1
|
Wang S, Miao S, Li Y, Wang J, Li C, Lu Y, Li B. Morphological and functional characterization of circulating hemocytes in Tribolium castaneum larvae. INSECT SCIENCE 2024. [PMID: 39361781 DOI: 10.1111/1744-7917.13455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 10/05/2024]
Abstract
Hemocytes are pivotal in the immune response of insects against invasive pathogens. However, our knowledge of hemocyte types and their specific function in Tribolium castaneum, an increasingly important Coleoptera model insect in various research fields, remains limited. Presently, a combination of morphological criteria and dye-staining properties were used to characterize hemocyte types from T. castaneum larvae, and 4 distinct types were identified: granulocytes, oenocytoids, plasmatocytes and prohemocytes. Following different immune challenges, the total hemocyte counts declined rapidly in the initial phase (at 2 h), then increased over time (at 4 and 6 h) and eventually returned to the naive state by 24 h post-injection. Notably, the morphology of granulocytes underwent dramatic changes, characterized by an expansion of the surface area and an increased production of pseudopods, and with the number of granulocytes rising significantly through mitotic division. Granulocytes and plasmatocytes, the main hemocyte types in T. castaneum larvae, can phagocytose bacteria or latex beads injected into the larval hemolymph in vivo. Furthermore, these hemocytes participate in the encapsulation and melanization processes in vitro, forming capsules to encapsulate and melanize nickel-nitrilotriacetic acid (Ni-NTA) beads. This study provides the first comprehensive characterization of circulating hemocytes in T. castaneum larvae, offering valuable insights into cell-mediated immunity in response to bacterial infection and the injection of latex beads. These results deepen our understanding of the cellular response mechanisms in T. castaneum larvae and lay a solid foundation for subsequent investigations of the involvement of T. castaneum hemocytes in combating pathogens.
Collapse
Affiliation(s)
- Suisui Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Shiyuan Miao
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- College of Environmental and Life Science, Murdoch University, Murdoch, WA, Australia
| | - Yusi Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jianhui Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Chengjun Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yujie Lu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
2
|
Meirong Q. The larvicidal efficacy and mechanism of action of 5-Ethenyl-2,2'-bithiophene extracted from Echinops ritro on Aedes aegypti larvae. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:105965. [PMID: 39084763 DOI: 10.1016/j.pestbp.2024.105965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 08/02/2024]
Abstract
Herein, we focused on the larvicidal effects and potential mechanisms of 5-ethenyl-2,2'-bithiophene (5 EB), a compound isolated from Echinops ritro L. on Aedes aegypti larvae. Our results show that 5 EB exhibits pronounced larvicidal activity against A. aegypti larvae, with an LC50 = 0.24 mg/L, considerably lesser than that of the traditional insecticide, rotenone. Observations using fluorescence microscopy, electron microscopy, and imaging flow cytometry demonstrated that 5 EB targets the hemocytes of larvae, leading to the disruption of their intracellular membrane systems. This disruption leads to considerable damage to the cellular structure and function, leading to the death of test subjects. Note that additional investigation into the molecular mechanism of 5 EB's action was conducted using transcriptomic analysis. Both GO and KEGG enrichment analyses reported that the differentially expressed genes were predominantly associated with membranes, lysosomes, and catalytic activities. To summarize, this study provides new options for developing new, environmentally friendly, plant-based larvicides for mosquito control.
Collapse
Affiliation(s)
- Quan Meirong
- Department of Entomology, College of Plant Protection, China Agricultural University, Haidian District, Beijing 100193, China.
| |
Collapse
|
3
|
Liu Q, Deng X, Wang L, Xie W, Zhang H, Li Q, Yang Q, Jiang C. Chlorantraniliprole Enhances Cellular Immunity in Larvae of Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae). INSECTS 2024; 15:586. [PMID: 39194791 DOI: 10.3390/insects15080586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024]
Abstract
The innate immunity of insects encompasses cellular and humoral defense mechanisms and constitutes the primary defense against invading microbial pathogens. Cellular immunity (phagocytosis, nodulation, and encapsulation) is primarily mediated by hemocytes. Plasmatocytes and granulocytes play an important role and require changes in the cytoskeletons of hemocytes. However, research investigating the immunological impacts of insecticides on the fall armyworm (FAW), Spodoptera frugiperda, remains scarce. Therefore, we conducted a study to investigate the effects of chlorantraniliprole exposure on cellular immunity in FAW larvae. Our findings revealed the presence of five types of hemocytes in the larvae: prohemocytes, plasmatocytes, granulocytes, oenocytoids, and spherulocytes. The LD10, LD20, and LD30 of chlorantraniliprole affected both the morphology and total count of some hemocytes in the larvae. Moreover, larvae exposed to chlorantraniliprole showed increased phagocytosis, nodulation, and encapsulation. To determine the mechanism of the enhanced cellular immunity, we studied plasmatocytes in the spread state and the cytoskeleton in hemocytes. It was found that the spreading ratio of plasmatocytes and the areas of the cytoskeletons in hemocytes were increased after chlorantraniliprole treatment. These results suggest that exposure to chlorantraniliprole results in an enhanced immune response function in FAW larvae, which may be mediated by cytoskeletal changes and plasmatocyte spreading. Consequently, this study provides valuable insights into the cellular immune response of FAW larvae to insecticide exposure.
Collapse
Affiliation(s)
- Qingyan Liu
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoyue Deng
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
- Emeishan Agricultural and Rural Bureau, Emeishan 614200, China
| | - Liuhong Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Wenqi Xie
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Huilai Zhang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Qing Li
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Qunfang Yang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Chunxian Jiang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
4
|
Cho Y, Cho S. Granulocyte dynamics: a key player in the immune priming effects of crickets. Front Immunol 2024; 15:1383498. [PMID: 38827743 PMCID: PMC11140058 DOI: 10.3389/fimmu.2024.1383498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/06/2024] [Indexed: 06/04/2024] Open
Abstract
This study investigates immune priming effects associated with granulocytes in crickets through a comprehensive analysis. Kaplan-Meier survival analysis reveals a significant contrast in survival rates, with the heat-killed Bacillus thuringiensis (Bt)-primed group exhibiting an impressive ~80% survival rate compared to the PBS buffer-primed group with only ~10% survival 60 hours post live Bt infection. Hemocyte analysis underscores elevated hemocyte counts, particularly in granulocytes of the killed Bt-primed group, suggesting a correlation between the heat-killed Bt priming and heightened immune activation. Microscopy techniques further explore granulocyte morphology, unveiling distinctive immune responses in the killed Bt-primed group characterized by prolonged immune activation, heightened granulocyte activity, phagocytosis, and extracellular trap formation, contributing to enhanced survival rates. In particular, after 24 hours of injecting live Bt, most granulocytes in the PBS buffer-primed group exhibited extracellular DNA trap cell death (ETosis), while in the killed Bt-primed group, the majority of granulocytes were observed to maintain highly activated extracellular traps, sustaining the immune response. Gene expression analysis supports these findings, revealing differential regulation of immune-related genes such as antibacterial humoral response, detection of bacterial lipopeptides, and cellular response to bacteria lipopeptides. Additionally, the heat-killed Bt-primed group, the heat-killed E. coli-primed group, and the PBS-primed group were re-injected with live Bt 2 and 9 days post priming. Two days later, only the PBS-primed group displayed low survival rates. After injecting live Bt 9 days later, the heat-killed E. coli-primed group surprisingly showed a similarly low survival rate, while the heat-killed Bt-primed group exhibited a high survival rate of ~60% after 60 hours, with actively moving and healthy crickets. In conclusion, this research provides valuable insights into both short-term and long-term immune priming effects in crickets, contributing to our understanding of invertebrate immunity with potential applications in public health.
Collapse
Affiliation(s)
- Youngwoo Cho
- Department of Plant Medicine, College of Agriculture and Life Science, Kangwon National University, Chuncheon, Republic of Korea
- Department of Interdisciplinary Program in Smart Agriculture, College of Agriculture and Life Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Saeyoull Cho
- Department of Plant Medicine, College of Agriculture and Life Science, Kangwon National University, Chuncheon, Republic of Korea
- Department of Interdisciplinary Program in Smart Agriculture, College of Agriculture and Life Science, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
5
|
Dourado LA, Oliveira LL, Raimundo APP, Cossolin JFS, Oliveira JFD, Serrão JE. Hemocyte morphology of worker subcastes of the leaf-cutting ant Atta sexdens rubropilosa (Hymenoptera: Formicidae). ARTHROPOD STRUCTURE & DEVELOPMENT 2023; 76:101301. [PMID: 37660416 DOI: 10.1016/j.asd.2023.101301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/10/2023] [Accepted: 08/23/2023] [Indexed: 09/05/2023]
Abstract
Hemocytes are cells present in the hemolymph of insects that play a role in combating invasive pathogens, ensuring defense by the immune system in these organisms. While the types of hemocytes are well known in some insect representatives, data on these cells in Hymenoptera are limited to certain bees and wasps, with little information available for ants. Among ants, the genus Atta has environmental and economic importance, forming highly organized colonies consisting of the queen and workers, with the latter subdivided into subcastes: gardeners, waste removers, foragers, and soldiers, which are exposed to different pathogens. This study describes the morphology of hemocytes in the worker subcastes of Atta sexdens rubropilosa. Hemolymph samples from the ant were submitted to light, confocal, and scanning electron microscopy analyses. Five types of hemocytes were identified in the hemolymph of all ant subcastes, including prohemocytes, oenocytoids, spherulocytes, plasmatocytes, and granulocytes. They exhibited nuclei with a predominance of decondensed chromatin. The granulocytes were the most abundant cell type in the subcastes, followed by prohemocytes, plasmatocytes, oenocytoids, and spherulocytes. Phagocytosis assays reveal that plasmatocytes and granulocytes are the main phagocytic cells in all castes evaluated. This study fills an important gap in understanding the immune response in this ant species.
