1
|
Kalita P, Khatavkar O, Uwase G, Korshunova Y, Hu Y, Wagner ND, Xu J, Pan J, Nix JC, Gross ML, Brody SL, Borek D, Amarasinghe GK, Payton JE, Leung DW. Molecular basis for human respiratory syncytial virus transcriptional regulator NS1 interactions with MED25. Nat Commun 2025; 16:2883. [PMID: 40128225 PMCID: PMC11933697 DOI: 10.1038/s41467-025-58216-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 03/13/2025] [Indexed: 03/26/2025] Open
Abstract
The Mediator complex facilitates interactions between transcription factors and RNA polymerase II, a process that is required for host gene transcription, including in response to viral infections. Among the many subunits in the Mediator complex, the MED25 subunit has been shown to be a target for viral activators during infection. Here we provide the molecular basis for the interaction between human respiratory syncytial virus (hRSV) nonstructural 1 protein (NS1) and the activator interaction domain (ACID) of MED25. The X-ray crystal structure of the complex revealed that NS1 straddles and binds two faces of MED25 ACID. This interaction is distinct from previously known viral activators. Importantly, our data support the conformational flexibility of viral transcriptional regulators. Furthermore, ChIP-seq and RNA-seq analysis identified the ATF3 transcription factor and a role for NS1/Mediator/ATF3 interaction in host gene regulation in hRSV infections. Our findings provide a molecular basis for hRSV NS1-based regulation of host gene transcription and reveal how viruses exploit the conformational heterogeneity at fuzzy transcription activator interfaces.
Collapse
Affiliation(s)
- Parismita Kalita
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Oam Khatavkar
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Grace Uwase
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yulia Korshunova
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yuying Hu
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Nicole D Wagner
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
| | - Jian Xu
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jiehong Pan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jay C Nix
- Molecular Biology Consortium, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
| | - Steven L Brody
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Dominika Borek
- Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jacqueline E Payton
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Daisy W Leung
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
2
|
da Silva Barcelos L, Ford AK, Frühauf MI, Botton NY, Fischer G, Maggioli MF. Interactions Between Bovine Respiratory Syncytial Virus and Cattle: Aspects of Pathogenesis and Immunity. Viruses 2024; 16:1753. [PMID: 39599867 PMCID: PMC11598946 DOI: 10.3390/v16111753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/25/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Bovine respiratory syncytial virus (BRSV) is a major respiratory pathogen in cattle and is relevant to the livestock industry worldwide. BRSV is most severe in young calves and is often associated with stressful management events. The disease is responsible for economic losses due to lower productivity, morbidity, mortality, and prevention and treatment costs. As members of the same genus, bovine and human RSV share a high degree of homology and are similar in terms of their genomes, transmission, clinical signs, and epidemiology. This overlap presents an opportunity for One Health approaches and translational studies, with dual benefits; however, there is still a relative lack of studies focused on BRSV, and the continued search for improved prophylaxis highlights the need for a deeper understanding of its immunological features. BRSV employs different host-immunity-escaping mechanisms that interfere with effective long-term memory responses to current vaccines and natural infections. This review presents an updated description of BRSV's immunity processes, such as the PRRs and signaling pathways involved in BRSV infection, aspects of its pathogeny, and the evading mechanisms developed by the virus to thwart the immune response.
Collapse
Affiliation(s)
- Lariane da Silva Barcelos
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA; (L.d.S.B.)
- Laboratory of Virology and Immunology, Veterinary College, Universidade Federal de Pelotas, Capão do Leão, Rio Grande do Sul 96010, Brazil; (M.I.F.); (N.Y.B.); (G.F.)
| | - Alexandra K. Ford
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA; (L.d.S.B.)
| | - Matheus Iuri Frühauf
- Laboratory of Virology and Immunology, Veterinary College, Universidade Federal de Pelotas, Capão do Leão, Rio Grande do Sul 96010, Brazil; (M.I.F.); (N.Y.B.); (G.F.)
| | - Nadalin Yandra Botton
- Laboratory of Virology and Immunology, Veterinary College, Universidade Federal de Pelotas, Capão do Leão, Rio Grande do Sul 96010, Brazil; (M.I.F.); (N.Y.B.); (G.F.)
| | - Geferson Fischer
- Laboratory of Virology and Immunology, Veterinary College, Universidade Federal de Pelotas, Capão do Leão, Rio Grande do Sul 96010, Brazil; (M.I.F.); (N.Y.B.); (G.F.)
| | - Mayara Fernanda Maggioli
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA; (L.d.S.B.)
| |
Collapse
|
3
|
Dudek I, Czerkies M, Kwiatek A. Differential expression of cytokines and elevated levels of MALAT1 - Long non-coding RNA in response to non-structural proteins of human respiratory syncytial virus. Virology 2024; 597:110127. [PMID: 38850893 DOI: 10.1016/j.virol.2024.110127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/10/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
Human Respiratory Syncytial Virus (hRSV), a prevalent respiratory pathogen affecting various age groups, can trigger prolonged and intense inflammation in humans. The severity and outcome of hRSV infection correlate with elevated levels of pro-inflammatory agents, yet the underlying reasons for this immune system overstimulation remain elusive. We focused on the impact of hRSV non-structural proteins, NS1 and NS2, on immune response within epithelial cells. Available data indicates that these proteins impair the interferon pathway. We reinforce that NS1 and NS2 induce heightened secretion of the pro-inflammatory cytokines IL-6 and CXCL8. We also indicate that hRSV non-structural proteins provoke differential gene expression of human host FosB and long non-coding RNAs (MALAT1, RP11-510N19.5). It suggests an impact of NS molecules beyond IFN pathways. Thus, new light is shed on the interplay between hRSV and host cells, uncovering unexplored avenues of viral interference, especially the NS2 role in cytokine expression and immune modulation.
Collapse
Affiliation(s)
- Inga Dudek
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Maciej Czerkies
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Kwiatek
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
4
|
McCarty TC, Vaisman II. Respiratory Syncytial Virus Vaccine Design Using Structure-Based Machine-Learning Models. Viruses 2024; 16:821. [PMID: 38932114 PMCID: PMC11209532 DOI: 10.3390/v16060821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/26/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
When designing live-attenuated respiratory syncytial virus (RSV) vaccine candidates, attenuating mutations can be developed through biologic selection or reverse-genetic manipulation and may include point mutations, codon and gene deletions, and genome rearrangements. Attenuation typically involves the reduction in virus replication, due to direct effects on viral structural and replicative machinery or viral factors that antagonize host defense or cause disease. However, attenuation must balance reduced replication and immunogenic antigen expression. In the present study, we explored a new approach in order to discover attenuating mutations. Specifically, we used protein structure modeling and computational methods to identify amino acid substitutions in the RSV nonstructural protein 1 (NS1) predicted to cause various levels of structural perturbation. Twelve different mutations predicted to alter the NS1 protein structure were introduced into infectious virus and analyzed in cell culture for effects on viral mRNA and protein expression, interferon and cytokine expression, and caspase activation. We found the use of structure-based machine learning to predict amino acid substitutions that reduce the thermodynamic stability of NS1 resulted in various levels of loss of NS1 function, exemplified by effects including reduced multi-cycle viral replication in cells competent for type I interferon, reduced expression of viral mRNAs and proteins, and increased interferon and apoptosis responses.
Collapse
Affiliation(s)
- Thomas C. McCarty
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA;
| | - Iosif I. Vaisman
- School of Systems Biology, George Mason University, Manassas, VA 20110, USA
| |
Collapse
|
5
|
Yoneyama M, Kato H, Fujita T. Physiological functions of RIG-I-like receptors. Immunity 2024; 57:731-751. [PMID: 38599168 DOI: 10.1016/j.immuni.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/19/2024] [Accepted: 03/04/2024] [Indexed: 04/12/2024]
Abstract
RIG-I-like receptors (RLRs) are crucial for pathogen detection and triggering immune responses and have immense physiological importance. In this review, we first summarize the interferon system and innate immunity, which constitute primary and secondary responses. Next, the molecular structure of RLRs and the mechanism of sensing non-self RNA are described. Usually, self RNA is refractory to the RLR; however, there are underlying host mechanisms that prevent immune reactions. Studies have revealed that the regulatory mechanisms of RLRs involve covalent molecular modifications, association with regulatory factors, and subcellular localization. Viruses have evolved to acquire antagonistic RLR functions to escape the host immune reactions. Finally, the pathologies caused by the malfunction of RLR signaling are described.
Collapse
Affiliation(s)
- Mitsutoshi Yoneyama
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan; Division of Pandemic and Post-disaster Infectious Diseases, Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
| | - Hiroki Kato
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Takashi Fujita
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany; Laboratory of Regulatory Information, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
6
|
Cheng J, Wang Y, Yin L, Liang W, Zhang J, Ma C, Zhang Y, Liu B, Wang J, Zhao W, Li M, Wei L. The nonstructural protein 1 of respiratory syncytial virus hijacks host mitophagy as a novel mitophagy receptor to evade the type I IFN response in HEp-2 cells. mBio 2023; 14:e0148023. [PMID: 37909764 PMCID: PMC10746179 DOI: 10.1128/mbio.01480-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/28/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE It is a worthy concern for us to understand virus-host interactions which affect progression and prognosis of disease. We demonstrated that the non-structural protein 1 of respiratory syncytial virus (RSV NS1) may act as a novel mitophagy receptor to induce mitophagy by binding LC3B and mitochondrial protein TUFM, and finally dampen interferon (IFN) responses induced by RIG1 and RSV infection. TUFM is beneficial for RSV replication in vivo and vitro. It is new and interesting that RSV NS1 may function as a mitophagy receptor to interact with LC3B. The LIR motif of NS1 protein is essential for its interaction with LC3B. We further confirm that RSV NS1 inhibited IFNβ response and promoted RSV replication in autophagy-dependent mechanisms in vivo and vitro. Our study contributes to understanding virus-host interaction, enriching our insights into RSV pathogenic mechanism and exploiting new antiviral treatments targeting TUFM.
Collapse
Affiliation(s)
- Jing Cheng
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Yutong Wang
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Lizheng Yin
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Wenzhang Liang
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
- Department of Pathogen Biology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jing Zhang
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Cuiqing Ma
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Yu Zhang
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Bo Liu
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Jiachao Wang
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Weiting Zhao
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Miao Li
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Lin Wei
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| |
Collapse
|
7
|
Merritt TN, Pei J, Leung DW. Pathogenicity and virulence of human respiratory syncytial virus: Multifunctional nonstructural proteins NS1 and NS2. Virulence 2023:2283897. [PMID: 37964591 DOI: 10.1080/21505594.2023.2283897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023] Open
Abstract
Human respiratory syncytial virus (hRSV) is a major cause of acute lower respiratory tract infections in children under the age of two as well as in the elderly and immunocompromised worldwide. Despite its discovery over 60 years ago and the global impact on human health, limited specific and effective prophylactic or therapeutic options have been available for hRSV infections. Part of the lack of treatment options is attributed to the legacy of vaccine failure in the 1960s using a formalin-inactivated RSV (FI-RSV), which led to enhancement of disease post exposure to hRSV infection and hampered subsequent development of vaccine candidates. Recent FDA approval of a vaccine for older adults and impending approval for a maternal vaccine are major advancements but leaves children between 6 months and 5 years of age unprotected. Part of this limitation can be attributed to a lack of complete understanding of the factors that contribute to hRSV pathogenesis. The nonstructural proteins NS1 and NS2 are multifunctional virulence factors that are unique to hRSV and that play critical roles during hRSV infection, including antagonizing interferon (IFN) signalling to modulate host responses to hRSV infection. However, the molecular mechanisms by which the nonstructural proteins mediate their IFN inhibitory functions have not been completely defined. Current progress on the characterization of NS1 and NS2 during infection provides deeper insight into their roles. Furthermore, reverse genetics systems for hRSV provide a viable strategy to generate attenuated viruses by introduction of select mutations while maintaining immunogenicity required to elicit a long-term protective response. Here we will review the current state of knowledge of the nonstructural proteins, their contributions to RSV pathogenesis, and their potential as targets for therapeutic development.
