur A, Zheng B, Soriano E, del Río JA. Involvement of the myelin-associated inhibitor Nogo-A in early cortical development and neuronal maturation. ACTA ACUST UNITED AC 2006; 17:2375-86. [PMID: 17192421 DOI: 10.1093/cercor/bhl146] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nogo-A is a myelin-associated protein expressed by neurons and myelinating mature oligodendrocytes in the central nervous system. Although most research has focused on the participation of Nogo-A in the prevention of axonal regeneration and plasticity in the adult, little attention has been paid to the putative functions of Nogo-A during embryonic development. Here we examined the general pattern and cell-specific distribution of Nogo-A in the prenatal mouse telencephalon. In addition, we studied the development of the major axon tracts and radial and tangential migration in Nogo-A/B/C knockout mice. The pattern of Nogo-A showed distinct distribution in radial glia and postmitotic neurons, in which it is particularly enriched in developing axons. Similarly, Nogo-A was enriched at the leading process of tangentially migrating interneurons but not detectable in radial migrating neurons. Although a low level of Nogo-A appears to be on the surface of many cortical neurons, most proteins have intracellular localization. In Nogo-deficient background, neurons displayed early polarization and increased branching in vitro, probably reflecting a cell-intrinsic role of Nogo proteins in branching reduction, and early tangential migration was delayed. On the basis of these observations, we propose that Nogo proteins, particularly Nogo-A, are involved in multiple processes during cortical development.
Collapse
Affiliation(s)
- Ana Mingorance-Le Meur
- Department of Cell Biology, Cellular and Molecular Basis of Neurodegeneration and Neurorepair, Institute for Research in Biomedicine, University of Barcelona, Barcelona Science Park, Josep Samitier 1-5, 08028 Barcelona, Spain.
| | | | | | | |
Collapse
|
23
|
Riederer BM. Microtubule-associated protein 1B, a growth-associated and phosphorylated scaffold protein. Brain Res Bull 2006; 71:541-58. [PMID: 17292797 DOI: 10.1016/j.brainresbull.2006.11.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Accepted: 11/28/2006] [Indexed: 11/25/2022]
Abstract
Microtubule-associated protein 1B, MAP1B, is one of the major growth associated and cytoskeletal proteins in neuronal and glial cells. It is present as a full length protein or may be fragmented into a heavy chain and a light chain. It is essential to stabilize microtubules during the elongation of dendrites and neurites and is involved in the dynamics of morphological structures such as microtubules, microfilaments and growth cones. MAP1B function is modulated by phosphorylation and influences microtubule stability, microfilaments and growth cone motility. Considering its large size, several interactions with a variety of other proteins have been reported and there is increasing evidence that MAP1B plays a crucial role in the stability of the cytoskeleton and may have other cellular functions. Here we review molecular and functional aspects of this protein, evoke its role as a scaffold protein and have a look at several pathologies where the protein may be involved.
Collapse
Affiliation(s)
- Beat M Riederer
- Département de Biologie Cellulaire et de Morphologi), Université de Lausanne, 9 rue du Bugnon, CH-1005 Lausanne, Switzerland.
| |
Collapse
|
24
|
Wang ZF, Li HL, Li XC, Zhang Q, Tian Q, Wang Q, Xu H, Wang JZ. Effects of endogenous β-amyloid overproduction on tau phosphorylation in cell culture. J Neurochem 2006; 98:1167-75. [PMID: 16762022 DOI: 10.1111/j.1471-4159.2006.03956.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alzheimer's disease is characterized by beta-amyloid (Abeta) overproduction and tau hyperphosphorylation. Recent studies have shown that synthetic Abeta promotes tau phosphorylation in vitro. However, whether endogenously overproduced Abeta promotes tau phosphorylation and the underlying mechanisms remain unknown. Here, we used mouse neuroblastoma N2a stably expressing wild-type amyloid precursor protein (APPwt) or the Swedish mutant APP (APPswe) to determine the alterations of phosphorylated tau and the related protein kinases. We found that phosphorylation of tau at paired helical filament (PHF)-1, pSer396 and pThr231 epitopes was significantly increased in cells transfected with APPwt and APPswe, which produced higher levels of Abeta than cells transfected with vector or amyloid precursor-like protein 1. The activity of glycogen synthase kinase-3 (GSK-3) was up-regulated with a concomitant reduction in the inhibitory phosphorylation of GSK-3 at its N-terminal Ser9 residue. In contrast, the activity of cyclin-dependent kinase-5 (CDK-5) and protein kinase C (PKC) was down-regulated. Inhibition of GSK-3 by LiCl, but not inhibition of CDK-5 by roscovitine, arrested Abeta secretion and tau phosphorylation. Inhibition of PKC by GF-109203X activated GSK-3, whereas activation of PKC by phorbol-12,13-dibutyrate inhibited GSK-3. These results suggest that endogenously overproduced Abeta induces increased tau phosphorylation through activation of GSK-3, and that inactivation of PKC is at least one of the mechanisms involved in GSK-3 activation.