Collapse
Affiliation(s)
- Lidia Aparecida Dourado
- Department of General Biology, Instituto de Bitecnologia Aplicada à Agropecuária, Federal University of Viçosa, Viçosa, Brazil
| | - Leandro Licursi Oliveira
- Department of General Biology, Instituto de Bitecnologia Aplicada à Agropecuária, Federal University of Viçosa, Viçosa, Brazil
| | - Ana Paula Pereira Raimundo
- Department of General Biology, Instituto de Bitecnologia Aplicada à Agropecuária, Federal University of Viçosa, Viçosa, Brazil
| | - Jamile Fernanda Silva Cossolin
- Department of General Biology, Instituto de Bitecnologia Aplicada à Agropecuária, Federal University of Viçosa, Viçosa, Brazil
| | | | - José Eduardo Serrão
- Department of General Biology, Instituto de Bitecnologia Aplicada à Agropecuária, Federal University of Viçosa, Viçosa, Brazil.
| |
Collapse
|
6
|
Kaur G, Singh A, Sharma R, Thakur A, Tuteja S, Shyamli, Singh R. Effect of fungicidal contamination on survival, morphology, and cellular immunity of Apis mellifera (Hymenoptera: Apidae). Front Physiol 2023; 14:1099806. [PMID: 37179823 PMCID: PMC10167026 DOI: 10.3389/fphys.2023.1099806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/10/2023] [Indexed: 09/21/2023] Open
Abstract
Pesticide residues have been reported in hive-stored products for long periods. Larvae of honey bees experience oral or contact exposure to these products during their normal growth and development inside the cells. We analyzed various toxicological, morphogenic, and immunological effects of residue-based concentrations of two fungicides, captan and difenoconazole, on the larvae of worker honey bees, Apis mellifera. Selected concentrations (0.08, 0.4, 2, 10, and 50 ppm) of both fungicides were applied topically at a volume of 1 µL/larva/cell as single and multiple exposures. Our results revealed a continuous, concentration-dependent decrease in brood survival after 24 h of treatment to the capping and emergence stages. Compared to larvae with a single exposure, the multiply exposed youngest larvae were most sensitive to fungicidal toxicity. The larvae that survived higher concentrations, especially multiple exposures, showed several morphological defects at the adult stage. Moreover, difenoconazole-treated larvae showed a significantly decreased number of granulocytes after 1 h of treatment followed by an increase after 24 h of treatment. Thus, fungicidal contamination poses a great risk as the tested concentrations showed adverse effects on the survival, morphology, and immunity of larval honey bees.
Collapse
Affiliation(s)
- Gurleen Kaur
- PG Department of Agriculture, Khalsa College Amritsar, Amritsar, India
| | - Amandeep Singh
- Department of Agriculture, Khalsa College Garhdiwala, Hoshiarpur, India
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | | | - Shushant Tuteja
- PG Department of Agriculture, Khalsa College Amritsar, Amritsar, India
| | - Shyamli
- PG Department of Agriculture, Khalsa College Amritsar, Amritsar, India
| | - Randeep Singh
- PG Department of Agriculture, Khalsa College Amritsar, Amritsar, India
| |
Collapse
|
7
|
Mishra R, Hua G, Bagal UR, Champagne DE, Adang MJ. Anopheles gambiae strain (Ag55) cultured cells originated from Anopheles coluzzii and are phagocytic with hemocyte-like gene expression. INSECT SCIENCE 2022; 29:1346-1360. [PMID: 35358364 DOI: 10.1111/1744-7917.13036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 02/21/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Anopheles gambiae and Anopheles coluzzii are closely related species that are predominant vectors of malaria in Africa. Recently, A. gambiae form M was renamed A. coluzzii and we now conclude on the basis of a diagnostic PCR-restriction fragment length polymorphism assay that Ag55 cells were derived from A. coluzzii. We established an Ag55 cell transcriptome, and KEGG pathway analysis showed that Ag55 cells are enriched in phagosome pathway transcripts. The Ag55 transcriptome has an abundance of specific transcripts characteristic of mosquito hemocytes. Functional E. coli bioparticle uptake experiments visualized by fluorescence microscopy and confocal microscopy and quantified by flow cytometry establish the phagocytic competence of Ag55 cells. Results from this investigation of Ag55 cell properties will guide researchers in the use and engineering of the Ag55 cell line to better enable investigations of Plasmodium, other microbes, and insecticidal toxins.
Collapse
Affiliation(s)
- Ruchir Mishra
- Department of Entomology, College of Agricultural and Environmental Sciences, University of Georgia, Athens, Georgia, USA
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida, USA
| | - Gang Hua
- Department of Entomology, College of Agricultural and Environmental Sciences, University of Georgia, Athens, Georgia, USA
| | - Ujwal R Bagal
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, USA
| | - Donald E Champagne
- Department of Entomology, College of Agricultural and Environmental Sciences, University of Georgia, Athens, Georgia, USA
| | - Michael J Adang
- Department of Entomology, College of Agricultural and Environmental Sciences, University of Georgia, Athens, Georgia, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
8
|
Bruno D, Montali A, Gariboldi M, Wrońska AK, Kaczmarek A, Mohamed A, Tian L, Casartelli M, Tettamanti G. Morphofunctional characterization of hemocytes in black soldier fly larvae. INSECT SCIENCE 2022. [PMID: 36065570 DOI: 10.1111/1744-7917.13111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/03/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
In insects, the cell-mediated immune response involves an active role of hemocytes in phagocytosis, nodulation, and encapsulation. Although these processes have been well documented in multiple species belonging to different insect orders, information concerning the immune response, particularly the hemocyte types and their specific function in the black soldier fly Hermetia illucens, is still limited. This is a serious gap in knowledge given the high economic relevance of H. illucens larvae in waste management strategies and considering that the saprophagous feeding habits of this dipteran species have likely shaped its immune system to efficiently respond to infections. The present study represents the first detailed characterization of black soldier fly hemocytes and provides new insights into the cell-mediated immune response of this insect. In particular, in addition to prohemocytes, we identified five hemocyte types that mount the immune response in the larva, and analyzed their behavior, role, and morphofunctional changes in response to bacterial infection and injection of chromatographic beads. Our results demonstrate that the circulating phagocytes in black soldier fly larvae are plasmatocytes. These cells also take part in nodulation and encapsulation with granulocytes and lamellocyte-like cells, developing a starting core for nodule/capsule formation to remove/encapsulate large bacterial aggregates/pathogens from the hemolymph, respectively. These processes are supported by the release of melanin precursors from crystal cells and likely by mobilizing nutrient reserves in newly circulating adipohemocytes, which could thus trophically support other hemocytes during the immune response. Finally, the regulation of the cell-mediated immune response by eicosanoids was investigated.
Collapse
Affiliation(s)
- Daniele Bruno
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Aurora Montali
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Marzia Gariboldi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Anna Katarzyna Wrońska
- Host Parasites Molecular Interaction Research Unit, Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Agata Kaczmarek
- Host Parasites Molecular Interaction Research Unit, Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Amr Mohamed
- Department of Entomology, Faculty of Science, Cairo University, Giza, Egypt
| | - Ling Tian
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Morena Casartelli
- Department of Biosciences, University of Milano, Milano, Italy
- Interuniversity Center for Studies on Bioinspired Agro-environmental Technology (BAT Center), University of Napoli Federico II, Portici, Italy
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- Interuniversity Center for Studies on Bioinspired Agro-environmental Technology (BAT Center), University of Napoli Federico II, Portici, Italy
| |
Collapse
|
9
|
Polenogova OV, Noskov YA, Artemchenko AS, Zhangissina S, Klementeva TN, Yaroslavtseva ON, Khodyrev VP, Kruykova NA, Glupov VV. Citrobacter freundii, a natural associate of the Colorado potato beetle, increases larval susceptibility to Bacillus thuringiensis. PEST MANAGEMENT SCIENCE 2022; 78:3823-3835. [PMID: 35238478 DOI: 10.1002/ps.6856] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND We assume that certain representatives of gut microflora mediate immune changes during dysbiosis, accelerating septicemia caused by Bacillus thuringiensis. RESULTS Co-introduction of Citrobacter freundii with Bacillus thuringiensis var. tenebrionis (morrisoni) (Bt) led to an increase in Colorado potato beetle (CPB) larval mortality to 69.0% (1.3-5×) and a synergistic effect was observed from day 1 to day 6. Ultrathin sections of the CPB midgut showed autophagosome formation and partial destruction of gut microvilli under the influence of Bt, which was accompanied by pronounced hypersecretion of the endoplasmic reticulum with apocrine vesicle formation and oncotic changes in cells under the action of C. freundii. The destruction of gut tissues was accompanied by suppression of detoxification processes under the action of the bacteria and a decrease (2.8-3.5×) in the concentration of lipid oxidation products during Bt infection. In the first hours post combined treatment, we registered a slight increase in the total hemocyte count (THC) especially a predomination (1.4×) of immune-competent plasmatocytes. Oral administration of symbiotic and entomopathogenic bacteria to the CPB larvae significantly decreased the THC (1.4×) after 24 h and increased (1.1-1.5×) the detoxifying enzymes level in the lymph. These changes are likely to be associated with the destruction of hemocytes and the need to remove the toxic products of reactive oxygen species. CONCLUSION The obtained results indicate that feeding of C. freundii and B. thuringiensis to the CPB larvae is accompanied by tissue changes that significantly affect the cellular and humoral immunity of the insect, increasing its susceptibility to Bt. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Olga V Polenogova
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Yury A Noskov
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- National Research Tomsk State University, Tomsk, Russia
| | - Anna S Artemchenko
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Saule Zhangissina
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Tatyana N Klementeva
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Olga N Yaroslavtseva
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Viktor P Khodyrev
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Natalya A Kruykova
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Viktor V Glupov
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
10
|
Roy MC, Nam K, Kim J, Stanley D, Kim Y. Thromboxane Mobilizes Insect Blood Cells to Infection Foci. Front Immunol 2022; 12:791319. [PMID: 34987515 PMCID: PMC8720849 DOI: 10.3389/fimmu.2021.791319] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/18/2021] [Indexed: 01/18/2023] Open
Abstract
Innate immune responses are effective for insect survival to defend against entomopathogens including a fungal pathogen, Metarhizium rileyi, that infects a lepidopteran Spodoptera exigua. In particular, the fungal virulence was attenuated by cellular immune responses, in which the conidia were phagocytosed by hemocytes (insect blood cells) and hyphal growth was inhibited by hemocyte encapsulation. However, the chemokine signal to drive hemocytes to the infection foci was little understood. The hemocyte behaviors appeared to be guided by a Ca2+ signal stimulating cell aggregation to the infection foci. The induction of the Ca2+ signal was significantly inhibited by the cyclooxygenase (COX) inhibitor. Under the inhibitory condition, the addition of thromboxane A2 or B2 (TXA2 or TXB2) among COX products was the most effective to recover the Ca2+ signal and hemocyte aggregation. TXB2 alone induced a microaggregation behavior of hemocytes under in vitro conditions. Indeed, TXB2 titer was significantly increased in the plasma of the infected larvae. The elevated TXB2 level was further supported by the induction of phospholipase A2 (PLA2) activity in the hemocytes and subsequent up-regulation of COX-like peroxinectins (SePOX-F and SePOX-H) in response to the fungal infection. Finally, the expression of a thromboxane synthase (Se-TXAS) gene was highly expressed in the hemocytes. RNA interference (RNAi) of Se-TXAS expression inhibited the Ca2+ signal and hemocyte aggregation around fungal hyphae, which were rescued by the addition of TXB2. Without any ortholog to mammalian thromboxane receptors, a prostaglandin receptor was essential to mediate TXB2 signal to elevate the Ca2+ signal and mediate hemocyte aggregation behavior. Specific inhibitor assays suggest that the downstream signal after binding TXB2 to the receptor follows the Ca2+-induced Ca2+ release pathway from the endoplasmic reticulum of the hemocytes. These results suggest that hemocyte aggregation induced by the fungal infection is triggered by TXB2via a Ca2+ signal through a PG receptor.
