1
|
Ahmed S, Adnan H, Khawaja MA, Butler AE. Novel Micro-Ribonucleic Acid Biomarkers for Early Detection of Type 2 Diabetes Mellitus and Associated Complications-A Literature Review. Int J Mol Sci 2025; 26:753. [PMID: 39859467 PMCID: PMC11765584 DOI: 10.3390/ijms26020753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) is one of the most widespread chronic diseases globally, with its prevalence expected to rise significantly in the years ahead. Previous studies on risk stratification for T2DM identify certain biomarkers, including glycated hemoglobin (HbA1c), oral glucose tolerance testing (OGTT), fructosamine, and glycated albumin, as key indicators for predicting the onset and progression of T2DM. However, these traditional markers have been shown to lack sensitivity and specificity and their results are difficult to analyze due to non-standardized interpretation criteria, posing significant challenges to an accurate and definitive diagnosis. The strict measures of these traditional markers may not catch gradual increases in blood sugar levels during the early stages of diabetes evolution, as these might still fall within acceptable glycemic parameters. Recent advancements in research have suggested novel micro ribonucleic acid (miRNA) as circulatory molecules that can facilitate the early detection of prediabetic conditions in high-risk groups and potentially enable prevention of the progression to T2DM. This capability makes them a very powerful tool for potentially improving population health, enhancing outcomes for many patients, and reducing the overall burden of T2DM. These promising biomarkers are small, noncoding RNA involved in the regulation of many cellular functions that have a hand in the metabolic activities of cells, making them a very useful and relevant biomarker to explore for the diagnosis and risk stratification of T2DM. This review analyzes the current literature, outlining the occurrence of miRNAs in prediabetic and diabetic individuals and their implications in predicting dysglycemic disorders.
Collapse
Affiliation(s)
- Sara Ahmed
- School of Medicine, Royal College of Surgeons in Ireland-Bahrain, Busaiteen 15503, Bahrain; (S.A.); (H.A.); (M.A.K.)
| | - Haroon Adnan
- School of Medicine, Royal College of Surgeons in Ireland-Bahrain, Busaiteen 15503, Bahrain; (S.A.); (H.A.); (M.A.K.)
| | - Maryam A. Khawaja
- School of Medicine, Royal College of Surgeons in Ireland-Bahrain, Busaiteen 15503, Bahrain; (S.A.); (H.A.); (M.A.K.)
| | - Alexandra E. Butler
- Research Department, Royal College of Surgeons in Ireland-Bahrain, Busaiteen 15503, Bahrain
| |
Collapse
|
2
|
Yuan H, He M, Yang Q, Niu F, Zou Y, Liu C, Yang Yang, Liu A, Chang X, Chen F, Wu T, Han X, Zhang Y. Obesity-induced upregulation of miR-483-5p impairs the function and identity of pancreatic β-cells. Diabetes Obes Metab 2024; 26:4510-4521. [PMID: 39072950 DOI: 10.1111/dom.15805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/15/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024]
Abstract
AIM To assess the expression and function of miR-483-5p in diabetic β cells. METHODS The expression of miR-483-5p was evaluated in the pancreatic islets of obesity mouse models by quantitative reverse transcription polymerase chain reaction. Dual-luciferase activity, and western blotting assays, were utilized for miR-483-5p target gene verification. Mice with β cell-specific miR-483-5p downregulation were studied under metabolic stress (i.e. a high-fat diet) condition. Lineage tracing was used to determine β-cell fate. RESULTS miR-483-5p increased in the islets of obese mouse models. Expression levels of miR-483-5p were significantly upregulated with the treatment of high glucose and palmitate, in both MIN6 cells and mouse islets. Overexpression of miR-483-5p in β cells results in impaired insulin secretion and β-cell identity. Cell lineage-specific analyses revealed that miR-483-5p overexpression deactivated β-cell identity genes (insulin, Pdx1 and MafA) and derepressed β-cell dedifferentiation (Ngn3) genes. miR-483-5p downregulation in β cells of high-fat diet-fed mice alleviated diabetes and improved glucose intolerance by enhancing insulin secretory capacity. These detrimental effects of miR-483-5p relied on its seed sequence recognition and repressed expression of its target genes Pdx1 and MafA, two crucial markers of β-cell maturation. CONCLUSIONS These findings indicate that the miR-483-5p-mediated reduction of mRNAs specifies β-cell identity as a contributor to β-cell dysfunction via the loss of cellular differentiation.
Collapse
Affiliation(s)
- Honglei Yuan
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Mei He
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Qinnan Yang
- The First Clinical School of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Fandi Niu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Yuchen Zou
- The First Clinical School of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Chen Liu
- The First Clinical School of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yang Yang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Aiming Liu
- The First Clinical School of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Xiaoai Chang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Fang Chen
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Tijun Wu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Yaqin Zhang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Pierantoni M, Grassilli S, Brugnoli F, Dell'Aira M, Bertagnolo V. Insights into the development of insulin-producing cells: Precursors correlated involvement of microRNA panels. Life Sci 2024; 350:122762. [PMID: 38843994 DOI: 10.1016/j.lfs.2024.122762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune condition characterized by the destruction of pancreatic β cells, recently estimated to affect approximately 8.75 million individuals worldwide. At variance with conventional management of T1D, which relies on exogenous insulin replacement and insulinotropic drugs, emerging therapeutic strategies include transplantation of insulin-producing cells (IPCs) derived from stem cells or fully reprogrammed differentiated cells. Through the in-depth analysis of the microRNAs (miRNAs) involved in the differentiation of human embryonic stem cells (ESCs), mesenchymal stem cells (MSCs), and induced pluripotent stem cells (iPSCs), into insulin-producing cells, this review provides a comprehensive overview of the molecular mechanisms orchestrating the transformation of precursors to cells producing insulin. In addition to miR-375, involved in all differentiation processes, and to miR-7, mir-145 and miR-9, common to the generation of insulin-producing cells from at least two different sources, the literature reveals panels of miRNAs closely related to precursor cells and associated with specific events of the physiological β cell maturation. Since the forced modulation of miRNAs can direct cells development towards insulin-producing cells or modify their fate, a more comprehensive knowledge of the miRNAs involved in the cellular events leading to obtain efficient β cells could improve the diagnostic, prognostic, and therapeutic approaches to diabetes.
Collapse
Affiliation(s)
- Marina Pierantoni
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy.
| | - Silvia Grassilli
- Department of Environmental and Prevention Sciences and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy.
| | - Federica Brugnoli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy.
| | - Marcello Dell'Aira
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy.
| | - Valeria Bertagnolo
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy.
| |
Collapse
|
4
|
Niu F, Liu W, Ren Y, Tian Y, Shi W, Li M, Li Y, Xiong Y, Qian L. β-cell neogenesis: A rising star to rescue diabetes mellitus. J Adv Res 2024; 62:71-89. [PMID: 37839502 PMCID: PMC11331176 DOI: 10.1016/j.jare.2023.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/08/2023] [Accepted: 10/08/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND Diabetes Mellitus (DM), a chronic metabolic disease characterized by elevated blood glucose, is caused by various degrees of insulin resistance and dysfunctional insulin secretion, resulting in hyperglycemia. The loss and failure of functional β-cells are key mechanisms resulting in type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM). AIM OF REVIEW Elucidating the underlying mechanisms of β-cell failure, and exploring approaches for β-cell neogenesis to reverse β-cell dysfunction may provide novel strategies for DM therapy. KEY SCIENTIFIC CONCEPTS OF REVIEW Emerging studies reveal that genetic susceptibility, endoplasmic reticulum (ER) stress, oxidative stress, islet inflammation, and protein modification linked to multiple signaling pathways contribute to DM pathogenesis. Over the past few years, replenishing functional β-cell by β-cell neogenesis to restore the number and function of pancreatic β-cells has remarkably exhibited a promising therapeutic approach for DM therapy. In this review, we provide a comprehensive overview of the underlying mechanisms of β-cell failure in DM, highlight the effective approaches for β-cell neogenesis, as well as discuss the current clinical and preclinical agents research advances of β-cell neogenesis. Insights into the challenges of translating β-cell neogenesis into clinical application for DM treatment are also offered.
Collapse
Affiliation(s)
- Fanglin Niu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Wenxuan Liu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yuanyuan Ren
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Ye Tian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, PR China; Department of Neurology, Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China
| | - Wenzhen Shi
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, PR China; Medical Research Center, the affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China
| | - Man Li
- Department of Endocrinology, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China
| | - Yujia Li
- Department of Endocrinology, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China
| | - Yuyan Xiong
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Lu Qian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, PR China; Department of Endocrinology, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
5
|
Ghasemi Gojani E, Rai S, Norouzkhani F, Shujat S, Wang B, Li D, Kovalchuk O, Kovalchuk I. Targeting β-Cell Plasticity: A Promising Approach for Diabetes Treatment. Curr Issues Mol Biol 2024; 46:7621-7667. [PMID: 39057094 PMCID: PMC11275945 DOI: 10.3390/cimb46070453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
The β-cells within the pancreas play a pivotal role in insulin production and secretion, responding to fluctuations in blood glucose levels. However, factors like obesity, dietary habits, and prolonged insulin resistance can compromise β-cell function, contributing to the development of Type 2 Diabetes (T2D). A critical aspect of this dysfunction involves β-cell dedifferentiation and transdifferentiation, wherein these cells lose their specialized characteristics and adopt different identities, notably transitioning towards progenitor or other pancreatic cell types like α-cells. This process significantly contributes to β-cell malfunction and the progression of T2D, often surpassing the impact of outright β-cell loss. Alterations in the expressions of specific genes and transcription factors unique to β-cells, along with epigenetic modifications and environmental factors such as inflammation, oxidative stress, and mitochondrial dysfunction, underpin the occurrence of β-cell dedifferentiation and the onset of T2D. Recent research underscores the potential therapeutic value for targeting β-cell dedifferentiation to manage T2D effectively. In this review, we aim to dissect the intricate mechanisms governing β-cell dedifferentiation and explore the therapeutic avenues stemming from these insights.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (E.G.G.)
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (E.G.G.)
| |
Collapse
|
6
|
Carr ER, Higgins PB, McClenaghan NH, Flatt PR, McCloskey AG. MicroRNA regulation of islet and enteroendocrine peptides: Physiology and therapeutic implications for type 2 diabetes. Peptides 2024; 176:171196. [PMID: 38492669 DOI: 10.1016/j.peptides.2024.171196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/05/2024] [Accepted: 03/14/2024] [Indexed: 03/18/2024]
Abstract
The pathogenesis of type 2 diabetes (T2D) is associated with dysregulation of glucoregulatory hormones, including both islet and enteroendocrine peptides. Microribonucleic acids (miRNAs) are short noncoding RNA sequences which post transcriptionally inhibit protein synthesis by binding to complementary messenger RNA (mRNA). Essential for normal cell activities, including proliferation and apoptosis, dysregulation of these noncoding RNA molecules have been linked to several diseases, including diabetes, where alterations in miRNA expression within pancreatic islets have been observed. This may occur as a compensatory mechanism to maintain beta-cell mass/function (e.g., downregulation of miR-7), or conversely, lead to further beta-cell demise and disease progression (e.g., upregulation of miR-187). Thus, targeting miRNAs has potential for novel diagnostic and therapeutic applications in T2D. This is reinforced by the success seen to date with miRNA-based therapeutics for other conditions currently in clinical trials. In this review, differential expression of miRNAs in human islets associated with T2D will be discussed along with further consideration of their effects on the production and secretion of islet and incretin hormones. This analysis further unravels the therapeutic potential of miRNAs and offers insights into novel strategies for T2D management.
