1
|
Luís C, Soares R, Fernandes R, Botelho M. Cell-adhesion Molecules as Key Mechanisms of Tumor Invasion: The Case of Breast Cancer. Curr Mol Med 2023; 23:147-160. [PMID: 34365950 DOI: 10.2174/1566524021666210806155231] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/10/2021] [Accepted: 03/23/2021] [Indexed: 12/16/2022]
Abstract
Cancer is a major health problem worldwide and the second leading cause of death following cardiovascular diseases. Breast cancer is the leading cause of mortality and morbidity among women and one of the most common malignant neoplasms prompt to metastatic disease. In the present review, the mechanisms of the major cell adhesion molecules involved in tumor invasion are discussed, focusing on the case of breast cancer. A non-systematic updated revision of the literature was performed in order to assemble information regarding the expression of the adhesion cell molecules associated with metastasis.
Collapse
Affiliation(s)
- Carla Luís
- Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
- Instituto de investigação e inovação em saúde, i3s, University of Porto, Porto, Portugal
- LABMI-PORTIC, Laboratory of Medical & Industrial Biotechnology, Porto Research, Technology and Innovation Center, Porto, Portugal
| | - Raquel Soares
- Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
- Instituto de investigação e inovação em saúde, i3s, University of Porto, Porto, Portugal
| | - Rúben Fernandes
- Departament of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
- LABMI-PORTIC, Laboratory of Medical & Industrial Biotechnology, Porto Research, Technology and Innovation Center, Porto, Portu
| | - Mónica Botelho
- Instituto de investigação e inovação em saúde, i3s, University of Porto, Porto, Portugal
- National Health Institute Ricardo Jorge, Porto, Portugal; Polytechnic Institute of Porto, Porto, Portugal
- LABMI-PORTIC, Laboratory of Medical & Industrial Biotechnology, Porto Research, Technology and Innovation Center, Porto, Portugal
| |
Collapse
|
2
|
Dosh RH, Jordan-Mahy N, Sammon C, Le Maitre CL. Tissue Engineering Laboratory Models of the Small Intestine. TISSUE ENGINEERING PART B-REVIEWS 2018; 24:98-111. [DOI: 10.1089/ten.teb.2017.0276] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Rasha Hatem Dosh
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
- Department of Anatomy and Histology, Faculty of Medicine, University of Kufa, Kufa, Iraq
| | - Nicola Jordan-Mahy
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | - Christopher Sammon
- Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield, United Kingdom
| | - Christine Lyn Le Maitre
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| |
Collapse
|
3
|
Use of hydrogel scaffolds to develop an in vitro 3D culture model of human intestinal epithelium. Acta Biomater 2017; 62:128-143. [PMID: 28859901 DOI: 10.1016/j.actbio.2017.08.035] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/17/2017] [Accepted: 08/27/2017] [Indexed: 01/25/2023]
Abstract
The human intestinal cell lines: Caco-2 and HT29-MTX cells have been used extensively in 2D and 3D cell cultures as simple models of the small intestinal epithelium in vitro. This study aimed to investigate the potential of three hydrogel scaffolds to support the 3D culture of Caco-2 and HT29-MTX cells and critically assess their use as scaffolds to stimulate villi formation to model a small intestinal epithelium in vitro. Here, alginate, l-pNIPAM, and l-pNIPAM-co-DMAc hydrogels were investigated. The cells were suspended within or layered on these hydrogels and maintained under static or dynamic culture conditions for up to 21days. Caco-2 cell viability was increased when layered on the synthetic hydrogel scaffolds, but reduced when suspended within the synthetic hydrogels. In contrast, HT29-MTX cells remained viable when suspended within or layered on all 3D cultures. Interestingly, cells cultured in and on the alginate hydrogel scaffolds formed multilayer spheroid structures, whilst the cells layered on synthetic hydrogels formed villus-like structures. Immunohistochemistry staining demonstrated positive expression of enterocyte differentiation markers and goblet cell marker. In conclusion, l-pNIPAM hydrogel scaffolds supported both cell lines and induced formation of villus-like structures when cells were layered on and cultured under dynamic conditions. The ability of the l-pNIPAM to recapitulate the 3D structure and differentiate main cell types of human intestinal villi may deliver a potential alternative in vitro model for studying intestinal disease and for drug testing. STATEMENT OF SIGNIFICANCE Forty percent of hospital referrals are linked to disorders of the digestive tract. Current studies have utilised animal models or simple cultures of isolated cells which do not behave in the same manner as human intestine. Thus new models are required which more closely mimic the behaviour of intestinal cells. Here, we tested a number of scaffolds and conditions to develop a cell culture model which closely represents the 3D environment seen within the human small intestine. We successfully created structures seen within the intestine which have not previously been possible with other culture models. These models could be used to investigate tissue engineering, drug discovery, and used asan alternative to in vivo animal models in drug toxicity studies.
Collapse
|
4
|
Rogers RS, Nishimune H. The role of laminins in the organization and function of neuromuscular junctions. Matrix Biol 2016; 57-58:86-105. [PMID: 27614294 DOI: 10.1016/j.matbio.2016.08.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/10/2016] [Accepted: 08/17/2016] [Indexed: 01/11/2023]
Abstract
The synapse between motor neurons and skeletal muscle is known as the neuromuscular junction (NMJ). Proper alignment of presynaptic and post-synaptic structures of motor neurons and muscle fibers, respectively, is essential for efficient motor control of skeletal muscles. The synaptic cleft between these two cells is filled with basal lamina. Laminins are heterotrimer extracellular matrix molecules that are key members of the basal lamina. Laminin α4, α5, and β2 chains specifically localize to NMJs, and these laminin isoforms play a critical role in maintenance of NMJs and organization of synaptic vesicle release sites known as active zones. These individual laminin chains exert their role in organizing NMJs by binding to their receptors including integrins, dystroglycan, and voltage-gated calcium channels (VGCCs). Disruption of these laminins or the laminin-receptor interaction occurs in neuromuscular diseases including Pierson syndrome and Lambert-Eaton myasthenic syndrome (LEMS). Interventions to maintain proper level of laminins and their receptor interactions may be insightful in treating neuromuscular diseases and aging related degeneration of NMJs.
Collapse
Affiliation(s)
- Robert S Rogers
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, Kansas, USA.
| | - Hiroshi Nishimune
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, Kansas, USA.
| |
Collapse
|
5
|
Generating and characterizing the mechanical properties of cell-derived matrices using atomic force microscopy. Methods 2015; 94:85-100. [PMID: 26439175 DOI: 10.1016/j.ymeth.2015.09.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 08/26/2015] [Accepted: 09/14/2015] [Indexed: 12/22/2022] Open
Abstract
Mechanical interaction between cells and their surrounding extracellular matrix (ECM) controls key processes such as proliferation, differentiation and motility. For many years, two-dimensional (2D) models were used to better understand the interactions between cells and their surrounding ECM. More recently, variation of the mechanical properties of tissues has been reported to play a major role in physiological and pathological scenarios such as cancer progression. The 3D architecture of the ECM finely tunes cellular behavior to perform physiologically relevant tasks. Technical limitations prevented scientists from obtaining accurate assessment of the mechanical properties of physiologically realistic matrices. There is therefore a need for combining the production of high-quality cell-derived 3D matrices (CDMs) and the characterization of their topographical and mechanical properties. Here, we describe methods that allow to accurately measure the young modulus of matrices produced by various cellular types. In the first part, we will describe and review several protocols for generating CDMs matrices from endothelial, epithelial, fibroblastic, muscle and mesenchymal stem cells. We will discuss tools allowing the characterization of the topographical details as well as of the protein content of such CDMs. In a second part, we will report the methodologies that can be used, based on atomic force microscopy, to accurately evaluate the stiffness properties of the CDMs through the quantification of their young modulus. Altogether, such methodologies allow characterizing the stiffness and topography of matrices deposited by the cells, which is key for the understanding of cellular behavior in physiological conditions.
Collapse
|
6
|
Spenlé C, Lefebvre O, Lacroute J, Méchine-Neuville A, Barreau F, Blottière HM, Duclos B, Arnold C, Hussenet T, Hemmerlé J, Gullberg D, Kedinger M, Sorokin L, Orend G, Simon-Assmann P. The laminin response in inflammatory bowel disease: protection or malignancy? PLoS One 2014; 9:e111336. [PMID: 25347196 PMCID: PMC4210184 DOI: 10.1371/journal.pone.0111336] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/23/2014] [Indexed: 02/07/2023] Open
Abstract
Laminins (LM), basement membrane molecules and mediators of epithelial-stromal communication, are crucial in tissue homeostasis. Inflammatory Bowel Diseases (IBD) are multifactorial pathologies where the microenvironment and in particular LM play an important yet poorly understood role in tissue maintenance, and in cancer progression which represents an inherent risk of IBD. Here we showed first that in human IBD colonic samples and in murine colitis the LMα1 and LMα5 chains are specifically and ectopically overexpressed with a concomitant nuclear p53 accumulation. Linked to this observation, we provided a mechanism showing that p53 induces LMα1 expression at the promoter level by ChIP analysis and this was confirmed by knockdown in cell transfection experiments. To mimic the human disease, we induced colitis and colitis-associated cancer by chemical treatment (DSS) combined or not with a carcinogen (AOM) in transgenic mice overexpressing LMα1 or LMα5 specifically in the intestine. We demonstrated that high LMα1 or LMα5 expression decreased susceptibility towards experimentally DSS-induced colon inflammation as assessed by histological scoring and decrease of pro-inflammatory cytokines. Yet in a pro-oncogenic context, we showed that LM would favor tumorigenesis as revealed by enhanced tumor lesion formation in both LM transgenic mice. Altogether, our results showed that nuclear p53 and associated overexpression of LMα1 and LMα5 protect tissue from inflammation. But in a mutation setting, the same LM molecules favor progression of IBD into colitis-associated cancer. Our transgenic mice represent attractive new models to acquire knowledge about the paradoxical effect of LM that mediate either tissue reparation or cancer according to the microenvironment. In the early phases of IBD, reinforcing basement membrane stability/organization could be a promising therapeutic approach.
