1
|
Miller CL, Dugand R, McGuigan K. Variability of morphology-performance relationships under acute exposure to different temperatures in 3 strains of zebrafish. Curr Zool 2025; 71:152-161. [PMID: 40264721 PMCID: PMC12011485 DOI: 10.1093/cz/zoae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/05/2024] [Indexed: 04/24/2025] Open
Abstract
Locomotion is thermally sensitive in ectotherms and therefore it is typically expressed differently among thermally heterogenous environments. Locomotion is a complex function, and whereas physiological and behavioral traits that influence locomotor performance may respond to thermal variation throughout life, other contributing traits, like body shape, may have more restricted responses. How morphology affects locomotor performance under variable temperature conditions is unknown. Here, we investigated 3 genetically distinct strains of zebrafish, Danio rerio (AB, WIK, and Tu) with a shared multi-generational history at 28 °C. After rearing fish at 28 °C, we measured prolonged swimming speed (U crit) at each of 6 temperatures (between 16 °C and 34 °C). Speed was strongly positively correlated among temperatures, resulting in most among individual variation being temperature-independent (i.e., fish were relatively fast or slow across all temperatures). However, we also detected significant variation along 2 axes reflecting temperature-dependent variation. Although strains differed in mean swimming performance, within strain (among-individual) patterns of speed variation were markedly consistent. Body shape and size explained significant variation among individuals in both temperature-independent and temperature-dependent axes of swimming speed variation. Notably, morphological traits that were most strongly associated with temperature-independent performance variation (i.e., faster-slower) differed from those associated with temperature-dependent (i.e., hotter-colder) variation. Further, there were significant differences among strains in both the direction and strength of association for specific morphological traits. Our results suggest that thermally heterogenous environments could have complex effects on the evolution of traits that contribute to whole organism performance traits.
Collapse
Affiliation(s)
- Christina L Miller
- School of the Environment, The University of Queensland, Brisbane, QLD 4072, Australia
- Department of Plant Biology, Michigan State University, MI 48823, USA
| | - Robert Dugand
- School of Biological Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Katrina McGuigan
- School of the Environment, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
2
|
Mallett SL, Leahy L, Vaughan IP, Klaftenberger T, Cerdá X, Wheatley LJ, Leyshon K, King S, Dawson W, Harrendence K, Wilker I, Bishop TR. Automating thermal limits: continuous, objective, and high-throughput thermal data for small mobile ectotherms. J Therm Biol 2025; 129:104127. [PMID: 40344753 DOI: 10.1016/j.jtherbio.2025.104127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 04/22/2025] [Accepted: 04/24/2025] [Indexed: 05/11/2025]
Affiliation(s)
- Sophie L Mallett
- School of Biosciences, Cardiff University, Cardiff, CF103AX, United Kingdom.
| | - Lily Leahy
- Department of Environment and Genetics, La Trobe University, Melbourne, Australia
| | - Ian P Vaughan
- School of Biosciences, Cardiff University, Cardiff, CF103AX, United Kingdom
| | - Tristan Klaftenberger
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland
| | - Xim Cerdá
- Estación Biológica de Doñana, CSIC, Sevilla, Spain
| | - Lucy J Wheatley
- School of Biosciences, Cardiff University, Cardiff, CF103AX, United Kingdom
| | - Kester Leyshon
- School of Biosciences, Cardiff University, Cardiff, CF103AX, United Kingdom
| | - Shane King
- School of Biosciences, Cardiff University, Cardiff, CF103AX, United Kingdom
| | - Will Dawson
- School of Biosciences, Cardiff University, Cardiff, CF103AX, United Kingdom; School of Natural and Environmental Sciences, University of Newcastle, Newcastle upon Tyne, NE1 4LB, United Kingdom
| | - Kelsey Harrendence
- School of Biosciences, Cardiff University, Cardiff, CF103AX, United Kingdom
| | - Icaro Wilker
- Programa de Pós-Graduação em Ecologia Aplicada, Departamento de Ecologia e Conservação, Instituto de Ciências Naturais, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| | - Tom R Bishop
- School of Biosciences, Cardiff University, Cardiff, CF103AX, United Kingdom; Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
3
|
Kong JD, Vadboncoeur É, Bertram SM, MacMillan HA. Temperature-dependence of life history in an edible cricket: Implications for optimising mass-rearing. CURRENT RESEARCH IN INSECT SCIENCE 2025; 7:100109. [PMID: 40129661 PMCID: PMC11931298 DOI: 10.1016/j.cris.2025.100109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/17/2025] [Accepted: 02/25/2025] [Indexed: 03/26/2025]
Abstract
Optimisation of life history and organismal performance underlies success in insect mass-rearing. Rearing schedules, resource use and production yield depend on many aspects of insect fitness and performance within and across generations, such as growth, development, longevity, and fecundity, which are all temperature dependent. Despite this general understanding, we often lack species-specific information needed to make informed decisions about manipulating rearing temperatures to optimise insect growth and development. Here, we characterise the effects of rearing temperature on nymph to adult development and lifespan (20 - 38 °C), and reproductive output (30 - 38 °C) in a farmed cricket (Gryllodes sigillatus). Crickets grew larger and reached adulthood sooner at higher developmental temperatures at the expense of longevity. Reproductive output was similar across a range of temperatures but decreased at 38 °C. Therefore, while temperature control is necessary to maximise production rates, temperature is unlikely to affect production yield in a fixed harvest cycle provided it is maintained within the narrow range enabling both fast growth and stable reproduction (32 - 36 °C). Our study provides a fundamental basis for further optimisation of insect rearing operations and a deeper understanding of the thermal biology of this commonly farmed species.
Collapse
Affiliation(s)
- Jacinta D. Kong
- Department of Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Émile Vadboncoeur
- Department of Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Susan M. Bertram
- Department of Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Heath A. MacMillan
- Department of Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| |
Collapse
|
4
|
Lugue K, Monaco CJ, Vigouroux E, Sham Koua M, Vidal-Dupiol J, Mitta G, Le Luyer J. Exploring thermal tolerance across time and space in a tropical bivalve, Pinctada margaritifera. J Exp Biol 2025; 228:JEB249651. [PMID: 39898388 DOI: 10.1242/jeb.249651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/27/2025] [Indexed: 02/04/2025]
Abstract
Ectotherm vulnerability to climate change is predicted to increase with temperature variation. Still, translating laboratory observations of organisms' heat-stress responses to the natural fluctuating environment remains challenging. In this study, we used an integrative framework combining insights from thermal death time (TDT) curves and physiological reaction norms to precisely capture Pinctada margaritifera's thermal performance and tolerance landscape. We then applied this integrative model to predict individuals' cumulative heat injury as a function of actual temperature conditions documented at five contrasting islands across French Polynesia. Substantial injury was predicted for spats (ranging from 30.24% to 29.62%) when exposed to eight consecutive extreme low tide events in Nuku Hiva. Overall, this study highlights the potential of this framework to effectively quantify the impact of extreme events, such as marine heatwaves, and to guide resource management initiatives.
Collapse
Affiliation(s)
- Klervi Lugue
- UMR-241 SECOPOL, Ifremer, IRD, Institut Louis-Malardé, Univ. Polynésie Française, F-98725 Taravao, Tahiti, Polynésie Française, France
- IHPE, Ifremer, Univ. Montpellier, CNRS, Univ. Perpignan Via Domitia, 34090 Montpellier, France
- UMR-6539 LEMAR, Ifremer, Univ. Brest, CNRS, IRD, F-29280, Plouzané, France
| | - Cristián J Monaco
- UMR-241 SECOPOL, Ifremer, IRD, Institut Louis-Malardé, Univ. Polynésie Française, F-98725 Taravao, Tahiti, Polynésie Française, France
| | - Erwan Vigouroux
- UMR-241 SECOPOL, Ifremer, IRD, Institut Louis-Malardé, Univ. Polynésie Française, F-98725 Taravao, Tahiti, Polynésie Française, France
| | - Manaarii Sham Koua
- UMR-241 SECOPOL, Ifremer, IRD, Institut Louis-Malardé, Univ. Polynésie Française, F-98725 Taravao, Tahiti, Polynésie Française, France
| | - Jérémie Vidal-Dupiol
- IHPE, Ifremer, Univ. Montpellier, CNRS, Univ. Perpignan Via Domitia, 34090 Montpellier, France
| | - Guillaume Mitta
- UMR-241 SECOPOL, Ifremer, IRD, Institut Louis-Malardé, Univ. Polynésie Française, F-98725 Taravao, Tahiti, Polynésie Française, France
| | - Jérémy Le Luyer
- UMR-241 SECOPOL, Ifremer, IRD, Institut Louis-Malardé, Univ. Polynésie Française, F-98725 Taravao, Tahiti, Polynésie Française, France
- UMR-6539 LEMAR, Ifremer, Univ. Brest, CNRS, IRD, F-29280, Plouzané, France
| |
Collapse
|
5
|
Pienaar M, Bierman A, Roets F, Terblanche JS. Acclimation effects on thermal locomotor performance of the invasive Polyphagous Shot Hole Borer beetle, Euwallacea fornicatus (Coleoptera: Curculionidae: Scolytinae). J Therm Biol 2025; 128:104068. [PMID: 39983542 DOI: 10.1016/j.jtherbio.2025.104068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 02/23/2025]
Abstract
The Polyphagous Shot Hole Borer (PSHB; Euwallacea fornicatus, Coleoptera: Curculionidae: Scolytinae) is an invasive and destructive tree pest. To assess whether thermal acclimation influences E. fornicatus locomotion performance (i.e., induced plastic responses) that may influence invasion potential, beetles were acclimated to three temperatures (18 °C, 25 °C, and 32 °C), and four locomotion traits were measured across six temperatures (13 °C, 18 °C, 23 °C, 28 °C, 33 °C and 38 °C) per acclimation group to construct thermal performance curves, capturing critical thermal minimum (Tmin), critical thermal maximum (Tmax), thermal breadth (Tbr), optimal performance rate (Umax). Substantial plasticity of performance curves was found in E. fornicatus. Generally, cold (18 °C) acclimation increased the thermal range of several locomotor performance traits without affecting performance levels, thereby supporting the colder-is-better hypothesis. To assess the consequences of these plastic responses, using the thermal performance curves established here, movement rates of E. fornicatus in an at-risk orchard area in South Africa were predicted across seasons while considering artificial warm and cold spells. Cold-acclimated beetles exhibited the highest cumulative distance traveled in both summer and winter, while warm-acclimated beetles had the lowest. Therefore, short-term thermal variation significantly influenced E. fornicatus locomotion performance, with cold acclimation notably improving dispersal across a wide range of thermal conditions. These findings highlight the importance of considering recent thermal history when predicting E. fornicatus invasion potential. By integrating these data with microclimatic conditions and functional models, this study offers valuable insights for predicting E. fornicatus spread, informing targeted management strategies, and refining spatially explicit risk assessments to mitigate the impacts of this invasive pest.