Collapse
Affiliation(s)
- E R Carr
- Department of Life and Physical Sciences, Atlantic Technology University, Donegal, Ireland; Department of Life Sciences, Atlantic Technological University, Sligo, Ireland
| | - P B Higgins
- Department of Life and Physical Sciences, Atlantic Technology University, Donegal, Ireland
| | - N H McClenaghan
- Department of Life Sciences, Atlantic Technological University, Sligo, Ireland
| | - P R Flatt
- School of Biomedical Sciences, Ulster University, Coleraine, UK
| | - A G McCloskey
- Department of Life and Physical Sciences, Atlantic Technology University, Donegal, Ireland.
| |
Collapse
|
7
|
miRNA Signature of Urine Extracellular Vesicles Shows the Involvement of Inflammatory and Apoptotic Processes in Diabetic Chronic Kidney Disease. Pharm Res 2023; 40:817-832. [PMID: 36859746 PMCID: PMC10126023 DOI: 10.1007/s11095-023-03481-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 02/10/2023] [Indexed: 03/03/2023]
Abstract
BACKGROUND The aim of this study was to investigate the role of urine-derived extracellular vesicles (uEVs) in diabetic kidney disease (DKD) in patients diagnosed with type 2 diabetes mellitus (T2DM). METHODS UEVs were characterized by size distribution and microRNA content by next-generation small RNA sequencing and quantitative reverse transcription PCR. RESULTS A subset of sixteen miRNAs enriched in T2DM patients with DKD, including hsa-miR-514a-5p, hsa-miR‑451a, hsa-miR-126-3p, hsa-miR-214, or hsa-miR‑503 was identified. Eight miRNAs as hsa-miR-21-3p, hsa-miR-4792, hsa-miR‑375, hsa-miR-1268a, hsa-miR-501-5p, or hsa-miR-582 were downregulated. Prediction of potential target genes and pathway enrichment analysis of the Kyoto Encyclopedia of Genes and Genomes (KEGG) confirmed possible functions related to cellular processes such as apoptosis, inflammation, and tissue remodeling, that promote diabetic complications, such as DKD. Among them, hsa-miR-375, hsa-miR-503, and hsa-miR-451a make important contribution. Additionally, downregulated hsa-miR-582-5p has not been reported so far in any diabetes-related pathways. CONCLUSIONS This study revealed the most significant miRNAs in uEVs of patients with T2DM. However, as this is a bioinformatic prediction that we performed based on the putative targets of the identified miRNAs. Thus, further in vitro functional studies are needed to confirm our findings. Knowing the fact that EVs are crucial in transferring miRNAs, there is a great need toto discover their involvement in the pathomechanism of T2DM-related kidney disease.
Collapse
|
8
|
Lin X, Cheng L, Wan Y, Yan Y, Zhang Z, Li X, Wu J, Wang X, Xu M. Ang II Controls the Expression of Mapkap1 by miR-375 and Affects the Function of Islet β Cells. Endocr Metab Immune Disord Drug Targets 2023; 23:1186-1200. [PMID: 36748222 PMCID: PMC10514520 DOI: 10.2174/1871530323666230206121715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 02/08/2023]
Abstract
BACKGROUND The RAS system is involved in the regulation of islet function, but its regulation remains unclear. OBJECTIVE This study investigates the role of an islet-specific miR-375 in the effect of RAS system on islet β-cells. METHODS miR-375 mimics and inhibitors were transfected into insulin-secreting MIN6 cells in the presence or absence of RAS component. RESULTS Compared to control, in Ang II-treated MIN6 cells, miR-375 mimic transfection results in a decrement in cell viability and Akt-Ser levels (0.739±0.05 vs. 0.883±0.06 and 0.40±0.04 vs. 0.79±0.04, respectively), while the opposite occurred in miR-375 inhibitor-transfected cells (1.032±0.11 vs. 0.883±0.06 and 0.98±0.05 vs. 0.79±0.04, respectively, P<0.05). Mechanistically, transfection of miR- 375 mimics into Ang II-treated MIN6 cells significantly reduced the expression of Mapkap1 protein (0.97±0.15 vs. 0.63±0.06, P<0.05); while miR-375 inhibitor-transfected cells elevated Mapkap1 expression level (0.35±0.11 vs. 0.90±0.05, P<0.05), without changes in mRNA expression. Transfection of miR-375 specific inhibitors TSB-Mapkap1 could elevate Mapkap1 (1.62±0.02 vs. 0.68±0.01, P<0.05), while inhibition of Mapkap1 could significantly reduce the level of Akt-Ser473 phosphorylation (0.60±0.14 vs. 1.80±0.27, P<0.05). CONCLUSION The effects of Ang II on mouse islet β cells were mediated by miR-375 through miR- 375/Mapkap 1 axis. This targeted regulation may occur by affecting Akt phosphorylation of β cells. These results may provide new ideas and a scientific basis for further development of miRNA-targeted islet protection measures.
Collapse
Affiliation(s)
- Xiuhong Lin
- Department of Clinical Nutrition, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiangxi Road, Guangzhou, Guangdong, 510120, People’s Republic of China
| | - Lin Cheng
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiangxi Road, Guangzhou, Guangdong, 510120, People’s Republic of China, China
| | - Yan Wan
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiangxi Road, Guangzhou, Guangdong, 510120, People’s Republic of China, China
| | - Yuerong Yan
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiangxi Road, Guangzhou, Guangdong, 510120, People’s Republic of China, China
| | - Zhuo Zhang
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiangxi Road, Guangzhou, Guangdong, 510120, People’s Republic of China, China
| | - Xiaohui Li
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiangxi Road, Guangzhou, Guangdong, 510120, People’s Republic of China, China
| | - Jiayun Wu
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiangxi Road, Guangzhou, Guangdong, 510120, People’s Republic of China, China
| | - Xiaoyi Wang
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiangxi Road, Guangzhou, Guangdong, 510120, People’s Republic of China, China
| | - Mingtong Xu
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiangxi Road, Guangzhou, Guangdong, 510120, People’s Republic of China, China
| |
Collapse
|
9
|
Miglietta S, Girolimetti G, Marchio L, Sollazzo M, Laprovitera N, Coluccelli S, De Biase D, De Leo A, Santini D, Kurelac I, Iommarini L, Ghelli A, Campana D, Ferracin M, Perrone AM, Gasparre G, Porcelli AM. MicroRNA and Metabolic Profiling of a Primary Ovarian Neuroendocrine Carcinoma Pulmonary-Type Reveals a High Degree of Similarity with Small Cell Lung Cancer. Noncoding RNA 2022; 8:64. [PMID: 36287116 PMCID: PMC9611163 DOI: 10.3390/ncrna8050064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 11/25/2022] Open
Abstract
Small cell neuroendocrine carcinoma is most frequently found in the lung (SCLC), but it has been also reported, albeit with a very low incidence, in the ovary. Here, we analyze a case of primary small cell carcinoma of the ovary of pulmonary type (SCCOPT), a rare and aggressive tumor with poor prognosis, whose biology and molecular features have not yet been thoroughly investigated. The patient affected by SCCOPT had a residual tumor following chemotherapy which displayed pronounced similarity with neuroendocrine tumors and lung cancer in terms of its microRNA expression profile and mTOR-downstream activation. By analyzing the metabolic markers of the neoplastic lesion, we established a likely glycolytic signature. In conclusion, this in-depth characterization of SCCOPT could be useful for future diagnoses, possibly aided by microRNA profiling, allowing clinicians to adopt the most appropriate therapeutic strategy.
Collapse
Affiliation(s)
- Stefano Miglietta
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
| | - Giulia Girolimetti
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
| | - Lorena Marchio
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
| | - Manuela Sollazzo
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
| | - Noemi Laprovitera
- Unit of Transplant immunobiology and Advanced Cell Therapy, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Sara Coluccelli
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
| | - Dario De Biase
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Antonio De Leo
- Department of Experimental Diagnostic and Specialized Medicine (DIMES), University of Bologna, 40138 Bologna, Italy
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Donatella Santini
- Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Ivana Kurelac
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
- Centro Studi E Ricerca Sulle Neoplasie Ginecologiche (CSR), University of Bologna, 40138 Bologna, Italy
| | - Luisa Iommarini
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
- Centro Studi E Ricerca Sulle Neoplasie Ginecologiche (CSR), University of Bologna, 40138 Bologna, Italy
| | - Anna Ghelli
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
| | - Davide Campana
- Department of Experimental Diagnostic and Specialized Medicine (DIMES), University of Bologna, 40138 Bologna, Italy
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Manuela Ferracin
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
- Department of Experimental Diagnostic and Specialized Medicine (DIMES), University of Bologna, 40138 Bologna, Italy
| | - Anna Myriam Perrone
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
- Centro Studi E Ricerca Sulle Neoplasie Ginecologiche (CSR), University of Bologna, 40138 Bologna, Italy
- Division of Oncologic Gynecology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Giuseppe Gasparre
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
- Centro Studi E Ricerca Sulle Neoplasie Ginecologiche (CSR), University of Bologna, 40138 Bologna, Italy
| | - Anna Maria Porcelli
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
- Centro Studi E Ricerca Sulle Neoplasie Ginecologiche (CSR), University of Bologna, 40138 Bologna, Italy
- Interdepartmental Center of Industrial Research (CIRI) Life Science and Health Technologies, University of Bologna, 40064 Ozzano dell’Emilia, Italy
| |
Collapse
|
10
|
Hatmal MM, Al-Hatamleh MAI, Olaimat AN, Alshaer W, Hasan H, Albakri KA, Alkhafaji E, Issa NN, Al-Holy MA, Abderrahman SM, Abdallah AM, Mohamud R. Immunomodulatory Properties of Human Breast Milk: MicroRNA Contents and Potential Epigenetic Effects. Biomedicines 2022; 10:1219. [PMID: 35740242 PMCID: PMC9219990 DOI: 10.3390/biomedicines10061219] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023] Open
Abstract
Infants who are exclusively breastfed in the first six months of age receive adequate nutrients, achieving optimal immune protection and growth. In addition to the known nutritional components of human breast milk (HBM), i.e., water, carbohydrates, fats and proteins, it is also a rich source of microRNAs, which impact epigenetic mechanisms. This comprehensive work presents an up-to-date overview of the immunomodulatory constituents of HBM, highlighting its content of circulating microRNAs. The epigenetic effects of HBM are discussed, especially those regulated by miRNAs. HBM contains more than 1400 microRNAs. The majority of these microRNAs originate from the lactating gland and are based on the remodeling of cells in the gland during breastfeeding. These miRNAs can affect epigenetic patterns by several mechanisms, including DNA methylation, histone modifications and RNA regulation, which could ultimately result in alterations in gene expressions. Therefore, the unique microRNA profile of HBM, including exosomal microRNAs, is implicated in the regulation of the genes responsible for a variety of immunological and physiological functions, such as FTO, INS, IGF1, NRF2, GLUT1 and FOXP3 genes. Hence, studying the HBM miRNA composition is important for improving the nutritional approaches for pregnancy and infant's early life and preventing diseases that could occur in the future. Interestingly, the composition of miRNAs in HBM is affected by multiple factors, including diet, environmental and genetic factors.
Collapse
Affiliation(s)
- Ma’mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Mohammad A. I. Al-Hatamleh
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| | - Amin N. Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (A.N.O.); (M.A.A.-H.)
| | - Walhan Alshaer
- Cell Therapy Center (CTC), The University of Jordan, Amman 11942, Jordan;
| | - Hanan Hasan
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan;
| | - Khaled A. Albakri
- Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Enas Alkhafaji
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, Amman 11942, Jordan;
| | - Nada N. Issa
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Murad A. Al-Holy
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (A.N.O.); (M.A.A.-H.)
| | - Salim M. Abderrahman
- Department of Biology and Biotechnology, Faculty of Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Atiyeh M. Abdallah
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar;
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| |
Collapse
|
11
|
Rallabandi R, Sharp B, Cruz C, Wang Q, Locsin A, Driscoll CB, Lee E, Nelson T, Devaux P. miRNA-mediated control of exogenous OCT4 during mesenchymal-epithelial transition increases measles vector reprogramming efficiency. Mol Ther Methods Clin Dev 2022; 24:48-61. [PMID: 34977272 PMCID: PMC8683617 DOI: 10.1016/j.omtm.2021.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/27/2021] [Indexed: 12/14/2022]
Abstract
OCT4 is a key mediator of induced pluripotent stem cell (iPSC) reprogramming, but the mechanistic insights into the role of exogenous OCT4 and timelines that initiate pluripotency remain to be resolved. Here, using measles reprogramming vectors, we present microRNA (miRNA) targeting of exogenous OCT4 to shut down its expression during the mesenchymal to the epithelial transition phase of reprogramming. We showed that exogenous OCT4 is required only for the initiation of reprogramming and is dispensable for the maturation stage. However, the continuous expression of SOX2, KLF4, and c-MYC is necessary for the maturation stage of the iPSC. Additionally, we demonstrate a novel application of miRNA targeting in a viral vector to contextually control the vector/transgene, ultimately leading to an improved reprogramming efficiency. This novel approach could be applied to other systems for improving the efficiency of vector-induced processes.