Collapse
Affiliation(s)
- Caroline Spenlé
- Inserm U1109, MNT3 team, Strasbourg, France; Université de Strasbourg, Strasbourg, France; LabEx Medalis, Université de Strasbourg, Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Olivier Lefebvre
- Inserm U1109, MNT3 team, Strasbourg, France; Université de Strasbourg, Strasbourg, France; LabEx Medalis, Université de Strasbourg, Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Joël Lacroute
- Inserm U1109, MNT3 team, Strasbourg, France; Université de Strasbourg, Strasbourg, France; Department of Gastroenterology, CHRU Hautepierre, Strasbourg, France
| | | | | | - Hervé M Blottière
- INRA, UMR1319, Jouy-en-Josas, France; AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | - Bernard Duclos
- Department of Gastroenterology, CHRU Hautepierre, Strasbourg, France
| | - Christiane Arnold
- Inserm U1109, MNT3 team, Strasbourg, France; Université de Strasbourg, Strasbourg, France; LabEx Medalis, Université de Strasbourg, Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Thomas Hussenet
- Inserm U1109, MNT3 team, Strasbourg, France; Université de Strasbourg, Strasbourg, France; LabEx Medalis, Université de Strasbourg, Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Joseph Hemmerlé
- Université de Strasbourg, Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France; Inserm U1121, Strasbourg, France
| | - Donald Gullberg
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Michèle Kedinger
- Inserm U1109, MNT3 team, Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - Lydia Sorokin
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Gertraud Orend
- Inserm U1109, MNT3 team, Strasbourg, France; Université de Strasbourg, Strasbourg, France; LabEx Medalis, Université de Strasbourg, Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Patricia Simon-Assmann
- Inserm U1109, MNT3 team, Strasbourg, France; Université de Strasbourg, Strasbourg, France; LabEx Medalis, Université de Strasbourg, Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| |
Collapse
|
7
|
Vllasaliu D, Falcone FH, Stolnik S, Garnett M. Basement membrane influences intestinal epithelial cell growth and presents a barrier to the movement of macromolecules. Exp Cell Res 2014; 323:218-231. [PMID: 24582861 DOI: 10.1016/j.yexcr.2014.02.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/14/2014] [Accepted: 02/18/2014] [Indexed: 12/14/2022]
Abstract
This work examines the potential drug delivery barrier of the basement membrane (BM) by assessing the permeability of select macromolecules and nanoparticles. The study further extends to probing the effect of BM on intestinal epithelial cell attachment and monolayer characteristics, including cell morphology. Serum-free cultured Caco-2 cells were grown on BM-containing porous supports, which were obtained by prior culture of airway epithelial cells (Calu-3), shown to assemble and deposit a BM on the growth substrate, followed by decellularisation. Data overall show that the attachment capacity of Caco-2 cells, which is completely lost in serum-free culture, is fully restored when the cells are grown on BM-coated substrates, with cells forming intact monolayers with high electrical resistance and low permeability to macromolecules. Caco-2 cells cultured on BM-coated substrates displayed strikingly different morphological characteristics, suggestive of a higher level of differentiation and closer resemblance to the native intestinal epithelium. BM was found to notably hinder the diffusion of macromolecules and nanoparticles in a size dependent manner. This suggests that the specialised network of extracellular matrix proteins may have a significant impact on transmucosal delivery of certain therapeutics or drug delivery systems.
Collapse
Affiliation(s)
- Driton Vllasaliu
- Division of Drug Delivery and Tissue Engineering, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK.
| | - Franco H Falcone
- Division of Molecular and Cellular Science, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Snjezana Stolnik
- Division of Drug Delivery and Tissue Engineering, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Martin Garnett
- Division of Drug Delivery and Tissue Engineering, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| |
Collapse
|
8
|
Dekkers BGJ, Spanjer AIR, van der Schuyt RD, Kuik WJ, Zaagsma J, Meurs H. Focal adhesion kinase regulates collagen I-induced airway smooth muscle phenotype switching. J Pharmacol Exp Ther 2013; 346:86-95. [PMID: 23591997 DOI: 10.1124/jpet.113.203042] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Increased extracellular matrix (ECM) deposition and airway smooth muscle (ASM) mass are major contributors to airway remodeling in asthma. Recently, we demonstrated that the ECM protein collagen I, which is increased surrounding asthmatic ASM, induces a proliferative, hypocontractile ASM phenotype. Little is known, however, about the signaling pathways involved. Using bovine tracheal smooth muscle, we investigated the role of focal adhesion kinase (FAK) and downstream signaling pathways in collagen I-induced ASM phenotype modulation. Phosphorylation of FAK was increased during adhesion to both uncoated and collagen I-coated culture dishes, without differences between these matrices. Nor were any differences found in cellular adhesion. Inhibition of FAK activity by overexpression of the FAK deletion mutants FAT (focal adhesion targeting domain) and FRNK (FAK-related nonkinase) attenuated adhesion. After attachment, FAK phosphorylation increased in a time-dependent manner in cells cultured on collagen I, whereas no activation was found on an uncoated plastic matrix. In addition, collagen I increased in a time- and concentration-dependent manner the cell proliferation, which was fully inhibited by FAT and FRNK. Similarly, the specific pharmacologic FAK inhibitor PF-573228 [6-((4-((3-(methanesulfonyl)benzyl)amino)-5-trifluoromethylpyrimidin-2-yl) amino)-3,4-dihydro-1H-quinolin-2-one] as well as specific inhibitors of p38 mitogen-activated protein kinase (MAPK) and Src also fully inhibited collagen I-induced proliferation, whereas partial inhibition was observed by inhibition of phosphatidylinositol-3-kinase (PI3-kinase) and mitogen-activated protein kinase kinase (MEK). The inhibition of cell proliferation by these inhibitors was associated with attenuation of the collagen I-induced hypocontractility. Collectively, the results indicate that induction of a proliferative, hypocontractile ASM phenotype by collagen I is mediated by FAK and downstream signaling pathways.
Collapse
Affiliation(s)
- Bart G J Dekkers
- Department of Molecular Pharmacology, University Centre for Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
9
|
Mitsunaga S, Fujii S, Ishii G, Kinoshita T, Hasebe T, Aoyagi K, Sasaki H, Ochiai A. Nerve invasion distance is dependent on laminin gamma2 in tumors of pancreatic cancer. Int J Cancer 2010; 127:805-19. [PMID: 20013810 DOI: 10.1002/ijc.25104] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The distance of nerve invasion is an important prognostic factor in pancreatic cancer. The extracellular matrix (ECM) of nerve, mainly composed of laminin, collagen IV and anchoring fibrils, might affect nerve invasion. However, this relationship has not been demonstrated. Our study aimed at discovering the promoting factor of nerve invasion within the tumoral ECM. An animal model was established to evaluate the distance of nerve invasion in murine sciatic nerves by intraneural injection of 6 human pancreatic cancer cell lines. mRNA expression of laminins and anchoring fibrils was compared to the distance of nerve invasion for each cancer cell line. A target molecule provided the strong association between mRNA expression and the distance of nerve invasion. To evaluate the role of a target molecule in nerve invasion, protein expression and function were examined using an animal model and surgical cases. Cancer cells with high laminin gamma2 mRNA and protein expression in their basement membranes were associated with long nerve invasion. Knockdown of laminin gamma2 in cancer cells significantly shortened nerve invasion in the animal model. In 75 patients with pancreatic cancer, a large distance of nerve invasion was associated with high expression levels of laminin gamma2 mRNA and basement membranous deposition of laminin gamma2 protein. Our results indicate that laminin gamma2 plays an important role in nerve invasion. The measurement of the nerve invasion distance in our mouse nerve invasion model is useful for evaluating the molecular mechanisms of nerve invasion.
Collapse
Affiliation(s)
- Shuichi Mitsunaga
- Pathology Division, Research Center for Innovative Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Pak JH, Kim DW, Moon JH, Nam JH, Kim JH, Ju JW, Kim TS, Seo SB. Differential gene expression profiling in human cholangiocarcinoma cells treated with Clonorchis sinensis excretory-secretory products. Parasitol Res 2008; 104:1035-46. [DOI: 10.1007/s00436-008-1286-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2008] [Accepted: 11/10/2008] [Indexed: 10/21/2022]
|
11
|
Henkhaus RS, Gerner EW, Ignatenko NA. Kallikrein 6 is a mediator of K-RAS-dependent migration of colon carcinoma cells. Biol Chem 2008; 389:757-64. [PMID: 18627290 DOI: 10.1515/bc.2008.087] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Kallikrein 6 (KLK6) is a trypsin-like serine peptidase whose relevance in various types of cancers is currently being explored. Previous studies have shown that KLK6 mRNA is upregulated in colon and gastric cancers; however, the regulatory mechanisms and phenotypic consequences of this upregulation are largely unknown. Activating K-RAS mutations are common in colon cancer, occurring in approximately 50% of cases. We have recently reported the upregulation of KLK6 mRNA in Caco2 human colon cancer cells stably transfected with a mutant K-RAS allele (K-RAS(G12V)). In this study we examined the pattern of K-RAS-dependent KLK6 expression and secretion in colon cancer cells. Using pharmacological inhibitors of pathways downstream of K-RAS, we could show that the PI3K and p42/44 MAPK pathways play an important role in the induction of KLK6 in mutant K-RAS-expressing colon cancer cells. Increased KLK6 expression enhanced colon cancer cell migration through laminin and Matrigel. Inhibition of KLK6 using small interference RNA treatment or a specific KLK6 antibody in Caco2 cells stably expressing the mutant K-RAS and in SW480 cells carrying a mutation in the K-RAS oncogene resulted in a reduction in invasiveness through cell culture inserts. These data support the oncogenic role of KLK6 in colorectal cancer.
Collapse
Affiliation(s)
- Rebecca S Henkhaus
- Cancer Biology Interdisciplinary Program, Arizona Cancer Center, The University of Arizona, 1515 N. Campbell Ave., Tucson, AZ 85724, USA
| | | | | |
Collapse
|
12
|
Rao JS, Bhoopathi P, Chetty C, Gujrati M, Lakka SS. MMP-9 short interfering RNA induced senescence resulting in inhibition of medulloblastoma growth via p16(INK4a) and mitogen-activated protein kinase pathway. Cancer Res 2007; 67:4956-64. [PMID: 17510426 PMCID: PMC1905835 DOI: 10.1158/0008-5472.can-07-0380] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The involvement of matrix metalloproteinases (MMP) has been suggested in cellular mechanisms leading to medulloblastoma, the most common malignant brain tumor in children. A significant association of the expression levels of MMP-9 with survival and M stage suggests that patients with medulloblastoma metastatic disease at diagnosis may benefit from the anti-MMP therapy. Here, we have evaluated the tumorigenicity of medulloblastoma cells after infection with an adenovirus containing a 21-bp short interfering RNA sequence of the human MMP-9 gene (Ad-MMP-9). Infection of Daoy medulloblastoma cells with Ad-MMP-9 reduced MMP-9 activity and protein levels compared with parental and Ad-SV controls. Ad-MMP-9 decreased the number of viable Daoy cells in a concentration-dependent manner. Fluorescence-activated cell sorting analysis indicated that Ad-MMP-9 infection caused a dose-dependent cell cycle arrest in the G(0)-G(1) phase. Ad-MMP-9-induced cell cycle arrest seems to be mediated by the extracellular signal-regulated kinase/mitogen-activated protein kinase pathway and the cell cycle inhibitor p16(INK4a) and is phenotypically indistinguishable from senescence. Ad-MMP-9 treatment inhibited medulloblastoma tumor growth in an intracranial model and was mediated by up-regulation of p16 expression. These studies validate the usefulness of targeting MMP-9 and provide a novel perspective in the treatment of medulloblastoma.
Collapse
Affiliation(s)
- Jasti S. Rao
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, One Illini Drive, Peoria, IL 61605, USA
- Department of Neurosurgery, University of Illinois College of Medicine at Peoria, One Illini Drive, Peoria, IL 61605, USA
| | - Praveen Bhoopathi
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, One Illini Drive, Peoria, IL 61605, USA
| | - Chandramu Chetty
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, One Illini Drive, Peoria, IL 61605, USA
| | - Meena Gujrati
- Department of Pathology, University of Illinois College of Medicine at Peoria, Peoria, One Illini Drive, Peoria, IL 61605, USA
| | - Sajani S. Lakka
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, One Illini Drive, Peoria, IL 61605, USA
| |
Collapse
|
13
|
Abstract
Basement membranes can be a barrier to tumour growth, but basement membrane molecules, including laminins, are also important autocrine factors produced by cancers to promote tumorigenesis. Many studies have shown the importance of laminin 332 (previously known as laminin 5) in this process, especially in squamous cell carcinoma. Through interactions with several cell-surface receptors (including alpha6beta4 and alpha3beta1 integrins, epidermal growth factor receptor and syndecan 1) and other basement membrane components (including type VII collagen), laminin 332 drives tumorigenesis through phosphatidylinositol-3 kinase (PI3K) and RAC1 activation, promoting tumour invasion and cell survival. The extracellular interactions of laminin 332 appear amenable to antibody-mediated therapies.