Collapse
Affiliation(s)
- Trudy N Merritt
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jingjing Pei
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Daisy W Leung
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
8
|
Agac A, Kolbe SM, Ludlow M, Osterhaus ADME, Meineke R, Rimmelzwaan GF. Host Responses to Respiratory Syncytial Virus Infection. Viruses 2023; 15:1999. [PMID: 37896776 PMCID: PMC10611157 DOI: 10.3390/v15101999] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
Respiratory syncytial virus (RSV) infections are a constant public health problem, especially in infants and older adults. Virtually all children will have been infected with RSV by the age of two, and reinfections are common throughout life. Since antigenic variation, which is frequently observed among other respiratory viruses such as SARS-CoV-2 or influenza viruses, can only be observed for RSV to a limited extent, reinfections may result from short-term or incomplete immunity. After decades of research, two RSV vaccines were approved to prevent lower respiratory tract infections in older adults. Recently, the FDA approved a vaccine for active vaccination of pregnant women to prevent severe RSV disease in infants during their first RSV season. This review focuses on the host response to RSV infections mediated by epithelial cells as the first physical barrier, followed by responses of the innate and adaptive immune systems. We address possible RSV-mediated immunomodulatory and pathogenic mechanisms during infections and discuss the current vaccine candidates and alternative treatment options.
Collapse
Affiliation(s)
| | | | | | | | | | - Guus F. Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (A.A.); (S.M.K.); (M.L.); (A.D.M.E.O.); (R.M.)
| |
Collapse
|
9
|
Grabowski F, Kochańczyk M, Korwek Z, Czerkies M, Prus W, Lipniacki T. Antagonism between viral infection and innate immunity at the single-cell level. PLoS Pathog 2023; 19:e1011597. [PMID: 37669278 PMCID: PMC10503725 DOI: 10.1371/journal.ppat.1011597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/15/2023] [Accepted: 08/02/2023] [Indexed: 09/07/2023] Open
Abstract
When infected with a virus, cells may secrete interferons (IFNs) that prompt nearby cells to prepare for upcoming infection. Reciprocally, viral proteins often interfere with IFN synthesis and IFN-induced signaling. We modeled the crosstalk between the propagating virus and the innate immune response using an agent-based stochastic approach. By analyzing immunofluorescence microscopy images we observed that the mutual antagonism between the respiratory syncytial virus (RSV) and infected A549 cells leads to dichotomous responses at the single-cell level and complex spatial patterns of cell signaling states. Our analysis indicates that RSV blocks innate responses at three levels: by inhibition of IRF3 activation, inhibition of IFN synthesis, and inhibition of STAT1/2 activation. In turn, proteins coded by IFN-stimulated (STAT1/2-activated) genes inhibit the synthesis of viral RNA and viral proteins. The striking consequence of these inhibitions is a lack of coincidence of viral proteins and IFN expression within single cells. The model enables investigation of the impact of immunostimulatory defective viral particles and signaling network perturbations that could potentially facilitate containment or clearance of the viral infection.
Collapse
Affiliation(s)
- Frederic Grabowski
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Marek Kochańczyk
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Zbigniew Korwek
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Maciej Czerkies
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Wiktor Prus
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz Lipniacki
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
- Department of Statistics, Rice University, Houston, Texas, United States of America
| |
Collapse
|
10
|
Bergeron HC, Hansen MR, Tripp RA. Interferons-Implications in the Immune Response to Respiratory Viruses. Microorganisms 2023; 11:2179. [PMID: 37764023 PMCID: PMC10535750 DOI: 10.3390/microorganisms11092179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/15/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Interferons (IFN) are an assemblage of signaling proteins made and released by various host cells in response to stimuli, including viruses. Respiratory syncytial virus (RSV), influenza virus, and SARS-CoV-2 are major causes of respiratory disease that induce or antagonize IFN responses depending on various factors. In this review, the role and function of type I, II, and III IFN responses to respiratory virus infections are considered. In addition, the role of the viral proteins in modifying anti-viral immunity is noted, as are the specific IFN responses that underly the correlates of immunity and protection from disease.
Collapse
Affiliation(s)
| | | | - Ralph A. Tripp
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA 30605, USA; (H.C.B.); (M.R.H.)
| |
Collapse
|
11
|
Lara-Hernandez I, Muñoz-Escalante JC, Bernal-Silva S, Noyola DE, Wong-Chew RM, Comas-García A, Comas-Garcia M. Ultrastructural and Functional Characterization of Mitochondrial Dynamics Induced by Human Respiratory Syncytial Virus Infection in HEp-2 Cells. Viruses 2023; 15:1518. [PMID: 37515204 PMCID: PMC10386036 DOI: 10.3390/v15071518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/27/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Human respiratory syncytial virus (hRSV) is the leading cause of acute lower respiratory tract infections in children under five years of age and older adults worldwide. During hRSV infection, host cells undergo changes in endomembrane organelles, including mitochondria. This organelle is responsible for energy production in the cell and plays an important role in the antiviral response. The present study focuses on characterizing the ultrastructural and functional changes during hRSV infection using thin-section transmission electron microscopy and RT-qPCR. Here we report that hRSV infection alters mitochondrial morphodynamics by regulating the expression of key genes in the antiviral response process, such as Mfn1, VDAC2, and PINK1. Our results suggest that hRSV alters mitochondrial morphology during infection, producing a mitochondrial phenotype with shortened cristae, swollen matrix, and damaged membrane. We also observed that hRSV infection modulates the expression of the aforementioned genes, possibly as an evasion mechanism in the face of cellular antiviral response. Taken together, these results advance our knowledge of the ultrastructural alterations associated with hRSV infection and might guide future therapeutic efforts to develop effective antiviral drugs for hRSV treatment.
Collapse
Affiliation(s)
- Ignacio Lara-Hernandez
- High-Resolution Microscopy Section, Center for Research in Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, San Luis Potosí 78210, Mexico
| | - Juan Carlos Muñoz-Escalante
- Center for Research in Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, San Luis Potosí 78210, Mexico
- Department of Microbiology, School of Medicine, Autonomous University of San Luis Potosí, San Luis Potosí 78210, Mexico
| | - Sofía Bernal-Silva
- Department of Microbiology, School of Medicine, Autonomous University of San Luis Potosí, San Luis Potosí 78210, Mexico
- Genomic Medicine Section, Center for Research in Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, San Luis Potosí 78210, Mexico
| | - Daniel E Noyola
- Center for Research in Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, San Luis Potosí 78210, Mexico
- Department of Microbiology, School of Medicine, Autonomous University of San Luis Potosí, San Luis Potosí 78210, Mexico
| | - Rosa María Wong-Chew
- Research Division, School of Medicine, National Autonomous University of Mexico, Mexico City 04360, Mexico
| | - Andreu Comas-García
- Department of Microbiology, School of Medicine, Autonomous University of San Luis Potosí, San Luis Potosí 78210, Mexico
| | - Mauricio Comas-Garcia
- High-Resolution Microscopy Section, Center for Research in Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, San Luis Potosí 78210, Mexico
- Science Department, Autonomous University of San Luis Potosí, San Luis Potosí 78210, Mexico
- Molecular and Translation Medicine Section, Center for Research in Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, San Luis Potosí 78210, Mexico
| |
Collapse
|
12
|
Hsu BW, Chen BS. Genetic and Epigenetic Host-Virus Network to Investigate Pathogenesis and Identify Biomarkers for Drug Repurposing of Human Respiratory Syncytial Virus via Real-World Two-Side RNA-Seq Data: Systems Biology and Deep-Learning Approach. Biomedicines 2023; 11:1531. [PMID: 37371627 DOI: 10.3390/biomedicines11061531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/23/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Human respiratory syncytial virus (hRSV) affects more than 33 million people each year, but there are currently no effective drugs or vaccines approved. In this study, we first constructed a candidate host-pathogen interspecies genome-wide genetic and epigenetic network (HPI-GWGEN) via big-data mining. Then, we employed reversed dynamic methods via two-side host-pathogen RNA-seq time-profile data to prune false positives in candidate HPI-GWGEN to obtain the real HPI-GWGEN. With the aid of principal-network projection and the annotation of KEGG pathways, we can extract core signaling pathways during hRSV infection to investigate the pathogenic mechanism of hRSV infection and select the corresponding significant biomarkers as drug targets, i.e., TRAF6, STAT3, IRF3, TYK2, and MAVS. Finally, in order to discover potential molecular drugs, we trained a DNN-based DTI model by drug-target interaction databases to predict candidate molecular drugs for these drug targets. After screening these candidate molecular drugs by three drug design specifications simultaneously, i.e., regulation ability, sensitivity, and toxicity. We finally selected acitretin, RS-67333, and phenformin to combine as a potential multimolecule drug for the therapeutic treatment of hRSV infection.
Collapse
Affiliation(s)
- Bo-Wei Hsu
- Laboratory of Automatic Control, Signal Processing and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Bor-Sen Chen
- Laboratory of Automatic Control, Signal Processing and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
13
|
Duda E. How much (evil) intelligence can be encoded by 30 kb? Biol Futur 2023:10.1007/s42977-023-00153-8. [PMID: 36752964 PMCID: PMC9907195 DOI: 10.1007/s42977-023-00153-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 01/13/2023] [Indexed: 02/09/2023]
Abstract
Genomes of most RNA viruses are rarely larger than the size of an average human gene (10-15 kb) and still code for a number of biologically active polypeptides that modify the immune system and metabolism of the host organism in an amazingly complex way. Prolonged coevolution developed tricks by which viruses can dodge many protective mechanisms of the host and lead to the formation of molecular mimicry patterns. Some viruses inhibit the interferon response, interfere with the membrane destroying effects of the activated complement cascade. They can replicate in cellular compartments formed by inner membranes of the cell hiding their characteristic features from diverse pattern recognition receptors. In many cases-and in this respect, the new coronavirus is a champion-they can exploit our own defensive mechanisms to cause serious harm, severe symptoms and frequently deadly disease.
Collapse
Affiliation(s)
- Ernő Duda
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, 6720, Szeged, Hungary.
| |
Collapse
|
14
|
An Unexpected Encounter: Respiratory Syncytial Virus Nonstructural Protein 1 Interacts with Mediator Subunit MED25. J Virol 2022; 96:e0129722. [PMID: 36102648 PMCID: PMC9555202 DOI: 10.1128/jvi.01297-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Innate immune responses, including the production of type I and III interferons, play a crucial role in the first line of defense against RSV infection. However, only a poor induction of type I IFNs is observed during RSV infection, suggesting that RSV has evolved mechanisms to prevent type I IFN expression by the infected host cell.