Collapse
Affiliation(s)
- Miltan Chandra Roy
- Department of Plant Medicals, Andong National University, Andong, South Korea
| | - Kiwoong Nam
- DGIMI, Univ Montpellier, INRAE, Montpellier, France
| | - Jaesu Kim
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, South Korea
| | - David Stanley
- Biological Control of Insect Research Laboratory, United States Department of Agriculture-Agricultural Research Station (USDA/ARS), Columbia, MO, United States
| | - Yonggyun Kim
- Department of Plant Medicals, Andong National University, Andong, South Korea
| |
Collapse
|
11
|
Ultrastructural characterization of hemocytes in the oriental cockroach Blatta orientalis (Blattodea: Blattidae). ZOOMORPHOLOGY 2022. [DOI: 10.1007/s00435-021-00550-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Wu F, Sokolova IM. Immune responses to ZnO nanoparticles are modulated by season and environmental temperature in the blue mussels Mytilus edulis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149786. [PMID: 34467929 DOI: 10.1016/j.scitotenv.2021.149786] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/22/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Increased production and release of ZnO nanoparticles (nZnO) can cause toxic effects on marine ecosystems and aquatic organisms. However, nZnO toxicity and its modulation by common environmental stressors such as temperature are not yet fully understood. We examined the responses of immune cells (hemocytes) of the blue mussels (Mytilus edulis) exposed to different concentrations (0, 10, 100 μg l-1) of nZnO or dissolved zinc combined with two temperatures (ambient (10 °C in winter and 15 °C in summer) and warming (+5 °C above ambient temperature)) in winter and summer for 21 days. In winter mussels, exposure to nZnO induced a strong transcriptomic response in multiple immune and inflammation-related genes, stimulated phagocytosis and hemocyte mortality yet suppressed adhesion capacity of hemocytes. In summer mussels, the immune cell responses to nZnO were blunted. The transcriptional responses of hemocytes to dissolved Zn were qualitatively similar but weaker than the responses to nZnO. In the absence of the toxic stress, +5 °C warming lead to dysregulation of the transcription of key immune-related genes in the summer but not the winter mussels. Seasonal warm acclimatization and additional warming in summer suppressed the nZnO-induced transcriptional upregulation of antimicrobial peptides, Toll-like receptors and the complement system. These findings demonstrate that nZnO act as an immunogen in M. edulis and indicate that +5 °C warming might have detrimental effect on innate immunity of the temperate mussel populations in summer when exposure to pathogens is especially high. Capsule: ZnO nanoparticles act as an immunotoxicant inducing a strong immune response in the mussels which is dysregulated by warming in summer but not in winter.
Collapse
Affiliation(s)
- Fangli Wu
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
| | - Inna M Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany.
| |
Collapse
|
13
|
Eleftherianos I, Heryanto C, Bassal T, Zhang W, Tettamanti G, Mohamed A. Haemocyte-mediated immunity in insects: Cells, processes and associated components in the fight against pathogens and parasites. Immunology 2021; 164:401-432. [PMID: 34233014 PMCID: PMC8517599 DOI: 10.1111/imm.13390] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/28/2021] [Indexed: 12/27/2022] Open
Abstract
The host defence of insects includes a combination of cellular and humoral responses. The cellular arm of the insect innate immune system includes mechanisms that are directly mediated by haemocytes (e.g., phagocytosis, nodulation and encapsulation). In addition, melanization accompanying coagulation, clot formation and wound healing, nodulation and encapsulation processes leads to the formation of cytotoxic redox-cycling melanin precursors and reactive oxygen and nitrogen species. However, demarcation between cellular and humoral immune reactions as two distinct categories is not straightforward. This is because many humoral factors affect haemocyte functions and haemocytes themselves are an important source of many humoral molecules. There is also a considerable overlap between cellular and humoral immune functions that span from recognition of foreign intruders to clot formation. Here, we review these immune reactions starting with the cellular mechanisms that limit haemolymph loss and participate in wound healing and clot formation and advancing to cellular functions that are critical in restricting pathogen movement and replication. This information is important because it highlights that insect cellular immunity is controlled by a multilayered system, different components of which are activated by different pathogens or during the different stages of the infection.
Collapse
Affiliation(s)
- Ioannis Eleftherianos
- Infection and Innate Immunity LaboratoryDepartment of Biological SciencesInstitute for Biomedical SciencesThe George Washington UniversityWashingtonDCUSA
| | - Christa Heryanto
- Infection and Innate Immunity LaboratoryDepartment of Biological SciencesInstitute for Biomedical SciencesThe George Washington UniversityWashingtonDCUSA
| | - Taha Bassal
- Department of EntomologyFaculty of ScienceCairo UniversityGizaEgypt
| | - Wei Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural BioengineeringKey Laboratory of Green Pesticide and Agricultural BioengineeringMinistry of EducationGuizhou UniversityGuiyangChina
| | - Gianluca Tettamanti
- Department of Biotechnology and Life SciencesUniversity of InsubriaVareseItaly
- BAT Center‐Interuniversity Center for Studies on Bioinspired Agro‐Environmental TechnologyUniversity of Napoli Federico IINapoliItaly
| | - Amr Mohamed
- Department of EntomologyFaculty of ScienceCairo UniversityGizaEgypt
| |
Collapse
|
14
|
Prabhuling SH, Makwana P, Pradeep ANR, Vijayan K, Mishra RK. Release of Mediator Enzyme β-Hexosaminidase and Modulated Gene Expression Accompany Hemocyte Degranulation in Response to Parasitism in the Silkworm Bombyx mori. Biochem Genet 2021; 59:997-1017. [PMID: 33616803 DOI: 10.1007/s10528-021-10046-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/02/2021] [Indexed: 01/03/2023]
Abstract
In insects infections trigger hemocyte-mediated immune reactions including degranulation by exocytosis; however, involvement of mediator enzymes in degranulation process is unknown in insects. We report here that in silkworm Bombyx mori, infection by endoparasitoid Exorista bombycis and microsporidian Nosema bombycis activated granulation in granulocytes and promoted degranulation of accumulated structured granules. During degranulation the mediator lysosomal enzyme β-hexosaminidase showed increased activity and expression of β-hexosaminidase gene was enhanced. The events were confirmed in vitro after incubation of uninfected hemocytes with E. bombycis larval tissue protein. On infection, cytotoxicity marker enzyme lactate dehydrogenase (LDH) was released from the hemocytes illustrating cell toxicity. Strong positive correlation (R2 = 0.71) between LDH activity and β-hexosaminidase released after the infection showed parasitic-protein-induced hemocyte damage and accompanied release of the enzymes. Expression of β-hexosaminidase gene was enhanced in early stages after infection followed by down regulation. The expression showed positive correlation (R2 = 0.705) with hexosaminidase activity pattern. B. mori hexosaminidase showed 98% amino acid similarity with that of B. mandarina showing origin from same ancestral gene; however, 45-60% varied from other lepidopterans showing diversity. The observation signifies the less known association of hexosaminidase in degranulation of hemocytes induced by parasitic infection in B. mori and its divergence in different species.
