1
|
Song H, Zou J, Sun Z, Pu Y, Qi W, Sun L, Li Q, Yuan C, Wang X, Gao X, Zheng Y. Nasal microbiome in relation to olfactory dysfunction and cognitive decline in older adults. Transl Psychiatry 2025; 15:122. [PMID: 40185726 PMCID: PMC11971419 DOI: 10.1038/s41398-025-03346-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 02/28/2025] [Accepted: 03/24/2025] [Indexed: 04/07/2025] Open
Abstract
Emerging evidence has highlighted that olfactory dysfunction, a common feature of aging, is increasingly linked to cognitive decline in older adults. However, research on the underlying mechanism, particularly the role of nasal microbiome, remains limited. In this study, we investigated the associations between olfactory function, the nasal microbiome, and cognition among 510 older adults with an average age of 77.9 years. Olfactory function was assessed using the brief Chinese Smell Identification Test, and cognitive assessments were conducted via the Mini-Mental State Examination and the Revised Hasegawa Dementia Scale. Nasal microbiome profiles were generated through 16S RNA gene sequencing. We observed that olfactory dysfunction (i.e., hyposmia) was associated with a higher richness of nasal bacteria, and such observation was replicated in an external dataset. A total of 18 nasal bacterial genera were identified to be associated with olfactory function, with eight genera such as Acidovorax and Morganella being enriched in the hyposmic group. A composite microbial index of nasal olfactory function significantly improved the reclassification accuracy of traditional risk model in distinguishing hyposmic from normosmic participants (P = 0.008). Furthermore, participants with a nasal biotype dominated by Corynebacterium had a lower prevalence of mild cognitive impairment compared to those dominated by Dolosigranulum or Moraxella. Our findings suggested that the nasal microbiome may play a role in the association of olfactory function with cognition in older adults, providing new insights into the microbial mechanisms underlying hyposmia and cognitive decline.
Collapse
Affiliation(s)
- Huiling Song
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Human Phenome Institute, and School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiaojiao Zou
- Human Phenome Institute, Fudan University, Shanghai, China
- Department of Nutrition and Food Hygiene, School of Public Health, Institute of Nutrition, Fudan University, Shanghai, China
| | - Zhonghan Sun
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Human Phenome Institute, and School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanni Pu
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Human Phenome Institute, and School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenhao Qi
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Human Phenome Institute, and School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Liang Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Institute of Nutrition, Fudan University, Shanghai, China
| | - Qian Li
- Songjiang Research Institute, Songjiang Hospital, Department of Anatomy and Physiology, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changzheng Yuan
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaofeng Wang
- Human Phenome Institute, Fudan University, Shanghai, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| | - Xiang Gao
- Department of Nutrition and Food Hygiene, School of Public Health, Institute of Nutrition, Fudan University, Shanghai, China.
| | - Yan Zheng
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Human Phenome Institute, and School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Woodson CM, Carney SK, Kehn-Hall K. Neuropathogenesis of Encephalitic Alphaviruses in Non-Human Primate and Mouse Models of Infection. Pathogens 2025; 14:193. [PMID: 40005568 PMCID: PMC11858634 DOI: 10.3390/pathogens14020193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/08/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Encephalitic alphaviruses, including eastern, Venezuelan, and western equine encephalitis virus (EEEV, VEEV, and WEEV, respectively) are New World alphaviruses primarily transmitted by mosquitos that cause debilitating and lethal central nervous system (CNS) disease in both humans and horses. Despite over one hundred years of research on these viruses, the underpinnings of the molecular mechanisms driving virally induced damage to the CNS remain unresolved. Moreover, virally induced encephalitis following exposure to these viruses causes catastrophic damage to the CNS, and survivors of infection often suffer from permanent neurological sequelae as a result of sustained neuroinflammation and neurological insults encountered. Animal models are undoubtedly invaluable tools in biomedical research, where physiologically relevant models are required to study pathogenesis and host-pathogen interactions. Here, we review the literature to examine nonhuman primate (NHP) and mouse models of infection for EEEV, VEEV, and WEEV. We provide a brief overview of relevant background information for each virus, including geography, epidemiology, and clinical disease. The primary focus of this review is to describe neuropathological features associated with CNS disease in NHP and mouse models of infection and compare CNS invasion and neuropathogenesis for aerosol, intranasal, and subcutaneous routes of exposure to EEEV, VEEV, and WEEV.
Collapse
Affiliation(s)
- Caitlin M. Woodson
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (C.M.W.); (S.K.C.)
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Shannon K. Carney
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (C.M.W.); (S.K.C.)
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Kylene Kehn-Hall
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (C.M.W.); (S.K.C.)
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
3
|
Yang Y, Zhao LX, Li ZQ, Wang SY, Xu ZS, Wang YY. PCDH10 is a neuronal receptor for western equine encephalitis virus. Cell Res 2024; 34:802-805. [PMID: 39304770 PMCID: PMC11528095 DOI: 10.1038/s41422-024-01031-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024] Open
Affiliation(s)
- Yan Yang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Li-Xin Zhao
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhen-Qi Li
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Su-Yun Wang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Zhi-Sheng Xu
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan-Yi Wang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China.
- University of Chinese Academy of Sciences, Beijing, China.
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China.
| |
Collapse
|
4
|
de Oliveira Souza R, Duarte Júnior JWB, Della Casa VS, Santoro Rosa D, Renia L, Claser C. Unraveling the complex interplay: immunopathology and immune evasion strategies of alphaviruses with emphasis on neurological implications. Front Cell Infect Microbiol 2024; 14:1421571. [PMID: 39211797 PMCID: PMC11358129 DOI: 10.3389/fcimb.2024.1421571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/09/2024] [Indexed: 09/04/2024] Open
Abstract
Arthritogenic alphaviruses pose a significant public health concern due to their ability to cause joint inflammation, with emerging evidence of potential neurological consequences. In this review, we examine the immunopathology and immune evasion strategies employed by these viruses, highlighting their complex mechanisms of pathogenesis and neurological implications. We delve into how these viruses manipulate host immune responses, modulate inflammatory pathways, and potentially establish persistent infections. Further, we explore their ability to breach the blood-brain barrier, triggering neurological complications, and how co-infections exacerbate neurological outcomes. This review synthesizes current research to provide a comprehensive overview of the immunopathological mechanisms driving arthritogenic alphavirus infections and their impact on neurological health. By highlighting knowledge gaps, it underscores the need for research to unravel the complexities of virus-host interactions. This deeper understanding is crucial for developing targeted therapies to address both joint and neurological manifestations of these infections.
