1
|
Zhao X, Wu X, He L, Xiao J, Xiang R, Sha L, Tang M, Hao Y, Qu Y, Xiao C, Qin C, Hou J, Deng Q, Zhu J, Zheng S, Zhou J, Yu T, Yang B, Song X, Han T, Liao J, Zhang T, Fan M, Li J, Jiang X. Leisure-Time Physical Activity, Sedentary Behavior, and Biological Aging: Evidence From Genetic Correlation and Mendelian Randomization Analyses. Scand J Med Sci Sports 2025; 35:e70014. [PMID: 39794269 PMCID: PMC11723829 DOI: 10.1111/sms.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/14/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025]
Abstract
Physical inactivity and sedentary behavior are associated with higher risks of age-related morbidity and mortality. However, whether they causally contribute to accelerating biological aging has not been fully elucidated. Utilizing the largest available genome-wide association study (GWAS) summary data, we implemented a comprehensive analytical framework to investigate the associations between genetically predicted moderate-to-vigorous leisure-time physical activity (MVPA), leisure screen time (LST), and four epigenetic age acceleration (EAA) measures: HannumAgeAccel, intrinsic HorvathAgeAccel, PhenoAgeAccel, and GrimAgeAccel. Shared genetic backgrounds across these traits were quantified through genetic correlation analysis. Overall and independent associations were assessed through univariable and multivariable Mendelian randomization (MR). A recently developed tissue-partitioned MR approach was further adopted to explore potential tissue-specific pathways that contribute to the observed associations. Among the four EAA measures investigated, consistent results were identified for PhenoAgeAccel and GrimAgeAccel. These two measures were negatively genetically correlated with MVPA (rg = -0.18 to -0.29) and positively genetically correlated with LST (rg = 0.22-0.37). Univariable MR yielded a robust effect of genetically predicted LST on GrimAgeAccel (βIVW = 0.69, p = 1.10 × 10-7), while genetically predicted MVPA (βIVW = -1.02, p = 1.50 × 10-2) and LST (βIVW = 0.37, p = 1.90 × 10-2) showed marginal effects on PhenoAgeAccel. Multivariable MR suggested an independent association between genetically predicted LST and GrimAgeAccel after accounting for MVPA and other important confounders. Tissue-partitioned MR suggested skeletal muscle tissue associated variants to be predominantly responsible for driving the effect of LST on GrimAgeAccel. Findings support sedentary lifestyles as a modifiable risk factor in accelerating epigenetic aging, emphasizing the need for preventive strategies to reduce sedentary screen time for healthy aging.
Collapse
Affiliation(s)
- Xunying Zhao
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth HospitalSichuan UniversityChengduSichuanChina
| | - Xueyao Wu
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth HospitalSichuan UniversityChengduSichuanChina
- Division of Cancer Epidemiology and GeneticsNational Cancer InstituteRockvilleMarylandUSA
| | - Lin He
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth HospitalSichuan UniversityChengduSichuanChina
| | - Jinyu Xiao
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth HospitalSichuan UniversityChengduSichuanChina
| | - Rong Xiang
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth HospitalSichuan UniversityChengduChina
| | - Linna Sha
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth HospitalSichuan UniversityChengduChina
| | - Mingshuang Tang
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth HospitalSichuan UniversityChengduSichuanChina
| | - Yu Hao
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth HospitalSichuan UniversityChengduSichuanChina
| | - Yang Qu
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth HospitalSichuan UniversityChengduSichuanChina
| | - Changfeng Xiao
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth HospitalSichuan UniversityChengduSichuanChina
| | - Chenjiarui Qin
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth HospitalSichuan UniversityChengduChina
| | - Jiaojiao Hou
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth HospitalSichuan UniversityChengduSichuanChina
| | - Qin Deng
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth HospitalSichuan UniversityChengduChina
| | - Jiangbo Zhu
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth HospitalSichuan UniversityChengduChina
| | - Sirui Zheng
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth HospitalSichuan UniversityChengduChina
| | - Jinyu Zhou
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth HospitalSichuan UniversityChengduChina
| | - Ting Yu
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth HospitalSichuan UniversityChengduSichuanChina
| | - Bin Yang
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth HospitalSichuan UniversityChengduChina
| | - Xin Song
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth HospitalSichuan UniversityChengduSichuanChina
| | - Tao Han
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth HospitalSichuan UniversityChengduChina
| | - Jiaqiang Liao
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth HospitalSichuan UniversityChengduSichuanChina
| | - Tao Zhang
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth HospitalSichuan UniversityChengduSichuanChina
| | - Mengyu Fan
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth HospitalSichuan UniversityChengduSichuanChina
| | - Jiayuan Li
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth HospitalSichuan UniversityChengduSichuanChina
| | - Xia Jiang
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth HospitalSichuan UniversityChengduSichuanChina
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth HospitalSichuan UniversityChengduChina
- Department of Clinical Neuroscience, Center for Molecular MedicineKarolinska InstitutetSolnaStockholmSweden
| |
Collapse
|
2
|
Hillis DA, Yadgary L, Weinstock GM, de Villena FPM, Pomp D, Garland T. Large changes in detected selection signatures after a selection limit in mice bred for voluntary wheel-running behavior. PLoS One 2024; 19:e0306397. [PMID: 39088483 PMCID: PMC11293672 DOI: 10.1371/journal.pone.0306397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/14/2024] [Indexed: 08/03/2024] Open
Abstract
In various organisms, sequencing of selectively bred lines at apparent selection limits has demonstrated that genetic variation can remain at many loci, implying that evolution at the genetic level may continue even if the population mean phenotype remains constant. We compared selection signatures at generations 22 and 61 of the "High Runner" mouse experiment, which includes 4 replicate lines bred for voluntary wheel-running behavior (HR) and 4 non-selected control (C) lines. Previously, we reported multiple regions of differentiation between the HR and C lines, based on whole-genome sequence data for 10 mice from each line at generation 61, which was >31 generations after selection limits had been reached in all HR lines. Here, we analyzed pooled sequencing data from ~20 mice for each of the 8 lines at generation 22, around when HR lines were reaching limits. Differentiation analyses of allele frequencies at ~4.4 million SNP loci used the regularized T-test and detected 258 differentiated regions with FDR = 0.01. Comparable analyses involving pooling generation 61 individual mouse genotypes into allele frequencies by line produced only 11 such regions, with almost no overlap among the largest and most statistically significant peaks between the two generations. These results implicate a sort of "genetic churn" that continues at loci relevant for running. Simulations indicate that loss of statistical power due to random genetic drift and sampling error are insufficient to explain the differences in selection signatures. The 13 differentiated regions at generation 22 with strict culling measures include 79 genes related to a wide variety of functions. Gene ontology identified pathways related to olfaction and vomeronasal pathways as being overrepresented, consistent with generation 61 analyses, despite those specific regions differing between generations. Genes Dspp and Rbm24 are also identified as potentially explaining known bone and skeletal muscle differences, respectively, between the linetypes.
Collapse
Affiliation(s)
- David A. Hillis
- Genetics, Genomics, and Bioinformatics Graduate Program, University of California, Riverside, California, United States of America
| | - Liran Yadgary
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - George M. Weinstock
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States of America
- Department of Genetics and Genome Science, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | | | - Daniel Pomp
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California, United States of America
| |
Collapse
|
3
|
Thompson Z, Fonseca IAT, Acosta W, Idarraga L, Garland T. Effects of food restriction on voluntary wheel-running behavior and body mass in selectively bred High Runner lines of mice. Physiol Behav 2024; 282:114582. [PMID: 38750805 DOI: 10.1016/j.physbeh.2024.114582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/28/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Food restriction can have profound effects on various aspects of behavior, physiology, and morphology. Such effects might be amplified in animals that are highly active, given that physical activity can represent a substantial fraction of the total daily energy budget. More specifically, some effects of food restriction could be associated with intrinsic, genetically based differences in the propensity or ability to perform physical activity. To address this possibility, we studied the effects of food restriction in four replicate lines of High Runner (HR) mice that have been selectively bred for high levels of voluntary wheel running. We hypothesized that HR mice would respond differently than mice from four non-selected Control (C) lines. Healthy adult females from generation 65 were housed individually with wheels and provided access to food and water ad libitum for experimental days 1-19 (Phase 1), which allowed mice to attain a plateau in daily running distances. Ad libitum food intake of each mouse was measured on days 20-22 (Phase 2). After this, each mouse experienced a 20 % food restriction for 7 days (days 24-30; Phase 3), and then a 40 % food restriction for 7 additional days (days 31-37; Phase 4). Mice were weighed on experimental days 1, 8, 9, 15, 20, and 23-37 and wheel-running activity was recorded continuously, in 1-minute bins, during the entire experiment. Repeated-measures ANOVA of daily wheel-running distance during Phases 2-4 indicated that HR mice always ran much more than C, with values being 3.29-fold higher during the ad libitum feeding trial, 3.58-fold higher with -20 % food, and 3.06-fold higher with -40 % food. Seven days of food restriction at -20 % did not significantly reduce wheel-running distance of either HR (-5.8 %, P = 0.0773) or C mice (-13.3 %, P = 0.2122). With 40 % restriction, HR mice showed a further decrease in daily wheel-running distance (P = 0.0797 vs. values at 20 % restriction), whereas C mice did not (P = 0.4068 vs. values at 20 % restriction) and recovered to levels similar to those on ad libitum food (P = 0.3634). For HR mice, daily running distances averaged 11.4 % lower at -40 % food versus baseline values (P = 0.0086), whereas for C mice no statistical difference existed (-4.8 %, P = 0.7004). Repeated-measures ANOVA of body mass during Phases 2-4 indicated a highly significant effect of food restriction (P = 0.0001), but no significant effect of linetype (P = 0.1764) and no interaction (P = 0.8524). Both HR and C mice had a significant reduction in body mass only when food rations were reduced by 40 % relative to ad libitum feeding, and even then the reductions averaged only -0.60 g for HR mice (-2.6 %) and -0.49 g (-2.0 %) for C mice. Overall, our results indicate a surprising insensitivity of body mass to food restriction in both high-activity (HR) and ordinary (C) mice, and also insensitivity of wheel running in the C lines of mice, thus calling for studies of compensatory mechanisms that allow this insensitivity.
Collapse
Affiliation(s)
- Zoe Thompson
- Neuroscience Graduate Program, University of California, Riverside, CA 92521, USA; Present Address: Department of Biology, Utah Valley University, Orem, UT, USA
| | - Ivana A T Fonseca
- Department of Physical Education, University of State of Rio Grande do Norte, Mossoró, Brazil
| | - Wendy Acosta
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Laidy Idarraga
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
4
|
Leszczynski EC, Thorn ME, Szlachetka J, Lee MH, Ferguson DP. The Effect of an Early Life Motor Skill Intervention on Physical Activity in Growth-Restricted Mice. Med Sci Sports Exerc 2024; 56:1066-1076. [PMID: 38233993 DOI: 10.1249/mss.0000000000003393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
INTRODUCTION Early life growth restriction significantly increases the risk of adulthood physical inactivity and thereby chronic disease incidence. Improvements in motor skill acquisition could result in greater physical activity engagement in the growth-restricted population, thus reducing chronic disease risk. The purpose of this study was to implement an early life motor training intervention to improve physical activity engagement in control and growth-restricted mice. METHODS Mice were growth restricted in early life utilizing a validated nutritive model or remained fully nourished in early life as a control. All mice were tested throughout early life for various components of motor skill acquisition. On postnatal day 10, mice were randomly assigned to engage in an early life motor skill intervention daily until postnatal day 21 or remained as a sedentary control. All mice were given access to an in-cage running wheel from postnatal days 45-70. RESULTS Growth-restricted group (PGR) mice had impaired trunk and postural control, coordination/vestibular development, and hindlimb strength in early life compared with control mice. There were no differences in wheel running behavior between the trained and sedentary mice, although control mice ran at a faster average speed compared with PGR mice. Control female mice ran more than PGR female mice during the week 2 dark cycle. CONCLUSIONS Early life growth restriction reduced motor skill attainment throughout early life, which may be associated with reduced ability to engage in physical activity in adulthood. The early life motor skill intervention did not elicit changes in body weight or physical activity engagement in control or PGR mice, indicating that a more intense/different intervention specifically targeting skeletal muscle may be necessary to counteract the detrimental effects of early life growth restriction.
Collapse
Affiliation(s)
| | - Megan E Thorn
- Department of Kinesiology, Michigan State University, East Lansing, MI
| | - Josie Szlachetka
- Department of Kinesiology, Michigan State University, East Lansing, MI
| | - Mei-Hua Lee
- Department of Kinesiology, Michigan State University, East Lansing, MI
| | - David P Ferguson
- Department of Kinesiology, Michigan State University, East Lansing, MI
| |
Collapse
|
5
|
Sharma A, Pokharel DR, Dhakal G. Establishment of dry-chemistry-based reference intervals of routine liver function tests for the adult population of Gandaki Province, Nepal. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0001865. [PMID: 38722987 PMCID: PMC11081272 DOI: 10.1371/journal.pgph.0001865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/04/2024] [Indexed: 05/12/2024]
Abstract
Every clinical laboratory should ideally establish its own population-specific reference intervals (RIs) to promote precision and evidence-based medicine. However, clinical laboratories in Nepal find it easier to follow external RIs than establish their own, leading to a lack of RIs specific to the local population. This study thus aimed to establish RIs of routine LFTs for the adult population of Gandaki Province, Nepal, and compare them with the current RIs used by our laboratory. We established the dry-chemistry-based reference intervals of 11 common LFT parameters for the adult population of Gandaki Province, Nepal using the direct priori-based method. The combined and sex-specific 95% double-sided RIs of total protein, albumin, globulin, A/G ratio, bilirubin, aspartate aminotransaminase (AST), alanine aminotransaminase (ALT), AST/ALT ratio, and alkaline phosphatase (ALP) were established using non-parametric percentile method. The new RIs were also compared with the currently used RIs that were adopted from the reagent kit inserts. The newly established RIs for each LFT were: Total proteins: 68.0-69.0g/L, albumin: 39.0-52.0g/L; globulin: 27.0-42.0g/L; A/G ratio: 1.1-1.8; total bilirubin: 5.13-25.65μmol/L (0.30-1.50mg/dl); unconjugated bilirubin: 1.71-17.10μmol/L (0.10-1.00mg/dl); conjugated bilirubin: 0.00-10.26 μmol/L (0.00-0.60mg/dl); AST: 20.0-43.2U/L; ALT: 11.0-53.0 U/L; AST/ALT ratio: 0.7-2.1; ALP: 42.0-135.4U/L. The RIs of albumin, globulin, A/G ratio, AST, ALT, and AST/ALT ratio differed significantly (p < 0.05) between males and females. Moreover, calculated out-of-range values showed that up to 4-40% of apparently healthy adults were classified as having abnormal test results based on current RIs. The newly established RIs fulfil the need for population and platform-specific RIs for the adult population of Gandaki Province of Nepal and bring more conformity and accuracy in interpreting the LFT results, diagnosis of hepatobiliary diseases, clinical decision-making, monitoring the success of therapy and future liver specific biomedical researches within the Gandaki Province of Nepal.
Collapse
Affiliation(s)
- Asmita Sharma
- School of Health and Allied Sciences, Pokhara University, Pokhara, Gandaki Province, Nepal
| | - Daya Ram Pokharel
- Department of Biochemistry, Manipal College of Medical Sciences, Pokhara, Gandaki Province, Nepal
| | - Ganesh Dhakal
- School of Health and Allied Sciences, Pokhara University, Pokhara, Gandaki Province, Nepal
| |
Collapse
|
6
|
Jiang R, Collins KA, Huffman KM, Hauser ER, Hubal MJ, Johnson JL, Williams RB, Siegler IC, Kraus WE. Genome-Wide Genetic Analysis of Dropout in a Controlled Exercise Intervention in Sedentary Adults With Overweight or Obesity and Cardiometabolic Disease. Ann Behav Med 2024; 58:363-374. [PMID: 38489667 PMCID: PMC11008589 DOI: 10.1093/abm/kaae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Despite the benefits of exercise, many individuals are unable or unwilling to adopt an exercise intervention. PURPOSE The purpose of this analysis was to identify putative genetic variants associated with dropout from exercise training interventions among individuals in the STRRIDE trials. METHODS We used a genome-wide association study approach to identify genetic variants in 603 participants initiating a supervised exercise intervention. Exercise intervention dropout occurred when a subject withdrew from further participation in the study or was otherwise lost to follow-up. RESULTS Exercise intervention dropout was associated with a cluster of single-nucleotide polymorphisms with the top candidate being rs722069 (T/C, risk allele = C) (unadjusted p = 2.2 × 10-7, odds ratio = 2.23) contained within a linkage disequilibrium block on chromosome 16. In Genotype-Tissue Expression, rs722069 is an expression quantitative trait locus of the EARS2, COG7, and DCTN5 genes in skeletal muscle tissue. In subsets of the STRRIDE genetic cohort with available muscle gene expression (n = 37) and metabolic data (n = 82), at baseline the C allele was associated with lesser muscle expression of EARS2 (p < .002) and COG7 (p = .074) as well as lesser muscle concentrations of C2- and C3-acylcarnitines (p = .026). CONCLUSIONS Our observations imply that exercise intervention dropout is genetically moderated through alterations in gene expression and metabolic pathways in skeletal muscle. Individual genetic traits may allow the development of a biomarker-based approach for identifying individuals who may benefit from more intensive counseling and other interventions to optimize exercise intervention adoption. CLINICAL TRIAL INFORMATION STRRIDE I = NCT00200993; STRRIDE AT/RT = NCT00275145; STRRIDE-PD = NCT00962962.