Collapse
Affiliation(s)
- Ramya Rallabandi
- Virology and Gene Therapy Graduate Track, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
- Regenerative Sciences PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Brenna Sharp
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Conrad Cruz
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Qi Wang
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Alexis Locsin
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Christopher B. Driscoll
- Virology and Gene Therapy Graduate Track, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Ella Lee
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Tim Nelson
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester MN 55905, USA
| | - Patricia Devaux
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Virology and Gene Therapy Graduate Track, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
- Regenerative Sciences PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
12
|
Wendt A, Eliasson L. Pancreatic alpha cells and glucagon secretion: Novel functions and targets in glucose homeostasis. Curr Opin Pharmacol 2022; 63:102199. [PMID: 35245797 DOI: 10.1016/j.coph.2022.102199] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 11/16/2022]
Abstract
Diabetes is the result of dysregulation of both insulin and glucagon. Still, insulin has attracted much more attention than glucagon. Glucagon is released from alpha cells in the islets of Langerhans in response to low glucose and certain amino acids. Drugs with the primary aim of targeting glucagon signalling are scarce. However, glucagon is often administered to counteract severe hypoglycaemia, and commonly used diabetes medications such as GLP-1 analogues, sulfonylureas and SGLT2-inhibitors also affect alpha cells. Indeed, there are physiological and developmental similarities between the alpha cell and the insulin-secreting beta cell and new data confirm that alpha cells can be converted into insulin-secreting cells. These aspects and attributes, the need to find novel therapies targeting the alpha cell and more are considered in this review.
Collapse
Affiliation(s)
- Anna Wendt
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, Clinical Research Centre, SUS, Malmö, Sweden
| | - Lena Eliasson
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, Clinical Research Centre, SUS, Malmö, Sweden.
| |
Collapse
|
13
|
Xu Y, Tang Z, Dai H, Hou J, Li F, Tang Z, Zhang D. MiR-195 promotes pancreatic β-cell dedifferentiation by targeting Mfn2 and impairing Pi3k/Akt signaling in type 2 diabetes. Obesity (Silver Spring) 2022; 30:447-459. [PMID: 35088561 DOI: 10.1002/oby.23360] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 01/20/2023]
Abstract
OBJECTIVE The aim of this study was to research the role and underlying mechanism of miR-195 involved in pancreatic β-cell dedifferentiation induced by hyperlipemia in type 2 diabetes mellitus. METHODS High-fat-diet-induced obese C57BL/6J mice and palmitate-stimulated Min6 cells were used as the models of β-cell dedifferentiation in vivo and in vitro, respectively. The expression of miR-195 and insulin secretion during β-cell dedifferentiation were measured. Also, the influence of regulated miR-195 expression on β-cell dedifferentiation was examined. Meanwhile, the IRS-1/2/Pi3k/Akt pathway and mitofusin-2 (Mfn2) expression were investigated during β-cell dedifferentiation. RESULTS MiR-195 was upregulated during lipotoxicity-induced β-cell dedifferentiation in both in vivo and in vitro experiments, and miR-195 functionally contributed to lipotoxicity-induced β-cell dedifferentiation. Furthermore, miR-195 inhibited IRS-1/2/Pi3k/Akt pathway activation, which accompanied β-cell dedifferentiation. Mfn2, a target of miR-195, was found to be downregulated and was associated with increased mitochondrial production of reactive oxygen species during β-cell dedifferentiation. Instructively, inhibition of miR-195, at least partially, reversed the downregulation of Mfn2, restored IRS-1/2/Pi3k/Akt pathway activation, and prevented β-cell dedifferentiation. CONCLUSIONS MiR-195 promoted β-cell dedifferentiation through negatively regulating Mfn2 expression and inhibiting the IRS-1/2/Pi3k/Akt pathway, providing a promising treatment for type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Yuhua Xu
- Department of Endocrinology, Affiliated Hospital of Nantong University, Jiangsu, China
| | - Zixuan Tang
- Department of Endocrinology, Affiliated Hospital of Nantong University, Jiangsu, China
| | - Hui Dai
- Department of Endocrinology, Affiliated Hospital of Nantong University, Jiangsu, China
| | - Jue Hou
- Department of Endocrinology, Affiliated Hospital of Nantong University, Jiangsu, China
| | - Fangqin Li
- Department of Endocrinology, Affiliated Hospital of Nantong University, Jiangsu, China
| | - Zhuqi Tang
- Department of Endocrinology, Affiliated Hospital of Nantong University, Jiangsu, China
| | - Dongmei Zhang
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Jiangsu, China
| |
Collapse
|
14
|
Sałówka A, Martinez-Sanchez A. Molecular Mechanisms of Nutrient-Mediated Regulation of MicroRNAs in Pancreatic β-cells. Front Endocrinol (Lausanne) 2021; 12:704824. [PMID: 34803905 PMCID: PMC8600252 DOI: 10.3389/fendo.2021.704824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic β-cells within the islets of Langerhans respond to rising blood glucose levels by secreting insulin that stimulates glucose uptake by peripheral tissues to maintain whole body energy homeostasis. To different extents, failure of β-cell function and/or β-cell loss contribute to the development of Type 1 and Type 2 diabetes. Chronically elevated glycaemia and high circulating free fatty acids, as often seen in obese diabetics, accelerate β-cell failure and the development of the disease. MiRNAs are essential for endocrine development and for mature pancreatic β-cell function and are dysregulated in diabetes. In this review, we summarize the different molecular mechanisms that control miRNA expression and function, including transcription, stability, posttranscriptional modifications, and interaction with RNA binding proteins and other non-coding RNAs. We also discuss which of these mechanisms are responsible for the nutrient-mediated regulation of the activity of β-cell miRNAs and identify some of the more important knowledge gaps in the field.
Collapse
Affiliation(s)
| | - Aida Martinez-Sanchez
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
15
|
Akhavan S, Tutunchi S, Malmir A, Ajorlou P, Jalili A, Panahi G. Molecular study of the proliferation process of beta cells derived from pluripotent stem cells. Mol Biol Rep 2021; 49:1429-1436. [PMID: 34734370 DOI: 10.1007/s11033-021-06892-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/28/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Diabetes mellitus (DM) is a chronic metabolic disorder, increasing in the number of patients and poses a severe threat to human health. Significant advances have been made in DM treatment; the most important of which is differentiation and proliferation of beta cells from IPSCs. METHODS Data were collected from PUBMED at various time points up to the academic year of 2020. The related keywords are listed as follows: "Induced pluripotent stem cell", "Proliferation", "Growth factor", "Small molecule", "cardiotoxicity" and "Scaffold." RESULT The use of growth factors along with small molecules can be a good strategy for beta-cell proliferation. Also, proliferation of beta cells on nanofibers scaffolds can create a similar in vivo environment, that leads to increased function of beta-cell. Some transcription factors that cause beta cells proliferation play an important role in inflammation; so, it is essential to monitor them to prevent inflammation. CONCLUSION Finally, the simultaneous use of growth factors, micronutrients and scaffolds can be an excellent strategy to increase the proliferation and function of beta cells derived from IPSCs.
Collapse
Affiliation(s)
- Saeedeh Akhavan
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University (IAU), Tehran, Iran
| | - Sara Tutunchi
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Malmir
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Parisa Ajorlou
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Arsalan Jalili
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACER, Tehran, Iran
| | - Ghodratollah Panahi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Zhao S, Wang H, Xu H, Tan Y, Zhang C, Zeng Q, Liu L, Qu S. Targeting the microRNAs in exosome: A potential therapeutic strategy for alleviation of diabetes-related cardiovascular complication. Pharmacol Res 2021; 173:105868. [PMID: 34481974 DOI: 10.1016/j.phrs.2021.105868] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/16/2021] [Accepted: 08/31/2021] [Indexed: 12/18/2022]
Abstract
Diabetes-related cardiovascular disease (CVD) is a global health issue that causes thousands of people's death around the world annually. Diabetes-related CVD is still prevailing despite the progression being made in its diagnosis and treatment. Therefore it is urgent to find therapeutic strategies.to prevent it. MicroRNA (miRNA) is a single-stranded non-coding RNA involved in the process of post-transcriptional control of gene expression in eukaryotes. A large number of literatures reveal that miRNAs are implicated in diabetes-related CVD. The increase of miRNAs in exosomes may promote the occurrence and development of diabetes-related cardiovascular complication. However, some other studies identify that miRNAs in exosomes are supposed to be involved in cardiac regeneration and confer cardiac protection effect. Therefore, targeting the miRNA in exosome is regarded as a potent therapeutic measure to alleviate diabetes-related CVD. In this article, we review current knowledge about the role of exosomal miRNAs in diabetes-related cardiovascular complication, such as coronary heart disease, Peripheral artery disease, stroke, diabetic cardiomyopathy, diabetic nephropathy and diabetic retinopathy. Exosomal miRNAs are considered to be central regulators of diabetes-Related CVD and provide a therapeutic tool for diagnosis and treatment of diabetes-related cardiovascular complication.
Collapse
Affiliation(s)
- Simin Zhao
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, Hunan 421001, PR China
| | - Hengquan Wang
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, Hunan 421001, PR China
| | - Haiqiang Xu
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, Hunan 421001, PR China
| | - Yao Tan
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, Hunan 421001, PR China
| | - Chi Zhang
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, Hunan 421001, PR China
| | - Qian Zeng
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, Hunan 421001, PR China
| | - Lingyun Liu
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, Hunan 421001, PR China; Clinic Department, Hengyang Medical College, University of South China, Hengyang 421001, PR China
| | - Shunlin Qu
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, Hunan 421001, PR China.
| |
Collapse
|
17
|
Brito MDF, Torre C, Silva-Lima B. Scientific Advances in Diabetes: The Impact of the Innovative Medicines Initiative. Front Med (Lausanne) 2021; 8:688438. [PMID: 34295913 PMCID: PMC8290522 DOI: 10.3389/fmed.2021.688438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/02/2021] [Indexed: 12/16/2022] Open
Abstract
Diabetes Mellitus is one of the World Health Organization's priority diseases under research by the first and second programmes of Innovative Medicines Initiative, with the acronyms IMI1 and IMI2, respectively. Up to October of 2019, 13 projects were funded by IMI for Diabetes & Metabolic disorders, namely SUMMIT, IMIDIA, DIRECT, StemBANCC, EMIF, EBiSC, INNODIA, RHAPSODY, BEAT-DKD, LITMUS, Hypo-RESOLVE, IM2PACT, and CARDIATEAM. In general, a total of €447 249 438 was spent by IMI in the area of Diabetes. In order to prompt a better integration of achievements between the different projects, we perform a literature review and used three data sources, namely the official project's websites, the contact with the project's coordinators and co-coordinator, and the CORDIS database. From the 662 citations identified, 185 were included. The data collected were integrated into the objectives proposed for the four IMI2 program research axes: (1) target and biomarker identification, (2) innovative clinical trials paradigms, (3) innovative medicines, and (4) patient-tailored adherence programmes. The IMI funded projects identified new biomarkers, medical and research tools, determinants of inter-individual variability, relevant pathways, clinical trial designs, clinical endpoints, therapeutic targets and concepts, pharmacologic agents, large-scale production strategies, and patient-centered predictive models for diabetes and its complications. Taking into account the scientific data produced, we provided a joint vision with strategies for integrating personalized medicine into healthcare practice. The major limitations of this article were the large gap of data in the libraries on the official project websites and even the Cordis database was not complete and up to date.