Collapse
Affiliation(s)
- Raquel de Oliveira Souza
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | | | - Victória Simões Della Casa
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Daniela Santoro Rosa
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Laurent Renia
- ASTAR Infectious Diseases Labs (ASTAR ID Labs), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Carla Claser
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
5
|
Jameie M, Ahli B, Ghadir S, Azami M, Amanollahi M, Ebadi R, Rafati A, Naser Moghadasi A. The hidden link: How oral and respiratory microbiomes affect multiple sclerosis. Mult Scler Relat Disord 2024; 88:105742. [PMID: 38964239 DOI: 10.1016/j.msard.2024.105742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/16/2024] [Accepted: 06/20/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Extensive research has explored the role of gut microbiota in multiple sclerosis (MS). However, the impact of microbial communities in the oral cavity and respiratory tract on MS is an emerging area of investigation. PURPOSE We aimed to review the current literature related to the nasal, oral, and lung microbiota in people with MS (PwMS). METHODS We conducted a narrative review of clinical and preclinical original studies on PubMed that explored the relationship between the bacterial or viral composition of the nasal, lung, and oral microbiota and MS. Additionally, to find relevant studies not retrieved initially, we also searched for references in related review papers, as well as the references cited within the included studies. RESULTS AND CONCLUSIONS Thirteen studies were meticulously reviewed in three sections; oral microbiota (n = 8), nasal microbiota (n = 3), and lung microbiota (n = 2), highlighting considerable alterations in the oral and respiratory microbiome of PwMS compared to healthy controls (HCs). Genera like Aggregatibacter and Streptococcus were less abundant in the oral microbiota of PwMS compared to HCs, while Staphylococcus, Leptotrichia, Fusobacterium, and Bacteroides showed increased abundance in PwMS. Additionally, the presence of specific bacteria, including Streptococcus sanguinis, within the oral microbiota was suggested to influence Epstein-Barr virus reactivation, a well-established risk factor for MS. Studies related to the nasal microbiome indicated elevated levels of specific Staphylococcus aureus toxins, as well as nasal glial cell infection with human herpes virus (HHV)-6 in PwMS. Emerging research on lung microbiome in animal models demonstrated that manipulating the lung microbiome towards lipopolysaccharide-producing bacteria might suppress MS symptoms. These findings open avenues for potential therapeutic strategies. However, further research is crucial to fully understand the complex interactions between the microbiome and MS. This will help identify the most effective timing, bacterial strains, and modulation techniques.
Collapse
Affiliation(s)
- Melika Jameie
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran; Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahareh Ahli
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Ghadir
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Mobin Azami
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mobina Amanollahi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Ebadi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Rafati
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abdorreza Naser Moghadasi
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Gioacchini FM, Ferlito S, Ralli M, Scarpa A, La Mantia I, Re M, Romani L, Di Stadio A. Nasal Microbiota and Neuroinflammation: Relationship between Nasal Flora and Multiple Sclerosis Onset/Progression. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122043. [PMID: 36556408 PMCID: PMC9788357 DOI: 10.3390/life12122043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
The role of nasal microbiota in contributing to neuroinflammation is gradually emerging. Multiple sclerosis and chronic rhinosinusitis share important clinical and epidemiological similarities, and the hypothetical connection among these two pathological entities should be carefully investigated. This editorial is based on a review of available literature on this topic. The main international databases were searched using the following keywords: neuroinflammation, nasal microbiota, multiple sclerosis, chronic rhino-sinusal disorders, chronic sinusitis. Four fully-consistent articles that investigated nasal microbiota alteration and/or chronic rhinosinusitis presence in subjects affected by multiple sclerosis were identified. Overall, these studies showed a significant connection between nasal microbiota dysbiosis and the presence of multiple sclerosis. New specific studies to analyze the nasal microbiota and its metabolism in patients affected by multiple sclerosis should be performed. In fact, a series of treatments able to change this flora could improve the rhino-sinusal state with consequent reduction of recurrent episodes of neuro-inflammation.
Collapse
Affiliation(s)
- Federico Maria Gioacchini
- ENT Unit, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60121 Ancona, Italy
| | - Salvatore Ferlito
- GF Ingrassia Department, Otolaryngology, University of Catania, 95124 Catania, Italy
| | - Massimo Ralli
- Organ of Sense Department, University La Sapienza of Rome, 00185 Roma, Italy
| | - Alfonso Scarpa
- Otolaryngology Department, University of Salerno, 84084 Fisciano, Italy
| | - Ignazio La Mantia
- GF Ingrassia Department, Otolaryngology, University of Catania, 95124 Catania, Italy
| | - Massimo Re
- ENT Unit, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60121 Ancona, Italy
| | - Luigina Romani
- Microbiology Department, University of Perugia, 06123 Perugia, Italy
| | - Arianna Di Stadio
- GF Ingrassia Department, Otolaryngology, University of Catania, 95124 Catania, Italy
- Correspondence: or
| |
Collapse
|
7
|
Holm AE, Gomes LC, Wegener A, Lima KO, Matos LO, Vieira IVM, Kaagaard MD, Pareek M, de Souza RM, Marinho CRF, Biering-Sørensen T, Silvestre OM, Brainin P. Is self-rated health associated with cardiovascular risk factors and disease in a low-income setting? A cross-sectional study from the Amazon Basin of Brazil. BMJ Open 2022; 12:e058277. [PMID: 36041756 PMCID: PMC9438027 DOI: 10.1136/bmjopen-2021-058277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVE Prior studies have suggested that self-rated health may be a useful indicator of cardiovascular disease. Consequently, we aimed to assess the relationship between self-rated health, cardiovascular risk factors and subclinical cardiac disease in the Amazon Basin. DESIGN Cross-sectional study. SETTING, PARTICIPANTS AND INTERVENTIONS In participants from the Amazon Basin of Brazil we obtained self-rated health according to a Visual Analogue Scale, ranging from 0 (poor) to 100 (excellent). We performed questionnaires, physical examination and echocardiography. Logistic and linear regression models were applied to assess self-rated health, cardiac risk factors and cardiac disease by echocardiography. Multivariable models were mutually adjusted for other cardiovascular risk factors, clinical and socioeconomic data, and known cardiac disease. OUTCOME MEASURES Cardiovascular risk factors and subclincial cardiac disease by echocardiography. RESULTS A total of 574 participants (mean age 41 years, 61% female) provided information on self-rated health (mean 75±21 (IQR 60-90) points). Self-rated health (per 10-point increase) was negatively associated with hypertension (OR 0.87 (95% CI 0.78 to 0.97), p=0.01), hypercholesterolaemia (OR 0.89 (95%CI 0.80 to 0.99), p=0.04) and positively with healthy diet (OR 1.13 (95%CI 1.04 to 1.24), p=0.004). Sex modified these associations (p-interaction <0.05) such that higher self-rated health was associated with healthy diet and physical activity in men, and lower odds of hypertension and hypercholesterolaemia in women. No relationship was found with left ventricular ejection fraction <45% (OR 0.97 (95% CI 0.77 to 1.23), p=0.8), left ventricular hypertrophy (OR 0.97 (95% CI 0.76 to 1.24), p=0.81) or diastolic dysfunction (OR 1.09 (95% CI 0.85 to 1.40), p=0.51). CONCLUSION Self-rated health was positively associated with health parameters in the Amazon Basin, but not with subclinical cardiac disease by echocardiography. Our findings are of hypothesis generating nature and future studies should aim to determine whether assessment of self-rated health may be useful for screening related to policy-making or lifestyle interventions. TRIAL REGISTRATION NUMBER Clinicaltrials.gov: NCT04445103; Post-results.