Collapse
Affiliation(s)
- Shambhavi H Prabhuling
- Seribiotech Research Laboratory, CSB-Kodathi Campus, Carmelaram. P.O, Bangalore, Karnataka, 560035, India
| | - Pooja Makwana
- Seribiotech Research Laboratory, CSB-Kodathi Campus, Carmelaram. P.O, Bangalore, Karnataka, 560035, India.,Central Sericultural Research & Training Institute, Berhampore, West Bengal, India
| | - Appukuttan Nair R Pradeep
- Seribiotech Research Laboratory, CSB-Kodathi Campus, Carmelaram. P.O, Bangalore, Karnataka, 560035, India.
| | | | - Rakesh Kumar Mishra
- Seribiotech Research Laboratory, CSB-Kodathi Campus, Carmelaram. P.O, Bangalore, Karnataka, 560035, India
| |
Collapse
|
15
|
Lei Y, Hussain A, Guan Z, Wang D, Jaleel W, Lyu L, He Y. Unraveling the Mode of Action of Cordyceps fumosorosea: Potential Biocontrol Agent against Plutella xylostella (Lepidoptera: Plutellidae). INSECTS 2021; 12:insects12020179. [PMID: 33670783 PMCID: PMC7922683 DOI: 10.3390/insects12020179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/20/2022]
Abstract
The entomopathogenic fungus, Cordyceps fumosorosea is a potential eco-friendly biocontrol agent. The present study revealed the entire course of infection of P. xylostella by C. fumosorosea with particular reference to cuticular penetration. Comparative studies on the infection of Plutella xylostella larvae by two strains of C. fumosorosea with different pathogenicity were carried out using light, scanning, and transmission electron microscopy. We found that C. fumosorosea tended to adhere to the cuticle surfaces containing protrusions. Although conidia of the lower pathogenic strain IFCF-D58 germinated, they failed to penetrate and complete the development cycle. In contrast, the higher pathogenic strain IFCF01 began to germinate within 4 h and attached to the cuticle by a thin mucilaginous matrix within 8 h post-inoculation. After 24 h post-inoculation, germ tubes and penetrating hyphae reached the cuticular epidermis and began to enter the haemocoel. Within 36 h post-inoculation, the hyphal bodies colonized the body cavity. Hyphae penetrated from inside to outside of the body after 48 h and sporulated the cadavers. After 72 h post-inoculation, numerous conidia emerged and the mycelial covered the entire cuticular surface. The two strains showed similarities in terms of conidial size and germination rate. However, IFCF-D58 exhibited significantly fewer appressoria and longer penetrating hyphae compared to the more infective IFCF01 on all surface topographies. The current pathogen invasion sequence of events suggested that the aggressive growth and propagation along with rapid and massive in vivo production of blastospores facilitate the conidia of IFCF01 to quickly overcome the diamondback moth's defense mechanism.
Collapse
Affiliation(s)
- Yanyuan Lei
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.L.); (W.J.); (L.L.)
| | - Abid Hussain
- Institute of Research and Consultancy, King Faisal University, Hofuf 31982, Saudi Arabia;
- Ministry of Environment, Water and Agriculture, Riyadh 11442, Saudi Arabia
| | - Zhaoying Guan
- School of Applied Biology, Shenzhen Institute of Technology, Shenzhen 518116, China;
| | - Desen Wang
- Department of Entomology, South China Agricultural University, Guangzhou 510642, China;
- Key Laboratory of Bio-Pesticide Innovation and Application, Guangzhou 510642, China
- Engineering Research Center of Biological Control, Ministry of Education, Guangzhou 510642, China
| | - Waqar Jaleel
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.L.); (W.J.); (L.L.)
| | - Lihua Lyu
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.L.); (W.J.); (L.L.)
| | - Yurong He
- Department of Entomology, South China Agricultural University, Guangzhou 510642, China;
- Key Laboratory of Bio-Pesticide Innovation and Application, Guangzhou 510642, China
- Engineering Research Center of Biological Control, Ministry of Education, Guangzhou 510642, China
- Correspondence: ; Tel.: +86-20-85283985
| |
Collapse
|
16
|
von Bredow YM, von Bredow CR, Trenczek TE. A novel site of haematopoiesis and appearance and dispersal of distinct haemocyte types in the Manduca sexta embryo (Insecta, Lepidoptera). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 111:103722. [PMID: 32360227 DOI: 10.1016/j.dci.2020.103722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/25/2020] [Accepted: 04/26/2020] [Indexed: 06/11/2023]
Abstract
With a set of haemocyte specific markers novel findings on haematopoiesis in the Manduca sexta embryo are presented. We identify a hitherto unknown paired haematopoietic cluster, the abdominal haemocyte cluster in abdominal segment 7 (A7-HCC). These clusters are localised at distinct positions and are established at around katatrepsis. Later in embryogenesis, the A7-HCCs disintegrate, thereby releasing numerous embryonic plasmatocytes which disperse both anteriorly and posteriorly. These cells follow stereotypic migration routes projecting anteriorly. The thoracic larval haematopoietic organs are established at around midembryogenesis. We identify embryonic oenocytoids in the M. sexta embryo for the first time. They appear in the head region roughly at the same time as the A7-HCCs occur and successively disperse in the body cavity during development. Localisation of the prophenoloxidase (proPO) mRNA and of the proPO protein are identical. Morphological, cytometric and antigenic traits show three independently generated haemocyte types during embryogenesis.
Collapse
Affiliation(s)
- Yvette M von Bredow
- Justus-Liebig-Universität Gießen, Institut für Allgemeine Zoologie und Entwicklungsbiologie, Zelluläre Erkennungs- und Abwehrprozesse, Stephanstraße 24, 35390, Gießen, Germany.
| | - Christoph-Rüdiger von Bredow
- Technische Universität Dresden, Fakultät Biologie, Institut für Zoologie, Professur für Allgemeine Zoologie und Entwicklungsbiologie, Zellescher Web 20 b, 01217, Dresden, Germany
| | - Tina E Trenczek
- Justus-Liebig-Universität Gießen, Institut für Allgemeine Zoologie und Entwicklungsbiologie, Zelluläre Erkennungs- und Abwehrprozesse, Stephanstraße 24, 35390, Gießen, Germany
| |
Collapse
|
17
|
Potts R, King JG, Pietri JE. Ex vivo characterization of the circulating hemocytes of bed bugs and their responses to bacterial exposure. J Invertebr Pathol 2020; 174:107422. [PMID: 32526226 PMCID: PMC9254597 DOI: 10.1016/j.jip.2020.107422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 11/17/2022]
Abstract
Bed bugs (Cimex spp.) are urban pests of global importance. Knowledge of the immune system of bed bugs has implications for understanding their susceptibility to biological control agents, their potential to transmit human pathogens, and the basic comparative immunology of insects. Nonetheless, the immunological repertoire of the family Cimicidae remains poorly characterized. Here, we use microscopy, flow cytometry, and RNA sequencing to provide a basal characterization of the circulating hemocytes of the common bed bug, Cimex lectularius. We also examine the responses of these specialized cells to E. coli exposure using the same techniques. Our results show that circulating hemocytes are comprised of at least four morphologically distinct cell types that are capable of phagocytosis, undergo degranulation, and exhibit additional markers of activation following stimulation, including size shift and DNA replication. Furthermore, transcriptomic profiling reveals expression of predicted Toll/IMD signaling pathway components, antimicrobial effectors and other potentially immunoresponsive genes in these cells. Together, our data demonstrate the conservation of several canonical cellular immune responses in the common bed bug and provide a foundation for additional mechanistic immunological studies with specific pathogens of interest.
Collapse
Affiliation(s)
- Rashaun Potts
- University of South Dakota, Sanford School of Medicine, Division of Basic Biomedical Sciences, Vermillion, SD, United States
| | - Jonas G King
- Mississippi State University, Department of Biochemistry, Molecular Biology, Entomology & Plant Pathology, Starkville, MS, United States
| | - Jose E Pietri
- University of South Dakota, Sanford School of Medicine, Division of Basic Biomedical Sciences, Vermillion, SD, United States.
| |
Collapse
|
18
|
Edosa TT, Jo YH, Keshavarz M, Park KB, Cho JH, Bae YM, Kim B, Lee YS, Han YS. TmAtg6 Plays an Important Role in Anti-Microbial Defense Against Listeria monocytogenes in the Mealworm, Tenebrio molitor. Int J Mol Sci 2020; 21:ijms21041232. [PMID: 32059408 PMCID: PMC7072900 DOI: 10.3390/ijms21041232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/17/2020] [Accepted: 02/08/2020] [Indexed: 12/29/2022] Open
Abstract
Autophagy-related gene-6 (Beclin-1 in mammals) plays a pivotal role in autophagy and is involved in autophagosome formation and autolysosome maturation. In this study, we identified and characterized the autophagy-related gene-6 from Tenebrio molitor (TmAtg6) and analyzed its functional role in the survival of the insect against infection. The expression of TmAtg6 was studied using qRT-PCR for the assessment of the transcript levels at various developmental stages in the different tissues. The results showed that TmAtg6 was highly expressed at the 6-day-old pupal stage. Tissue-specific expression studies revealed that TmAtg6 was highly expressed in the hemocytes of late larvae. The induction patterns of TmAtg6 in different tissues of T. molitor larvae were analyzed by injecting Escherichia coli, Staphylococcus aureus, Listeria monocytogenes, or Candida albicans. The intracellular Gram-positive bacteria, L. monocytogenes, solely induced the expression of TmAtg6 in hemocytes at 9 h-post-injection, whilst in the fat body and gut, bimodal expression times were observed. RNAi-mediated knockdown of the TmAtg6 transcripts, followed by a challenge with microbes, showed a significant reduction in larval survival rate against L. monocytogenes. Taken together, our results suggest that TmAtg6 plays an essential role in anti-microbial defense against intracellular bacteria.