Collapse
Affiliation(s)
- Madeleine Pienaar
- Centre for Invasion Biology, Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa
| | - Anandi Bierman
- Centre for Invasion Biology, Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa
| | - Francois Roets
- Centre for Invasion Biology, Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa
| | - John S Terblanche
- Centre for Invasion Biology, Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa.
| |
Collapse
|
6
|
Colinet H, Kustre A. The apparent seasonal biphenism in Drosophila suzukii stems in reality from continuous reaction norms. PEST MANAGEMENT SCIENCE 2025; 81:507-517. [PMID: 39360906 PMCID: PMC11632211 DOI: 10.1002/ps.8452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/18/2024] [Accepted: 09/16/2024] [Indexed: 12/12/2024]
Abstract
The spotted wing drosophila (SWD) is supposed to show only two distinct seasonal phenotypes: the dark, diapausing winter morph (WM) and the light, reproductively active summer morph (SM). It is unclear if these phenotypes result from a true developmental switch or from the expression of extreme phenotypes of continuous thermal reaction norms. This study aims to investigate this question by examining traits across a range of temperatures. Using 12 developmental temperatures (8 to 30 °C), we assessed traits including viability, growth, morphology, cold tolerance, metabolic rate, and ovarian maturation. Gradual increases in temperature induced gradual changes in all these traits, indicating classical nonlinear thermal reaction norms. Low temperatures (14 °C and below) produced flies with extended development, dark color, larger size, increased cold tolerance, reduced metabolism, and delayed oogenesis, characteristic of the WM. Given the months required for emergence and egg maturation at cold, distinct generations of SWD may develop in discrete environments resulting in an apparent biphenism. What appears to be distinct phenotypes (WM and SM) may actually result from continuous thermal reaction norms. This implies the need for precise terminology in SWD. We recommend using terms like 'winter-acclimated' or 'winter phenotype' rather than 'winter morph'. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Hervé Colinet
- Université de Rennes, CNRS, ECOBIO (Ecosystèmes, biodiversité, évolution) – UMR 6553RennesFrance
| | - Alexiane Kustre
- Université de Rennes, CNRS, ECOBIO (Ecosystèmes, biodiversité, évolution) – UMR 6553RennesFrance
| |
Collapse
|
7
|
Schwoerbel J, Visch W, Wright JT, Bellgrove A, Sanderson JC, Hurd CL. Thermal performance curves identify seasonal and site-specific variation in the development of Ecklonia radiata (Phaeophyceae) gametophytes and sporophytes. JOURNAL OF PHYCOLOGY 2024; 60:83-101. [PMID: 37897074 DOI: 10.1111/jpy.13406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/25/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023]
Abstract
Rapid ocean warming is affecting kelp forests globally. While the sporophyte life stage has been well studied for many species, the microscopic life stages of laminarian kelps have been understudied, particularly regarding spatial and temporal variations in thermal tolerance and their interaction. We investigated the thermal tolerance of growth, survival, development, and fertilization of Ecklonia radiata gametophytes, derived from zoospores sampled from two sites in Tasmania, Australia, throughout a year, over a temperature gradient (3-30°C). For growth we found a relatively stable thermal optimum at ~20.5°C and stable thermal maxima (25.3-27.7°C). The magnitude of growth was highly variable and depended on season and site, with no consistent spatial pattern for growth and gametophyte size. Survival also had a relatively stable thermal optimum of ~17°C, 3°C below the optimum for growth. Gametophytes grew to single cells between 5 and 25°C, but sporophytes were only observed between 10 and 20°C, indicating reproductive failure outside this range. The results reveal complex effects of source population and season of collection on gametophyte performance in E. radiata, with implications when comparing results from material collected at different localities and times. In Tasmania, gametophytes grow considerably below the estimated thermal maxima and thermal optima that are currently only reached during summer heatwaves, whereas optima for survival (~17°C) are frequently reached and surpassed during heatwaves, which may affect the persistence and recruitment of E. radiata in a warmer climate.
Collapse
Affiliation(s)
- Jakop Schwoerbel
- Institute for Marine and Antarctic Studies, Battery Point, Tasmania, Australia
| | - Wouter Visch
- Institute for Marine and Antarctic Studies, Battery Point, Tasmania, Australia
| | - Jeffrey T Wright
- Institute for Marine and Antarctic Studies, Battery Point, Tasmania, Australia
| | - Alecia Bellgrove
- School of Life and Environmental Sciences, Centre for Marine Science, Deakin University, Warrnambool, Victoria, Australia
| | | | - Catriona L Hurd
- Institute for Marine and Antarctic Studies, Battery Point, Tasmania, Australia
| |
Collapse
|
8
|
Berger D, Liljestrand-Rönn J. Environmental complexity mitigates the demographic impact of sexual selection. Ecol Lett 2024; 27:e14355. [PMID: 38225825 DOI: 10.1111/ele.14355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 01/17/2024]
Abstract
Sexual selection and the evolution of costly mating strategies can negatively impact population viability and adaptive potential. While laboratory studies have documented outcomes stemming from these processes, recent observations suggest that the demographic impact of sexual selection is contingent on the environment and therefore may have been overestimated in simple laboratory settings. Here we find support for this claim. We exposed copies of beetle populations, previously evolved with or without sexual selection, to a 10-generation heatwave while maintaining half of them in a simple environment and the other half in a complex environment. Populations with an evolutionary history of sexual selection maintained larger sizes and more stable growth rates in complex (relative to simple) environments, an effect not seen in populations evolved without sexual selection. These results have implications for evolutionary forecasting and suggest that the negative demographic impact of sexually selected mating strategies might be low in natural populations.
Collapse
Affiliation(s)
- David Berger
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
9
|
Carrillo-Longoria JA, Gaylord G, Andrews L, Powell M. Effect of temperature on growth, survival, and chronic stress responses of Arctic Grayling juveniles. TRANSACTIONS OF THE AMERICAN FISHERIES SOCIETY 2024; 153:3-22. [PMID: 38854661 PMCID: PMC11156260 DOI: 10.1002/tafs.10453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/15/2023] [Indexed: 06/11/2024]
Abstract
Arctic Grayling Thymallus arcticus are Holarctically distributed, with a single native population in the conterminous United States occurring in the Big Hole River, Montana, where water temperatures can fluctuate throughout the year from 8 to 18 °C. A gradual increase in mean water temperature has been reported in this river over the past 20 years due to riparian habitat changes and climate change effects. We hypothesized that exposing Arctic Grayling to higher temperatures would result in lower survival, decreased growth, and increased stress responses. Over a 144-day trial, Arctic Grayling juveniles were subjected to water temperatures ranging from 8-26 °C to measure the effects on growth, survival, gene expression and antioxidant enzyme activity. Fish growth increased with increasing water temperature up to 18 °C, beyond which survival was reduced. Fish did not survive at temperatures above 22 °C. In response to temperatures above 16 °C, a 3-fold and 1.5-fold increase in gene expression was observed for superoxide dismutase (SOD) and glutathione peroxidase (GPx), respectively, but no changes were seen in the ratio of Heat Shock Protein 70 (HSP70) and heat shock protein 90 (HSP90) expression. Enzyme activities of SOD and GPx also rose at temperatures above 16 °C, indicating heightened oxidative stress. Catalase (CAT) gene expression and enzyme activity decreased with rising temperatures, suggesting a preference for the GPx pathway, as GPx could also be providing help with lipid peroxidation. An increase of Thiobarbituric acid reactive substances (TBARS) was also recorded, which corresponded with rising temperatures. Our findings thus underscore the vulnerability of Arctic Grayling to minor changes in water temperature. Further increases in mean water temperature could significantly compromise survival of Arctic Grayling in the Big Hole River.
Collapse
Affiliation(s)
- Javier-Alonso Carrillo-Longoria
- Aquaculture Research Institute, University of Idaho, Hagerman Fish Culture Experiment Station, 3059F National Fish Hatchery Rd, Hagerman, ID 83332, USA
| | - Gibson Gaylord
- U.S. Fish and Wildlife Service, Bozeman Fish Technology Center, Bozeman, MT, USA
| | - Lukas Andrews
- Idaho State University, 921 S. 8th Ave, Pocatello, ID 83209
| | - Madison Powell
- Aquaculture Research Institute, University of Idaho, Hagerman Fish Culture Experiment Station, 3059F National Fish Hatchery Rd, Hagerman, ID 83332, USA
| |
Collapse
|
10
|
Kraskura K, Hardison EA, Eliason EJ. Body size and temperature affect metabolic and cardiac thermal tolerance in fish. Sci Rep 2023; 13:17900. [PMID: 37857749 PMCID: PMC10587238 DOI: 10.1038/s41598-023-44574-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023] Open
Abstract
Environmental warming is associated with reductions in ectotherm body sizes, suggesting that larger individuals may be more vulnerable to climate change. The mechanisms driving size-specific vulnerability to temperature are unknown but are required to finetune predictions of fisheries productivity and size-structure community responses to climate change. We explored the potential metabolic and cardiac mechanisms underlying these body size vulnerability trends in a eurythermal fish, barred surfperch. We acutely exposed surfperch across a large size range (5-700 g) to four ecologically relevant temperatures (16 °C, 12 °C, 20 °C, and 22 °C) and subsequently, measured their metabolic capacity (absolute and factorial aerobic scopes, maximum and resting metabolic rates; AAS, FAS, MMR, RMR). Additionally, we estimated the fish's cardiac thermal tolerance by measuring their maximum heart rates (fHmax) across acutely increasing temperatures. Barred surfperch had parallel hypoallometric scaling of MMR and RMR (exponent 0.81) and a weaker hypoallometric scaling of fHmax (exponent - 0.05) across all test temperatures. In contrast to our predictions, the fish's aerobic capacity was maintained across sizes and acute temperatures, and larger fish had greater cardiac thermal tolerance than smaller fish. These results demonstrate that thermal performance may be limited by different physiological constraints depending on the size of the animal and species of interest.