Collapse
Affiliation(s)
- Anna Engell Holm
- Department of Cardiology, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark
- Multidisciplinary Center, Federal University of Acre, Câmpus Floresta, Cruzeiro do Sul, Acre, Brazil
| | - Laura Cordeiro Gomes
- Department of Parasitology, University of São Paulo, Institute of Biomedical Sciences, São Paulo, Brazil
| | - Alma Wegener
- Department of Cardiology, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark
- Multidisciplinary Center, Federal University of Acre, Câmpus Floresta, Cruzeiro do Sul, Acre, Brazil
| | - Karine O Lima
- Multidisciplinary Center, Federal University of Acre, Câmpus Floresta, Cruzeiro do Sul, Acre, Brazil
| | - Luan O Matos
- Multidisciplinary Center, Federal University of Acre, Câmpus Floresta, Cruzeiro do Sul, Acre, Brazil
| | - Isabelle V M Vieira
- Multidisciplinary Center, Federal University of Acre, Câmpus Floresta, Cruzeiro do Sul, Acre, Brazil
| | - Molly D Kaagaard
- Department of Cardiology, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark
- Multidisciplinary Center, Federal University of Acre, Câmpus Floresta, Cruzeiro do Sul, Acre, Brazil
| | - Manan Pareek
- Department of Cardiology, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark
- Department of Internal Medicine, Yale New Haven Hospital, Yale School of Medicine, New Haven, Connecticut, USA
| | - Rodrigo Medeiros de Souza
- Multidisciplinary Center, Federal University of Acre, Câmpus Floresta, Cruzeiro do Sul, Acre, Brazil
| | | | - Tor Biering-Sørensen
- Department of Cardiology, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Odilson M Silvestre
- Health and Sport Science Center, Federal University of Acre, Rio Branco, Acre, Brazil
| | - Philip Brainin
- Department of Cardiology, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark
- Multidisciplinary Center, Federal University of Acre, Câmpus Floresta, Cruzeiro do Sul, Acre, Brazil
| |
Collapse
|
8
|
Stauft CB, Phillips AT, Wang TT, Olson KE. Identification of salivary gland escape barriers to western equine encephalitis virus in the natural vector, Culex tarsalis. PLoS One 2022; 17:e0262967. [PMID: 35298486 PMCID: PMC8929657 DOI: 10.1371/journal.pone.0262967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/04/2022] [Indexed: 11/18/2022] Open
Abstract
Herein we describe a previously uninvestigated salivary gland escape barrier (SEB) in Culex tarsalis mosquitoes infected with two different strains of Western equine encephalitis virus (WEEV). The WEEV strains were originally isolated either from mosquitoes (IMP181) or a human patient (McMillan). Both IMP181 and McMillan viruses were fully able to infect the salivary glands of Culex tarsalis after intrathoracic injection as determined by expression of mCherry fluorescent protein. IMP181, however, was better adapted to transmission as measured by virus titer in saliva as well as transmission rates in infected mosquitoes. We used chimeric recombinant WEEV strains to show that inclusion of IMP181-derived structural genes partially circumvents the SEB.
Collapse
Affiliation(s)
- Charles B. Stauft
- Laboratory of Vector-Borne Diseases, Division of Viral Products, Office of Vaccine Research and Review, Food and Drug Administration, White Oak, Maryland, United States of America
| | - Aaron T. Phillips
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Tony T. Wang
- Laboratory of Vector-Borne Diseases, Division of Viral Products, Office of Vaccine Research and Review, Food and Drug Administration, White Oak, Maryland, United States of America
| | - Kenneth E. Olson
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
9
|
Xie J, Tian S, Liu J, Cao R, Yue P, Cai X, Shang Q, Yang M, Han L, Zhang DK. Dual role of the nasal microbiota in neurological diseases—An unignorable risk factor or a potential therapy carrier. Pharmacol Res 2022; 179:106189. [DOI: 10.1016/j.phrs.2022.106189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/06/2022] [Accepted: 03/17/2022] [Indexed: 12/11/2022]
|
10
|
Lucas CJ, Morrison TE. Animal models of alphavirus infection and human disease. Adv Virus Res 2022; 113:25-88. [DOI: 10.1016/bs.aivir.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
11
|
Bantle CM, Rocha SM, French CT, Phillips AT, Tran K, Olson KE, Bass TA, Aboellail T, Smeyne RJ, Tjalkens RB. Astrocyte inflammatory signaling mediates α-synuclein aggregation and dopaminergic neuronal loss following viral encephalitis. Exp Neurol 2021; 346:113845. [PMID: 34454938 PMCID: PMC9535678 DOI: 10.1016/j.expneurol.2021.113845] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/13/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022]
Abstract
Viral infection of the central nervous system (CNS) can cause lasting neurological decline in surviving patients and can present with symptoms resembling Parkinson's disease (PD). The mechanisms underlying postencephalitic parkinsonism remain unclear but are thought to involve increased innate inflammatory signaling in glial cells, resulting in persistent neuroinflammation. We therefore studied the role of glial cells in regulating neuropathology in postencephalitic parkinsonism by studying the involvement of astrocytes in loss of dopaminergic neurons and aggregation of α-synuclein protein following infection with western equine encephalitis virus (WEEV). Infections were conducted in both wildtype mice and in transgenic mice lacking NFκB inflammatory signaling in astrocytes. For 2 months following WEEV infection, we analyzed glial activation, neuronal loss and protein aggregation across multiple brain regions, including the substantia nigra pars compacta (SNpc). These data revealed that WEEV induces loss of SNpc dopaminergic neurons, persistent activation of microglia and astrocytes that precipitates widespread aggregation of α-synuclein in the brain of C57BL/6 mice. Microgliosis and macrophage infiltration occurred prior to activation of astrocytes and was followed by opsonization of ⍺-synuclein protein aggregates in the cortex, hippocampus and midbrain by the complement protein, C3. Astrocyte-specific NFκB knockout mice had reduced gliosis, α-synuclein aggregate formation and neuronal loss. These data suggest that astrocytes play a critical role in initiating PD-like pathology following encephalitic infection with WEEV through innate immune inflammatory pathways that damage dopaminergic neurons, possibly by hindering clearance of ⍺-synuclein aggregates. Inhibiting glial inflammatory responses could therefore represent a potential therapy strategy for viral parkinsonism.
Collapse
Affiliation(s)
- Collin M Bantle
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, United States of America
| | - Savannah M Rocha
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, United States of America
| | - C Tenley French
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, United States of America
| | - Aaron T Phillips
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, United States of America; Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, United States of America
| | - Kevin Tran
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, United States of America
| | - Kenneth E Olson
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, United States of America
| | - Todd A Bass
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, United States of America
| | - Tawfik Aboellail
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, United States of America
| | - Richard J Smeyne
- Jefferson Comprehensive Parkinson's Center, Vickie & Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, United States of America
| | - Ronald B Tjalkens
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, United States of America.
| |
Collapse
|
12
|
Uyar O, Plante PL, Piret J, Venable MC, Carbonneau J, Corbeil J, Boivin G. A novel bioluminescent herpes simplex virus 1 for in vivo monitoring of herpes simplex encephalitis. Sci Rep 2021; 11:18688. [PMID: 34548521 PMCID: PMC8455621 DOI: 10.1038/s41598-021-98047-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/26/2021] [Indexed: 11/22/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) is responsible for herpes simplex virus encephalitis (HSE), associated with a 70% mortality rate in the absence of treatment. Despite intravenous treatment with acyclovir, mortality remains significant, highlighting the need for new anti-herpetic agents. Herein, we describe a novel neurovirulent recombinant HSV-1 (rHSV-1), expressing the fluorescent tdTomato and Gaussia luciferase (Gluc) enzyme, generated by the Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) (CRISPR-Cas9) system. The Gluc activity measured in the cell culture supernatant was correlated (P = 0.0001) with infectious particles, allowing in vitro monitoring of viral replication kinetics. A significant correlation was also found between brain viral titers and Gluc activity in plasma (R2 = 0.8510, P < 0.0001) collected from BALB/c mice infected intranasally with rHSV-1. Furthermore, evaluation of valacyclovir (VACV) treatment of HSE could also be performed by analyzing Gluc activity in mouse plasma samples. Finally, it was also possible to study rHSV-1 dissemination and additionally to estimate brain viral titers by in vivo imaging system (IVIS). The new rHSV-1 with reporter proteins is not only as a powerful tool for in vitro and in vivo antiviral screening, but can also be used for studying different aspects of HSE pathogenesis.