Collapse
Affiliation(s)
- Ze-Fen Wang
- Pathophysiology Department, Hubei Provincial Key Laboratory of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Kawauchi T, Chihama K, Nishimura YV, Nabeshima YI, Hoshino M. MAP1B phosphorylation is differentially regulated by Cdk5/p35, Cdk5/p25, and JNK. Biochem Biophys Res Commun 2005; 331:50-5. [PMID: 15845356 DOI: 10.1016/j.bbrc.2005.03.132] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Indexed: 11/21/2022]
Abstract
Mode I phosphorylated MAP1B is observed in developing and pathogenic brains. Although Cdk5 has been believed to phosphorylate MAP1B in the developing cerebral cortex, we show that a Cdk5 inhibitor does not suppress mode I phosphorylation of MAP1B in primary and slice cultures, while a JNK inhibitor does. Coincidently, an increase in phosphorylated MAP1B was not observed in COS7 cells when Cdk5 was cotransfected with p35, but this did occur with p25 which is specifically produced in pathogenic brains. Our primary culture studies showed an involvement of Cdk5 in regulating microtubule dynamics without affecting MAP1B phosphorylation status. The importance of regulating microtubule dynamics in neuronal migration was also demonstrated by in utero electroporation experiments. These findings suggest that mode I phosphorylation of MAP1B is facilitated by JNK but not Cdk5/p35 in the developing cerebral cortex and by Cdk5/p25 in pathogenic brains, contributing to various biological events.
Collapse
Affiliation(s)
- Takeshi Kawauchi
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | |
Collapse
|
26
|
Liao X, Zhang Y, Wang Y, Wang J. The effect of cdk-5 overexpression on tau phosphorylation and spatial memory of rat. ACTA ACUST UNITED AC 2005; 47:251-7. [PMID: 15524282 DOI: 10.1007/bf03182770] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In Alzheimer's disease (AD), hyperphosphorylation of tau may be the underlying mechanism for the cytoskeletal abnormalities and neuronal death. It was reported that cyclin-dependent kinase5 (cdk-5) could phosphorylate tau at most AD-related epitopes in vitro. In this study, we investigated the effect of cdk-5 overexpression on tau phosphorylation and spatial memory in rat. We demonstrated that 24 h after transfection into rat hippocampus, cdk-5 was overexpressed and induced a reduced staining with antibody tau-1 and an enhanced staining with antibodies 12e8 and PHF-1, suggesting hyperphosphorylation of tau at Ser199/202, Ser262/356 and Ser396/404 sites. Additionally, the cdk-5 transfected rats showed long latency to find the hidden platform in Morris water maze compared to the control rat. 48 h after transfection, the level of cdk-5 was decreased significantly, and the latency of rats to find the hidden platform was prolonged. It implies that in vivo overexpression of cdk-5 leads to impairment of spatial memory in rat and tau hyperphosphorylation may be the underlying mechanism.