Collapse
Affiliation(s)
- Krista Kraskura
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, 93106, USA.
| | - Emily A Hardison
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Erika J Eliason
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, 93106, USA
| |
Collapse
|
11
|
Marshall DJ, Mustapha N, Monaco CJ. Conservation of thermal physiology in tropical intertidal snails following an evolutionary transition to a cooler ecosystem: climate change implications. CONSERVATION PHYSIOLOGY 2023; 11:coad056. [PMID: 37533818 PMCID: PMC10393397 DOI: 10.1093/conphys/coad056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 07/04/2023] [Accepted: 07/21/2023] [Indexed: 08/04/2023]
Abstract
Predictions for animal responses to climate warming usually assume that thermal physiology is adapted to present-day environments, and seldom consider the influence of evolutionary background. Little is known about the conservation of warm-adapted physiology following an evolutionary transition to a cooler environment. We used cardiac thermal performance curves (cTPCs) of six neritid gastropod species to study physiological thermal trait variation associated with a lineage transition from warmer rocky shores to cooler mangroves. We distinguished between functional thermal performance traits, related to energy homeostasis (slope gradient, slope curvature, HRmax, maximum cardiac activity and Topt, the temperature that maximizes cardiac activity) and a trait that limits performance (ULT, the upper lethal temperature). Considering the theory of optimal thermal performance, we predicted that the functional traits should be under greater selective pressure to change directionally and in magnitude than the thermal limit, which is redundant in the cooler environment. We found little variation in all traits across species, habitats and ecosystems, despite a ~20°C reduction in maximum habitat temperature in the mangrove species over 50 million years. While slope gradient was significantly lowered in the mangrove species, the effect difference was negated by greater thermal plasticity in the rocky shore species. ULT showed the least variation and suggested thermal specialization in the warmest habitat studied. The observed muted variation of the functional traits among the species may be explained by their limited role in energy acquisition and rather their association with heat tolerance adaptation, which is redundant in the mangrove species. These findings have implications for the conservation of habitat of intertidal gastropods that transition to cooler environments. Furthermore, they highlight the significance of evolutionary history and physiological conservation when predicting species responses to climate change.
Collapse
Affiliation(s)
- David J Marshall
- Corresponding author: Environmental and Life Sciences, Faculty of Science, Jalan Tungku Link, Gadong, Universiti Brunei Darussalam, BE1410, Brunei Darussalam. E-mail:
| | - Nurshahida Mustapha
- Environmental and Life Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410, Brunei Darussalam
| | - Cristián J Monaco
- IFREMER, IRD, Institut Louis-Malardé, Univ Polynésie française, Tahiti, Polynésie française, EIO, F-98725 Taravao, France
| |
Collapse
|
12
|
Padilla P, Herrel A, Denoël M. May future climate change promote the invasion of the marsh frog? An integrative thermo-physiological study. Oecologia 2023:10.1007/s00442-023-05402-0. [PMID: 37351628 DOI: 10.1007/s00442-023-05402-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 06/07/2023] [Indexed: 06/24/2023]
Abstract
Climate change and invasive species are two major drivers of biodiversity loss and their interaction may lead to unprecedented further loss. Invasive ectotherms can be expected to tolerate temperature variation because of a broad thermal tolerance and may even benefit from warmer temperatures in their new ranges that better match their thermal preference. Multi-trait studies provide a valuable approach to elucidate the influence of temperature on the invasion process and offer insights into how climatic factors may facilitate or hinder the spread of invasive ectotherms. We here used marsh frogs, Pelophylax ridibundus, a species that is invading large areas of Western Europe but whose invasive potential has been underestimated. We measured the maximal and minimal temperatures to sustain physical activity, the preferred temperature, and the thermal dependence of their stamina and jumping performance in relation to the environmental temperatures observed in their invasive range. Our results showed that marsh frogs can withstand body temperatures that cover 100% of the annual temperature variation in the pond they live in and 77% of the observed current annual air temperature variation. Their preferred body temperature and performance optima were higher than the average temperature in their pond and the average air temperature experienced under the shade. These data suggest that invasive marsh frogs may benefit from a warmer climate. Broad thermal tolerances, combined with high thermal preferences and traits maximised at high temperatures, may allow this species to expand their activity period and colonise underexploited shaded habitat, thereby promoting their invasion success.
Collapse
Affiliation(s)
- Pablo Padilla
- Laboratory of Ecology and Conservation of Amphibians (LECA), Freshwater and Oceanic science Unit of reSearch (FOCUS), University of Liège, Liège, Belgium.
- Département Adaptations du Vivant, UMR 7179 C.N.R.S/M.N.H.N., Paris, France.
| | - Anthony Herrel
- Département Adaptations du Vivant, UMR 7179 C.N.R.S/M.N.H.N., Paris, France
- Evolutionary Morphology of Vertebrates, Ghent University, Ghent, Belgium
| | - Mathieu Denoël
- Laboratory of Ecology and Conservation of Amphibians (LECA), Freshwater and Oceanic science Unit of reSearch (FOCUS), University of Liège, Liège, Belgium
| |
Collapse
|
13
|
Cruz AR, Davidowitz G, Moore CM, Bronstein JL. Mutualisms in a warming world. Ecol Lett 2023. [PMID: 37303268 DOI: 10.1111/ele.14264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/16/2023] [Accepted: 05/21/2023] [Indexed: 06/13/2023]
Abstract
Predicting the impacts of global warming on mutualisms poses a significant challenge given the functional and life history differences that usually exist among interacting species. However, this is a critical endeavour since virtually all species on Earth depend on other species for survival and/or reproduction. The field of thermal ecology can provide physiological and mechanistic insights, as well as quantitative tools, for addressing this challenge. Here, we develop a conceptual and quantitative framework that connects thermal physiology to species' traits, species' traits to interacting mutualists' traits and interacting traits to the mutualism. We first identify the functioning of reciprocal mutualism-relevant traits in diverse systems as the key temperature-dependent mechanisms driving the interaction. We then develop metrics that measure the thermal performance of interacting mutualists' traits and that approximate the thermal performance of the mutualism itself. This integrated approach allows us to additionally examine how warming might interact with resource/nutrient availability and affect mutualistic species' associations across space and time. We offer this framework as a synthesis of convergent and critical issues in mutualism science in a changing world, and as a baseline to which other ecological complexities and scales might be added.
Collapse
Affiliation(s)
- Austin R Cruz
- Department of Ecology & Evolutionary Biology, The University of Arizona, Tucson, Arizona, USA
| | - Goggy Davidowitz
- Department of Ecology & Evolutionary Biology, The University of Arizona, Tucson, Arizona, USA
- Department of Entomology, The University of Arizona, Tucson, Arizona, USA
| | | | - Judith L Bronstein
- Department of Ecology & Evolutionary Biology, The University of Arizona, Tucson, Arizona, USA
- Department of Entomology, The University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
14
|
Slein MA, Bernhardt JR, O'Connor MI, Fey SB. Effects of thermal fluctuations on biological processes: a meta-analysis of experiments manipulating thermal variability. Proc Biol Sci 2023; 290:20222225. [PMID: 36750193 PMCID: PMC9904952 DOI: 10.1098/rspb.2022.2225] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Thermal variability is a key driver of ecological processes, affecting organisms and populations across multiple temporal scales. Despite the ubiquity of variation, biologists lack a quantitative synthesis of the observed ecological consequences of thermal variability across a wide range of taxa, phenotypic traits and experimental designs. Here, we conduct a meta-analysis to investigate how properties of organisms, their experienced thermal regime and whether thermal variability is experienced in either the past (prior to an assay) or present (during the assay) affect performance relative to the performance of organisms experiencing constant thermal environments. Our results-which draw upon 1712 effect sizes from 75 studies-indicate that the effects of thermal variability are not unidirectional and become more negative as mean temperature and fluctuation range increase. Exposure to variation in the past decreases performance to a greater extent than variation experienced in the present and increases the costs to performance more than diminishing benefits across a broad set of empirical studies. Further, we identify life-history attributes that predictably modify the ecological response to variation. Our findings demonstrate that effects of thermal variability on performance are context-dependent, yet negative outcomes may be heightened in warmer, more variable climates.
Collapse
Affiliation(s)
- Margaret A. Slein
- Department of Biology, Reed College, Portland, OR 97202, USA,Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Joey R. Bernhardt
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, CT 06520, USA,Yale Institute for Biospheric Studies, PO Box 208118, New Haven, CT 06520, USA,Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Mary I. O'Connor
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Samuel B. Fey
- Department of Biology, Reed College, Portland, OR 97202, USA
| |
Collapse
|
15
|
Wang YJ, Tüzün N, De Meester L, Feuchtmayr H, Sentis A, Stoks R. Rapid evolution of unimodal but not of linear thermal performance curves in Daphnia magna. Proc Biol Sci 2023; 290:20222289. [PMID: 36629114 PMCID: PMC9832573 DOI: 10.1098/rspb.2022.2289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/13/2022] [Indexed: 01/12/2023] Open
Abstract
Species may cope with warming through both rapid evolutionary and plastic responses. While thermal performance curves (TPCs), reflecting thermal plasticity, are considered powerful tools to understand the impact of warming on ectotherms, their rapid evolution has been rarely studied for multiple traits. We capitalized on a 2-year experimental evolution trial in outdoor mesocosms that were kept at ambient temperatures or heated 4°C above ambient, by testing in a follow-up common-garden experiment, for rapid evolution of the TPCs for multiple key traits of the water flea Daphnia magna. The heat-selected Daphnia showed evolutionary shifts of the unimodal TPCs for survival, fecundity at first clutch and intrinsic population growth rate toward higher optimum temperatures, and a less pronounced downward curvature indicating a better ability to keep fitness high across a range of high temperatures. We detected no evolution of the linear TPCs for somatic growth, mass and development rate, and for the traits related to energy gain (ingestion rate) and costs (metabolic rate). As a result, also the relative thermal slope of energy gain versus energy costs did not vary. These results suggest the overall (rather than per capita) top-down impact of D. magna may increase under rapid thermal evolution.
Collapse
Affiliation(s)
- Ying-Jie Wang
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Debériotstraat 32, 3000 Leuven, Belgium
| | - Nedim Tüzün
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Debériotstraat 32, 3000 Leuven, Belgium
- Leibniz Institut für Gewässerökologie und Binnenfischerei (IGB), 12587 Berlin, Germany
| | - Luc De Meester
- Laboratory of Aquatic Ecology, University of Leuven, Debériotstraat 32, 3000 Leuven, Belgium
- Leibniz Institut für Gewässerökologie und Binnenfischerei (IGB), 12587 Berlin, Germany
- Institute of Biology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Heidrun Feuchtmayr
- UK Centre for Ecology and Hydrology, Lancaster Environment Center, Lancaster LA1 4AP, UK
| | - Arnaud Sentis
- INRAE, Aix-Marseille Université, UMR RECOVER, 3275 route Cézanne, 13182 Aix-en-Provence, France
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Debériotstraat 32, 3000 Leuven, Belgium
| |
Collapse
|
16
|
Álvarez-Noriega M, Marrable I, Noonan SHC, Barneche DR, Ortiz JC. Highly conserved thermal performance strategies may limit adaptive potential in corals. Proc Biol Sci 2023; 290:20221703. [PMID: 36629109 PMCID: PMC9832572 DOI: 10.1098/rspb.2022.1703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/12/2022] [Indexed: 01/12/2023] Open
Abstract
Increasing seawater temperatures are expected to have profound consequences for reef-building corals' physiology. Understanding how demography changes in response to chronic exposure to warming will help forecast how coral communities will respond to climate change. Here, we measure growth rates of coral fragments of four common species, while exposing them to temperatures ranging from 19°C to 31°C for one month to calibrate their thermal-performance curves (TPCs). Our results show that, while there are contrasting differences between species, the shape of the TPCs was remarkably consistent among individuals of the same species. The low variation in thermal sensitivity within species may imply a reduced capacity for rapid adaptive responses to future changes in thermal regimes. Additionally, interspecific differences in thermal responses show a negative relationship between maximum growth and thermal optima, contradicting expectations derived from the classic 'warmer-is-better' hypothesis. Among species, there was a trade-off between current and future growth, whereby most species perform well under current thermal regimes but are susceptible to future increases in temperature. Increases in water temperature with climate change are likely to reduce growth rates, further hampering future coral reef recovery rates and potentially altering community composition.