Collapse
Affiliation(s)
- Tariku Tesfaye Edosa
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (T.T.E.); (Y.H.J.); (M.K.); (K.B.P.); (J.H.C.); (Y.M.B.); (B.K.)
| | - Yong Hun Jo
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (T.T.E.); (Y.H.J.); (M.K.); (K.B.P.); (J.H.C.); (Y.M.B.); (B.K.)
| | - Maryam Keshavarz
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (T.T.E.); (Y.H.J.); (M.K.); (K.B.P.); (J.H.C.); (Y.M.B.); (B.K.)
| | - Ki Beom Park
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (T.T.E.); (Y.H.J.); (M.K.); (K.B.P.); (J.H.C.); (Y.M.B.); (B.K.)
| | - Jun Ho Cho
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (T.T.E.); (Y.H.J.); (M.K.); (K.B.P.); (J.H.C.); (Y.M.B.); (B.K.)
| | - Young Min Bae
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (T.T.E.); (Y.H.J.); (M.K.); (K.B.P.); (J.H.C.); (Y.M.B.); (B.K.)
| | - Bobae Kim
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (T.T.E.); (Y.H.J.); (M.K.); (K.B.P.); (J.H.C.); (Y.M.B.); (B.K.)
| | - Yong Seok Lee
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, Asan City 31538, Korea;
| | - Yeon Soo Han
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (T.T.E.); (Y.H.J.); (M.K.); (K.B.P.); (J.H.C.); (Y.M.B.); (B.K.)
- Correspondence: ; Tel.: +82-62-530-2072
| |
Collapse
|
19
|
Hungund SP, Pradeep ANR, Makwana P, Sagar C, Mishra RK. Cellular defence and innate immunity in the larval ovarian disc and differentiated ovariole of the silkworm Bombyx moriinduced by microsporidian infection. INVERTEBR REPROD DEV 2020. [DOI: 10.1080/07924259.2019.1669727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
| | | | - Pooja Makwana
- Proteomics Division, Seribiotech Research Laboratory, CSB-Kodathi Campus, Bangalore, India
| | - Chandrashekhar Sagar
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore- 560029, India
| | - Rakesh K. Mishra
- Proteomics Division, Seribiotech Research Laboratory, CSB-Kodathi Campus, Bangalore, India
| |
Collapse
|
20
|
Cho Y, Cho S. Hemocyte-hemocyte adhesion by granulocytes is associated with cellular immunity in the cricket, Gryllus bimaculatus. Sci Rep 2019; 9:18066. [PMID: 31792279 PMCID: PMC6889498 DOI: 10.1038/s41598-019-54484-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/13/2019] [Indexed: 01/24/2023] Open
Abstract
In this study, more than 1,000 cricket (Gryllus bimaculatus) hemocytes were classified based on their size and morphology. These hemocytes were classified into six types: granulocytes, plasmatocytes, prohemocytes, spherulocytes, coagulocytes, and oenocytoids. Hemocyte cultures was observed in real time to determine which hemocytes were associated with cellular immune responses against potential pathogens. Granulocytes were identified as the professional immune cell that mediates nodulation, encapsulation, and phagocytosis of pathogens. Granulocytes have been shown to actively produce various sticky nets (amoeba-like hairs and extracellular traps) from their plasma membranes that they use to gather other hemocytes and to implement cellular immune responses. The activation of lysosomes in granulocytes started at 4 h, peaked at 12 h, and returned to baseline by 24 h post-infection. At 48 h post-infection, cells could be found within the cytoplasm of granulocytes and reactivated lysosomes surrounding these cells were visible. This result seems to reflect a phenomenon in which necrotic granulocytes are removed by other healthy granulocytes. This unique mechanism of cellular immunity is therefore a way to efficiently and effectively remove pathogens and simultaneously maintain healthy hemocytes.
Collapse
Affiliation(s)
- Youngwoo Cho
- Department of Applied Biology, College of Agriculture and Life Science, Environment Friendly Agriculture Center, Kangwon National University, Chuncheon, Republic of Korea
| | - Saeyoull Cho
- Department of Applied Biology, College of Agriculture and Life Science, Environment Friendly Agriculture Center, Kangwon National University, Chuncheon, Republic of Korea.
| |
Collapse
|
21
|
Fiorotti J, Menna-Barreto RFS, Gôlo PS, Coutinho-Rodrigues CJB, Bitencourt ROB, Spadacci-Morena DD, Angelo IDC, Bittencourt VREP. Ultrastructural and Cytotoxic Effects of Metarhizium robertsii Infection on Rhipicephalus microplus Hemocytes. Front Physiol 2019; 10:654. [PMID: 31191351 PMCID: PMC6548823 DOI: 10.3389/fphys.2019.00654] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/09/2019] [Indexed: 12/15/2022] Open
Abstract
Metarhizium is an entomopathogenic fungus widely employed in the biological control of arthropods. Hemocytes present in the hemolymph of invertebrates are the cells involved in the immune response of arthropods. Despite this, knowledge about Rhipicephalus microplus hemocytes morphological aspects as well as their role in response to the fungal infection is scarce. The present study aimed to analyze the hemocytes of R. microplus females after Metarhizium robertsii infection, using light and electron microscopy approaches associated with the cytotoxicity evaluation. Five types of hemocytes (prohemocytes, spherulocytes, plasmatocytes, granulocytes, and oenocytoids) were described in the hemolymph of uninfected ticks, while only prohemocytes, granulocytes, and plasmatocytes were observed in fungus-infected tick females. Twenty-four hours after the fungal infection, only granulocytes and plasmatocytes were detected in the transmission electron microscopy analysis. Hemocytes from fungus-infected tick females showed several cytoplasmic vacuoles with different electron densities, and lipid droplets in close contact to low electron density vacuoles, as well as the formation of autophagosomes and subcellular material in different stages of degradation could also be observed. M. robertsii propagules were more toxic to tick hemocytes in the highest concentration tested (1.0 × 108 conidia mL-1). Interestingly, the lowest fungus concentration did not affect significantly the cell viability. Microanalysis showed that cells granules from fungus-infected and uninfected ticks had similar composition. This study addressed the first report of fungal cytotoxicity analyzing ultrastructural effects on hemocytes of R. microplus infected with entomopathogenic fungi. These results open new perspectives for the comprehension of ticks physiology and pathology, allowing the identification of new targets for the biological control.
Collapse
Affiliation(s)
- Jéssica Fiorotti
- Programa de Pós-Graduação em Ciências Veterinárias, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | | | - Patrícia Silva Gôlo
- Departamento de Parasitologia Animal, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | | | - Ricardo Oliveira Barbosa Bitencourt
- Programa de Pós-Graduação em Ciências Veterinárias, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | | | - Isabele da Costa Angelo
- Departamento de Epidemiologia e Saúde Pública, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | | |
Collapse
|
22
|
Dong M, Song X, Wang M, Wang W, Zhang P, Liu Y, Li M, Wang L, Song L. CgAATase with specific expression pattern can be used as a potential surface marker for oyster granulocytes. FISH & SHELLFISH IMMUNOLOGY 2019; 87:96-104. [PMID: 30633961 DOI: 10.1016/j.fsi.2019.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 12/28/2018] [Accepted: 01/03/2019] [Indexed: 06/09/2023]
Abstract
Granulocytes are known as the main immunocompetent hemocytes that play important roles in the immune defense of oyster Crassostrea gigas. In the present study, an alcohol acyltransferase (designed as CgAATase) with specific expression pattern was identified from oyster C. gigas, and it could be employed as a potential marker for the isolation of oyster granulocytes. The open reading frame (ORF) of CgAATase was of 1431 bp, encoding a peptide of 476 amino acids with a typically conserved AATase domain. The mRNA transcripts of CgAATase were highest expressed in hemocytes, lower expressed in hepatopancreas, mantle, gonad, gill, ganglion, adductor muscle, and labial palp. The mRNA expression level of CgAATase in hemocytes was significantly up-regulated at 3-12 h and reached the highest level (27.40-fold compared to control group, p < 0.05) at 6 h after Vibrio splendidus stimulation. The total hemocytes were sorted as granulocytes, semi-granulocytes and agranulocytes by Percoll® density gradient centrifugation. CgAATase transcripts were dominantly observed in granulocytes, which was 8.26-fold (p < 0.05) and 2.80-fold (p < 0.05) of that in agranulocytes and semi-granulocytes, respectively. The monoclonal antibody against CgAATase was produced and employed for the isolation of granulocytes with the immunomagnetic bead. CgAATase protein was mainly detected on the cytomembrane of granulocytes. About 85.7 ± 4.60% of the granulocytes were positive for CgAATase and they could be successfully separated by flow cytometry with immunomagnetic bead coated with anti-CgAATase monoclonal antibody, and 97.7 ± 1.01% of the rest hemocytes (agranulocytes and semi-granulocytes) were negative for CgAATase. The isolated primary granulocytes could maintain cell activity for more than one week in vitro culture that exhibited numerous filopodia. These results collectively suggested that CgAATase was a potential marker of oyster granulocytes, and the granulocytes could be effectively isolated from total circulating hemocytes by immunomagnetic bead coated with the anti-CgAATase monoclonal antibody.
