1
|
Lawrence TJ, Kangogo GK, Fredman A, Deem SL, Fèvre EM, Gluecks I, Brien JD, Shacham E. Spatial examination of social and environmental drivers of Middle East respiratory syndrome coronavirus (MERS-CoV) across Kenya. ECOHEALTH 2024; 21:155-173. [PMID: 38916836 PMCID: PMC11649862 DOI: 10.1007/s10393-024-01684-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/28/2024] [Accepted: 04/10/2024] [Indexed: 06/26/2024]
Abstract
Climate and agricultural land-use change has increased the likelihood of infectious disease emergence and transmissions, but these drivers are often examined separately as combined effects are ignored. Further, seldom are the influence of climate and agricultural land use on emerging infectious diseases examined in a spatially explicit way at regional scales. Our objective in this study was to spatially examine the climate, agriculture, and socio-demographic factors related to agro-pastoralism, and especially the combined effects of these variables that can influence the prevalence of Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels across northern Kenya. Our research questions focused on: (1) How MERS-CoV in dromedary camels has varied across geographic regions of northern Kenya, and (2) what climate, agriculture, and socio-demographic factors of agro-pastoralism were spatially related to the geographic variation of MERS-CoV cases in dromedary camels. To answer our questions, we analyzed the spatial distribution of historical cases based on serological evidence of MERS-CoV at the county level and applied spatial statistical analysis to examine the spatial relationships of the MERS-CoV cases between 2016 and 2018 to climate, agriculture, and socio-demographic factors of agro-pastoralism. Regional differences in MERS-CoV cases were spatially correlated with both social and environmental factors, and particularly ethno-religious camel practices, which highlight the complexity in the distribution of MERS-CoV in dromedary camels across Kenya.
Collapse
Affiliation(s)
| | - Geoffrey K Kangogo
- College for Public Health and Social Justice, Saint Louis University, St. Louis, MO, USA
| | | | - Sharon L Deem
- Institute for Conservation Medicine, Saint Louis Zoo, St. Louis, MO, USA
| | - Eric M Fèvre
- University of Liverpool, Liverpool, England, UK
- International Livestock Research Institute, Nairobi, Kenya
| | - Ilona Gluecks
- International Livestock Research Institute, Nairobi, Kenya
| | | | - Enbal Shacham
- College for Public Health and Social Justice, Saint Louis University, St. Louis, MO, USA
| |
Collapse
|
2
|
Rooney T, Fèvre EM, Villinger J, Brenn-White M, Cummings CO, Chai D, Kamau J, Kiyong'a A, Getange D, Ochieng DO, Kivali V, Zimmerman D, Rosenbaum M, Nutter FB, Deem SL. Coxiella burnetii serostatus in dromedary camels (Camelus dromedarius) is associated with the presence of C. burnetii DNA in attached ticks in Laikipia County, Kenya. Zoonoses Public Health 2024; 71:503-514. [PMID: 38627945 DOI: 10.1111/zph.13127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 03/07/2024] [Accepted: 03/14/2024] [Indexed: 07/02/2024]
Abstract
AIMS Q fever is a globally distributed, neglected zoonotic disease of conservation and public health importance, caused by the bacterium Coxiella burnetii. Coxiella burnetii normally causes subclinical infections in livestock, but may also cause reproductive pathology and spontaneous abortions in artiodactyl species. One such artiodactyl, the dromedary camel (Camelus dromedarius), is an increasingly important livestock species in semi-arid landscapes. Ticks are naturally infected with C. burnetii worldwide and are frequently found on camels in Kenya. In this study, we assessed the relationship between dromedary camels' C. burnetii serostatus and whether the camels were carrying C. burnetii PCR-positive ticks in Kenya. We hypothesized that there would be a positive association between camel seropositivity and carrying C. burnetii PCR-positive ticks. METHODS AND RESULTS Blood was collected from camels (N = 233) from three herds, and serum was analysed using commercial ELISA antibody test kits. Ticks were collected (N = 4354), divided into pools of the same species from the same camel (N = 397) and tested for C. burnetii and Coxiella-like endosymbionts. Descriptive statistics were used to summarize seroprevalence by camel demographic and clinical variables. Univariate logistic regression analyses were used to assess relationships between serostatus (outcome) and tick PCR status, camel demographic variables, and camel clinical variables (predictors). Camel C. burnetii seroprevalence was 52%. Across tick pools, the prevalence of C. burnetii was 15% and Coxiella-like endosymbionts was 27%. Camel seropositivity was significantly associated with the presence of a C. burnetii PCR-positive tick pool (OR: 2.58; 95% CI: 1.4-5.1; p = 0.0045), increasing age class, and increasing total solids. CONCLUSIONS The role of ticks and camels in the epidemiology of Q fever warrants further research to better understand this zoonotic disease that has potential to cause illness and reproductive losses in humans, livestock, and wildlife.
Collapse
Affiliation(s)
- Tess Rooney
- Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts, USA
- San Diego Zoo Wildlife Alliance, San Diego, California, USA
- School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Eric M Fèvre
- International Livestock Research Institute, Nairobi, Kenya
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Jandouwe Villinger
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Maris Brenn-White
- Institute for Conservation Medicine, Saint Louis Zoo, St. Louis, Missouri, USA
- Santa Cruz County Animal Services Authority, Santa Cruz, California, USA
| | - Charles O Cummings
- Tufts Clinical and Translational Science Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Daniel Chai
- One Health Centre, Institute of Primate Research, Nairobi, Kenya
| | - Joseph Kamau
- One Health Centre, Institute of Primate Research, Nairobi, Kenya
| | - Alice Kiyong'a
- International Livestock Research Institute, Nairobi, Kenya
| | - Dennis Getange
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Dickens O Ochieng
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Velma Kivali
- International Livestock Research Institute, Nairobi, Kenya
| | - Dawn Zimmerman
- Global Health Program, Smithsonian Conservation Biology Institute, Washington, District of Columbia, USA
- Veterinary Initiative for Endangered Wildlife, Bozeman, Montana, USA
- Department of Epidemiology of Microbial Disease, Yale School of Public Health, New Haven, Connecticut, USA
| | - Marieke Rosenbaum
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts, USA
| | - Felicia B Nutter
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts, USA
| | - Sharon L Deem
- Institute for Conservation Medicine, Saint Louis Zoo, St. Louis, Missouri, USA
| |
Collapse
|
3
|
Khogali R, Bastos A, Bargul JL, Getange D, Kabii J, Masiga D, Villinger J. Tissue-specific localization of tick-borne pathogens in ticks collected from camels in Kenya: insights into vector competence. Front Cell Infect Microbiol 2024; 14:1382228. [PMID: 38698904 PMCID: PMC11063324 DOI: 10.3389/fcimb.2024.1382228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/15/2024] [Indexed: 05/05/2024] Open
Abstract
Background Tick-borne pathogen (TBP) surveillance studies often use whole-tick homogenates when inferring tick-pathogen associations. However, localized TBP infections within tick tissues (saliva, hemolymph, salivary glands, and midgut) can inform pathogen transmission mechanisms and are key to disentangling pathogen detection from vector competence. Methods We screened 278 camel blood samples and 504 tick tissue samples derived from 126 camel ticks sampled in two Kenyan counties (Laikipia and Marsabit) for Anaplasma, Ehrlichia, Coxiella, Rickettsia, Theileria, and Babesia by PCR-HRM analysis. Results Candidatus Anaplasma camelii infections were common in camels (91%), but absent in all samples from Rhipicephalus pulchellus, Amblyomma gemma, Hyalomma dromedarii, and Hyalomma rufipes ticks. We detected Ehrlichia ruminantium in all tissues of the four tick species, but Rickettsia aeschlimannii was only found in Hy. rufipes (all tissues). Rickettsia africae was highest in Am. gemma (62.5%), mainly in the hemolymph (45%) and less frequently in the midgut (27.5%) and lowest in Rh. pulchellus (29.4%), where midgut and hemolymph detection rates were 17.6% and 11.8%, respectively. Similarly, in Hy. dromedarii, R. africae was mainly detected in the midgut (41.7%) but was absent in the hemolymph. Rickettsia africae was not detected in Hy. rufipes. No Coxiella, Theileria, or Babesia spp. were detected in this study. Conclusions The tissue-specific localization of R. africae, found mainly in the hemolymph of Am. gemma, is congruent with the role of this tick species as its transmission vector. Thus, occurrence of TBPs in the hemolymph could serve as a predictor of vector competence of TBP transmission, especially in comparison to detection rates in the midgut, from which they must cross tissue barriers to effectively replicate and disseminate across tick tissues. Further studies should focus on exploring the distribution of TBPs within tick tissues to enhance knowledge of TBP epidemiology and to distinguish competent vectors from dead-end hosts.