Collapse
|
14
|
Stulic M, Lubin FD, O'Donnell PM, Tammariello SP, McGee DW. Effect of the alpha3beta1 integrin on the IL-1 stimulated activation of c-Jun N-terminal kinase (JNK) in CACO-2 cells. Cytokine 2007; 37:163-70. [PMID: 17481915 DOI: 10.1016/j.cyto.2007.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Revised: 01/04/2007] [Accepted: 03/20/2007] [Indexed: 11/20/2022]
Abstract
Intestinal epithelial cells (IEC) are capable of responding to IL-1 stimulation by producing a variety of pro-inflammatory cytokines. Recently, we have found that binding of the alpha3beta1 integrin may have a regulatory effect on IL-1 responses and intracellular signaling by suppressing cytokine secretion, mRNA expression and the downstream intracellular signaling events from IKK to NF-kappaB activation. In this study, we extend these findings by showing that treatment of the Caco-2 epithelial cells with a cross-linking anti-alpha3 integrin antibody resulted in a suppression in the levels of IL-1 induced AP-1 binding activity in nuclear extracts. Furthermore, suppressed levels of IL-1 induced c-Jun N-terminal kinase (JNK) phosphorylation and kinase activity were seen with the antibody treated cells. Cells cultured on purified laminin-5, the ligand for the alpha3beta1 integrin, did not show significantly elevated levels of JNK phosphorylation after IL-1 stimulation while cells cultured on fibronectin yielded significantly elevated levels of IL-1 induced JNK phosphorylation. These results indicate that binding of the alpha3beta1 integrin results in a suppression in the activation of the IL-1 induced intracellular signaling pathway from JNK to AP-1. This novel regulatory effect may be a potentially important mechanism to regulate IL-1 mediated responses by IEC.
Collapse
Affiliation(s)
- Mate Stulic
- Department of Biological Sciences, Binghamton University (SUNY), Binghamton, NY 13902-6000, USA
| | | | | | | | | |
Collapse
|
15
|
Remy L, Trespeuch C, Bachy S, Scoazec JY, Rousselle P. Matrilysin 1 influences colon carcinoma cell migration by cleavage of the laminin-5 beta3 chain. Cancer Res 2006; 66:11228-37. [PMID: 17145868 DOI: 10.1158/0008-5472.can-06-1187] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Matrilysin 1 [matrix metalloproteinase 7 (MMP7)] is one of the most important metalloproteinases expressed in human tissues. This enzyme is generally not expressed by normal differentiated epithelial colon cells, but has been shown to be up-regulated in human colon adenomas and adenocarcinomas. Little is known about the role of MMP7 in cell invasion and its involvement in proteolytic processes. By searching the ligands of MMP7 in the colonic carcinoma cells HT29, we identified laminin-5/laminin-332 (LN5) as a specific target for MMP7 enzymatic activity. LN5, composed of alpha3, beta3, and gamma2 chains, is an important component of epithelial basement membranes where it induces firm adhesion and hemidesmosome formation. In this study, we show that LN5 and MMP7 are coexpressed in HT29 cells as well as in HT29 xenograft tumors and human colorectal adenocarcinomas. We provide evidence that human LN5 is a ligand for MMP7 and that a specific cleavage occurs in its beta3 chain, giving rise to a carboxyl-terminal beta3 chain fragment of 90 kDa. We have identified the MMP7 cleavage site at position Ala(515)-Ile(516) in the beta3 chain. Videomicroscopic analysis of HT29 cells plated on LN5 substrates reveals that the MMP7-processed LN5 significantly enhances cell motility. Moreover, the delayed migration of HT29 cells obtained after specific inhibition of MMP7 reinforces the hypothesis supporting its involvement in cell migration. Altogether, our results show that MMP7 is likely to play a crucial role in the regulation of carcinoma cell migration by targeting specific proteolytic processing of the LN5 beta3 chain.
Collapse
Affiliation(s)
- Lionel Remy
- Institut National de la Sante et de la Recherche Medicale, U 45/IFR62, Université Claude Bernard Lyon I, France
| | | | | | | | | |
Collapse
|
16
|
El-Tanani MK, Campbell FC, Crowe P, Erwin P, Harkin DP, Pharoah P, Ponder B, Rudland PS. BRCA1 suppresses osteopontin-mediated breast cancer. J Biol Chem 2006; 281:26587-601. [PMID: 16807234 DOI: 10.1074/jbc.m604403200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BRCA1 is a well described breast cancer susceptibility gene thought to be involved primarily in DNA repair. However, mutation within the BRCA1 transcriptional domain is also implicated in neoplastic transformation of mammary epithelium, but responsible mechanisms are unclear. Here we show in a rat mammary model system that wild type (WT) BRCA1 specifically represses the expression of osteopontin (OPN), a multifunctional estrogen-responsive gene implicated in oncogenic transformation, particularly that of the breast. WT.BRCA1 selectively binds OPN-activating transcription factors estrogen receptor alpha, AP-1, and PEA3, inhibits OPN promoter transactivation, and suppresses OPN mRNA and protein both from an endogenous gene and a relevant model inducible gene. WT.BRCA1 also inhibits OPN-mediated neoplastic transformation characterized by morphology change, anchorage-independent growth, adhesion to fibronectin, and invasion through Matrigel. A mutant BRCA1 allele (Mut.BRCA1) associated with familial breast cancer lacks OPN suppressor effects, binds to WT.BRCA1, and impedes WT.BRCA1 suppression of OPN. Stable transfection of rat breast tumor cell lines with Mut.BRCA1 dramatically up-regulates OPN protein and induces anchorage independent growth. In human primary breast cancer, BRCA1 mutation is significantly associated with OPN overexpression. Taken together, these data suggest that BRCA1 mutation may confer increased tissue-specific cancer risk, in part by disruption of BRCA1 suppression of OPN gene transcription.
Collapse
Affiliation(s)
- Mohamed K El-Tanani
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Grosvenor Road, Belfast BT12 6BJ, Northern Ireland, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Kato K, Shiga K, Yamaguchi K, Hata K, Kobayashi T, Miyazaki K, Saijo S, Miyagi T. Plasma-membrane-associated sialidase (NEU3) differentially regulates integrin-mediated cell proliferation through laminin- and fibronectin-derived signalling. Biochem J 2006; 394:647-56. [PMID: 16241905 PMCID: PMC1383714 DOI: 10.1042/bj20050737] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have found previously that human plasma-membrane-associated sialidase (NEU3), a key glycosidase for ganglioside degradation, was markedly up-regulated in human colon cancers, with an involvement in suppression of apoptosis. To elucidate the molecular mechanisms underlying increased NEU3 expression, in the present study we investigated its role in cell adhesion of human colon cancer cells. DLD-1 cells transfected with NEU3 exhibited increased adhesion to laminins and consequent cell proliferation, but decreased cell adhesion to fibronectin and collagens I and IV, compared with control cells. When triggered by laminins, NEU3 clearly stimulated phosphorylation of FAK (focal adhesion kinase) and ERK (extracellular-signal-regulated kinase), whereas there was no activation on fibronectin. NEU3 markedly enhanced tyrosine phosphorylation of integrin beta4 with recruitment of Shc and Grb-2 only on laminin-5, and NEU3 was co-immunoprecipitated by an anti-(integrin beta4) antibody, suggesting that association of NEU3 with integrin beta4 might facilitate promotion of the integrin-derived signalling on laminin-5. In addition, the promotion of phosphorylation of integrin beta1 and ILK (integrin-linked kinase) was also observed on laminins. G(M3) depletion as the result of NEU3 overexpression, assessed by TLC, appeared to be one of the causes of the increased adhesion on laminins and, in contrast, of the decreased adhesion on fibronectin - NEU3 probably having bimodal effects. These results indicate that NEU3 differentially regulates cell proliferation through integrin-mediated signalling depending on the extracellular matrix and, on laminins, NEU3 did indeed activate molecules often up-regulated in carcinogenesis, which may cause an acceleration of the malignant phenotype in cancer cells.
Collapse
Affiliation(s)
- Kengo Kato
- *Division of Biochemistry, Miyagi Cancer Center Research Institute, Natori 981-1293, Japan
- †Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
- ‡Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Kiyoto Shiga
- ‡Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Kazunori Yamaguchi
- *Division of Biochemistry, Miyagi Cancer Center Research Institute, Natori 981-1293, Japan
- †Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Keiko Hata
- *Division of Biochemistry, Miyagi Cancer Center Research Institute, Natori 981-1293, Japan
- †Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Toshimitsu Kobayashi
- ‡Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Kaoru Miyazaki
- §Division of Cell Biology, Kihara Institute for Biological Research and Graduate School of Integrated Sciences, Yokohama City University, Yokohama 244-0813, Japan
| | - Shigeru Saijo
- ∥Division of Head and Neck Surgery, Miyagi Cancer Center, Natori 981-1293, Japan
| | - Taeko Miyagi
- *Division of Biochemistry, Miyagi Cancer Center Research Institute, Natori 981-1293, Japan
- †Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
- To whom correspondence should be addressed, at the Division of Biochemistry, Miyagi Cancer Center Research Institute, Natori 981-1293, Japan (email )
| |
Collapse
|
18
|
Peignon G, Thenet S, Schreider C, Fouquet S, Ribeiro A, Dussaulx E, Chambaz J, Cardot P, Pinçon-Raymond M, Le Beyec J. E-cadherin-dependent Transcriptional Control of Apolipoprotein A-IV Gene Expression in Intestinal Epithelial Cells. J Biol Chem 2006; 281:3560-8. [PMID: 16338932 DOI: 10.1074/jbc.m506360200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cell-matrix and cell-cell adhesion play a central role in the control of cell proliferation, differentiation, and gene expression. Integrins and E-cadherin are the key components involved in these processes in epithelial cells. We recently showed that integrin-dependent adhesion to the extracellular matrix reinforces the formation of E-cadherin-actin complexes inducing the polarization of Caco-2 enterocytes and increases the expression of a marker of enterocyte differentiation, the apolipoprotein A-IV (apoA-IV) gene. By impairing or enhancing E-cadherin-dependent cell adhesion, we demonstrate in the present study its involvement in the transcriptional activation of the apoA-IV gene in Caco-2 cells. This control requires the regulatory sequence that we have previously identified as necessary and sufficient to drive and restrict apoA-IV gene expression in enterocytes in vivo. Furthermore, using chimeric E-cadherin-Fc homophilic ligand-coated surfaces, we show that a direct activation of E-cadherin triggers the transcriptional activation of the apoA-IV promoter. Finally, E-cadherin-dependent cell-cell adhesion controls the nuclear abundance of the transcription factor hepatic nuclear factor 4alpha, which is involved in the enterocyte-specific expression of apoA-IV gene. Altogether, our results suggest that E-cadherin controls enterocyte-specific expression of genes, such as the apoA-IV gene, through the control of hepatic nuclear factor 4alpha nuclear abundance.