Collapse
Affiliation(s)
| | - Isabella Marrable
- Australian Institute of Marine Science, PMB 3, Townsville MC, Queensland 4810, Australia
| | - Sam H. C. Noonan
- Australian Institute of Marine Science, PMB 3, Townsville MC, Queensland 4810, Australia
| | - Diego R. Barneche
- Australian Institute of Marine Science, Crawley, Western Australia 6009, Australia
- Oceans Institute, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Juan C. Ortiz
- Australian Institute of Marine Science, PMB 3, Townsville MC, Queensland 4810, Australia
| |
Collapse
|
17
|
Friesen CR, Wapstra E, Olsson M. Of telomeres and temperature: Measuring thermal effects on telomeres in ectothermic animals. Mol Ecol 2022; 31:6069-6086. [PMID: 34448287 DOI: 10.1111/mec.16154] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/20/2021] [Accepted: 08/23/2021] [Indexed: 01/31/2023]
Abstract
Ectotherms are classic models for understanding life-history tradeoffs, including the reproduction-somatic maintenance tradeoffs that may be reflected in telomere length and their dynamics. Importantly, life-history traits of ectotherms are tightly linked to their thermal environment, with diverse or synergistic mechanistic explanations underpinning the variation. Telomere dynamics potentially provide a mechanistic link that can be used to monitor thermal effects on individuals in response to climatic perturbations. Growth rate, age and developmental stage are all affected by temperature, which interacts with telomere dynamics in complex and intriguing ways. The physiological processes underpinning telomere dynamics can be visualized and understood using thermal performance curves (TPCs). TPCs reflect the evolutionary history and the thermal environment during an individual's ontogeny. Telomere maintenance should be enhanced at or near the thermal performance optimum of a species, population and individual. The thermal sensitivity of telomere dynamics should reflect the interacting TPCs of the processes underlying them. The key processes directly underpinning telomere dynamics are mitochondrial function (reactive oxygen production), antioxidant activity, telomerase activity and telomere endcap protein status. We argue that identifying TPCs for these processes will significantly help design robust, repeatable experiments and field studies of telomere dynamics in ectotherms. Conceptually, TPCs are a valuable framework to predict and interpret taxon- and population-specific telomere dynamics across thermal regimes. The literature of thermal effects on telomeres in ectotherms is sparse and mostly limited to vertebrates, but our conclusions and recommendations are relevant across ectothermic animals.
Collapse
Affiliation(s)
- Christopher R Friesen
- School of Earth, Atmospheric and Life Sciences, The University of Wollongong, Wollongong, New South Wales, Australia.,School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Erik Wapstra
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Mats Olsson
- School of Earth, Atmospheric and Life Sciences, The University of Wollongong, Wollongong, New South Wales, Australia.,Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
18
|
Ørsted M, Jørgensen LB, Overgaard J. Finding the right thermal limit: a framework to reconcile ecological, physiological and methodological aspects of CTmax in ectotherms. J Exp Biol 2022; 225:277015. [DOI: 10.1242/jeb.244514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ABSTRACT
Upper thermal limits (CTmax) are frequently used to parameterize the fundamental niche of ectothermic animals and to infer biogeographical distribution limits under current and future climate scenarios. However, there is considerable debate associated with the methodological, ecological and physiological definitions of CTmax. The recent (re)introduction of the thermal death time (TDT) model has reconciled some of these issues and now offers a solid mathematical foundation to model CTmax by considering both intensity and duration of thermal stress. Nevertheless, the physiological origin and boundaries of this temperature–duration model remain unexplored. Supported by empirical data, we here outline a reconciling framework that integrates the TDT model, which operates at stressful temperatures, with the classic thermal performance curve (TPC) that typically describes biological functions at permissive temperatures. Further, we discuss how the TDT model is founded on a balance between disruptive and regenerative biological processes that ultimately defines a critical boundary temperature (Tc) separating the TDT and TPC models. Collectively, this framework allows inclusion of both repair and accumulation of heat stress, and therefore also offers a consistent conceptual approach to understand the impact of high temperature under fluctuating thermal conditions. Further, this reconciling framework allows improved experimental designs to understand the physiological underpinnings and ecological consequences of ectotherm heat tolerance.
Collapse
Affiliation(s)
- Michael Ørsted
- Aarhus University Section for Zoophysiology, Department of Biology , , 8000 Aarhus C , Denmark
| | | | - Johannes Overgaard
- Aarhus University Section for Zoophysiology, Department of Biology , , 8000 Aarhus C , Denmark
| |
Collapse
|
19
|
Sinclair BJ, Sørensen JG, Terblanche JS. Harnessing thermal plasticity to enhance the performance of mass-reared insects: opportunities and challenges. BULLETIN OF ENTOMOLOGICAL RESEARCH 2022; 112:441-450. [PMID: 35346401 DOI: 10.1017/s0007485321000791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Insects are mass-reared for release for biocontrol including the sterile insect technique. Insects are usually reared at temperatures that maximize the number of animals produced, are chilled for handling and transport, and released into the field, where temperatures may be considerably different to those experienced previously. Insect thermal biology is phenotypically plastic (i.e. flexible), which means that there may exist opportunities to increase the performance of these programmes by modifying the temperature regimes during rearing, handling, and release. Here we synthesize the literature on thermal plasticity in relation to the opportunities to reduce temperature-related damage and increase the performance of released insects. We summarize how and why temperature affects insect biology, and the types of plasticity shown by insects. We specifically identify aspects of the production chain that might lead to mismatches between the thermal acclimation of the insect and the temperatures it is exposed to, and identify ways to harness physiological plasticity to reduce that potential mismatch. We address some of the practical (especially engineering) challenges to implementing some of the best-supported thermal regimes to maximize performance (e.g. fluctuating thermal regimes), and acknowledge that a focus only on thermal performance may lead to unwanted trade-offs with other traits that contribute to the success of the programme. Together, it appears that thermal physiological plasticity is well-enough understood to allow its implementation in release programmes.
Collapse
Affiliation(s)
- Brent J Sinclair
- Department of Biology, University of Western Ontario, London, ON, Canada N6G 1L3
| | | | - John S Terblanche
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
20
|
Telemeco RS, Gangloff EJ, Cordero GA, Rodgers EM, Aubret F. From performance curves to performance surfaces: Interactive effects of temperature and oxygen availability on aerobic and anaerobic performance in the common wall lizard. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rory S. Telemeco
- Department of Biology California State University Fresno Fresno CA USA
| | - Eric J. Gangloff
- Department of Biological Sciences Ohio Wesleyan University Delaware OH USA
| | - G. Antonio Cordero
- Centre for Ecology, Evolution and Environmental Changes, Department of Animal Biology University of Lisbon Lisbon Portugal
| | - Essie M. Rodgers
- School of Biological Sciences, University of Canterbury Christchurch New Zealand
| | - Fabien Aubret
- Station d’Ecologie Théorique et Expérimentale du CNRS – UPR 2001 Moulis France
| |
Collapse
|
21
|
Mauro AA, Shah AA, Martin PR, Ghalambor CK. An Integrative Perspective on the Mechanistic Basis of Context Dependent Species Interactions. Integr Comp Biol 2022; 62:164-178. [PMID: 35612972 DOI: 10.1093/icb/icac055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/10/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
It has long been known that the outcome of species interactions depends on the environmental context in which they occur. Climate change research has sparked a renewed interest in context dependent species interactions because rapidly changing abiotic environments will cause species interactions to occur in novel contexts and researchers must incorporate this in their predictions of species' responses to climate change. Here we argue that predicting how the environment will alter the outcome of species interactions requires an integrative biology approach that focuses on the traits, mechanisms, and processes that bridge disciplines such as physiology, biomechanics, ecology, and evolutionary biology. Specifically, we advocate for quantifying how species differ in their tolerance and performance to both environmental challenges independent of species interactions, and in interactions with other species as a function of the environment. Such an approach increases our understanding of the mechanisms underlying outcomes of species interactions across different environmental contexts. This understanding will in turn help determine how the outcome of species interactions affects the relative abundance and distribution of the interacting species in nature. A general theme that emerges from this perspective is that species are unable to maintain high levels of performance across different environmental contexts because of trade-offs between physiological tolerance to environmental challenges and performance in species interactions. Thus, an integrative biology paradigm that focuses on the trade-offs across environments, the physiological mechanisms involved, and how the ecological context impacts the outcome of species interactions provides a stronger framework to understand why species interactions are context dependent.
Collapse
Affiliation(s)
- Alexander A Mauro
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA 94720
| | - Alisha A Shah
- W.K. Kellogg Biological Station, Department of Integrative Biology, Michigan State University, Hickory Corners, MI, USA
| | - Paul R Martin
- Department of Biology, Queens University, Kingston, ON, Canada
| | - Cameron K Ghalambor
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway.,Department of Biology, Colorado State University, Fort Collins, CO 80523.,Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
22
|
Abstract
The integration of life-history, behavioural and physiological traits into a ‘pace-of-life syndrome’ is a powerful concept in understanding trait variation in nature. Yet, mechanisms maintaining variation in ‘pace-of-life’ are not well understood. We tested whether decreased thermal performance is an energetic cost of a faster pace-of-life. We characterized the pace-of-life of larvae of the damselfly Ischnura elegans from high-latitude and low-latitude regions when reared at 20°C or 24°C in a common-garden experiment, and estimated thermal performance curves for a set of behavioural, physiological and performance traits. Our results confirm a faster pace-of-life (i.e. faster growth and metabolic rate, more active and bold behaviour) in the low-latitude and in warm-reared larvae, and reveal increased maximum performance, Rmax, but not thermal optimum Topt, in low-latitude larvae. Besides a clear pace-of-life syndrome integration at the individual level, larvae also aligned along a ‘cold–hot’ axis. Importantly, a faster pace-of-life correlated negatively with a high thermal performance (i.e. higher Topt for swimming speed, metabolic rate, activity and boldness), which was consistent across latitudes and rearing temperatures. This trade-off, potentially driven by the energetically costly maintenance of a fast pace-of-life, may be an alternative mechanism contributing to the maintenance of variation in pace-of-life within populations.