Collapse
Affiliation(s)
- Rong Jiang
- Department of Head and Neck Surgery & Communication Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Katherine A Collins
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Kim M Huffman
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Elizabeth R Hauser
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Biostatistics, Duke University School of Medicine, Durham, NC, USA
| | - Monica J Hubal
- Department of Kinesiology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Johanna L Johnson
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Redford B Williams
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Ilene C Siegler
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - William E Kraus
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
7
|
Zi Y, Bartels M, Dolan C, de Geus EJC. Genetic confounding in the association of early motor development with childhood and adolescent exercise behavior. Int J Behav Nutr Phys Act 2024; 21:33. [PMID: 38515105 PMCID: PMC10958919 DOI: 10.1186/s12966-024-01583-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/08/2024] [Indexed: 03/23/2024] Open
Abstract
INTRODUCTION Early motor development has been found to be a predictor of exercise behavior in children and adolescents, but whether this reflects a causal effect or confounding by genetic or shared environmental factors remains to be established. METHODS For 20,911 complete twin pairs from the Netherlands Twin Register a motor development score was obtained from maternal reports on the timing of five motor milestones. During a 12-year follow-up, subsamples of the mothers reported on the twins' ability to perform seven gross motor skills ability (N = 17,189 pairs), and weekly minutes of total metabolic equivalents of task (MET) spent on sports and exercise activities at age 7 (N = 3632 pairs), age 10 (N = 3735 pairs), age 12 (N = 7043 pairs), and age 14 (N = 3990 pairs). Multivariate phenotypic and genetic regression analyses were used to establish the predictive strength of the two motor development traits for future exercise behavior, the contribution of genetic and shared environmental factors to the variance in all traits, and the contribution of familial confounding to the phenotypic prediction. RESULTS Significant heritability (h2) and shared environmental (c2) effects were found for early motor development in boys and girls (h2 = 43-65%; c2 = 16-48%). For exercise behavior, genetic influences increased with age (boys: h2age7 = 22% to h2age14 = 51%; girls: h2age7 = 3% to h2age14 = 18%) paired to a parallel decrease in the influence of the shared environment (boys: c2age7 = 68% to c2age14 = 19%; girls: c2age7 = 80% to c2age14 = 48%). Early motor development explained 4.3% (p < 0.001) of the variance in future exercise behavior in boys but only 1.9% (p < 0.001) in girls. If the effect in boys was due to a causal effect of motor development on exercise behavior, all of the factors influencing motor development would, through the causal chain, also influence future exercise behavior. Instead, only the genetic parts of the regression of exercise behavior on motor development were significant. Shared and unique environmental parts of the regression were largely non-significant, which is at odds with the causal hypothesis. CONCLUSION No support was found for a direct causal effect in the association between rapid early motor development on future exercise behavior. In boys, early motor development appears to be an expression of the same genetic factors that underlie the heritability of childhood and early adolescent exercise behavior.
Collapse
Affiliation(s)
- Yahua Zi
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
- Department of Biological Psychology, Vrije Universiteit Amsterdam, van der Boechorststraat 7, H541, Medical Faculty Building, Amsterdam, 1081 BT, Netherlands
| | - Meike Bartels
- Department of Biological Psychology, Vrije Universiteit Amsterdam, van der Boechorststraat 7, H541, Medical Faculty Building, Amsterdam, 1081 BT, Netherlands
- Amsterdam Public Health Research Institute, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Conor Dolan
- Department of Biological Psychology, Vrije Universiteit Amsterdam, van der Boechorststraat 7, H541, Medical Faculty Building, Amsterdam, 1081 BT, Netherlands
- Amsterdam Public Health Research Institute, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Eco J C de Geus
- Department of Biological Psychology, Vrije Universiteit Amsterdam, van der Boechorststraat 7, H541, Medical Faculty Building, Amsterdam, 1081 BT, Netherlands.
- Department of Biological Psychology, Netherlands Twin Register, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
- Amsterdam Public Health Research Institute, Amsterdam University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
8
|
Khan RH, Rhodes JS, Girard IA, Schwartz NE, Garland T. Does Behavior Evolve First? Correlated Responses to Selection for Voluntary Wheel-Running Behavior in House Mice. ECOLOGICAL AND EVOLUTIONARY PHYSIOLOGY 2024; 97:97-117. [PMID: 38728689 DOI: 10.1086/730153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
AbstractHow traits at multiple levels of biological organization evolve in a correlated fashion in response to directional selection is poorly understood, but two popular models are the very general "behavior evolves first" (BEF) hypothesis and the more specific "morphology-performance-behavior-fitness" (MPBF) paradigm. Both acknowledge that selection often acts relatively directly on behavior and that when behavior evolves, other traits will as well but most with some lag. However, this proposition is exceedingly difficult to test in nature. Therefore, we studied correlated responses in the high-runner (HR) mouse selection experiment, in which four replicate lines have been bred for voluntary wheel-running behavior and compared with four nonselected control (C) lines. We analyzed a wide range of traits measured at generations 20-24 (with a focus on new data from generation 22), coinciding with the point at which all HR lines were reaching selection limits (plateaus). Significance levels (226 P values) were compared across trait types by ANOVA, and we used the positive false discovery rate to control for multiple comparisons. This meta-analysis showed that, surprisingly, the measures of performance (including maximal oxygen consumption during forced exercise) showed no evidence of having diverged between the HR and C lines, nor did any of the life history traits (e.g., litter size), whereas body mass had responded (decreased) at least as strongly as wheel running. Overall, results suggest that the HR lines of mice had evolved primarily by changes in motivation rather than performance ability at the time they were reaching selection limits. In addition, neither the BEF model nor the MPBF model of hierarchical evolution provides a particularly good fit to the HR mouse selection experiment.
Collapse
|
9
|
Mathis V, Wegman-Points L, Pope B, Lee CMJ, Mohamed M, Rhodes JS, Clark PJ, Clayton S, Yuan LL. Estrogen-mediated individual differences in female rat voluntary running behavior. J Appl Physiol (1985) 2024; 136:592-605. [PMID: 38299221 PMCID: PMC11212800 DOI: 10.1152/japplphysiol.00611.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/08/2024] [Accepted: 01/26/2024] [Indexed: 02/02/2024] Open
Abstract
Regular exercise has numerous health benefits, but the human population displays significant variability in exercise participation. Rodent models, such as voluntary wheel running (VWR) in rats, can provide insight into the underlying mechanisms of exercise behavior and its regulation. In this study, we focused on the role of estrogen on VWR in female rats. Female rats run more than males, and we aimed to determine to what extent running levels in females were regulated by estrogen signaling. The running behavior of rats (duration, speed, and total distance run) was measured under normal physiological conditions, ovariectomy (OVX), and estrogen replacement in an OVX background. Results show cyclic variations in running linked to the estrous cycle. Ovariectomy markedly reduced running and eliminated the cyclic pattern. Estrogen replacement through estradiol benzoate (EB) injections and osmotic minipumps reinstated running activity to pre-OVX levels and restored the cyclic pattern. Importantly, individual differences and ranking are preserved such that high versus low runners before OVX remain high and low runners after treatment. Further analysis revealed that individual variation in running distance was primarily caused by rats running different speeds, but rats also varied in running duration. However, it is noteworthy that this model also displays features distinct from estrogen-driven running behavior under physiological conditions, notably a delayed onset and a broader duration of running activity. Collectively, this estrogen causality VWR model presents a unique opportunity to investigate sex-specific mechanisms that control voluntary physical activity.NEW & NOTEWORTHY This study investigates estrogen's role in voluntary wheel running (VWR) behavior in female rats. Female rats exhibit greater running than males, with estrogen signaling regulating this activity. The estrous cycle influences running, whereas ovariectomy reduces it, and estrogen replacement restores it, maintaining individual differences under all conditions. Both running speed and duration contribute to VWR variations. These findings emphasize individual estrogen regulation in female exercise and provide an estrogen replacement animal model for investigating neurobiological underpinnings that drive voluntary exercise behavior.
Collapse
Affiliation(s)
- Victoria Mathis
- Department of Physiology and Pharmacology, College of Osteopathic Medicine, Des Moines University, Des Moines, Iowa, United States
| | - Lauren Wegman-Points
- Department of Physiology and Pharmacology, College of Osteopathic Medicine, Des Moines University, Des Moines, Iowa, United States
| | - Brock Pope
- Department of Physiology and Pharmacology, College of Osteopathic Medicine, Des Moines University, Des Moines, Iowa, United States
| | - Chia-Ming Jimmy Lee
- Department of Physiology and Pharmacology, College of Osteopathic Medicine, Des Moines University, Des Moines, Iowa, United States
| | - Merna Mohamed
- Department of Physiology and Pharmacology, College of Osteopathic Medicine, Des Moines University, Des Moines, Iowa, United States
| | - Justin S Rhodes
- Department of Psychology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Peter J Clark
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, United States
| | - Sarah Clayton
- Department of Physiology and Pharmacology, College of Osteopathic Medicine, Des Moines University, Des Moines, Iowa, United States
| | - Li-Lian Yuan
- Department of Physiology and Pharmacology, College of Osteopathic Medicine, Des Moines University, Des Moines, Iowa, United States
| |
Collapse
|
10
|
Ahmetov II, John G, Semenova EA, Hall ECR. Genomic predictors of physical activity and athletic performance. ADVANCES IN GENETICS 2024; 111:311-408. [PMID: 38908902 DOI: 10.1016/bs.adgen.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Physical activity and athletic performance are complex phenotypes influenced by environmental and genetic factors. Recent advances in lifestyle and behavioral genomics led to the discovery of dozens of DNA polymorphisms (variants) associated with physical activity and allowed to use them as genetic instruments in Mendelian randomization studies for identifying the causal links between physical activity and health outcomes. On the other hand, exercise and sports genomics studies are focused on the search for genetic variants associated with athlete status, sports injuries and individual responses to training and supplement use. In this review, the findings of studies investigating genetic markers and their associations with physical activity and athlete status are reported. As of the end of September 2023, a total of 149 variants have been associated with various physical activity traits (of which 42 variants are genome-wide significant) and 253 variants have been linked to athlete status (115 endurance-related, 96 power-related, and 42 strength-related).
Collapse
Affiliation(s)
- Ildus I Ahmetov
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom; Sports Genetics Laboratory, St Petersburg Research Institute of Physical Culture, St. Petersburg, Russia; Laboratory of Genetics of Aging and Longevity, Kazan State Medical University, Kazan, Russia; Department of Physical Education, Plekhanov Russian University of Economics, Moscow, Russia.
| | - George John
- Transform Specialist Medical Centre, Dubai, United Arab Emirates
| | - Ekaterina A Semenova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia; Research Institute of Physical Culture and Sport, Volga Region State University of Physical Culture, Sport and Tourism, Kazan, Russia
| | - Elliott C R Hall
- Faculty of Health Sciences and Sport, University of Stirling, Stirling, United Kingdom
| |
Collapse
|
11
|
Grigsby K, Usmani Z, Anderson J, Ozburn A. Development and implementation of a Dependable, Simple, and Cost-effective (DSC), open-source running wheel in High Drinking in the Dark and Heterogeneous Stock/Northport mice. Front Behav Neurosci 2024; 17:1321349. [PMID: 38288095 PMCID: PMC10823001 DOI: 10.3389/fnbeh.2023.1321349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/14/2023] [Indexed: 01/31/2024] Open
Abstract
Maintaining healthy and consistent levels of physical activity (PA) is a clinically proven and low-cost means of reducing the onset of several chronic diseases and may provide an excellent strategy for managing mental health and related outcomes. Wheel-running (WR) is a well-characterized rodent model of voluntary PA; however, its use in biomedical research is limited by economical and methodical constraints. Here, we showcase the DSC (Dependable, Simple, Cost-effective), open-source running wheel by characterizing 24-h running patterns in two genetically unique mouse lines: inbred High Drinking in the Dark line 1 [iHDID-1; selectively bred to drink alcohol to intoxication (and then inbred to maintain phenotype)] and Heterogeneous Stock/Northport (HS/Npt; the genetically heterogeneous founders of iHDID mice). Running distance (km/day), duration (active minutes/day) and speed (km/hour) at 13-days (acute WR; Experiment 1) and 28-days (chronic WR; Experiment 2) were comparable to other mouse strains, suggesting the DSC-wheel reliably captures murine WR behavior. Analysis of 24-h running distance supports previous findings, wherein iHDID-1 mice tend to run less than HS/Npt mice in the early hours of the dark phase and more than HS/Npt in the late hours of dark phase/early light phase. Moreover, circadian actograms were generated to highlight the broad application of our wheel design across disciplines. Overall, the present findings demonstrate the ability of the DSC-wheel to function as a high-throughput and precise tool to comprehensively measure WR behaviors in mice.
Collapse
Affiliation(s)
- Kolter Grigsby
- Portland Veterans Affairs Medical Center, Research and Development Service, Portland, OR, United States
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
| | - Zaynah Usmani
- Portland Veterans Affairs Medical Center, Research and Development Service, Portland, OR, United States
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
| | - Justin Anderson
- Portland Veterans Affairs Medical Center, Research and Development Service, Portland, OR, United States
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
| | - Angela Ozburn
- Portland Veterans Affairs Medical Center, Research and Development Service, Portland, OR, United States
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
12
|
Latchney SE, Cadney MD, Hopkins A, Garland T. Maternal upbringing and selective breeding for voluntary exercise behavior modify patterns of DNA methylation and expression of genes in the mouse brain. GENES, BRAIN, AND BEHAVIOR 2023; 22:e12858. [PMID: 37519068 PMCID: PMC10733581 DOI: 10.1111/gbb.12858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/26/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023]
Abstract
Selective breeding has been utilized to study the genetic basis of exercise behavior, but research suggests that epigenetic mechanisms, such as DNA methylation, also contribute to this behavior. In a previous study, we demonstrated that the brains of mice from a genetically selected high runner (HR) line have sex-specific changes in DNA methylation patterns in genes known to be genomically imprinted compared to those from a non-selected control (C) line. Through cross-fostering, we also found that maternal upbringing can modify the DNA methylation patterns of additional genes. Here, we identify an additional set of genes in which DNA methylation patterns and gene expression may be altered by selection for increased wheel-running activity and maternal upbringing. We performed bisulfite sequencing and gene expression assays of 14 genes in the brain and found alterations in DNA methylation and gene expression for Bdnf, Pde4d and Grin2b. Decreases in Bdnf methylation correlated with significant increases in Bdnf gene expression in the hippocampus of HR compared to C mice. Cross-fostering also influenced the DNA methylation patterns for Pde4d in the cortex and Grin2b in the hippocampus, with associated changes in gene expression. We also found that the DNA methylation patterns for Atrx and Oxtr in the cortex and Atrx and Bdnf in the hippocampus were further modified by sex. Together with our previous study, these results suggest that DNA methylation and the resulting change in gene expression may interact with early-life influences to shape adult exercise behavior.