Collapse
Affiliation(s)
| | - Carla Torre
- Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal.,Laboratory of Systems Integration Pharmacology, Clinical & Regulatory Science-Research Institute for Medicines (iMED.ULisboa), Lisbon, Portugal
| | - Beatriz Silva-Lima
- Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal.,Laboratory of Systems Integration Pharmacology, Clinical & Regulatory Science-Research Institute for Medicines (iMED.ULisboa), Lisbon, Portugal
| |
Collapse
|
18
|
Wong WK, Joglekar MV, Saini V, Jiang G, Dong CX, Chaitarvornkit A, Maciag GJ, Gerace D, Farr RJ, Satoor SN, Sahu S, Sharangdhar T, Ahmed AS, Chew YV, Liuwantara D, Heng B, Lim CK, Hunter J, Januszewski AS, Sørensen AE, Akil AS, Gamble JR, Loudovaris T, Kay TW, Thomas HE, O'Connell PJ, Guillemin GJ, Martin D, Simpson AM, Hawthorne WJ, Dalgaard LT, Ma RC, Hardikar AA. Machine learning workflows identify a microRNA signature of insulin transcription in human tissues. iScience 2021; 24:102379. [PMID: 33981968 PMCID: PMC8082091 DOI: 10.1016/j.isci.2021.102379] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/19/2021] [Accepted: 03/29/2021] [Indexed: 02/07/2023] Open
Abstract
Dicer knockout mouse models demonstrated a key role for microRNAs in pancreatic β-cell function. Studies to identify specific microRNA(s) associated with human (pro-)endocrine gene expression are needed. We profiled microRNAs and key pancreatic genes in 353 human tissue samples. Machine learning workflows identified microRNAs associated with (pro-)insulin transcripts in a discovery set of islets (n = 30) and insulin-negative tissues (n = 62). This microRNA signature was validated in remaining 261 tissues that include nine islet samples from individuals with type 2 diabetes. Top eight microRNAs (miR-183-5p, -375-3p, 216b-5p, 183-3p, -7-5p, -217-5p, -7-2-3p, and -429-3p) were confirmed to be associated with and predictive of (pro-)insulin transcript levels. Use of doxycycline-inducible microRNA-overexpressing human pancreatic duct cell lines confirmed the regulatory roles of these microRNAs in (pro-)endocrine gene expression. Knockdown of these microRNAs in human islet cells reduced (pro-)insulin transcript abundance. Our data provide specific microRNAs to further study microRNA-mRNA interactions in regulating insulin transcription.
Collapse
Affiliation(s)
- Wilson K.M. Wong
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Narellan Road & Gilchrist Drive, Campbelltown, NSW 2560, Australia
- Diabetes and Islet Biology group, Faculty of Medicine and Health, University of Sydney, 92-94 Parramatta Road, Camperdown, NSW 2050, Australia
| | - Mugdha V. Joglekar
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Narellan Road & Gilchrist Drive, Campbelltown, NSW 2560, Australia
- Diabetes and Islet Biology group, Faculty of Medicine and Health, University of Sydney, 92-94 Parramatta Road, Camperdown, NSW 2050, Australia
| | - Vijit Saini
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Narellan Road & Gilchrist Drive, Campbelltown, NSW 2560, Australia
- School of Life Sciences and the Centre for Health Technologies, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Guozhi Jiang
- Department of Medicine and Therapeutics, and Hong Kong Institute of Diabetes and Obesity, and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, Special Administrative Region, China
| | - Charlotte X. Dong
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Narellan Road & Gilchrist Drive, Campbelltown, NSW 2560, Australia
- Diabetes and Islet Biology group, Faculty of Medicine and Health, University of Sydney, 92-94 Parramatta Road, Camperdown, NSW 2050, Australia
| | - Alissa Chaitarvornkit
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Narellan Road & Gilchrist Drive, Campbelltown, NSW 2560, Australia
- Diabetes and Islet Biology group, Faculty of Medicine and Health, University of Sydney, 92-94 Parramatta Road, Camperdown, NSW 2050, Australia
| | - Grzegorz J. Maciag
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark
| | - Dario Gerace
- School of Life Sciences and the Centre for Health Technologies, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Ryan J. Farr
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Narellan Road & Gilchrist Drive, Campbelltown, NSW 2560, Australia
- Diabetes and Islet Biology group, Faculty of Medicine and Health, University of Sydney, 92-94 Parramatta Road, Camperdown, NSW 2050, Australia
| | - Sarang N. Satoor
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Narellan Road & Gilchrist Drive, Campbelltown, NSW 2560, Australia
- Diabetes and Islet Biology group, Faculty of Medicine and Health, University of Sydney, 92-94 Parramatta Road, Camperdown, NSW 2050, Australia
| | - Subhshri Sahu
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Narellan Road & Gilchrist Drive, Campbelltown, NSW 2560, Australia
- Diabetes and Islet Biology group, Faculty of Medicine and Health, University of Sydney, 92-94 Parramatta Road, Camperdown, NSW 2050, Australia
| | - Tejaswini Sharangdhar
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Narellan Road & Gilchrist Drive, Campbelltown, NSW 2560, Australia
- Diabetes and Islet Biology group, Faculty of Medicine and Health, University of Sydney, 92-94 Parramatta Road, Camperdown, NSW 2050, Australia
| | - Asma S. Ahmed
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Narellan Road & Gilchrist Drive, Campbelltown, NSW 2560, Australia
- Diabetes and Islet Biology group, Faculty of Medicine and Health, University of Sydney, 92-94 Parramatta Road, Camperdown, NSW 2050, Australia
| | - Yi Vee Chew
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, University of Sydney, 176 Hawkesbury Road, Westmead, NSW 2145, Australia
| | - David Liuwantara
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, University of Sydney, 176 Hawkesbury Road, Westmead, NSW 2145, Australia
| | - Benjamin Heng
- Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney, NSW 2019, Australia
| | - Chai K. Lim
- Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney, NSW 2019, Australia
| | - Julie Hunter
- Centre for the Endothelium, Vascular Biology Program, Centenary Institute, University of Sydney Medical School, Locked Bag #6, Newtown, NSW 2042, Australia
| | - Andrzej S. Januszewski
- NHMRC Clinical Trials Centre, University of Sydney, 92-94 Parramatta Road, Camperdown, NSW 2050, Australia
| | - Anja E. Sørensen
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark
| | - Ammira S.A. Akil
- Department of Human Genetics-Precision Medicine Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Jennifer R. Gamble
- Centre for the Endothelium, Vascular Biology Program, Centenary Institute, University of Sydney Medical School, Locked Bag #6, Newtown, NSW 2042, Australia
| | - Thomas Loudovaris
- St Vincent's Institute and The University of Melbourne Department of Medicine, 9 Princes Street, Fitzroy, VIC, Australia
| | - Thomas W. Kay
- St Vincent's Institute and The University of Melbourne Department of Medicine, 9 Princes Street, Fitzroy, VIC, Australia
| | - Helen E. Thomas
- St Vincent's Institute and The University of Melbourne Department of Medicine, 9 Princes Street, Fitzroy, VIC, Australia
| | - Philip J. O'Connell
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, University of Sydney, 176 Hawkesbury Road, Westmead, NSW 2145, Australia
| | - Gilles J. Guillemin
- Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney, NSW 2019, Australia
| | - David Martin
- Upper GI Surgery, Strathfield Hospital, 2/3 Everton Road, Strathfield, NSW 2135, Australia
| | - Ann M. Simpson
- School of Life Sciences and the Centre for Health Technologies, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Wayne J. Hawthorne
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, University of Sydney, 176 Hawkesbury Road, Westmead, NSW 2145, Australia
| | - Louise T. Dalgaard
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark
| | - Ronald C.W. Ma
- Department of Medicine and Therapeutics, and Hong Kong Institute of Diabetes and Obesity, and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, Special Administrative Region, China
| | - Anandwardhan A. Hardikar
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Narellan Road & Gilchrist Drive, Campbelltown, NSW 2560, Australia
- Diabetes and Islet Biology group, Faculty of Medicine and Health, University of Sydney, 92-94 Parramatta Road, Camperdown, NSW 2050, Australia
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark
| |
Collapse
|
19
|
Sabouri E, Rajabzadeh A, Enderami SE, Saburi E, Soleimanifar F, Barati G, Rahmati M, Khamisipour G, Enderami SE. The Role of MicroRNAs in the Induction of Pancreatic Differentiation. Curr Stem Cell Res Ther 2021; 16:145-154. [PMID: 32564764 DOI: 10.2174/1574888x15666200621173607] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 11/22/2022]
Abstract
Stem cell-based therapy is one of the therapeutic options with promising results in the treatment of diabetes. Stem cells from various sources are expanded and induced to generate the cells capable of secreting insulin. These insulin-producing cells [IPCs] could be used as an alternative to islets in the treatment of patients with diabetes. Soluble growth factors, small molecules, geneencoding transcription factors, and microRNAs [miRNAs] are commonly used for the induction of stem cell differentiation. MiRNAs are small non-coding RNAs with 21-23 nucleotides that are involved in the regulation of gene expression by targeting multiple mRNA targets. Studies have shown the dynamic expression of miRNAs during pancreatic development and stem cell differentiation. MiR- 7 and miR-375 are the most abundant miRNAs in pancreatic islet cells and play key roles in pancreatic development as well as islet cell functions. Some studies have tried to use these small RNAs for the induction of pancreatic differentiation. This review focuses on the miRNAs used in the induction of stem cells into IPCs and discusses their functions in pancreatic β-cells.
Collapse
Affiliation(s)
- Elham Sabouri
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Rajabzadeh
- Applied Cell Sciences and Tissue Engineering Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Elnaz Enderami
- Department of Stem Cell and Regenerative Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology [NIGEB], Tehran, Iran
| | - Ehsan Saburi
- Medical Genetics and Molecular Medicine Department, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Soleimanifar
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | | | | | - Gholamreza Khamisipour
- Department of Hematology, School of Allied Medical Sciences, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Seyed Ehsan Enderami
- Diabetes Research Center, Department of Medical Biotechnology, Faculty of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
20
|
Zhang J, Liu F. The De-, Re-, and trans-differentiation of β-cells: Regulation and function. Semin Cell Dev Biol 2020; 103:68-75. [DOI: 10.1016/j.semcdb.2020.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/09/2019] [Accepted: 01/03/2020] [Indexed: 12/11/2022]
|
21
|
Eliasson L, Esguerra JLS. MicroRNA Networks in Pancreatic Islet Cells: Normal Function and Type 2 Diabetes. Diabetes 2020; 69:804-812. [PMID: 32312896 PMCID: PMC7171954 DOI: 10.2337/dbi19-0016] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022]
Abstract
Impaired insulin secretion from the pancreatic β-cells is central in the pathogenesis of type 2 diabetes (T2D), and microRNAs (miRNAs) are fundamental regulatory factors in this process. Differential expression of miRNAs contributes to β-cell adaptation to compensate for increased insulin resistance, but deregulation of miRNA expression can also directly cause β-cell impairment during the development of T2D. miRNAs are small noncoding RNAs that posttranscriptionally reduce gene expression through translational inhibition or mRNA destabilization. The nature of miRNA targeting implies the presence of complex and large miRNA-mRNA regulatory networks in every cell, including the insulin-secreting β-cell. Here we exemplify one such network using our own data on differential miRNA expression in the islets of T2D Goto-Kakizaki rat model. Several biological processes are influenced by multiple miRNAs in the β-cell, but so far most studies have focused on dissecting the mechanism of action of individual miRNAs. In this Perspective we present key islet miRNA families involved in T2D pathogenesis including miR-200, miR-7, miR-184, miR-212/miR-132, and miR-130a/b/miR-152. Finally, we highlight four challenges and opportunities within islet miRNA research, ending with a discussion on how miRNAs can be utilized as therapeutic targets contributing to personalized T2D treatment strategies.