Collapse
Affiliation(s)
- Nedim Tüzün
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, KU Leuven, Charles Deberiotstraat 32, 3000 Leuven, Belgium
| | - Robby Stoks
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, KU Leuven, Charles Deberiotstraat 32, 3000 Leuven, Belgium
| |
Collapse
|
23
|
Hui TY, Crickenberger S, Lau JWT, Williams GA. Why are "suboptimal" temperatures preferred in a tropical intertidal ectotherm? J Anim Ecol 2022; 91:1400-1415. [PMID: 35302242 DOI: 10.1111/1365-2656.13690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/07/2022] [Indexed: 11/28/2022]
Abstract
In thermally extreme environments it is challenging for organisms to maximize performance due to risks associated with stochastic variation in temperature and, subsequently, over evolutionary time minimizing the exposure to risk can serve as one of the mechanisms that result in organisms preferring suboptimal temperatures. We tested this hypothesis in a slow-moving intertidal snail on tropical rocky shores, where temperature variability increases with time from 30 min to 20 h when recorded at 30 min intervals (due to short-term environmental autocorrelation where temperatures closer in time are more similar as compared to temperatures over a long period of time). Failure to accommodate temporal variation in thermal stress by selecting cool habitats can result in mortality. Thermal performance curves for different traits (heart rate and locomotion) were measured and compared to the snail's thermal preferences in both the field and laboratory. Predicted performances of the snails were simulated based on thermal performance curves for different traits over multiple time scales and simulated carryover effects. A strong mismatch was found between physiological and behavioural thermal maxima of the snails (physiological thermal maximum being higher by ~ 7 °C), but the snails avoided these maxima and sought temperatures 7 - 14 °C cooler. Such a risk-averse strategy can be explained by their predicted performances where the snails should make decisions about preferred temperatures based on time periods ≥ 5 h to avoid underestimating the temporal variation in body temperature. In extreme and stochastic environments, where the temporal variation in environmental conditions can lead to substantial divergence between instantaneous and time-averaged thermal performances, "cooler is better" and "suboptimal" body temperatures are preferred as they provide sufficient buffer to reduce mortality risk from heat stress.
Collapse
Affiliation(s)
- T Y Hui
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - S Crickenberger
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - J W T Lau
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - G A Williams
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong, SAR, China
| |
Collapse
|
24
|
Moen DS, Cabrera-Guzmán E, Caviedes-Solis IW, González-Bernal E, Hanna AR. Phylogenetic analysis of adaptation in comparative physiology and biomechanics: overview and a case study of thermal physiology in treefrogs. J Exp Biol 2022; 225:274250. [PMID: 35119071 DOI: 10.1242/jeb.243292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/06/2021] [Indexed: 12/14/2022]
Abstract
Comparative phylogenetic studies of adaptation are uncommon in biomechanics and physiology. Such studies require data collection from many species, a challenge when this is experimentally intensive. Moreover, researchers struggle to employ the most biologically appropriate phylogenetic tools for identifying adaptive evolution. Here, we detail an established but greatly underutilized phylogenetic comparative framework - the Ornstein-Uhlenbeck process - that explicitly models long-term adaptation. We discuss challenges in implementing and interpreting the model, and we outline potential solutions. We demonstrate use of the model through studying the evolution of thermal physiology in treefrogs. Frogs of the family Hylidae have twice colonized the temperate zone from the tropics, and such colonization likely involved a fundamental change in physiology due to colder and more seasonal temperatures. However, which traits changed to allow colonization is unclear. We measured cold tolerance and characterized thermal performance curves in jumping for 12 species of treefrogs distributed from the Neotropics to temperate North America. We then conducted phylogenetic comparative analyses to examine how tolerances and performance curves evolved and to test whether that evolution was adaptive. We found that tolerance to low temperatures increased with the transition to the temperate zone. In contrast, jumping well at colder temperatures was unrelated to biogeography and thus did not adapt during dispersal. Overall, our study shows how comparative phylogenetic methods can be leveraged in biomechanics and physiology to test the evolutionary drivers of variation among species.
Collapse
Affiliation(s)
- Daniel S Moen
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Elisa Cabrera-Guzmán
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Itzue W Caviedes-Solis
- Science Unit, Lingnan University, Hong Kong S.A.R., China.,Department of Biology, University of Washington, Seattle, WA 98105, USA
| | - Edna González-Bernal
- CONACYT - CIIDIR Oaxaca, Instituto Politécnico Nacional, Santa Cruz Xoxocotlán, C.P. 71230, Oaxaca, México
| | - Allison R Hanna
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
25
|
Hardison EA, Kraskura K, Van Wert J, Nguyen T, Eliason EJ. Diet mediates thermal performance traits: implications for marine ectotherms. J Exp Biol 2021; 224:272691. [PMID: 34647599 DOI: 10.1242/jeb.242846] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/01/2021] [Indexed: 11/20/2022]
Abstract
Thermal acclimation is a key process enabling ectotherms to cope with temperature change. To undergo a successful acclimation response, ectotherms require energy and nutritional building blocks obtained from their diet. However, diet is often overlooked as a factor that can alter acclimation responses. Using a temperate omnivorous fish, opaleye (Girella nigricans), as a model system, we tested the hypotheses that (1) diet can impact the magnitude of thermal acclimation responses and (2) traits vary in their sensitivity to both temperature acclimation and diet. We fed opaleye a simple omnivorous diet (ad libitum Artemia sp. and Ulva sp.) or a carnivorous diet (ad libitum Artemia sp.) at two ecologically relevant temperatures (12 and 20°C) and measured a suite of whole-animal (growth, sprint speed, metabolism), organ (cardiac thermal tolerance) and cellular-level traits (oxidative stress, glycolytic capacity). When opaleye were offered two diet options compared with one, they had reduced cardiovascular thermal performance and higher standard metabolic rate under conditions representative of the maximal seasonal temperature the population experiences (20°C). Further, sprint speed and absolute aerobic scope were insensitive to diet and temperature, while growth was highly sensitive to temperature but not diet, and standard metabolic rate and maximum heart rate were sensitive to both diet and temperature. Our results reveal that diet influences thermal performance in trait-specific ways, which could create diet trade-offs for generalist ectotherms living in thermally variable environments. Ectotherms that alter their diet may be able to regulate their performance at different environmental temperatures.
Collapse
Affiliation(s)
- Emily A Hardison
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Krista Kraskura
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Jacey Van Wert
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Tina Nguyen
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Erika J Eliason
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
26
|
Rebolledo AP, Sgrò CM, Monro K. Thermal Performance Curves Are Shaped by Prior Thermal Environment in Early Life. Front Physiol 2021; 12:738338. [PMID: 34744779 PMCID: PMC8564010 DOI: 10.3389/fphys.2021.738338] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/21/2021] [Indexed: 01/31/2023] Open
Abstract
Understanding links between thermal performance and environmental variation is necessary to predict organismal responses to climate change, and remains an ongoing challenge for ectotherms with complex life cycles. Distinct life stages can differ in thermal sensitivity, experience different environmental conditions as development unfolds, and, because stages are by nature interdependent, environmental effects can carry over from one stage to affect performance at others. Thermal performance may therefore respond to carryover effects of prior thermal environments, yet detailed insights into the nature, strength, and direction of those responses are still lacking. Here, in an aquatic ectotherm whose early planktonic stages (gametes, embryos, and larvae) govern adult abundances and dynamics, we explore the effects of prior thermal environments at fertilization and embryogenesis on thermal performance curves at the end of planktonic development. We factorially manipulate temperatures at fertilization and embryogenesis, then, for each combination of prior temperatures, measure thermal performance curves for survival of planktonic development (end of the larval stage) throughout the performance range. By combining generalized linear mixed modeling with parametric bootstrapping, we formally estimate and compare curve descriptors (thermal optima, limits, and breadth) among prior environments, and reveal carryover effects of temperature at embryogenesis, but not fertilization, on thermal optima at completion of development. Specifically, thermal optima shifted to track temperature during embryogenesis, while thermal limits and breadth remained unchanged. Our results argue that key aspects of thermal performance are shaped by prior thermal environment in early life, warranting further investigation of the possible mechanisms underpinning that response, and closer consideration of thermal carryover effects when predicting organismal responses to climate change.
Collapse
|
27
|
Fieler AM, Rosendale AJ, Farrow DW, Dunlevy MD, Davies B, Oyen K, Xiao Y, Benoit JB. Larval thermal characteristics of multiple ixodid ticks. Comp Biochem Physiol A Mol Integr Physiol 2021; 257:110939. [PMID: 33794367 PMCID: PMC8500258 DOI: 10.1016/j.cbpa.2021.110939] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 11/26/2022]
Abstract
Temperature limits the geographic ranges of several tick species. Little is known about the thermal characteristics of these pests outside of a few studies on survival related to thermal tolerance. In this study, thermal tolerance limits, thermal preference, and the impact of temperature on activity levels and metabolic rate were examined in larvae for six species of ixodid ticks. Tolerance of low temperatures ranged from -15 to -24 °C with Dermacentor andersoni surviving the lowest temperatures. High temperature survival ranged from 41 to 47 °C, with Rhipicephalus sanguineus sensu lato having the highest upper lethal limit. Ixodes scapularis showed the lowest survival at both low and high temperatures. Thermal preference temperatures were tested from 0 to 41 °C. The majority of species preferred temperatures between 17 and 22 °C, while Dermacentor variabilis preferred significantly lower temperatures, near 12 °C. Overall activity was measured across a range of temperatures from 10 to 60 °C, and most tick species had the greatest activity near 30 °C. Metabolic rate was the greatest between 30 and 40 °C for all tick species and was relatively stable from 5 to 20 °C. The optimal temperature for tick larvae is likely near the thermal preference for each species, where oxygen consumption is low and activity occurs that will balance questing and conservation of nutrient reserves. In summary, tick species vary greatly in their thermal characteristics, and our results will be critical to predict distribution of these ectoparasites with changing climates.