Collapse
Affiliation(s)
- Sarah E. Latchney
- Department of BiologySt. Mary's College of MarylandSt. Mary's CityMarylandUSA
| | - Marcell D. Cadney
- Department of Evolution, Ecology, and Organismal BiologyUniversity of CaliforniaRiversideCaliforniaUSA
- Neuroscience Research Institute, University of CaliforniaSanta BarbaraCaliforniaUSA
| | | | - Theodore Garland
- Department of Evolution, Ecology, and Organismal BiologyUniversity of CaliforniaRiversideCaliforniaUSA
| |
Collapse
|
13
|
Leszczynski EC, Schwartz NE, McPeek AC, Currie KD, Ferguson DP, Garland T. Selectively breeding for high voluntary physical activity in female mice does not bestow inherent characteristics that resemble eccentric remodeling of the heart, but the mini-muscle phenotype does. SPORTS MEDICINE AND HEALTH SCIENCE 2023; 5:205-212. [PMID: 37753423 PMCID: PMC10518799 DOI: 10.1016/j.smhs.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/18/2023] [Accepted: 07/05/2023] [Indexed: 09/28/2023] Open
Abstract
Physical activity engagement results in a variety of positive health outcomes, including a reduction in cardiovascular disease risk partially due to eccentric remodeling of the heart. The purpose of this investigation was to determine if four replicate lines of High Runner mice that have been selectively bred for voluntary exercise on wheels have a cardiac phenotype that resembles the outcome of eccentric remodeling. Adult females (average age 55 days) from the 4 High Runner and 4 non-selected control lines were anaesthetized via vaporized isoflurane, then echocardiographic images were collected and analyzed for structural and functional differences. High Runner mice in general had lower ejection fractions compared to control mice lines (2-tailed p = 0.023 6) and tended to have thicker walls of the anterior portion of the left ventricle (p = 0.065). However, a subset of the High Runner individuals, termed mini-muscle mice, had greater ejection fraction (p = 0.000 6), fractional shortening percentage (p < 0.000 1), and ventricular mass at dissection (p < 0.002 7 with body mass as a covariate) compared to non-mini muscle mice. Mice from replicate lines bred for high voluntary exercise did not all have inherent positive cardiac functional or structural characteristics, although a genetically unique subset of mini-muscle individuals did have greater functional cardiac characteristics, which in conjunction with their previously described peripheral aerobic enhancements (e.g., increased capillarity) would partially account for their increased V ˙ O2max.
Collapse
Affiliation(s)
| | - Nicole E. Schwartz
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, USA
| | - Ashley C. McPeek
- Department of Kinesiology, Michigan State University, East Lansing, MI, USA
| | | | - David P. Ferguson
- Department of Kinesiology, Michigan State University, East Lansing, MI, USA
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, USA
| |
Collapse
|
14
|
Ash GI, Nally LM, Stults-Kolehmainen M, De Los Santos M, Jeon S, Brandt C, Gulanski BI, Spanakis EK, Baker JS, Weinzimer SA, Fucito LM. Personalized Digital Health Information to Substantiate Human-Delivered Exercise Support for Adults With Type 1 Diabetes. Clin J Sport Med 2023; 33:512-520. [PMID: 36715983 PMCID: PMC10898917 DOI: 10.1097/jsm.0000000000001078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Pilot-test personalized digital health information to substantiate human-delivered exercise support for adults with type 1 diabetes (T1D). DESIGN Single-group, 2-week baseline observation, then 10-week intervention with follow-up observation. SETTING Community-based sample participating remotely with physician oversight. PARTICIPANTS Volunteers aged 18 to 65 years with T1D screened for medical readiness for exercise intervention offerings. N = 20 enrolled, and N = 17 completed all outcomes with 88% to 91% biosensor adherence. INTERVENTION Feedback on personalized data from continuous glucose monitoring (CGM), its intersection with other ecological data sets (exercise, mood, and sleep), and other informational and motivational elements (exercise videos, text-based exercise coach, and self-monitoring diary). MAIN OUTCOME MEASURES Feasibility (use metrics and assessment completion), safety (mild and severe hypoglycemia, and diabetic ketoacidosis), acceptability (system usability scale, single items, and interview themes), and standard clinical and psychosocial assessments. RESULTS Participants increased exercise from a median of 0 (Interquartile range, 0-21) to 64 (20-129) minutes per week ( P = 0.001, d = 0.71) with no severe hypoglycemia or ketoacidosis. Body mass index increased (29.5 ± 5.1 to 29.8 ± 5.4 kg/m 2 , P = 0.02, d = 0.57). Highest satisfaction ratings were for CGM use (89%) and data on exercise and its intersection with CGM and sleep (94%). Satisfaction was primarily because of improved exercise management behavioral skills, although derived motivation was transient. CONCLUSIONS The intervention was feasible, safe, and acceptable. However, there is a need for more intensive, sustained support. Future interventions should perform analytics upon the digital health information and molecular biomarkers (eg, genomics) to make exercise support tools that are more personalized, automated, and intensive than our present offerings.
Collapse
Affiliation(s)
- Garrett I Ash
- Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
- Yale University, New Haven, Connecticut
| | | | - Matthew Stults-Kolehmainen
- Yale-New Haven Hospital, New Haven, Connecticut
- Teachers College - Columbia University, New York, New York
| | | | | | - Cynthia Brandt
- Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
- Yale University, New Haven, Connecticut
| | - Barbara I Gulanski
- Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
- Yale University, New Haven, Connecticut
| | - Elias K Spanakis
- Veterans Affairs Maryland Healthcare System, Baltimore, Maryland
- University of Maryland, Baltimore, Maryland; and
| | | | | | | |
Collapse
|
15
|
Rasesemola RM, Mmusi-Phetoe RM, Havenga Y. Social determinants of health in non-communicable diseases prevention policies in South Africa. Curationis 2023; 46:e1-e8. [PMID: 37782234 PMCID: PMC10476442 DOI: 10.4102/curationis.v46i1.2387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 10/03/2023] Open
Abstract
BACKGROUND The South African government has developed many policies for the prevention and control of non-communicable diseases. However, non-communicable diseases remain among the major causes of morbidity and mortality in South Africa. Although these diseases are linked to interaction of multiple risk factors, many of which are modifiable, they continue to cause much suffering particularly among the marginalised and people from the lower socio-economic status. OBJECTIVES The objective of this research was to explore and present the inclusion of social determinants of health in the policies meant for the prevention and control of non-communicable diseases in South Africa. METHOD The qualitative document analysis approach was used to conduct policy analysis of purposefully selected policies for prevention and control of cancers, obesity and mental and behavioural disorders in South Africa. RESULTS The analysis revealed that policies for prevention and control of cancers, obesity and mental and behavioural disorders included policy intervention activities that focused on five social determinants of health: (1) governance, (2) social policies, (3) public policies, (4) material circumstances and (5) health system. CONCLUSION Excluding most of the important social determinants of health in the policies for prevention and control of non-communicable diseases means that these policies would continue to fail in preventing these diseases from the root causes.Contribution: This article points out weaknesses in the policies meant for prevention and control of obesity, cancers and mental and behavioural disorders. This article further suggests policy improvement strategies that may be considered to effectively address these diseases.
Collapse
Affiliation(s)
- Richard M Rasesemola
- Department of Nursing, Faculty of Health Sciences, University of Johannesburg, Johannesburg.
| | | | | |
Collapse
|
16
|
Esmonde K, Roth SM, Walker A. A Social and Ethical Framework for Providing Health Information Obtained from Combining Genetics and Fitness Tracking Data. TECHNOLOGY IN SOCIETY 2023; 74:102297. [PMID: 37521714 PMCID: PMC10373508 DOI: 10.1016/j.techsoc.2023.102297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
In this paper we explore a new technological intersection in the "big data revolution": the integration of two forms of data, genetic data and fitness tracking data. For example, a small number of direct-to-consumer (DTC) genetic testing companies have recently begun offering customers the ability to link their fitness tracking data with their genetic profile to get personalized diet and exercise recommendations. In this paper we put forward four ethical considerations that should inform potential uses of this health information. Those considerations are: the heightened risks to privacy resulting from combining sensitive data sets; the poor quality of health information that is possible at present in the realm of precision DTC genomics; the limited usefulness of the recommendations; and finally, the cultural assumptions about health and personal responsibility that are embedded within fitness genetic testing and fitness tracking. To conclude, we offer some guidance on how the benefits and risks of returning this type of health information can be weighed.
Collapse
Affiliation(s)
- Katelyn Esmonde
- Berman Institute of Bioethics, Johns Hopkins University, 1809 Ashland Avenue, Baltimore, MD, USA, 21205
| | - Stephen M Roth
- School of Public Health, University of Maryland, 4200 Valley Drive, College Park, MD, USA, 20742
| | - Alexis Walker
- Department of Medical Humanities and Ethics, Columbia University, 630 West 168 Street, New York, NY, USA, 10032
| |
Collapse
|
17
|
Furrer R, Hawley JA, Handschin C. The molecular athlete: exercise physiology from mechanisms to medals. Physiol Rev 2023; 103:1693-1787. [PMID: 36603158 PMCID: PMC10110736 DOI: 10.1152/physrev.00017.2022] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Human skeletal muscle demonstrates remarkable plasticity, adapting to numerous external stimuli including the habitual level of contractile loading. Accordingly, muscle function and exercise capacity encompass a broad spectrum, from inactive individuals with low levels of endurance and strength to elite athletes who produce prodigious performances underpinned by pleiotropic training-induced muscular adaptations. Our current understanding of the signal integration, interpretation, and output coordination of the cellular and molecular mechanisms that govern muscle plasticity across this continuum is incomplete. As such, training methods and their application to elite athletes largely rely on a "trial-and-error" approach, with the experience and practices of successful coaches and athletes often providing the bases for "post hoc" scientific enquiry and research. This review provides a synopsis of the morphological and functional changes along with the molecular mechanisms underlying exercise adaptation to endurance- and resistance-based training. These traits are placed in the context of innate genetic and interindividual differences in exercise capacity and performance, with special consideration given to aging athletes. Collectively, we provide a comprehensive overview of skeletal muscle plasticity in response to different modes of exercise and how such adaptations translate from "molecules to medals."
Collapse
Affiliation(s)
| | - John A Hawley
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | | |
Collapse
|
18
|
Eichner-Seitz N, Pate RR, Paul IM. Physical activity in infancy and early childhood: a narrative review of interventions for prevention of obesity and associated health outcomes. Front Endocrinol (Lausanne) 2023; 14:1155925. [PMID: 37293499 PMCID: PMC10244791 DOI: 10.3389/fendo.2023.1155925] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/10/2023] [Indexed: 06/10/2023] Open
Abstract
In the context of the childhood obesity epidemic, this narrative review aims to explore opportunities to promote physical activity (PA) between birth and age 5 years as well as the health outcomes associated with PA in early childhood. Although early childhood is an ideal time to promote healthy habits, guidelines for PA have often ignored early childhood given the limited evidence for children <5 years old. Herein we discuss and highlight infant, toddler and preschool age interventions to promote PA and prevent obesity both in the short and long-term. We describe novel and modified interventions to promote improved early childhood health outcomes, encompassing cardiorespiratory, muscle, and bone strengthening components necessary for short-term motor development and long-term health. We call for new research aimed at developing and testing innovative early childhood interventions that may be performed in home or childcare settings, monitored by parents or caregivers.
Collapse
Affiliation(s)
- Natalie Eichner-Seitz
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, United States
| | - Russell R. Pate
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
| | - Ian M. Paul
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|
19
|
Buhr TJ, Reed CH, Wee OM, Lee JH, Yuan LL, Fleshner M, Valentine RJ, Clark PJ. The persistence of stress-induced physical inactivity in rats: an investigation of central monoamine neurotransmitters and skeletal muscle oxidative stress. Front Behav Neurosci 2023; 17:1169151. [PMID: 37273279 PMCID: PMC10237271 DOI: 10.3389/fnbeh.2023.1169151] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/24/2023] [Indexed: 06/06/2023] Open
Abstract
Introduction Sedentary lifestyles have reached epidemic proportions world-wide. A growing body of literature suggests that exposures to adverse experiences (e.g., psychological traumas) are a significant risk factor for the development of physically inactive lifestyles. However, the biological mechanisms linking prior stress exposure and persistent deficits in physical activity engagement remains poorly understood. Methods The purpose of this study was twofold. First, to identify acute stress intensity thresholds that elicit long-term wheel running deficits in rats. To that end, young adult male rats were exposed to a single episode of 0, 50, or 100 uncontrollable tail shocks and then given free access to running wheels for 9 weeks. Second, to identify stress-induced changes to central monoamine neurotransmitters and peripheral muscle physiology that may be maladaptive to exercise output. For this study, rats were either exposed to a single episode of uncontrollable tail shocks (stress) or left undisturbed in home cages (unstressed). Eight days later, monoamine-related neurochemicals were quantified by ultra-high performance liquid chromatography (UHPLC) across brain reward, motor, and emotion structures immediately following a bout of graded treadmill exercise controlled for duration and intensity. Additionally, protein markers of oxidative stress, inflammation, and metabolic activity were assessed in the gastrocnemius muscle by Western blot. Results For experiment 1, stress exposure caused a shock number-dependent two to fourfold decrease in wheel running distance across the entire duration of the study. For experiment 2, stress exposure curbed an exercise-induced increase of dopamine (DA) turnover measures in the prefrontal cortex and hippocampus, and augmented serotonin (5HT) turnover in the hypothalamus and remaining cortical area. However, stress exposure also caused several monoaminergic changes independent of exercise that could underlie impaired motivation for physical activity, including a mild dopamine deficiency in the striatal area. Finally, stress potently increased HSP70 and lowered SOD2 protein concentrations in the gastrocnemius muscle, which may indicate prolonged oxidative stress. Discussion These data support some of the possible central and peripheral mechanisms by which exposure to adverse experiences may chronically impair physical activity engagement.
Collapse
Affiliation(s)
- Trevor J. Buhr
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
- Interdepartmental Neuroscience Program, Iowa State University, Ames, IA, United States
| | - Carter H. Reed
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
- Department of Kinesiology, Iowa State University, Ames, IA, United States
| | - Olivia M. Wee
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
| | - Ji Heun Lee
- Department of Kinesiology, Iowa State University, Ames, IA, United States
| | - Li-Lian Yuan
- Physiology and Pharmacology, Des Moines University, Des Moines, IA, United States
| | - Monika Fleshner
- Department of Integrative Physiology, University of Colorado, Boulder, Boulder, CO, United States
| | - Rudy J. Valentine
- Department of Kinesiology, Iowa State University, Ames, IA, United States
| | - Peter J. Clark
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
- Interdepartmental Neuroscience Program, Iowa State University, Ames, IA, United States
| |
Collapse
|
20
|
Muli S, Brachem C, Alexy U, Schmid M, Oluwagbemigun K, Nöthlings U. Exploring the association of physical activity with the plasma and urine metabolome in adolescents and young adults. Nutr Metab (Lond) 2023; 20:23. [PMID: 37020289 PMCID: PMC10074825 DOI: 10.1186/s12986-023-00742-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND Regular physical activity elicits many health benefits. However, the underlying molecular mechanisms through which physical activity influences overall health are less understood. Untargeted metabolomics enables system-wide mapping of molecular perturbations which may lend insights into physiological responses to regular physical activity. In this study, we investigated the associations of habitual physical activity with plasma and urine metabolome in adolescents and young adults. METHODS This cross-sectional study included participants from the DONALD (DOrtmund Nutritional and Anthropometric Longitudinally Designed) study with plasma samples n = 365 (median age: 18.4 (18.1, 25.0) years, 58% females) and 24 h urine samples n = 215 (median age: 18.1 (17.1, 18.2) years, 51% females). Habitual physical activity was assessed using a validated Adolescent Physical Activity Recall Questionnaire. Plasma and urine metabolite concentrations were determined using ultra-high-performance liquid chromatography-tandem mass spectroscopy (UPLC-MS/MS) methods. In a sex-stratified analysis, we conducted principal component analysis (PCA) to reduce the dimensionality of metabolite data and to create metabolite patterns. Multivariable linear regression models were then applied to assess the associations between self-reported physical activity (metabolic equivalent of task (MET)-hours per week) with single metabolites and metabolite patterns, adjusted for potential confounders and controlling the false discovery rate (FDR) at 5% for each set of regressions. RESULTS Habitual physical activity was positively associated with the "lipid, amino acids and xenometabolite" pattern in the plasma samples of male participants only (β = 1.02; 95% CI: 1.01, 1.04, p = 0.001, adjusted p = 0.042). In both sexes, no association of physical activity with single metabolites in plasma and urine and metabolite patterns in urine was found (all adjusted p > 0.05). CONCLUSIONS Our explorative study suggests that habitual physical activity is associated with alterations of a group of metabolites reflected in the plasma metabolite pattern in males. These perturbations may lend insights into some of underlying mechanisms that modulate effects of physical activity.