Collapse
Affiliation(s)
- Miren Dong
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Xiaorui Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Min Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Weilin Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Peng Zhang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Yu Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Meijia Li
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
23
|
Wang K, Li P, Gao Y, Liu C, Wang Q, Yin J, Zhang J, Geng L, Shu C. De novo genome assembly of the white-spotted flower chafer (Protaetia brevitarsis). Gigascience 2019; 8:giz019. [PMID: 30949689 PMCID: PMC6449472 DOI: 10.1093/gigascience/giz019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/20/2018] [Accepted: 01/30/2019] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Protaetia brevitarsis, commonly known as the white-spotted flower chafer, is an important Scarabaeidae insect that is distributed in most Asian countries. Recently, research on the insect's harmfulness to crops, usefulness in agricultural waste utilization, edibility, medicinal value, and usability in insect immunology has provided sufficient impetus to demonstrate the need for a detailed study of its biology. Herein, we sequenced the whole genome of this species to improve our understanding and study of P. brevitarsis. FINDINGS We developed a highly reliable genome resource for P. brevitarsis (Lewis, 1879; Coleoptera: Cetoniinae) using Illumina and PacBio sequencing platforms. A total of 135.75 gigabases (Gb) was generated, providing 150-fold coverage based on the 810-megabases (Mb) estimated genome size. The assembled P. brevitarsis genome was 751 Mb (including the scaffolds longer than 2 kilobases (kb)) with 327 scaffolds, and the N50 length of the assembly was 2.94 Mb. A total of 34,110 (22,229 in scaffolds and 11,881 located in alleles) genes were identified using Evidence Modeler, which was based on the gene prediction results obtained from 3 different methods (ab initio, RNA sequencing based, and known gene based). CONCLUSIONS We assembled a high-quality P. brevitarsis genome, which will not only provide insight into the biology of the species but also provide a wealth of information that will inform researchers on the evolution, control, and utilization of P. brevitarsis.
Collapse
Affiliation(s)
- Kui Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuan Ming Yuan Road, Haidian District, Beijing 100193, P. R. China
| | - Pengpeng Li
- Beijing Sinobiocore Biological Technology Co., Ltd., No. 99, Kechuang 14th Street, Daxing District, Beijing 1001111, P. R. China
| | - Yongyang Gao
- Beijing Sinobiocore Biological Technology Co., Ltd., No. 99, Kechuang 14th Street, Daxing District, Beijing 1001111, P. R. China
| | - Chunqin Liu
- Cangzhou Academy of Agricultural and Forestry Sciences, No. 18, West Jiuhe Road, Yunhe District, Cangzhou 061001, P. R. China
| | - Qinglei Wang
- Cangzhou Academy of Agricultural and Forestry Sciences, No. 18, West Jiuhe Road, Yunhe District, Cangzhou 061001, P. R. China
| | - Jiao Yin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuan Ming Yuan Road, Haidian District, Beijing 100193, P. R. China
| | - Jie Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuan Ming Yuan Road, Haidian District, Beijing 100193, P. R. China
| | - Lili Geng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuan Ming Yuan Road, Haidian District, Beijing 100193, P. R. China
| | - Changlong Shu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuan Ming Yuan Road, Haidian District, Beijing 100193, P. R. China
| |
Collapse
|
24
|
Mesak C, de Campos RP, de Melo MA, de Oliveira Mendes B, Malafaia G. Behavioral response and dynamics of Eisenia fetida hemocytes exposed to environmentally relevant concentration of sulfentrazone. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:30728-30736. [PMID: 30220066 DOI: 10.1007/s11356-018-3175-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 09/06/2018] [Indexed: 06/08/2023]
Abstract
Although the toxicity of the pesticide sulfentrazone in some aquatic organisms is known, its effects on edaphic organisms such as earthworms remain completely unknown. Thus, we aimed at evaluating the behavior and immune response of Eisenia fetida exposed to sulfentrazone at environmentally relevant concentrations (EC). E. fetida representatives exposed to this contaminant (for 48 h) were divided in the following groups: environmental concentration (EC1x: 318 ng sulfentrazone/g of dry weight soil) and EC100x (concentration 100 times higher than in EC1x). Based on the avoidance test results, earthworms responded to this pesticide and proved the toxicity of sulfentrazone. The observed immune response induction was expressed by increased granulocytes presenting phagocytic vacuoles and agglomerations/encapsulations, mainly in animals belonging to groups EC1x and EC100x. However, the reduced frequency of plasmocytes in these animals' hemolymphs suggested that the phagocytic immune response was not efficient to assure 100% survival. Our study is the first to report sulfentrazone toxicity in an edaphic organism, at environmental concentration.
Collapse
Affiliation(s)
- Carlos Mesak
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil
| | - Raphael Pires de Campos
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil
| | - Marcela Amaral de Melo
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil
| | - Bruna de Oliveira Mendes
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil
| | - Guilherme Malafaia
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil.
- Laboratório de Pesquisas Biológicas, Instituto Federal Goiano - Campus Urutaí, Rodovia Geraldo Silva Nascimento, 2,5 km, Zona Rural, Urutaí, GO, 75790-000, Brazil.
| |
Collapse
|
25
|
Ravaiano SV, Barbosa WF, Campos LA, Martins GF. Variations in circulating hemocytes are affected by age and caste in the stingless bee Melipona quadrifasciata. Naturwissenschaften 2018; 105:48. [DOI: 10.1007/s00114-018-1573-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/20/2018] [Accepted: 06/22/2018] [Indexed: 12/26/2022]
|
26
|
Wu F, Cui S, Sun M, Xie Z, Huang W, Huang X, Liu L, Hu M, Lu W, Wang Y. Combined effects of ZnO NPs and seawater acidification on the haemocyte parameters of thick shell mussel Mytilus coruscus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 624:820-830. [PMID: 29274606 DOI: 10.1016/j.scitotenv.2017.12.168] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/23/2017] [Accepted: 12/15/2017] [Indexed: 06/07/2023]
Abstract
Flow cytometry was used to investigate the immune parameters of haemocytes in thick-shell mussel Mytilus coruscus exposed to different concentrations of ZnO nanoparticles (NPs) (0, 2.5, and 10mgl-1) at two pH levels (7.3 and 8.1) for 14days following a recovery period of 7days. ZnO NPs significantly affected all of the immune parameters throughout the experiment. At high ZnO NPs concentrations, total haemocyte counting, phagocytosis, esterase, and lysosomal content were significantly decreased whereas haemocyte mortality and reactive oxygen species (ROS) were increased. Although low pH also significantly influenced all of the immune parameters of the mussels, its effect was not as strong as that of ZnO NPs. Interactive effects were observed between pH and ZnO NPs in most haemocyte parameters during the exposure period. Although a slight recovery from the stress of ZnO NPs and pH was observed for all immune parameters, significant carry-over effects of low pH and ZnO NPs were still detected. This study revealed that high concentration of ZnO NPs and low pH exert negative and synergistic effects on mussels, and these effects remain even after the mussels are no longer exposed to such stressors.
Collapse
Affiliation(s)
- Fangli Wu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Shuaikang Cui
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Meng Sun
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Zhe Xie
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Wei Huang
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China
| | - Xizhi Huang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Liping Liu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Menghong Hu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Weiqun Lu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Youji Wang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China; Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
27
|
Wu F, Xie Z, Lan Y, Dupont S, Sun M, Cui S, Huang X, Huang W, Liu L, Hu M, Lu W, Wang Y. Short-Term Exposure of Mytilus coruscus to Decreased pH and Salinity Change Impacts Immune Parameters of Their Haemocytes. Front Physiol 2018; 9:166. [PMID: 29559924 PMCID: PMC5845731 DOI: 10.3389/fphys.2018.00166] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 02/19/2018] [Indexed: 11/13/2022] Open
Abstract
With the release of large amounts of CO2, ocean acidification is intensifying and affecting aquatic organisms. In addition, salinity also plays an important role for marine organisms and fluctuates greatly in estuarine and coastal ecosystem, where ocean acidification frequently occurs. In present study, flow cytometry was used to investigate immune parameters of haemocytes in the thick shell mussel Mytilus coruscus exposed to different salinities (15, 25, and 35‰) and two pH levels (7.3 and 8.1). A 7-day in vivo and a 5-h in vitro experiments were performed. In both experiments, low pH had significant effects on all tested immune parameters. When exposed to decreased pH, total haemocyte count (THC), phagocytosis (Pha), esterase (Est), and lysosomal content (Lyso) were significantly decreased, whereas haemocyte mortality (HM) and reactive oxygen species (ROS) were increased. High salinity had no significant effects on the immune parameters of haemocytes as compared with low salinity. However, an interaction between pH and salinity was observed in both experiments for most tested haemocyte parameters. This study showed that high salinity, low salinity and low pH have negative and interactive effects on haemocytes of mussels. As a consequence, it can be expected that the combined effect of low pH and changed salinity will have more severe effects on mussel health than predicted by single exposure.
Collapse
Affiliation(s)
- Fangli Wu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Zhe Xie
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Yawen Lan
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Sam Dupont
- Department of Biological and Environmental Sciences, Sven Lovén Centre for Marine Infrastructure-Kristineberg, University of Gothenburg, Fiskebäckskil, Sweden
| | - Meng Sun
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Shuaikang Cui
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Xizhi Huang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Wei Huang
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China
| | - Liping Liu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Menghong Hu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Weiqun Lu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Youji Wang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,Department of Biological and Environmental Sciences, Sven Lovén Centre for Marine Infrastructure-Kristineberg, University of Gothenburg, Fiskebäckskil, Sweden.,State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China
| |
Collapse
|
28
|
Hong M, Hwang D, Cho S. Hemocyte Morphology and Cellular Immune Response in Termite (Reticulitermes speratus). JOURNAL OF INSECT SCIENCE (ONLINE) 2018; 18:4985830. [PMID: 29718507 PMCID: PMC5917771 DOI: 10.1093/jisesa/iey039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Because termites (Reticulitermes speratus) are very small, it is difficult to conduct experiments involving pathogen injection and hemocyte collection. Therefore, to observe hemocyte-mediated immune responses against foreign substances, in vitro hemocyte culture is essential. After collecting about 3 μl of hemolymph, hemocytes were cultured for 7 d, during which the cells maintained full function. Four types of hemocyte were identified, namely, granulocytes, plasmatocytes, oenocytoids, and prohemocytes, among which granulocytes are the main immune hemocytes that fight invasion by foreign substances. Most hemocytes were alive and/or functioning after 7 d of culture, but then either died or lost function.