Collapse
|
15
|
Micro-Players of Great Significance-Host microRNA Signature in Viral Infections in Humans and Animals. Int J Mol Sci 2022; 23:ijms231810536. [PMID: 36142450 PMCID: PMC9504570 DOI: 10.3390/ijms231810536] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022] Open
Abstract
Over time, more and more is becoming known about micro-players of great significance. This is particularly the case for microRNAs (miRNAs; miR), which have been found to participate in the regulation of many physiological and pathological processes in both humans and animals. One such process is viral infection in humans and animals, in which the host miRNAs—alone or in conjunction with the virus—interact on two levels: viruses may regulate the host’s miRNAs to evade its immune system, while the host miRNAs can play anti- or pro-viral roles. The purpose of this comprehensive review is to present the key miRNAs involved in viral infections in humans and animals. We summarize the data in the available literature, indicating that the signature miRNAs in human viral infections mainly include 12 miRNAs (i.e., miR-155, miR-223, miR-146a, miR-122, miR-125b, miR-132, miR-34a, miR -21, miR-16, miR-181 family, let-7 family, and miR-10a), while 10 miRNAs are commonly found in animals (i.e., miR-155, miR-223, miR-146a, miR-145, miR-21, miR-15a/miR-16 cluster, miR-181 family, let-7 family, and miR-122) in this context. Knowledge of which miRNAs are involved in different viral infections and the biological functions that they play can help in understanding the pathogenesis of viral diseases, facilitating the future development of therapeutic agents for both humans and animals.
Collapse
|
16
|
Respiratory Syncytial virus NS1 protein targets the transactivator binding domain of MED25. J Mol Biol 2022; 434:167763. [PMID: 35907573 DOI: 10.1016/j.jmb.2022.167763] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 06/28/2022] [Accepted: 07/21/2022] [Indexed: 11/20/2022]
Abstract
Human RSV is the leading cause of infantile bronchiolitis in the world and one of the major causes of childhood deaths in resource-poor settings. It is a major unmet target for vaccines and anti-viral drugs. Respiratory syncytial virus has evolved a unique strategy to evade host immune response by coding for two non-structural proteins NS1 and NS2. Recently it was shown that in infected cells, nuclear NS1 could be involved in transcription regulation of host genes linked to innate immune response, via interactions with chromatin and the Mediator complex. Here we identified the MED25 Mediator subunit as an NS1 interactor in a yeast two-hybrid screen. We demonstrate that NS1 directly interacts with MED25 in vitro and in cellula, and that this interaction involves the MED25 transactivator binding ACID domain on the one hand, and the C-terminal α3 helix of NS1, with an additional contribution of the globular domain of NS1, on the other hand. By NMR we show that the NS1 α3 sequence primarily binds to the MED25 ACID H2 face, similarly to the α-helical transactivation domains (TADs) of transcription regulators such as Herpex simplex VP16 and ATF6α, a master regulator of ER stress response activated upon viral infection. Moreover, we found out that the NS1 could compete with ATF6α TAD for binding to MED25. These findings point to a mechanism of NS1 interfering with innate immune response by impairing recruitment by cellular TADs of the Mediator via MED25 and hence transcription of specific genes by RNA polymerase II.
Collapse
|
17
|
Qin S, Huang X, Qu S. Baicalin Induces a Potent Innate Immune Response to Inhibit Respiratory Syncytial Virus Replication via Regulating Viral Non-Structural 1 and Matrix RNA. Front Immunol 2022; 13:907047. [PMID: 35812414 PMCID: PMC9259847 DOI: 10.3389/fimmu.2022.907047] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022] Open
Abstract
Respiratory syncytial virus (RSV) infection is the most frequent cause of hospitalization in pediatric patients. Current systemic treatment and vaccines are not curative and re-infection is often associated with a more drastic incidence of the disease. Baicalin is a flavonoid isolated from Scutellaria baicalensis with potent anti-viral characteristics, namely against RSV. However, its precise mechanism of action remains unclear. Here, using in vitro methods and an in vivo murine model of RSV infection, we showed that baicalin inhibits RSV replication induces translational upregulation of type I interferons (IFNs), IFN-α and IFN-β, and reverses epithelial thickening in lung tissues. Moreover, baicalin inhibits transcription of the RSV non-structural proteins NS1 and NS2. Molecular docking and surface plasmon resonance-based affinity analysis showed that baicalin also binds to the α3 helix of the NS1 protein with an affinity constant of 1.119 × 10−5 M. Polysome profiling showed that baicalin inhibits translation of the RSV matrix protein (M) RNA. Baicalin mediates increased release of the ribosomal protein L13a from the large ribosomal subunit, where the extra ribosomal subunit L13a inhibits M RNA translation. These results comprehensively establish the multiple mechanisms by which baicalin induces a potent innate immune response against RSV infection.
Collapse
Affiliation(s)
- Sheng Qin
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| | - Xianzhang Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Shaogang Qu, ; Xianzhang Huang,
| | - Shaogang Qu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
- *Correspondence: Shaogang Qu, ; Xianzhang Huang,
| |
Collapse
|
18
|
Ouyang Y, Liao H, Hu Y, Luo K, Hu S, Zhu H. Innate Immune Evasion by Human Respiratory Syncytial Virus. Front Microbiol 2022; 13:865592. [PMID: 35308390 PMCID: PMC8931408 DOI: 10.3389/fmicb.2022.865592] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/17/2022] [Indexed: 01/03/2023] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of severe respiratory infection in young children. Nearly all individuals become infected in their early childhood, and reinfections with RSV are common throughout life. Primary infection with RSV is usually involved in the symptom of bronchiolitis and pneumonia in the lower respiratory tract, which accounts for over 3 million hospitalizations and approximately 66,000 deaths annually worldwide. Despite the widespread prevalence and high morbidity and lethality rates of diseases caused by RSV infection, there is currently no licensed RSV vaccine. During RSV infection, innate immunity plays the first line of defense to suppress RSV infection and replication. However, RSV has evolved multiple mechanisms to evade the host’s innate immune responses to gain a window of opportunity for efficient viral replication. This review discusses the comprehensive interaction between RSV infection and the host antiviral innate immunity and updates recent findings on how RSV modulates the host innate immune response for survival, which may provide novel insights to find potent drug targets and vaccines against RSV.
Collapse
Affiliation(s)
- Yan Ouyang
- Neonatal/Pediatric Intensive Care Unit, Children's Medical Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Hongqun Liao
- Neonatal/Pediatric Intensive Care Unit, Children's Medical Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Immunotherapeutic Drugs Developing for Childhood Leukemia, Ganzhou, China
| | - Yan Hu
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Kaiyuan Luo
- Neonatal/Pediatric Intensive Care Unit, Children's Medical Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Shaowen Hu
- Basic Medical College of Gannan Medical University, Ganzhou, China
| | - Huifang Zhu
- Neonatal/Pediatric Intensive Care Unit, Children's Medical Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Immunotherapeutic Drugs Developing for Childhood Leukemia, Ganzhou, China
- Basic Medical College of Gannan Medical University, Ganzhou, China
- Institute of Children's Medical, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Huifang Zhu,
| |
Collapse
|
19
|
Short-chain fatty acid acetate triggers antiviral response mediated by RIG-I in cells from infants with respiratory syncytial virus bronchiolitis. EBioMedicine 2022; 77:103891. [PMID: 35220042 PMCID: PMC8871125 DOI: 10.1016/j.ebiom.2022.103891] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/26/2022] [Accepted: 02/04/2022] [Indexed: 12/31/2022] Open
Abstract
Background Gut microbiota-derived short-chain fatty-acid (SFCA) acetate protects mice against RSV A2 strain infection by increasing interferon-β production and expression of interferon-stimulated genes (ISGs). However, the role of SFCA in RSV infection using strains isolated from patients is unknown. Methods We first used RSV clinical strains isolated from infants hospitalized with RSV bronchiolitis to investigate the effects of in vitro SCFA-acetate treatment of human pulmonary epithelial cells. We next examined whether SCFA-acetate treatment is beneficial in a mouse model of RSV infection using clinical isolates. We sought to investigate the relationship of gut microbiota and fecal acetate with disease severity among infants hospitalized with RSV bronchiolitis, and whether treating their respiratory epithelial cells with SCFA-acetate ex-vivo impacts viral load and ISG expression. We further treated epithelial cells from SARS-CoV-2 infected patients with SCFA-acetate. Findings In vitro pre-treatment of A549 cells with SCFA-acetate reduced RSV infection with clinical isolates and increased the expression of RIG-I and ISG15. Animals treated with SCFA-acetate intranasally recovered significantly faster, with reduction in the RSV clinical isolates viral load, and increased lung expression of IFNB1 and the RIG-I. Experiments in RIG-I knockout A549 cells demonstrated that the protection relies on RIG-I presence. Gut microbial profile was associated with bronchiolitis severity and with acetate in stool. Increased SCFA-acetate levels were associated with increasing oxygen saturation at admission, and shorter duration of fever. Ex-vivo treatment of patients’ respiratory cells with SCFA-acetate reduced RSV load and increased expression of ISGs OAS1 and ISG15, and virus recognition receptors MAVS and RIG-I, but not IFNB1. These SCFA-acetate effects were not found on cells from SARS-CoV-2 infected patients. Interpretation SCFA-acetate reduces the severity of RSV infection and RSV viral load through modulation of RIG-I expression. Funding FAPERGS (FAPERGS/MS/CNPq/SESRS no. 03/2017 - PPSUS 17/2551-0001380-8 and COVID-19 20/2551-0000258-6); CNPq 312504/2017-9; CAPES) - Finance Code 001.
Collapse
|
20
|
Van Royen T, Rossey I, Sedeyn K, Schepens B, Saelens X. How RSV Proteins Join Forces to Overcome the Host Innate Immune Response. Viruses 2022; 14:v14020419. [PMID: 35216012 PMCID: PMC8874859 DOI: 10.3390/v14020419] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/10/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of severe acute lower respiratory tract infections in infants worldwide. Although several pattern recognition receptors (PRRs) can sense RSV-derived pathogen-associated molecular patterns (PAMPs), infection with RSV is typically associated with low to undetectable levels of type I interferons (IFNs). Multiple RSV proteins can hinder the host’s innate immune response. The main players are NS1 and NS2 which suppress type I IFN production and signalling in multiple ways. The recruitment of innate immune cells and the production of several cytokines are reduced by RSV G. Next, RSV N can sequester immunostimulatory proteins to inclusion bodies (IBs). N might also facilitate the assembly of a multiprotein complex that is responsible for the negative regulation of innate immune pathways. Furthermore, RSV M modulates the host’s innate immune response. The nuclear accumulation of RSV M has been linked to an impaired host gene transcription, in particular for nuclear-encoded mitochondrial proteins. In addition, RSV M might also directly target mitochondrial proteins which results in a reduced mitochondrion-mediated innate immune recognition of RSV. Lastly, RSV SH might prolong the viral replication in infected cells and influence cytokine production.
Collapse
Affiliation(s)
- Tessa Van Royen
- VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium; (T.V.R.); (I.R.); (K.S.); (B.S.)
- Department for Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Iebe Rossey
- VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium; (T.V.R.); (I.R.); (K.S.); (B.S.)
- Department for Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Koen Sedeyn
- VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium; (T.V.R.); (I.R.); (K.S.); (B.S.)
- Department for Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Bert Schepens
- VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium; (T.V.R.); (I.R.); (K.S.); (B.S.)
- Department for Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Xavier Saelens
- VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium; (T.V.R.); (I.R.); (K.S.); (B.S.)