Collapse
Affiliation(s)
- Samuel Muli
- Nutritional Epidemiology, Department of Nutrition and Food Sciences, University of Bonn, Friedrich-Hirzebruch- Allee 7, 53115, Bonn, Germany.
| | - Christian Brachem
- Nutritional Epidemiology, Department of Nutrition and Food Sciences, University of Bonn, Friedrich-Hirzebruch- Allee 7, 53115, Bonn, Germany
| | - Ute Alexy
- Nutritional Epidemiology, Department of Nutrition and Food Sciences, University of Bonn, Friedrich-Hirzebruch- Allee 7, 53115, Bonn, Germany
| | - Matthias Schmid
- Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Kolade Oluwagbemigun
- Nutritional Epidemiology, Department of Nutrition and Food Sciences, University of Bonn, Friedrich-Hirzebruch- Allee 7, 53115, Bonn, Germany
| | - Ute Nöthlings
- Nutritional Epidemiology, Department of Nutrition and Food Sciences, University of Bonn, Friedrich-Hirzebruch- Allee 7, 53115, Bonn, Germany
| |
Collapse
|
21
|
Zakharenko LP, Petrovskii DV, Bobrovskikh MA, Gruntenko NE, Yakovleva EY, Markov AV, Putilov AA. Motus Vita Est: Fruit Flies Need to Be More Active and Sleep Less to Adapt to Either a Longer or Harder Life. Clocks Sleep 2023; 5:98-115. [PMID: 36975551 PMCID: PMC10047790 DOI: 10.3390/clockssleep5010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/15/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Background: Activity plays a very important role in keeping bodies strong and healthy, slowing senescence, and decreasing morbidity and mortality. Drosophila models of evolution under various selective pressures can be used to examine whether increased activity and decreased sleep duration are associated with the adaptation of this nonhuman species to longer or harder lives. Methods: For several years, descendants of wild flies were reared in a laboratory without and with selection pressure. To maintain the “salt” and “starch” strains, flies from the wild population (called “control”) were reared on two adverse food substrates. The “long-lived” strain was maintained through artificial selection for late reproduction. The 24 h patterns of locomotor activity and sleep in flies from the selected and unselected strains (902 flies in total) were studied in constant darkness for at least, 5 days. Results: Compared to the control flies, flies from the selected strains demonstrated enhanced locomotor activity and reduced sleep duration. The most profound increase in locomotor activity was observed in flies from the starch (short-lived) strain. Additionally, the selection changed the 24 h patterns of locomotor activity and sleep. For instance, the morning and evening peaks of locomotor activity were advanced and delayed, respectively, in flies from the long-lived strain. Conclusion: Flies become more active and sleep less in response to various selection pressures. These beneficial changes in trait values might be relevant to trade-offs among fitness-related traits, such as body weight, fecundity, and longevity.
Collapse
Affiliation(s)
- Lyudmila P. Zakharenko
- Department of Insect Genetics, Institute of Cytology and Genetics of the Siberian Branch, The Russian Academy of Sciences, Novosibirsk 630000, Russia
| | - Dmitrii V. Petrovskii
- Department of Insect Genetics, Institute of Cytology and Genetics of the Siberian Branch, The Russian Academy of Sciences, Novosibirsk 630000, Russia
| | - Margarita A. Bobrovskikh
- Department of Insect Genetics, Institute of Cytology and Genetics of the Siberian Branch, The Russian Academy of Sciences, Novosibirsk 630000, Russia
| | - Nataly E. Gruntenko
- Department of Insect Genetics, Institute of Cytology and Genetics of the Siberian Branch, The Russian Academy of Sciences, Novosibirsk 630000, Russia
| | | | - Alexander V. Markov
- Department of Biological Evolution, The Moscow State University, Moscow 101000, Russia
- Borisyak Paleontological Institute of the Russian Academy of Sciences, Moscow 101000, Russia
| | - Arcady A. Putilov
- Research Group for Math-Modeling of Biomedical Systems, Research Institute for Molecular Biology and Biophysics of the Federal Research Centre for Fundamental and Translational Medicine, Novosibirsk 630000, Russia
- Laboratory of Sleep/Wake Neurobiology, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow 101000, Russia
- Correspondence: ; Tel.: +49-30-53674643 or +49-30-61290031
| |
Collapse
|
22
|
Santos C, Maia J, Pereira S, Vasconcelos O, Garganta R, Lightfoot JT, Tani G, Hedeker D, Katzmarzyk PT, Bustamante A. Sibling Resemblance in Physical Activity Levels: The Peruvian Sibling Study on Growth and Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4210. [PMID: 36901221 PMCID: PMC10001479 DOI: 10.3390/ijerph20054210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
Physical activity is associated with a host of positive health outcomes and is shaped by both genetic and environmental factors. We aim to: (1) estimate sibling resemblance in two physical activity phenotypes [total number of steps∙day-1 and minutes for moderate steps per day (min∙day-1)]; and (2) investigate the joint associations of individual characteristics and shared natural environment with intra-pair sibling similarities in each phenotype. We sampled 247 biological siblings from 110 nuclear families, aged 6-17 years, from three Peruvian regions. Physical activity was measured using pedometers and body mass index was calculated. In general, non-significant variations in the intraclass correlation coefficients were found after adjustment for individual characteristics and geographical area for both phenotypes. Further, no significant differences were found between the three sib-ship types. Sister-sister pairs tended to take fewer steps than brother-brother (β = -2908.75 ± 954.31). Older siblings tended to walk fewer steps (β = -81.26 ± 19.83), whereas body mass index was not associated with physical activity. Siblings living at high-altitude and in the Amazon region had higher steps/day (β = 2508.92 ± 737.94; β = 2213.11 ± 776.63, respectively) compared with their peers living at sea-level. In general, we found no influence of sib-types, body mass index, and/or environment on the two physical activity phenotypes.
Collapse
Affiliation(s)
- Carla Santos
- Centre of Research, Education, Innovation and Intervention in Sport (CIFI2D), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal
- Research Center in Sport, Physical Education, and Exercise and Health (CIDEFES), Faculty of Physical Education and Sports, Lusófona University, 1749-024 Lisboa, Portugal
| | - José Maia
- Centre of Research, Education, Innovation and Intervention in Sport (CIFI2D), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal
| | - Sara Pereira
- Centre of Research, Education, Innovation and Intervention in Sport (CIFI2D), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal
- Research Center in Sport, Physical Education, and Exercise and Health (CIDEFES), Faculty of Physical Education and Sports, Lusófona University, 1749-024 Lisboa, Portugal
| | - Olga Vasconcelos
- Centre of Research, Education, Innovation and Intervention in Sport (CIFI2D), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal
| | - Rui Garganta
- Centre of Research, Education, Innovation and Intervention in Sport (CIFI2D), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal
| | - J. Timothy Lightfoot
- Department of Health and Kinesiology, Texas A&M University, College Station, TX 77845, USA
| | - Go Tani
- Motor Behavior Laboratory, School of Physical Education and Sports, University of São Paulo, São Paulo 05508-030, Brazil
| | - Donald Hedeker
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA
| | | | - Alcibíades Bustamante
- School of Physical Education and Sports, National University of Education Enrique Guzmán y Valle, 60637 La Cantuta, Lurigancho-Chosica 15472, Peru
| |
Collapse
|
23
|
De Jesus AN, Henry BA. The role of oestrogen in determining sexual dimorphism in energy balance. J Physiol 2023; 601:435-449. [PMID: 36117117 PMCID: PMC10092637 DOI: 10.1113/jp279501] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/26/2022] [Indexed: 02/03/2023] Open
Abstract
Energy balance is determined by caloric intake and the rate at which energy is expended, with the latter comprising resting energy expenditure, physical activity and adaptive thermogenesis. The regulation of both energy intake and expenditure exhibits clear sexual dimorphism, with young women being relatively protected against weight gain and the development of cardiometabolic diseases. Preclinical studies have indicated that females are more sensitive to the satiety effects of leptin and insulin compared to males. Furthermore, females have greater thermogenic activity than males, whereas resting energy expenditure is generally higher in males than females. In addition to this, in post-menopausal women, the decline in sex steroid concentration, particularly in oestrogen, is associated with a shift in the distribution of adipose tissue and overall increased propensity to gain weight. Oestrogens are known to regulate energy balance and weight homeostasis via effects on both food intake and energy expenditure. Indeed, 17β-oestradiol treatment increases melanocortin signalling in the hypothalamus to cause satiety. Furthermore, oestrogenic action at the ventromedial hypothalamus has been linked with increased energy expenditure in female mice. We propose that oestrogen action on energy balance is multi-faceted and is fundamental to determining sexual dimorphism in weight control. Furthermore, evidence suggests that the decline in oestrogen levels leads to increased risk of weight gain and development of cardiometabolic disease in women across the menopausal transition.
Collapse
Affiliation(s)
- Anne Nicole De Jesus
- Metabolism, Obesity and Diabetes Program, Biomedicine, Discovery Institute, Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Belinda A Henry
- Metabolism, Obesity and Diabetes Program, Biomedicine, Discovery Institute, Department of Physiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
24
|
de Geus EJ. Genetic Pathways Underlying Individual Differences in Regular Physical Activity. Exerc Sport Sci Rev 2023; 51:2-18. [PMID: 36044740 PMCID: PMC9762726 DOI: 10.1249/jes.0000000000000305] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2022] [Indexed: 12/15/2022]
Abstract
Twin and family studies show a strong contribution of genetic factors to physical activity (PA) assessed by either self-report or accelerometers. PA heritability is around 43% across the lifespan. Genome-wide association studies have implied biological pathways related to exercise ability and enjoyment. A polygenic score based on genetic variants influencing PA could help improve the success of intervention programs.
Collapse
|
25
|
Kay JC, Colbath J, Talmadge RJ, Garland T. Mice from lines selectively bred for voluntary exercise are not more resistant to muscle injury caused by either contusion or wheel running. PLoS One 2022; 17:e0278186. [PMID: 36449551 PMCID: PMC9710767 DOI: 10.1371/journal.pone.0278186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/11/2022] [Indexed: 12/05/2022] Open
Abstract
Muscle injury can be caused by strenuous exercise, repetitive tasks or external forces. Populations that have experienced selection for high locomotor activity may have evolutionary adaptations that resist exercise-induced injury and/or enhance the ability to cope with injury. We tested this hypothesis with an experiment in which mice are bred for high voluntary wheel running. Mice from four high runner lines run ~three times more daily distance than those from four non-selected control lines. To test recovery from injury by external forces, mice experienced contusion via weight drop on the calf. After injury, running distance and speed were reduced in high runner but not control lines, suggesting that the ability of control mice to run exceeds their motivation. To test effects of injury from exercise, mice were housed with/without wheels for six days, then trunk blood was collected and muscles evaluated for injury and regeneration. Both high runner and control mice with wheels had increased histological indicators of injury in the soleus, and increased indicators of regeneration in the plantaris. High runner mice had relatively more central nuclei (regeneration indicator) than control in the soleus, regardless of wheel access. The subset of high runner mice with the mini-muscle phenotype (characterized by greatly reduced muscle mass and type IIb fibers) had lower plasma creatine kinase (indicator of muscle injury), more markers of injury in the deep gastrocnemius, and more markers of regeneration in the deep and superficial gastrocnemius than normal-muscled individuals. Contrary to our expectations, high runner mice were not more resistant to either type of injury.
Collapse
Affiliation(s)
- Jarren C. Kay
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, CA, United States of America
- * E-mail:
| | - James Colbath
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, CA, United States of America
| | - Robert J. Talmadge
- Department of Biological Sciences, California State Polytechnic University, Pomona, CA, United States of America
| | - Theodore Garland
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, CA, United States of America
| |
Collapse
|
26
|
Zhou JJ, Kang R, Bai X. A Meta-Analysis on the Influence of Age-Friendly Environments on Older Adults' Physical and Mental Well-Being. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13813. [PMID: 36360692 PMCID: PMC9657613 DOI: 10.3390/ijerph192113813] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
The importance of age-friendly environments (AFEs) for older adults has been empirically and theoretically highlighted by the extant literature. However, the strength of the association between environments and older adults’ well-being has not been comprehensively quantified. Given the different attributes of the physical and mental dimensions, this meta-analysis aims to synthesise and quantify the association between AFEs and the physical and mental well-being of older adults. Fourteen eligible studies were included in this analysis: among which eight explored the link between AFEs and physical well-being, and eleven investigated AFEs in association with mental well-being. A random-effects model showed a small but significant correlation between AFEs and the mental well-being of older adults (r = 0.160, 95% CI [0.084, 0.224], p < 0.001), and the correlation between AFEs and physical well-being was also significant (r = 0.072, 95% CI [0.026, 0.118], p < 0.01). The number of environmental factors involved in AFEs moderated the association with physical well-being, from which the association was only significant among studies focusing on fewer environmental factors (n < 6). Results of this meta-analysis indicated that AFEs may be more effective in promoting the emotions of older adults, compared to ameliorating their physical functioning. The limitations of current empirical studies and directions for future research in the field of environmental gerontology were also discussed.
Collapse
Affiliation(s)
- Jia-Jia Zhou
- Department of Applied Social Sciences, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Rui Kang
- Department of Applied Social Sciences, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Xue Bai
- Department of Applied Social Sciences, The Hong Kong Polytechnic University, Hong Kong 999077, China
- Institute of Active Ageing (Research Centre for Gerontology and Family Studies), The Hong Kong Polytechnic University, Hong Kong 999077, China
| |
Collapse
|
27
|
Wang Z, Emmerich A, Pillon NJ, Moore T, Hemerich D, Cornelis MC, Mazzaferro E, Broos S, Ahluwalia TS, Bartz TM, Bentley AR, Bielak LF, Chong M, Chu AY, Berry D, Dorajoo R, Dueker ND, Kasbohm E, Feenstra B, Feitosa MF, Gieger C, Graff M, Hall LM, Haller T, Hartwig FP, Hillis DA, Huikari V, Heard-Costa N, Holzapfel C, Jackson AU, Johansson Å, Jørgensen AM, Kaakinen MA, Karlsson R, Kerr KF, Kim B, Koolhaas CM, Kutalik Z, Lagou V, Lind PA, Lorentzon M, Lyytikäinen LP, Mangino M, Metzendorf C, Monroe KR, Pacolet A, Pérusse L, Pool R, Richmond RC, Rivera NV, Robiou-du-Pont S, Schraut KE, Schulz CA, Stringham HM, Tanaka T, Teumer A, Turman C, van der Most PJ, Vanmunster M, van Rooij FJA, van Vliet-Ostaptchouk JV, Zhang X, Zhao JH, Zhao W, Balkhiyarova Z, Balslev-Harder MN, Baumeister SE, Beilby J, Blangero J, Boomsma DI, Brage S, Braund PS, Brody JA, Bruinenberg M, Ekelund U, Liu CT, Cole JW, Collins FS, Cupples LA, Esko T, Enroth S, Faul JD, Fernandez-Rhodes L, Fohner AE, Franco OH, Galesloot TE, Gordon SD, Grarup N, Hartman CA, Heiss G, Hui J, Illig T, Jago R, James A, Joshi PK, Jung T, Kähönen M, Kilpeläinen TO, Koh WP, Kolcic I, et alWang Z, Emmerich A, Pillon NJ, Moore T, Hemerich D, Cornelis MC, Mazzaferro E, Broos S, Ahluwalia TS, Bartz TM, Bentley AR, Bielak LF, Chong M, Chu AY, Berry D, Dorajoo R, Dueker ND, Kasbohm E, Feenstra B, Feitosa MF, Gieger C, Graff M, Hall LM, Haller T, Hartwig FP, Hillis DA, Huikari V, Heard-Costa N, Holzapfel C, Jackson AU, Johansson Å, Jørgensen AM, Kaakinen MA, Karlsson R, Kerr KF, Kim B, Koolhaas CM, Kutalik Z, Lagou V, Lind PA, Lorentzon M, Lyytikäinen LP, Mangino M, Metzendorf C, Monroe KR, Pacolet A, Pérusse L, Pool R, Richmond RC, Rivera NV, Robiou-du-Pont S, Schraut KE, Schulz CA, Stringham HM, Tanaka T, Teumer A, Turman C, van der Most PJ, Vanmunster M, van Rooij FJA, van Vliet-Ostaptchouk JV, Zhang X, Zhao JH, Zhao W, Balkhiyarova Z, Balslev-Harder MN, Baumeister SE, Beilby J, Blangero J, Boomsma DI, Brage S, Braund PS, Brody JA, Bruinenberg M, Ekelund U, Liu CT, Cole JW, Collins FS, Cupples LA, Esko T, Enroth S, Faul JD, Fernandez-Rhodes L, Fohner AE, Franco OH, Galesloot TE, Gordon SD, Grarup N, Hartman CA, Heiss G, Hui J, Illig T, Jago R, James A, Joshi PK, Jung T, Kähönen M, Kilpeläinen TO, Koh WP, Kolcic I, Kraft PP, Kuusisto J, Launer LJ, Li A, Linneberg A, Luan J, Vidal PM, Medland SE, Milaneschi Y, Moscati A, Musk B, Nelson CP, Nolte IM, Pedersen NL, Peters A, Peyser PA, Power C, Raitakari OT, Reedik M, Reiner AP, Ridker PM, Rudan I, Ryan K, Sarzynski MA, Scott LJ, Scott RA, Sidney S, Siggeirsdottir K, Smith AV, Smith JA, Sonestedt E, Strøm M, Tai ES, Teo KK, Thorand B, Tönjes A, Tremblay A, Uitterlinden AG, Vangipurapu J, van Schoor N, Völker U, Willemsen G, Williams K, Wong Q, Xu H, Young KL, Yuan JM, Zillikens MC, Zonderman AB, Ameur A, Bandinelli S, Bis JC, Boehnke M, Bouchard C, Chasman DI, Smith GD, de Geus EJC, Deldicque L, Dörr M, Evans MK, Ferrucci L, Fornage M, Fox C, Garland T, Gudnason V, Gyllensten U, Hansen T, Hayward C, Horta BL, Hyppönen E, Jarvelin MR, Johnson WC, Kardia SLR, Kiemeney LA, Laakso M, Langenberg C, Lehtimäki T, Marchand LL, Magnusson PKE, Martin NG, Melbye M, Metspalu A, Meyre D, North KE, Ohlsson C, Oldehinkel AJ, Orho-Melander M, Pare G, Park T, Pedersen O, Penninx BWJH, Pers TH, Polasek O, Prokopenko I, Rotimi CN, Samani NJ, Sim X, Snieder H, Sørensen TIA, Spector TD, Timpson NJ, van Dam RM, van der Velde N, van Duijn CM, Vollenweider P, Völzke H, Voortman T, Waeber G, Wareham NJ, Weir DR, Wichmann HE, Wilson JF, Hevener AL, Krook A, Zierath JR, Thomis MAI, Loos RJF, Hoed MD. Genome-wide association analyses of physical activity and sedentary behavior provide insights into underlying mechanisms and roles in disease prevention. Nat Genet 2022; 54:1332-1344. [PMID: 36071172 PMCID: PMC9470530 DOI: 10.1038/s41588-022-01165-1] [Show More Authors] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 07/18/2022] [Indexed: 02/02/2023]
Abstract
Although physical activity and sedentary behavior are moderately heritable, little is known about the mechanisms that influence these traits. Combining data for up to 703,901 individuals from 51 studies in a multi-ancestry meta-analysis of genome-wide association studies yields 99 loci that associate with self-reported moderate-to-vigorous intensity physical activity during leisure time (MVPA), leisure screen time (LST) and/or sedentary behavior at work. Loci associated with LST are enriched for genes whose expression in skeletal muscle is altered by resistance training. A missense variant in ACTN3 makes the alpha-actinin-3 filaments more flexible, resulting in lower maximal force in isolated type IIA muscle fibers, and possibly protection from exercise-induced muscle damage. Finally, Mendelian randomization analyses show that beneficial effects of lower LST and higher MVPA on several risk factors and diseases are mediated or confounded by body mass index (BMI). Our results provide insights into physical activity mechanisms and its role in disease prevention.