Collapse
Affiliation(s)
- Olus Uyar
- Research Center in Infectious Diseases, CHU de Québec-Laval University Research Center and Department of Pediatrics and Microbiology, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| | - Pier-Luc Plante
- Research Center in Infectious Diseases, CHU de Québec-Laval University Research Center and Department of Molecular Medicine and Big Data Research Centre, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| | - Jocelyne Piret
- Research Center in Infectious Diseases, CHU de Québec-Laval University Research Center and Department of Pediatrics and Microbiology, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| | - Marie-Christine Venable
- Research Center in Infectious Diseases, CHU de Québec-Laval University Research Center and Department of Pediatrics and Microbiology, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| | - Julie Carbonneau
- Research Center in Infectious Diseases, CHU de Québec-Laval University Research Center and Department of Pediatrics and Microbiology, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| | - Jacques Corbeil
- Research Center in Infectious Diseases, CHU de Québec-Laval University Research Center and Department of Molecular Medicine and Big Data Research Centre, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| | - Guy Boivin
- Research Center in Infectious Diseases, CHU de Québec-Laval University Research Center and Department of Pediatrics and Microbiology, Faculty of Medicine, Laval University, Quebec City, QC, Canada.
| |
Collapse
|
13
|
Smeyne RJ, Noyce AJ, Byrne M, Savica R, Marras C. Infection and Risk of Parkinson's Disease. JOURNAL OF PARKINSONS DISEASE 2021; 11:31-43. [PMID: 33361610 PMCID: PMC7990414 DOI: 10.3233/jpd-202279] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Parkinson’s disease (PD) is thought to be caused by a combination of genetic and environmental factors. Bacterial or viral infection has been proposed as a potential risk factor, and there is supporting although not entirely consistent epidemiologic and basic science evidence to support its role. Encephalitis caused by influenza has included parkinsonian features. Epidemiological evidence is most compelling for an association between PD and hepatitis C virus. Infection with Helicobacter pylori may be associated not only with PD risk but also response to levodopa. Rapidly evolving knowledge regarding the role of the microbiome also suggests a role of resident bacteria in PD risk. Biological plausibility for the role for infectious agents is supported by the known neurotropic effects of specific viruses, particular vulnerability of the substantia nigra and even the promotion of aggregation of alpha-synuclein. A common feature of implicated viruses appears to be production of high levels of cytokines and chemokines that can cross the blood-brain barrier leading to microglial activation and inflammation and ultimately neuronal cell death. Based on multiple avenues of evidence it appears likely that specific bacterial and particularly viral infections may increase vulnerability to PD. The implications of this for PD prevention requires attention and may be most relevant once preventive treatments for at-risk populations are developed.
Collapse
Affiliation(s)
- Richard J Smeyne
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Alastair J Noyce
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK.,Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, London, UK
| | - Matthew Byrne
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Rodolfo Savica
- Department of Neurology, Mayo Clinic, Rochester, Minnesota and Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Connie Marras
- The Edmond J Safra Program in Parkinson's disease, Toronto Western Hospital and the University of Toronto, Toronto, Canada
| |
Collapse
|
14
|
Solnes LB, Jacobs AH, Coughlin JM, Du Y, Goel R, Hammoud DA, Pomper MG. Central Nervous System Molecular Imaging. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00088-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
15
|
Abstract
Alphaviruses, members of the enveloped, positive-sense, single-stranded RNA Togaviridae family, represent a reemerging public health threat as mosquito vectors expand into new geographic territories. The Old World alphaviruses, which include chikungunya virus, Ross River virus, and Sindbis virus, tend to cause a clinical syndrome characterized by fever, rash, and arthritis, whereas the New World alphaviruses, which consist of Venezuelan equine encephalitis virus, eastern equine encephalitis virus, and western equine encephalitis virus, induce encephalomyelitis. Following recovery from the acute phase of infection, many patients are left with debilitating persistent joint and neurological complications that can last for years. Clues from human cases and studies using animal models strongly suggest that much of the disease and pathology induced by alphavirus infection, particularly atypical and chronic manifestations, is mediated by the immune system rather than directly by the virus. This review discusses the current understanding of the immunopathogenesis of the arthritogenic and neurotropic alphaviruses accumulated through both natural infection of humans and experimental infection of animals, particularly mice. As treatment following alphavirus infection is currently limited to supportive care, understanding the contribution of the immune system to the disease process is critical to developing safe and effective therapies.
Collapse
Affiliation(s)
- Victoria K Baxter
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Mark T Heise
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|
16
|
Bantle CM, Phillips AT, Smeyne RJ, Rocha SM, Olson KE, Tjalkens RB. Infection with mosquito-borne alphavirus induces selective loss of dopaminergic neurons, neuroinflammation and widespread protein aggregation. NPJ PARKINSONS DISEASE 2019; 5:20. [PMID: 31531390 PMCID: PMC6744428 DOI: 10.1038/s41531-019-0090-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 08/12/2019] [Indexed: 12/28/2022]
Abstract
Neuroinvasive infections with mosquito-borne alphaviruses such as Western equine encephalitis virus (WEEV) can cause post-encephalitic parkinsonism. To understand the mechanisms underlying these neurological effects, we examined the capacity of WEEV to induce progressive neurodegeneration in outbred CD-1 mice following non-lethal encephalitic infection. Animals were experientally infected with recombinant WEEV expressing firefly luciferase or dsRed (RFP) reporters and the extent of viral replication was controlled using passive immunotherapy. WEEV spread along the neuronal axis from the olfactory bulb to the entorhinal cortex, hippocampus and basal midbrain by 4 days post infection (DPI). Infection caused activation of microglia and astrocytes, selective loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and neurobehavioral abnormalities. After 8 weeks, surviving mice displayed continued loss of dopamine neurons in the SNpc, lingering glial cell activation and gene expression profiles consistent with a neurodegenerative phenotype. Strikingly, prominent proteinase K-resistant protein aggregates were present in the the entorhinal cortex, hippocampus and basal midbrain that stained positively for phospho-serine129 α-synuclein (SNCA). These results indicate that WEEV may cause lasting neurological deficits through a severe neuroinflammatory response promoting both neuronal injury and protein aggregation in surviving individuals.
Collapse
Affiliation(s)
- Collin M Bantle
- 1Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523 USA
| | - Aaron T Phillips
- 1Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523 USA.,2Arthropod-Borne and Infectious Disease Laboratory, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523 USA
| | - Richard J Smeyne
- 3Department of Neuroscience, Vickie & Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Savannah M Rocha
- 2Arthropod-Borne and Infectious Disease Laboratory, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523 USA
| | - Ken E Olson
- 2Arthropod-Borne and Infectious Disease Laboratory, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523 USA
| | - Ronald B Tjalkens
- 1Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523 USA
| |
Collapse
|
17
|
Belarbi E, Legros V, Basset J, Desprès P, Roques P, Choumet V. Bioluminescent Ross River Virus Allows Live Monitoring of Acute and Long-Term Alphaviral Infection by In Vivo Imaging. Viruses 2019; 11:v11070584. [PMID: 31252609 PMCID: PMC6669695 DOI: 10.3390/v11070584] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 06/25/2019] [Indexed: 12/13/2022] Open
Abstract
Arboviruses like chikungunya and Ross River (RRV) are responsible for massive outbreaks of viral polyarthritis. There is no effective treatment or vaccine available against these viruses that induce prolonged and disabling arthritis. To explore the physiopathological mechanisms of alphaviral arthritis, we engineered a recombinant RRV expressing a NanoLuc reporter (RRV-NLuc), which exhibited high stability, near native replication kinetics and allowed real time monitoring of viral spread in an albino mouse strain. During the acute phase of the disease, we observed a high bioluminescent signal reflecting viral replication and dissemination in the infected mice. Using Bindarit, an anti-inflammatory drug that inhibits monocyte recruitment, we observed a reduction in viral dissemination demonstrating the important role of monocytes in the propagation of the virus and the adaptation of this model to the in vivo evaluation of treatment strategies. After resolution of the acute symptoms, we observed an increase in the bioluminescent signal in mice subjected to an immunosuppressive treatment 30 days post infection, thus showing active in vivo replication of remnant virus. We show here that this novel reporter virus is suitable to study the alphaviral disease up to the chronic phase, opening new perspectives for the evaluation of therapeutic interventions.