- Department for Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
- Correspondence:
| |
Collapse
|
21
|
Li J, Boix E. Host Defence RNases as Antiviral Agents against Enveloped Single Stranded RNA Viruses. Virulence 2021; 12:444-469. [PMID: 33660566 PMCID: PMC7939569 DOI: 10.1080/21505594.2021.1871823] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/26/2020] [Accepted: 12/30/2020] [Indexed: 02/06/2023] Open
Abstract
Owing to the recent outbreak of Coronavirus Disease of 2019 (COVID-19), it is urgent to develop effective and safe drugs to treat the present pandemic and prevent other viral infections that might come in the future. Proteins from our own innate immune system can serve as ideal sources of novel drug candidates thanks to their safety and immune regulation versatility. Some host defense RNases equipped with antiviral activity have been reported over time. Here, we try to summarize the currently available information on human RNases that can target viral pathogens, with special focus on enveloped single-stranded RNA (ssRNA) viruses. Overall, host RNases can fight viruses by a combined multifaceted strategy, including the enzymatic target of the viral genome, recognition of virus unique patterns, immune modulation, control of stress granule formation, and induction of autophagy/apoptosis pathways. The review also includes a detailed description of representative enveloped ssRNA viruses and their strategies to interact with the host and evade immune recognition. For comparative purposes, we also provide an exhaustive revision of the currently approved or experimental antiviral drugs. Finally, we sum up the current perspectives of drug development to achieve successful eradication of viral infections.
Collapse
Affiliation(s)
- Jiarui Li
- Dpt. Of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma De Barcelona, Spain
| | - Ester Boix
- Dpt. Of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma De Barcelona, Spain
| |
Collapse
|
22
|
Chathuranga K, Weerawardhana A, Dodantenna N, Lee JS. Regulation of antiviral innate immune signaling and viral evasion following viral genome sensing. Exp Mol Med 2021; 53:1647-1668. [PMID: 34782737 PMCID: PMC8592830 DOI: 10.1038/s12276-021-00691-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/15/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023] Open
Abstract
A harmonized balance between positive and negative regulation of pattern recognition receptor (PRR)-initiated immune responses is required to achieve the most favorable outcome for the host. This balance is crucial because it must not only ensure activation of the first line of defense against viral infection but also prevent inappropriate immune activation, which results in autoimmune diseases. Recent studies have shown how signal transduction pathways initiated by PRRs are positively and negatively regulated by diverse modulators to maintain host immune homeostasis. However, viruses have developed strategies to subvert the host antiviral response and establish infection. Viruses have evolved numerous genes encoding immunomodulatory proteins that antagonize the host immune system. This review focuses on the current state of knowledge regarding key host factors that regulate innate immune signaling molecules upon viral infection and discusses evidence showing how specific viral proteins counteract antiviral responses via immunomodulatory strategies.
Collapse
Affiliation(s)
- Kiramage Chathuranga
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Korea
| | - Asela Weerawardhana
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Korea
| | - Niranjan Dodantenna
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Korea
| | - Jong-Soo Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Korea.
| |
Collapse
|
23
|
Pei J, Beri NR, Zou AJ, Hubel P, Dorando HK, Bergant V, Andrews RD, Pan J, Andrews JM, Sheehan KCF, Pichlmair A, Amarasinghe GK, Brody SL, Payton JE, Leung DW. Nuclear-localized human respiratory syncytial virus NS1 protein modulates host gene transcription. Cell Rep 2021; 37:109803. [PMID: 34644581 PMCID: PMC8609347 DOI: 10.1016/j.celrep.2021.109803] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 04/28/2021] [Accepted: 09/16/2021] [Indexed: 12/13/2022] Open
Abstract
Human respiratory syncytial virus (RSV) is a common cause of lower respiratory tract infections in the pediatric, elderly, and immunocompromised individuals. RSV non-structural protein NS1 is a known cytosolic immune antagonist, but how NS1 modulates host responses remains poorly defined. Here, we observe NS1 partitioning into the nucleus of RSV-infected cells, including the human airway epithelium. Nuclear NS1 coimmunoprecipitates with Mediator complex and is chromatin associated. Chromatin-immunoprecipitation demonstrates enrichment of NS1 that overlaps Mediator and transcription factor binding within the promoters and enhancers of differentially expressed genes during RSV infection. Mutation of the NS1 C-terminal helix reduces NS1 impact on host gene expression. These data suggest that nuclear NS1 alters host responses to RSV infection by binding at regulatory elements of immune response genes and modulating host gene transcription. Our study identifies another layer of regulation by virally encoded proteins that shapes host response and impacts immunity to RSV.
Collapse
Affiliation(s)
- Jingjing Pei
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nina R Beri
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Angela J Zou
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Philipp Hubel
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried/Munich 82152, Germany
| | - Hannah K Dorando
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Valter Bergant
- Institute for Virology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Rebecca D Andrews
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jiehong Pan
- Department of Medicine, Division of Pulmonary and Critical Care, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jared M Andrews
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kathleen C F Sheehan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andreas Pichlmair
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried/Munich 82152, Germany; Institute for Virology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Steven L Brody
- Department of Medicine, Division of Pulmonary and Critical Care, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jacqueline E Payton
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Daisy W Leung
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
24
|
Tseng YY, Kuan CY, Mibayashi M, Chen CJ, Palese P, Albrecht RA, Hsu WL. Interaction between NS1 and Cellular MAVS Contributes to NS1 Mitochondria Targeting. Viruses 2021; 13:1909. [PMID: 34696339 PMCID: PMC8537625 DOI: 10.3390/v13101909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 11/16/2022] Open
Abstract
Influenza A virus nonstructural protein 1 (NS1) plays an important role in evading host innate immunity. NS1 inhibits interferon (IFN) responses via multiple mechanisms, including sequestering dsRNA and suppressing retinoic acid-inducible gene I (RIG-I) signaling by interacting with RIG-I and tripartite motif-containing protein 25 (TRIM25). In the current study, we demonstrated the mitochondrial localization of NS1 at the early stage of influenza virus infection. Since NS1 does not contain mitochondria-targeting signals, we suspected that there is an association between the NS1 and mitochondrial proteins. This hypothesis was tested by demonstrating the interaction of NS1 with mitochondrial antiviral-signaling protein (MAVS) in a RIG-I-independent manner. Importantly, the association with MAVS facilitated the mitochondrial localization of NS1 and thereby significantly impeded MAVS-mediated Type I IFN production.
Collapse
Affiliation(s)
- Yeu-Yang Tseng
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung 402, Taiwan; (Y.-Y.T.); (C.-Y.K.)
- WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- Department of Infectious Diseases, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Chih-Ying Kuan
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung 402, Taiwan; (Y.-Y.T.); (C.-Y.K.)
| | - Masaki Mibayashi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.M.); (C.-J.C.); (P.P.); (R.A.A.)
| | - Chi-Jene Chen
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.M.); (C.-J.C.); (P.P.); (R.A.A.)
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.M.); (C.-J.C.); (P.P.); (R.A.A.)
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Randy A. Albrecht
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.M.); (C.-J.C.); (P.P.); (R.A.A.)
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Wei-Li Hsu
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung 402, Taiwan; (Y.-Y.T.); (C.-Y.K.)
| |
Collapse
|
25
|
Grochowska J, Czerwinska J, Borowski LS, Szczesny RJ. Mitochondrial RNA, a new trigger of the innate immune system. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1690. [PMID: 34498404 DOI: 10.1002/wrna.1690] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 02/06/2023]
Abstract
Mitochondria play a pivotal role in numerous cellular processes. One of them is regulation of the innate immune pathway. In this instance, mitochondria function in two different aspects of regulatory mechanisms. First, mitochondria are part of the antiviral signaling cascade that is triggered in the cytoplasm and transmitted to effector proteins through mitochondria-localized proteins. Second, mitochondria can become an endogenous source of innate immune stimuli. Under some pathophysiological conditions, mitochondria release to the cytoplasm immunogenic factors, such as mitochondrial nucleic acids. Here, we focus on immunogenic mitochondrial double-stranded RNA (mt-dsRNA) and its origin and metabolism. We discuss factors that are responsible for regulating mt-dsRNA and its escape from mitochondria, emphasizing the contribution of polynucleotide phosphorylase (PNPase, PNPT1). Finally, we review current knowledge of the role of PNPase in human health and disease. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Joanna Grochowska
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Jolanta Czerwinska
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Lukasz S Borowski
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Roman J Szczesny
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
26
|
Han B, Wang Y, Zheng M. Inhibition of autophagy promotes human RSV NS1-induced inflammation and apoptosis in vitro. Exp Ther Med 2021; 22:1054. [PMID: 34434268 PMCID: PMC8353648 DOI: 10.3892/etm.2021.10488] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/25/2021] [Indexed: 12/23/2022] Open
Abstract
Human respiratory syncytial virus (RSV) is a major health challenge due to the lack of a safe and effective vaccine and antiviral drugs. RSV non-structural protein 1 (NS1) is the main inhibitor of antiviral signaling pathways in RSV infection; however, the underlying mechanism is unclear. The aim of the present study was to investigate of the role of NS1 and its relationship with autophagy. NS1-Flag plasmid was transfected into A549 cells and the levels of inflammatory cytokines, autophagy markers and apoptosis were detected. In addition, the cells were treated with an autophagy inhibitor, 3-methyladenine for 12 h prior to transfection with the NS1 plasmid to explore the role of autophagy in NS1-transfected cells. The results showed that the production of inflammatory cytokines and autophagy was induced in NS1-transfected cells, and indicated that autophagy prevents the production of cytokines and the activation of apoptosis. Furthermore, the results demonstrated that NS1 activated autophagy partly through the mTOR-p70 S6 kinase signaling pathway. The results suggest that autophagy induced by NS1 transfection through the mTOR pathway can hinder the production of inflammatory cytokines and interferon-α and inhibit cell apoptosis, which may help to explain why autophagy has been shown to be beneficial to viral replication in most studies.
Collapse
Affiliation(s)
- Bing Han
- Department of Pediatrics, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei 441000, P.R. China
| | - Yizhong Wang
- Department of Pediatrics, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei 441000, P.R. China.,Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Mei Zheng
- Department of Pediatrics, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei 441000, P.R. China.,Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
27
|
Mechanisms and consequences of Newcastle disease virus W protein subcellular localization in the nucleus or mitochondria. J Virol 2021; 95:JVI.02087-20. [PMID: 33441338 PMCID: PMC8092705 DOI: 10.1128/jvi.02087-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We previously demonstrated that W proteins from different Newcastle disease virus (NDV) strains localize in either the cytoplasm (e.g., NDV strain SG10) or the nucleus (e.g., NDV strain La Sota). To clarify the mechanism behind these cell localization differences, we overexpressed W protein derived from four different NDV strains or W protein associated with different cellular regions in Vero cells. This revealed that the key region for determining W protein localization is 180-227aa. Further experiments found that there is a nuclear export signal (NES) motif in W protein 211-224aa. W protein could be transported into the nucleus via interaction with KPNA1, KPNA2, and KPNA6 in a nuclear localization signal-dependent manner, and W protein containing an NES was transported back to the cytoplasm in a CRM1-independent manner. Interestingly, we observed that the cytoplasm-localized W protein colocalizes with mitochondria. We rescued the NES-deletion W protein NDV strain rSG10-ΔWC/WΔNES using an NDV reverse genetics system and found that the replication ability, virulence, and pathogenicity of an NDV strain were all higher when the W protein cellular localization was in the nucleus rather than the mitochondria. Further experiments revealed that W protein nuclear localization reduced the expression of IFN-β otherwise stimulated by NDV. Our research reveals the mechanism by which NDV W protein becomes localized to different parts of the cell and demonstrates the outcomes of nuclear or cytoplasmic localization both in vitro and in vivo, laying a foundation for subsequent functional studies of the W protein in NDV and other paramyxoviruses.IMPORTANCE In Newcastle disease virus (NDV), the W protein, like the V protein, is a nonstructural protein encoded by the P gene via RNA editing. Compared with V protein, W protein has a common N-terminal domain but a unique C-terminal domain. V protein is known as a key virulence factor and an important interferon antagonist across the family Paramyxoviridae In contrast, very little is known about the function of NDV W protein, and this limited information is based on studies of the Nipah virus W protein. Here, we investigated the localization mechanism of NDV W protein and its subcellular distribution in mitochondria. We found that W protein localization differences impact IFN-β production, consequently affecting NDV virulence, replication, and pathogenicity. This work provides new insights on the differential localization mechanism of NDV W proteins, along with fundamental knowledge for understanding the functions of W proteins in NDV and other paramyxoviruses.