Collapse
Affiliation(s)
- Zhe Wang
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Andrew Emmerich
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Nicolas J Pillon
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Tim Moore
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, CA, USA
| | - Daiane Hemerich
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marilyn C Cornelis
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Eugenia Mazzaferro
- The Beijer Laboratory and Department of Immunology, Genetics and Pathology, Uppsala University and SciLifeLab, Uppsala, Sweden
| | - Siacia Broos
- Faculty of Movement and Rehabilitation Sciences, Department of Movement Sciences - Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
- Faculty of Movement and Rehabilitation Sciences, Department of Movement Sciences - Physical Activity, Sports & Health Research Group, KU Leuven, Leuven, Belgium
| | - Tarunveer S Ahluwalia
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Bioinformatics Center, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Traci M Bartz
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Amy R Bentley
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lawrence F Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Mike Chong
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Audrey Y Chu
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
- GlaxoSmithKline, Cambridge, MA, USA
| | - Diane Berry
- Division of Population, Policy and Practice, Great Ormond Street Hospital Institute for Child Health, University College London, London, UK
| | - Rajkumar Dorajoo
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
- Health Services and Systems Research, Duke-NUS Medical School, Singapore, Singapore
| | - Nicole D Dueker
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
- Department of Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Elisa Kasbohm
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- Institute of Mathematics and Computer Science, University of Greifswald, Greifswald, Germany
| | - Bjarke Feenstra
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Mary F Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München -Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Munich, Germany
| | - Mariaelisa Graff
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Leanne M Hall
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Toomas Haller
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Fernando P Hartwig
- Postgraduate Program in Epidemiology, Federal University of Pelotas, Pelotas, Brazil
- MRC Integrative Epidemiology Unit, NIHR Bristol Biomedical Research Center, University of Bristol, Bristol, UK
| | - David A Hillis
- Genetics, Genomics, and Bioinformatics Graduate Program, University of California, Riverside, CA, USA
| | - Ville Huikari
- Institute of Health Sciences, University of Oulu, Oulu, Finland
| | - Nancy Heard-Costa
- Framingham Heart Study, Framingham, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Christina Holzapfel
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München -Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Munich, Germany
- Institute for Nutritional Medicine, School of Medicine, Technical University of Munich, Munich, Germany
| | - Anne U Jackson
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Åsa Johansson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anja Moltke Jørgensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marika A Kaakinen
- Section of Statistical Multi-omics, Department of Clinical and Experimental Medicine, University of Surrey, Guildford, UK
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Robert Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Kathleen F Kerr
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Boram Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, South Korea
| | - Chantal M Koolhaas
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Zoltan Kutalik
- University Center for Primary Care and Public Health, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | | | - Penelope A Lind
- Mental Health and Neuroscience Research Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Biomedical Science, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Mattias Lorentzon
- Geriatric Medicine, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital Mölndal, Gothenburg, Sweden
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Finnish Cardiovascular Research Center - Tampere, Department of Clinical Chemistry, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, Kings College London, London, UK
- NIHR Biomedical Research Centre at Guy's and St Thomas' Foundation Trust, London, UK
| | - Christoph Metzendorf
- The Beijer Laboratory and Department of Immunology, Genetics and Pathology, Uppsala University and SciLifeLab, Uppsala, Sweden
| | - Kristine R Monroe
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alexander Pacolet
- Faculty of Movement and Rehabilitation Sciences, Department of Movement Sciences - Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
| | - Louis Pérusse
- Department of Kinesiology, Université Laval, Quebec, Quebec, Canada
- Centre Nutrition Santé et Société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Quebec, Canada
| | - Rene Pool
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam UMC, Amsterdam, the Netherlands
| | - Rebecca C Richmond
- MRC Integrative Epidemiology Unit and Avon Longitudinal Study of Parents and Children, University of Bristol Medical School, Population Health Sciences and Avon Longitudinal Study of Parents and Children, University of Bristol, Bristol, UK
| | - Natalia V Rivera
- Respiratory Division, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Rheumatology Division, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Center of Molecular Medicine (CMM), Karolinska Institutet, Stockholm, Sweden
| | - Sebastien Robiou-du-Pont
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Katharina E Schraut
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Christina-Alexandra Schulz
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- Department of Nutrition and Food Sciences, Nutritional Epidemiology, University of Bonn, Bonn, Germany
| | - Heather M Stringham
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Toshiko Tanaka
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Greifswald, Greifswald, Germany
| | - Constance Turman
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Peter J van der Most
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Mathias Vanmunster
- Faculty of Movement and Rehabilitation Sciences, Department of Movement Sciences - Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
| | - Frank J A van Rooij
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Jana V van Vliet-Ostaptchouk
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Xiaoshuai Zhang
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
- School of Public Health, Department of Biostatistics, Shandong University, Jinan, China
| | - Jing-Hua Zhao
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Zhanna Balkhiyarova
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Clinical and Experimental Medicine, University of Surrey, Guilford, UK
- People-Centred Artificial Intelligence Institute, University of Surrey, Guilford, UK
| | - Marie N Balslev-Harder
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sebastian E Baumeister
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- University of Münster, Münster, Germany
| | - John Beilby
- Diagnostic Genomics, PathWest Laboratory Medicine WA, Perth, Western Australia, Australia
| | - John Blangero
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam UMC, Amsterdam, the Netherlands
| | - Soren Brage
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Peter S Braund
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - Ulf Ekelund
- Department of Sports Medicine, Norwegian School of Sport Sciences, Oslo, Norway
- Department of Chronic Diseases, Norwegian Institute of Public Health, Oslo, Norway
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - John W Cole
- Vascular Neurology, Department of Neurology, University of Maryland School of Medicine and the Baltimore VAMC, Baltimore, MD, USA
| | - Francis S Collins
- Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - L Adrienne Cupples
- Framingham Heart Study, Framingham, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Tõnu Esko
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Stefan Enroth
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jessica D Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Lindsay Fernandez-Rhodes
- Department of Biobehavioral Health, College of Health and Human Development, Pennsylvania State University, University Park, PA, USA
| | - Alison E Fohner
- Department of Epidemiology, Institute of Public Health Genetics, Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
| | - Oscar H Franco
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
| | - Tessel E Galesloot
- Radboud Institute for Health Sciences, Department for Health Evidence, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Scott D Gordon
- Mental Health and Neuroscience Research Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Catharina A Hartman
- Interdisciplinary Center Psychopathology and Emotion Regulation, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Gerardo Heiss
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Jennie Hui
- Diagnostic Genomics, PathWest Laboratory Medicine WA, Perth, Western Australia, Australia
- School of Population and Global Health, The University of Western Australia, Perth, Western Australia, Australia
- Busselton Population Medical Research Institute, Busselton, Western Australia, Australia
| | - Thomas Illig
- Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Russell Jago
- Centre for Exercise Nutrition & Health Sciences, School for Policy Studies, University of Bristol, Bristol, UK
| | - Alan James
- Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Western Australia, Perth, Australia
| | - Peter K Joshi
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
- Humanity Inc, Boston, MA, USA
| | - Taeyeong Jung
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, South Korea
| | - Mika Kähönen
- Finnish Cardiovascular Research Center - Tampere, Department of Clinical Chemistry, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Clinical Physiology, Tampere University Hospital, Tampere, Finland
| | - Tuomas O Kilpeläinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Woon-Puay Koh
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, Singapore, Singapore
| | - Ivana Kolcic
- Department of Public Health, University of Split School of Medicine, Split, Croatia
| | - Peter P Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Johanna Kuusisto
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institutes of Health, Baltimore, MD, USA
| | - Aihua Li
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Allan Linneberg
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jian'an Luan
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Pedro Marques Vidal
- Division of Internal Medicine, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Sarah E Medland
- Mental Health and Neuroscience Research Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Psychology and Faculty of Medicine, University of Queensland, St Lucia, Queensland, Australia
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands
| | - Arden Moscati
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bill Musk
- Busselton Population Medical Research Institute, Busselton, Western Australia, Australia
| | - Christopher P Nelson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München -Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Munich, Germany
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Christine Power
- Division of Population, Policy and Practice, Great Ormond Street Hospital Institute for Child Health, University College London, London, UK
| | - Olli T Raitakari
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Mägi Reedik
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Alex P Reiner
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Paul M Ridker
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Igor Rudan
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Kathy Ryan
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mark A Sarzynski
- Department of Exercise Science, University of South Carolina, Columbia, SC, USA
| | - Laura J Scott
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Robert A Scott
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Stephen Sidney
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | | | - Albert V Smith
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
- Icelandic Heart Association, Kópavogur, Iceland
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Emily Sonestedt
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Marin Strøm
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
- Faculty of Health Sciences, University of the Faroe Islands, Tórshavn, Faroe Islands
| | - E Shyong Tai
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Koon K Teo
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Barbara Thorand
- Institute of Epidemiology, Helmholtz Zentrum München -Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Munich, Germany
| | - Anke Tönjes
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Angelo Tremblay
- Department of Kinesiology, Université Laval, Quebec, Quebec, Canada
- Centre Nutrition Santé et Société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Quebec, Canada
| | - Andre G Uitterlinden
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jagadish Vangipurapu
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Natasja van Schoor
- Department of Epidemiology and Biostatistics, Amsterdam Public Health Research Institute, VU University Medical Center, Amsterdam, the Netherlands
| | - Uwe Völker
- German Centre for Cardiovascular Research (DZHK), partner site Greifswald, Greifswald, Germany
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Gonneke Willemsen
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam UMC, Amsterdam, the Netherlands
| | - Kayleen Williams
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Quenna Wong
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Huichun Xu
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kristin L Young
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Jian Min Yuan
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - M Carola Zillikens
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Alan B Zonderman
- Laboratory of Epidemiology and Population Science, National Instiute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Adam Ameur
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Claude Bouchard
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, NIHR Bristol Biomedical Research Center, University of Bristol, Bristol, UK
- Population Health Science, Bristol Medical School, NIHR Bristol Biomedical Research Center, University of Bristol, Bristol, UK
| | - Eco J C de Geus
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam UMC, Amsterdam, the Netherlands
| | - Louise Deldicque
- Faculty of Movement and Rehabilitation Sciences, Institute of Neuroscience, UC Louvain, Louvain-la-Neuve, Belgium
| | - Marcus Dörr
- German Centre for Cardiovascular Research (DZHK), partner site Greifswald, Greifswald, Germany
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Michele K Evans
- Laboratory of Epidemiology and Population Science, National Instiute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Caroline Fox
- Genetics and Pharmacogenomics (GpGx), Merck Research Labs, Boston, MA, USA
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kópavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Ulf Gyllensten
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Bernardo L Horta
- Postgraduate Program in Epidemiology, Federal University of Pelotas, Pelotas, Brazil
| | - Elina Hyppönen
- Australian Centre for Precision Health, Unit of Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Population, Policy and Practice, Great Ormond Street Hospital Institute for Child Health, University College London, London, UK
| | - Marjo-Riitta Jarvelin
- Institute of Health Sciences, University of Oulu, Oulu, Finland
- Department of Epidemiology and Biostatistics and HPA-MRC Center, School of Public Health, Imperial College London, London, UK
| | - W Craig Johnson
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Lambertus A Kiemeney
- Radboud Institute for Health Sciences, Department for Health Evidence, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
- Computational Medicine, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Finnish Cardiovascular Research Center - Tampere, Department of Clinical Chemistry, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Nicholas G Martin
- Mental Health and Neuroscience Research Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Mads Melbye
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- K.G.Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Center for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Andres Metspalu
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - David Meyre
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Kari E North
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Claes Ohlsson
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Drug Treatment, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Albertine J Oldehinkel
- Interdisciplinary Center Psychopathology and Emotion Regulation, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | | | - Guillaume Pare
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Taesung Park
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, South Korea
- Department of Statistics, Seoul National University, Seoul, South Korea
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Brenda W J H Penninx
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands
| | - Tune H Pers
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ozren Polasek
- University of Split School of Medicine, Split, Croatia
| | - Inga Prokopenko
- Department of Clinical and Experimental Medicine, University of Surrey, Guilford, UK
- People-Centred Artificial Intelligence Institute, University of Surrey, Guilford, UK
- UMR 8199 - EGID, Institut Pasteur de Lille, CNRS, University of Lille, Lille, France
| | - Charles N Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Thorkild I A Sørensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Public Health, Section of Epidemiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, Kings College London, London, UK
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit, University of Bristol Medical School, University of Bristol, Bristol, UK
| | - Rob M van Dam
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, George Washington University, Washington, DC, USA
| | - Nathalie van der Velde
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
- Section of Geriatrics, Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Public Health, Aging and Later Life, Amsterdam, the Netherlands
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Peter Vollenweider
- Division of Internal Medicine, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Greifswald, Greifswald, Germany
| | - Trudy Voortman
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Gérard Waeber
- Division of Internal Medicine, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | | | - David R Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Heinz-Erich Wichmann
- Institute of Epidemiology, Helmholtz Zentrum München -Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Munich, Germany
| | - James F Wilson
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Andrea L Hevener
- Division of Endocrinology, Department of Medicine, University of California, Los Angeles, CA, USA
| | - Anna Krook
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Juleen R Zierath
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Martine A I Thomis
- Faculty of Movement and Rehabilitation Sciences, Department of Movement Sciences - Physical Activity, Sports & Health Research Group, KU Leuven, Leuven, Belgium
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marcel den Hoed
- The Beijer Laboratory and Department of Immunology, Genetics and Pathology, Uppsala University and SciLifeLab, Uppsala, Sweden.
| |
Collapse
|
28
|
Toivo K, Vähä-Ypyä H, Kannus P, Tokola K, Alanko L, Heinonen OJ, Korpelainen R, Parkkari J, Savonen K, Selänne H, Kokko S, Kujala UM, Villberg J, Vasankari T. Physical activity measured by accelerometry among adolescents participating in sports clubs and non-participating peers. Eur J Sport Sci 2022:1-9. [PMID: 35861140 DOI: 10.1080/17461391.2022.2103740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractThe purpose of this descriptive cross-sectional study is to describe the amount and intensity of physical activity (PA) measured by accelerometry among adolescents participating in organized sports (SCP) and age-matched non-participating peers (NP). SCPs (332) and NPs (139) wore an accelerometer on the hip for 7 days. PA was reported using the 1 min exponential moving average. The current moderate-to-vigorous physical activity (MVPA) recommendation of at least an average of 60 minutes of MVPA daily was reached by 85% of SCPs and 45% of NPs (p < 0.001). During training days, the MVPA times among SCPs ranged from 153 ± 39 min in males and 109 ± 35 min in females participating in basketball to 113 ± 33 min in males participating in floorball and 83 ± 32 min in females participating in gymnastics. -Sports participation contributes rather strongly to the accumulation of the recommended amount of MVPA. During training days SCPs, except for females participating in gymnastics, accumulated more MVPA than NPs. During non-training days only males participating in cross country skiing and females participating in track and field accumulated more MVPA than NPs.