Collapse
Affiliation(s)
- Rua Khogali
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
- Department of Parasitology, Faculty of Veterinary Medicine, University of Khartoum, Khartoum North, Sudan
| | - Armanda Bastos
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
- Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa
| | - Joel L. Bargul
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - Dennis Getange
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - James Kabii
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Daniel Masiga
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Jandouwe Villinger
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| |
Collapse
|
4
|
Barabona G, Ngare I, Kamori D, Nkinda L, Kosugi Y, Mawazo A, Ekwabi R, Kinasa G, Chuwa H, Sato K, Sunguya B, Ueno T. Neutralizing immunity against coronaviruses in Tanzanian health care workers. Sci Rep 2024; 14:5508. [PMID: 38448564 PMCID: PMC10917759 DOI: 10.1038/s41598-024-55989-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
The ongoing vaccination efforts and exposure to endemic and emerging coronaviruses can shape the population's immunity against this group of viruses. In this study, we investigated neutralizing immunity against endemic and emerging coronaviruses in 200 Tanzanian frontline healthcare workers (HCWs). Despite low vaccination rates (19.5%), we found a high SARS-CoV-2 seroprevalence (94.0%), indicating high exposure in these HCWs. Next, we determined the neutralization capacity of antisera against human coronavirus NL63, and 229E, SARS-CoV-1, MERS-CoV and SARS-CoV-2 (including Omicron subvariants: BA.1, BQ.1.1 and XBB.1.5) using pseudovirus neutralization assay. We observed a broad range of neutralizing activity in HCWs, but no neutralization activity detected against MERS-CoV. We also observed a strong correlation between neutralizing antibody titers for SARS-CoV-2 and SARS-CoV-1, but not between other coronaviruses. Cross-neutralization titers against the newer Omicron subvariants, BQ.1.1 and XBB.1.5, was significantly reduced compared to BA.1 and BA.2 subvariants. On the other hand, the exposed vaccinated HCWs showed relatively higher median cross-neutralization titers against both the newer Omicron subvariants and SARS-CoV-1, but did not reach statistical significance. In summary, our findings suggest a broad range of neutralizing potency against coronaviruses in Tanzanian HCWs with detectable neutralizing immunity against SARS-CoV-1 resulting from SARS-CoV-2 exposure.
Collapse
Affiliation(s)
- Godfrey Barabona
- Division of Infection and Immunity, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Isaac Ngare
- Division of Infection and Immunity, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Doreen Kamori
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- Collaboration Unit for Infection, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Lilian Nkinda
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Yusuke Kosugi
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ambele Mawazo
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Rayi Ekwabi
- Amana Regional Referral Hospital, Dar es Salaam, Tanzania
| | | | | | - Kei Sato
- Collaboration Unit for Infection, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Bruno Sunguya
- Collaboration Unit for Infection, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- Department of Community Health, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Takamasa Ueno
- Division of Infection and Immunity, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan.
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania.
| |
Collapse
|
5
|
AL-Taee HSR, Sekhi AA, Gharban HAJ, Biati HMA. Serological identification of MERS-CoV in camels of Wasit province, Iraq. Open Vet J 2023; 13:1283-1289. [PMID: 38027406 PMCID: PMC10658013 DOI: 10.5455/ovj.2023.v13.i10.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/11/2023] [Indexed: 12/01/2023] Open
Abstract
Background Since the first human case of Middle East Respiratory Syndrome (MERS) caused by Coronavirus (MERS-CoV) in 2012, several evidence bases have shown one-humped camels as the main reservoir host, from which infection is transmitted to humans. Aim Serological investigation of MERS in dromedary camels in Wasit province (Iraq), detection severity of infection, and association to some risk factors. Methods A total of 455 dromedary camels were selected randomly from two main districts in Wasit province, Iraq, during January and April (2023). Sera of all study camels were examined by enzyme-linked immunosorbent assay (ELISA), and titers of positive study animals were categorized according to their severity. Results Serological testing yielded 37.58% positive animals for MERS infection. According to the severity of positive ODs (titer), a total of 53.22%, 30.99%, 12.28%, and 3.51% showed mild, moderate, strong, and very strong infections, respectively. Regarding risk factors, significant elevation in seropositivity was seen in camels of >3-6 and >6 years old and reduced in camels of £3 years old with an elevated risk of MERS with increased age. Regionally, seropositivity and relative risk were increased in the camels of Shaykh Sa'd when compared with Al-Numaniyah. Regarding sex, no significant variation was detected between seropositive females and males; however, male camels appeared at higher risk than females. Association between the severity of MERS infection and risk factors revealed that there was a significant increase in mild and moderate infections in female camels of >6 years old; whereas strong and very strong infections were seen in male camels of 33-6 years old. Mild and very strong infections were recorded in Shaykh Sa'd; while moderate and strong infections in Al-Numaniyah. Conclusion The study indicated a longstanding existence of MERS-CoV in camels of Wasit province; therefore, recent infections or active viral excretion are required for confirmation by molecular approaches.