Collapse
|
28
|
Pei J, Wagner ND, Zou AJ, Chatterjee S, Borek D, Cole AR, Kim PJ, Basler CF, Otwinowski Z, Gross ML, Amarasinghe GK, Leung DW. Structural basis for IFN antagonism by human respiratory syncytial virus nonstructural protein 2. Proc Natl Acad Sci U S A 2021; 118:e2020587118. [PMID: 33649232 PMCID: PMC7958447 DOI: 10.1073/pnas.2020587118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Human respiratory syncytial virus (RSV) nonstructural protein 2 (NS2) inhibits host interferon (IFN) responses stimulated by RSV infection by targeting early steps in the IFN-signaling pathway. But the molecular mechanisms related to how NS2 regulates these processes remain incompletely understood. To address this gap, here we solved the X-ray crystal structure of NS2. This structure revealed a unique fold that is distinct from other known viral IFN antagonists, including RSV NS1. We also show that NS2 directly interacts with an inactive conformation of the RIG-I-like receptors (RLRs) RIG-I and MDA5. NS2 binding prevents RLR ubiquitination, a process critical for prolonged activation of downstream signaling. Structural analysis, including by hydrogen-deuterium exchange coupled to mass spectrometry, revealed that the N terminus of NS2 is essential for binding to the RIG-I caspase activation and recruitment domains. N-terminal mutations significantly diminish RIG-I interactions and result in increased IFNβ messenger RNA levels. Collectively, our studies uncover a previously unappreciated regulatory mechanism by which NS2 further modulates host responses and define an approach for targeting host responses.
Collapse
Affiliation(s)
- Jingjing Pei
- John T. Milliken Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO 63110
| | - Nicole D Wagner
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63110
| | - Angela J Zou
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Srirupa Chatterjee
- John T. Milliken Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO 63110
| | - Dominika Borek
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Aidan R Cole
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Preston J Kim
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Christopher F Basler
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303
| | - Zbyszek Otwinowski
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63110
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Daisy W Leung
- John T. Milliken Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO 63110;
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
29
|
Bruno SR, Anathy V. Lung epithelial endoplasmic reticulum and mitochondrial 3D ultrastructure: a new frontier in lung diseases. Histochem Cell Biol 2021; 155:291-300. [PMID: 33598824 PMCID: PMC7889473 DOI: 10.1007/s00418-020-01950-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2020] [Indexed: 12/15/2022]
Abstract
It has long been appreciated that the endoplasmic reticulum (ER) and mitochondria, organelles important for regular cell function and survival, also play key roles in pathogenesis of various lung diseases, including asthma, fibrosis, and infections. Alterations in processes regulated within these organelles, including but not limited to protein folding in the ER and oxidative phosphorylation in the mitochondria, are important in disease pathogenesis. In recent years it has also become increasingly apparent that organelle structure dictates function. It is now clear that organelles must maintain precise organization and localization for proper function. Newer microscopy capabilities have allowed the scientific community to reveal, via 3D imaging, that the structure of these organelles and their interactions with each other are a main component of regulating function and, therefore, effects on the disease state. In this review, we will examine how 3D imaging through techniques could allow advancements in knowledge of how the ER and mitochondria function and the roles they may play in lung epithelia in progression of lung disease.
Collapse
Affiliation(s)
- Sierra R Bruno
- Department of Pathology and Laboratory Medicine, University of Vermont, Larner College of Medicine, 149 Beaumont Ave, Burlington, VT, 05405, USA
| | - Vikas Anathy
- Department of Pathology and Laboratory Medicine, University of Vermont, Larner College of Medicine, 149 Beaumont Ave, Burlington, VT, 05405, USA.
| |
Collapse
|
30
|
Liu Z, Fan P, Chen M, Xu Y, Zhao D. miRNAs and Leukotrienes in Respiratory Syncytial Virus Infection. Front Pediatr 2021; 9:602195. [PMID: 33996675 PMCID: PMC8116547 DOI: 10.3389/fped.2021.602195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 03/17/2021] [Indexed: 01/03/2023] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that regulate posttranscription by binding to 3'-untranslated regions of target mRNAs. Recent functional studies have elucidated mechanisms that miRNAs regulate leukotriene synthesis by perturbing arachidonic acid metabolism. Both microarrays and high-throughput sequencing revealed distinct differential expression of miRNAs in children with respiratory syncytial virus (RSV) infection compared with healthy controls. Abnormal miRNA expression may contribute to higher leukotriene levels, which is associated with airway hyperreactivity. Targeting miRNAs may benefit to restore the homeostasis of inflammatory reaction and provide new strategies to alleviate airway hyperreactivity induced by RSV. In this article, we provide an overview of the current knowledge about miRNAs modulating leukotrienes through regulation of arachidonic acid metabolism with a special focus on miRNAs aberrantly expressed in children with RSV infection.
Collapse
Affiliation(s)
- Zhi Liu
- Department of Pediatrics, Children's Digital Health and Data Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Panpan Fan
- Department of Pediatrics, Children's Digital Health and Data Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ming Chen
- Department of Pediatrics, Children's Digital Health and Data Center, Zhongnan Hospital of Wuhan University, Wuhan, China.,Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Yueshi Xu
- Department of Pediatrics, Children's Digital Health and Data Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dongchi Zhao
- Department of Pediatrics, Children's Digital Health and Data Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
31
|
Efstathiou C, Abidi SH, Harker J, Stevenson NJ. Revisiting respiratory syncytial virus's interaction with host immunity, towards novel therapeutics. Cell Mol Life Sci 2020; 77:5045-5058. [PMID: 32556372 PMCID: PMC7298439 DOI: 10.1007/s00018-020-03557-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/24/2022]
Abstract
Every year there are > 33 million cases of Respiratory Syncytial Virus (RSV)-related respiratory infection in children under the age of five, making RSV the leading cause of lower respiratory tract infection (LRTI) in infants. RSV is a global infection, but 99% of related mortality is in low/middle-income countries. Unbelievably, 62 years after its identification, there remains no effective treatment nor vaccine for this deadly virus, leaving infants, elderly and immunocompromised patients at high risk. The success of all pathogens depends on their ability to evade and modulate the host immune response. RSV has a complex and intricate relationship with our immune systems, but a clearer understanding of these interactions is essential in the development of effective medicines. Therefore, in a bid to update and focus our research community's understanding of RSV's interaction with immune defences, this review aims to discuss how our current knowledgebase could be used to combat this global viral threat.
Collapse
Affiliation(s)
- C Efstathiou
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - S H Abidi
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - J Harker
- Inflammation, Repair and Development Section, National Heart and Lung Institute, Imperial College London, South Kensington, London, UK
| | - N J Stevenson
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
32
|
Jobe F, Simpson J, Hawes P, Guzman E, Bailey D. Respiratory Syncytial Virus Sequesters NF-κB Subunit p65 to Cytoplasmic Inclusion Bodies To Inhibit Innate Immune Signaling. J Virol 2020; 94:JVI.01380-20. [PMID: 32878896 PMCID: PMC7592213 DOI: 10.1128/jvi.01380-20] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/28/2020] [Indexed: 12/20/2022] Open
Abstract
Viruses routinely employ strategies to prevent the activation of innate immune signaling in infected cells. Respiratory syncytial virus (RSV) is no exception, as it encodes two accessory proteins (NS1 and NS2) which are well established to block interferon signaling. However, RSV-encoded mechanisms for inhibiting NF-κB signaling are less well characterized. In this study, we identified RSV-mediated antagonism of this pathway, independent of the NS1 and NS2 proteins and indeed distinct from other known viral mechanisms of NF-κB inhibition. In both human and bovine RSV-infected cells, we demonstrated that the p65 subunit of NF-κB is rerouted to perinuclear puncta in the cytoplasm, which are synonymous with viral inclusion bodies (IBs), the site for viral RNA replication. Captured p65 was unable to translocate to the nucleus or transactivate a NF-κB reporter following tumor necrosis factor alpha (TNF-α) stimulation, confirming the immune-antagonistic nature of this sequestration. Subsequently, we used correlative light electron microscopy (CLEM) to colocalize the RSV N protein and p65 within bovine RSV (bRSV) IBs, which are granular, membraneless regions of cytoplasm with liquid organelle-like properties. Additional characterization of bRSV IBs indicated that although they are likely formed by liquid-liquid phase separation (LLPS), they have a differential sensitivity to hypotonic shock proportional to their size. Together, these data identify a novel mechanism for viral antagonism of innate immune signaling which relies on sequestration of the NF-κB subunit p65 to a biomolecular condensate-a mechanism conserved across the Orthopneumovirus genus and not host-cell specific. More generally, they provide additional evidence that RNA virus IBs are important immunomodulatory complexes within infected cells.IMPORTANCE Many viruses replicate almost entirely in the cytoplasm of infected cells; however, how these pathogens are able to compartmentalize their life cycle to provide favorable conditions for replication and to avoid the litany of antiviral detection mechanisms in the cytoplasm remains relatively uncharacterized. In this manuscript, we show that bovine respiratory syncytial virus (bRSV), which infects cattle, does this by generating inclusion bodies in the cytoplasm of infected cells. We confirm that both bRSV and human RSV viral RNA replication takes place in these inclusion bodies, likely meaning these organelles are a functionally conserved feature of this group of viruses (the orthopneumoviruses). Importantly, we also showed that these organelles are able to capture important innate immune transcription factors (in this case NF-KB), blocking the normal signaling processes that tell the nucleus the cell is infected, which may help us to understand how these viruses cause disease.
Collapse
Affiliation(s)
| | | | - Philippa Hawes
- The Pirbright Institute, Guildford, Surrey, United Kingdom
| | - Efrain Guzman
- The Pirbright Institute, Guildford, Surrey, United Kingdom
| | - Dalan Bailey
- The Pirbright Institute, Guildford, Surrey, United Kingdom
| |
Collapse
|
33
|
Andrade CA, Pacheco GA, Gálvez NMS, Soto JA, Bueno SM, Kalergis AM. Innate Immune Components that Regulate the Pathogenesis and Resolution of hRSV and hMPV Infections. Viruses 2020; 12:E637. [PMID: 32545470 PMCID: PMC7354512 DOI: 10.3390/v12060637] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/09/2020] [Accepted: 06/09/2020] [Indexed: 02/06/2023] Open
Abstract
The human respiratory syncytial virus (hRSV) and human Metapneumovirus (hMPV) are two of the leading etiological agents of acute lower respiratory tract infections, which constitute the main cause of mortality in infants. However, there are currently approved vaccines for neither hRSV nor hMPV. Moreover, despite the similarity between the pathology caused by both viruses, the immune response elicited by the host is different in each case. In this review, we discuss how dendritic cells, alveolar macrophages, neutrophils, eosinophils, natural killer cells, innate lymphoid cells, and the complement system regulate both pathogenesis and the resolution of hRSV and hMPV infections. The roles that these cells play during infections by either of these viruses will help us to better understand the illnesses they cause. We also discuss several controversial findings, relative to some of these innate immune components. To better understand the inflammation in the lungs, the role of the respiratory epithelium in the recruitment of innate immune cells is briefly discussed. Finally, we review the main prophylactic strategies and current vaccine candidates against both hRSV and hMPV.