Collapse
Affiliation(s)
- K Toivo
- Tampere Research Center of Sports Medicine, Tampere, Finland.,UKK Institute for Health Promotion Research, Tampere, Finland
| | - H Vähä-Ypyä
- UKK Institute for Health Promotion Research, Tampere, Finland
| | - P Kannus
- UKK Institute for Health Promotion Research, Tampere, Finland
| | - K Tokola
- UKK Institute for Health Promotion Research, Tampere, Finland
| | - L Alanko
- Clinic for Sports and Exercise Medicine, Helsinki, Finland.,Central Finland Hospital, Jyväskylä, Finland
| | - O J Heinonen
- Paavo Nurmi Centre & Unit of Health and Physical Activity, University of Turku, Turku, Finland
| | - R Korpelainen
- Oulu Deaconess Institute Foundation sr., Department of Sports and Exercise Medicine, Oulu, Finland.,University of Oulu, Center for Life Course Health Research, Oulu, Finland.,Medical Research Center, University of Oulu and University Hospital of Oulu, Oulu, Finland
| | - J Parkkari
- Tampere Research Center of Sports Medicine, Tampere, Finland.,UKK Institute for Health Promotion Research, Tampere, Finland.,Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - K Savonen
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland.,Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - H Selänne
- Department of Psychology, University of Jyväskylä
| | - S Kokko
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - U M Kujala
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - J Villberg
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - T Vasankari
- UKK Institute for Health Promotion Research, Tampere, Finland.,Faculty of Medicine and Health Technology, Tampere University, Finland
| |
Collapse
|
29
|
Hamaya R, Mori M, Miyake K, Lee I. Association of Smartphone‐Recorded Steps Over Years and Change in Cardiovascular Risk Factors Among Working‐Age Adults. J Am Heart Assoc 2022; 11:e025689. [PMID: 35861838 PMCID: PMC9707835 DOI: 10.1161/jaha.121.025689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background
Few data exist on long‐term steps and their relation to changes in cardiovascular disease risk factors. We aimed to examine the associations using long‐term smartphone‐recorded steps.
Methods and Results
The present analysis made use of data from 2 national databases and a commercial app database. We evaluated the associations between smartphone‐recorded daily steps over 2 years and 2‐year changes in the cardiovascular disease risk factors. A total of 15 708 participants with mean (SD) age of 44.1 (9.5) and 23.5% women were included. After adjustment for potential confounders, differences in weight were almost linearly associated with 2‐year steps in men (estimate [SE] per 1000 steps/d: −0.33 [0.029] kg), and inversely related only above 5000 steps/d in women (−0.18 [0.054] kg). An inverse linear association with systolic blood pressure was observed in men (−0.34 [0.097] mm Hg) but not in women. Greater steps were associated with change in high‐density lipoprotein cholesterol and triglycerides (0.61 [0.068] and −3.4 [0.61] mg/dL in men; 0.64 [0.17] and −2.3 [0.67] mg/dL in women), while changes in low‐density lipoprotein cholesterol were evident in men only (−0.59 [0.17] mg/dL). A significant negative association with hemoglobin A1c was observed only in women (−0.012 [0.0043] %).
Conclusions
In a large cohort of Japanese adults, smartphone‐recorded steps over years were associated with beneficial changes in cardiovascular disease risk factors, with some differences between men and women in the associational patterns. The findings support the benefit of long‐term physical activity for cardiovascular disease health and suggest a useful role of smartphone‐recorded steps for monitoring cardiovascular disease risk over the long term.
Collapse
Affiliation(s)
- Rikuta Hamaya
- Division of Preventive Medicine, Department of Medicine Brigham and Women’s Hospital and Harvard Medical School Boston MA
- Department of Epidemiology Harvard T.H. Chan School of Public Health Boston MA
| | | | | | - I‐Min Lee
- Division of Preventive Medicine, Department of Medicine Brigham and Women’s Hospital and Harvard Medical School Boston MA
- Department of Epidemiology Harvard T.H. Chan School of Public Health Boston MA
| |
Collapse
|
30
|
Schmitt EE, McNair BD, Polson SM, Cook RF, Bruns DR. Mechanisms of Exercise-Induced Cardiac Remodeling Differ Between Young and Aged Hearts. Exerc Sport Sci Rev 2022; 50:137-144. [PMID: 35522248 PMCID: PMC9203913 DOI: 10.1249/jes.0000000000000290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aging induces physiological and molecular changes in the heart that increase the risk for heart disease. Several of these changes are targetable by exercise. We hypothesize that the mechanisms by which exercise improves cardiac function in the aged heart differ from those in the young exercised heart.
Collapse
Affiliation(s)
| | - Benjamin D McNair
- Division of Kinesiology & Health, University of Wyoming, Laramie, WY
| | - Sydney M Polson
- Division of Kinesiology & Health, University of Wyoming, Laramie, WY
| | - Ross F Cook
- Division of Kinesiology & Health, University of Wyoming, Laramie, WY
| | | |
Collapse
|
31
|
Freshwater M, Christensen S, Oshman L, Bays HE. Behavior, motivational interviewing, eating disorders, and obesity management technologies: An Obesity Medicine Association (OMA) Clinical Practice Statement (CPS) 2022. OBESITY PILLARS 2022; 2:100014. [PMID: 37990715 PMCID: PMC10661888 DOI: 10.1016/j.obpill.2022.100014] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 03/19/2022] [Indexed: 11/23/2023]
Abstract
Background This Obesity Medicine Association (OMA) Clinical Practice Statement (CPS) is intended to provide clinicians an overview of "Behavior, Motivational Interviewing, Eating Disorders, and Obesity Management Technologies." Methods The scientific information for this CPS is based upon published scientific citations, clinical perspectives of OMA authors, and peer review by the Obesity Medicine Association leadership. Results This CPS outlines important components of behavior, motivational interviewing, eating disorders, and obesity management technologies as they relate to pre-obesity and obesity. Topics include eating behavior disorder evaluation, the motivations behind eating and physical activity behaviors (including underlying neurophysiology, eating disorders, environmental factors, and personal prioritization), motivational interviewing techniques, and technologies that may assist with pre-obesity/obesity management. Conclusions This Obesity Medicine Association (OMA) Clinical Practice Statement (CPS) on "Behavior, Motivational Interviewing, Eating Disorders, and Obesity Management Technologies" is one of a series of OMA CPSs designed to assist clinicians in the care of patients with the disease of pre-obesity/obesity. Implementation of appropriate clinical practices in these areas may improve the health of patients, especially those with adverse fat mass and adiposopathic metabolic consequences.
Collapse
Affiliation(s)
- Michelle Freshwater
- Diplomate of American Board of Obesity Medicine, Idaho Weight Loss, 801 N Stilson Road, Boise, ID, 83703, USA
| | - Sandra Christensen
- Certificate of Advanced Education in Obesity Medicine, Integrative Medical Weight Management, 2611 NE 125th St, Suite 100B, Seattle, WA, 98125, USA
| | - Lauren Oshman
- Diplomate of American Board of Obesity Medicine, University of Michigan Medical School, 14700 E Old US Hwy 12, Chelsea, MI, 48118, USA
| | - Harold Edward Bays
- Diplomate of American Board of Obesity Medicine, Medical Director/President Louisville Metabolic and Atherosclerosis Research Center, Clinical Associate Professor/University of Louisville Medical School, 3288 Illinois Avenue, Louisville, KY, 40213, USA
| |
Collapse
|
32
|
Smith LB, Anderson CV, Withangage MHH, Koch A, Roberts TJ, Liebl AL. Relationship between gene expression networks and muscle contractile physiology differences in Anolis lizards. J Comp Physiol B 2022; 192:489-499. [PMID: 35596083 DOI: 10.1007/s00360-022-01441-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 04/11/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022]
Abstract
Muscles facilitate most animal behavior, from eating to fleeing. However, to generate the variation in behavior necessary for survival, different muscles must perform differently; for instance, sprinting requires multiple rapid muscle contractions, whereas biting may require fewer contractions but greater force. Here, we use a transcriptomic approach to identify genes associated with variation in muscle contractile physiology among different muscles from the same individual. We measured differential gene expression between a leg and jaw muscle of Anolis lizards known to differ in muscle contractile physiology and performance. For each individual, one muscle was used to measure muscle contractile physiology, including contractile velocity (Vmax and V40), specific tension, power ratio, and twitch time, whereas the contralateral muscle was used to extract RNA for transcriptomic sequencing. Using the transcriptomic data, we found clear clustering of muscle type. Expression of genes clustered in gene ontology (GO) terms related to muscle contraction and extracellular matrix was, on average, negatively correlated with Vmax and slower twitch times but positively correlated to power ratio and V40. Conversely, genes related to the GO terms related to aerobic respiration were downregulated in muscles with higher power ratio and V40, and over-expressed as twitch time decreased. Determining the molecular mechanisms that underlie variation in muscle contractile physiology can begin to explain how organisms are able to optimize behavior under variable conditions. Future studies pursuing the effects of differential gene expression across muscle types in different environments might inform researchers about how differences develop across species, populations, and individuals varying in ecological history.
Collapse
Affiliation(s)
- Luke B Smith
- Department of Biology, University of South Dakota, Vermillion, SD, USA.,Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| | | | - Miyuraj H Hikkaduwa Withangage
- Department of Biology, University of South Dakota, Vermillion, SD, USA.,College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | - Andrew Koch
- Department of Biology, University of South Dakota, Vermillion, SD, USA
| | - Thomas J Roberts
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
| | - Andrea L Liebl
- Department of Biology, University of South Dakota, Vermillion, SD, USA.
| |
Collapse
|
33
|
Wang D, Zhao Y. The Relationship between Adverse Family Experiences during Childhood and Self-rated Health Outcome in Adulthood. SOCIAL WORK IN PUBLIC HEALTH 2022; 37:342-355. [PMID: 34933661 DOI: 10.1080/19371918.2021.2013384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Although there is increasing evidence of a link between adverse family experiences (AFEs) and long-term health outcomes, few studies have investigated the role of educational attainment in the relationship between AFEs and adult health. The data of this study comes from the China Health and Retirement Longitudinal Study (CHARLS). Here, 15,359 samples were analyzed. Ordered logistic regression with interaction terms was used to explore the moderating effect of education on the relationship between AFEs in childhood and adult self-rated health. The self-rated health scores of people with childhood AFEs were significantly lower than of those without them, particularly in the categories of "parents divorced," "parent died," "physical abuse," "domestic conflict," "parental bias," "physical and emotional neglect," "parental physical illness," 'parental mental illness," "family economic hardship," "experience of starvation," "lived in an insecure neighborhood," and "lived in an unhygienic community." Increases in education level reduced the adverse effects of parental bias and neglect in childhood, but this did not eliminate the negative effect of community's environment on adult health. This study highlighted the role of the level of education in eliminating health disparities, which can reduce the adverse effects of AFEs on health in adulthood.
Collapse
Affiliation(s)
| | - Yufeng Zhao
- Institute of Social Development, Chinese Academy of Macroeconomic Research, Beijing, P. R. China
- School of Sociology, University of Chinese Academy of Social Sciences, Beijing, P. R. China
| |
Collapse
|
34
|
Oral antibiotics reduce voluntary exercise behavior in athletic mice. Behav Processes 2022; 199:104650. [PMID: 35504410 DOI: 10.1016/j.beproc.2022.104650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 04/20/2022] [Accepted: 04/27/2022] [Indexed: 11/17/2022]
|
35
|
Ruiz-Tejada A, Neisewander J, Katsanos CS. Regulation of Voluntary Physical Activity Behavior: A Review of Evidence Involving Dopaminergic Pathways in the Brain. Brain Sci 2022; 12:brainsci12030333. [PMID: 35326289 PMCID: PMC8946175 DOI: 10.3390/brainsci12030333] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/23/2022] [Accepted: 02/26/2022] [Indexed: 02/04/2023] Open
Abstract
Physical activity leads to well-established health benefits. Current efforts to enhance physical activity have targeted mainly socioeconomic factors. However, despite these efforts, only a small number of adults engage in regular physical activity to the point of meeting current recommendations. Evidence collected in rodent models and humans establish a strong central nervous system component that regulates physical activity behavior. In particular, dopaminergic pathways in the central nervous system are among the best-characterized biological mechanisms to date with respect to regulating reward, motivation, and habit formation, which are critical for establishing regular physical activity. Herein, we discuss evidence for a role of brain dopamine in the regulation of voluntary physical activity behavior based on selective breeding and pharmacological studies in rodents, as well as genetic studies in both rodents and humans. While these studies establish a role of dopamine and associated mechanisms in the brain in the regulation of voluntary physical activity behavior, there is clearly need for more research on the underlying biology involved in motivation for physical activity and the formation of a physical activity habit. Such knowledge at the basic science level may ultimately be translated into better strategies to enhance physical activity levels within the society.
Collapse
|
36
|
Qi G, Dutta D, Leroux A, Ray D, Muschelli J, Crainiceanu C, Chatterjee N. Genome-wide association studies of 27 accelerometry-derived physical activity measurements identified novel loci and genetic mechanisms. Genet Epidemiol 2022; 46:122-138. [PMID: 35043453 PMCID: PMC8863635 DOI: 10.1002/gepi.22441] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 11/03/2021] [Accepted: 12/07/2021] [Indexed: 02/06/2023]
Abstract
Physical inactivity (PA) is an important risk factor for a wide range of diseases. Previous genome-wide association studies (GWAS), based on self-reported data or a small number of phenotypes derived from accelerometry, have identified a limited number of genetic loci associated with habitual PA and provided evidence for involvement of central nervous system in mediating genetic effects. In this study, we derived 27 PA phenotypes from wrist accelerometry data obtained from 88,411 UK Biobank study participants. Single-variant association analysis based on mixed-effects models and transcriptome-wide association studies (TWAS) together identified 5 novel loci that were not detected by previous studies of PA, sleep duration and self-reported chronotype. For both novel and previously known loci, we discovered associations with novel phenotypes including active-to-sedentary transition probability, light-intensity PA, activity during different times of the day and proxy phenotypes to sleep and circadian patterns. Follow-up studies including TWAS, colocalization, tissue-specific heritability enrichment, gene-set enrichment and genetic correlation analyses indicated the role of the blood and immune system in modulating the genetic effects and a secondary role of the digestive and endocrine systems. Our findings provided important insights into the genetic architecture of PA and its underlying mechanisms.