Collapse
Affiliation(s)
- Essia Belarbi
- Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA, Université Paris Sud, INSERM U1184, 92265 Fontenay-aux-Roses, France
- Arbovirus group, Environment and Infectious Risks unit, Pasteur Institute, 75015 Paris, France
| | - Vincent Legros
- Arbovirus group, Environment and Infectious Risks unit, Pasteur Institute, 75015 Paris, France
- Epidemiology and Physiopathology of Oncogenic Viruses Unit, Virology department, Pasteur Institute, 75015 Paris, France
| | - Justine Basset
- Arbovirus group, Environment and Infectious Risks unit, Pasteur Institute, 75015 Paris, France
| | - Philippe Desprès
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 97491 Sainte Clotilde, La Réunion, France
| | - Pierre Roques
- Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA, Université Paris Sud, INSERM U1184, 92265 Fontenay-aux-Roses, France.
| | - Valérie Choumet
- Arbovirus group, Environment and Infectious Risks unit, Pasteur Institute, 75015 Paris, France.
| |
Collapse
|
18
|
Baxter VK, Troisi EM, Pate NM, Zhao JN, Griffin DE. Death and gastrointestinal bleeding complicate encephalomyelitis in mice with delayed appearance of CNS IgM after intranasal alphavirus infection. J Gen Virol 2018; 99:309-320. [PMID: 29458665 DOI: 10.1099/jgv.0.001005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Central nervous system (CNS) infection of C57BL/6 mice with the TE strain of Sindbis virus (SINV) provides a valuable animal model for studying the pathogenesis of alphavirus encephalomyelitis. While SINV TE inoculated intracranially causes little mortality, 20-30 % of mice inoculated intranasally (IN) died 8 to 11 days after infection, the period during which immune cells typically infiltrate the brain and clear infectious virus. To examine the mechanism behind the mortality, mice infected IN with SINV TE were monitored for evidence of neurological disease, and those with signs of severe disease (moribund) were sacrificed and tissues collected. Mice showing the usual mild signs of encephalomyelitis were concurrently sacrificed to serve as time-matched controls (sick). Sixty-eight per cent of the moribund mice, but none of the sick mice, showed upper gastrointestinal bleeding due to gastric ulceration. Clinical disease and gastrointestinal pathology could not be attributed to direct viral infection of tissues outside of the CNS, and brain pathology and inflammation were comparable in sick and moribund mice. However, more SINV antigen was present in the brains of moribund mice, and clearance of infectious virus from the CNS was delayed compared to sick mice. Lower levels of SINV-specific IgM and fewer B220+ B cells were present in the brains of moribund mice compared to sick mice, despite similar levels of antiviral IgM and IgG in serum. These findings highlight the importance of the local antibody response in determining the outcome of viral encephalomyelitis and offer a model system for understanding individual variation in this response.
Collapse
Affiliation(s)
- Victoria K Baxter
- Present address: University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Elizabeth M Troisi
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Nathan M Pate
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Julia N Zhao
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.,Present address: Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Diane E Griffin
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
19
|
Kim YG, Baltabekova AZ, Zhiyenbay EE, Aksambayeva AS, Shagyrova ZS, Khannanov R, Ramanculov EM, Shustov AV. Recombinant Vaccinia virus-coded interferon inhibitor B18R: Expression, refolding and a use in a mammalian expression system with a RNA-vector. PLoS One 2017; 12:e0189308. [PMID: 29216299 PMCID: PMC5720773 DOI: 10.1371/journal.pone.0189308] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 11/22/2017] [Indexed: 12/24/2022] Open
Abstract
B18R protein of Vaccinia virus binds to type I interferons and inhibits activation of interferon-mediated signal transduction. Cells which have unimpaired interferon signaling such as primary cell cultures or some industrially important cell lines are capable of development of an antiviral state. An establishment of the antiviral state limits replication of RNA-viruses and can suppress replication of RNA vectors. The interferon inhibitor B18R effectively prevents the establishment of the antiviral state. For this reason, B18R has become a ubiquitous component of protocols for epigenetic reprogramming which use transfections of RNA replicons or mRNA. Despite wide practical applicability, commercially available B18R is predominantly produced in cell cultures and little information has been published on a production and use of bacterially expressed B18R. Objectives of this study were to produce B18R in an E.coli expression system and to confirm the product’s biological activity by using it to maintain RNA-vectors in cell cultures capable of the antiviral state. The described method allows the expression and efficient refolding to obtain 10–100 mg of B18R from a small-scale culture and the production process is economically attractive compared to a use of an eukaryotic expression. To check for a presence of the biological activity of bacterially-expressed B18R the protein was used to support persistence of an autonomously replicating RNA-vector in a cell culture which is capable of the antiviral state. A RNA-containing virus, Venezuelan equine encephalitis virus (VEE) can serve as an efficient vector for heterologous expression in cell cultures, although its replication is sensitive to the effects of type I interferons which limit a range of cell lines for a use with this vector. The VEE replicon was utilized to direct an expression of recombinant human granulocyte colony stimulating factor (G-CSF). The producing replicon could persist in HEK293 cells for sufficiently long time only in presence of B18R, whereas addition of B18R not only allowed persistence of the replicon but also increased production from the replicon. A model product granulocyte colony stimulating factor accumulated to 35.5 μg/ml during a 7 day experiment. This work describes efficacious expression and refolding of the viral cytokine inhibitor and demonstrates a utility of bacterially-expressed B18R.
Collapse
Affiliation(s)
- Yuriy G. Kim
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Phelps AL, O'Brien LM, Eastaugh LS, Davies C, Lever MS, Ennis J, Zeitlin L, Nunez A, Ulaeto DO. Susceptibility and Lethality of Western Equine Encephalitis Virus in Balb/c Mice When Infected by the Aerosol Route. Viruses 2017; 9:v9070163. [PMID: 28654007 PMCID: PMC5537655 DOI: 10.3390/v9070163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/09/2017] [Accepted: 06/20/2017] [Indexed: 12/25/2022] Open
Abstract
Western equine encephalitis virus (WEEV) naturally cycles between mosquitos and birds or rodents, with a case fatality rate of up to 15% in humans during epizootic outbreaks. There are no medical countermeasures to treat WEEV infection, and accidental aerosol exposure increases the case fatality rate up to 40%. Understanding the pathogenesis of infection is required to develop and assess medical countermeasures. This study describes the clinical and pathological findings of mice infected with WEEV by the aerosol route, and use as a model for WEEV infection in humans. Balb/c mice were infected by the aerosol route with a dose range of high-virulence WEEV strain Fleming to establish the median lethal dose (MLD). The disease course was acute, culminating in severe clinical signs, neuroinvasion, and dose-dependent mortality. Further groups of mice were exposed by the aerosol route, periodically sacrificed, and tissues excised for histopathological examination and virology. Viral titres peaked four days post-challenge in the brain and lungs, corresponding with severe bilateral lesions in rostroventral regions of the encephalon, especially in the olfactory bulb and piriform cortex. Recapitulation of the most serious clinical presentations of human WEEV disease in mice may prove a useful tool in the evaluation of medical countermeasures.