Collapse
Affiliation(s)
- Hala S. R. AL-Taee
- Department of Microbiology, College of Veterinary Medicine, University of Wasit, Wasit, Iraq
| | - Azhar Ali Sekhi
- Department of Microbiology, College of Medicine, University of Al-Qadisiyah, Al-Qadisiyah, Iraq
| | - Hasanain A. J. Gharban
- Department of Internal and Preventive Veterinary Medicine, College of Veterinary Medicine, University of Wasit, Wasit, Iraq
| | - Hussien M. A. Biati
- Department of Medical Microbiology, College of Medicine, University of Wasit, Wasit, Iraq
| |
Collapse
|
6
|
Alnuqaydan AM, Almutary AG, Sukamaran A, Yang BTW, Lee XT, Lim WX, Ng YM, Ibrahim R, Darmarajan T, Nanjappan S, Chellian J, Candasamy M, Madheswaran T, Sharma A, Dureja H, Prasher P, Verma N, Kumar D, Palaniveloo K, Bisht D, Gupta G, Madan JR, Singh SK, Jha NK, Dua K, Chellappan DK. Middle East Respiratory Syndrome (MERS) Virus-Pathophysiological Axis and the Current Treatment Strategies. AAPS PharmSciTech 2021; 22:173. [PMID: 34105037 PMCID: PMC8186825 DOI: 10.1208/s12249-021-02062-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023] Open
Abstract
Middle East respiratory syndrome (MERS) is a lethal respiratory disease with its first case reported back in 2012 (Jeddah, Saudi Arabia). It is a novel, single-stranded, positive-sense RNA beta coronavirus (MERS-CoV) that was isolated from a patient who died from a severe respiratory illness. Later, it was found that this patient was infected with MERS. MERS is endemic to countries in the Middle East regions, such as Saudi Arabia, Jordan, Qatar, Oman, Kuwait and the United Arab Emirates. It has been reported that the MERS virus originated from bats and dromedary camels, the natural hosts of MERS-CoV. The transmission of the virus to humans has been thought to be either direct or indirect. Few camel-to-human transmissions were reported earlier. However, the mode of transmission of how the virus affects humans remains unanswered. Moreover, outbreaks in either family-based or hospital-based settings were observed with high mortality rates, especially in individuals who did not receive proper management or those with underlying comorbidities, such as diabetes and renal failure. Since then, there have been numerous reports hypothesising complications in fatal cases of MERS. Over the years, various diagnostic methods, treatment strategies and preventive measures have been strategised in containing the MERS infection. Evidence from multiple sources implicated that no treatment options and vaccines have been developed in specific, for the direct management of MERS-CoV infection. Nevertheless, there are supportive measures outlined in response to symptom-related management. Health authorities should stress more on infection and prevention control measures, to ensure that MERS remains as a low-level threat to public health.
Collapse
Affiliation(s)
- Abdullah M Alnuqaydan
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Arulmalar Sukamaran
- School of Pharmacy, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Brian Tay Wei Yang
- School of Pharmacy, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Xiao Ting Lee
- School of Pharmacy, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Wei Xuan Lim
- School of Pharmacy, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Yee Min Ng
- School of Pharmacy, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Rania Ibrahim
- School of Health Sciences, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Thiviya Darmarajan
- School of Health Sciences, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Satheeshkumar Nanjappan
- Department of Natural Products, National Institute of Pharmaceutical Education & Research (NIPER-Kolkata), Chunilal Bhawan, Maniktala, Kolkata, West Bengal, 700054, India
| | - Jestin Chellian
- Department of Life Sciences, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Mayuren Candasamy
- Department of Life Sciences, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Thiagarajan Madheswaran
- Department of Pharmaceutical Technology, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Ankur Sharma
- Department of Life Science, School of Basic Science and Research, Sharda University, Knowledge Park, Uttar Pradesh, 201310, India
| | - Harish Dureja
- Faculty of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun, 248007, India
| | - Nitin Verma
- Chitkara University School of Pharmacy, Chitkara University, Atal Shiksha Kunj, Atal Nagar, Himachal Pradesh, 174103, India
| | - Deepak Kumar
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Kishneth Palaniveloo
- Institute of Ocean and Earth Sciences, Institute for Advanced Studies Building, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Dheeraj Bisht
- Department of Pharmaceutical Sciences Bhimtal, Kumaun University Nainital, Uttarakhand, 263136, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, India
| | - Jyotsana R Madan
- Department of Pharmaceutics, Smt. Kashibai Navale College of Pharmacy, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
7
|
The zoonotic potential of bat-borne coronaviruses. Emerg Top Life Sci 2020; 4:353-369. [PMID: 33258903 DOI: 10.1042/etls20200097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023]
Abstract
Seven zoonoses - human infections of animal origin - have emerged from the Coronaviridae family in the past century, including three viruses responsible for significant human mortality (SARS-CoV, MERS-CoV, and SARS-CoV-2) in the past twenty years alone. These three viruses, in addition to two older CoV zoonoses (HCoV-229E and HCoV-NL63) are believed to be originally derived from wild bat reservoir species. We review the molecular biology of the bat-derived Alpha- and Betacoronavirus genera, highlighting features that contribute to their potential for cross-species emergence, including the use of well-conserved mammalian host cell machinery for cell entry and a unique capacity for adaptation to novel host environments after host switching. The adaptive capacity of coronaviruses largely results from their large genomes, which reduce the risk of deleterious mutational errors and facilitate range-expanding recombination events by offering heightened redundancy in essential genetic material. Large CoV genomes are made possible by the unique proofreading capacity encoded for their RNA-dependent polymerase. We find that bat-borne SARS-related coronaviruses in the subgenus Sarbecovirus, the source clade for SARS-CoV and SARS-CoV-2, present a particularly poignant pandemic threat, due to the extraordinary viral genetic diversity represented among several sympatric species of their horseshoe bat hosts. To date, Sarbecovirus surveillance has been almost entirely restricted to China. More vigorous field research efforts tracking the circulation of Sarbecoviruses specifically and Betacoronaviruses more generally is needed across a broader global range if we are to avoid future repeats of the COVID-19 pandemic.