Collapse
Affiliation(s)
- Alicia M Fieler
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Andrew J Rosendale
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA; Department of Biology, Mount St. Joseph University, Cincinnati, OH, USA
| | - David W Farrow
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Megan D Dunlevy
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Benjamin Davies
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Kennan Oyen
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Yanyu Xiao
- Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA.
| |
Collapse
|
28
|
Iverson ENK, Nix R, Abebe A, Havird JC. Thermal Responses Differ across Levels of Biological Organization. Integr Comp Biol 2021; 60:361-374. [PMID: 32483618 DOI: 10.1093/icb/icaa052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Temperature is one of the most important environmental factors driving the genome-to-phenome relationship. Metabolic rates and related biological processes are predicted to increase with temperature due to the biophysical laws of chemical reactions. However, selection can also act on these processes across scales of biological organization, from individual enzymes to whole organisms. Although some studies have examined thermal responses across multiple scales, there is no general consensus on how these responses vary depending on the level of organization, or whether rates actually follow predicted theoretical patterns such as Arrhenius-like exponential responses or thermal performance curves (TPCs) that show peak responses. Here, we performed a meta-analysis on studies of ectotherms where biological rates were measured across the same set of temperatures, but at multiple levels of biological organization: enzyme activities, mitochondrial respiration, and/or whole-animal metabolic rates. Our final dataset consisted of 235 pairwise comparisons between levels of organization from 13 publications. Thermal responses differed drastically across levels of biological organization, sometimes showing completely opposite patterns. We developed a new effect size metric, "organizational disagreement" (OD) to quantify the difference in responses among levels of biological organization. Overall, rates at higher levels of biological organization (e.g., whole animal metabolic rates) increased more quickly with temperature than rates at lower levels, contrary to our predictions. Responses may differ across levels due to differing consequences of biochemical laws with increasing organization or due to selection for different responses. However, taxa and tissues examined generally did not affect OD. Theoretical TPCs, where rates increase to a peak value and then drop, were only rarely observed (12%), possibly because a broad range of test temperatures was rarely investigated. Exponential increases following Arrhenius predictions were more common (29%). This result suggests a classic assumption about thermal responses in biological rates is rarely observed in empirical datasets, although our results should be interpreted cautiously due to the lack of complete thermal profiles. We advocate for authors to explicitly address OD in their interpretations and to measure thermal responses across a wider, more incremental range of temperatures. These results further emphasize the complexity of connecting the genome to the phenome when environmental plasticity is incorporated: the impact of the environment on the phenotype can depend on the scale of organization considered.
Collapse
Affiliation(s)
- Erik N K Iverson
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Rachel Nix
- Hankamer School of Business, Baylor University, Waco, TX 76798, USA
| | - Ash Abebe
- Department of Mathematics & Statistics, Auburn University, Auburn, AL 36849, USA
| | - Justin C Havird
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
29
|
O'Brien KM, Joyce W, Crockett EL, Axelsson M, Egginton S, Farrell AP. Resilience of cardiac performance in Antarctic notothenioid fishes in a warming climate. J Exp Biol 2021; 224:268390. [PMID: 34042975 DOI: 10.1242/jeb.220129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Warming in the region of the Western Antarctic Peninsula is occurring at an unprecedented rate, which may threaten the survival of Antarctic notothenioid fishes. Herein, we review studies characterizing thermal tolerance and cardiac performance in notothenioids - a group that includes both red-blooded species and the white-blooded, haemoglobinless icefishes - as well as the relevant biochemistry associated with cardiac failure during an acute temperature ramp. Because icefishes do not feed in captivity, making long-term acclimation studies unfeasible, we focus only on the responses of red-blooded notothenioids to warm acclimation. With acute warming, hearts of the white-blooded icefish Chaenocephalus aceratus display persistent arrhythmia at a lower temperature (8°C) compared with those of the red-blooded Notothenia coriiceps (14°C). When compared with the icefish, the enhanced cardiac performance of N. coriiceps during warming is associated with greater aerobic capacity, higher ATP levels, less oxidative damage and enhanced membrane integrity. Cardiac performance can be improved in N. coriiceps with warm acclimation to 5°C for 6-9 weeks, accompanied by an increase in the temperature at which cardiac failure occurs. Also, both cardiac mitochondrial and microsomal membranes are remodelled in response to warm acclimation in N. coriiceps, displaying homeoviscous adaptation. Overall, cardiac performance in N. coriiceps is malleable and resilient to warming, yet thermal tolerance and plasticity vary among different species of notothenioid fishes; disruptions to the Antarctic ecosystem driven by climate warming and other anthropogenic activities endanger the survival of notothenioids, warranting greater protection afforded by an expansion of marine protected areas.
Collapse
Affiliation(s)
- Kristin M O'Brien
- Institute of Arctic Biology , University of Alaska Fairbanks, Fairbanks, AK 99775-7000, USA
| | - William Joyce
- Department of Biology - Zoophysiology, Aarhus University, 8000 Aarhus C, Denmark
| | | | - Michael Axelsson
- Department of Biological and Environmental Sciences, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Stuart Egginton
- School of Biomedical Sciences , University of Leeds, Leeds LS2 9JT, UK
| | - Anthony P Farrell
- Department of Zoology, and Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| |
Collapse
|
30
|
Małek DK, Czarnoleski M. Thermal Preferences of Cowpea Seed Beetles ( Callosobruchus maculatus): Effects of Sex and Nuptial Gift Transfers. INSECTS 2021; 12:insects12040310. [PMID: 33915679 PMCID: PMC8066898 DOI: 10.3390/insects12040310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 12/03/2022]
Abstract
Simple Summary The thermal environment is crucial for organismal functioning, and many cold-blooded organisms, including insects, behaviorally regulate their body temperature. Why do insects inhabit given thermal conditions? We propose that access to water affects thermal preference and that insects with poor access to water inhabit colder environments, which reduces evaporation and preserves water. We studied the seed beetle Callosobruchus maculatus, which, as adults, do not drink or eat; however, males provide their mates with sperm, as well as nuptial gifts, including nutrients and water sources. We compared preferred temperatures between males and females that had access to mates or remained unmated and measured the sizes of the transferred gifts. We found that females preferred higher temperatures than males, but these preferences did not change due to mating or the transfer of larger or smaller gifts. It appears that males and females receive and lose certain amounts of water during mating, but they do not alter their thermal preferences according to the amount of water they receive or lose. Abstract The thermal environment influences insect performance, but the factors affecting insect thermal preferences are rarely studied. We studied Callosobruchus maculatus seed beetles and hypothesized that thermal preferences are influenced by water balance, with individuals with limited water reserves preferring cooler habitats to reduce evaporative water loss. Adult C. maculatus, in their flightless morph, do not consume food or water, but a copulating male provides a female with a nuptial gift of ejaculate containing nutrients and water. We hypothesized that gift recipients would prefer warmer habitats than gift donors and that both sexes would plastically adjust their thermal preferences according to the size of the transferred gift. We measured the thermal preference in each sex in individuals that were mated once or were unmated. In the mated group, we measured the sizes of the nuptial gifts and calculated proportional body mass changes in each mate during copulation. Supporting the role of water balance in thermal preference, females preferred warmer habitats than males. Nevertheless, thermal preferences in either sex were not affected by mating status or gift size. It is likely that high rates of mating and gift transfers in C. maculatus living under natural conditions promoted the evolution of constitutive sex-dependent thermal preferences.
Collapse
|
31
|
Mesas A, Jaramillo A, Castañeda LE. Experimental evolution on heat tolerance and thermal performance curves under contrasting thermal selection in Drosophila subobscura. J Evol Biol 2021; 34:767-778. [PMID: 33662149 DOI: 10.1111/jeb.13777] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 01/04/2023]
Abstract
Ectotherms can respond to global warming via evolutionary change of their upper thermal limits (CTmax ). Thus, the estimation of CTmax and its evolutionary potential is crucial to determine their vulnerability to global warming. However, CTmax estimations depend on the thermal stress intensity, and it is not completely clear whether its evolutionary capacity can be affected. Here, we performed an artificial selection experiment to increase heat tolerance using fast- and slow-ramping selection protocols in Drosophila subobscura. We found that heat tolerance evolved in both selection protocols, exhibiting similar evolutionary change rates and realized heritabilities. Additionally, we estimated the thermal performance curves (TPC) to evaluate correlated responses to selection on heat tolerance. We detected that thermal optimum increased in fast-ramping selection lines, but with a cost at the thermal performance breadth. Conversely, we did not detect changes in the TPC for the slow-ramping selection lines, indicating that thermal stress intensity has important effects on the evolution of thermal physiology of ectotherms. These findings, together with previous studies in D. subobscura reporting interpopulation variability and significant heritabilities for heat tolerance, suggest that evolutionary change can contribute to insect persistence in thermally changing environments and adaptation to global warming conditions.
Collapse
Affiliation(s)
- Andrés Mesas
- Laboratorio de Genómica y Biodiversidad, Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Chillán, Chile
| | - Angélica Jaramillo
- Programa de Genética Humana, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Luis E Castañeda
- Programa de Genética Humana, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
32
|
Navas CA, Gouveia SF, Solano-Iguarán JJ, Vidal MA, Bacigalupe LD. Amphibian responses in experimental thermal gradients: Concepts and limits for inference. Comp Biochem Physiol B Biochem Mol Biol 2021; 254:110576. [PMID: 33609807 DOI: 10.1016/j.cbpb.2021.110576] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/19/2021] [Accepted: 02/09/2021] [Indexed: 11/26/2022]
Abstract
The interpretation of thermal-gradient data depends on the behavioral drives reported or assumed, and on the underlying behavioral models explaining how such drives operate. The best-known example is positive thermotaxis, a thermoregulatory behavioral drive frequently linked to a dual set-point model of thermoregulation around a target range. This behavioral drive is often assumed as dominant among 'ectotherms', including amphibians. However, we argue that, because amphibians are extremely diverse, they may exhibit alternative behavioral drives in thermal gradients, and tackle this idea from two perspectives. First, we provide a historical review of original definitions and proposed limits for inference. Second, although caveats apply, we propose that a cross-study analysis of data of temperature settings of gradients and the temperatures selected by amphibians would corroborate alternative behavioral drives, including negative thermotaxis. Therefore, we analyzed published data focusing on such relationships and show that gradient temperature settings influence the temperatures selected by amphibians, with further effects of phylogeny and ontogeny. We conclude that thermal gradient experiments are outstanding tools to investigate behavioral drives, but no given drive can be assumed a priori unless additional information about thermoregulation is available. Based on the historical debate, we propose using selected temperatures and preferred temperatures as different concepts, the former merely operational and the second explicitly linked to positive thermotaxis (and thus compatible with dual set-point thermoregulation). Under this view, thermal preferences would stand for a hypothesis of a behavioral drive (positive thermotaxis) requiring formal testing. These considerations impact the scope for inference based on thermal gradient experiments, particularly ecological modeling and emerging disease.