Collapse
Affiliation(s)
- Catalina A. Andrade
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (C.A.A.); (G.A.P.); (N.M.S.G.); (J.A.S.); (S.M.B.)
| | - Gaspar A. Pacheco
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (C.A.A.); (G.A.P.); (N.M.S.G.); (J.A.S.); (S.M.B.)
| | - Nicolas M. S. Gálvez
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (C.A.A.); (G.A.P.); (N.M.S.G.); (J.A.S.); (S.M.B.)
| | - Jorge A. Soto
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (C.A.A.); (G.A.P.); (N.M.S.G.); (J.A.S.); (S.M.B.)
| | - Susan M. Bueno
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (C.A.A.); (G.A.P.); (N.M.S.G.); (J.A.S.); (S.M.B.)
| | - Alexis M. Kalergis
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (C.A.A.); (G.A.P.); (N.M.S.G.); (J.A.S.); (S.M.B.)
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile
| |
Collapse
|
34
|
Ren Z, Ding T, Zuo Z, Xu Z, Deng J, Wei Z. Regulation of MAVS Expression and Signaling Function in the Antiviral Innate Immune Response. Front Immunol 2020; 11:1030. [PMID: 32536927 PMCID: PMC7267026 DOI: 10.3389/fimmu.2020.01030] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/29/2020] [Indexed: 12/13/2022] Open
Abstract
Viral infection is controlled by host innate immune cells that express specialized receptors for viral components. Engagement of these pattern recognition receptors triggers a series of signaling pathways that culminate in the production of antiviral mediators such as type I interferons. Mitochondrial antiviral-signaling protein (MAVS) acts as a central hub for signal transduction initiated by RIG-I-like receptors, which predominantly recognize viral RNA. MAVS expression and function are regulated by both post-transcriptional and post-translational mechanisms, of which ubiquitination and phosphorylation play the most important roles in modulating MAVS function. Increasing evidence indicates that viruses can escape the host antiviral response by interfering at multiple points in the MAVS signaling pathways, thereby maintaining viral survival and replication. This review summarizes recent studies on the mechanisms by which MAVS expression and signaling are normally regulated and on the various strategies employed by viruses to antagonize MAVS activity, which may provide new insights into the design of novel antiviral agents.
Collapse
Affiliation(s)
- Zhihua Ren
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ting Ding
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhicai Zuo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhiwen Xu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Junliang Deng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhanyong Wei
- The College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
35
|
Thornhill EM, Verhoeven D. Respiratory Syncytial Virus's Non-structural Proteins: Masters of Interference. Front Cell Infect Microbiol 2020; 10:225. [PMID: 32509597 PMCID: PMC7248305 DOI: 10.3389/fcimb.2020.00225] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/22/2020] [Indexed: 01/12/2023] Open
Abstract
Respiratory Syncytial Virus (RSV) is a highly prevalent virus that affects the majority of the population. The virus can cause severe disease in vulnerable populations leading to high hospitalization rates from bronchiolitis or secondary bacterial infections leading to pneumonia. Two early and non-structural proteins (Ns1 and Ns2), strongly over-ride the antiviral innate system but also diminish the adaptive response as well. This review will cover interactions of Ns1 and Ns2 with the host antiviral response with a focus on alterations to signaling pathways, cytokine gene expression, and effects of the Ns proteins on mitochondria.
Collapse
Affiliation(s)
| | - David Verhoeven
- Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
36
|
Hu M, Bogoyevitch MA, Jans DA. Impact of Respiratory Syncytial Virus Infection on Host Functions: Implications for Antiviral Strategies. Physiol Rev 2020; 100:1527-1594. [PMID: 32216549 DOI: 10.1152/physrev.00030.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Respiratory syncytial virus (RSV) is one of the leading causes of viral respiratory tract infection in infants, the elderly, and the immunocompromised worldwide, causing more deaths each year than influenza. Years of research into RSV since its discovery over 60 yr ago have elucidated detailed mechanisms of the host-pathogen interface. RSV infection elicits widespread transcriptomic and proteomic changes, which both mediate the host innate and adaptive immune responses to infection, and reflect RSV's ability to circumvent the host stress responses, including stress granule formation, endoplasmic reticulum stress, oxidative stress, and programmed cell death. The combination of these events can severely impact on human lungs, resulting in airway remodeling and pathophysiology. The RSV membrane envelope glycoproteins (fusion F and attachment G), matrix (M) and nonstructural (NS) 1 and 2 proteins play key roles in modulating host cell functions to promote the infectious cycle. This review presents a comprehensive overview of how RSV impacts the host response to infection and how detailed knowledge of the mechanisms thereof can inform the development of new approaches to develop RSV vaccines and therapeutics.
Collapse
Affiliation(s)
- MengJie Hu
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia; and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Marie A Bogoyevitch
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia; and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - David A Jans
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia; and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
37
|
Contribution of Dendritic Cells in Protective Immunity against Respiratory Syncytial Virus Infection. Viruses 2020; 12:v12010102. [PMID: 31952261 PMCID: PMC7020095 DOI: 10.3390/v12010102] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 02/07/2023] Open
Abstract
Respiratory syncytial virus (RSV) is a major cause of severe respiratory disease in infants and the elderly. The socioeconomic burden of RSV infection is substantial because it leads to serious respiratory problems, subsequent hospitalization, and mortality. Despite its clinical significance, a safe and effective vaccine is not yet available to prevent RSV infection. Upon RSV infection, lung dendritic cells (DCs) detecting pathogens migrate to the lymph nodes and activate the adaptive immune response. Therefore, RSV has evolved various immunomodulatory strategies to inhibit DC function. Due to the capacity of RSV to modulate defense mechanisms in hosts, RSV infection results in inappropriate activation of immune responses resulting in immunopathology and frequent reinfection throughout life. This review discusses how DCs recognize invading RSV and induce adaptive immune responses, as well as the regulatory mechanisms mediated by RSV to disrupt DC functions and ultimately avoid host defenses.
Collapse
|
38
|
Respiratory syncytial virus nonstructural proteins 1 and 2: Exceptional disrupters of innate immune responses. PLoS Pathog 2019; 15:e1007984. [PMID: 31622448 PMCID: PMC6797084 DOI: 10.1371/journal.ppat.1007984] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human respiratory syncytial virus (RSV) is the most important cause of acute lower respiratory tract disease in infants worldwide. As a first line of defense against respiratory infections, innate immune responses, including the production of type I and III interferons (IFNs), play an important role. Upon infection with RSV, multiple pattern recognition receptors (PRRs) can recognize RSV-derived pathogen-associated molecular patterns (PAMPs) and mount innate immune responses. Retinoic-acid-inducible gene-I (RIG-I) and nucleotide-binding oligomerization domain-containing protein 2 (NOD2) have been identified as important innate receptors to mount type I IFNs during RSV infection. However, type I IFN levels remain surprisingly low during RSV infection despite strong viral replication. The poor induction of type I IFNs can be attributed to the cooperative activity of 2 unique, nonstructural (NS) proteins of RSV, i.e., NS1 and NS2. These viral proteins have been shown to suppress both the production and signaling of type I and III IFNs by counteracting a plethora of key host innate signaling proteins. Moreover, increasing numbers of IFN-stimulated genes (ISGs) are being identified as targets of the NS proteins in recent years, highlighting an underexplored protein family in the identification of NS target proteins. To understand the diverse effector functions of NS1 and NS2, Goswami and colleagues proposed the hypothesis of the NS degradasome (NSD) complex, a multiprotein complex made up of, at least, NS1 and NS2. Furthermore, the crystal structure of NS1 was resolved recently and, remarkably, identified NS1 as a structural paralogue of the RSV matrix protein. Unfortunately, no structural data on NS2 have been published so far. In this review, we briefly describe the PRRs that mount innate immune responses upon RSV infection and provide an overview of the various effector functions of NS1 and NS2. Furthermore, we discuss the ubiquitination effector functions of NS1 and NS2, which are in line with the hypothesis that the NSD shares features with the canonical 26S proteasome.
Collapse
|
39
|
Boyoglu-Barnum S, Chirkova T, Anderson LJ. Biology of Infection and Disease Pathogenesis to Guide RSV Vaccine Development. Front Immunol 2019; 10:1675. [PMID: 31402910 PMCID: PMC6677153 DOI: 10.3389/fimmu.2019.01675] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/04/2019] [Indexed: 12/21/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a leading cause of severe lower respiratory tract disease in young children and a substantial contributor to respiratory tract disease throughout life and as such a high priority for vaccine development. However, after nearly 60 years of research no vaccine is yet available. The challenges to developing an RSV vaccine include the young age, 2-4 months of age, for the peak of disease, the enhanced RSV disease associated with the first RSV vaccine, formalin-inactivated RSV with an alum adjuvant (FI-RSV), and difficulty achieving protection as illustrated by repeat infections with disease that occur throughout life. Understanding the biology of infection and disease pathogenesis has and will continue to guide vaccine development. In this paper, we review the roles that RSV proteins play in the biology of infection and disease pathogenesis and the corresponding contribution to live attenuated and subunit RSV vaccines. Each of RSV's 11 proteins are in the design of one or more vaccines. The G protein's contribution to disease pathogenesis through altering host immune responses as well as its role in the biology of infection suggest it can make a unique contribution to an RSV vaccine, both live attenuated and subunit vaccines. One of G's potential unique contributions to a vaccine is the potential for anti-G immunity to have an anti-inflammatory effect independent of virus replication. Though an anti-viral effect is essential to an effective RSV vaccine, it is important to remember that the goal of a vaccine is to prevent disease. Thus, other effects of the infection, such as G's alteration of the host immune response may provide opportunities to induce responses that block this effect and improve an RSV vaccine. Keeping in mind the goal of a vaccine is to prevent disease and not virus replication may help identify new strategies for other vaccine challenges, such as improving influenza vaccines and developing HIV vaccines.