Collapse
|
8
|
Sitawa R, Folorunso F, Obonyo M, Apamaku M, Kiambi S, Gikonyo S, Kiptiness J, Njagi O, Githinji J, Ngoci J, VonDobschuetz S, Morzaria S, Ihab E, Gardner E, Wiersma L, Makonnen Y. Risk factors for serological evidence of MERS-CoV in camels, Kenya, 2016-2017. Prev Vet Med 2020; 185:105197. [PMID: 33186881 PMCID: PMC7605751 DOI: 10.1016/j.prevetmed.2020.105197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 02/08/2023]
Abstract
Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is an emerging viral disease and dromedary camels are known to be the source of human spill over events. A cross-sectional epidemiological surveillance study was carried out in Kenya in 2017 to, 1) estimate MERS-CoV antibody seropositivity in the camel-dense counties of Turkana, Marsabit, Isiolo, Laikipia and Nakuru to identify, and 2) determine the risk factors associated with seropositivity in camels. Blood samples were collected from a total of 1421 camels selected using a multi-stage sampling method. Data were also collected from camel owners or herders using a pre-tested structured questionnaire. The sera from camel samples were tested for the presence of circulating antibodies to MERS-CoV using the anti-MERS-CoV IgG ELISA test. Univariate and multivariable statistical analysis were used to investigate factors potentially associated with MERS-CoV seropositivity in camels. The overall seropositivity in camel sera was 62.9 %, with the highest seropositivity recorded in Isiolo County (77.7 %), and the lowest seropositivity recorded in Nakuru County (14.0 %). When risk factors for seropositivity were assessed, the "Type of camel production system" {(aOR = 5.40(95 %CI: 1.67-17.49)}, "Age between 1-2 years, 2-3 years and above 3 years" {(aOR = 1.64 (95 %CI: 1.04-2.59}", {(aOR = 3.27 (95 %CI: 3.66-5.61)}" and {(aOR = 6.12 (95 %CI: 4.04-9.30)} respectively and "Sex of camels" {(aOR = 1.75 (95 %CI: 1.27-2.41)} were identified as significant predictors of MERS-CoV seropositivity. Our studies indicate a high level of seropositivity to MERS-CoV in camels in the counties surveyed, and highlights the important risk factors associated with MERS-CoV seropositivity in camels. Given that MERS-CoV is a zoonosis, and Kenya possesses the fourth largest camel population in Africa, these findings are important to inform the development of efficient and risk-based prevention and mitigation strategies against MERS-CoV transmission to humans.
Collapse
Affiliation(s)
- Rinah Sitawa
- Food and Agriculture Organization of the United Nations (FAO), Kenya.
| | - Fasina Folorunso
- Food and Agriculture Organization of the United Nations (FAO), Tanzania
| | - Mark Obonyo
- Food and Agriculture Organization of the United Nations (FAO), Kenya
| | - Michael Apamaku
- Food and Agriculture Organization of the United Nations (FAO), Kenya
| | - Stella Kiambi
- Food and Agriculture Organization of the United Nations (FAO), Kenya
| | - Stephen Gikonyo
- Food and Agriculture Organization of the United Nations (FAO), Kenya
| | - Joshua Kiptiness
- Food and Agriculture Organization of the United Nations (FAO), Kenya
| | - Obadiah Njagi
- Ministry of Agriculture, Livestock, Fisheries and Irrigation, Kenya
| | - Jane Githinji
- Ministry of Agriculture, Livestock, Fisheries and Irrigation, Kenya
| | - James Ngoci
- Ministry of Agriculture, Livestock, Fisheries and Irrigation, Kenya
| | | | - Subhash Morzaria
- Food and Agriculture Organization of the United Nations (FAO), Rome, Italy
| | - ElMasry Ihab
- Food and Agriculture Organization of the United Nations (FAO), Rome, Italy
| | - Emma Gardner
- Food and Agriculture Organization of the United Nations (FAO), Rome, Italy
| | - Lidewij Wiersma
- Food and Agriculture Organization of the United Nations (FAO), Rome, Italy
| | - Yilma Makonnen
- Food and Agriculture Organization of the United Nations (FAO), Rome, Italy
| |
Collapse
|
9
|
High MERS-CoV seropositivity associated with camel herd profile, husbandry practices and household socio-demographic characteristics in Northern Kenya. Epidemiol Infect 2020; 148:e292. [PMID: 33256863 PMCID: PMC7737118 DOI: 10.1017/s0950268820002939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Despite high exposure to Middle East respiratory syndrome coronavirus (MERS-CoV), the predictors for seropositivity in the context of husbandry practices for camels in Eastern Africa are not well understood. We conducted a cross-sectional survey to describe the camel herd profile and determine the factors associated with MERS-CoV seropositivity in Northern Kenya. We enrolled 29 camel-owning households and administered questionnaires to collect herd and household data. Serum samples collected from 493 randomly selected camels were tested for anti-MERS-CoV antibodies using a microneutralisation assay, and regression analysis used to correlate herd and household characteristics with camel seropositivity. Households reared camels (median = 23 camels and IQR 16–56), and at least one other livestock species in two distinct herds; a home herd kept near homesteads, and a range/fora herd that resided far from the homestead. The overall MERS-CoV IgG seropositivity was 76.3%, with no statistically significant difference between home and fora herds. Significant predictors for seropositivity (P ⩽ 0.05) included camels 6–10 years old (aOR 2.3, 95% CI 1.0–5.2), herds with ⩾25 camels (aOR 2.0, 95% CI 1.2–3.4) and camels from Gabra community (aOR 2.3, 95% CI 1.2–4.2). These results suggest high levels of virus transmission among camels, with potential for human infection.
Collapse
|
10
|
Hughes EC, Anderson NE. Zoonotic Pathogens of Dromedary Camels in Kenya: A Systematised Review. Vet Sci 2020; 7:vetsci7030103. [PMID: 32764264 PMCID: PMC7559378 DOI: 10.3390/vetsci7030103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/21/2020] [Accepted: 07/01/2020] [Indexed: 01/26/2023] Open
Abstract
Kenya is home to Africa’s third largest population of dromedary camels, and production at commercial and local levels are increasingly important. In pastoral and nomadic communities in the arid and semi-arid lands (ASALs), camels play a vital role in food security, while commercial milk production and formalized export markets are rapidly emerging as camel populations expand into non-traditional areas. Until recently, little focus was placed on camels as hosts of zoonotic disease, but the emergence of Middle Eastern respiratory coronavirus (MERS-CoV) in 2012, and the discovery of exposure to the virus in Kenyan camels, highlighted the need for further understanding of this area. This systematised review utilised a robust search strategy to assess the occurrence of camel-associated zoonoses in Kenya and to evaluate the quality of the published literature. Seventy-four studies were identified, covering sixteen pathogens, with an increasing number of good quality studies in recent years. Despite this, the area remains under-researched and there is a lack of robust, high-quality research. Trypanosome spp., Echinococcus granulosus and Brucella spp. appeared most frequently in the literature. Pathogens with the highest reported prevalence were MERS-CoV (0–100%), Echinococcus granulosa (7–60%) and Rift Valley fever virus (7–57%). Exposure to Brucella spp., Coxiella burnetii and Crimean-Congo haemorrhagic fever virus showed higher levels in camel or camel-associated vectors than other livestock species, although brucellosis was the only disease for which there was robust evidence linking camel and human exposure. Zoonotic agents with less severe human health outcomes, such as Dermatophilosus congolensis and contagious ecthyma, were also represented in the literature. This review provides an important summary of the scope and quality of current knowledge. It demonstrates that further research, and improved adherence to robust study design and reporting are essential if the zoonotic risk from camels in Kenya, and elsewhere, is to be better understood.