Collapse
Affiliation(s)
- Lena Eliasson
- Islet Cell Exocytosis, Lund University Diabetes Centre; Department of Clinical Sciences Malmö, Lund University; and Clinical Research Centre, Skåne University Hospital, Malmö, Sweden
| | - Jonathan L S Esguerra
- Islet Cell Exocytosis, Lund University Diabetes Centre; Department of Clinical Sciences Malmö, Lund University; and Clinical Research Centre, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
22
|
Micro(RNA) Management and Mismanagement of the Islet. J Mol Biol 2020; 432:1419-1428. [DOI: 10.1016/j.jmb.2019.09.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/10/2019] [Accepted: 09/15/2019] [Indexed: 02/08/2023]
|
23
|
Wan S, Zhang J, Chen X, Lang J, Li L, Chen F, Tian L, Meng Y, Yu X. MicroRNA-17-92 Regulates Beta-Cell Restoration After Streptozotocin Treatment. Front Endocrinol (Lausanne) 2020; 11:9. [PMID: 32038500 PMCID: PMC6989481 DOI: 10.3389/fendo.2020.00009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/07/2020] [Indexed: 02/05/2023] Open
Abstract
Objective: To clarify the role and mechanism of miR-17-92 cluster in islet beta-cell repair after streptozotocin intervention. Methods: Genetically engineered mice (miR-17-92βKO) and control RIP-Cre mice were intraperitoneally injected with multiple low dose streptozotocin. Body weight, random blood glucose (RBG), fasting blood glucose, and intraperitoneal glucose tolerance test (IPGTT) were monitored regularly. Mice were sacrificed for histological analysis 8 weeks later. Morphological changes of pancreas islets, quantity, quality, apoptosis, and proliferation of beta-cells were measured. Islets from four groups were isolated. MiRNA and mRNA were extracted and quantified. Results:MiR-17-92βKO mice showed dramatically elevated fasting blood glucose and impaired glucose tolerance after streptozotocin treatment in contrast to control mice, the reason of which is reduced beta-cell number and total mass resulting from reduced proliferation, enhanced apoptosis of beta-cells. Genes related to cell proliferation and insulin transcription repression were significantly elevated in miR-17-92βKO mice treated with streptozotocin. Furthermore, genes involved in DNA biosynthesis and damage repair were dramatically increased in miR-17-92βKO mice with streptozotocin treatment. Conclusion: Collectively, our results demonstrate that homozygous deletion of miR-17-92 cluster in mouse pancreatic beta-cells promotes the development of experimental diabetes, indicating that miR-17-92 cluster may be positively related to beta-cells restoration and adaptation after streptozotocin-induced damage.
Collapse
Affiliation(s)
- Shan Wan
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Zhang
- Histology and Imaging Platform, Core Facility of West China Hospital, Sichuan University, Chengdu, China
| | - Xiang Chen
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jiangli Lang
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Li Li
- Histology and Imaging Platform, Core Facility of West China Hospital, Sichuan University, Chengdu, China
| | - Fei Chen
- Histology and Imaging Platform, Core Facility of West China Hospital, Sichuan University, Chengdu, China
| | - Li Tian
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Meng
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
24
|
Jin W, Mulas F, Gaertner B, Sui Y, Wang J, Matta I, Zeng C, Vinckier N, Wang A, Nguyen-Ngoc KV, Chiou J, Kaestner KH, Frazer KA, Carrano AC, Shih HP, Sander M. A Network of microRNAs Acts to Promote Cell Cycle Exit and Differentiation of Human Pancreatic Endocrine Cells. iScience 2019; 21:681-694. [PMID: 31733514 PMCID: PMC6889369 DOI: 10.1016/j.isci.2019.10.063] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 09/30/2019] [Accepted: 10/28/2019] [Indexed: 12/12/2022] Open
Abstract
Pancreatic endocrine cell differentiation is orchestrated by the action of transcription factors that operate in a gene regulatory network to activate endocrine lineage genes and repress lineage-inappropriate genes. MicroRNAs (miRNAs) are important modulators of gene expression, yet their role in endocrine cell differentiation has not been systematically explored. Here we characterize miRNA-regulatory networks active in human endocrine cell differentiation by combining small RNA sequencing, miRNA over-expression, and network modeling approaches. Our analysis identified Let-7g, Let-7a, miR-200a, miR-127, and miR-375 as endocrine-enriched miRNAs that drive endocrine cell differentiation-associated gene expression changes. These miRNAs are predicted to target different transcription factors, which converge on genes involved in cell cycle regulation. When expressed in human embryonic stem cell-derived pancreatic progenitors, these miRNAs induce cell cycle exit and promote endocrine cell differentiation. Our study delineates the role of miRNAs in human endocrine cell differentiation and identifies miRNAs that could facilitate endocrine cell reprogramming.
Collapse
Affiliation(s)
- Wen Jin
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Francesca Mulas
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Bjoern Gaertner
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yinghui Sui
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jinzhao Wang
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ileana Matta
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Chun Zeng
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nicholas Vinckier
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Allen Wang
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kim-Vy Nguyen-Ngoc
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joshua Chiou
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kelly A Frazer
- Department of Pediatrics, Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Andrea C Carrano
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hung-Ping Shih
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolic Research Institute, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Maike Sander
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
25
|
Qadir MMF, Klein D, Álvarez-Cubela S, Domínguez-Bendala J, Pastori RL. The Role of MicroRNAs in Diabetes-Related Oxidative Stress. Int J Mol Sci 2019; 20:E5423. [PMID: 31683538 PMCID: PMC6862492 DOI: 10.3390/ijms20215423] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 10/28/2019] [Indexed: 12/14/2022] Open
Abstract
Cellular stress, combined with dysfunctional, inadequate mitochondrial phosphorylation, produces an excessive amount of reactive oxygen species (ROS) and an increased level of ROS in cells, which leads to oxidation and subsequent cellular damage. Because of its cell damaging action, an association between anomalous ROS production and disease such as Type 1 (T1D) and Type 2 (T2D) diabetes, as well as their complications, has been well established. However, there is a lack of understanding about genome-driven responses to ROS-mediated cellular stress. Over the last decade, multiple studies have suggested a link between oxidative stress and microRNAs (miRNAs). The miRNAs are small non-coding RNAs that mostly suppress expression of the target gene by interaction with its 3'untranslated region (3'UTR). In this paper, we review the recent progress in the field, focusing on the association between miRNAs and oxidative stress during the progression of diabetes.
Collapse
Affiliation(s)
- Mirza Muhammad Fahd Qadir
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Dagmar Klein
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Silvia Álvarez-Cubela
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Juan Domínguez-Bendala
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Ricardo Luis Pastori
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Department of Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
26
|
Mori MA, Ludwig RG, Garcia-Martin R, Brandão BB, Kahn CR. Extracellular miRNAs: From Biomarkers to Mediators of Physiology and Disease. Cell Metab 2019; 30:656-673. [PMID: 31447320 PMCID: PMC6774861 DOI: 10.1016/j.cmet.2019.07.011] [Citation(s) in RCA: 621] [Impact Index Per Article: 103.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/25/2019] [Accepted: 07/24/2019] [Indexed: 02/07/2023]
Abstract
miRNAs can be found in serum and other body fluids and serve as biomarkers for disease. More importantly, secreted miRNAs, especially those in extracellular vesicles (EVs) such as exosomes, may mediate paracrine and endocrine communication between different tissues and thus modulate gene expression and the function of distal cells. When impaired, these processes can lead to tissue dysfunction, aging, and disease. Adipose tissue is an especially important contributor to the pool of circulating exosomal miRNAs. As a result, alterations in adipose tissue mass or function, which occur in many metabolic conditions, can lead to changes in circulating miRNAs, which then function systemically. Here we review the findings that led to these conclusions and discuss how this sets the stage for new lines of investigation in which extracellular miRNAs are recognized as important mediators of intercellular communication and potential candidates for therapy of disease.
Collapse
Affiliation(s)
- Marcelo A Mori
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil.
| | - Raissa G Ludwig
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Ruben Garcia-Martin
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Bruna B Brandão
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - C Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
27
|
Wong WKM, Sørensen AE, Joglekar MV, Hardikar AA, Dalgaard LT. Non-Coding RNA in Pancreas and β-Cell Development. Noncoding RNA 2018; 4:E41. [PMID: 30551650 PMCID: PMC6315983 DOI: 10.3390/ncrna4040041] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 12/17/2022] Open
Abstract
In this review, we provide an overview of the current knowledge on the role of different classes of non-coding RNAs for islet and β-cell development, maturation and function. MicroRNAs (miRNAs), a prominent class of small RNAs, have been investigated for more than two decades and patterns of the roles of different miRNAs in pancreatic fetal development, islet and β-cell maturation and function are now emerging. Specific miRNAs are dynamically regulated throughout the period of pancreas development, during islet and β-cell differentiation as well as in the perinatal period, where a burst of β-cell replication takes place. The role of long non-coding RNAs (lncRNA) in islet and β-cells is less investigated than for miRNAs, but knowledge is increasing rapidly. The advent of ultra-deep RNA sequencing has enabled the identification of highly islet- or β-cell-selective lncRNA transcripts expressed at low levels. Their roles in islet cells are currently only characterized for a few of these lncRNAs, and these are often associated with β-cell super-enhancers and regulate neighboring gene activity. Moreover, ncRNAs present in imprinted regions are involved in pancreas development and β-cell function. Altogether, these observations support significant and important actions of ncRNAs in β-cell development and function.
Collapse
Affiliation(s)
- Wilson K M Wong
- NHMRC Clinical Trials Center, University of Sydney, Camperdown NSW 2050, Sydney, Australia.
| | - Anja E Sørensen
- Department of Science and Environment, Roskilde University, DK-4000 Roskilde, Denmark.
| | - Mugdha V Joglekar
- NHMRC Clinical Trials Center, University of Sydney, Camperdown NSW 2050, Sydney, Australia.
| | - Anand A Hardikar
- NHMRC Clinical Trials Center, University of Sydney, Camperdown NSW 2050, Sydney, Australia.
| | - Louise T Dalgaard
- Department of Science and Environment, Roskilde University, DK-4000 Roskilde, Denmark.
| |
Collapse
|
28
|
Esguerra JLS, Nagao M, Ofori JK, Wendt A, Eliasson L. MicroRNAs in islet hormone secretion. Diabetes Obes Metab 2018; 20 Suppl 2:11-19. [PMID: 30230181 DOI: 10.1111/dom.13382] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/10/2018] [Accepted: 05/23/2018] [Indexed: 12/12/2022]
Abstract
Pancreatic islet hormone secretion is central in the maintenance of blood glucose homeostasis. During development of hyperglycaemia, the β-cell is under pressure to release more insulin to compensate for increased insulin resistance. Failure of the β-cells to secrete enough insulin results in type 2 diabetes (T2D). MicroRNAs (miRNAs) are short non-coding RNA molecules suitable for rapid regulation of the changes in target gene expression needed in β-cell adaptations. Moreover, miRNAs are involved in the maintenance of α-cell and β-cell phenotypic identities via cell-specific, or cell-enriched expression. Although many of the abundant miRNAs are highly expressed in both cell types, recent research has focused on the role of miRNAs in β-cells. It has been shown that highly abundant miRNAs, such as miR-375, are involved in several cellular functions indispensable in maintaining β-cell phenotypic identity, almost acting as "housekeeping genes" in the context of hormone secretion. Despite the abundance and importance of miR-375, it has not been shown to be differentially expressed in T2D islets. On the contrary, the less abundant miRNAs such as miR-212/miR-132, miR-335, miR-130a/b and miR-152 are deregulated in T2D islets, wherein the latter three miRNAs were shown to play key roles in regulating β-cell metabolism. In this review, we focus on β-cell function and describe miRNAs involved in insulin biosynthesis and processing, glucose uptake and metabolism, electrical activity and Ca2+ -influx and exocytosis of the insulin granules. We present current status on miRNA regulation in α-cells, and finally we discuss the involvement of miRNAs in β-cell dysfunction underlying T2D pathogenesis.