Collapse
Affiliation(s)
- Min Hong
- Department of Applied Biology, Division of Bioresource Sciences, College of Agriculture and Life Science, Environment Friendly Agriculture Center, Kangwon National University, Chuncheon, Kangwon-do, South Korea
| | - Dooseon Hwang
- Department of Applied Biology, Division of Bioresource Sciences, College of Agriculture and Life Science, Environment Friendly Agriculture Center, Kangwon National University, Chuncheon, Kangwon-do, South Korea
| | - Saeyoull Cho
- Department of Applied Biology, Division of Bioresource Sciences, College of Agriculture and Life Science, Environment Friendly Agriculture Center, Kangwon National University, Chuncheon, Kangwon-do, South Korea
| |
Collapse
|
29
|
López-Madrigal S, Maire J, Balmand S, Zaidman-Rémy A, Heddi A. Effects of symbiotic status on cellular immunity dynamics in Sitophilus oryzae. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 77:259-269. [PMID: 28802841 DOI: 10.1016/j.dci.2017.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/18/2017] [Accepted: 08/08/2017] [Indexed: 06/07/2023]
Abstract
Many insects maintain intracellular symbiosis with mutualistic bacteria that improve their adaptive capabilities in nutritionally poor habitats. Adaptation of insect immune systems to such associations has been shown in several symbiotic consortia, including that of the rice weevil Sitophilus oryzae with the gammaproteobacterium Sodalis pierantonius. Although authors have mostly focused on the role of humoral immunity in host-symbiont interactions, recent studies suggest that symbiotic bacteria may also interfere with the cellular, hemocyte-based, immunity. Here, we have explored hemocyte dynamics in S. oryzae in the presence or absence of S. pierantonius, and in response to bacterial challenges. We have identified five morphotypes within larval hemocytes, whose abundance and morphometry drastically change along insect development. We show that hemocytes make part of the weevil immune system by responding to pathogenic infections. In contrast with previous results on other insect species, however, our analyses did not reveal any symbiotic-dependent modulation of the hemocyte global population.
Collapse
Affiliation(s)
| | - Justin Maire
- Univ Lyon, INSA-Lyon, INRA, BF2I, UMR0203, F-69621, Villeurbanne, France.
| | - Séverine Balmand
- Univ Lyon, INSA-Lyon, INRA, BF2I, UMR0203, F-69621, Villeurbanne, France.
| | - Anna Zaidman-Rémy
- Univ Lyon, INSA-Lyon, INRA, BF2I, UMR0203, F-69621, Villeurbanne, France.
| | - Abdelaziz Heddi
- Univ Lyon, INSA-Lyon, INRA, BF2I, UMR0203, F-69621, Villeurbanne, France.
| |
Collapse
|
30
|
Urbański A, Adamski Z, Rosiński G. Developmental changes in haemocyte morphology in response to Staphylococcus aureus and latex beads in the beetle Tenebrio molitor L. Micron 2017; 104:8-20. [PMID: 29049928 DOI: 10.1016/j.micron.2017.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/04/2017] [Accepted: 10/13/2017] [Indexed: 01/20/2023]
Abstract
The evolutionary success of insects is undoubtedly related to a well-functioning immune system. This is especially apparent during insect development by the adaptation of individuals to the changing risk of infection. In addition, current studies show that the insect immune system is characterized by some specificity in response to natural pathogens (for example, bacteria, viruses or fungi) and artificial challengers (for example, latex beads or nylon filaments). However, developmental changes and the specificity of immune system reactions simultaneously have not been analysed. Thus, the aim of the present research was to determine changes in haemocyte morphology in response to attenuated Staphylococcus aureus and latex beads across each developmental stage of the beetle Tenebrio molitor. The results of the present research clearly showed differences in the morphology of T. molitor haemocytes during development. The haemocytes of larvae and 4-day-old adult males were characterized by the highest adhesion ability, which was expressed as the largest average surface area, filopodia length and number of filopodia. In contrast, the haemocytes of pupae and 30-day-old adult males had a significantly lower value for these morphological parameters, which was probably related to metamorphosis (pupae) and immunosenescence (30-day-old adults). The haemocytes of the tested individuals reacted differently to the presence of S. aureus and latex beads. The presence of S. aureus led to a significant decrease in all previously mentioned morphological parameters in larvae and in both groups of adult individuals. In these groups, incubation of haemocytes with latex beads caused only a slight decrease in surface area and filopodia length and number. This morphological response of haemocytes to biotic and artificial challengers might be related to an increase in the migration abilities of haemocytes during infection. However, the differences in haemocyte reactivity towards S. aureus and latex beads might be explained by differences in pathogen recognition. Conversely, increased adhesive abilities of pupal haemocytes were also observed, which might be related to the specificity of metamorphosis and the hormonal titre during this developmental stage.
Collapse
Affiliation(s)
- Arkadiusz Urbański
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University in Poznań, Poland.
| | - Zbigniew Adamski
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University in Poznań, Poland; Electron and Confocal Microscope Laboratory, Faculty of Biology, Adam Mickiewicz University in Poznań, Poland
| | - Grzegorz Rosiński
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University in Poznań, Poland
| |
Collapse
|
31
|
Arteaga Blanco LA, Crispim JS, Fernandes KM, de Oliveira LL, Pereira MF, Bazzolli DMS, Martins GF. Differential cellular immune response of Galleria mellonella to Actinobacillus pleuropneumoniae. Cell Tissue Res 2017; 370:153-168. [DOI: 10.1007/s00441-017-2653-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/30/2017] [Indexed: 11/25/2022]
|
32
|
Toxicity of some insecticides to the haemocytes of giant honeybee, Apis dorsata F. under laboratory conditions. Saudi J Biol Sci 2017; 24:1016-1022. [PMID: 28663697 PMCID: PMC5478291 DOI: 10.1016/j.sjbs.2016.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/20/2016] [Accepted: 12/06/2016] [Indexed: 11/24/2022] Open
Abstract
Quantitative studies concerning total and differential haemocyte counts and abnormalities were performed under laboratory conditions for larvae, pupae and adults collected from a wild Apis dorsata colony. Haemolymph samples were observed immediately, thirty and sixty minutes after field recommended concentration exposure of five different insecticides. Total haemocyte counts were significantly higher for larvae and pupae but less for adult bees, however, differential haemocyte counts insignificantly different. Exposure of insecticides showed variable response for tested insecticides with immediate increased change with ethofenprox, diafenthiuron and imidacloprid but decreased for all tested insecticides after sixty minutes. For differential haemocyte counts, plasmatocytes and granulocytes increased with exposure of insecticides. Immune response of haemocytes against insecticides showed different degrees of abnormalities like agglutination, denucleation and cell shape distortion. Such studies may help in possible identification of insect defense mechanisms against their exposure to external hazards for instance insecticide exposure.
Collapse
|
33
|
Immune tolerance to an intestine-adapted bacteria, Chryseobacterium sp., injected into the hemocoel of Protaetia brevitarsis seulensis. Sci Rep 2016; 6:31722. [PMID: 27530146 PMCID: PMC4987663 DOI: 10.1038/srep31722] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 07/22/2016] [Indexed: 11/11/2022] Open
Abstract
To explore the interaction of gut microbes and the host immune system, bacteria were isolated from the gut of Protaetia brevitarsis seulensis larvae. Chryseobacterium sp., Bacillus subtilis, Arthrobacter arilaitensis, Bacillus amyloliquefaciens, Bacillus megaterium, and Lysinibacillus xylanilyticus were cultured in vitro, identified, and injected in the hemocoel of P. brevitarsis seulensis larvae, respectively. There were no significant changes in phagocytosis-associated lysosomal formation or pathogen-related autophagosome in immune cells (granulocytes) from Chryseobacterium sp.-challenged larvae. Next, we examined changes in the transcription of innate immune genes such as peptidoglycan recognition proteins and antimicrobial peptides following infection with Chryseobacterium sp. PGRP-1 and -2 transcripts, which may be associated with melanization generated by prophenoloxidase (PPO), were either highly or moderately expressed at 24 h post-infection with Chryseobacterium sp. However, PGRP-SC2 transcripts, which code for bactericidal amidases, were expressed at low levels. With respect to antimicrobial peptides, only coleoptericin was moderately expressed in Chryseobacterium sp.-challenged larvae, suggesting maintenance of an optimum number of Chryseobacterium sp. All examined genes were expressed at significantly higher levels in larvae challenged with a pathogenic bacterium. Our data demonstrated that gut-inhabiting bacteria, the Chryseobacterium sp., induced a weaker immune response than other pathogenic bacteria, E. coli K12.
Collapse
|
34
|
Hillyer JF. Insect immunology and hematopoiesis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 58:102-18. [PMID: 26695127 PMCID: PMC4775421 DOI: 10.1016/j.dci.2015.12.006] [Citation(s) in RCA: 324] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/08/2015] [Accepted: 12/10/2015] [Indexed: 05/08/2023]
Abstract
Insects combat infection by mounting powerful immune responses that are mediated by hemocytes, the fat body, the midgut, the salivary glands and other tissues. Foreign organisms that have entered the body of an insect are recognized by the immune system when pathogen-associated molecular patterns bind host-derived pattern recognition receptors. This, in turn, activates immune signaling pathways that amplify the immune response, induce the production of factors with antimicrobial activity, and activate effector pathways. Among the immune signaling pathways are the Toll, Imd, Jak/Stat, JNK, and insulin pathways. Activation of these and other pathways leads to pathogen killing via phagocytosis, melanization, cellular encapsulation, nodulation, lysis, RNAi-mediated virus destruction, autophagy and apoptosis. This review details these and other aspects of immunity in insects, and discusses how the immune and circulatory systems have co-adapted to combat infection, how hemocyte replication and differentiation takes place (hematopoiesis), how an infection prepares an insect for a subsequent infection (immune priming), how environmental factors such as temperature and the age of the insect impact the immune response, and how social immunity protects entire groups. Finally, this review highlights some underexplored areas in the field of insect immunobiology.