Collapse
Affiliation(s)
- Guanghao Qi
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Diptavo Dutta
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Andrew Leroux
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA,Department of Biostatistics and Informatics, University of Colorado, Aurora, CO 80045, USA
| | - Debashree Ray
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA,Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - John Muschelli
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Ciprian Crainiceanu
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Nilanjan Chatterjee
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA,Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA,Corresponding author: Nilanjan Chatterjee, Bloomberg Distinguished Professor, Johns Hopkins University, 615 N. Wolfe Street, Room E3612, Baltimore, Maryland 21205, , Phone: 410-955-3067
| |
Collapse
|
37
|
SILLANPÄÄ ELINA, PALVIAINEN TEEMU, RIPATTI SAMULI, KUJALA URHOM, KAPRIO JAAKKO. Polygenic Score for Physical Activity Is Associated with Multiple Common Diseases. Med Sci Sports Exerc 2022; 54:280-287. [PMID: 34559723 PMCID: PMC8754097 DOI: 10.1249/mss.0000000000002788] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Genetic pleiotropy, in which the same genes affect two or more traits, may partially explain the frequently observed associations between high physical activity (PA) and later reduced morbidity or mortality. This study investigated associations between PA polygenic risk scores (PRS) and cardiometabolic diseases among the Finnish population. METHODS PRS for device-measured overall PA were adapted to a FinnGen study cohort of 218,792 individuals with genomewide genotyping and extensive digital longitudinal health register data. Associations between PA PRS and body mass index, diseases, and mortality were analyzed with linear and logistic regression models. RESULTS A high PA PRS predicted a lower body mass index (β = -0.025 kg·m-2 per one SD change in PA PRS, SE = 0.013, P = 1.87 × 10-80). The PA PRS also predicted a lower risk for diseases that typically develop later in life or not at all among highly active individuals. A lower disease risk was systematically observed for cardiovascular diseases (odds ratio [OR] per 1 SD change in PA PRS = 0.95, P = 9.5 × 10-19) and, for example, hypertension [OR = 0.93, P = 2.7 × 10-44), type 2 diabetes (OR = 0.91, P = 4.1 × 10-42), and coronary heart disease (OR = 0.95, P = 1.2 × 10-9). Participants with high PA PRS had also lower mortality risk (OR = 0.97, P = 0.0003). CONCLUSIONS Genetically less active persons are at a higher risk of developing cardiometabolic diseases, which may partly explain the previously observed associations between low PA and higher disease and mortality risk. The same inherited physical fitness and metabolism-related mechanisms may be associated both with PA levels and with cardiometabolic disease risk.
Collapse
Affiliation(s)
- ELINA SILLANPÄÄ
- Gerontology Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, FINLAND
- Institute for Molecular Medicine Finland, HiLIFE, Helsinki, FINLAND
| | - TEEMU PALVIAINEN
- Institute for Molecular Medicine Finland, HiLIFE, Helsinki, FINLAND
| | - SAMULI RIPATTI
- Institute for Molecular Medicine Finland, HiLIFE, Helsinki, FINLAND
- Department of Public Health, University of Helsinki, Helsinki, FINLAND, University of Helsinki
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - URHO M. KUJALA
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, FINLAND
| | - JAAKKO KAPRIO
- Institute for Molecular Medicine Finland, HiLIFE, Helsinki, FINLAND
| |
Collapse
|
38
|
Abstract
AbstractTrade-offs and constraints are inherent to life, and studies of these phenomena play a central role in both organismal and evolutionary biology. Trade-offs can be defined, categorized, and studied in at least six, not mutually exclusive, ways. (1) Allocation constraints are caused by a limited resource (e.g., energy, time, space, essential nutrients), such that increasing allocation to one component necessarily requires a decrease in another (if only two components are involved, this is referred to as the Y-model, e.g., energy devoted to size versus number of offspring). (2) Functional conflicts occur when features that enhance performance of one task decrease performance of another (e.g., relative lengths of in-levers and out-levers, force-velocity trade-offs related to muscle fiber type composition). (3) Shared biochemical pathways, often involving integrator molecules (e.g., hormones, neurotransmitters, transcription factors), can simultaneously affect multiple traits, with some effects being beneficial for one or more components of Darwinian fitness (e.g., survival, age at first reproduction, fecundity) and others detrimental. (4) Antagonistic pleiotropy describes genetic variants that increase one component of fitness (or a lower-level trait) while simultaneously decreasing another. (5) Ecological circumstances (or selective regime) may impose trade-offs, such as when foraging behavior increases energy availability yet also decreases survival. (6) Sexual selection may lead to the elaboration of (usually male) secondary sexual characters that improve mating success but handicap survival and/or impose energetic costs that reduce other fitness components. Empirical studies of trade-offs often search for negative correlations between two traits that are the expected outcomes of the trade-offs, but this will generally be inadequate if more than two traits are involved and especially for complex physiological networks of interacting traits. Moreover, trade-offs often occur only in populations that are experiencing harsh environmental conditions or energetic challenges at the extremes of phenotypic distributions, such as among individuals or species that have exceptional athletic abilities. Trade-offs may be (partially) circumvented through various compensatory mechanisms, depending on the timescale involved, ranging from acute to evolutionary. Going forward, a pluralistic view of trade-offs and constraints, combined with integrative analyses that cross levels of biological organization and traditional boundaries among disciplines, will enhance the study of evolutionary organismal biology.
Collapse
|
39
|
Kaartinen S, Silventoinen K, Korhonen T, Kujala UM, Kaprio J, Aaltonen S. Genetic and Environmental Effects on the Individual Variation and Continuity of Participation in Diverse Physical Activities. Med Sci Sports Exerc 2021; 53:2495-2502. [PMID: 34649261 DOI: 10.1249/mss.0000000000002744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Participation in diverse physical activities has beneficial health effects. However, little is known on how genetic and environmental factors affect this trait. Thus, we examined to what extent these factors explain participation in diverse leisure-time physical activities from late adolescence to adulthood using a twin study design. METHODS The participants were Finnish twins who reported their participation in diverse leisure-time physical activities at ages 17 (n = 5429) and 34 yr (n = 4246). The number of physical activities engaged in was analyzed using applications of structural linear modeling for twin data. RESULTS On average, the total number of physical activities engaged in during leisure time was slightly over three at both ages and in both sexes, with moderate heritability estimates (40%-58%) from adolescence to adulthood. Environmental factors shared by co-twins (e.g., childhood family environment) influenced only in adolescence, being higher for women. Environmental influences unique to each co-twin explained the remaining variances (34%-57%), being higher at age 34 yr. Participation in diverse leisure-time physical activities correlated moderately between ages 17 and 34 yr (men: rtrait = 0.30, 95% confidence interval [CI] = 0.25-0.35; women: rtrait = 0.26, 95% CI = 0.22-0.31). In addition, genetic influences on participation in physical activities correlated moderately between adolescence and adulthood (rA = 0.51, 95% CI = 0.39-0.64, and 0.44, 95% CI = 0.34-0.55, respectively). These common genetic influences explained 93% of the trait correlations found in men and 85% in women. CONCLUSIONS Genetic and unique environmental influences explain a large proportion of variation in the number of leisure-time physical activities. However, the estimates vary by age and sex. Common genetic background mainly explains the continuity of the participation in diverse leisure-time physical activities between adolescence and adulthood.
Collapse
Affiliation(s)
- Sara Kaartinen
- Department of Public Health, University of Helsinki, Helsinki, FINLAND
| | | | - Tellervo Korhonen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, FINLAND
| | - Urho M Kujala
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, FINLAND
| | | | - Sari Aaltonen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, FINLAND
| |
Collapse
|
40
|
Griswold AJ, Correa D, Kaplan LD, Best TM. Using Genomic Techniques in Sports and Exercise Science: Current Status and Future Opportunities. Curr Sports Med Rep 2021; 20:617-623. [PMID: 34752437 DOI: 10.1249/jsr.0000000000000908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
ABSTRACT The past two decades have built on the successes of the Human Genome Project identifying the impact of genetics and genomics on human traits. Given the importance of exercise in the physical and psychological health of individuals across the lifespan, using genomics to understand the impact of genes in the sports medicine field is an emerging field. Given the complexity of the systems involved, high-throughput genomics is required to understand genetic variants, their functions, and ultimately their effect on the body. Consequently, genomic studies have been performed across several domains of sports medicine with varying degrees of success. While the breadth of these is great, they focus largely on the following three areas: 1) performance; 2) injury susceptibility; and 3) sports associated chronic conditions, such as osteoarthritis. Herein, we review literature on genetics and genomics in sports medicine, offer suggestions to bolster existing studies, and suggest ways to ideally impact clinical care.
Collapse
Affiliation(s)
| | | | - Lee D Kaplan
- Department of Orthopedic Surgery, UHealth Sports Medicine Institute, University of Miami, Miller School of Medicine, Miami, FL
| | - Thomas M Best
- Department of Orthopedic Surgery, UHealth Sports Medicine Institute, University of Miami, Miller School of Medicine, Miami, FL
| |
Collapse
|
41
|
Cadney MD, Schwartz NE, McNamara MP, Schmill MP, Castro AA, Hillis DA, Garland T. Cross-fostering selectively bred High Runner mice affects adult body mass but not voluntary exercise. Physiol Behav 2021; 241:113569. [PMID: 34481826 DOI: 10.1016/j.physbeh.2021.113569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/18/2021] [Accepted: 09/01/2021] [Indexed: 01/21/2023]
Abstract
While nursing, mammals progress through critical developmental periods for the cardiovascular, musculoskeletal, and central nervous systems. The suckling period in mammals is therefore especially vulnerable to environmental factors that may affect the "developmental programming" of many complex traits. As a result, various aspects of maternal behavior and physiology can influence offspring in ways that have lasting effects into adulthood. Several recent studies of animal models have shown that maternal effects can partially program adult activity behaviors, which has important implications for health and locomotor performance. Here, we used cross-fostering to test for possible maternal effects on adult wheel-running behavior (voluntary exercise), maximal aerobic capacity during forced exercise (VO2max), body mass and composition, and organ masses. Subjects were from a line of mice that has been selectively bred for ∼90 generations for high voluntary wheel-running behavior (High Runner; HR) and a non-selected Control (C) line. Adult HR mice run ∼3-fold the daily distances of C mice and have evolved other differences associated with exercise capacity, including elevated VO2max, reduced body mass and fat mass, and larger hearts. At birth, we fostered offspring to create 4 experimental groups: C pups to other C dams (in-foster), HR pups to other HR dams (in-foster), C pups to HR dams (cross-foster), HR pups to C dams (cross-foster). Thus, all pups were fostered to a different mother. Mice were weaned 3 weeks later, and adult testing began at ∼6 weeks of age. At weaning, pups raised by HR dams were smaller than those raised by C dams for both sexes and as expected, HR pups raised by HR dams weighed less than C pups raised by C dams. As adults, mice raised by HR dams continued to have reduced body masses. As expected, adult HR mice ran approximately 3-fold more than their C counterparts and females ran more than males. However, cross-fostering did not statistically affect any aspect of wheel-running behavior (distance, duration, speed). Similarly, with body mass as a covariate, HR mice had higher VO2max than C mice, and males had higher VO2max than females, but cross-fostering had no effect. With body mass as a covariate, cross-fostering had variable effects on adult organ masses in a sex-specific manner. Overall, our results indicate that development of the adult High Runner phenotype does not require rearing by an HR dam, suggesting that high adult activity in humans may be independent of high maternal activity.
Collapse
Affiliation(s)
- Marcell D Cadney
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Nicole E Schwartz
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Monica P McNamara
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Margaret P Schmill
- Neuroscience Graduate Program, University of California, Riverside, CA 92521, USA
| | - Alberto A Castro
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - David A Hillis
- Genetics, Genomics, and Bioinformatics Graduate Program, University of California, Riverside, CA 92521, USA
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
42
|
Smith LL. The Central Role of Hypothermia and Hyperactivity in Anorexia Nervosa: A Hypothesis. Front Behav Neurosci 2021; 15:700645. [PMID: 34421554 PMCID: PMC8377352 DOI: 10.3389/fnbeh.2021.700645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/24/2021] [Indexed: 12/24/2022] Open
Abstract
Typically, the development of anorexia nervosa (AN) is attributed to psycho-social causes. Several researchers have recently challenged this view and suggested that hypothermia and hyperactivity (HyAc) are central to AN. The following hypothesis will attempt to clarify their role in AN. Anorexia nervosa patients (ANs) have significantly lower core temperatures (Tcore) compared to healthy controls (HCs). This reduced temperature represents a reset Tcore that needs to be maintained. However, ANs cannot maintain this Tcore due primarily to a reduced basal metabolic rate (BMR); BMR usually supplies heat to sustain Tcore. Therefore, to generate the requisite heat, ANs revert to the behavioral-thermoregulatory strategy of HyAc. The majority of ANs (~89%) are reportedly HyAc. Surprisingly, engagement in HyAc is not motivated by a conscious awareness of low Tcore, but rather by the innocuous sensation of "cold- hands" frequently reported by ANs. That is, local hand-thermoreceptors signal the brain to initiate HyAc, which boosts perfusion of the hands and alters the sensation of "cold-discomfort" to one of "comfort." This "rewarding" consequence encourages repetition/habit formation. Simultaneously, hyperactivity increases the availability of heat to assist with the preservation of Tcore. Additionally, HyAc induces the synthesis of specific brain neuromodulators that suppress food intake and further promote HyAc; this outcome helps preserve low weight and perpetuates this vicious cycle. Based on this hypothesis and supported by rodent research, external heat availability should reduce the compulsion to be HyAc to thermoregulate. A reduction in HyAc should decrease the production of brain neuromodulators that suppress appetite. If verified, hopefully, this hypothesis will assist with the development of novel treatments to aid in the resolution of this intractable condition.
Collapse
Affiliation(s)
- Lucille Lakier Smith
- Human Performance Laboratory, Department of Kinesiology, School of Health Sciences, East Carolina University, Greenville, NC, United States
| |
Collapse
|
43
|
Ferguson DP, Leszczynski EC, McPeek AC, Pendergrast LA, Visker JR, Triplett AN. Physical Activity Engagement Worsens Health Outcomes and Limits Exercise Capacity in Growth-restricted Mice. Med Sci Sports Exerc 2021; 53:1561-1571. [PMID: 34261989 PMCID: PMC10797723 DOI: 10.1249/mss.0000000000002620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION A total of 161 million children a year are growth restricted, leading to a 47% increased risk of chronic disease in adulthood. Physical activity (PA) reduces the risk of mortality from chronic disease. The purpose of the present investigation was to determine the effect of a PA intervention (wheel running) on cardiac and skeletal muscle capacities in gestational (GUN) and postnatal (PUN) growth-restricted mice as compared with nonrestricted controls (CON). METHODS A low-protein cross-fostering FVB mouse model was used to induce growth restriction during gestation and the first 21 d of postnatal life. Mouse pups were recovered on a healthy diet until mature and provided wheel access for 3 wk. At completion of the PA intervention, mice underwent maximal exercise testing on a treadmill, echocardiography, and skeletal muscle histology. RESULTS After the PA intervention, CON mice had a 45% improvement in maximal exercise capacity (P = 0.0390) because of cardiac and skeletal muscle adaptations, but GUN and PUN mice did not. Alarmingly, PUN female mice exposed to wheels had 11.45% lower left ventricular volume (P = 0.0540) and 18% lower left ventricle area (P = 0.0585), with blood flow velocities indicative of cardiac fibrosis (GUN had elevated isovolumetric contraction time P = 0.0374; GUN females and PUN males had longer isovolumetric relaxation time P = 0.0703). PUN male mice had mixed skeletal muscle responses with an oxidative shift in the diaphragm (P = 0.0162) but a glycolytic shift in the extensor digitorum longus (P = 0.0647). PUN female mice had a glycolytic shift in the soleus after wheel running. CONCLUSIONS Unexpectedly, growth-restricted mice were nonresponders to a PA intervention and displayed negative cardiac outcomes.
Collapse
Affiliation(s)
- David P Ferguson
- Department of Kinesiology, Michigan State University, East Lansing, MI
| | | | - Ashley C McPeek
- Department of Kinesiology, Michigan State University, East Lansing, MI
| | | | | | - Ashley N Triplett
- Department of Kinesiology, Michigan State University, East Lansing, MI
| |
Collapse
|
44
|
The Associations Between Leisure-Time Physical Activity and Academic Performance: A Twin Study. J Phys Act Health 2021; 18:998-1003. [PMID: 34140420 DOI: 10.1123/jpah.2020-0746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 04/07/2021] [Accepted: 04/24/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Both genetic and environmental influences have been shown to contribute to the association between physical activity and overall academic performance. The authors examined whether leisure-time physical activity (LTPA) shares genetic and environmental variances between spelling, essay writing, reading aloud, reading comprehension, and mathematics in early adolescence. Moreover, they investigated whether genetic polymorphisms associated with physical activity behavior affect these academic skills. METHODS Participants were 12-year-old Finnish twins (n = 4356-4370 twins/academic skill, 49% girls). Academic skills were assessed by teachers, and LTPA was self-reported. Polygenic scores for physical activity behavior were constructed from the UK Biobank. Quantitative genetic modeling and linear regression models were used to analyze the data. RESULTS The trait correlations between LTPA and academic skills were significant but weak (r = .05-.08). The highest trait correlation was found between LTPA and mathematics. A significant genetic correlation was revealed between LTPA and essay writing (rA = .14). Regarding polygenic scores of physical activity, the highest correlations were found with reading comprehension, spelling, and essay writing, but these results only approached statistical significance (P values = .09-.15). CONCLUSIONS The authors' results suggest that reading and writing are the academic skills that most likely share a common genetic background with LTPA.