Collapse
Affiliation(s)
- Ellen Clare Hughes
- The Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Roslin EH25 9RG, UK;
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Henry Wellcome Building, Garscube Campus, Glasgow G61 1QH, UK
- Correspondence:
| | - Neil Euan Anderson
- The Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Roslin EH25 9RG, UK;
| |
Collapse
|
11
|
|
12
|
Alharbi NK, Ibrahim OH, Alhafufi A, Kasem S, Aldowerij A, Albrahim R, Abu-Obaidah A, Alkarar A, Bayoumi FA, Almansour AM, Aldubaib M, Al-Abdely HM, Balkhy HH, Qasim I. Challenge infection model for MERS-CoV based on naturally infected camels. Virol J 2020; 17:77. [PMID: 32552831 PMCID: PMC7298446 DOI: 10.1186/s12985-020-01347-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 06/02/2020] [Indexed: 02/07/2023] Open
Abstract
Background Middle East Respiratory Syndrome coronavirus (MERS-CoV) is an emerging virus that infects humans and camels with no approved antiviral therapy or vaccine. Some vaccines are in development for camels as a one-health intervention where vaccinating camels is proposed to reduce human viral exposure. This intervention will require an understanding of the prior exposure of camels to the virus and appropriate vaccine efficacy studies in camels. Methods We conducted a cross sectional seroprevalence study in young dromedary camels to determine the rate of MERS-CoV seropositivity in young camels. Next, we utilised naturally infected camels as a natural challenge model that can be used by co-housing these camels with healthy naive camels in a ratio of 1 to 2. This model is aimed to support studies on natural virus transmission as well as evaluating drug and vaccine efficacy. Results We found that 90% of the screened camels have pre-existing antibodies for MERS-CoV. In addition, the challenge model resulted in MERS-CoV transmission within 48 h with infections that continued for 14 days post challenge. Conclusions Our finding suggests that the majority of young dromedary camels in Saudi Arabia are seropositive and that naturally infected camels can serve as a challenge model to assess transmission, therapeutics, and vaccine efficacy.
Collapse
Affiliation(s)
- Naif Khalaf Alharbi
- Department of Infectious Disease Research, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia. .,King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.
| | - Osman H Ibrahim
- Ministry of Environment, Water and Agriculture (MEWA), Riyadh, Saudi Arabia
| | - Ali Alhafufi
- Ministry of Environment, Water and Agriculture (MEWA), Riyadh, Saudi Arabia
| | - Samy Kasem
- Ministry of Environment, Water and Agriculture (MEWA), Riyadh, Saudi Arabia.,Department of Virology, Faculty of Veterinary Medicine, Kafrelsheikh University, El Geish Street, Kafrelsheikh, 33516, Egypt
| | - Ali Aldowerij
- Ministry of Environment, Water and Agriculture (MEWA), Riyadh, Saudi Arabia
| | - Raed Albrahim
- Ministry of Environment, Water and Agriculture (MEWA), Riyadh, Saudi Arabia
| | - Ali Abu-Obaidah
- Ministry of Environment, Water and Agriculture (MEWA), Riyadh, Saudi Arabia
| | - Ali Alkarar
- Ministry of Environment, Water and Agriculture (MEWA), Riyadh, Saudi Arabia
| | | | | | - Musaad Aldubaib
- College of Agriculture and Veterinary Medicine, Qassim University, Qassim, Saudi Arabia
| | - Hail M Al-Abdely
- Ministry of Health, Riyadh, Saudi Arabia.,Internal Medicine Department, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Hanan H Balkhy
- Department of Infectious Disease Research, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,Department of Infection Prevention and Control, Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia
| | - Ibrahim Qasim
- Ministry of Environment, Water and Agriculture (MEWA), Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Kiyong’a AN, Cook EAJ, Okba NMA, Kivali V, Reusken C, Haagmans BL, Fèvre EM. Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Seropositive Camel Handlers in Kenya. Viruses 2020; 12:E396. [PMID: 32260186 PMCID: PMC7232417 DOI: 10.3390/v12040396] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 01/05/2023] Open
Abstract
Middle East respiratory syndrome (MERS) is a respiratory disease caused by a zoonotic coronavirus (MERS-CoV). Camel handlers, including slaughterhouse workers and herders, are at risk of acquiring MERS-CoV infections. However, there is limited evidence of infections among camel handlers in Africa. The purpose of this study was to determine the presence of antibodies to MERS-CoV in high-risk groups in Kenya. Sera collected from 93 camel handlers, 58 slaughterhouse workers and 35 camel herders, were screened for MERS-CoV antibodies using ELISA and PRNT. We found four seropositive slaughterhouse workers by PRNT. Risk factors amongst the slaughterhouse workers included being the slaughterman (the person who cuts the throat of the camel) and drinking camel blood. Further research is required to understand the epidemiology of MERS-CoV in Africa in relation to occupational risk, with a need for additional studies on the transmission of MERS-CoV from dromedary camels to humans, seroprevalence and associated risk factors.
Collapse
Affiliation(s)
- Alice N. Kiyong’a
- International Livestock Research Institute, Old Naivasha Road, PO Box 30709, Nairobi 00100, Kenya (E.A.J.C.); (V.K.)
| | - Elizabeth A. J. Cook
- International Livestock Research Institute, Old Naivasha Road, PO Box 30709, Nairobi 00100, Kenya (E.A.J.C.); (V.K.)
- Institute of Infection and Global Health, University of Liverpool, Leahurst Campus, Chester High Road, Neston CH64 7TE, UK
| | - Nisreen M. A. Okba
- Viroscience Department, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands; (N.M.A.O.); (C.R.); (B.L.H.)
| | - Velma Kivali
- International Livestock Research Institute, Old Naivasha Road, PO Box 30709, Nairobi 00100, Kenya (E.A.J.C.); (V.K.)
| | - Chantal Reusken
- Viroscience Department, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands; (N.M.A.O.); (C.R.); (B.L.H.)
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, 3720 BA Bilthoven, The Netherlands
| | - Bart L. Haagmans
- Viroscience Department, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands; (N.M.A.O.); (C.R.); (B.L.H.)
| | - Eric M. Fèvre
- International Livestock Research Institute, Old Naivasha Road, PO Box 30709, Nairobi 00100, Kenya (E.A.J.C.); (V.K.)
- Institute of Infection and Global Health, University of Liverpool, Leahurst Campus, Chester High Road, Neston CH64 7TE, UK
| |
Collapse
|
14
|
Global status of Middle East respiratory syndrome coronavirus in dromedary camels: a systematic review. Epidemiol Infect 2020; 147:e84. [PMID: 30869000 PMCID: PMC6518605 DOI: 10.1017/s095026881800345x] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Dromedary camels have been shown to be the main reservoir for human Middle East respiratory syndrome (MERS) infections. This systematic review aims to compile and analyse all published data on MERS-coronavirus (CoV) in the global camel population to provide an overview of current knowledge on the distribution, spread and risk factors of infections in dromedary camels. We included original research articles containing laboratory evidence of MERS-CoV infections in dromedary camels in the field from 2013 to April 2018. In general, camels only show minor clinical signs of disease after being infected with MERS-CoV. Serological evidence of MERS-CoV in camels has been found in 20 countries, with molecular evidence for virus circulation in 13 countries. The seroprevalence of MERS-CoV antibodies increases with age in camels, while the prevalence of viral shedding as determined by MERS-CoV RNA detection in nasal swabs decreases. In several studies, camels that were sampled at animal markets or quarantine facilities were seropositive more often than camels at farms as well as imported camels vs. locally bred camels. Some studies show a relatively higher seroprevalence and viral detection during the cooler winter months. Knowledge of the animal reservoir of MERS-CoV is essential to develop intervention and control measures to prevent human infections.