Collapse
Affiliation(s)
| | - Tatiana Chirkova
- Department of Pediatrics, Emory University and Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Larry J. Anderson
- Department of Pediatrics, Emory University and Children's Healthcare of Atlanta, Atlanta, GA, United States
| |
Collapse
|
40
|
Conci J, Alvarez-Paggi D, de Oliveira GAP, Pagani TD, Esperante SA, Borkosky SS, Aran M, Alonso LG, Mohana-Borges R, Prat-Gay GD. Conformational Isomerization Involving Conserved Proline Residues Modulates Oligomerization of the NS1 Interferon Response Inhibitor from the Syncytial Respiratory Virus. Biochemistry 2019; 58:2883-2892. [PMID: 31243994 DOI: 10.1021/acs.biochem.8b01288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Interferon response suppression by the respiratory syncytial virus relies on two unique nonstructural proteins, NS1 and NS2, that interact with cellular partners through high-order complexes. We hypothesized that two conserved proline residues, P81 and P67, participate in the conformational change leading to oligomerization. We found that the molecular dynamics of NS1 show a highly mobile C-terminal helix, which becomes rigid upon in silico replacement of P81. A soluble oligomerization pathway into regular spherical structures at low ionic strengths competes with an aggregation pathway at high ionic strengths with an increase in temperature. P81A requires higher temperatures to oligomerize and has a small positive effect on aggregation, while P67A is largely prone to aggregation. Chemical denaturation shows a first transition, involving a high fluorescence and ellipticity change corresponding to both a conformational change and substantial effects on the environment of its single tryptophan, that is strongly destabilized by P67A but stabilized by P81A. The subsequent global cooperative unfolding corresponding to the main β-sheet core is not affected by the proline mutations. Thus, a clear link exists between the effect of P81 and P67 on the stability of the first transition and oligomerization/aggregation. Interestingly, both P67 and P81 are located far away in space and sequence from the C-terminal helix, indicating a marked global structural dynamics. This provides a mechanism for modulating the oligomerization of NS1 by unfolding of a weak helix that exposes hydrophobic surfaces, linked to the participation of NS1 in multiprotein complexes.
Collapse
Affiliation(s)
- Julieta Conci
- Protein Structure-Function and Engineering Laboratory , Fundación Instituto Leloir and IIBBA-CONICET , Av. Patricias Argentinas 435 , 1405 Buenos Aires , Argentina
| | - Damian Alvarez-Paggi
- Protein Structure-Function and Engineering Laboratory , Fundación Instituto Leloir and IIBBA-CONICET , Av. Patricias Argentinas 435 , 1405 Buenos Aires , Argentina
| | - Guilherme A P de Oliveira
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas , Universidade Federal do Rio de Janeiro , 21941-902 Rio de Janeiro , Brazil
| | - Talita D Pagani
- Instituto de Biofísica Carlos Chagas Filho , Universidade Federal do Rio de Janeiro , 21941-902 Rio de Janeiro , Brazil
| | - Sebastian A Esperante
- Protein Structure-Function and Engineering Laboratory , Fundación Instituto Leloir and IIBBA-CONICET , Av. Patricias Argentinas 435 , 1405 Buenos Aires , Argentina
| | - Silvina S Borkosky
- Protein Structure-Function and Engineering Laboratory , Fundación Instituto Leloir and IIBBA-CONICET , Av. Patricias Argentinas 435 , 1405 Buenos Aires , Argentina
| | - Martin Aran
- Protein Structure-Function and Engineering Laboratory , Fundación Instituto Leloir and IIBBA-CONICET , Av. Patricias Argentinas 435 , 1405 Buenos Aires , Argentina
| | - Leonardo G Alonso
- Protein Structure-Function and Engineering Laboratory , Fundación Instituto Leloir and IIBBA-CONICET , Av. Patricias Argentinas 435 , 1405 Buenos Aires , Argentina
| | - Ronaldo Mohana-Borges
- Instituto de Biofísica Carlos Chagas Filho , Universidade Federal do Rio de Janeiro , 21941-902 Rio de Janeiro , Brazil
| | - Gonzalo de Prat-Gay
- Protein Structure-Function and Engineering Laboratory , Fundación Instituto Leloir and IIBBA-CONICET , Av. Patricias Argentinas 435 , 1405 Buenos Aires , Argentina
| |
Collapse
|
41
|
Suzuki H, Kameyama T, Takaoka A. BinCARD2 as a positive regulator of interferon response in innate immunity. Biochem Biophys Res Commun 2019; 511:287-293. [PMID: 30795865 DOI: 10.1016/j.bbrc.2019.02.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 02/06/2019] [Indexed: 10/27/2022]
Abstract
Innate immunity is a system that recognizes primarily and excludes pathogenic microorganism. MAVS/IPS-1/Cardif/Visa functions as an adapter protein for RIG-I like receptors (RLRs) and plays a key role in the production of antiviral proteins, interferons (IFNs), for RNA viruses. However, the activation mechanism is not fully understood. Here, we show that BinCARD isoform2 (BinCARD2), carrying CARD domain structure like MAVS, functions in innate immune response. Knockdown of BinCARD2 reduced the RLR ligand-induced expression of IFN-β mRNA and activation of the IFNB promoter. The activation of the IFNB promoter by overexpression of MAVS or TBK1 was suppressed by silencing of BinCARD2, but no effect on IFNB promoter activation by overexpression of TRIF or constitutive activated IRF-3. Furthermore, we confirmed that BinCARD2 protein associated with MAVS but not TBK1 by immunoprecipitation and colocalized with MAVS. Accordingly, we investigated whether BinCARD2 was involved in MAVS activation and showed that siBinCARD2 did not affect RIG-I/MAVS binding but impaired the MAVS oligomerization. Moreover, we infected A549 cells with vesicular stomatitis virus (VSV) and found that induction of IFN-β and IL-6 mRNA after VSV infection was decreased by BinCARD2 knockdown. Thus, these data may suggest that BinCARD2 associates with MAVS to positively modulate the oligomerization in the RIG-I like receptors pathway and activates innate immune response.
Collapse
Affiliation(s)
- Hiraku Suzuki
- Division of Signaling in Cancer and Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0815, Japan; Oral Biochemistry and Molecular Biology, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, 060-8586, Japan; Center for Medical Education, Graduate School of Medicine, Gunma University, Maebashi, Gunma, 371-8511, Japan.
| | - Takeshi Kameyama
- Division of Signaling in Cancer and Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0815, Japan
| | - Akinori Takaoka
- Division of Signaling in Cancer and Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0815, Japan
| |
Collapse
|
42
|
Oh DS, Kim TH, Lee HK. Differential Role of Anti-Viral Sensing Pathway for the Production of Type I Interferon β in Dendritic Cells and Macrophages Against Respiratory Syncytial Virus A2 Strain Infection. Viruses 2019; 11:v11010062. [PMID: 30650519 PMCID: PMC6356365 DOI: 10.3390/v11010062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/10/2019] [Accepted: 01/12/2019] [Indexed: 12/11/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a major cause of respiratory infectious disease in infants and young children. Dendritic cells (DCs) and macrophages (MACs) are known to play important roles in RSV recognition, and in the production of type I interferons (IFNs) and pro-inflammatory cytokine in RSV infection. Toll-like receptor 7 (TLR7), myeloid differentiation primary response 88 (MyD88), and mitochondrial antiviral-signaling protein (MAVS) are known to be important for the RSV sensing pathway in DCs and MACs. However, despite the critical roles of type I IFNs in the anti-RSV immune response, the pattern recognition receptors (PRRs) that are required for RSV sensing in DCs and MACs remain unclear. Here, we investigate the pathway activated by RSV A2 strain infection using an IFN-β/YFP reporter mouse model to visualize IFN-β-producing cells and in vitro RSV infection in bone marrow-derived DCs (BM-DCs) and macrophages (BM-DMs). We present our finding that MyD88, but not TLR7, are important for RSV recognition and type I IFN and pro-inflammatory production in DCs and MACs. MAVS-deficient BM-DCs and BM-DMs show impaired induction of IFN-β production upon RSV stimulation, and this effect is RSV replication-dependent. Our study provides information on cell type-specific PRR requirements in innate immune responses against RSV infection.
Collapse
Affiliation(s)
- Dong Sun Oh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Tae Hoon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam 13496, Republic of Korea.
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
- KAIST Institute for Health Science and Technology, KAIST, Daejeon 34141, Republic of Korea.
| |
Collapse
|
43
|
Hong Y, Bai M, Qi X, Li C, Liang M, Li D, Cardona CJ, Xing Z. Suppression of the IFN-α and -β Induction through Sequestering IRF7 into Viral Inclusion Bodies by Nonstructural Protein NSs in Severe Fever with Thrombocytopenia Syndrome Bunyavirus Infection. THE JOURNAL OF IMMUNOLOGY 2018; 202:841-856. [DOI: 10.4049/jimmunol.1800576] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 11/26/2018] [Indexed: 12/12/2022]
|
44
|
Ban J, Lee NR, Lee NJ, Lee JK, Quan FS, Inn KS. Human Respiratory Syncytial Virus NS 1 Targets TRIM25 to Suppress RIG-I Ubiquitination and Subsequent RIG-I-Mediated Antiviral Signaling. Viruses 2018; 10:E716. [PMID: 30558248 PMCID: PMC6316657 DOI: 10.3390/v10120716] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 12/09/2018] [Accepted: 12/12/2018] [Indexed: 12/22/2022] Open
Abstract
Respiratory syncytial virus (RSV) causes severe acute lower respiratory tract disease. Retinoic acid-inducible gene-I (RIG-I) serves as an innate immune sensor and triggers antiviral responses upon recognizing viral infections including RSV. Since tripartite motif-containing protein 25 (TRIM25)-mediated K63-polyubiquitination is crucial for RIG-I activation, several viruses target initial RIG-I activation through ubiquitination. RSV NS1 and NS2 have been shown to interfere with RIG-I-mediated antiviral signaling. In this study, we explored the possibility that NS1 suppresses RIG-I-mediated antiviral signaling by targeting TRIM25. Ubiquitination of ectopically expressed RIG-I-2Cards domain was decreased by RSV infection, indicating that RSV possesses ability to inhibit TRIM25-mediated RIG-I ubiquitination. Similarly, ectopic expression of NS1 sufficiently suppressed TRIM25-mediated RIG-I ubiquitination. Furthermore, interaction between NS1 and TRIM25 was detected by a co-immunoprecipitation assay. Further biochemical assays showed that the SPRY domain of TRIM25, which is responsible for interaction with RIG-I, interacted sufficiently with NS1. Suppression of RIG-I ubiquitination by NS1 resulted in decreased interaction between RIG-I and its downstream molecule, MAVS. The suppressive effect of NS1 on RIG-I signaling could be abrogated by overexpression of TRIM25. Collectively, this study suggests that RSV NS1 interacts with TRIM25 and interferes with RIG-I ubiquitination to suppress type-I interferon signaling.
Collapse
Affiliation(s)
- Junsu Ban
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Korea.
| | - Na-Rae Lee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Korea.
| | - Noh-Jin Lee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Korea.
| | - Jong Kil Lee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Korea.
| | - Fu-Shi Quan
- Department of Medical Zoology, School of Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Korea.
| | - Kyung-Soo Inn
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Korea.
| |
Collapse
|
45
|
Noor A, Krilov LR. Respiratory syncytial virus vaccine: where are we now and what comes next? Expert Opin Biol Ther 2018; 18:1247-1256. [PMID: 30426788 DOI: 10.1080/14712598.2018.1544239] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infection in infants and elderly and to date, there is no safe or effective vaccine against RSV. AREAS COVERED This review provides a roadmap to RSV vaccine development. It is a journey spanning over more than half a century from the initial disappointment with inactivated formalin vaccine to the current advancements in vaccine technology. We highlight the important aspects of RSV structural biology and protective immune response. We include discussion of newer fusion glycoprotein immune targets and current vaccine candidates. We used Pub Med and Medline resources for literature search. EXPERT OPINION A resurgence of information on the burden related to RSV infection coupled with the newer understanding of the molecular mechanism of RSV infection has reignited a tremendous activity in RSV vaccine discovery. The vaccine pipeline is diverse and target populations are varied, thus making the goal of a safe and effective RSV vaccine in the future within reach.