Collapse
Affiliation(s)
- Julián F Hillyer
- Department of Biological Sciences, Vanderbilt University, VU Station B 35-1634, Nashville, TN 37235, USA.
| |
Collapse
|
35
|
Meng E, Tang B, Hou Y, Chen X, Chen J, Yu XQ. Altered immune function of Octodonta nipae (Maulik) to its pupal endoparasitoid, Tetrastichus brontispae Ferrière. Comp Biochem Physiol B Biochem Mol Biol 2016; 198:100-9. [PMID: 27101988 DOI: 10.1016/j.cbpb.2016.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 03/31/2016] [Accepted: 04/08/2016] [Indexed: 10/21/2022]
Abstract
Most studies on the contribution of the altered immune response by endoparasitoid have been restricted to the interactions between Ichneumonoidea and their hosts, while effects of parasitism by Chalcidoidea on the hosts have rarely been characterized except some wasps such as Pteromalidae. Endoparasitoid Tetrastichus brontispae Ferrière, belonging to Eulophidae (Hymenoptera), has a great potential to control some Coleopteran beetles such as Octodonta nipae, one invasive species in southern China. However, the physiological mechanism underlying the escape from the melanotic encapsulation in O. nipae pupae has not been demonstrated. In the present study, effects of parasitism on the immune function of its pupal host O. nipae were investigated. The combining results that granulocytes and plasmatocytes could phagocytize bacteria from 2 to 48h and granulocytes, plasmatocytes and oenocytoids were prophenoloxidase/phenoloxidase positive hemocytes indicated that granulocytes, plasmatocytes and oenocytoids were the main immunocompetent hemocytes in O. nipae pupae. Parasitism by T. brontispae resulted in a significant increase in the percentage of hemocytes viability and spreading at 96h, growing percentage of granulocytes at 24h but no effects on the total hemocyte counts, and an enhanced phenoloxidase activity only at 12 and 72h while a significantly longer melanization time of the hemolymph at 96h following parasitism. These results indicate that mixtures of systemic active and local active regulation are used for T. brontispae to escape host encapsulation in O. nipae pupae. The present study contributes to the understanding of the diversity of virulence strategies used by parasitoids.
Collapse
Affiliation(s)
- E Meng
- Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Key Laboratory of Integrated Pest Management on Crops in Fujian-Taiwan, Ministry of Agriculture, Fuzhou 350002, Fujian, China
| | - Baozhen Tang
- Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Key Laboratory of Integrated Pest Management on Crops in Fujian-Taiwan, Ministry of Agriculture, Fuzhou 350002, Fujian, China
| | - Youming Hou
- Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Key Laboratory of Integrated Pest Management on Crops in Fujian-Taiwan, Ministry of Agriculture, Fuzhou 350002, Fujian, China.
| | - Xinxin Chen
- Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Key Laboratory of Integrated Pest Management on Crops in Fujian-Taiwan, Ministry of Agriculture, Fuzhou 350002, Fujian, China
| | - Jiantu Chen
- Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Key Laboratory of Integrated Pest Management on Crops in Fujian-Taiwan, Ministry of Agriculture, Fuzhou 350002, Fujian, China
| | - Xiao-Qiang Yu
- Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| |
Collapse
|
36
|
cDNA cloning and molecular characterization of a defensin-like antimicrobial peptide from larvae of Protaetia brevitarsis seulensis (Kolbe). Mol Biol Rep 2016; 43:371-9. [PMID: 26970764 DOI: 10.1007/s11033-016-3967-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 03/03/2016] [Indexed: 10/22/2022]
Abstract
We identified new defensin-like cDNA (called Psdefensin) by searching data set of high-throughput RNA sequencing (RNA-seq) expression profiling of immunized larva of white-spotted flower chafers, Protaetia brevitarsis seulensis. The length of the analyzed new defensin-like sequences were 240 base pair (bp) and encoded the deduced polypeptide of 79 amino acid residues with signal peptides (amino acids 1-20), pro-peptide region (amino acids 21-36), and mature peptide region (amino acids 37-79). The Psdefensin transcript levels were slightly up-regulated at 4 h post-infection and were highly expressed at 8 h post-infection compared to control larvae injected with sterile water. In addition, the Psdefensin did have antimicrobial activity against both Gram-negative bacteria, E. coli and Gram-positive bacteria, B. subtilis suggesting potentially pharmacologic agent.
Collapse
|
37
|
Circulating Hemocytes from Larvae of the Japanese Rhinoceros Beetle Allomyrina dichotoma (Linnaeus) (Coleoptera: Scarabaeidae) and the Cellular Immune Response to Microorganisms. PLoS One 2015; 10:e0128519. [PMID: 26030396 PMCID: PMC4452365 DOI: 10.1371/journal.pone.0128519] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 04/28/2015] [Indexed: 11/19/2022] Open
Abstract
Hemocytes of the last larva of the Japanese rhinoceros beetle A. dichotoma (Linnaeus) (Coleoptera: Scarabaeidae) were classified as granulocytes, plasmatocytes, oenocytoids, spherulocytes, prohemocytes, and adipohemocytes. Among these cell types, only the granulocytes became immunologically activated with obvious morphological changes, displaying large amoeba-like, lobopodia-like, and fan-like structures. In addition, their cytoplasmic granules became larger and greatly increased in number. To explore whether these granules could be immunologically generated as phagosomes, total hemocytes were stained with LysoTracker. Greater than 90% of the granulocytes retained the LysoTracker dye at 4 h post-bacterial infection. In flow cytometry analysis, the red fluorescent signal was highly increased at 4 h post-bacterial infection (60.36%) compared to controls (5.08%), as was confirmed by fluorescent microscopy. After 12 h post-infection, these signals returned to basal levels. The uptake of pathogens by granulocytes rapidly triggered the translocation of the microtubule-associated protein 1 light chain 3 alpha (LC3) to the phagosome, which may result in enhanced pathogen killing.
Collapse
|
38
|
Ruiz E, Moncada LI, López MC, Rivas F, Sánchez Y. Comparison of hemocytes of 5th-instar nymphs of Rhodnius prolixus (Stal) and Rhodnius robustus (Larousse 1927), before and after molting. REVISTA DE LA FACULTAD DE MEDICINA 2015. [DOI: 10.15446/revfacmed.v63n1.44901] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
<p>The immune response of insects involve humoral factors and celular elements named as hemocytes. There are different reports exploting the response of hemocytes against infections but the molting effect on this response has not been explored so far. The aim of this work was to compare the hemogram: the formula and the differential counting of hemocytes in 4th and 5th instar nymphs of Rhodnius prolixus and Rhodnius robustus, 24 hours after molting. We assayed different staining methodologies including Giemsa, Alcian Blue pH 2.0, Alcian Blue pH 2.6, Gomori substrate, PAS (Schiff), Sudan Black and Papanicolau with positive controls for each one. On the Gomori staining, we observed lysosomes in the granulocytes and plasmatocytes but the differentiation was better detected using Giemsa staining. The plasmatocytes were abundant across the 4th instar nymphs of R. robustus and 5th instar nymphs of R. prolixus. The cell counting of prohemocytes was higher, the oenocitoids, spherulocytes and adipohemocytes did not reach 1%. In the two species studied, there were no statistically significant differences across plasmatocytes (p=0,05319), not even in granulocytes (p=0,5) but significant in the prohemocytes (p=0,001).</p>
Collapse
|
39
|
Bang K, Hwang S, Lee J, Cho S. Identification of immunity-related genes in the larvae of Protaetia brevitarsis seulensis (Coleoptera: Cetoniidae) by a next-generation sequencing-based transcriptome analysis. JOURNAL OF INSECT SCIENCE (ONLINE) 2015; 15:iev120. [PMID: 26450592 PMCID: PMC4626668 DOI: 10.1093/jisesa/iev120] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 09/06/2015] [Indexed: 05/11/2023]
Abstract
To identify immune-related genes in the larvae of white-spotted flower chafers, next-generation sequencing was conducted with an Illumina HiSeq2000, resulting in 100 million cDNA reads with sequence information from over 10 billion base pairs (bp) and >50× transcriptome coverage. A subset of 77,336 contigs was created, and ∼35,532 sequences matched entries against the NCBI nonredundant database (cutoff, e < 10(-5)). Statistical analysis was performed on the 35,532 contigs. For profiling of the immune response, samples were analyzed by aligning 42 base sequence tags to the de novo reference assembly, comparing levels in immunized larvae to control levels of expression. Of the differentially expressed genes, 3,440 transcripts were upregulated and 3,590 transcripts were downregulated. Many of these genes were confirmed as immune-related genes such as pattern recognition proteins, immune-related signal transduction proteins, antimicrobial peptides, and cellular response proteins, by comparison to published data.
Collapse
Affiliation(s)
- Kyeongrin Bang
- Department of Applied Biology, College of Agriculture and Life Science, Environment Friendly Agriculture Center, Kangwon National University, Chuncheon, South Korea
| | - Sejung Hwang
- Department of Applied Biology, College of Agriculture and Life Science, Environment Friendly Agriculture Center, Kangwon National University, Chuncheon, South Korea
| | - Jiae Lee
- Department of Applied Biology, College of Agriculture and Life Science, Environment Friendly Agriculture Center, Kangwon National University, Chuncheon, South Korea
| | - Saeyoull Cho
- Department of Applied Biology, College of Agriculture and Life Science, Environment Friendly Agriculture Center, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|