Collapse
|
45
|
Cadney MD, Hiramatsu L, Thompson Z, Zhao M, Kay JC, Singleton JM, Albuquerque RLD, Schmill MP, Saltzman W, Garland T. Effects of early-life exposure to Western diet and voluntary exercise on adult activity levels, exercise physiology, and associated traits in selectively bred High Runner mice. Physiol Behav 2021; 234:113389. [PMID: 33741375 PMCID: PMC8106885 DOI: 10.1016/j.physbeh.2021.113389] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/02/2021] [Accepted: 03/13/2021] [Indexed: 01/08/2023]
Abstract
Exercise behavior is under partial genetic control, but it is also affected by numerous environmental factors, potentially including early-life experiences whose effects persist into adulthood. We studied genetic and early-life environmental effects on wheel-running behavior in a mouse model that includes four replicate high runner (HR) lines selectively bred for increased voluntary wheel running as young adults and four non-selected control (C) lines. In a full factorial design, mice from each line were granted wheel access or not and administered either standard or Western diet (WD) from weaning (3 weeks old) to 6 weeks of age (sexual maturity). In addition to acute effects, after a washout period of 8 weeks (∼6 human years) in which all mice had standard diet and no wheel access, we found both beneficial and detrimental effects of these early-life exposures. During the first week of treatments, WD increased distance run by 29% in C mice and 48% in HR mice (significant Diet × Linetype interaction), but diet effects disappeared by the third week. Across the three weeks of juvenile treatment, WD significantly increased fat mass (with lean mass as a covariate). Tested as adults, early-life exercise increased wheel running of C mice but not HR mice in the first week. Early-life exercise also reduced adult anxiety-like behavior and increased adult fasted blood glucose levels, triceps surae mass, subdermal fat pad mass, and brain mass, but decreased heart ventricle mass. Using fat mass as a covariate, early-life exercise treatment increased adult leptin concentration. In contrast, early-life WD increased adult wheel running of HR mice but not C mice. Early-life WD also increased adult lean mass and adult preference for Western diet in all groups. Surprisingly, early-life treatment had no significant effect on adult body fat or maximal aerobic capacity (VO2max). No previous study has tested for combined or interactive effects of early-life WD and exercise. Our results demonstrate that both factors can have long-lasting effects on adult voluntary exercise and related phenotypes, and that these effects are modulated by genetic background. Overall, the long-lasting effects of early-life exercise were more pervasive than those of WD, suggesting critical opportunities for health intervention in childhood habits, as well as possible threats from modern challenges. These results may be relevant for understanding potential effects of activity reductions and dietary changes associated with the obesity epidemic and COVID-19 pandemic.
Collapse
Affiliation(s)
- Marcell D Cadney
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Layla Hiramatsu
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Zoe Thompson
- Neuroscience Graduate Program, University of California, Riverside, CA 92521, USA
| | - Meng Zhao
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Jarren C Kay
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Jennifer M Singleton
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | | | - Margaret P Schmill
- Neuroscience Graduate Program, University of California, Riverside, CA 92521, USA
| | - Wendy Saltzman
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
46
|
Izzicupo P, Di Blasio A, Di Credico A, Ghinassi B, Capranica L, Napolitano G, Di Baldassarre A, Modestini E, Di Pietro M. Objectively Measured Physical Activity Increases Only in Males During a Summer Camp for Obese Children. Front Sports Act Living 2021; 3:624449. [PMID: 33842880 PMCID: PMC8027230 DOI: 10.3389/fspor.2021.624449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/04/2021] [Indexed: 01/05/2023] Open
Abstract
Childhood obesity is a major public health challenge. Summer camps for children with obesity represent an alternative setting to improve eating and physical activity habits. Here we evaluated if the participation in the camp improves objectively measured physical activity and sedentary behavior and whether there are differences between male and female participants. Twenty-eight children, 13 males and 15 females (body mass index >97° centile, weight excess >30%, Tanner stage I), agreed to participate in an 8-day camp. During the summer camp, children participated in sports-like games and outdoor activities for at least 3 h a day, and the school-camp staff also provided a theoretical nutritional learning plan. Accelerometry-derived physical activity was measured through the SenseWear Mini Armband during a week at home and during the camp experience. Before camping, the participants were far above the minimum daily values of moderate- to vigorous-intensity physical activity (MVPA) to be considered sufficiently active (≥60 min/day), but male participants were more active than females (MVPA: 186.2 ± 94.2, 111.0 ± 64.7; P = 0.020). Male participants increased their MVPA (234.3 ± 114.8, P = 0.020), whereas females not (111.9 ± 52.9, P = 0.020). No difference emerged for the sedentary behavior either before or during the camp. This study suggests that participation in a summer camp for obese children can determine different responses in physical activity levels, depending on the sex of young participants. Thus, summer camps for obese children should put particular attention on female participants, besides reducing sedentary behavior in both males and females.
Collapse
Affiliation(s)
- Pascal Izzicupo
- Department of Medicine and Aging Sciences, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Andrea Di Blasio
- Department of Medicine and Aging Sciences, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Andrea Di Credico
- Department of Medicine and Aging Sciences, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Barbara Ghinassi
- Department of Medicine and Aging Sciences, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Laura Capranica
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - Giorgio Napolitano
- Department of Medicine and Aging Sciences, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Angela Di Baldassarre
- Department of Medicine and Aging Sciences, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy
| | | | | |
Collapse
|
47
|
de Souza LV, de Meneck F, Parizotto GP, Franco M. Low birth weight and its relation to physical fitness parameters in children: Its negative effect on muscle strength and cardiorespiratory endurance. Am J Hum Biol 2021; 34:e23595. [PMID: 33709521 DOI: 10.1002/ajhb.23595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/16/2021] [Accepted: 02/26/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND There is increasing evidence that low birth weight has a negative effect on physical fitness, muscle strength, and cardiorespiratory endurance, although the findings are inconsistent. OBJECTIVES This study aimed to evaluate whether birth weight acts as a prenatal determinant of physical fitness parameters and to determine the role of environmental or biological variables on this effect. METHODS One hundred and sixty-seven children aged 6-14 years were included in this study. The anthropometric data, physical activity index, standing long jump, flexibility, handgrip strength, and cardiorespiratory fitness were evaluated. RESULTS A positive correlation was found between birth weight and cardiorespiratory fitness (r = .349; p < .001), right handgrip strength (r = .337; p < .001), and left handgrip strength (r = .320; p < .001), suggesting that children with low birth weight had the worst performance in both cardiorespiratory endurance and grip strength tests. These findings remained significant after adjustment for prematurity, sex, age, physical activity index, and body mass index (BMI). Stepwise multiple regression analyses revealed a significant interaction of high birth weight, older age, and low BMI in predicting better cardiorespiratory endurance (R2 = .308). When handgrip strength was tested as the dependent variable, we found that high birth weight, male sex, and older age emerged as important determinants for both sides. CONCLUSION Children aged 6-14 years born with a birth weight < 2.5 kg have low handgrip strength and cardiorespiratory fitness, which seems to be mediated partially by influences of both prenatal environment (e.g., birth weight) and biological variables (e.g., age, sex, BMI).
Collapse
Affiliation(s)
| | - Franciele de Meneck
- Division of Nephrology, School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | | | - Maria Franco
- Division of Nephrology, School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
48
|
Marin-Couture E, Pérusse L, Tremblay A. The fit-active profile to better reflect the benefits of a lifelong vigorous physical activity participation: mini-review of literature and population data. Appl Physiol Nutr Metab 2021; 46:763-770. [PMID: 33667123 DOI: 10.1139/apnm-2020-1109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Physical activity is favourably considered for its effect on metabolic fitness and body composition. This observation is generally supported by observational studies and is concordant with endurance-trained individuals' metabolic and morphological profiles. However, in some contexts, the measurement of physical activity habits may not provide an adequate representation of its benefits. In this paper, we review relevant literature on the respective effects of fitness and physical activity on anthropometric and metabolic variables and the informative potential of a classification based on aerobic fitness and activity indicators. The relevance to defining a profile based on both fitness and activity is reinforced by data from the Quebec Family Study showing that, in both men and women, "fit-active" individuals displayed a much more favourable morphological and metabolic profile than "unfit-inactive" individuals. Moreover, these benefits seemed to be more related to variations in fitness than in physical activity. In summary, evidence suggests that a profile combining information on aerobic fitness and physical activity may better reflect the lifelong impact of physical activity on body composition and health. Novelty: The fit-active profile better reflects the long-term benefits of vigorous physical activity participation on health. The reported benefits seem to be more related to variations in aerobic fitness than to those in physical activity.
Collapse
Affiliation(s)
- Elisa Marin-Couture
- Department of Kinesiology, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.,Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Food (INAF), Quebec City, QC, Canada
| | - Louis Pérusse
- Department of Kinesiology, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.,Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Food (INAF), Quebec City, QC, Canada
| | - Angelo Tremblay
- Department of Kinesiology, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.,Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Food (INAF), Quebec City, QC, Canada.,Institut universitaire de cardiologie et de pneumologie de Québec, Quebec City, QC, Canada
| |
Collapse
|
49
|
Aasdahl L, Nilsen TIL, Meisingset I, Nordstoga AL, Evensen KAI, Paulsen J, Mork PJ, Skarpsno ES. Genetic variants related to physical activity or sedentary behaviour: a systematic review. Int J Behav Nutr Phys Act 2021; 18:15. [PMID: 33482856 PMCID: PMC7821484 DOI: 10.1186/s12966-020-01077-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/16/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Research shows that part of the variation in physical activity and sedentary behaviour may be explained by genetic factors. Identifying genetic variants associated with physical activity and sedentary behaviour can improve causal inference in physical activity research. The aim of this systematic review was to provide an updated overview of the evidence of genetic variants associated with physical activity or sedentary behaviour. METHODS We performed systematic literature searches in PubMed and Embase for studies published from 1990 to April 2020 using keywords relating to "physical activity", "exercise", "sedentariness" and "genetics". Physical activity phenotypes were either based on self-report (e.g., questionnaires, diaries) or objective measures (e.g., accelerometry, pedometer). We considered original studies aiming to i) identify new genetic variants associated with physical activity or sedentary behaviour (i.e., genome wide association studies [GWAS]), or ii) assess the association between known genetic variants and physical activity or sedentary behaviour (i.e., candidate gene studies). Study selection, data extraction, and critical appraisal were carried out by independent researchers, and risk of bias and methodological quality was assessed for all included studies. RESULTS Fifty-four out of 5420 identified records met the inclusion criteria. Six of the included studies were GWAS, whereas 48 used a candidate gene approach. Only one GWAS and three candidate gene studies were considered high-quality. The six GWAS discovered up to 10 single nucleotide polymorphisms (SNPs) associated with physical activity or sedentariness that reached genome-wide significance. In total, the candidate gene studies reported 30 different genes that were associated (p < 0.05) with physical activity or sedentary behaviour. SNPs in or close to nine candidate genes were associated with physical activity or sedentary behaviour in more than one study. CONCLUSION GWAS have reported up to 10 loci associated with physical activity or sedentary behaviour. Candidate gene studies have pointed to some interesting genetic variants, but few have been replicated. Our review highlights the need for high-quality GWAS in large population-based samples, and with objectively assessed phenotypes, in order to establish robust genetic instruments for physical activity and sedentary behaviour. Furthermore, consistent replications in GWAS are needed to improve credibility of genetic variants. TRIAL REGISTRATION Prospero CRD42019119456 .
Collapse
Affiliation(s)
- Lene Aasdahl
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Postboks 8905, MTFS, 7491, Trondheim, Norway. .,Unicare Helsefort Rehabilitation Centre, Rissa, Norway.
| | - Tom Ivar Lund Nilsen
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Postboks 8905, MTFS, 7491, Trondheim, Norway.,Clinic of Anaesthesia and Intensive Care, St. Olavs Hospital, Trondheim, Norway
| | - Ingebrigt Meisingset
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Postboks 8905, MTFS, 7491, Trondheim, Norway
| | - Anne Lovise Nordstoga
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Postboks 8905, MTFS, 7491, Trondheim, Norway
| | - Kari Anne I Evensen
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Postboks 8905, MTFS, 7491, Trondheim, Norway.,Department of Clinical and Molecular Medicine, NTNU, Trondheim, Norway.,Department of Physiotherapy, Oslo Metropolitan University, Oslo, Norway.,Unit for Physiotherapy Services, Trondheim, Norway
| | - Julie Paulsen
- Department of Medical Genetics, St. Olavs Hospital, Trondheim, Norway
| | - Paul Jarle Mork
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Postboks 8905, MTFS, 7491, Trondheim, Norway
| | - Eivind Schjelderup Skarpsno
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Postboks 8905, MTFS, 7491, Trondheim, Norway.,Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim, Norway
| |
Collapse
|
50
|
Cross KM, Granados JZ, Ten Have GAM, Thaden JJ, Engelen MPKJ, Lightfoot JT, Deutz NEP. Protein fractional synthesis rates within tissues of high- and low-active mice. PLoS One 2020; 15:e0242926. [PMID: 33253250 PMCID: PMC7703944 DOI: 10.1371/journal.pone.0242926] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 11/11/2020] [Indexed: 11/19/2022] Open
Abstract
With the rise in physical inactivity and its related diseases, it is necessary to understand the mechanisms involved in physical activity regulation. Biological factors regulating physical activity are studied to establish a possible target for improving the physical activity level. However, little is known about the role metabolism plays in physical activity regulation. Therefore, we studied protein fractional synthesis rate (FSR) of multiple organ tissues of 12-week-old male mice that were previously established as inherently low-active (n = 15, C3H/HeJ strain) and high-active (n = 15, C57L/J strain). Total body water of each mouse was enriched to 5% deuterium oxide (D2O) via intraperitoneal injection and maintained with D2O enriched drinking water for about 24 h. Blood samples from the jugular vein and tissues (kidney, heart, lung, muscle, fat, jejunum, ileum, liver, brain, skin, and bone) were collected for enrichment analysis of alanine by LC-MS/MS. Protein FSR was calculated as -ln(1-enrichment). Data are mean±SE as fraction/day (unpaired t-test). Kidney protein FSR in the low-active mice was 7.82% higher than in high-active mice (low-active: 0.1863±0.0018, high-active: 0.1754±0.0028, p = 0.0030). No differences were found in any of the other measured organ tissues. However, all tissues resulted in a generally higher protein FSR in the low-activity mice compared to the high-activity mice (e.g. lung LA: 0.0711±0.0015, HA: 0.0643±0.0020, heart LA: 0.0649± 0.0013 HA: 0.0712±0.0073). Our observations suggest that high-active mice in most organ tissues are no more inherently equipped for metabolic adaptation than low-active mice, but there may be a connection between protein metabolism of kidney tissue and physical activity level. In addition, low-active mice have higher organ-specific baseline protein FSR possibly contributing to the inability to achieve higher physical activity levels.
Collapse
Affiliation(s)
- Kristina M. Cross
- Center for Translational Research in Aging & Longevity, Dept. Health and Kinesiology, Texas A&M University, College Station, TX, United States of America
- * E-mail:
| | - Jorge Z. Granados
- Biology of Physical Activity Laboratory, Dept. Health and Kinesiology, Texas A&M University, College Station, TX, United States of America
| | - Gabriella A. M. Ten Have
- Center for Translational Research in Aging & Longevity, Dept. Health and Kinesiology, Texas A&M University, College Station, TX, United States of America
| | - John J. Thaden
- Center for Translational Research in Aging & Longevity, Dept. Health and Kinesiology, Texas A&M University, College Station, TX, United States of America
| | - Marielle P. K. J. Engelen
- Center for Translational Research in Aging & Longevity, Dept. Health and Kinesiology, Texas A&M University, College Station, TX, United States of America
| | - J. Timothy Lightfoot
- Biology of Physical Activity Laboratory, Dept. Health and Kinesiology, Texas A&M University, College Station, TX, United States of America
| | - Nicolaas E. P. Deutz
- Center for Translational Research in Aging & Longevity, Dept. Health and Kinesiology, Texas A&M University, College Station, TX, United States of America
| |
Collapse
|