Collapse
Affiliation(s)
- Amanda L Phelps
- CBR Division, Defence Science and Technology Laboratory (Dstl), Room 201, Building 7a, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK.
| | - Lyn M O'Brien
- CBR Division, Defence Science and Technology Laboratory (Dstl), Room 201, Building 7a, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK.
| | - Lin S Eastaugh
- CBR Division, Defence Science and Technology Laboratory (Dstl), Room 201, Building 7a, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK.
| | - Carwyn Davies
- CBR Division, Defence Science and Technology Laboratory (Dstl), Room 201, Building 7a, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK.
| | - Mark S Lever
- CBR Division, Defence Science and Technology Laboratory (Dstl), Room 201, Building 7a, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK.
| | - Jane Ennis
- Mapp Biopharmaceutical Inc., 6160 Lusk Blvd. #C105, San Diego, CA 92121, USA.
| | - Larry Zeitlin
- Mapp Biopharmaceutical Inc., 6160 Lusk Blvd. #C105, San Diego, CA 92121, USA.
| | - Alejandro Nunez
- Pathology Department, Animal and Plant Health Agency, Weybrige, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK.
| | - David O Ulaeto
- CBR Division, Defence Science and Technology Laboratory (Dstl), Room 201, Building 7a, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK.
| |
Collapse
|
21
|
Neuroimaging. IMAGING INFECTIONS 2017. [PMCID: PMC7123586 DOI: 10.1007/978-3-319-54592-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Imaging of infection in the CNS has been handled using cross-sectional imaging for more than two decades now resulting in a large array of descriptive diagnostic criteria, capable, in most circumstances of narrowing the differential diagnosis, detecting life-threatening complications and establishing baseline for assessment of treatment response. Limitations however exist, and in many circumstances, both cross-sectional imaging and nonspecific molecular imaging, such as 18F-FDG, fail to establish a diagnosis. The availability of pathogen-specific imaging agents/ligands would have a great effect on the management of patients with CNS infection. Besides early diagnosis, avoidance of diagnostic brain biopsies can have significant effect on the mortality and morbidity of patients.
Collapse
|
22
|
Rico AB, Phillips AT, Schountz T, Jarvis DL, Tjalkens RB, Powers AM, Olson KE. Venezuelan and western equine encephalitis virus E1 liposome antigen nucleic acid complexes protect mice from lethal challenge with multiple alphaviruses. Virology 2016; 499:30-39. [PMID: 27632563 DOI: 10.1016/j.virol.2016.08.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 08/24/2016] [Accepted: 08/25/2016] [Indexed: 10/21/2022]
Abstract
Eastern, Venezuelan and western equine encephalitis viruses (EEEV, VEEV, and WEEV) are mosquito-borne viruses that cause substantial disease in humans and other vertebrates. Vaccines are limited and current treatment options have not proven successful. In this report, we vaccinated outbred mice with lipid-antigen-nucleic acid-complexes (LANACs) containing VEEV E1+WEEV E1 antigen and characterized protective efficacy against lethal EEEV, VEEV, and WEEV challenge. Vaccination resulted in complete protection against EEEV, VEEV, and WEEV in CD-1 mice. Measurements of bioluminescence and plaque reduction neutralization tests (PRNTs) indicate that LANAC VEEV E1+WEEV E1 vaccination is sterilizing against VEEV and WEEV challenge; whereas immunity to EEEV is not sterilizing. Passive transfer of rabbit VEEV E1+WEEV E1 immune serum to naive mice extended the mean time to death (MTD) of EEEV challenged mice and provided significant protection from lethal VEEV and WEEV challenge.
Collapse
Affiliation(s)
- Amber B Rico
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA.
| | - Aaron T Phillips
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Tony Schountz
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Donald L Jarvis
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| | - Ronald B Tjalkens
- Department of Environmental & Radiological Health Sciences, CSU, Fort Collins, CO, USA
| | - Ann M Powers
- Division of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Ken E Olson
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
23
|
Deng CL, Liu SQ, Zhou DG, Xu LL, Li XD, Zhang PT, Li PH, Ye HQ, Wei HP, Yuan ZM, Qin CF, Zhang B. Development of Neutralization Assay Using an eGFP Chikungunya Virus. Viruses 2016; 8:v8070181. [PMID: 27367716 PMCID: PMC4974516 DOI: 10.3390/v8070181] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/31/2016] [Accepted: 06/23/2016] [Indexed: 12/24/2022] Open
Abstract
Chikungunya virus (CHIKV), a member of the Alphavirus genus, is an important human emerging/re-emerging pathogen. Currently, there are no effective antiviral drugs or vaccines against CHIKV infection. Herein, we construct an infectious clone of CHIKV and an eGFP reporter CHIKV (eGFP-CHIKV) with an isolated strain (assigned to Asian lineage) from CHIKV-infected patients. The eGFP-CHIKV reporter virus allows for direct visualization of viral replication through the levels of eGFP expression. Using a known CHIKV inhibitor, ribavirin, we confirmed that the eGFP-CHIKV reporter virus could be used to identify inhibitors against CHIKV. Importantly, we developed a novel and reliable eGFP-CHIKV reporter virus-based neutralization assay that could be used for rapid screening neutralizing antibodies against CHIKV.
Collapse
Affiliation(s)
- Cheng-Lin Deng
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Si-Qing Liu
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Dong-Gen Zhou
- Ningbo International Travel Healthcare Center, Ningbo 315012, China.
| | - Lin-Lin Xu
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Xiao-Dan Li
- School of Medicine, Hunan Normal University, Changsha 410000, China.
| | - Pan-Tao Zhang
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Peng-Hui Li
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Han-Qing Ye
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Hong-Ping Wei
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Zhi-Ming Yuan
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.
| | - Bo Zhang
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|
24
|
Entry Sites of Venezuelan and Western Equine Encephalitis Viruses in the Mouse Central Nervous System following Peripheral Infection. J Virol 2016; 90:5785-96. [PMID: 27053560 DOI: 10.1128/jvi.03219-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 04/03/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Venezuelan and western equine encephalitis viruses (VEEV and WEEV; Alphavirus; Togaviridae) are mosquito-borne pathogens causing central nervous system (CNS) disease in humans and equids. Adult CD-1 mice also develop CNS disease after infection with VEEV and WEEV. Adult CD-1 mice infected by the intranasal (i.n.) route, showed that VEEV and WEEV enter the brain through olfactory sensory neurons (OSNs). In this study, we injected the mouse footpad with recombinant WEEV (McMillan) or VEEV (subtype IC strain 3908) expressing firefly luciferase (fLUC) to simulate mosquito infection and examined alphavirus entry in the CNS. Luciferase expression served as a marker of infection detected as bioluminescence (BLM) by in vivo and ex vivo imaging. BLM imaging detected WEEV and VEEV at 12 h postinoculation (hpi) at the injection site (footpad) and as early as 72 hpi in the brain. BLM from WEEV.McM-fLUC and VEEV.3908-fLUC injections was initially detected in the brain's circumventricular organs (CVOs). No BLM activity was detected in the olfactory neuroepithelium or OSNs. Mice were also injected in the footpad with WEEV.McM expressing DsRed (Discosoma sp.) and imaged by confocal fluorescence microscopy. DsRed imaging supported our BLM findings by detecting WEEV in the CVOs prior to spreading along the neuronal axis to other brain regions. Taken together, these findings support our hypothesis that peripherally injected alphaviruses enter the CNS by hematogenous seeding of the CVOs followed by centripetal spread along the neuronal axis. IMPORTANCE VEEV and WEEV are mosquito-borne viruses causing sporadic epidemics in the Americas. Both viruses are associated with CNS disease in horses, humans, and mouse infection models. In this study, we injected VEEV or WEEV, engineered to express bioluminescent or fluorescent reporters (fLUC and DsRed, respectively), into the footpads of outbred CD-1 mice to simulate transmission by a mosquito. Reporter expression serves as detectable bioluminescent and fluorescent markers of VEEV and WEEV replication and infection. Bioluminescence imaging, histological examination, and confocal fluorescence microscopy were used to identify early entry sites of these alphaviruses in the CNS. We observed that specific areas of the brain (circumventricular organs [CVOs]) consistently showed the earliest signs of infection with VEEV and WEEV. Histological examination supported VEEV and WEEV entering the brain of mice at specific sites where the blood-brain barrier is naturally absent.