Collapse
Affiliation(s)
- Xiaomei Liao
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | | | | | | |
Collapse
|
27
|
Castro A, Martinez A. Inhibition of tau phosphorylation: a new therapeutic strategy for the treatment of Alzheimer’s disease and other neurodegenerative disorders. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.10.10.1519] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
28
|
Rosania GR, Chang YT. Targeting hyperproliferative disorders with cyclin dependent kinase inhibitors. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.10.2.215] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
Hahn CM, Kleinholz H, Koester MP, Grieser S, Thelen K, Pollerberg GE. Role of cyclin-dependent kinase 5 and its activator P35 in local axon and growth cone stabilization. Neuroscience 2005; 134:449-65. [PMID: 15964697 DOI: 10.1016/j.neuroscience.2005.04.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2005] [Revised: 03/23/2005] [Accepted: 04/05/2005] [Indexed: 12/11/2022]
Abstract
Axons elongate and perform steering reactions with their growth cones constantly undergoing local collapse and stabilization. Our previous studies have shown that a type-1 phosphorylated form of microtubule-associated protein 1B, recognized by monoclonal antibody 1E11 (mab1E11), is present in stable regions and absent from unstable regions of turning growth cones of retinal ganglion cells. In contrast, the total population of microtubule-associated protein 1B is present in the entire growth cone. Here we demonstrate that inhibition of cyclin-dependent kinase 5 (Cdk5) results in loss of mab1E11 binding whereas inhibition of glycogen synthase kinase 3 has no such effect, revealing that mab1E11 recognizes a Cdk5 phosphorylation site on type-1 phosphorylated form of microtubule-associated protein 1B. We moreover show that kinase Cdk5 as well as its activator P35 is present in retinal ganglion cells in the early developing chick embryo retina and enriched in their extending axons. Cdk5 and P35 are concentrated in the youngest, distal axon region and the growth cone as also seen for Cdk5-phosphorylated type-1 phosphorylated form of microtubule-associated protein 1B. Inhibition of Cdk5 by antibodies or inhibitor Roscovitine results in growth cone collapse and axon retraction and prevents substantial axon outgrowth. In contrast, glycogen synthase kinase 3 inhibition causes only a transient axon retraction which is soon recovered and allows for axon formation. In growth cones induced to turn at substrate borders, where stable and instable parts of the growth cone are clearly defined, Cdk5 is present in the entire growth cone. P35, in contrast, is restricted to the stable parts of the growth cone, which do not collapse but instead transform into new distal axon. The local presence of Cdk5-phosphorylated type-1 phosphorylated form of microtubule-associated protein 1B in stabilized growth cone areas can be therefore attributed to the local activation of Cdk5 by P35 in these regions. Together our data demonstrate a crucial role of Cdk5 and its activator P35 in elongation and maintenance of axons as well as for stability and steering of their growth cones.
Collapse
Affiliation(s)
- C M Hahn
- Department of Developmental Neurobiology, Institute of Zoology, University of Heidelberg, Im Neuenheimer Feld 232, D-69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
30
|
González-Billault C, Del Río JA, Ureña JM, Jiménez-Mateos EM, Barallobre MJ, Pascual M, Pujadas L, Simó S, Torre AL, Gavin R, Wandosell F, Soriano E, Avila J. A role of MAP1B in Reelin-dependent neuronal migration. ACTA ACUST UNITED AC 2004; 15:1134-45. [PMID: 15590913 DOI: 10.1093/cercor/bhh213] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The signaling cascades governing neuronal migration are believed to link extracellular signals to cytoskeletal components. MAP1B is a neuron-specific microtubule-associated protein implicated in the control of the dynamic stability of microtubules and in the cross-talk between microtubules and actin filaments. Here we show that Reelin can induce mode I MAP1B phosphorylation, both in vivo and in vitro, through gsk3 and cdk5 activation. Additionally, mDab1 participates in the signaling cascade responsible for mode I MAP1B phosphorylation. Conversely, MAP1B-deficient mice display an abnormal structuring of the nervous system, especially in brain laminated areas, indicating a failure in neuronal migration. Therefore, we propose that Reelin can induce post-translational modifications on MAP1B that could correlate with its function in neuronal migration.
Collapse
|
31
|
Orbán-Németh Z, Simader H, Badurek S, Tranciková A, Propst F. Microtubule-associated protein 1S, a short and ubiquitously expressed member of the microtubule-associated protein 1 family. J Biol Chem 2004; 280:2257-65. [PMID: 15528209 DOI: 10.1074/jbc.m408984200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The related high molecular mass microtubule-associated proteins (MAPs) MAP1A and MAP1B are predominantly expressed in the nervous system and are involved in axon guidance and synaptic function. MAP1B is implicated in fragile X mental retardation, giant axonal neuropathy, and ataxia type 1. We report the functional characterization of a novel member of the microtubule-associated protein 1 family, which we termed MAP1S (corresponding to sequence data bank entries for VCY2IP1 and C19ORF5). MAP1S contains the three hallmark domains of the microtubule-associated protein 1 family but hardly any additional sequences. It decorates neuronal microtubules and copurifies with tubulin from brain. MAP1S is synthesized as a precursor protein that is partially cleaved into heavy and light chains in a tissue-specific manner. Heavy and light chains interact to form the MAP1S complex. The light chain binds, bundles, and stabilizes microtubules and binds to actin. The heavy chain appears to regulate light chain activity. In contrast to MAP1A and MAP1B, MAP1S is expressed in a wide range of tissues in addition to neurons and represents the non-neuronal counterpart of this cytolinker family.