Collapse
Affiliation(s)
- Gregory Peignon
- Université Pierre et Marie Curie UMRS 505, Paris, F-75006 France, INSERM, UMRS 505, F-75006 Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Li G, Lubin FD, McGee DW. alpha3beta1 integrin induced suppression of the Caco-2 epithelial cell IL-1 signaling pathway leading to NF-(kappa)B activation. Cell Immunol 2005; 231:30-9. [PMID: 15919367 DOI: 10.1016/j.cellimm.2004.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Revised: 11/10/2004] [Accepted: 11/14/2004] [Indexed: 11/30/2022]
Abstract
Intestinal epithelial cells (IECs) produce several potent cytokines in response to interleukin-1 (IL-1) and may play a role in the inflammatory response. Previously, we determined that treatment of the Caco-2 cells with a cross-linking anti-alpha3 integrin antibody resulted in a suppression of IL-1 induced cytokine secretion and mRNA levels, suggesting that the alpha3beta1 integrin may play a role in the regulation of IEC cytokine responses to IL-1. In this report, treatment of the Caco-2 cells with the anti-alpha3 integrin antibody resulted in a suppression of IL-1 induced levels of NF-kappaB binding activity in nuclear extracts, as determined by EMSA, as well as phosphorylation and degradation of the inhibitor, I(kappa)B(alpha). The anti-integrin antibody treatment was also found to suppress I(kappa)B kinase (IKK) activity and IKK(beta) phosphorylation. Culture of the Caco-2 cells on purified laminin-5, the ligand for the alpha3beta1 integrin, also resulted in suppression of IL-1 induced phosphorylation of I(kappa)B(alpha) and IKK(beta). Together with our previous findings, these results suggest that alpha3beta1 integrin binding results in a suppression of the IL-1 signaling pathway leading to the activation of NF-(kappa)B and ultimately IEC cytokine responses. These studies define a novel regulatory mechanism which may be important in the control of IEC cytokine responses during inflammation.
Collapse
Affiliation(s)
- Gongchu Li
- Department of Biological Sciences, Binghamton University (SUNY), Binghamton, NY 13902-6000, USA
| | | | | |
Collapse
|
20
|
Turck N, Gross I, Gendry P, Stutzmann J, Freund JN, Kedinger M, Simon-Assmann P, Launay JF. Laminin isoforms: biological roles and effects on the intracellular distribution of nuclear proteins in intestinal epithelial cells. Exp Cell Res 2004; 303:494-503. [PMID: 15652360 DOI: 10.1016/j.yexcr.2004.10.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Revised: 10/29/2004] [Accepted: 10/30/2004] [Indexed: 12/11/2022]
Abstract
Laminins are structurally and functionally major components of the extracellular matrix. Four isoforms of laminins (laminin-1, -2, -5 and -10) are expressed in a specific pattern along the crypt-villus axis of the intestine. Previous works indicated that expression of these isoforms is developmentally regulated and that laminins could modulate the behaviour of intestinal cells, but the exact role of each isoform remained unclear. Here, we report the first systematic analysis of the cellular functions of the four isoforms using the human colon adenocarcinoma Caco2/TC7 cell line as a model. We compared the respective abilities of each isoform to modulate adhesion, proliferation and differentiation of intestinal epithelial cells. We found that the isoforms were functionally distinct, with laminin-10 being the most adhesive substratum, laminin-2, laminin-5 and laminin-10 enhancing cellular proliferation and at the opposite, laminin-1 stimulating intestinal cell differentiation. To begin to characterise the molecular events induced by the different isoforms, we examined by immunofluorescence the intracellular distribution of several nuclear proteins, recently highlighted by a nuclear proteomic approach. We observed clear nucleocytoplasmic redistribution of these proteins, which depended on the laminin isoform. These results provide evidence for a distinct functional role of laminins in intestinal cell functions characterised by specific localisation of nuclear proteins.
Collapse
|
21
|
Gout S, Marie C, Lainé M, Tavernier G, Block MR, Jacquier-Sarlin M. Early enterocytic differentiation of HT-29 cells: biochemical changes and strength increases of adherens junctions. Exp Cell Res 2004; 299:498-510. [PMID: 15350547 DOI: 10.1016/j.yexcr.2004.06.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Revised: 05/20/2004] [Indexed: 12/11/2022]
Abstract
We have characterized the modulation of cell-cell adhesion and the structure of adherens junctions in the human colon adenocarcinoma HT-29 cell line that differentiates into enterocytes after glucose substitution for galactose in the medium. We demonstrate that differentiated cells (HT-29 Gal) rapidly established E-cadherin-mediated interactions in aggregation assays. This effect is not due to an increase in E-cadherin expression during this early stage of cell differentiation, but rather results from the maturation of preexisting adherens junctions. These junctions are characterized by the redistribution of E-cadherin to the basolateral membrane and its co-localization with the actin cytoskeleton. Subcellular fractionation studies indicate that actin-associated E-cadherins bind beta-catenin and p120ctn. Furthermore, the p120ctn/E-cadherin association is upregulated. These data reveal a cooperative interaction between p120ctn and E-cadherin that corresponds to mature functional adherens junctions able to initiate tight cell-cell adhesion required for epithelium architecture and further affirm the gatekeeper role of p120ctn.
Collapse
Affiliation(s)
- S Gout
- Laboratoire d'Etude de la Différenciation et de l'Adhérence Cellulaires, UMR UJF/CNRS 5538, Institut Albert Bonniot, Faculté de Médecine de Grenoble, 38706 La Tronche Cedex, France
| | | | | | | | | | | |
Collapse
|
22
|
Colagrande S, Batignani G, Messerini L, Pinzani M. Intrabiliary metastasis from rectal cancer mimicking peripheral papillary-type cholangiocarcinoma. J Hepatol 2004; 41:172-4. [PMID: 15246230 DOI: 10.1016/j.jhep.2004.03.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
23
|
Hintermann E, Quaranta V. Epithelial cell motility on laminin-5: regulation by matrix assembly, proteolysis, integrins and erbB receptors. Matrix Biol 2004; 23:75-85. [PMID: 15246107 DOI: 10.1016/j.matbio.2004.03.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Accepted: 03/03/2004] [Indexed: 01/10/2023]
Abstract
Cell migration plays a central role in a wide variety of biological events, including embryogenesis, inflammatory immune response, wound healing, or cancer invasion. Tight regulation of cell motility is a prerequisite for normal development and maintenance of an organism, and to avoid metastatic spread of tumor cells. An important determinant of migratory efficiency is the substrate over which a cell migrates. Laminin-5 (Ln-5) is an extracellular matrix component prominent in basement membranes and as such it is a substrate in direct contact with epithelial cells. Interestingly, Ln-5 has been shown to both stimulate and downregulate epithelial cell migration. In this article, we plan to give an overview on the different mechanisms cells employ to regulate their migratory behavior on Ln-5. We will discuss how proteolytic processing of Ln-5 acts as posttranslational modification that plays a major role in the regulation of cell migration. The different proteolytic Ln-5 species may bind to distinct cell surface receptors called integrins, which translate substrate binding into a specific cellular response that triggers cell motility. Furthermore, interaction between Ln-5-binding integrins and other transmembrane and cytoplasmic proteins increases complexity and may allow fine-tuning of cell migration in response to the cellular environment.
Collapse
Affiliation(s)
- Edith Hintermann
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
24
|
Sanders MA, Basson MD. Collagen IV regulates Caco-2 migration and ERK activation via alpha1beta1- and alpha2beta1-integrin-dependent Src kinase activation. Am J Physiol Gastrointest Liver Physiol 2004; 286:G547-G557. [PMID: 14604860 DOI: 10.1152/ajpgi.00262.2003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Our previous work indicates intestinal epithelial cell ERK activation by collagen IV, a major component of the intestinal epithelial basement membrane, requires focal adhesion kinase (FAK) and suggests FAK and ERK may have important roles in regulating intestinal epithelial cell migration. We therefore sought to identify FAK downstream targets regulating intestinal epithelial cell spreading, migration, and ERK activation on collagen IV and the integrins involved. Both dominant-negative Src and Src inhibitor PP2 strongly inhibited collagen IV ERK activation in Caco-2 intestinal epithelial cells. Collagen IV stimulated Grb2 binding site FAK Y925 phosphorylation, which was inhibited by PP2 and required FAK Y397 autophosphorylation. Additionally, FAK Y925F expression blocked collagen IV ERK activation. alpha(1)beta(1)- Or alpha(2)beta(1)-integrin blockade with alpha(1)- or alpha(2)-integrin subunit antibodies indicated that either integrin can mediate adhesion, cell spreading, and FAK, Src, and ERK activation on collagen IV. Both dominant-negative Src and PP2 inhibited Caco-2 spreading on collagen IV. PP2 inhibited p130(Cas) tyrosine phosphorylation, but dominant-negative p130(Cas) did not inhibit cell spreading. PP2 inhibited Caco-2 migration on collagen IV much more strongly than the mitogen-activated protein kinase kinase inhibitor PD-98059, which completely inhibited collagen IV ERK activation. These results suggest a pathway for collagen IV ERK activation requiring Src phosphorylation of FAK Y925 not previously described for this matrix protein and suggest either alpha(1)beta(1)- or alpha(2)beta(1)-integrins can regulate Caco-2 spreading and ERK activation on collagen IV via Src. Additionally, these results suggest Src regulates Caco-2 migration on collagen IV primarily through ERK-independent pathways.
Collapse
Affiliation(s)
- Matthew A Sanders
- Department of Surgery, Wayne State University, Detroit, MI 48201-1932, USA
| | | |
Collapse
|
25
|
Beta4 integrin and laminin 5 are aberrantly expressed in polycystic kidney disease: role in increased cell adhesion and migration. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:1791-800. [PMID: 14578180 DOI: 10.1016/s0002-9440(10)63539-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Extracellular matrix alterations have been suggested to be part of the early events occurring in Autosomal Dominant Polycystic Kidney Disease (ADPKD), a disease characterized by formation of renal cysts and progressive renal failure. Here we report that cDNA array analysis identified beta(4) integrin aberrant expression in ADPKD cells. Furthermore, laminin 5 (Ln-5), the main alpha(6)beta(4) integrin ligand, was also found to be abnormally expressed in ADPKD. Studies performed with ADPKD cyst-lining epithelial cells (CC) by comparison with normal tubular cells indicate that integrin alpha(6)beta(4)-Ln-5 interactions are involved in cellular events of potential importance for cystogenesis: 1) laminin 5 is a preferential adhesion substrate for CC, mainly through alpha(6)beta(4) interaction, 2) CC increased haptotactic and chemotactic motility depends on the presence of Ln-5 and requires integrin alpha(3)beta(1) cooperation, and 3) CC haptotactic or chemotactic migration is specifically increased by mAb-mediated beta(4) integrin ligation, through an alpha(3)beta(1) integrin-dependent and independent pathway, respectively. These results highlight the role of Ln-5 and alpha(6)beta(4) integrin in adhesive and motility properties of cyst-lining epithelial cells, and further suggest that integrins and extracellular matrix modifications may be of general relevance to kidney epithelial cell cyst formation.