Collapse
Affiliation(s)
- Carlos A Navas
- Department of Physiology, Biosciences Institute, University of São Paulo, Brazil.
| | - Sidney F Gouveia
- Departament of Ecology, Federal University of Sergipe, São Cristóvão, Brazil
| | - Jaiber J Solano-Iguarán
- Institute of Environmental and Evolutionary Sciences, Austral University of Chile, Isla Teja Campus, Valdivia, Chile
| | - Marcela A Vidal
- Departament of Basic Sciences, Faculty of Sciences, Bío-Bío University, Casilla 447, Chillán, Chile
| | - Leonardo D Bacigalupe
- Institute of Environmental and Evolutionary Sciences, Austral University of Chile, Isla Teja Campus, Valdivia, Chile
| |
Collapse
|
33
|
Clavijo-Baquet S, Cavieres G, González A, Cattan PE, Bozinovic F. Thermal performance of the Chagas disease vector, Triatoma infestans, under thermal variability. PLoS Negl Trop Dis 2021; 15:e0009148. [PMID: 33571203 PMCID: PMC7904210 DOI: 10.1371/journal.pntd.0009148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/24/2021] [Accepted: 01/14/2021] [Indexed: 11/18/2022] Open
Abstract
Vector-borne diseases (VBD) are particularly susceptible to climate change because most of the diseases' vectors are ectotherms, which themselves are susceptible to thermal changes. The Chagas disease is one neglected tropical disease caused by the protozoan parasite, Trypanosoma cruzi. One of the main vectors of the Chagas disease in South America is Triatoma infestans, a species traditionally considered to be restricted to domestic or peridomestic habitats, but sylvatic foci have also been described along its distribution. The infestation of wild individuals, together with the projections of environmental changes due to global warming, urge the need to understand the relationship between temperature and the vector's performance. Here, we evaluated the impact of temperature variability on the thermal response of T. infestans. We acclimated individuals to six thermal treatments for five weeks to then estimate their thermal performance curves (TPCs) by measuring the walking speed of the individuals. We found that the TPCs varied with thermal acclimation and body mass. Individuals acclimated to a low and variable ambient temperature (18°C ± 5°C) exhibited lower performances than those individuals acclimated to an optimal temperature (27°C ± 0°C); while those individuals acclimated to a low but constant temperature (18°C ± 0°C) did not differ in their maximal performance from those at an optimal temperature. Additionally, thermal variability (i.e., ± 5°C) at a high temperature (30°C) increased performance. These results evidenced the plastic response of T. infestans to thermal acclimation. This plastic response and the non-linear effect of thermal variability on the performance of T. infestans posit challenges when predicting changes in the vector's distribution range under climate change.
Collapse
Affiliation(s)
- Sabrina Clavijo-Baquet
- Laboratorio de Etología, Ecología y Evolución, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Grisel Cavieres
- Departamento de Ecología, Center of Applied Ecology & Sustainability (CAPES), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Avia González
- Departamento de Ecología, Center of Applied Ecology & Sustainability (CAPES), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pedro E. Cattan
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Francisco Bozinovic
- Departamento de Ecología, Center of Applied Ecology & Sustainability (CAPES), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
34
|
Future thermal regimes for epaulette sharks (Hemiscyllium ocellatum): growth and metabolic performance cease to be optimal. Sci Rep 2021; 11:454. [PMID: 33436769 PMCID: PMC7804200 DOI: 10.1038/s41598-020-79953-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/14/2020] [Indexed: 11/08/2022] Open
Abstract
Climate change is affecting thermal regimes globally, and organisms relying on their environment to regulate biological processes face unknown consequences. In ectotherms, temperature affects development rates, body condition, and performance. Embryonic stages may be the most vulnerable life history stages, especially for oviparous species already living at the warm edge of their distribution, as embryos cannot relocate during this developmental window. We reared 27 epaulette shark (Hemiscyllium ocellatum) embryos under average summer conditions (27 °C) or temperatures predicted for the middle and end of the twenty-first century with climate change (i.e., 29 and 31 °C) and tracked growth, development, and metabolic costs both in ovo and upon hatch. Rearing sharks at 31 °C impacted embryonic growth, yolk consumption, and metabolic rates. Upon hatch, 31 °C-reared sharks weighed significantly less than their 27 °C-reared counterparts and exhibited reduced metabolic performance. Many important growth and development traits in this species may peak after 27 °C and start to become negatively impacted nearing 31 °C. We hypothesize that 31 °C approximates the pejus temperature (i.e., temperatures at which performance of a trait begin to decline) for this species, which is alarming, given that this temperature range is well within ocean warming scenarios predicted for this species' distribution over the next century.
Collapse
|
35
|
Shah AA, Woods HA, Havird JC, Encalada AC, Flecker AS, Funk WC, Guayasamin JM, Kondratieff BC, Poff NL, Thomas SA, Zamudio KR, Ghalambor CK. Temperature dependence of metabolic rate in tropical and temperate aquatic insects: Support for the Climate Variability Hypothesis in mayflies but not stoneflies. GLOBAL CHANGE BIOLOGY 2021; 27:297-311. [PMID: 33064866 DOI: 10.1111/gcb.15400] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 09/09/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
A fundamental gap in climate change vulnerability research is an understanding of the relative thermal sensitivity of ectotherms. Aquatic insects are vital to stream ecosystem function and biodiversity but insufficiently studied with respect to their thermal physiology. With global temperatures rising at an unprecedented rate, it is imperative that we know how aquatic insects respond to increasing temperature and whether these responses vary among taxa, latitudes, and elevations. We evaluated the thermal sensitivity of standard metabolic rate in stream-dwelling baetid mayflies and perlid stoneflies across a ~2,000 m elevation gradient in the temperate Rocky Mountains in Colorado, USA, and the tropical Andes in Napo, Ecuador. We used temperature-controlled water baths and microrespirometry to estimate changes in oxygen consumption. Tropical mayflies generally exhibited greater thermal sensitivity in metabolism compared to temperate mayflies; tropical mayfly metabolic rates increased more rapidly with temperature and the insects more frequently exhibited behavioral signs of thermal stress. By contrast, temperate and tropical stoneflies did not clearly differ. Varied responses to temperature among baetid mayflies and perlid stoneflies may reflect differences in evolutionary history or ecological roles as herbivores and predators, respectively. Our results show that there is physiological variation across elevations and species and that low-elevation tropical mayflies may be especially imperiled by climate warming. Given such variation among species, broad generalizations about the vulnerability of tropical ectotherms should be made more cautiously.
Collapse
Affiliation(s)
- Alisha A Shah
- Department of Biology, Colorado State University, Fort Collins, CO, USA
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - H Arthur Woods
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Justin C Havird
- Department of Integrative Biology, University of Texas, Austin, TX, USA
| | - Andrea C Encalada
- Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto BÍOSFERA-USFQ, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Alexander S Flecker
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - W Chris Funk
- Department of Biology, Colorado State University, Fort Collins, CO, USA
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
| | - Juan M Guayasamin
- Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto BÍOSFERA-USFQ, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Boris C Kondratieff
- Department of Biology, Colorado State University, Fort Collins, CO, USA
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA
| | - N LeRoy Poff
- Department of Biology, Colorado State University, Fort Collins, CO, USA
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, Australia
| | - Steven A Thomas
- School of Natural Resources, University of Nebraska, Lincoln, NE, USA
| | - Kelly R Zamudio
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Cameron K Ghalambor
- Department of Biology, Colorado State University, Fort Collins, CO, USA
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
36
|
Rebolledo AP, Sgrò CM, Monro K. Thermal performance curves reveal shifts in optima, limits and breadth in early life. J Exp Biol 2020; 223:jeb233254. [PMID: 33071221 DOI: 10.1242/jeb.233254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/09/2020] [Indexed: 11/20/2022]
Abstract
Understanding thermal performance at life stages that limit persistence is necessary to predict responses to climate change, especially for ectotherms whose fitness (survival and reproduction) depends on environmental temperature. Ectotherms often undergo stage-specific changes in size, complexity and duration that are predicted to modify thermal performance. Yet performance is mostly explored for adults, while performance at earlier stages that typically limit persistence remains poorly understood. Here, we experimentally isolate thermal performance curves at fertilization, embryo development and larval development stages in an aquatic ectotherm whose early planktonic stages (gametes, embryos and larvae) govern adult abundances and dynamics. Unlike previous studies based on short-term exposures, responses with unclear links to fitness or proxies in lieu of explicit curve descriptors (thermal optima, limits and breadth), we measured performance as successful completion of each stage after exposure throughout, and at temperatures that explicitly capture curve descriptors at all stages. Formal comparisons of descriptors using a combination of generalized linear mixed modelling and parametric bootstrapping reveal important differences among life stages. Thermal performance differs significantly from fertilization to embryo development (with thermal optimum declining by ∼2°C, thermal limits shifting inwards by ∼8-10°C and thermal breadth narrowing by ∼10°C), while performance declines independently of temperature thereafter. Our comparisons show that thermal performance at one life stage can misrepresent performance at others, and point to gains in complexity during embryogenesis, rather than subsequent gains in size or duration of exposure, as a key driver of thermal sensitivity in early life.
Collapse
Affiliation(s)
- Adriana P Rebolledo
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia 3800
| | - Carla M Sgrò
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia 3800
| | - Keyne Monro
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia 3800
| |
Collapse
|
37
|
Bozinovic F, Cavieres G, Martel SI, Alruiz JM, Molina AN, Roschzttardtz H, Rezende EL. Thermal effects vary predictably across levels of organization: empirical results and theoretical basis. Proc Biol Sci 2020; 287:20202508. [PMID: 33143579 PMCID: PMC7735269 DOI: 10.1098/rspb.2020.2508] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 10/15/2020] [Indexed: 12/19/2022] Open
Abstract
Thermal performance curves have provided a common framework to study the impact of temperature in biological systems. However, few generalities have emerged to date. Here, we combine an experimental approach with theoretical analyses to demonstrate that performance curves are expected to vary predictably with the levels of biological organization. We measured rates of enzymatic reactions, organismal performance and population viability in Drosophila acclimated to different thermal conditions and show that performance curves become narrower with thermal optima shifting towards lower temperatures at higher levels or organization. We then explain these results on theoretical grounds, showing that this pattern reflects the cumulative impact of asymmetric thermal effects that piles up with complexity. These results and the proposed framework are important to understand how organisms, populations and ecological communities might respond to changing thermal conditions.