Collapse
Affiliation(s)
- Zsuzsanna Orbán-Németh
- Institute of Biochemistry and Molecular Cell Biology, Vienna Biocenter, University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | | | | | | | | |
Collapse
|
32
|
Morfini G, Szebenyi G, Brown H, Pant HC, Pigino G, DeBoer S, Beffert U, Brady ST. A novel CDK5-dependent pathway for regulating GSK3 activity and kinesin-driven motility in neurons. EMBO J 2004; 23:2235-45. [PMID: 15152189 PMCID: PMC419914 DOI: 10.1038/sj.emboj.7600237] [Citation(s) in RCA: 225] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2003] [Accepted: 04/20/2004] [Indexed: 11/09/2022] Open
Abstract
Neuronal transmission of information requires polarized distribution of membrane proteins within axonal compartments. Membrane proteins are synthesized and packaged in membrane-bounded organelles (MBOs) in neuronal cell bodies and later transported to axons by microtubule-dependent motor proteins. Molecular mechanisms underlying targeted delivery of MBOs to discrete axonal subdomains (i.e. nodes of Ranvier or presynaptic terminals) are poorly understood, but regulatory pathways for microtubule motors may be an essential step. In this work, pharmacological, biochemical and in vivo experiments define a novel regulatory pathway for kinesin-driven motility in axons. This pathway involves enzymatic activities of cyclin-dependent kinase 5 (CDK5), protein phosphatase 1 (PP1) and glycogen synthase kinase-3 (GSK3). Inhibition of CDK5 activity in axons leads to activation of GSK3 by PP1, phosphorylation of kinesin light chains by GSK3 and detachment of kinesin from transported cargoes. We propose that regulating the activity and localization of components in this pathway allows nerve cells to target organelle delivery to specific subcellular compartments. Implications of these findings for pathogenesis of neurodegenerative diseases such as Alzheimer's disease are discussed.
Collapse
Affiliation(s)
- Gerardo Morfini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
- Marine Biological Laboratory, Woods Hole, MA, USA
| | - Györgyi Szebenyi
- Department of Cell Biology and Center for Basic Neuroscience, UT Southwestern, Dallas, TX, USA
| | - Hannah Brown
- Marine Biological Laboratory, Woods Hole, MA, USA
| | - Harish C Pant
- Marine Biological Laboratory, Woods Hole, MA, USA
- Laboratory of Neurochemistry, NINDS, Bethesda, MD, USA
| | - Gustavo Pigino
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Scott DeBoer
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Uwe Beffert
- Department of Molecular Genetics, UT Southwestern, Dallas, TX, USA
| | - Scott T Brady
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
- Marine Biological Laboratory, Woods Hole, MA, USA
- Anatomy and Cell Biology M/C 512, 808 S Wood St, University of Illinois at Chicago, Chicago, IL 60612, USA. Tel.: +1 312 996 6791; Fax: +1 312 413 0354; E-mail:
| |
Collapse
|
33
|
Tsai LH, Lee MS, Cruz J. Cdk5, a therapeutic target for Alzheimer's disease? BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1697:137-42. [PMID: 15023356 DOI: 10.1016/j.bbapap.2003.11.019] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2003] [Accepted: 11/12/2003] [Indexed: 11/18/2022]
Abstract
Alzheimer's disease (AD) represents the leading cause for senile dementia affecting more than 4 million people worldwide. AD patients display a triad of pathological features including brain atrophy caused by neuronal loss, beta-amyloid plaque and neurofibrillary tangles. We previously show that Cyclin-dependent kinase 5 (Cdk5) is deregulated in AD brains and may contribute to the pathogenesis of AD. In AD brains, a calpain cleavage product of its physiological regulator p35, p25 is elevated. p25 causes prolonged activation of Cdk5 and alteration of its substrate specificity. The implications of p25/Cdk5 in neurotoxicity, beta-amyloid plaque and neurofibrillary tangle pathology will be discussed.
Collapse
Affiliation(s)
- Li-Huei Tsai
- Department of Pathology, Harvard Medical School, Howard Hughes Medical Institute, 200 Longwood Avenue, Boston, MA 02115, USA.