Collapse
|
26
|
Zhang X, Cromwell JW, Kunjummen BD, Yee D, Garcia-Aguilar J. The alpha2 and alpha3 integrins are required for morphologic differentiation of an intestinal epithelial cell line. Surgery 2003; 133:429-37. [PMID: 12717361 DOI: 10.1067/msy.2003.107] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND The molecular mechanisms controlling intestinal epithelial cell differentiation are poorly defined because of the difficulty of growing normal intestinal cells. We have taken advantage of the ability of the Caco-2 cell line to acquire a glandular phenotype in 3-dimensional (3-D) culture systems to investigate the role of alpha2 and alpha3 integrins in morphologic differentiation. METHODS Caco-2 cells transfected with sense or antisense DNA constructs of alpha2 or alpha3 integrins were grown in 3-D Matrigel or collagen I in the presence or absence of integrin function-blocking antibodies. We used light and confocal microscopy, BrDU incorporation, TUNEL assay, a fluorometric adhesion assay, FACS analysis, and Western blot analysis to study the effect of extracellular matrix (ECM) and integrins on morphology, polarization, proliferation, apoptosis, cell adhesion, and integrin expression. RESULTS Compared to collagen I, Caco-2 cells cultured in 3-D Matrigel display cytoskeletal and adherens junction rearrangements and decreased proliferation consistent with cellular differentiation. These changes, which are inhibited by alpha2 and alpha3 blocking monoclonal antibodies and alpha2 and alpha3 antisense DNA transfection, were associated with an increase in alpha3 integrin expression. CONCLUSIONS We demonstrated that signaling through both constitutively expressed alpha2 integrin and Matrigel-induced alpha3 integrin expression is required to acquire a differentiated phenotype in Caco-2 cells.
Collapse
Affiliation(s)
- Xihong Zhang
- University of Minnesota Cancer Center, Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | | | | | | | | |
Collapse
|
27
|
Sterling KM, Cutroneo KR. Differentiation-dependent induction of CYP1A1 in cultured rat small intestinal epithelial cells, colonocytes, and human colon carcinoma cells: basement membrane-mediated apoptosis. J Cell Biochem 2003; 86:440-50. [PMID: 12210751 DOI: 10.1002/jcb.10237] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Rat small intestinal epithelial cells and human colon adenocarcinoma cells cultured on Matrigel expressed the differentiation specific enzyme, sucrase-isomaltase, as determined by indirect immunofluorescence. Rat small intestinal epithelial cells, rat colonocytes, and human colon adenocarcinoma cells developed an altered morphology when cultured on Matrigel and became apoptotic within 24-48 h. Benzo[a]pyrene and 2,3,7,8-tetrachlorodibenzo-p-dioxin caused a 2- and 5-fold induction, respectively, of ethoxyresorufin-o-deethylase activity in rat small intestinal epithelial cells cultured on Matrigel. Benzo[a]pyrene- or 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced ethoxyresorufin-o-deethylase activity in rat small intestinal epithelial cells cultured on plastic was not detected. 2,3,7,8-tetrachlorodibenzo-p-dioxin treatment caused a 14-fold induction of transfected, rat CYP1A1-promoter-luciferase activity in rat small intestinal epithelial cells cultured on Matrigel. Benzo[a]pyrene and 2,3,7,8-tetrachlorodibenzo-p-dioxin treatment induced ethoxyresorufin-o-deethylase activity by 6- and 1.6-fold, respectively in rat colonocytes cultured on Matrigel. Induction of ethoxyresorufin-o-deethylase activity was not observed in rat colonocytes cultured on plastic. CYP1A1-promoter-luciferase activity was induced 3-fold by 2,3,7,8-tetrachlorodibenzo-p-dioxin in rat colonocytes cultured on Matrigel. Induction of CYP1A1-promoter-luciferase activity in rat small intestinal epithelial cells or rat colonocytes cultured on plastic was not observed. Ethoxyresorufin-o-deethylase activity in human colon adenocarcinoma cells, cultured on either plastic or Matrigel, was induced 7-fold by benzo[a]pyrene. 2,3,7,8-Tetrachlorodibenzo-p-dioxin-induced ethoxyresorufin-o-deethylase activity was 2-fold greater in human colon adenocarcinoma cells cultured on Matrigel compared to cells cultured on plastic. Extracellular matrix-mediated differentiation and apoptosis of intestinal cells provide in vitro systems for study of the regulation of CYP1A1 expression, carcinogen activation in the gut and mechanism(s) of apoptosis of colon cancer cells.
Collapse
Affiliation(s)
- Kenneth M Sterling
- Dartmouth College, Department of Physics and Astronomy, 6127 Wilder Laboratory, Hanover, New Hampshire 03755-3528, USA.
| | | |
Collapse
|
28
|
Coraux C, Meneguzzi G, Rousselle P, Puchelle E, Gaillard D. Distribution of laminin 5, integrin receptors, and branching morphogenesis during human fetal lung development. Dev Dyn 2003; 225:176-85. [PMID: 12242717 DOI: 10.1002/dvdy.10147] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The role of the epithelial adhesion ligand laminin 5 (LN5) in lung development has been poorly investigated. To determine its potential involvement in lung organogenesis, we used immunofluorescence microscopy to investigate the distribution of LN5 and its integrin (Int) receptors alpha2beta1, alpha3beta1, alpha6beta1, and alpha6beta4 during human fetal airway branching morphogenesis and respiratory epithelium differentiation. At the pseudoglandular and canalicular stages of airway development, LN5 and its constituent chains were localized in the basement membrane (BM) of the proximal respiratory tubules and in the cytoplasm of the epithelial cells forming the growing epithelial buds, which expressed Int alpha2beta1, alpha3beta1, and, transiently, alpha6beta1. At the alveolar and adult stages, LN5 and its constituent chains were localized both in the BM of evolving and differentiated bronchioles and in the alveolar parenchyma. The bronchiolar epithelium markedly expressed Int alpha2beta1 and alpha3beta1, whereas the alveolar parenchyma strongly expressed Int alpha2beta1, alpha3beta1, and alpha6beta1. Throughout fetal development and in the adult, LN5 and its constituent chains were detected both in the tracheal BM, regardless of the degree of epithelial differentiation, and in the cytoplasm of the cells at the invading front of the growing glandular ducts. Ultrastructural studies showed that nucleation of the hemidesmosomes (HDs) correlated with the differentiation of the tracheal epithelium. These results suggest that LN5 may play multiple roles during branching morphogenesis, by modulating proliferation and/or migration of the epithelial cells in the respiratory buds and by establishing branch points, through interaction initially with Int alpha6beta1 and later with Int alpha2beta1 and alpha3beta1. We also propose that LN5 may regulate the differentiation of the tracheal epithelium by means of Int-beta4, which governs HD nucleation.
Collapse
|
29
|
Pakkala T, Virtanen I, Oksanen J, Jones JCR, Hormia M. Function of laminins and laminin-binding integrins in gingival epithelial cell adhesion. J Periodontol 2002; 73:709-19. [PMID: 12146529 DOI: 10.1902/jop.2002.73.7.709] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND In human gingiva, epithelial cells attach to their adjacent tissues by means of specialized molecular adhesion complexes and a basement membrane. Little is known about the synthesis of adhesion proteins by gingival keratinocytes; we, therefore, studied how cultured immortalized gingival epithelial cells produce laminins and express laminin-binding integrins. We presumed that different laminins and integrins would be involved in the adhesion of gingival epithelial cells. METHODS We cultured gingival keratinocytes and studied their production of laminins and expression of integrins using immunofluorescence microscopy, immunoprecipitation, and immunoblotting methods and by quantitative cell adhesion experiments. We also studied how gingival tissue expresses these adhesion proteins in vivo by using immunofluorescence microscopy. RESULTS In immunofluorescence microscopy, the cells were seen to organize chains of laminin-5 (alpha3beta03gamma2) to extracellular patches, whereas the alpha5 chain of laminin-10 (alpha5betalgamma1) could only be seen intracellularly. Of the laminin-binding integrin subunits, integrin a6 subunit was organized to dotted arrays, typical of prehemidesmosomal adhesions, whereas integrin alpha3 subunit was located at cell-cell junctions, in prehemidesmosomal structures, and at some locations also in small focal-contact like patches. Integrin beta1 subunit was found at cell-cell junctions and in focal contacts. Immunoprecipitation experiments showed that the cells synthesize and secrete chains of laminin-5 and laminin-10. In quantitative cell adhesion experiments, the cells adhered efficiently to these laminins by using cooperatively integrin alpha3beta1 and alpha6beta1 integrin complexes. None of the other known laminin-binding integrin subunits appeared to be significantly involved in cell adhesion to these laminin isoforms. CONCLUSIONS Our results provide new information on gingival epithelial cell adhesion and extracellular matrix production and may thus aid in the understanding of periodontal physiology.
Collapse
Affiliation(s)
- Tuomas Pakkala
- Institute of Biomedicine/Anatomy, Biomedicum Helsinki, University of Helsinki, Finland.
| | | | | | | | | |
Collapse
|
30
|
Patarroyo M, Tryggvason K, Virtanen I. Laminin isoforms in tumor invasion, angiogenesis and metastasis. Semin Cancer Biol 2002; 12:197-207. [PMID: 12083850 DOI: 10.1016/s1044-579x(02)00023-8] [Citation(s) in RCA: 271] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Laminins are a growing family of alphabetagamma heterotrimeric proteins, commonly found in basement membranes (BMs). These large molecules promote cell adhesion and migration via integrins and other cell-surface receptors. Over 12 laminin isoforms are presently known. The various isoforms have a cell- and tissue-specific expression and are differentially recognized by integrins. Expression of laminin isoforms in tumors usually reflects expression in their normal counterparts. However, during tumor invasion, loss of the BM barrier occurs and a discontinuous pattern of laminin staining is observed. In carcinomas, tumor cells at the invading front strongly express intracellularly the gamma2 chain, a component of laminin-5. Remodeling of the vascular BM is observed during angiogenesis, and penetration of several BMs occurs during tumor dissemination and metastasis. Thus, disregulated cell-laminin interactions are major traits of malignant disorders.
Collapse
Affiliation(s)
- Manuel Patarroyo
- Microbiology and Tumorbiology Center/Odontology, Karolinska Institutet, S 171 77 Stockholm, Sweden.
| | | | | |
Collapse
|
31
|
Abstract
The basement membrane (BM) separates epithelial elements from the surrounding stroma. BM is dynamic in regulation of epithelial cells differentiation as well as their organization into 3-dimensional tissues. In these functions, among the molecules of the BM, laminins are especially dynamic. Laminins are distributed in a spatially and temporally regulated manner in various epithelial tissues. Various changes in the laminin distribution accompany the malignant transformation of epithelia. The role of the BM and laminins in the progression of carcinomas is not well understood. The BM has been suggested to act as a mechanical barrier against carcinoma cell invasion. BM laminins may play an active role in regulating the migration and proliferation of the carcinoma cells. Laminin isoform laminin-5 expression is typical for some invasive carcinomas and it may act as a ligand for invading carcinoma cells. Neoexpression of laminin-5 has also been associated to proliferative activity of the carcinoma cells. Integrins alpha(3)beta(1) and alpha(6)beta(4) are probable cell surface receptors acting with laminin-5 in the regulation of carcoma cell invasion and proliferation.