Collapse
Affiliation(s)
- Francisco Bozinovic
- Departamento de Ecología, Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 6513677, Chile
| | - Grisel Cavieres
- Departamento de Ecología, Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 6513677, Chile
| | - Sebastián I. Martel
- Departamento de Ecología, Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 6513677, Chile
| | - José M. Alruiz
- Departamento de Ecología, Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 6513677, Chile
| | - Andrés N. Molina
- Departamento de Ecología, Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 6513677, Chile
| | - Hannetz Roschzttardtz
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 6513677, Chile
| | - Enrico L. Rezende
- Departamento de Ecología, Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 6513677, Chile
| |
Collapse
|
38
|
Becker DM, Silbiger NJ. Nutrient and sediment loading affect multiple facets of functionality in a tropical branching coral. J Exp Biol 2020; 223:jeb225045. [PMID: 32943577 DOI: 10.1242/jeb.225045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 09/08/2020] [Indexed: 01/01/2023]
Abstract
Coral reefs, one of the most diverse ecosystems in the world, face increasing pressures from global and local anthropogenic stressors. Therefore, a better understanding of the ecological ramifications of warming and land-based inputs (e.g. sedimentation and nutrient loading) on coral reef ecosystems is necessary. In this study, we measured how a natural nutrient and sedimentation gradient affected multiple facets of coral functionality, including endosymbiont and coral host response variables, holobiont metabolic responses and percent cover of Pocillopora acuta colonies in Mo'orea, French Polynesia. We used thermal performance curves to quantify the relationship between metabolic rates and temperature along the environmental gradient. We found that algal endosymbiont percent nitrogen content, endosymbiont densities and total chlorophyll a content increased with nutrient input, while endosymbiont nitrogen content per cell decreased, likely representing competition among the algal endosymbionts. Nutrient and sediment loading decreased coral metabolic responses to thermal stress in terms of their thermal performance and metabolic rate processes. The acute thermal optimum for dark respiration decreased, along with the maximal performance for gross photosynthetic and calcification rates. Gross photosynthetic and calcification rates normalized to a reference temperature (26.8°C) decreased along the gradient. Lastly, percent cover of P. acuta colonies decreased by nearly two orders of magnitude along the nutrient gradient. These findings illustrate that nutrient and sediment loading affect multiple levels of coral functionality. Understanding how local-scale anthropogenic stressors influence the responses of corals to temperature can inform coral reef management, particularly in relation to the mediation of land-based inputs into coastal coral reef ecosystems.
Collapse
Affiliation(s)
- Danielle M Becker
- Department of Biology, California State University, Northridge, CA 91330, USA
| | - Nyssa J Silbiger
- Department of Biology, California State University, Northridge, CA 91330, USA
| |
Collapse
|
39
|
Abstract
Temperature is a critical abiotic factor shaping the distribution and abundance of species, but the mechanisms that underpin organismal thermal limits remain poorly understood. One possible mechanism underlying these limits is the failure of mitochondrial processes, as mitochondria play a crucial role in animals as the primary site of ATP production. Conventional measures of mitochondrial performance suggest that these organelles can function at temperatures much higher than those that limit whole-organism function, suggesting that they are unlikely to set organismal thermal limits. However, this conclusion is challenged by recent data connecting sequence variation in mitochondrial genes to whole-organism thermal tolerance. Here, we review the current state of knowledge of mitochondrial responses to thermal extremes and ask whether they are consistent with a role for mitochondrial function in shaping whole-organism thermal limits. The available data are fragmentary, but it is possible to draw some conclusions. There is little evidence that failure of maximal mitochondrial oxidative capacity as assessed in vitro sets thermal limits, but there is some evidence to suggest that temperature effects on ATP synthetic capacity may be important. Several studies suggest that loss of mitochondrial coupling is associated with the thermal limits for organismal growth, although this needs to be rigorously tested. Most studies have utilized isolated mitochondrial preparations to assess the effects of temperature on these organelles, and there remain many untapped opportunities to address these questions using preparations that retain more of their biological context to better connect these subcellular processes with whole-organism thermal limits.
Collapse
Affiliation(s)
- Dillon J Chung
- National Heart Lung and Blood Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20814, USA
| | - Patricia M Schulte
- Department of Zoology, University of British Columbia, 6270 University Blvd, Vancouver, British Columbia, Canada V6T 1Z4
| |
Collapse
|
40
|
Bouyoucos IA, Morrison PR, Weideli OC, Jacquesson E, Planes S, Simpfendorfer CA, Brauner CJ, Rummer JL. Thermal tolerance and hypoxia tolerance are associated in blacktip reef shark (Carcharhinus melanopterus) neonates. J Exp Biol 2020; 223:223/14/jeb221937. [DOI: 10.1242/jeb.221937] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 06/01/2020] [Indexed: 12/19/2022]
Abstract
ABSTRACT
Thermal dependence of growth and metabolism can influence thermal preference and tolerance in marine ectotherms, including threatened and data-deficient species. Here, we quantified the thermal dependence of physiological performance in neonates of a tropical shark species (blacktip reef shark, Carcharhinus melanopterus) from shallow, nearshore habitats. We measured minimum and maximum oxygen uptake rates (ṀO2), calculated aerobic scope, excess post-exercise oxygen consumption and recovery from exercise, and measured critical thermal maxima (CTmax), thermal safety margins, hypoxia tolerance, specific growth rates, body condition and food conversion efficiencies at two ecologically relevant acclimation temperatures (28 and 31°C). Owing to high post-exercise mortality, a third acclimation temperature (33°C) was not investigated further. Acclimation temperature did not affect ṀO2 or growth, but CTmax and hypoxia tolerance were greatest at 31°C and positively associated. We also quantified in vitro temperature (25, 30 and 35°C) and pH effects on haemoglobin–oxygen (Hb–O2) affinity of wild-caught, non-acclimated sharks. As expected, Hb–O2 affinity decreased with increasing temperatures, but pH effects observed at 30°C were absent at 25 and 35°C. Finally, we logged body temperatures of free-ranging sharks and determined that C. melanopterus neonates avoided 31°C in situ. We conclude that C. melanopterus neonates demonstrate minimal thermal dependence of whole-organism physiological performance across a seasonal temperature range and may use behaviour to avoid unfavourable environmental temperatures. The association between thermal tolerance and hypoxia tolerance suggests a common mechanism warranting further investigation. Future research should explore the consequences of ocean warming, especially in nearshore, tropical species.
Collapse
Affiliation(s)
- Ian A. Bouyoucos
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
- PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 58 Avenue Paul Alduy, 66860 Perpignan Cedex, France
| | - Phillip R. Morrison
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Ornella C. Weideli
- PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 58 Avenue Paul Alduy, 66860 Perpignan Cedex, France
| | - Eva Jacquesson
- PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 58 Avenue Paul Alduy, 66860 Perpignan Cedex, France
| | - Serge Planes
- PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 58 Avenue Paul Alduy, 66860 Perpignan Cedex, France
- Laboratoire d'Excellence ‘CORAIL’, EPHE, PSL Research University, UPVD, CNRS, USR 3278 CRIOBE, Papetoai, Moorea, French Polynesia
| | - Colin A. Simpfendorfer
- Centre for Sustainable Tropical Fisheries and Aquaculture & College of Science and Engineering, James Cook University, Townsville, Queensland, 4811, Australia
| | - Colin J. Brauner
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Jodie L. Rummer
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
| |
Collapse
|
41
|
Havird JC, Neuwald JL, Shah AA, Mauro A, Marshall CA, Ghalambor CK. Distinguishing between active plasticity due to thermal acclimation and passive plasticity due to
Q
10
effects: Why methodology matters. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13534] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Justin C. Havird
- Department of Integrative Biology University of Texas at Austin Austin TX USA
| | - Jennifer L. Neuwald
- Department of Biology Colorado State University Fort Collins CO USA
- Graduate Degree Program in Ecology Colorado State University Fort Collins CO USA
| | - Alisha A. Shah
- Department of Biology Colorado State University Fort Collins CO USA
- Division of Biological Sciences University of Montana Missoula MT USA
| | - Alexander Mauro
- Department of Biology Colorado State University Fort Collins CO USA
- Graduate Degree Program in Ecology Colorado State University Fort Collins CO USA
| | | | - Cameron K. Ghalambor
- Department of Biology Colorado State University Fort Collins CO USA
- Graduate Degree Program in Ecology Colorado State University Fort Collins CO USA
| |
Collapse
|
42
|
Dillon ME, Lozier JD. Adaptation to the abiotic environment in insects: the influence of variability on ecophysiology and evolutionary genomics. CURRENT OPINION IN INSECT SCIENCE 2019; 36:131-139. [PMID: 31698151 DOI: 10.1016/j.cois.2019.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/10/2019] [Accepted: 09/10/2019] [Indexed: 06/10/2023]
Abstract
Advances in tools to gather environmental, phenotypic, and molecular data have accelerated our ability to detect abiotic drivers of variation across the genome-to-phenome spectrum in model and non-model insects. However, differences in the spatial and temporal resolution of these data sets may create gaps in our understanding of linkages between environment, genotype, and phenotype that yield missed or misleading results about adaptive variation. In this review we highlight sources of variability that might impact studies of phenotypic and 'omic environmental adaptation, challenges to collecting data at relevant scales, and possible solutions that link intensive fine-scale reductionist studies of mechanisms to large-scale biogeographic patterns.
Collapse
Affiliation(s)
- Michael E Dillon
- Department of Zoology & Physiology and Program in Ecology, The University of Wyoming, Laramie, Wyoming 82071, USA.
| | - Jeffrey D Lozier
- Department of Biological Sciences, The University of Alabama, Box 870344, Tuscaloosa, Alabama 35487, USA
| |
Collapse
|
43
|
Exploring thermal flight responses as predictors of flight ability and geographic range size in Drosophila. Comp Biochem Physiol A Mol Integr Physiol 2019; 236:110532. [PMID: 31351148 DOI: 10.1016/j.cbpa.2019.110532] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/01/2019] [Accepted: 07/18/2019] [Indexed: 11/21/2022]
Abstract
Thermal flight performance curves (TFPCs) may be a useful proxy for determining dispersal on daily timescales in winged insect species. Few studies have assessed TFPCs across a range of species under standard conditions despite that they may be useful in predicting variation in performance, abundance or geographic range shifts with forecast climate variability. Indeed, the factors determining realized dispersal within and among flying insect species are generally poorly understood. To better understand how flight performance may be correlated with geographic range extent and potential latitudinal climate variability, we estimated the thermal performance curves of flight ability in 11 Drosophilidae species (in 4 °C increments across 16-28 °C) after standard laboratory rearing for two generations. We tested if key morphological, evolutionary or ecological factors (e.g. species identity, sex, body mass, wing loading, geographic range size) predicted traits of TFPCs (including optimum temperature, maximum performance, thermal breadth of performance) or flight ability (success/failure to fly). Although several parameters of TFPCs varied among species these were typically not statistically significant probably owing to the relatively small pool of species assessed and the limited trait variation detected. The best explanatory model of these flight responses across species included significant positive effects of test temperature and wing area. However, the rank of geographic distribution breadth and phylogeny failed to explain significant variation in most of the traits, except for thermal performance breadth, of thermal flight performance curves among these 11 species. Future studies that employ a wider range of Drosophilidae species, especially if coupled with fine-scale estimates of species' environmental niches, would be useful.
Collapse
|