| | | | | |
Collapse
|
34
|
Lilja L, Johansson JU, Gromada J, Mandic SA, Fried G, Berggren PO, Bark C. Cyclin-dependent kinase 5 associated with p39 promotes Munc18-1 phosphorylation and Ca(2+)-dependent exocytosis. J Biol Chem 2004; 279:29534-41. [PMID: 15123626 DOI: 10.1074/jbc.m312711200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine protein kinase that requires association with a regulatory protein, p35 or p39, to form an active enzyme. Munc18-1 plays an essential role in membrane fusion, and its function is regulated by phosphorylation. We report here that both p35 and p39 were expressed in insulin-secreting beta-cells, where they exhibited individual subcellular distributions and associated with membranous organelles of different densities. Overexpression of Cdk5, p35, or p39 showed that Cdk5 and p39 augmented Ca(2+)-induced insulin exocytosis. Suppression of p39 and Cdk5, but not of p35, by antisense oligonucleotides selectively inhibited insulin exocytosis. Transient transfection of primary beta-cells with Munc18-1 templates mutated in potential Cdk5 or PKC phosphorylation sites, in combination with Cdk5 and the different Cdk5 activators, suggested that Cdk5/p39-promoted Ca(2+)-dependent insulin secretion from primary beta-cells by phosphorylating Munc18-1 at a biochemical step immediately prior to vesicle fusion.
Collapse
Affiliation(s)
- Lena Lilja
- Department of Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
35
|
Zapata-Torres G, Opazo F, Salgado C, Muñoz JP, Krautwurst H, Mascayano C, Sepúlveda-Boza S, Maccioni RB, Cassels BK. Effects of natural flavones and flavonols on the kinase activity of Cdk5. JOURNAL OF NATURAL PRODUCTS 2004; 67:416-420. [PMID: 15043421 DOI: 10.1021/np034011s] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A number of natural and synthetic flavonoids have been assessed previously with regard to their effects on the activity of cyclin-dependent kinases (Cdk1 and -2) related to the inhibition of cell cycle progression. On the other hand, the Cdk5/p35 system is of major importance in neuronal migration phenomena and brain development, and its deregulation is implicated in neurodegenerative diseases, particularly Alzheimer's. Here we show that some natural flavonoids inhibit the activity of the Cdk5/p35 system in the micromolar range, while others are practically inactive. Ring B-unsubstituted and highly methoxylated flavones were inactive or gave irreproducible results, and 6-methoxyapigenin and 6-methoxyluteolin were the most potent Cdk5 complex inhibitors within this series, while the common flavonols kaempferol and quercetin showed intermediate behavior. The reported crystal structure of the Cdk5 complex with its activator p25 was used for docking studies, which also led to the identification of the two 6-methoxyflavones, kaempferol and quercetin, as well as the untested 6-methoxy derivatives of kaempferol and quercetin and the corresponding 6-hydroxy analogues as compounds exhibiting a good fit to the active site of the enzyme.
Collapse
Affiliation(s)
- Gerald Zapata-Torres
- Millennium Institute for Advanced Studies in Cell Biology and Biotechnology (CBB) and Department of Chemistry, Faculty of Sciences, University of Chile, P.O. Box 653, Santiago, Chile
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Grenningloh G, Soehrman S, Bondallaz P, Ruchti E, Cadas H. Role of the microtubule destabilizing proteins SCG10 and stathmin in neuronal growth. ACTA ACUST UNITED AC 2004; 58:60-9. [PMID: 14598370 DOI: 10.1002/neu.10279] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The related proteins SCG10 and stathmin are highly expressed in the developing nervous system. Recently it was discovered that they are potent microtubule destabilizing factors. While stathmin is expressed in a variety of cell types and shows a cytosolic distribution, SCG10 is neuron-specific and membrane-associated. It contains an N-terminal targeting sequence that mediates its transport to the growing tips of axons and dendrites. SCG10 accumulates in the central domain of the growth cone, a region that also contains highly dynamic microtubules. These dynamic microtubules are known to be important for growth cone advance and responses to guidance cues. Because overexpression of SCG10 strongly enhances neurite outgrowth, SCG10 appears to be an important factor for the dynamic assembly and disassembly of growth cone microtubules during axonal elongation. Phosphorylation negatively regulates the microtubule destabilizing activity of SCG10 and stathmin, suggesting that these proteins may link extracellular signals to the rearrangement of the neuronal cytoskeleton. A role for these proteins in axonal elongation is also supported by their growth-associated expression pattern in nervous system development as well as during neuronal regeneration.
Collapse
Affiliation(s)
- Gabriele Grenningloh
- Institut de Biologie Cellulaire et de Morphologie, Université de Lausanne, 1005 Lausanne, Suisse
| | | | | | | | | |
Collapse
|
37
|
Gonzalez-Billault C, Jimenez-Mateos EM, Caceres A, Diaz-Nido J, Wandosell F, Avila J. Microtubule-associated protein 1B function during normal development, regeneration, and pathological conditions in the nervous system. ACTA ACUST UNITED AC 2004; 58:48-59. [PMID: 14598369 DOI: 10.1002/neu.10283] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Microtubule-associated protein 1B is the first MAP to be expressed during the development of the nervous system. Several different approaches have revealed that MAP1B function is associated with microtubule and actin microfilament polymerization and dynamics. In recent years, the generation of molecular models to inactivate MAP1B function in invertebrates and mammals has sparked some controversy about the real role of MAP1B. Despite discrepancies between some studies, it is clear that MAP1B plays a principal role in the development of the nervous system. In this article, we summarize the evidence for MAP1B function in a wide variety of cellular processes implicated in the proper construction of the nervous system. We also discuss the role of MAP1B in pathological processes.