Collapse
|
25
|
Durrant DM, Ghosh S, Klein RS. The Olfactory Bulb: An Immunosensory Effector Organ during Neurotropic Viral Infections. ACS Chem Neurosci 2016; 7:464-9. [PMID: 27058872 DOI: 10.1021/acschemneuro.6b00043] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In 1935, the olfactory route was hypothesized to be a portal for virus entry into the central nervous system (CNS). This hypothesis was based on experiments in which nasophayngeal infection with poliovirus in monkeys was prevented from spreading to their CNS via transection of olfactory tracts between the olfactory neuroepithelium (ONE) of the nasal cavity and the olfactory bulb (OB). Since then, numerous neurotropic viruses have been observed to enter the CNS via retrograde transport along axons of olfactory sensory neurons whose cell bodies reside in the ONE. Importantly, this route of infection can occur even after subcutaneous inoculation of arboviruses that can cause encephalitis in humans. While the olfactory route is now accepted as an important pathway for viral entry into the CNS, it is unclear whether it provides a way for infection to spread to other brain regions. More recently, studies of antiviral innate and adaptive immune responses within the olfactory bulb suggest it provides early virologic control. Here we will review the data demonstrating that neurotropic viruses gain access to the CNS initially via the olfactory route with emphasis on findings that suggest the OB is a critical immunosensory effector organ that effectively clears virus.
Collapse
Affiliation(s)
- Douglas M. Durrant
- Biological
Sciences Department, California State Polytechnic University, 3801 West
Temple Ave., Pomona, California 91768, United States
| | | | | |
Collapse
|
26
|
Immune Responses to Viruses in the CNS. ENCYCLOPEDIA OF IMMUNOBIOLOGY 2016. [PMCID: PMC7151986 DOI: 10.1016/b978-0-12-374279-7.14022-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For recovery from infection, the immune response in the central nervous system (CNS) must eliminate or control virus replication without destroying nonrenewable, essential cells. Thus, upon intracellular virus detection, the infected cell must initiate clearance pathways without triggering neuronal cell death. As a result, the inflammatory response must be tightly regulated and unique mechanisms contribute to the immune response in the CNS. Early restriction of virus replication is accomplished by the innate immune response upon activation of pattern recognition receptors in resident cells. Infiltrating immune cells enter from the periphery to clear virus. Antibodies and interferon-γ are primary contributors to noncytolytic clearance of virus in the CNS. Lymphocytes are retained in the CNS after the acute phase of infection presumably to block reactivation of virus replication.
Collapse
|
27
|
Lompardía SL, Díaz M, Papademetrio DL, Mascaró M, Pibuel M, Álvarez E, Hajos SE. Hyaluronan oligomers sensitize chronic myeloid leukemia cell lines to the effect of Imatinib. Glycobiology 2015; 26:343-52. [DOI: 10.1093/glycob/cwv107] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/11/2015] [Indexed: 02/06/2023] Open
|
28
|
Blakely PK, Delekta PC, Miller DJ, Irani DN. Manipulation of host factors optimizes the pathogenesis of western equine encephalitis virus infections in mice for antiviral drug development. J Neurovirol 2014; 21:43-55. [PMID: 25361697 DOI: 10.1007/s13365-014-0297-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 09/18/2014] [Accepted: 09/24/2014] [Indexed: 11/25/2022]
Abstract
While alphaviruses spread naturally via mosquito vectors, some can also be transmitted as aerosols making them potential bioterrorism agents. One such pathogen, western equine encephalitis virus (WEEV), causes fatal human encephalitis via multiple routes of infection and thus presumably via multiple mechanisms. Although WEEV also produces acute encephalitis in non-human primates, a small animal model that recapitulates features of human disease would be useful for both pathogenesis studies and to evaluate candidate antiviral therapies. We have optimized conditions to infect mice with a low passage isolate of WEEV, thereby allowing detailed investigation of virus tropism, replication, neuroinvasion, and neurovirulence. We find that host factors strongly influence disease outcome, and in particular, that age, gender, and genetic background all have significant effects on disease susceptibility independent of virus tropism or replication within the central nervous system. Our data show that experimental variables can be adjusted in mice to recapitulate disease features known to occur in both non-human primates and humans, thus aiding further study of WEEV pathogenesis and providing a realistic therapeutic window for antiviral drug delivery.
Collapse
MESH Headings
- Administration, Intranasal
- Alphavirus Infections/pathology
- Alphavirus Infections/virology
- Animals
- Behavior, Animal
- Cognition
- Disease Models, Animal
- Encephalitis Virus, Western Equine/pathogenicity
- Encephalitis Virus, Western Equine/physiology
- Host Specificity
- Injections, Intraperitoneal
- Injections, Subcutaneous
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred DBA
- RNA, Viral/blood
- Seizures/pathology
- Seizures/virology
- Species Specificity
- Viral Load
- Virus Replication
Collapse
Affiliation(s)
- Pennelope K Blakely
- Department of Neurology, University of Michigan Medical School, 4007 Biomedical Sciences Research Building, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | | | | | | |
Collapse
|
29
|
Taylor A, Herrero LJ, Rudd PA, Mahalingam S. Mouse models of alphavirus-induced inflammatory disease. J Gen Virol 2014; 96:221-238. [PMID: 25351726 DOI: 10.1099/vir.0.071282-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Part of the Togaviridae family, alphaviruses are arthropod-borne viruses that are widely distributed throughout the globe. Alphaviruses are able to infect a variety of vertebrate hosts, but in humans, infection can result in extensive morbidity and mortality. Symptomatic infection can manifest as fever, an erythematous rash and/or significant inflammatory pathologies such as arthritis and encephalitis. Recent overwhelming outbreaks of alphaviral disease have highlighted the void in our understanding of alphavirus pathogenesis and the re-emergence of alphaviruses has given new impetus to anti-alphaviral drug design. In this review, the development of viable mouse models of Old Word and New World alphaviruses is examined. How mouse models that best replicate human disease have been used to elucidate the immunopathology of alphavirus pathogenesis and trial novel therapeutic discoveries is also discussed.
Collapse
Affiliation(s)
- Adam Taylor
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD, Australia
| | - Lara J Herrero
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD, Australia
| | - Penny A Rudd
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD, Australia
| | - Suresh Mahalingam
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD, Australia
| |
Collapse
|
30
|
Dando SJ, Mackay-Sim A, Norton R, Currie BJ, St John JA, Ekberg JAK, Batzloff M, Ulett GC, Beacham IR. Pathogens penetrating the central nervous system: infection pathways and the cellular and molecular mechanisms of invasion. Clin Microbiol Rev 2014; 27:691-726. [PMID: 25278572 PMCID: PMC4187632 DOI: 10.1128/cmr.00118-13] [Citation(s) in RCA: 297] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The brain is well protected against microbial invasion by cellular barriers, such as the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB). In addition, cells within the central nervous system (CNS) are capable of producing an immune response against invading pathogens. Nonetheless, a range of pathogenic microbes make their way to the CNS, and the resulting infections can cause significant morbidity and mortality. Bacteria, amoebae, fungi, and viruses are capable of CNS invasion, with the latter using axonal transport as a common route of infection. In this review, we compare the mechanisms by which bacterial pathogens reach the CNS and infect the brain. In particular, we focus on recent data regarding mechanisms of bacterial translocation from the nasal mucosa to the brain, which represents a little explored pathway of bacterial invasion but has been proposed as being particularly important in explaining how infection with Burkholderia pseudomallei can result in melioidosis encephalomyelitis.