Collapse
Affiliation(s)
- Jonathan L S Esguerra
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, Clinical Research Centre, SUS, Malmö, Sweden
| | - Mototsugu Nagao
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, Clinical Research Centre, SUS, Malmö, Sweden
| | - Jones K Ofori
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, Clinical Research Centre, SUS, Malmö, Sweden
| | - Anna Wendt
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, Clinical Research Centre, SUS, Malmö, Sweden
| | - Lena Eliasson
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, Clinical Research Centre, SUS, Malmö, Sweden
| |
Collapse
|
29
|
Vaishya S, Sarwade RD, Seshadri V. MicroRNA, Proteins, and Metabolites as Novel Biomarkers for Prediabetes, Diabetes, and Related Complications. Front Endocrinol (Lausanne) 2018; 9:180. [PMID: 29740397 PMCID: PMC5925339 DOI: 10.3389/fendo.2018.00180] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/04/2018] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is no more a lifestyle disease of developed countries. It has emerged as a major health problem worldwide including developing countries. However, how diabetes could be detected at an early stage (prediabetes) to prevent the progression of disease is still unclear. Currently used biomarkers like glycated hemoglobin and assessment of blood glucose level have their own limitations. These classical markers can be detected when the disease is already established. Prognosis of disease at early stages and prediction of population at a higher risk require identification of specific markers that are sensitive enough to be detected at early stages of disease. Biomarkers which could predict the risk of disease in people will be useful for developing preventive/proactive therapies to those individuals who are at a higher risk of developing the disease. Recent studies suggested that the expression of biomolecules including microRNAs, proteins, and metabolites specifically change during the progression of T2DM and related complications, suggestive of disease pathology. Owing to their omnipresence in body fluids and their association with onset, progression, and pathogenesis of T2DM, these biomolecules can be potential biomarker for prognosis, diagnosis, and management of disease. In this article, we summarize biomolecules that could be potential biomarkers and their signature changes associated with T2DM and related complications during disease pathogenesis.
Collapse
Affiliation(s)
| | - Rucha D. Sarwade
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | | |
Collapse
|
30
|
MicroRNA Expression Analysis of In Vitro Dedifferentiated Human Pancreatic Islet Cells Reveals the Activation of the Pluripotency-Related MicroRNA Cluster miR-302s. Int J Mol Sci 2018; 19:ijms19041170. [PMID: 29649109 PMCID: PMC5979342 DOI: 10.3390/ijms19041170] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/06/2018] [Accepted: 04/09/2018] [Indexed: 12/12/2022] Open
Abstract
β-cell dedifferentiation has been recently suggested as an additional mechanism contributing to type-1 and to type-2 diabetes pathogenesis. Moreover, several studies demonstrated that in vitro culture of native human pancreatic islets derived from non-diabetic donors resulted in the generation of an undifferentiated cell population. Additional evidence from in vitro human β-cell lineage tracing experiments, demonstrated that dedifferentiated cells derive from β-cells, thus representing a potential in vitro model of β-cell dedifferentiation. Here, we report the microRNA expression profiles analysis of in vitro dedifferentiated islet cells in comparison to mature human native pancreatic islets. We identified 13 microRNAs upregulated and 110 downregulated in islet cells upon in vitro dedifferentiation. Interestingly, among upregulated microRNAs, we observed the activation of microRNA miR-302s cluster, previously defined as pluripotency-associated. Bioinformatic analysis indicated that miR-302s are predicted to target several genes involved in the control of β-cell/epithelial phenotype maintenance; accordingly, such genes were downregulated upon human islet in vitro dedifferentiation. Moreover, we uncovered that cell–cell contacts are needed to maintain low/null expression levels of miR-302. In conclusion, we showed that miR-302 microRNA cluster genes are involved in in vitro dedifferentiation of human pancreatic islet cells and inhibits the expression of multiple genes involved in the maintenance of β-cell mature phenotype.
Collapse
|
31
|
Saliani N, Montazersaheb S, Montasser Kouhsari S. Micromanaging Glucose Tolerance and Diabetes. Adv Pharm Bull 2017; 7:547-556. [PMID: 29399544 PMCID: PMC5788209 DOI: 10.15171/apb.2017.066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/05/2017] [Accepted: 12/12/2017] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenous non-coding RNAs that have significant roles in biological processes such as glucose homoeostasis. MiRNAs fine-tune target genes expression via sequence-specific binding of their seed sequence to the untranslated region of mRNAs and degrade target mRNAs. MicroRNAs in islet β-cells regulate β-cell differentiation, proliferation, insulin transcription and glucose-stimulated insulin secretion. Furthermore, miRNAs play key roles in the regulation of glucose and lipid metabolisms and modify insulin sensitivity by controlling metabolic functions in main target organs of insulin such as skeletal muscle, liver and adipose tissue. Moreover, since circulating miRNAs are detectable and stable in serum, levels of certain miRNAs seem to be novel biomarkers for prediction of diabetes mellitus. In this article, due to the prominent impact of miRNAs on diabetes, we overviewed the microRNAs regulatory functions in organs related to insulin resistance and diabetes and shed light on their potential as diagnostic and therapeutic markers for diabetes.
Collapse
Affiliation(s)
- Negar Saliani
- Department of Cellular and Molecular Biology, School of Biology, College of Sciences, University of Tehran, Tehran, Iran
| | | | - Shideh Montasser Kouhsari
- Department of Cellular and Molecular Biology, School of Biology, College of Sciences, University of Tehran, Tehran, Iran
| |
Collapse
|
32
|
Eliasson L. The small RNA miR-375 - a pancreatic islet abundant miRNA with multiple roles in endocrine beta cell function. Mol Cell Endocrinol 2017; 456:95-101. [PMID: 28254488 DOI: 10.1016/j.mce.2017.02.043] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/20/2017] [Accepted: 02/26/2017] [Indexed: 12/21/2022]
Abstract
The pathophysiology of diabetes is complex and recent research put focus on the pancreatic islets of Langerhans and the insulin-secreting beta cells as central in the development of the disease. MicroRNAs (miRNAs), the small non-coding RNAs regulating post-transcriptional gene expression, are significant regulators of beta cell function. One of the most abundant miRNAs in the islets is miR-375. This review focus on the role of miR-375 in beta cell function, including effects in development and differentiation, proliferation and regulation of insulin secretion. It also discusses the regulation of miR-375 expression, miR-375 as a potential circulating biomarker in type 1 and type 2 diabetes, and the need for the beta cell to keep expression of miR-375 within optimal levels. The summed picture of miR-375 is a miRNA with multiple functions with importance in the formation of beta cell identity, control of beta cell mass and regulation of insulin secretion.
Collapse
Affiliation(s)
- Lena Eliasson
- Unit of Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences in Malmö, Lund University, CRC, SUS Malmö, Malmö, Sweden.
| |
Collapse
|
33
|
MicroRNAs and adipocytokines: Promising biomarkers for pharmacological targets in diabetes mellitus and its complications. Biomed Pharmacother 2017; 93:1326-1336. [DOI: 10.1016/j.biopha.2017.07.059] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/08/2017] [Accepted: 07/11/2017] [Indexed: 02/06/2023] Open
|
34
|
Ito K, Ookawara S, Ishibashi K, Morishita Y. Transgene and islet cell delivery systems using nano-sized carriers for the treatment of diabetes mellitus. NANO REVIEWS & EXPERIMENTS 2017; 8:1341758. [PMID: 30410709 PMCID: PMC6167029 DOI: 10.1080/20022727.2017.1341758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 06/05/2017] [Indexed: 11/09/2022]
Abstract
Gene therapy that targets the pancreas and intestines with delivery systems using nano-sized carriers such as viral and non-viral vectors could improve the control of blood glucose levels, resulting in an improved prognosis for patients with diabetes mellitus. Allogenic pancreatic islet cell transplantations using such delivery systems have been developed as therapeutic options for diabetes mellitus. This review focuses on transgenes and islet cell delivery systems using nano-sized carriers for the treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Kiyonori Ito
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Susumu Ookawara
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Kenichi Ishibashi
- Department of Medical Physiology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Yoshiyuki Morishita
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| |
Collapse
|
35
|
Tatekawa S, Chinen Y, Ri M, Narita T, Shimura Y, Matsumura-Kimoto Y, Tsukamoto T, Kobayashi T, Kawata E, Uoshima N, Taki T, Taniwaki M, Handa H, Iida S, Kuroda J. Epigenetic repression of miR-375 is the dominant mechanism for constitutive activation of the PDPK1/RPS6KA3 signalling axis in multiple myeloma. Br J Haematol 2017; 178:534-546. [PMID: 28439875 DOI: 10.1111/bjh.14707] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 02/16/2017] [Indexed: 12/11/2022]
Abstract
Cytogenetic/molecular heterogeneity is the hallmark of multiple myeloma (MM). However, we recently showed that the serine/threonine kinase PDPK1 and its substrate RPS6KA3 (also termed RSK2) are universally active in MM, and play pivotal roles in myeloma pathophysiology. In this study, we assessed involvement of aberrant miR-375 repression in PDPK1 overexpression in MM. An analysis of plasma cells from 30 pre-malignant monoclonal gammopathies of undetermined significance and 73 MM patients showed a significant decrease in miR-375 expression in patient-derived plasma cells regardless of the clinical stage, compared to normal plasma cells. Introduction of miR-375 reduced PDPK1 expression in human myeloma cell lines (HMCLs), indicating that miR-375 is the dominant regulator of PDPK1 expression. In addition, miR-375 introduction also downregulated IGF1R and JAK2 in HMCLs. CpG islands in the MIR375 promoter were pathologically hypermethylated in all 8 HMCLs examined and in most of 58 patient-derived myeloma cells. Treatment with SGI-110, a hypomethylating agent, and/or trichostatin A, a histone deacetylase inhibitor, increased miR-375 expression, but repressed PDPK1, IGF1R and JAK2 in HMCLs. Collectively, these results show the universal involvement of overlapping epigenetic dysregulation for abnormal miR-375 repression in MM, which is likely to contribute to myelomagenesis and to subsequent myeloma progression by activating oncogenic signalling pathways.