Collapse
|
15
|
Ramshaw RE, Letourneau ID, Hong AY, Hon J, Morgan JD, Osborne JCP, Shirude S, Van Kerkhove MD, Hay SI, Pigott DM. A database of geopositioned Middle East Respiratory Syndrome Coronavirus occurrences. Sci Data 2019; 6:318. [PMID: 31836720 PMCID: PMC6911100 DOI: 10.1038/s41597-019-0330-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/15/2019] [Indexed: 12/21/2022] Open
Abstract
As a World Health Organization Research and Development Blueprint priority pathogen, there is a need to better understand the geographic distribution of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) and its potential to infect mammals and humans. This database documents cases of MERS-CoV globally, with specific attention paid to zoonotic transmission. An initial literature search was conducted in PubMed, Web of Science, and Scopus; after screening articles according to the inclusion/exclusion criteria, a total of 208 sources were selected for extraction and geo-positioning. Each MERS-CoV occurrence was assigned one of the following classifications based upon published contextual information: index, unspecified, secondary, mammal, environmental, or imported. In total, this database is comprised of 861 unique geo-positioned MERS-CoV occurrences. The purpose of this article is to share a collated MERS-CoV database and extraction protocol that can be utilized in future mapping efforts for both MERS-CoV and other infectious diseases. More broadly, it may also provide useful data for the development of targeted MERS-CoV surveillance, which would prove invaluable in preventing future zoonotic spillover. Measurement(s) | Middle East Respiratory Syndrome • geographic location | Technology Type(s) | digital curation | Factor Type(s) | geographic distribution of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) • year | Sample Characteristic - Organism | Middle East respiratory syndrome-related coronavirus | Sample Characteristic - Location | Earth (planet) |
Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.11108801
Collapse
Affiliation(s)
- Rebecca E Ramshaw
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States
| | - Ian D Letourneau
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States
| | - Amy Y Hong
- Bloomberg School of Public Health, Johns Hopkins University, 615N Wolfe St, Baltimore, MD, 21205, United States
| | - Julia Hon
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States
| | - Julia D Morgan
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States
| | - Joshua C P Osborne
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States
| | - Shreya Shirude
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States
| | - Maria D Van Kerkhove
- Department of Infectious Hazards Management, Health Emergencies Programme, World Health Organization, Avenue Appia 20, 1211, Geneva, Switzerland
| | - Simon I Hay
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States.,Department of Health Metrics Sciences, School of Medicine, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States
| | - David M Pigott
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States. .,Department of Health Metrics Sciences, School of Medicine, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States.
| |
Collapse
|
16
|
Alharbi NK, Qasim I, Almasoud A, Aljami HA, Alenazi MW, Alhafufi A, Aldibasi OS, Hashem AM, Kasem S, Albrahim R, Aldubaib M, Almansour A, Temperton NJ, Kupke A, Becker S, Abu-Obaidah A, Alkarar A, Yoon IK, Azhar E, Lambe T, Bayoumi F, Aldowerij A, Ibrahim OH, Gilbert SC, Balkhy HH. Humoral Immunogenicity and Efficacy of a Single Dose of ChAdOx1 MERS Vaccine Candidate in Dromedary Camels. Sci Rep 2019; 9:16292. [PMID: 31705137 PMCID: PMC6841732 DOI: 10.1038/s41598-019-52730-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/16/2019] [Indexed: 11/08/2022] Open
Abstract
MERS-CoV seronegative and seropositive camels received a single intramuscular dose of ChAdOx1 MERS, a replication-deficient adenoviral vectored vaccine expressing MERS-CoV spike protein, with further groups receiving control vaccinations. Infectious camels with active naturally acquired MERS-CoV infection, were co-housed with the vaccinated camels at a ratio of 1:2 (infected:vaccinated); nasal discharge and virus titres were monitored for 14 days. Overall, the vaccination reduced virus shedding and nasal discharge (p = 0.0059 and p = 0.0274, respectively). Antibody responses in seropositive camels were enhancedby the vaccine; these camels had a higher average age than seronegative. Older seronegative camels responded more strongly to vaccination than younger animals; and neutralising antibodies were detected in nasal swabs. Further work is required to optimise vaccine regimens for younger seronegative camels.
Collapse
Affiliation(s)
- Naif Khalaf Alharbi
- Department of Infectious Disease Research, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.
| | - Ibrahim Qasim
- Ministry of Environment, Water and Agriculture (MEWA), Riyadh, Saudi Arabia
| | - Abdulrahman Almasoud
- Department of Infectious Disease Research, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Haya A Aljami
- Department of Infectious Disease Research, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Mohamed W Alenazi
- Department of Infectious Disease Research, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Ali Alhafufi
- Ministry of Environment, Water and Agriculture (MEWA), Riyadh, Saudi Arabia
| | - Omar S Aldibasi
- Department of Bioinformatics and Biostatistics, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Anwar M Hashem
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Samy Kasem
- Ministry of Environment, Water and Agriculture (MEWA), Riyadh, Saudi Arabia
- Department of Virology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, El Geish Street, 33516, Egypt
| | - Raed Albrahim
- Ministry of Environment, Water and Agriculture (MEWA), Riyadh, Saudi Arabia
| | - Musaad Aldubaib
- College of Agriculture and Veterinary Medicine, Qassim University, Qassim, Saudi Arabia
| | - Ali Almansour
- Ministry of Environment, Water and Agriculture (MEWA), Riyadh, Saudi Arabia
| | - Nigel J Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent, Chatham, Kent, ME4 4TB, United Kingdom
| | - Alexandra Kupke
- Institute of Virology, Philipps University of Marburg, Marburg, Germany
- German Center for Infection Research (DZIF), Partner Site Gieβen-Marburg-Langen, Germany
| | - Stephan Becker
- Institute of Virology, Philipps University of Marburg, Marburg, Germany
- German Center for Infection Research (DZIF), Partner Site Gieβen-Marburg-Langen, Germany
| | - Ali Abu-Obaidah
- Ministry of Environment, Water and Agriculture (MEWA), Riyadh, Saudi Arabia
| | - Ali Alkarar
- Ministry of Environment, Water and Agriculture (MEWA), Riyadh, Saudi Arabia
| | - In-Kyu Yoon
- International Vaccine Institute, Seoul, South Korea
| | - Esam Azhar
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Teresa Lambe
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
| | - Faisal Bayoumi
- Ministry of Environment, Water and Agriculture (MEWA), Riyadh, Saudi Arabia
| | - Ali Aldowerij
- Ministry of Environment, Water and Agriculture (MEWA), Riyadh, Saudi Arabia
| | - Osman H Ibrahim
- Ministry of Environment, Water and Agriculture (MEWA), Riyadh, Saudi Arabia
| | - Sarah C Gilbert
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
| | - Hanan H Balkhy
- Department of Infectious Disease Research, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Department of Infection Prevention and Control, Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia
| |
Collapse
|
17
|
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic disease transmitted from dromedary camels to people, which can result in outbreaks with human-to-human transmission. Because it is a subclinical infection in camels, epidemiological measures other than prevalence are challenging to assess. This study estimated the force of infection (FOI) of MERS-CoV in camel populations from age-stratified serological data. A cross-sectional study of MERS-CoV was conducted in Kenya from July 2016 to July 2017. Seroprevalence was stratified into four age groups: <1, 1–2, 2–3 and >3 years old. Age-independent and age-dependent linear and quadratic generalised linear models were used to estimate FOI in pastoral and ranching camel herds. Models were compared based on computed AIC values. Among pastoral herds, the age-dependent quadratic FOI was the best fit model, while the age-independent FOI was the best fit for the ranching herd data. FOI provides an indirect estimate of infection risk, which is especially valuable where direct estimates of incidence and other measures of infection are challenging to obtain. The FOIs estimated in this study provide important insight about MERS-CoV dynamics in the reservoir species, and contribute to our understanding of the zoonotic risks of this important public health threat.