Collapse
Affiliation(s)
- J Lohi
- Health Care Centre of Kolari, Sairaalatie, Kolari, Kolari, Finland.
| |
Collapse
|
32
|
Gout SP, Jacquier-Sarlin MR, Rouard-Talbot L, Rousselle P, Block MR. RhoA-dependent switch between alpha2beta1 and alpha3beta1 integrins is induced by laminin-5 during early stage of HT-29 cell differentiation. Mol Biol Cell 2001; 12:3268-81. [PMID: 11598208 PMCID: PMC60172 DOI: 10.1091/mbc.12.10.3268] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2000] [Revised: 05/01/2001] [Accepted: 07/20/2001] [Indexed: 02/06/2023] Open
Abstract
Integrin-mediated interactions between the basement membrane and epithelial cells control the differentiation of epithelia. We characterized the modulation of adhesive behaviors to basement membrane proteins and of integrin function in the human colon adenocarcinoma HT-29 cell line, which differentiates into enterocytes after the substitution of galactose for glucose in the medium. We demonstrate an increased capability of these cells to adhere to collagen type IV during the early stage of differentiation. This effect occurs without any changes in integrin cell surface expression but rather results from an alpha2beta1/alpha3beta1 integrin switch, alpha3beta1 integrin becoming the major collagen receptor. The increase in laminin-5 secretion and deposit on the matrix is a key factor in the mechanism regulating cell adhesion, because it is responsible for the activation of alpha3beta1 integrin. Furthermore, down-regulation of RhoA GTPase activity occurs during HT-29 cell differentiation and correlates with the activation of the integrin alpha3beta1. Indeed, C3 transferase, a RhoA GTPase inhibitor, induces a similar alpha2beta1/alpha3beta1 switch in undifferentiated HT-29 cells. These results indicate that the decrease in RhoA activation is the biochemical mechanism underlying this integrin switch observed during cell differentiation. The physiological relevance of such modulation of integrin activity in the functioning of the crypt-villus axis is discussed.
Collapse
Affiliation(s)
- S P Gout
- Laboratoire d'Etude de la Différenciation et de l'Adhérence Cellulaires, Unité Mixte de Recherche 5538 Institut Albert Bonniot, La Tronche Cedex, France
| | | | | | | | | |
Collapse
|
33
|
Klinowska TC, Alexander CM, Georges-Labouesse E, Van der Neut R, Kreidberg JA, Jones CJ, Sonnenberg A, Streuli CH. Epithelial development and differentiation in the mammary gland is not dependent on alpha 3 or alpha 6 integrin subunits. Dev Biol 2001; 233:449-67. [PMID: 11336507 DOI: 10.1006/dbio.2001.0204] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the mammary gland, both laminin and integrins have been shown to be required for normal ductal morphogenesis during development in vivo, and for functional differentiation in culture models. Major integrin receptors for laminins in the mammary gland are alpha 3 beta 1, alpha 6 beta 1, and alpha 6 beta 4. However, the specific subunits that contribute to laminin-mediated mammary cell function and development have not been identified. In this study, we use a genetic approach to test the hypothesis that laminin-binding integrins are required for the function of the mammary gland in vivo. Rudiments of embryonic mammary gland were shown to develop in the absence of these integrin subunits. Postnatal development of the mammary gland was studied in integrin null tissue that had been transplanted into the mammary fat pads of syngeneic hosts. In mammary epithelium lacking alpha 6 integrin, the beta 4 subunit was not apparent and hemidesmosome formation was only rudimentary. However, despite this deficiency, normal ductal morphogenesis and branching of the mammary gland occurred and myoepithelial cells were distributed normally with respect to luminal cells. Mammary alveoli devoid of alpha 3 or alpha 6 integrin formed in pregnancy and were histologically and functionally identical to those in wild-type mammary gland. The tissue underwent full morphological differentiation, and the epithelial cells retained the ability to synthesize beta-casein. This work demonstrates that mammary tissue genetically lacking major laminin-binding integrin receptors is still able to develop and function.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/physiology
- Basement Membrane/ultrastructure
- Body Patterning/genetics
- Body Patterning/physiology
- Cell Differentiation
- Epithelium/embryology
- Epithelium/growth & development
- Epithelium/metabolism
- Female
- Hemidesmosomes/ultrastructure
- Integrin alpha3
- Integrin alpha6
- Integrin beta4
- Integrins/genetics
- Integrins/physiology
- Laminin/metabolism
- Mammary Glands, Animal/embryology
- Mammary Glands, Animal/growth & development
- Mammary Glands, Animal/metabolism
- Mammary Glands, Animal/transplantation
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microscopy, Electron
- Pregnancy
- Transplantation, Isogeneic
Collapse
Affiliation(s)
- T C Klinowska
- School of Biological Sciences, University of Manchester, 3.239 Stopford Building, Oxford Road, Manchester, M13 9PT, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Decline F, Rousselle P. Keratinocyte migration requires alpha2beta1 integrin-mediated interaction with the laminin 5 gamma2 chain. J Cell Sci 2001; 114:811-23. [PMID: 11171386 DOI: 10.1242/jcs.114.4.811] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Keratinocyte migration is an absolute requirement for correct epithelialization during the process of wound healing. This process requires changes in extracellular matrix ligand expression as well as changes in ligand-binding affinity of the corresponding cellular integrins. In this study, we attempt to understand the role of laminin 5 in migration by investigating the integrin-mediated interactions of migrating keratinocytes with their newly synthesized laminin 5. We chose to induce migration of freshly isolated NHK in vitro by exposing them to TGF-beta1 which, in addition to promoting epithelial cell migration, is also known to prevent cell proliferation. This important feature allowed the study to be focused on cell migration without interfering with cell proliferation. We confirm that keratinocyte migration on plastic, fibronectin or collagen IV substrates requires endogenous laminin 5 deposition, which is predominantly detected under its unprocessed form. Despite a crucial role for laminin 5 in migration, we show that this process is accompanied by a significant decrease in adhesion to purified laminin 5. Moreover, we provide evidence that the alpha2beta1 integrin interaction with newly synthesized laminin 5 renders the cells more adherent and retards migration. Conversely, we provide evidence that the alpha2beta1 integrin-laminin 5 interaction is absolutely required for keratinocyte migration and that the alpha2beta1 integrin is responsible for cell spreading on laminin 5. Finally, we demonstrate that the alpha2beta1 integrin binding to laminin 5 occurs within the short arm of the gamma2 subunit.
Collapse
Affiliation(s)
- F Decline
- Institut de Biologie et Chimie des Protéines, UMR 5086, 7, passage du Vercors, 69367 Lyon cedex 07, France
| | | |
Collapse
|
35
|
Kawano K, Kantak SS, Murai M, Yao CC, Kramer RH. Integrin alpha3beta1 engagement disrupts intercellular adhesion. Exp Cell Res 2001; 262:180-96. [PMID: 11139342 DOI: 10.1006/excr.2000.5083] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
During tissue morphogenesis and tumor invasion, epithelial cells must undergo intercellular rearrangement in which cells are repositioned with respect to one another and the surrounding mesenchymal extracellular matrix. Using three-dimensional aggregates of squamous epithelial cells, we show that such intercellular rearrangements can be triggered by activation of beta1 integrins after their ligation with extracellular matrices. On nonadherent substrates, multicellular aggregates (MCAs) formed rapidly via E-cadherin junctional complexes and over time became compacted spheroids exhibiting a more epithelial phenotype. After MCAs were replated on culture substrates, the spheroids collapsed to yield tightly arranged cell monolayers. Cell-cell contact induced rapid elevation in E-cadherin levels, which was due to an increase in the metabolic stability of junctional receptors. During MCA remodeling of cell-cell adhesions, and monolayer formation, their E-cadherin levels fell rapidly. Similar behavior was obtained regardless of which ECM ligand-collagen type I, fibronectin, or laminin 1-MCAs were seeded on. In contrast, when seeded onto a matrix elaborated by squamous epithelial cells, cells in the MCA attached, spread, lost cell-cell junctions, and dispersed. Analysis identified laminin 5 as the active ECM ligand in this matrix, and MCA dispersion required functional beta1 integrin and specifically alpha3beta1. Furthermore, substrate-immobilized anti-integrin antibody effectively reproduced the epithelial-mesenchymal-like transition induced by the laminin 5 matrix. During the early stages of aggregate rearrangement and collapse, cells on laminin 5 substrates, but not those on collagen I substrates, exhibited intense cortical arrays of F-actin, microspikes, and fascin accumulation at their peripheral surfaces. These results suggest that engagement of specific integrin-ligand pairs regulates cadherin junctional adhesions during events common to epithelial morphogenesis and tumor invasion.
Collapse
Affiliation(s)
- K Kawano
- Department of Stomatology, University of California at San Francisco, San Francisco, California, 94143-0512, USA
| | | | | | | | | |
Collapse
|
36
|
Sordat I, Rousselle P, Chaubert P, Petermann O, Aberdam D, Bosman FT, Sordat B. Tumor cell budding and laminin-5 expression in colorectal carcinoma can be modulated by the tissue micro-environment. Int J Cancer 2000; 88:708-17. [PMID: 11072238 DOI: 10.1002/1097-0215(20001201)88:5<708::aid-ijc5>3.0.co;2-j] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Expression of laminin-5 alpha3, beta3 and gamma2 protein subunits was investigated in colorectal adenocarcinomas using immunostaining and confocal microscopy. The laminin-5 heterotrimer was found in basement membranes and as extracellular deposits in tumor stroma. In contrast to the alpha3 subunit, which was under-expressed, the gamma2 and beta3 subunits were detected in the cytoplasm of carcinoma cells dissociating (budding) from neoplastic tubules, suggestive of focal alterations in laminin-5 assembly and secretion. Laminin-5 gamma2 or beta3 subunit-reactive budding carcinoma cells expressed cytokeratins but not vimentin; they did not proliferate and were not apoptotic. Furthermore, expression of laminin-5 gamma2 and beta3 subunits in budding cells was associated with focal under-expression of the E-cadherin-beta-catenin complex. Results from xenograft experiments showed that budding activity in colorectal adenocarcinomas could be suppressed when these tumors grew at ectopic s.c. sites in nude mice. In vitro, cultured colon carcinoma cells, but not adenoma-derived tumor cells, shared the laminin-5 phenotype expressed by carcinoma cells in vivo. Using colon carcinoma cell lines implanted orthotopically and invading the cecum of nude mice, the laminin-5-associated budding was restored, indicating that this phenotype is not only determined by tumor cell properties but also dependent on the tissue micro-environment. Our results indicate that both laminin-5 alpha3 subunit expression and cell-cell cohesiveness are altered in budding carcinoma cells, which we consider to be actively invading. We propose that the local tissue micro-environment contributes to these events.
Collapse
Affiliation(s)
- I Sordat
- Unit of Experimental Pathology, Swiss Institute for Experimental Cancer Research, Epalinges, Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
37
|
Stutzmann J, Bellissent-Waydelich A, Fontao L, Launay JF, Simon-Assmann P. Adhesion complexes implicated in intestinal epithelial cell-matrix interactions. Microsc Res Tech 2000; 51:179-90. [PMID: 11054868 DOI: 10.1002/1097-0029(20001015)51:2<179::aid-jemt9>3.0.co;2-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This article review summarizes data on cell-substratum adhesion complexes involved in the regulation of cellular functions in the intestine. We first focus on the molecular composition of the two main adhesion structures-the beta1 integrin-adhesion complex and the hemidesmosome-found in vivo and in two human intestinal cell lines. We also report the key findings on the cellular behavior and response to the extracellular matrix that involve integrins, the main transmembrane anchors of these complexes. How the dynamics of cell/extracellular matrix interactions contribute to cell migration, proliferation, differentiation, and tumorigenicity is discussed in the light of the data provided by the human intestinal cells.