Collapse
Affiliation(s)
- Shotaro Tatekawa
- Division of Haematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshiaki Chinen
- Division of Haematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masaki Ri
- Department of Haematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Tomoko Narita
- Department of Haematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Yuji Shimura
- Division of Haematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yayoi Matsumura-Kimoto
- Division of Haematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Taku Tsukamoto
- Division of Haematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tsutomu Kobayashi
- Division of Haematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Eri Kawata
- Department of Haematology, Japanese Red Cross Kyoto Daini Hospital, Kyoto, Japan
| | - Nobuhiko Uoshima
- Department of Haematology, Japanese Red Cross Kyoto Daini Hospital, Kyoto, Japan
| | - Tomohiko Taki
- Department of Molecular Diagnostics and Therapeutics, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masafumi Taniwaki
- Department of Molecular Diagnostics and Therapeutics, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroshi Handa
- Department of Medicine and Clinical Science, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Shinsuke Iida
- Department of Haematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Junya Kuroda
- Division of Haematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
36
|
Samandari N, Mirza AH, Nielsen LB, Kaur S, Hougaard P, Fredheim S, Mortensen HB, Pociot F. Circulating microRNA levels predict residual beta cell function and glycaemic control in children with type 1 diabetes mellitus. Diabetologia 2017; 60:354-363. [PMID: 27866223 DOI: 10.1007/s00125-016-4156-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/24/2016] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS We aimed to identify circulating microRNA (miRNA) that predicts clinical progression in a cohort of 123 children with new-onset type 1 diabetes mellitus. METHODS Plasma samples were prospectively obtained at 1, 3, 6, 12 and 60 months after diagnosis from a subset of 40 children from the Danish Remission Phase Cohort, and profiled for miRNAs. At the same time points, meal-stimulated C-peptide and HbA1c levels were measured and insulin-dose adjusted HbA1c (IDAA1c) calculated. miRNAs that at 3 months after diagnosis predicted residual beta cell function and glycaemic control in this subgroup were further validated in the remaining cohort (n = 83). Statistical analysis of miRNA prediction for disease progression was performed by multiple linear regression analysis adjusted for age and sex. RESULTS In the discovery analysis, six miRNAs (hsa-miR-24-3p, hsa-miR-146a-5p, hsa-miR-194-5p, hsa-miR-197-3p, hsa-miR-301a-3p and hsa-miR-375) at 3 months correlated with residual beta cell function 6-12 months after diagnosis. Stimulated C-peptide at 12 months was predicted by hsa-miR-197-3p at 3 months (p = 0.034). A doubling of this miRNA level corresponded to a sixfold higher stimulated C-peptide level. In addition, a doubling of hsa-miR-24-3p and hsa-miR-146a-5p levels at 3 months corresponded to a 4.2% (p < 0.014) and 3.5% (p < 0.022) lower IDAA1c value at 12 months. Analysis of the remaining cohort confirmed the initial finding for hsa-miR-197-3p (p = 0.018). The target genes for the six miRNAs revealed significant enrichment for pathways related to gonadotropin-releasing hormone receptor and angiogenesis pathways. CONCLUSIONS/INTERPRETATION The miRNA hsa-miR-197-3p at 3 months was the strongest predictor of residual beta cell function 1 year after diagnosis in children with type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Nasim Samandari
- Copenhagen Diabetes Research Center (CPH-DIRECT), Department of Paediatrics, Herlev and Gentofte Hospitals, University of Copenhagen, Herlev Ringvej 75, 2730, Herlev, Denmark
| | - Aashiq H Mirza
- Copenhagen Diabetes Research Center (CPH-DIRECT), Department of Paediatrics, Herlev and Gentofte Hospitals, University of Copenhagen, Herlev Ringvej 75, 2730, Herlev, Denmark
- Center for Non-coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark
| | - Lotte B Nielsen
- Copenhagen Diabetes Research Center (CPH-DIRECT), Department of Paediatrics, Herlev and Gentofte Hospitals, University of Copenhagen, Herlev Ringvej 75, 2730, Herlev, Denmark
| | - Simranjeet Kaur
- Copenhagen Diabetes Research Center (CPH-DIRECT), Department of Paediatrics, Herlev and Gentofte Hospitals, University of Copenhagen, Herlev Ringvej 75, 2730, Herlev, Denmark
| | - Philip Hougaard
- Department of Statistics, University of Southern Denmark, Odense, Denmark
| | - Siri Fredheim
- Copenhagen Diabetes Research Center (CPH-DIRECT), Department of Paediatrics, Herlev and Gentofte Hospitals, University of Copenhagen, Herlev Ringvej 75, 2730, Herlev, Denmark
| | - Henrik B Mortensen
- Copenhagen Diabetes Research Center (CPH-DIRECT), Department of Paediatrics, Herlev and Gentofte Hospitals, University of Copenhagen, Herlev Ringvej 75, 2730, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Flemming Pociot
- Copenhagen Diabetes Research Center (CPH-DIRECT), Department of Paediatrics, Herlev and Gentofte Hospitals, University of Copenhagen, Herlev Ringvej 75, 2730, Herlev, Denmark.
- Center for Non-coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark.
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
37
|
Hu S, Zhang M, Sun F, Ren L, He X, Hua J, Peng S. miR-375 controls porcine pancreatic stem cell fate by targeting 3-phosphoinositide-dependent protein kinase-1 (Pdk1). Cell Prolif 2017; 49:395-406. [PMID: 27218665 DOI: 10.1111/cpr.12263] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/10/2016] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES miR-375 is one of the highly expressed microRNAs (miRNAs) found in pancreatic islets of both humans and mice. In this study, we investigated functions of miRNA miR-375 in porcine pancreatic stem cells (PSC). MATERIALS AND METHODS We transfected mimic and inhibitor of miR-375 in PSCs to measure functional roles of the microRNA and its effects on cell cycle proliferation and cell differentiation were determined. Luciferase assays were also performed to reveal the target gene of miR-375. RESULTS Overexpression of miR-375 suppressed proliferation, promoted apoptosis and inhibited differentiation into islet-like cells. PDK1 was identified as being a target of miR-375. Furthermore, we found that overexpression of miR-375 inhibited activation of the PDK1-AKT signalling pathway. CONCLUSION miR-375 directly targeted PDK1 in porcine PSCs, suppressing cell proliferation and differentiation into islet-like cells.
Collapse
Affiliation(s)
- Shuxian Hu
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering and Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China, Northwest A&F University, Yangling, Shaanxi, China
| | - Mingzhi Zhang
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering and Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China, Northwest A&F University, Yangling, Shaanxi, China
| | - Fen Sun
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering and Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China, Northwest A&F University, Yangling, Shaanxi, China
| | - Lipeng Ren
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering and Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China, Northwest A&F University, Yangling, Shaanxi, China
| | - Xin He
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering and Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China, Northwest A&F University, Yangling, Shaanxi, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering and Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China, Northwest A&F University, Yangling, Shaanxi, China
| | - Sha Peng
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering and Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
38
|
Dalgaard LT, Eliasson L. An 'alpha-beta' of pancreatic islet microribonucleotides. Int J Biochem Cell Biol 2017; 88:208-219. [PMID: 28122254 DOI: 10.1016/j.biocel.2017.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/16/2017] [Accepted: 01/18/2017] [Indexed: 11/17/2022]
Abstract
MicroRNAs (miRNAs) are cellular, short, non-coding ribonucleotides acting as endogenous posttranscriptional repressors following incorporation in the RNA-induced silencing complex. Despite being chemically and mechanistically very similar, miRNAs exert a multitude of different cellular effects by acting on mRNA species, whose gene-products partake in a wide array of processes. Here, the aim was to review the knowledge of miRNA expression and action in the islet of Langerhans. We have focused on: 1) physiological consequences of islet or beta cell specific inhibition of miRNA processing, 2) mechanisms regulating processing of miRNAs in islet cells, 3) presence and function of miRNAs in alpha versus beta cells - the two main cell types of islets, and 4) miRNA mediators of beta cell decompensation. It is clear that miRNAs regulate pancreatic islet development, maturation, and function in vivo. Moreover, processing of miRNAs appears to be altered by obesity, diabetes, and aging. A number of miRNAs (such as miR-7, miR-21, miR-29, miR-34a, miR-212/miR-132, miR-184, miR-200 and miR-375) are involved in mediating beta cell dysfunction and/or compensation induced by hyperglycemia, oxidative stress, cytotoxic cytokines, and in rodent models of fetal metabolic programming prediabetes and overt diabetes. Studies of human type 2 diabetic islets underline that these miRNA families could have important roles also in human type 2 diabetes. Furthermore, there is a genuine gap of knowledge regarding miRNA expression and function in pancreatic alpha cells. Progress in this area would be enhanced by improved in vitro alpha cell models and better tools for islet cell sorting.
Collapse
Affiliation(s)
| | - Lena Eliasson
- Lund University Diabetes Center, Department of Clinical Sciences Malmö, CRC, SUS, Malmö, Sweden.
| |
Collapse
|
39
|
Martinez-Sanchez A, Rutter GA, Latreille M. MiRNAs in β-Cell Development, Identity, and Disease. Front Genet 2017; 7:226. [PMID: 28123396 PMCID: PMC5225124 DOI: 10.3389/fgene.2016.00226] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 12/21/2016] [Indexed: 12/22/2022] Open
Abstract
Pancreatic β-cells regulate glucose metabolism by secreting insulin, which in turn stimulates the utilization or storage of the sugar by peripheral tissues. Insulin insufficiency and a prolonged period of insulin resistance are usually the core components of type 2 diabetes (T2D). Although, decreased insulin levels in T2D have long been attributed to a decrease in β-cell function and/or mass, this model has recently been refined with the recognition that a loss of β-cell “identity” and dedifferentiation also contribute to the decline in insulin production. MicroRNAs (miRNAs) are key regulatory molecules that display tissue-specific expression patterns and maintain the differentiated state of somatic cells. During the past few years, great strides have been made in understanding how miRNA circuits impact β-cell identity. Here, we review current knowledge on the role of miRNAs in regulating the acquisition of the β-cell fate during development and in maintaining mature β-cell identity and function during stress situations such as obesity, pregnancy, aging, or diabetes. We also discuss how miRNA function could be harnessed to improve our ability to generate β-cells for replacement therapy for T2D.
Collapse
Affiliation(s)
- Aida Martinez-Sanchez
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London London, UK
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London London, UK
| | - Mathieu Latreille
- Cellular Identity and Metabolism Group, MRC London Institute of Medical SciencesLondon, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College LondonLondon, UK
| |
Collapse
|
40
|
Peck BCE, Mah AT, Pitman WA, Ding S, Lund PK, Sethupathy P. Functional Transcriptomics in Diverse Intestinal Epithelial Cell Types Reveals Robust MicroRNA Sensitivity in Intestinal Stem Cells to Microbial Status. J Biol Chem 2017; 292:2586-2600. [PMID: 28053090 DOI: 10.1074/jbc.m116.770099] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 12/23/2016] [Indexed: 01/01/2023] Open
Abstract
Gut microbiota play an important role in regulating the development of the host immune system, metabolic rate, and at times, disease pathogenesis. The factors and mechanisms that mediate interactions between microbiota and the intestinal epithelium are not fully understood. We provide novel evidence that microbiota may control intestinal epithelial stem cell (IESC) proliferation in part through microRNAs (miRNAs). We demonstrate that miRNA profiles differ dramatically across functionally distinct cell types of the mouse jejunal intestinal epithelium and that miRNAs respond to microbiota in a highly cell type-specific manner. Importantly, we also show that miRNAs in IESCs are more prominently regulated by microbiota compared with miRNAs in any other intestinal epithelial cell subtype. We identify miR-375 as one miRNA that is significantly suppressed by the presence of microbiota in IESCs. Using a novel method to knockdown gene and miRNA expression ex vivo enteroids, we demonstrate that we can knock down gene expression in Lgr5+ IESCs. Furthermore, when we knock down miR-375 in IESCs, we observe significantly increased proliferative capacity. Understanding the mechanisms by which microbiota regulate miRNA expression in IESCs and other intestinal epithelial cell subtypes will elucidate a critical molecular network that controls intestinal homeostasis and, given the heightened interest in miRNA-based therapies, may offer novel therapeutic strategies in the treatment of gastrointestinal diseases associated with altered IESC function.
Collapse
Affiliation(s)
- Bailey C E Peck
- From the Curriculum in Genetics and Molecular Biology, .,Department of Genetics
| | | | | | - Shengli Ding
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - P Kay Lund
- From the Curriculum in Genetics and Molecular Biology.,Department of Nutrition, and.,Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Praveen Sethupathy
- From the Curriculum in Genetics and Molecular Biology, .,Department of Genetics
| |
Collapse
|
41
|
Sharma S, Mathew AB, Chugh J. miRNAs: Nanomachines That Micromanage the Pathophysiology of Diabetes Mellitus. Adv Clin Chem 2017; 82:199-264. [PMID: 28939211 DOI: 10.1016/bs.acc.2017.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Diabetes mellitus (DM) refers to a combination of heterogeneous complex metabolic disorders that are associated with episodes of hyperglycemia and glucose intolerance occurring as a result of defects in insulin secretion, action, or both. The prevalence of DM is increasing at an alarming rate, and there exists a need to develop better therapeutics and prognostic markers for earlier detection and diagnosis. In this review, after giving a brief introduction of diabetes mellitus and microRNA (miRNA) biogenesis pathway, we first describe various in vitro and animal model systems that have been developed to study diabetes. Further, we elaborate on the significant roles played by miRNAs as regulators of gene expression in the context of development of diabetes and its secondary complications. The different approaches to quantify miRNAs and their potential to be used as therapeutic targets for alleviation of diabetes have also been discussed.