Collapse
|
38
|
Abstract
Cyclin-dependent kinase-5 (CDK5) is predominantly active in the nervous system and it is well established that CDK5 is essential in neuronal development. In addition to its recognized role in development, there is increasing evidence that CDK5 may be involved in the pathogenesis of several neurodegenerative disorders. Although studies have shown that CDK5 can modulate cell death and survival, controversy still exists as to the exact role CDK5 may play in neurodegenerative processes. This review will highlight recent data on the possible roles of CDK5 in neurodegeneration.
Collapse
Affiliation(s)
- Shirley B Shelton
- Department of Psychiatry, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
|
39
|
|
40
|
|
41
|
Emery DL, Royo NC, Fischer I, Saatman KE, McIntosh TK. Plasticity following Injury to the Adult Central Nervous System: Is Recapitulation of a Developmental State Worth Promoting? J Neurotrauma 2003; 20:1271-92. [PMID: 14748977 DOI: 10.1089/089771503322686085] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The adult central nervous system (CNS) appears to initiate a transient increase in plasticity following injury, including increases in growth-related proteins and generation of new cells. Recent evidence is reviewed that the injured adult CNS exhibits events and patterns of gene expression that are also observed during development and during regeneration following damage to the mature peripheral nervous system (PNS). The growth of neurons during development or regeneration is correlated, in part, with a coordinated expression of growth-related proteins, such as growth-associated-protein-43 (GAP-43), microtubule-associated-protein-1B (MAP1B), and polysialylated-neural-cell-adhesion-molecule (PSA-NCAM). For each of these proteins, evidence is discussed regarding its specific role in neuronal development, signals that modify its expression, and reappearance following injury. The rate of adult hippocampal neurogenesis is also affected by numerous endogenous and exogenous factors including injury. The continuing study of developmental neurobiology will likely provide further gene and protein targets for increasing plasticity and regeneration in the mature adult CNS.
Collapse
Affiliation(s)
- Dana L Emery
- Head Injury Center, Department of Neurosurgery, University of Pennsylvania, USA
| | | | | | | | | |
Collapse
|
42
|
Takahashi S, Saito T, Hisanaga SI, Pant HC, Kulkarni AB. Tau phosphorylation by cyclin-dependent kinase 5/p39 during brain development reduces its affinity for microtubules. J Biol Chem 2003; 278:10506-15. [PMID: 12536148 DOI: 10.1074/jbc.m211964200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The microtubule-associated protein tau is a developmentally regulated neuronal phosphoprotein. The phosphorylation of tau reduces its ability to bind and stabilize axonal microtubules during axonal growth. Although tau is phosphorylated by cyclin-dependent kinase 5 (Cdk5) in vitro, its in vivo roles remain unclear. Here, we show that tau is phosphorylated by Cdk5/p39 during brain development, resulting in a reduction of its affinity for microtubules. The activity of Cdk5 is tightly regulated by association with its neuronal activators, p35 or p39. The p35 and p39 expression levels were investigated in the developing mouse brain; the p39 expression level was higher in embryonic hind brain and spinal cord and in postnatal cerebral cortex, whereas that of p35 was most prominent in cerebral cortex at earlier stages of development. The ability of Cdk5 to phosphorylate tau was higher when in association with p39 than in association with p35. Tau phosphorylation at Ser-202 and Thr-205 was decreased in Cdk5-/- mouse brain but not in p35-/- mouse brain, suggesting that Cdk5/p39 is responsible for the in vivo phosphorylation of tau at these sites. Our data suggest that tau phosphorylation by Cdk5 may provide the neuronal microtubules with dynamic properties in a region-specific and developmentally regulated manner.