Collapse
Affiliation(s)
- Samantha J Dando
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Alan Mackay-Sim
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - Robert Norton
- Townsville Hospital, Townsville, Queensland, Australia
| | - Bart J Currie
- Menzies School of Health Research and Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - James A St John
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - Jenny A K Ekberg
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Michael Batzloff
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Glen C Ulett
- School of Medical Science and Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia
| | - Ifor R Beacham
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
31
|
Hülseweh B, Rülker T, Pelat T, Langermann C, Frenzel A, Schirrmann T, Dübel S, Thullier P, Hust M. Human-like antibodies neutralizing Western equine encephalitis virus. MAbs 2014; 6:718-27. [PMID: 24518197 PMCID: PMC4011916 DOI: 10.4161/mabs.28170] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
This study describes the development of the first neutralizing antibodies against Western equine encephalitis virus (WEEV), a member of the genus Alphavirus. WEEV is transmitted by mosquitoes and can spread to the human central nervous system, causing symptoms ranging from mild febrile reactions to life-threatening encephalitis. WEEV has been classified as a biological warfare agent by the US Centers for Disease Control and Prevention. No anti-WEEV drugs are currently commercially available. Neutralizing antibodies are useful for the pre- and post-exposure treatment of WEEV infections. In this study, two immune antibody gene libraries were constructed from two macaques immunized with inactivated WEEV. Four antibodies were selected from these libraries and recloned as scFv-Fc, with a human Fc part. These antibodies bound WEEV specifically in ELISA with little or no cross-reaction with other alphaviruses. They were further analyzed by immunohistochemistry. All binders were suitable for the intracellular detection of WEEV particles. Neutralizing activity was determined in vitro. Three of the four antibodies were found to be neutralizing; about 1 ng/mL of the best antibody (ToR69–3A2) neutralized 50% of 5x104 TCID50/mL. Due to its human-like nature with a germinality index of 89% (VH) and 91% (VL), the ToR69–3A2 antibody is a promising candidate for future passive vaccine development.
Collapse
Affiliation(s)
- Birgit Hülseweh
- Wehrwissenschaftliches Institut für Schutztechnologien (WIS); ABC-Schutz; Munster, Germany
| | - Torsten Rülker
- Technische Universität Braunschweig; Institut für Biochemie, Biotechnologie und Bioinformatik; Braunschweig, Germany
| | - Thibaut Pelat
- Institut de Recherche Biomédicale des Armées (IRBA-CRSSA); Département de Microbiologie; Unité de biotechnologie des anticorps et des toxines; La Tronche, France
| | - Claudia Langermann
- Wehrwissenschaftliches Institut für Schutztechnologien (WIS); ABC-Schutz; Munster, Germany
| | - Andrè Frenzel
- Technische Universität Braunschweig; Institut für Biochemie, Biotechnologie und Bioinformatik; Braunschweig, Germany
| | - Thomas Schirrmann
- Technische Universität Braunschweig; Institut für Biochemie, Biotechnologie und Bioinformatik; Braunschweig, Germany
| | - Stefan Dübel
- Technische Universität Braunschweig; Institut für Biochemie, Biotechnologie und Bioinformatik; Braunschweig, Germany
| | - Philippe Thullier
- Institut de Recherche Biomédicale des Armées (IRBA-CRSSA); Département de Microbiologie; Unité de biotechnologie des anticorps et des toxines; La Tronche, France
| | - Michael Hust
- Technische Universität Braunschweig; Institut für Biochemie, Biotechnologie und Bioinformatik; Braunschweig, Germany
| |
Collapse
|
32
|
Stable, high-level expression of reporter proteins from improved alphavirus expression vectors to track replication and dissemination during encephalitic and arthritogenic disease. J Virol 2013; 88:2035-46. [PMID: 24307590 DOI: 10.1128/jvi.02990-13] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Engineered alphavirus vectors expressing reporters of infection have been used for a number of years due to their relatively low costs for analysis of virus replication and the capacity to utilize imaging systems for longitudinal measurements of growth within single animals. In general, these vectors have been derived from Old World alphaviruses using a second viral subgenomic promoter to express the transgenes, placed either immediately after the nonstructural proteins or at the 3' end of the viral coding sequences. However, the relevance of these vectors to natural infections is questionable, as they have not been rigorously tested for virulence in vivo in comparison with parental viruses or for the retention of the reporter during replication. Here, we report construction of new expression vectors for two Old World arthritogenic alphaviruses (Sindbis and Chikungunya viruses) and two New World encephalitic alphaviruses (eastern and Venezuelan equine encephalitis viruses) based upon either fusion of the reporter protein in frame within nonstructural protein 3 (nsP3) or insertion of the reporter as a cleavable element between the capsid and PE2 structural proteins. We have compared these with a traditional 3' double subgenomic promoter virus expressing either a large, firefly luciferase (fLuc; 1,650 nucleotides), or small, NanoLuc (nLuc; 513 nucleotides), luminescent reporter protein. Results indicate that the nLuc is substantially more stable than fLuc during repeated rounds of infection regardless of the transgene location. However, the capsid-PE2 insertion and nsP3 fusion viruses exhibit the most authentic mimicking of parental virus infection regardless of expressed protein. IMPORTANCE As more antiviral therapeutics and vaccines are developed, rapid and accurate in vivo modeling of their efficacy will be required. However, current alphavirus vectors expressing reporters of infection have not been extensively tested for accurate mimicking of the infection characteristics of unmodified parental viruses. Additionally, use of in vivo imaging systems detecting light emitted from luciferase reporters can significantly decrease costs associated with efficacy studies by minimizing numbers of animals. Herein we report development and testing of new expression vectors for Sindbis, Chikungunya, and eastern and Venezuelan equine encephalitis viruses and demonstrate that a small (∼500-nucleotide) reporter gene (NanoLuc; Promega) is very stable and causes a disease severity similar to that caused by unmodified parental viruses. In contrast, expression of larger reporters is very rapidly lost with virus replication and can be significantly attenuating. The utility of NanoLuc for in vivo imaging is also demonstrated.
Collapse
|
33
|
Liposome-antigen-nucleic acid complexes protect mice from lethal challenge with western and eastern equine encephalitis viruses. J Virol 2013; 88:1771-80. [PMID: 24257615 DOI: 10.1128/jvi.02297-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Alphaviruses are mosquito-borne viruses that cause significant disease in animals and humans. Western equine encephalitis virus (WEEV) and eastern equine encephalitis virus (EEEV), two New World alphaviruses, can cause fatal encephalitis, and EEEV is a select agent of concern in biodefense. However, we have no antiviral therapies against alphaviral disease, and current vaccine strategies target only a single alphavirus species. In an effort to develop new tools for a broader response to outbreaks, we designed and tested a novel alphavirus vaccine comprised of cationic lipid nucleic acid complexes (CLNCs) and the ectodomain of WEEV E1 protein (E1ecto). Interestingly, we found that the CLNC component, alone, had therapeutic efficacy, as it increased survival of CD-1 mice following lethal WEEV infection. Immunization with the CLNC-WEEV E1ecto mixture (lipid-antigen-nucleic acid complexes [LANACs]) using a prime-boost regimen provided 100% protection in mice challenged with WEEV subcutaneously, intranasally, or via mosquito. Mice immunized with LANACs mounted a strong humoral immune response but did not produce neutralizing antibodies. Passive transfer of serum from LANAC E1ecto-immunized mice to nonimmune CD-1 mice conferred protection against WEEV challenge, indicating that antibody is sufficient for protection. In addition, the LANAC E1ecto immunization protocol significantly increased survival of mice following intranasal or subcutaneous challenge with EEEV. In summary, our LANAC formulation has therapeutic potential and is an effective vaccine strategy that offers protection against two distinct species of alphavirus irrespective of the route of infection. We discuss plausible mechanisms as well the potential utility of our LANAC formulation as a pan-alphavirus vaccine.
Collapse
|