Collapse
Affiliation(s)
- J Stutzmann
- INSERM Research Unit 381, Ontogenesis and Pathology of the Digestive System, 67200 Strasbourg, France
| | | | | | | | | |
Collapse
|
38
|
DiPersio CM, van der Neut R, Georges-Labouesse E, Kreidberg JA, Sonnenberg A, Hynes RO. alpha3beta1 and alpha6beta4 integrin receptors for laminin-5 are not essential for epidermal morphogenesis and homeostasis during skin development. J Cell Sci 2000; 113 ( Pt 17):3051-62. [PMID: 10934043 DOI: 10.1242/jcs.113.17.3051] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Continuous regeneration and homeostasis of the stratified epidermis requires coordinated regulation of cell proliferation, cell differentiation, and cell survival. Integrin-mediated cell adhesion to the extracellular matrix has important roles in regulating each of these processes. Integrins alpha3beta1 and alpha6beta4 are both receptors on epidermal keratinocytes for the basement membrane protein laminin-5, the major ligand for epidermal adhesion in mature skin. Ablation in mice of either alpha3beta1 or alpha6beta4, through null mutation of the gene encoding the alpha3, alpha6, or beta4 integrin subunit, results in epidermal blistering of varying severity. Our previous studies showed that, despite blistering, differentiation and stratification of the epidermis appeared essentially normal in mice that lacked either alpha3beta1 or alpha6beta4. However, these studies did not definitively address the specific developmental importance of each integrin, since they may have overlapping and/or compensatory functions. Given the individual importance of alpha3beta1 or alpha6beta4 in maintaining the dermo-epidermal junction in mature skin, we sought to determine the importance of these integrins for embryonic skin development and epidermal morphogenesis. In the current study, we analyzed skin development in mutant embryos that completely lack both integrins alpha3beta1 and alpha6beta4. Although alpha3beta1/alpha6beta4-deficient embryos displayed epidermal blistering by stage E15.5 of development, they also retained regions of extensive epidermal adhesion to the basement membrane through stage E16.5, indicating alternative adhesion mechanisms. Apoptosis was induced in detached epidermis of alpha3beta1/alpha6beta4-deficient embryos, exemplifying vividly the importance of epithelial attachment to the basement membrane for cell survival. However, apoptotic cells were completely absent from attached epidermis of alpha3beta1/alpha6beta4-deficient embryos, showing that epithelial adhesion that occurred independently of alpha3beta1 and alpha6beta4 also protected cells from apoptosis. Remarkably, in the absence of the known laminin-5 binding integrins (alpha3beta1, alpha6beta4, and alpha6beta1), keratinocytes retained the capacity to proliferate in the epidermis, and epidermal stratification and skin morphogenesis appeared normal prior to blister formation. These findings show that while alpha3beta1 and alpha6beta4 are both required for integrity of the dermo-epidermal junction, neither one is essential for epidermal morphogenesis during skin development.
Collapse
Affiliation(s)
- C M DiPersio
- Howard Hughes Medical Institute, Center for Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Hellman K, Hellström AC, Silfverswärd C, Salo S, Aspenblad U, Nilsson B, Frankendal B, Tryggvasson K, Auer G. Cancer of the vagina: Laminin-5gamma2 chain expression and prognosis. Int J Gynecol Cancer 2000; 10:391-396. [PMID: 11240703 DOI: 10.1046/j.1525-1438.2000.010005391.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The purpose of this experiment was to investigate the expression and the prognostic impact of the gamma2 subchain of laminin-5 in vaginal malignancies. The outcome of the rare disease primary carcinoma of the vagina is poor and little is known about prognostic markers. The gamma2 chain of laminin-5, an epithelial basement membrane protein, is thought to play a crucial role in tumor cell adhesion, migration, and proliferation, and may thus be an additive potential marker. Archival, paraffin-embedded sections were stained immunohistochemically with an antibody against the gamma2 chain of human laminin-5 protein. The material consisted of 59 cases of primary vaginal malignancies, subdivided into short- and long-time survivors. All invasive malignancies of epithelial origin were positively stained with the antibody against the gamma2 chain. High expression of the gamma2 chain correlated significantly in an univariate analysis with short-time survival (P = 0.041), but in the multivariate analysis only age and tumor size were independent prognostic factors. A significant intercorrelation between large tumors and high gamma2 chain immunoreactivity was found (P = 0.003). These results indicate that laminin-5gamma2 subchain expression in primary vaginal carcinomas is of prognostic impact. However, in a multivariate analysis only patient age and tumor size had independent prognostic value.
Collapse
Affiliation(s)
- K. Hellman
- Department of Gynecologic Oncology, Radiumhemmet, Karolinska Hospital, Stockholm, Sweden;Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm, Sweden;Biocenter of Oulu and Department of Biochemistry, University of Oulu, Finland;Division of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden;Unit of Cancer Epidemiology, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Miller KA, Chung J, Lo D, Jones JC, Thimmapaya B, Weitzman SA. Inhibition of laminin-5 production in breast epithelial cells by overexpression of p300. J Biol Chem 2000; 275:8176-82. [PMID: 10713141 DOI: 10.1074/jbc.275.11.8176] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcriptional coactivator p300 is essential for normal embryonic development and cellular differentiation. We have been studying the role of p300 in the transcription of a variety of genes, and we became interested in the role of this coactivator in the transcription of genes important in breast epithelial cell biology. From MCF-10A cells (spontaneously immortalized, nontransformed human breast epithelial cells), we developed cell lines that stably overexpress p300. These p300-overexpressing cells displayed reduced adhesion to culture dishes and were found to secrete an extracellular matrix deficient in laminin-5. Laminin-5 is the major extracellular matrix component produced by breast epithelium. Immunofluorescence studies, as well as experiments using normal matrix, confirmed that the decreased adhesion of p300-overexpressing cells is due to laminin-5-deficient extracellular matrix and not due to loss of laminin-5 receptors. Northern blots revealed markedly decreased levels of expression of two of the genes (designated LAMA3 and LAMC2) encoding the alpha3 and gamma2 chains of the laminin-5 heterotrimer in the cells that overexpress p300, whereas LAMB3 mRNA, encoding the third or beta3 chain of laminin-5, was not markedly reduced. Transient transfection experiments with a vector containing a murine LAMA3 promoter demonstrate that overexpressing p300 down-regulates the LAMA3 promoter. In summary, overexpression of p300 leads to down-regulation of laminin-5 production in breast epithelial cells, resulting in decreased adhesion.
Collapse
Affiliation(s)
- K A Miller
- Department of Medicine, Division of Hematology/Oncology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | | | | | |
Collapse
|
41
|
Lohi J, Oivula J, Kivilaakso E, Kiviluoto T, Fröjdman K, Yamada Y, Burgeson RE, Leivo I, Virtanen I. Basement membrane laminin-5 is deposited in colorectal adenomas and carcinomas and serves as a ligand for alpha3beta1 integrin. APMIS 2000; 108:161-72. [PMID: 10752684 DOI: 10.1034/j.1600-0463.2000.d01-40.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Interplay between laminin-5 (Ln-5) and its integrin (Int) receptors alpha2beta1, alpha3beta1 and alpha6beta4 has been implicated in the progression and invasion of carcinomas. In this study we found abundant immunoreactivity for chains of Ln-5 (alpha3-beta3-gamma2) and Ln-10 (alpha5-beta1-gamma1), as well as for type VII collagen, in basement membranes (BM) of colorectal adenomas. In carcinomas of all differentiation grades, Lns were seen in tumor BMs, whereas type VII collagen was almost absent. Ln-5 appeared to accumulate along the invading edges of carcinomas, while Ln-10 was mostly absent. Immunoreactivity for Ln al chain, a component of Lns-1 and -3, was not seen in adenomas or carcinomas. Immunoreactivity for alpha2, alpha6, beta1 and beta4 Ints was found in all tumors and that for alpha3 Int in all adenomas and most of the carcinomas, often in colocalization with Ln-5. Immunoblotting of carcinoma tissues showed that the gamma2 chain of Ln-5 was present as typical Mr 105000 and 155000 isoforms. Immunoprecipitation experiments showed production of Ln-5 by cultured colon carcinoma cells. In quantitative cell adhesion experiments, function-blocking MAbs to alpha3 and beta1 Int subunits, but not those to Int alpha2 or alpha6 subunits, significantly inhibited the adhesion of cells to Ln-5. Our results suggest that BM composition in colorectal adenomas reflects the properties of surface epithelial BM of colorectal mucosa. In invading carcinomas, trimeric Ln-5, produced by carcinoma cells, is a major BM component and the cells use the alpha3beta1 Int complex for adhesion to Ln-5.
Collapse
Affiliation(s)
- J Lohi
- Department of Anatomy, Institute of Biomedicine, University of Helsinki, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Skyldberg B, Salo S, Eriksson E, Aspenblad U, Moberger B, Tryggvason K, Auer G. Laminin-5 as a marker of invasiveness in cervical lesions. J Natl Cancer Inst 1999; 91:1882-7. [PMID: 10547396 DOI: 10.1093/jnci/91.21.1882] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Treatment decisions for cervical cancer, a common disease worldwide, depend on demonstrating whether or not tumor invasion of the surrounding tissue has occurred. Invasion can be difficult to assess by standard histopathologic methods, especially when limited amounts of tissue are available. Several studies of a variety of cancers have reported increased expression of laminin-5-an important attachment protein for epithelial cells-in invasive carcinomas. This study was designed to investigate whether the presence of laminin-5 is related to the invasive capacity of cervical lesions. METHODS We used immunohistochemical methods to stain archival, paraffin-embedded sections of cervical lesions with a polyclonal antibody specifically targeting the gamma2 chain of human laminin-5 protein. The study sample included 23 lesions of mild and moderate dysplasia (cervical intraepithelial neoplasia [CIN] 1 and 2, respectively), 32 lesions of severe dysplasia or carcinoma in situ (CIN 3), 15 lesions of microinvasive cancer, and 20 lesions of frankly invasive cancer. Cellular proliferative activity was also investigated by the use of monoclonal MIB-1 (directed against the antigen Ki-67) and anticyclin A antibodies. RESULTS Invasiveness of cervical lesions was positively associated with immunohistochemical staining of the gamma2 chain of laminin-5 (two-sided P =.001). All CIN 1 and CIN 2 lesions-except one CIN 2 lesion later shown to be invasive cancer-and 21 CIN 3 lesions tested negative for the gamma2 chain of laminin-5. Eleven CIN 3 lesions and all invasive cancers tested positive for this protein. One lymph node metastasis and a pleural metastasis from one of the patients with invasive cancer showed strong immunohistochemical positivity. Proliferative activity increased with advancement of the lesion but was not confined to cells positive for the gamma2 chain of laminin-5. CONCLUSIONS These data suggest that antibodies directed against the gamma2 chain of laminin-5 can identify cervical lesions with invasive capacity and thus may be useful as a sensitive marker of early invasion.