Collapse
Affiliation(s)
- Satoru Takahashi
- Functional Genomics Unit, NIDCR, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
43
|
Abstract
Ramon y Cajal proclaimed in 1928 that "once development was ended, the founts of growth and regeneration of the axons and dendrites dried up irrevocably. In the adult centers the nerve paths are something fixed, ended and immutable. Everything must die, nothing may be regenerated. It is for the science of the future to change, if possible, this harsh decree." (Ramon y Cajal, 1928). In large part, despite the extensive knowledge gained since then, the latter directive has not yet been achieved by 'modern' science. Although we know now that Ramon y Cajal's observation on CNS plasticity is largely true (for lower brain and primary cortical structures), there are mechanisms for recovery from CNS injury. These mechanisms, however, may contribute to the vulnerability to neurodegenerative disease. They may also be exploited therapeutically to help alleviate the suffering from neurodegenerative conditions.
Collapse
Affiliation(s)
- Bruce Teter
- Department of Medicine, University of California Los Angeles, California and Veteran's Affairs-Greater Los Angeles Healthcare System, Sepulveda, California 91343, USA
| | | |
Collapse
|
44
|
Farias GA, Muñoz JP, Garrido J, Maccioni RB. Tubulin, actin, and tau protein interactions and the study of their macromolecular assemblies. J Cell Biochem 2002; 85:315-24. [PMID: 11948687 DOI: 10.1002/jcb.10133] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The intracellular polymerization of cytoskeletal proteins into their supramolecular assemblies raises many questions regarding the regulatory patterns that control this process. Binding experiments using the ELISA solid phase system, together with protein assembly assays and electron microscopical studies provided clues on the protein-protein associations in the polymerization of tubulin and actin networks. In vitro reconstitution experiments of these cytoskeletal filaments using purified tau, tubulin, and actin proteins were carried out. Tau protein association with tubulin immobilized in a solid phase support system was inhibited by actin monomer, and a higher inhibition was attained in the presence of preassembled actin filaments. Conversely, tubulin and assembled microtubules strongly inhibited tau interaction with actin in the solid phase system. Actin filaments decreased the extent of in vitro tau-induced tubulin assembly. Studies on the morphological aspects of microtubules and actin filaments coexisting in vitro, revealed the association between both cytoskeletal filaments, and in some cases, the presence of fine filamentous structures bridging these polymers. Immunogold studies showed the association of tau along polymerized microtubules and actin filaments, even though a preferential localization of labeled tau with microtubules was revealed. The studies provide further evidence for the involvement of tau protein in modulating the interactions of microtubules and actin polymers in the organization of the cytsokeletal network.
Collapse
Affiliation(s)
- Gustavo A Farias
- Laboratory of Cellular and Molecular Biology, Millennium Institute for Advanced Studies in Cell Biology and Biotechnology (CBB), Universidad de Chile, Las Palmeras 3425, Nuñoa, Santiago, Chile
| | | | | | | |
Collapse
|
45
|
Abstract
Neurones are highly specialised cells that can extend over great distances, enabling the complex networking of the nervous system. We are beginning to understand in detail the molecular mechanisms that control the shape of neurones during development. One family of proteins that are clearly essential are the Rho GTPases which have a pivotal role in regulating the actin cytoskeleton in all cell types. The Rho GTPases are responsible for the activation and downregulation of many downstream kinases. This review discusses individual kinases that are regulated by three members of the Rho GTPases, Rac, Rho and Cdc42 and their function during neurite outgrowth and remodelling.
Collapse
Affiliation(s)
- Margareta Nikolic
- Molecular and Developmental Neurobiology MRC Centre, New Hunt's House, King's College London, London SE1 1UL, UK.
| |
Collapse
|
46
|
Gupta A, Tsai LH, Wynshaw-Boris A. Life is a journey: a genetic look at neocortical development. Nat Rev Genet 2002; 3:342-55. [PMID: 11988760 DOI: 10.1038/nrg799] [Citation(s) in RCA: 280] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although the basic principles of neocortical development have been known for quite some time, it is only recently that our understanding of the molecular mechanisms that are involved has improved. Such understanding has been facilitated by genetic approaches that have identified key proteins involved in neocortical development, which have been placed into signalling pathways by molecular and cell-biological studies. The challenge of current research is to understand the manner in which these various signalling pathways are interconnected to gain a more comprehensive picture of the molecular intricacies that govern neocortical development.