Collapse
|
42
|
Guay C, Regazzi R. New emerging tasks for microRNAs in the control of β-cell activities. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:2121-2129. [DOI: 10.1016/j.bbalip.2016.05.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/22/2016] [Accepted: 05/02/2016] [Indexed: 12/26/2022]
|
43
|
Feng J, Xing W, Xie L. Regulatory Roles of MicroRNAs in Diabetes. Int J Mol Sci 2016; 17:E1729. [PMID: 27763497 PMCID: PMC5085760 DOI: 10.3390/ijms17101729] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/02/2016] [Accepted: 10/09/2016] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs), a class of endogenous small noncoding RNAs in eukaryotes, have been recognized as significant regulators of gene expression through post-transcriptional mechanisms. To date, >2000 miRNAs have been identified in the human genome, and they orchestrate a variety of biological and pathological processes. Disruption of miRNA levels correlates with many diseases, including diabetes mellitus, a complex multifactorial metabolic disorder affecting >400 million people worldwide. miRNAs are involved in the pathogenesis of diabetes mellitus by affecting pancreatic β-cell functions, insulin resistance, or both. In this review, we summarize the investigations of the regulatory roles of important miRNAs in diabetes, as well as the potential of circulating miRNAs as diagnostic markers for diabetes mellitus.
Collapse
Affiliation(s)
- Juan Feng
- Medical Systems Biology Research Center, School of Medicine, Tsinghua University, Beijing 100084, China.
| | - Wanli Xing
- Medical Systems Biology Research Center, School of Medicine, Tsinghua University, Beijing 100084, China.
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China.
| | - Lan Xie
- Medical Systems Biology Research Center, School of Medicine, Tsinghua University, Beijing 100084, China.
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China.
| |
Collapse
|
44
|
Efrat S. Mechanisms of adult human β-cell in vitro dedifferentiation and redifferentiation. Diabetes Obes Metab 2016; 18 Suppl 1:97-101. [PMID: 27615137 DOI: 10.1111/dom.12724] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 04/20/2016] [Indexed: 12/13/2022]
Abstract
Recent studies in animal models and human pathological specimens suggest the involvement of β-cell dedifferentiation in β-cell dysfunction associated with type 2 diabetes. Dedifferentiated β-cells may be exploited for endogenous renewal of the β-cell mass. However, studying human β-cell dedifferentiation in diabetes presents major difficulties. We have analysed mechanisms involved in human β-cell dedifferentiation in vitro, under conditions that allow cell proliferation. Although there are important differences between the two cellular environments, β-cell dedifferentiation in the two conditions is likely to share a number of common pathways. Insights from the in vitro studies may lead to development of approaches for redifferentiation of endogenous dedifferentiated β-cells.
Collapse
Affiliation(s)
- S Efrat
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel.
| |
Collapse
|
45
|
Accili D, Talchai SC, Kim-Muller JY, Cinti F, Ishida E, Ordelheide AM, Kuo T, Fan J, Son J. When β-cells fail: lessons from dedifferentiation. Diabetes Obes Metab 2016; 18 Suppl 1:117-22. [PMID: 27615140 PMCID: PMC5021187 DOI: 10.1111/dom.12723] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 05/03/2016] [Indexed: 12/14/2022]
Abstract
Diabetes is caused by a combination of impaired responsiveness to insulin and reduced production of insulin by the pancreas. Until recently, the decline of insulin production had been ascribed to β-cell death. But recent research has shown that β-cells do not die in diabetes, but undergo a silencing process, termed "dedifferentiation." The main implication of this discovery is that β-cells can be revived by appropriate treatments. We have shown that mitochondrial abnormalities are a key step in the progression of β-cell dysfunction towards dedifferentiation. In normal β-cells, mitochondria generate energy required to sustain insulin production and its finely timed release in response to the body's nutritional status. A normal β-cell can adapt its mitochondrial fuel source based on substrate availability, a concept known as "metabolic flexibility." This capability is the first casualty in the progress of β-cell failure. β-Cells lose the ability to select the right fuel for mitochondrial energy production. Mitochondria become overloaded, and accumulate by-products derived from incomplete fuel utilization. Energy production stalls, and insulin production drops, setting the stage for dedifferentiation. The ultimate goal of these investigations is to explore novel treatment paradigms that will benefit people with diabetes.
Collapse
Affiliation(s)
- D Accili
- Department of Medicine and Berrie Diabetes Center, Columbia University, New York, New York.
| | - S C Talchai
- Department of Medicine and Berrie Diabetes Center, Columbia University, New York, New York
| | - J Y Kim-Muller
- Department of Medicine and Berrie Diabetes Center, Columbia University, New York, New York
| | - F Cinti
- Department of Medicine and Berrie Diabetes Center, Columbia University, New York, New York
| | - E Ishida
- Department of Medicine and Berrie Diabetes Center, Columbia University, New York, New York
| | - A M Ordelheide
- Department of Medicine and Berrie Diabetes Center, Columbia University, New York, New York
| | - T Kuo
- Department of Medicine and Berrie Diabetes Center, Columbia University, New York, New York
| | - J Fan
- Department of Medicine and Berrie Diabetes Center, Columbia University, New York, New York
| | - J Son
- Department of Medicine and Berrie Diabetes Center, Columbia University, New York, New York
| |
Collapse
|
46
|
Dumortier O, Fabris G, Van Obberghen E. Shaping and preserving β-cell identity with microRNAs. Diabetes Obes Metab 2016; 18 Suppl 1:51-7. [PMID: 27615131 DOI: 10.1111/dom.12722] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 05/26/2016] [Indexed: 12/18/2022]
Abstract
The highly sophisticated identity of pancreatic β-cells is geared to accomplish its unique feat of providing insulin for organismal glucose and lipid homeostasis. This requires a particular and streamlined fuel metabolism which defines mature β-cells as glucose sensors linked to an insulin exocytosis machinery. The establishment of an appropriate β-cell mass and function during development as well as the maintenance of their identity throughout life are necessary for energy homeostasis. The small non-coding RNAs, microRNAs (miRNAs), are now well-recognized regulators of gene transcripts, which in general are negatively affected by them. Convincing evidence exists to view miRNAs as major actors in β-cell development and function, suggesting an important role for them in the distinctive β-cell 'identity card'. Here, we summarize key features that associate miRNAs and the establishment of the appropriate β-cell identity and its necessary maintenance during their 'long life'.
Collapse
Affiliation(s)
- O Dumortier
- University Côte d'Azur, Inserm, CNRS, IRCAN, France
| | - G Fabris
- University Côte d'Azur, Inserm, CNRS, IRCAN, France
| | | |
Collapse
|
47
|
Adams BD, Anastasiadou E, Esteller M, He L, Slack FJ. The Inescapable Influence of Noncoding RNAs in Cancer. Cancer Res 2016; 75:5206-10. [PMID: 26567137 DOI: 10.1158/0008-5472.can-15-1989] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This report summarizes information presented at the 2015 Keystone Symposium on "MicroRNAs and Noncoding RNAs in Cancer." Nearly two decades after the discovery of the first miRNA, the role of noncoding RNAs in developmental processes and the mechanisms behind their dysregulation in cancer has been steadily elucidated. Excitingly, miRNAs have begun making their way into the clinic to combat diseases such as hepatitis C and various forms of cancer. Therefore, at this Keystone meeting, novel findings were presented that enhance our view on how small and long noncoding RNAs control developmental timing and oncogenic processes. Recurring themes included (i) how miRNAs can be differentially processed, degraded, and regulated by ribonucleoprotein complexes, (ii) how particular miRNA genetic networks that control developmental process, when disrupted, can result in cancer disease, (iii) the technologies available to therapeutically deliver RNA to combat diseases such as cancer, and (iv) the elucidation of the mechanism of actions for long noncoding RNAs, currently a poorly understood class of noncoding RNA. During the meeting, there was an emphasis on presenting unpublished findings, and the breadth of topics covered reflected how inescapable the influence of noncoding RNAs is in development and cancer.
Collapse
|
48
|
Hayek A, King CC. Brief review: cell replacement therapies to treat type 1 diabetes mellitus. Clin Diabetes Endocrinol 2016; 2:4. [PMID: 28702240 PMCID: PMC5471705 DOI: 10.1186/s40842-016-0023-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/19/2016] [Indexed: 12/22/2022] Open
Abstract
Human embryonic stem cells (hESCs) and induced pluripotent cells (iPSCs) have the potential to differentiate into any somatic cell, making them ideal candidates for cell replacement therapies to treat a number of human diseases and regenerate damaged or non-functional tissues and organs. Key to the promise of regenerative medicine is developing standardized protocols that can safely be applied in patients. Progress towards this goal has occurred in a number of fields, including type 1 diabetes mellitus (T1D). During the past 10 years, significant technological advances in hESC/iPSC biochemistry have provided a roadmap to generate sufficient quantities of glucose-responsive, insulin-producing cells capable of eliminating diabetes in rodents. Although many of the molecular mechanisms underlying the genesis of these cells remain to be elucidated, the field of cell-based therapeutics to treat T1D has advanced to the point where the first Phase I/II trials in humans have begun. Here, we provide a concise review of the history of cell replacement therapies to treat T1D from islet transplantations and xenotranplantation, to current work in hESC/iPSC. We also highlight the latest advances in efforts to employ insulin-producing, glucose-responsive β-like cells derived from hESC as therapeutics.
Collapse
Affiliation(s)
- Alberto Hayek
- Scripps Whittier Diabetes Institute, La Jolla, CA 92037 USA
| | - Charles C King
- Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA 92093 USA
| |
Collapse
|
49
|
Abstract
Noncoding RNA and especially microRNAs (miRs) have emerged as important regulators of key processes in cell biology, including development, differentiation, and survival. Currently, over 2,500 mature miRs have been reported in humans, and considering that each miR has multiple targets, the number of genes and pathways potentially affected is huge. Not surprisingly, many miRs have also been implicated in diabetes, and more recently, some have been discovered to play important roles in the pancreatic islet, including β-cell function, proliferation, and survival. The goal of this Perspective is to offer an overview of this rapidly evolving field and the miRs involved, reveal novel networks of β-cell miR signaling, and provide an outlook of the opportunities and challenges ahead.
Collapse
Affiliation(s)
- Stephen R Filios
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, The University of Alabama at Birmingham, Birmingham, AL
| | - Anath Shalev
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, The University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
50
|
Toren-Haritan G, Efrat S. TGFβ Pathway Inhibition Redifferentiates Human Pancreatic Islet β Cells Expanded In Vitro. PLoS One 2015; 10:e0139168. [PMID: 26418361 PMCID: PMC4587799 DOI: 10.1371/journal.pone.0139168] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/08/2015] [Indexed: 11/18/2022] Open
Abstract
In-vitro expansion of insulin-producing cells from adult human pancreatic islets could provide an abundant cell source for diabetes therapy. However, proliferation of β-cell-derived (BCD) cells is associated with loss of phenotype and epithelial-mesenchymal transition (EMT). Nevertheless, BCD cells maintain open chromatin structure at β-cell genes, suggesting that they could be readily redifferentiated. The transforming growth factor β (TGFβ) pathway has been implicated in EMT in a range of cell types. Here we show that human islet cell expansion in vitro involves upregulation of the TGFβ pathway. Blocking TGFβ pathway activation using short hairpin RNA (shRNA) against TGFβ Receptor 1 (TGFBR1, ALK5) transcripts inhibits BCD cell proliferation and dedifferentiation. Treatment of expanded BCD cells with ALK5 shRNA results in their redifferentiation, as judged by expression of β-cell genes and decreased cell proliferation. These effects, which are reproducible in cells from multiple human donors, are mediated, at least in part, by AKT-FOXO1 signaling. ALK5 inhibition synergizes with a soluble factor cocktail to promote BCD cell redifferentiation. The combined treatment may offer a therapeutically applicable way for generating an abundant source of functional insulin-producing cells following ex-vivo expansion.
Collapse
Affiliation(s)
- Ginat Toren-Haritan
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shimon Efrat
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|