Collapse
|
18
|
Kleine-Weber H, Pöhlmann S, Hoffmann M. Spike proteins of novel MERS-coronavirus isolates from North- and West-African dromedary camels mediate robust viral entry into human target cells. Virology 2019; 535:261-265. [PMID: 31357164 PMCID: PMC7112047 DOI: 10.1016/j.virol.2019.07.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 12/26/2022]
Abstract
The highly pathogenic Middle East respiratory syndrome (MERS)-related coronavirus (CoV) is transmitted from dromedary camels, the natural reservoir, to humans. For at present unclear reasons, MERS cases have so far only been observed in the Arabian Peninsula, although MERS-CoV also circulates in African dromedary camels. A recent study showed that MERS-CoV found in North/West- (Morocco) and West-African (Burkina Faso and Nigeria) dromedary camels are genetically distinct from Arabian viruses and have reduced replicative capacity in human cells, potentially due to amino acid changes in one or more viral proteins. Here, we show that the spike (S) proteins of the prototypic Arabian MERS-CoV strain, human betacoronavirus 2c EMC/2012, and the above stated African MERS-CoV variants do not appreciably differ in expression, DPP4 binding and ability to drive entry into target cells. Thus, virus-host-interactions at the entry stage may not limit spread of North- and West-African MERS-CoV in human cells.
Collapse
Affiliation(s)
- Hannah Kleine-Weber
- Infection Biology Unit, Deutsches Primatenzentrum - Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany; Faculty of Biology and Psychology, University Göttingen, Wilhelm-Weber-Str. 2, 37073 Göttingen, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, Deutsches Primatenzentrum - Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany; Faculty of Biology and Psychology, University Göttingen, Wilhelm-Weber-Str. 2, 37073 Göttingen, Germany.
| | - Markus Hoffmann
- Infection Biology Unit, Deutsches Primatenzentrum - Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| |
Collapse
|
19
|
Dighe A, Jombart T, Van Kerkhove MD, Ferguson N. A systematic review of MERS-CoV seroprevalence and RNA prevalence in dromedary camels: Implications for animal vaccination. Epidemics 2019; 29:100350. [PMID: 31201040 PMCID: PMC6899506 DOI: 10.1016/j.epidem.2019.100350] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 12/17/2022] Open
Abstract
Most adult dromedaries in Africa and the Middle East have been infected with MERS-CoV. Seroprevalence increases with age, while active infection is more common in calves. Prevalence is higher at sites where different dromedary populations mix. Further study is needed to determine if prevalence of infection varies seasonally.
Human infection with Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is driven by recurring dromedary-to-human spill-over events, leading decision-makers to consider dromedary vaccination. Dromedary vaccine candidates in the development pipeline are showing hopeful results, but gaps in our understanding of the epidemiology of MERS-CoV in dromedaries must be addressed to design and evaluate potential vaccination strategies. We aim to bring together existing measures of MERS-CoV infection in dromedary camels to assess the distribution of infection, highlighting knowledge gaps and implications for animal vaccination. We systematically reviewed the published literature on MEDLINE, EMBASE and Web of Science that reported seroprevalence and/or prevalence of active MERS-CoV infection in dromedary camels from both cross-sectional and longitudinal studies. 60 studies met our eligibility criteria. Qualitative syntheses determined that MERS-CoV seroprevalence increased with age up to 80–100% in adult dromedaries supporting geographically widespread endemicity of MERS-CoV in dromedaries in both the Arabian Peninsula and countries exporting dromedaries from Africa. The high prevalence of active infection measured in juveniles and at sites where dromedary populations mix should guide further investigation – particularly of dromedary movement – and inform vaccination strategy design and evaluation through mathematical modelling.
Collapse
Affiliation(s)
- Amy Dighe
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, Medical School Building, St Mary's Hospital, Norfolk Place, London, W2 1PG, United Kingdom.
| | - Thibaut Jombart
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, Medical School Building, St Mary's Hospital, Norfolk Place, London, W2 1PG, United Kingdom; Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, Keppel St, Bloomsbury, London, WC1E 7HT, United Kingdom; UK Public Health Rapid Support Team, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom.
| | - Maria D Van Kerkhove
- Department of Global Infectious Hazards Management, Health Emergencies Program, World Health Organization, Avenue Appia 20, CH-1211, Geneva, Switzerland.
| | - Neil Ferguson
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, Medical School Building, St Mary's Hospital, Norfolk Place, London, W2 1PG, United Kingdom.
| |
Collapse
|
20
|
Zhu S, Zimmerman D, Deem SL. A Review of Zoonotic Pathogens of Dromedary Camels. ECOHEALTH 2019; 16:356-377. [PMID: 31140075 PMCID: PMC7087575 DOI: 10.1007/s10393-019-01413-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 03/12/2019] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
Dromedary, or one-humped, camels Camelus dromedarius are an almost exclusively domesticated species that are common in arid areas as both beasts of burden and production animals for meat and milk. Currently, there are approximately 30 million dromedary camels, with highest numbers in Africa and the Middle East. The hardiness of camels in arid regions has made humans more dependent on them, especially as a stable protein source. Camels also carry and may transmit disease-causing agents to humans and other animals. The ability for camels to act as a point source or vector for disease is a concern due to increasing human demands for meat, lack of biosafety and biosecurity protocols in many regions, and a growth in the interface with wildlife as camel herds become sympatric with non-domestic species. We conducted a literature review of camel-borne zoonotic diseases and found that the majority of publications (65%) focused on Middle East respiratory syndrome (MERS), brucellosis, Echinococcus granulosus, and Rift Valley fever. The high fatality from MERS outbreaks during 2012-2016 elicited an immediate response from the research community as demonstrated by a surge of MERS-related publications. However, we contend that other camel-borne diseases such as Yersinia pestis, Coxiella burnetii, and Crimean-Congo hemorrhagic fever are just as important to include in surveillance efforts. Camel populations, particularly in sub-Saharan Africa, are increasing exponentially in response to prolonged droughts, and thus, the risk of zoonoses increases as well. In this review, we provide an overview of the major zoonotic diseases present in dromedary camels, their risk to humans, and recommendations to minimize spillover events.