Collapse
Affiliation(s)
- B Skyldberg
- Division of Cellular Pathology, Department of Oncology, Karolinska Institute, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
43
|
Salo T, Kainulainen T, Parikka M, Heikinheimo K. Expression of laminin-5 in ameloblastomas and human fetal teeth. J Oral Pathol Med 1999; 28:337-42. [PMID: 10478957 DOI: 10.1111/j.1600-0714.1999.tb02050.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Extracellular matrix proteins have been shown to play important roles in the cell migration and differentiation in both normal and pathological conditions. In the present study, we used immunohistochemistry and in situ hybridization to determine the distribution of laminin-5 in ameloblastomas and developing human teeth. In ameloblastomas, the immunoreaction for the laminin-5 gamma2 chain was confined to the tumor cells of the peripheral area. The staining reaction was variable, being mostly weak and fragmented in the basement membrane structures surrounding the neoplastic islands. Some peripheral epithelial cells and some invading small ameloblastoma cell islands showed intense intracellular staining for the gamma2 chain. Tumor cells in the proliferating areas of ameloblastomas expressed gamma2 chain mRNA. The laminin-5 gamma2 chain was located beneath the dental lamina and in the outer, but not in the inner, enamel epithelium of the developing teeth. During the early hard tissue apposition stage, intense staining for the gamma2 chain was confined to ameloblasts, which also gave a strong signal for gamma2 chain mRNA. These results suggest that laminin-5 may contribute to the infiltrative and progressive growing potential of ameloblastomas. During human tooth development, however, laminin-5 may participate in the terminal differentiation of ameloblasts and in enamel matrix formation.
Collapse
Affiliation(s)
- T Salo
- Department of Diagnostic and Oral Medicine, Institute of Dentistry, University of Oulu, Finland
| | | | | | | |
Collapse
|
44
|
Fontao L, Stutzmann J, Gendry P, Launay JF. Regulation of the type II hemidesmosomal plaque assembly in intestinal epithelial cells. Exp Cell Res 1999; 250:298-312. [PMID: 10413585 DOI: 10.1006/excr.1999.4549] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Hemidesmosomes (HDs) are cellular junctions that anchor epithelial cells to the extracellular matrix (ECM) and are associated morphologically with the cytoskeleton. Hemidesmosomal molecular components include two proteins involved in linking intermediate filaments, HD1/plectin and BP230, and two transmembrane proteins, BP180 and the alpha6beta4 integrin, a laminin receptor. In cells lacking BP230 and BP180, HD1/plectin still associates with alpha6beta4 integrin, forming HD-like structures, called type II HDs. In the present study, we used an intestinal epithelial cell line that expresses HD1/plectin and the alpha6beta4 integrin to investigate the regulation of assembly of these proteins in type II HDs. These compounds were found to be clustered at sites of cell-ECM contact and their polarized localization was influenced by either cell confluency or extracellular matrix deposition. Conventional and immunoelectron microscopy showed that HD1/plectin and the beta4 integrin subunit are colocalized in an adhesion structure. Using cytoskeleton-disrupting drugs and confocal microscopy, we demonstrated that type II HDs are made up of numerous individual plaques whose assembly into a cluster requires actin filaments, but not microtubules.
Collapse
Affiliation(s)
- L Fontao
- INSERM U.381, Strasbourg, 67200, France
| | | | | | | |
Collapse
|
45
|
Haier J, Nasralla M, Nicolson GL. Different adhesion properties of highly and poorly metastatic HT-29 colon carcinoma cells with extracellular matrix components: role of integrin expression and cytoskeletal components. Br J Cancer 1999; 80:1867-74. [PMID: 10471033 PMCID: PMC2374274 DOI: 10.1038/sj.bjc.6690614] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Integrin-mediated tumour cell adhesion to extracellular matrix (ECM) components is an important step in the development of metastatic lesions. Thus, integrin expression and integrin-mediated adhesion of colon carcinoma cells to various ECM components was examined. Poorly (HT-29P) and highly (HT-29LMM) liver-metastatic colon carcinoma cells were used to study the rates of adhesion to collagen I (C I), collagen IV (C IV), laminin (LN), fibronectin (FN), or vitronectin (VN) in a static adhesion assay (10-120 min). Cells were untreated or treated with oligopeptides (RGD, GRGDS, YIGSR, RGES), anti-integrin antibodies, or colchicine, nocodazole, cycloheximide, acrylamide or cytochalasin D (to disrupt cytoskeletal structures). Both cell lines expressed similar patterns of integrin expression (alpha2, alpha3, ,alpha6, alphav, beta1, beta4, and beta5) by immunocytochemistry and immunoprecipitation. HT-29LMM cells showed significantly higher rates of adhesion to LN (P < 0.001) and FN (P < 0.001), but significantly poorer rates of adhesion to C I (P < 0.05) and C IV (P < 0.001) than HT-29P cells, respectively, adhesion to VN was insignificant. RGD and GRGDS inhibited HT-29LMM cell adhesion to FN only. Pretreatment with anti-beta, or anti-alpha2 integrin subunits suppressed adhesion to C I and C IV, and adhesion to LN was inhibited with anti-beta1 or anti-alpha6 integrin. Anti-beta1 or anti-alphav blocked adhesion to FN. Pretreatment of cells with cytochalasin D, cycloheximide or acrylamide inhibited adhesive interactions of both cell lines to the ECM components. In contrast, colchicine and nocodazole had no effect. The results demonstrate that adhesion of HT-29 cells to ECM is mediated, in part, by different integrins, depending on the substrate. Poorly and highly metastatic HT-29 cells possessed different patterns of adhesion to the various ECM substrates, but these differences were not due to different expression of integrin subunits. The results also suggested that the initial adhesion of poorly or highly metastatic HT-29 cells to ECM components requires, in part, the presence of native action and intermediate filaments, but not of microtubules. Thus the adhesion of tumour cells to ECM components may be dependent on signal transduction and assembly of microfilaments.
Collapse
Affiliation(s)
- J Haier
- The Institute for Molecular Medicine, Huntington Beach, CA 92649, USA
| | | | | |
Collapse
|
46
|
Kitayama J, Nagawa H, Tsuno N, Osada T, Hatano K, Sunami E, Saito H, Muto T. Laminin mediates tethering and spreading of colon cancer cells in physiological shear flow. Br J Cancer 1999; 80:1927-34. [PMID: 10471041 PMCID: PMC2363138 DOI: 10.1038/sj.bjc.6690622] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Under the physiological shear condition, cultured colon cancer cells bound to laminin (LM), but not to fibronectin or vitronectin. Most of the tethered cells did not roll, but arrested immediately and spread within 10-30 min on LM under the continuous presence of shear flow. The tethering of Colo201 was partially inhibited by monoclonal antibodies (mAbs) to alpha6 integrin and a combination of mAbs to beta1 and beta4 integrins, but not by mAb to 67KD laminin receptor. Some Colo201 cells still tethered at 4 degrees C. This suggests that alpha6beta1 and alpha6beta4 integrins participate in Colo201 tethering on LM, although other non-integrin molecules play roles. In contrast, the spread of Colo201 was effectively inhibited by the mAbs to integrin alpha2, alpha6 and beta1 chains. The effect of anti-alpha2 plus anti-alpha6 mAbs was almost equal to anti-beta1, suggesting that Colo201 cells mainly use alpha2beta1 and alpha6beta1 integrins for spreading on LM. When the cells were perfused on subconfluent endothelial cells (HUVEC) cultured on LM, they did not tether on HUVEC but did on coated LM exposed at intercellular gap area. Immunohistochemistry revealed that LM abundantly existed in the cytosol of human portal and hepatic vein endothelial cells. These data suggest that LM can mediate from tethering to spreading of colon cancer cells under the blood flow and plays an essential role in haematogeneous metastasis.
Collapse
Affiliation(s)
- J Kitayama
- Department of Surgery, The University of Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Fritsch C, Orian-Rousseaul V, Lefebvre O, Simon-Assmann P, Reimund JM, Duclos B, Kedinger M. Characterization of human intestinal stromal cell lines: response to cytokines and interactions with epithelial cells. Exp Cell Res 1999; 248:391-406. [PMID: 10222131 DOI: 10.1006/excr.1999.4414] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The maintenance of the physiological homeostasis of the gut mucosa characterized by continuous proliferation and differentiation processes results from epithelial-mesenchymal cell cross-talk. To set out stable and homogeneous models for the study of the (dys)regulation of various morphofunctional aspects, we established and characterized three clonal cell lines (C9, C11, and C20) derived from human duodenal mucosal connective tissue. We defined the expression of (i) cytoskeletal proteins; (ii) basement membrane molecules (laminins, collagen IV, nidogen) which have been shown formerly to be deposited at the epithelial/mesenchymal interface in situ by the mesenchymal compartment; and (iii) soluble factors, HGF, and TGFbeta1. The three cell lines display common but also specific proliferative responses to cytokines (IL1beta, IL2, IL8, TNFalpha, IFNgamma, TGFbeta1, and HGF). When cocultured with embryonic intestinal endoderms or with human colonic Caco2 or HT29 cancer cells, C9 versus C11 and C20 cell lines induced limited versus extensive growth of the associated epithelial cells. In addition C20 cells allowed spreading of HT29 cells with the formation of a basement membrane at the heterologous interface. Morphogenesis obtained by intracoelomic grafts of associations comprising the mesenchymal cell lines and intestinal endoderms was also different among those composed of C9 cells or of C11 or C20 cells. In conclusion, these data indicate that the mucosal connective tissue is heterogeneous and comprises several phenotypically different mesenchyme-derived cells whose equilibrium may be important in the gut homeostasis. These cells can now be used to define tissue-specific factors which may be involved in the physiopathology of the intestinal epithelium.
Collapse
Affiliation(s)
- C Fritsch
- Ontogenesis and Pathology of the Digestive Tract, INSERM Unit 381, Strasbourg, 67200, France
| | | | | | | | | | | | | |
Collapse
|
48
|
Simon-Assmann P, Lefebvre O, Bellissent-Waydelich A, Olsen J, Orian-Rousseau V, De Arcangelis A. The laminins: role in intestinal morphogenesis and differentiation. Ann N Y Acad Sci 1998; 859:46-64. [PMID: 9928369 DOI: 10.1111/j.1749-6632.1998.tb11110.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dynamic and reciprocal heterotypic cell interactions are crucial for intestinal morphogenesis and differentiation. This paper emphasizes the role of basement membrane molecules and in particular of laminins as potent mediators in this intercellular cross talk. Changes in the expression or localization of laminin isoforms or of integrins during development and cell migration strengthen the concept that heterogeneity in cell-matrix interactions could mediate distinct cell responses. A combination of genetic or biochemical approaches associated with in vitro models allows us to study the potential role of each laminin isoform in basement membrane assembly, cell migration, or cell differentiation.
Collapse
|
49
|
Kedinger M, Lefebvre O, Duluc I, Freund JN, Simon-Assmann P. Cellular and molecular partners involved in gut morphogenesis and differentiation. Philos Trans R Soc Lond B Biol Sci 1998; 353:847-56. [PMID: 9684282 PMCID: PMC1692284 DOI: 10.1098/rstb.1998.0249] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The intestinal mucosa represents an interesting model to study the cellular and molecular basis of epithelial-mesenchymal cross-talk participating in the development and maintenance of the digestive function. This cross-talk involves extracellular matrix molecules, cell-cell and cell-matrix adhesion molecules as well as paracrine factors and their receptors. The cellular and molecular unit is additionally regulated by hormonal, immune and neural inputs. Such integrated cell interactions are involved in pattern formation, in proximodistal regionalization, in maintenance of a gradient of epithelial proliferation and differentiation, and in epithelial cell migration. We focus predominantly on two aspects of these integrated interactions in this paper: (i) the role of basement membrane molecules, namely laminins, in the developmental and spatial epithelial behaviour; and (ii) the importance of the mesenchymal cell compartment in these processes.
Collapse
Affiliation(s)
- M Kedinger
- INSERM Unit 381, Development and Pathology of the Digestive Tract, Strasbourg, France.
| | | | | | | | | |
Collapse
|