Collapse
Affiliation(s)
- Asif Noor
- a Department of Pediatrics, Children's Medical Center , NYU Winthrop Hospital , Mineola , NY , USA
| | - Leonard R Krilov
- a Department of Pediatrics, Children's Medical Center , NYU Winthrop Hospital , Mineola , NY , USA.,b Department of Pediatrics, Stony Brook School of Medicine , State University of New York , Stony Brook , NY , USA
| |
Collapse
|
46
|
Khomich OA, Kochetkov SN, Bartosch B, Ivanov AV. Redox Biology of Respiratory Viral Infections. Viruses 2018; 10:392. [PMID: 30049972 PMCID: PMC6115776 DOI: 10.3390/v10080392] [Citation(s) in RCA: 268] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/17/2018] [Accepted: 07/24/2018] [Indexed: 12/16/2022] Open
Abstract
Respiratory viruses cause infections of the upper or lower respiratory tract and they are responsible for the common cold-the most prevalent disease in the world. In many cases the common cold results in severe illness due to complications, such as fever or pneumonia. Children, old people, and immunosuppressed patients are at the highest risk and require fast diagnosis and therapeutic intervention. However, the availability and efficiencies of existing therapeutic approaches vary depending on the virus. Investigation of the pathologies that are associated with infection by respiratory viruses will be paramount for diagnosis, treatment modalities, and the development of new therapies. Changes in redox homeostasis in infected cells are one of the key events that is linked to infection with respiratory viruses and linked to inflammation and subsequent tissue damage. Our review summarizes current knowledge on changes to redox homeostasis, as induced by the different respiratory viruses.
Collapse
Affiliation(s)
- Olga A Khomich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str, 32, 119991 Moscow, Russia.
- Inserm U1052, Cancer Research Center Lyon, University of Lyon, 69000 Lyon, France.
| | - Sergey N Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str, 32, 119991 Moscow, Russia.
| | - Birke Bartosch
- Inserm U1052, Cancer Research Center Lyon, University of Lyon, 69000 Lyon, France.
- DevWeCan Laboratories of Excellence Network (Labex), 69003 Lyon, France.
| | - Alexander V Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str, 32, 119991 Moscow, Russia.
| |
Collapse
|
47
|
Nanson JD, Rahaman MH, Ve T, Kobe B. Regulation of signaling by cooperative assembly formation in mammalian innate immunity signalosomes by molecular mimics. Semin Cell Dev Biol 2018; 99:96-114. [PMID: 29738879 DOI: 10.1016/j.semcdb.2018.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 03/18/2018] [Accepted: 05/04/2018] [Indexed: 12/16/2022]
Abstract
Innate immunity pathways constitute the first line of defense against infections and cellular damage. An emerging concept in these pathways is that signaling involves the formation of finite (e.g. rings in NLRs) or open-ended higher-order assemblies (e.g. filamentous assemblies by members of the death-fold family and TIR domains). This signaling by cooperative assembly formation (SCAF) mechanism allows rapid and strongly amplified responses to minute amounts of stimulus. While the characterization of the molecular mechanisms of SCAF has seen rapid progress, little is known about its regulation. One emerging theme involves proteins produced both in host cells and by pathogens that appear to mimic the signaling components. Recently characterized examples involve the capping of the filamentous assemblies formed by caspase-1 CARDs by the CARD-only protein INCA, and those formed by caspase-8 by the DED-containing protein MC159. By contrast, the CARD-only protein ICEBERG and the DED-containing protein cFLIP incorporate into signaling filaments and presumably interfere with proximity based activation of caspases. We review selected examples of SCAF in innate immunity pathways and focus on the current knowledge on signaling component mimics produced by mammalian and pathogen cells and what is known about their mechanisms of action.
Collapse
Affiliation(s)
- Jeffrey D Nanson
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Md Habibur Rahaman
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Thomas Ve
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia; Institute for Glycomics, Griffith University, Southport, QLD, 4222, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
48
|
Sampayo-Escobar V, Green R, Cheung MB, Bedi R, Mohapatra S, Mohapatra SS. Osteopontin plays a pivotal role in increasing severity of respiratory syncytial virus infection. PLoS One 2018; 13:e0192709. [PMID: 29677209 PMCID: PMC5909912 DOI: 10.1371/journal.pone.0192709] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/29/2018] [Indexed: 12/27/2022] Open
Abstract
The molecular mechanisms underlying susceptibility to severe respiratory syncytial virus (RSV) infection remain poorly understood. Herein, we report on the role of osteopontin (OPN) in regulation of RSV infection in human epithelial cells and how interleukin-1 beta (IL-1β), a cytokine secreted soon after RSV infection, when persistently expressed can induce OPN expression leading to increased viral infection. We first compared OPN expression in two human epithelial cell lines: HEK-293 and HEp-2. In contrast to HEp-2, HEK-293 expresses low levels of pro-caspase-1 resulting in decreased IL-1β expression in response to RSV infection. We found a correlation between low IL-1β levels and a delay in induction of OPN expression in RSV-infected HEK-293 cells compared to HEp-2. This phenomenon could partially explain the high susceptibility of HEp-2 cells to RSV infection versus the moderate susceptibility of HEK-293 cells. Also, HEK-293 cells expressing low levels of pro-caspase-1 exhibit decreased IL-1β expression and delayed OPN expression in response to RSV infection. HEK-293 cells incubated with human rIL-1β showed a dose-dependent increase in OPN expression upon RSV infection. Also, incubation with rOPN increased RSV viral load. Moreover, HEp-2 cells or mice infected with a mucogenic RSV strain RSV-L19F showed elevated levels of OPN in contrast to mice infected with the laboratory RSV strain rA2. This correlated with elevated levels of OPN following infection with RSV-L19F compared to rA2. Together, these results demonstrate that increased OPN expression is regulated in part by IL-1β, and the interplay between IL-1β and OPN signaling may play a pivotal role in the spread of RSV infection.
Collapse
Affiliation(s)
- Viviana Sampayo-Escobar
- James A Haley Veterans Affairs Hospital, Tampa, Florida, United States of America
- Department of Internal Medicine, Department of Molecular Medicine, University of South Florida Morsani College of Medicine, Tampa, Florida, United States of America
| | - Ryan Green
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, Tampa, Florida, United States of America
| | - Michael B. Cheung
- James A Haley Veterans Affairs Hospital, Tampa, Florida, United States of America
- Department of Internal Medicine, Department of Molecular Medicine, University of South Florida Morsani College of Medicine, Tampa, Florida, United States of America
| | - Raminder Bedi
- James A Haley Veterans Affairs Hospital, Tampa, Florida, United States of America
- Department of Internal Medicine, Department of Molecular Medicine, University of South Florida Morsani College of Medicine, Tampa, Florida, United States of America
| | - Subhra Mohapatra
- James A Haley Veterans Affairs Hospital, Tampa, Florida, United States of America
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, Tampa, Florida, United States of America
- * E-mail: (SM); (SSM)
| | - Shyam S. Mohapatra
- James A Haley Veterans Affairs Hospital, Tampa, Florida, United States of America
- Department of Internal Medicine, Department of Molecular Medicine, University of South Florida Morsani College of Medicine, Tampa, Florida, United States of America
- * E-mail: (SM); (SSM)
| |
Collapse
|
49
|
Trevisan M, Di Antonio V, Radeghieri A, Palù G, Ghildyal R, Alvisi G. Molecular Requirements for Self-Interaction of the Respiratory Syncytial Virus Matrix Protein in Living Mammalian Cells. Viruses 2018; 10:v10030109. [PMID: 29510513 PMCID: PMC5869502 DOI: 10.3390/v10030109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 02/26/2018] [Accepted: 02/28/2018] [Indexed: 02/07/2023] Open
Abstract
Respiratory syncytial virus (RSV) is an important human pathogen, which infects respiratory tract epithelial cells causing bronchiolitis and pneumonia in children and the elderly. Recent studies have linked RSV matrix (M) ability to self-interaction and viral budding. However, RSV M has been crystalized both as a monomer and a dimer, and no formal proof exists to date that it forms dimers in cells. Here, by using a combination of confocal laser scanning microscopy and bioluminescent resonant energy transfer applied to differently tagged deletion mutants of RSV M, we show that the protein can self-interact in living mammalian cells and that both the N and C-terminus of the protein are strictly required for the process, consistent with the reported dimeric crystal structure.
Collapse
Affiliation(s)
- Marta Trevisan
- Department of Molecular Medicine, University of Padua, Padua 35121, Italy.
| | | | - Annalisa Radeghieri
- Department of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy.
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padua, Padua 35121, Italy.
| | - Reena Ghildyal
- Centre for Research in Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Canberra 2617, Australia.
| | - Gualtiero Alvisi
- Department of Molecular Medicine, University of Padua, Padua 35121, Italy.
| |
Collapse
|
50
|
Canedo-Marroquín G, Acevedo-Acevedo O, Rey-Jurado E, Saavedra JM, Lay MK, Bueno SM, Riedel CA, Kalergis AM. Modulation of Host Immunity by Human Respiratory Syncytial Virus Virulence Factors: A Synergic Inhibition of Both Innate and Adaptive Immunity. Front Cell Infect Microbiol 2017; 7:367. [PMID: 28861397 PMCID: PMC5561764 DOI: 10.3389/fcimb.2017.00367] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/31/2017] [Indexed: 01/27/2023] Open
Abstract
The Human Respiratory Syncytial Virus (hRSV) is a major cause of acute lower respiratory tract infections (ARTIs) and high rates of hospitalizations in children and in the elderly worldwide. Symptoms of hRSV infection include bronchiolitis and pneumonia. The lung pathology observed during hRSV infection is due in part to an exacerbated host immune response, characterized by immune cell infiltration to the lungs. HRSV is an enveloped virus, a member of the Pneumoviridae family, with a non-segmented genome and negative polarity-single RNA that contains 10 genes encoding for 11 proteins. These include the Fusion protein (F), the Glycoprotein (G), and the Small Hydrophobic (SH) protein, which are located on the virus surface. In addition, the Nucleoprotein (N), Phosphoprotein (P) large polymerase protein (L) part of the RNA-dependent RNA polymerase complex, the M2-1 protein as a transcription elongation factor, the M2-2 protein as a regulator of viral transcription and (M) protein all of which locate inside the virion. Apart from the structural proteins, the hRSV genome encodes for the non-structural 1 and 2 proteins (NS1 and NS2). HRSV has developed different strategies to evade the host immunity by means of the function of some of these proteins that work as virulence factors to improve the infection in the lung tissue. Also, hRSV NS-1 and NS-2 proteins have been shown to inhibit the activation of the type I interferon response. Furthermore, the hRSV nucleoprotein has been shown to inhibit the immunological synapsis between the dendritic cells and T cells during infection, resulting in an inefficient T cell activation. Here, we discuss the hRSV virulence factors and the host immunological features raised during infection with this virus.
Collapse
Affiliation(s)
- Gisela Canedo-Marroquín
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Orlando Acevedo-Acevedo
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Emma Rey-Jurado
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Juan M Saavedra
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Margarita K Lay
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de ChileSantiago, Chile.,Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de AntofagastaAntofagasta, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Claudia A Riedel
- Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas y Medicina, Universidad Andres Bello, Millennium Institute on Immunology and ImmunotherapySantiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de ChileSantiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de ChileSantiago, Chile
| |
Collapse
|