Collapse
Affiliation(s)
- Amitabh Gupta
- Department of Pathology, Harvard Medical School, Howard Hughes Medical Institute, 200 Longwood Avenue, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
47
|
Fu WY, Wang JH, Ip NY. Expression of Cdk5 and its activators in NT2 cells during neuronal differentiation. J Neurochem 2002; 81:646-54. [PMID: 12065673 DOI: 10.1046/j.1471-4159.2002.00856.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have recently developed a rapid protocol involving NT2 cell aggregation and treatment with retinoic acid (RA) to produce terminally differentiated CNS neurons. As a first step to explore the functional roles of cell-cycle regulatory proteins in the process of neuronal differentiation, the expression profiles of cyclin-dependent kinases (Cdks) and their regulators were examined in NT2 cells following treatment with RA. One of the Cdks, Cdk5, has been demonstrated to affect the process of neuronal differentiation and suggested to play an important role in development of the nervous system. We found that the expression of Cdk5 was gradually increased, while its activators (p35 and p39) as well as Cdk5 kinase activity were induced in NT2 cells during the process of neuronal differentiation. Moreover, both p35 and p39 were localized along the axons and varicosity-like structures of differentiated NT2 neurons. Taken together, our results demonstrated that NT2 cells provide a good in vitro model system to examine signaling pathways involved in the regulation of Cdk5 activators and to elucidate the functional roles of Cdk5 in neuronal differentiation.
Collapse
Affiliation(s)
- Wing-Yu Fu
- Department of Biochemistry, Molecular Neuroscience Center and Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | | | | |
Collapse
|
48
|
Cassimeris L, Spittle C. Regulation of microtubule-associated proteins. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 210:163-226. [PMID: 11580206 DOI: 10.1016/s0074-7696(01)10006-9] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Microtubule-associated proteins (MAPs) function to regulate the assembly dynamics and organization of microtubule polymers. Upstream regulation of MAP activities is the major mechanism used by cells to modify and control microtubule assembly and organization. This review summarizes the functional activities of MAPs found in animal cells and discusses how these MAPs are regulated. Mechanisms controlling gene expression, isoform-specific expression, protein localization, phosphorylation, and degradation are discussed. Additional regulatory mechanisms include synergy or competition between MAPs and the activities of cofactors or binding partners. For each MAP it is likely that regulation in vivo reflects a composite of multiple regulatory mechanisms.
Collapse
Affiliation(s)
- L Cassimeris
- Department of Biological Sciences, Lehigh University Bethlehem, Pennsylvania 18015, USA
| | | |
Collapse
|
49
|
Abstract
Cdk5, a serine/threonine kinase in the cyclin-dependent kinase (Cdk) family, is an important regulator of neuronal positioning during brain development. Cdk5 might also play a role in synaptogenesis and neurotransmission. Loss of Cdk5 in mice is perinatal lethal, and overactive Cdk5 induces apoptosis in cultured cells, indicating that strict regulation of kinase activity is crucial. Indeed, activity depends on the stability of activating partners, subcellular localization and the phosphorylation state of the enzyme itself. Deregulated kinase activity has been linked to neurodegenerative diseases such as Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS). This review focuses on links between Cdk5 activity and components of cytoskeletal, membrane and adhesion systems that allow us to postulate a role for Cdk5 in directing intracellular traffic in neurons.
Collapse
Affiliation(s)
- Deanna S Smith
- Dept of Biological Sciences, CLS 607, University of South Carolina, Columbia 29208, USA
| | | |
Collapse
|
50
|
Rashid T, Banerjee M, Nikolic M. Phosphorylation of Pak1 by the p35/Cdk5 kinase affects neuronal morphology. J Biol Chem 2001; 276:49043-52. [PMID: 11604394 DOI: 10.1074/jbc.m105599200] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The small GTPase Rac and its effectors, the Pak1 and p35/Cdk5 kinases, have been assigned important roles in regulating cytoskeletal dynamics in neurons. Our previous work revealed that the neuronal p35/Cdk5 kinase associates with Pak1 in a RacGTP-dependent manner, causing hyperphosphorylation and down-regulation of Pak1 kinase activity. We have now demonstrated direct phosphorylation of Pak1 on threonine 212 by the p35/Cdk5 kinase. In neuronal growth cones, Pak1 phosphorylated on Thr-212 localized to actin and tubulin-rich areas, suggesting a role in regulating growth cone dynamics. The expression of a non-phosphorylatable Pak1 mutant (Pak1A212) induced dramatic neurite disorganization. We also observed a strong association between p35/Cdk5 and the Pak1 C-terminal kinase domain. Overall, our data show that in neurons, membrane-associated, active Pak1 is regulated by the p35/Cdk5 kinase both by association and phosphorylation, which is essential for the proper regulation of the cytoskeleton during neurite outgrowth and remodeling.
Collapse
Affiliation(s)
- T Rashid
- Molecular and Developmental Neurobiology Medical Research Council Centre, New Hunt's House, King's College London, London, SE1 1UL, United Kingdom
| | | | | |
Collapse
|