Collapse
Affiliation(s)
- Sophie Zhu
- Graduate Group in Epidemiology, University of California, Davis, CA, 95616, USA.
| | - Dawn Zimmerman
- Global Health Program, Smithsonian Conservation Biology Institute, Washington, DC, 20008, USA
| | - Sharon L Deem
- Institute for Conservation Medicine, Saint Louis Zoo, Saint Louis, MO, 63110, USA
| |
Collapse
|
21
|
Kelly-Cirino C, Mazzola LT, Chua A, Oxenford CJ, Van Kerkhove MD. An updated roadmap for MERS-CoV research and product development: focus on diagnostics. BMJ Glob Health 2019; 4:e001105. [PMID: 30815285 PMCID: PMC6361340 DOI: 10.1136/bmjgh-2018-001105] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/13/2018] [Accepted: 10/23/2018] [Indexed: 01/12/2023] Open
Abstract
Diagnostics play a central role in the early detection and control of outbreaks and can enable a more nuanced understanding of the disease kinetics and risk factors for the Middle East respiratory syndrome-coronavirus (MERS-CoV), one of the high-priority pathogens identified by the WHO. In this review we identified sources for molecular and serological diagnostic tests used in MERS-CoV detection, case management and outbreak investigations, as well as surveillance for humans and animals (camels), and summarised the performance of currently available tests, diagnostic needs, and associated challenges for diagnostic test development and implementation. A more detailed understanding of the kinetics of infection of MERS-CoV is needed in order to optimise the use of existing assays. Notably, MERS-CoV point-of-care tests are needed in order to optimise supportive care and to minimise transmission risk. However, for new test development, sourcing clinical material continues to be a major challenge to achieving assay validation. Harmonisation and standardisation of laboratory methods are essential for surveillance and for a rapid and effective international response to emerging diseases. Routine external quality assessment, along with well-characterised and up-to-date proficiency panels, would provide insight into MERS-CoV diagnostic performance worldwide. A defined set of Target Product Profiles for diagnostic technologies will be developed by WHO to address these gaps in MERS-CoV outbreak management.
Collapse
Affiliation(s)
| | | | - Arlene Chua
- Department of Information, Evidence and Research, WHO, Geneva, Switzerland.,Medecins Sans Frontières, Geneva, Switzerland
| | | | | |
Collapse
|
22
|
Zhou Y, Yang Y, Huang J, Jiang S, Du L. Advances in MERS-CoV Vaccines and Therapeutics Based on the Receptor-Binding Domain. Viruses 2019; 11:v11010060. [PMID: 30646569 PMCID: PMC6357101 DOI: 10.3390/v11010060] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 12/28/2022] Open
Abstract
Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV) is an infectious virus that was first reported in 2012. The MERS-CoV genome encodes four major structural proteins, among which the spike (S) protein has a key role in viral infection and pathogenesis. The receptor-binding domain (RBD) of the S protein contains a critical neutralizing domain and is an important target for development of MERS vaccines and therapeutics. In this review, we describe the relevant features of the MERS-CoV S-protein RBD, summarize recent advances in the development of MERS-CoV RBD-based vaccines and therapeutic antibodies, and illustrate potential challenges and strategies to further improve their efficacy.
Collapse
Affiliation(s)
- Yusen Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, China.
| | - Yang Yang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
| | - Jingwei Huang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA.
| | - Shibo Jiang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA.
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA.
| |
Collapse
|
23
|
Bats and Coronaviruses. Viruses 2019; 11:v11010041. [PMID: 30634396 PMCID: PMC6356540 DOI: 10.3390/v11010041] [Citation(s) in RCA: 283] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/05/2019] [Accepted: 01/07/2019] [Indexed: 11/17/2022] Open
Abstract
Bats are speculated to be reservoirs of several emerging viruses including coronaviruses (CoVs) that cause serious disease in humans and agricultural animals. These include CoVs that cause severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), porcine epidemic diarrhea (PED) and severe acute diarrhea syndrome (SADS). Bats that are naturally infected or experimentally infected do not demonstrate clinical signs of disease. These observations have allowed researchers to speculate that bats are the likely reservoirs or ancestral hosts for several CoVs. In this review, we follow the CoV outbreaks that are speculated to have originated in bats. We review studies that have allowed researchers to identify unique adaptation in bats that may allow them to harbor CoVs without severe disease. We speculate about future studies that are critical to identify how bats can harbor multiple strains of CoVs and factors that enable these viruses to “jump” from bats to other mammals. We hope that this review will enable readers to identify gaps in knowledge that currently exist and initiate a dialogue amongst bat researchers to share resources to overcome present limitations.
Collapse
|
24
|
Evaluating Camel Health in Kenya—An Example of Conservation Medicine in Action. FOWLER'S ZOO AND WILD ANIMAL MEDICINE CURRENT THERAPY, VOLUME 9 2019. [PMCID: PMC7152025 DOI: 10.1016/b978-0-323-55228-8.00016-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
MERS: Progress on the global response, remaining challenges and the way forward. Antiviral Res 2018; 159:35-44. [PMID: 30236531 PMCID: PMC7113883 DOI: 10.1016/j.antiviral.2018.09.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 09/04/2018] [Indexed: 01/04/2023]
Abstract
This article summarizes progress in research on Middle East Respiratory Syndrome (MERS) since a FAO-OIE-WHO Global Technical Meeting held at WHO Headquarters in Geneva on 25-27 September 2017. The meeting reviewed the latest scientific findings and identified and prioritized the global activities necessary to prevent, manage and control the disease. Critical needs for research and technical guidance identified during the meeting have been used to update the WHO R&D MERS-CoV Roadmap for diagnostics, therapeutics and vaccines and a broader public health research agenda. Since the 2017 meeting, progress has been made on several key actions in animal populations, at the animal/human interface and in human populations. This report also summarizes the latest scientific studies on MERS since 2017, including data from more than 50 research studies examining the presence of MERS-CoV infection in dromedary camels.
Collapse
|
26
|
Kamau E, Ongus J, Gitau G, Galgalo T, Lowther SA, Bitek A, Munyua P. Knowledge and practices regarding Middle East Respiratory Syndrome Coronavirus among camel handlers in a Slaughterhouse, Kenya, 2015. Zoonoses Public Health 2018; 66:169-173. [PMID: 30238634 PMCID: PMC7165545 DOI: 10.1111/zph.12524] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 07/31/2018] [Accepted: 08/19/2018] [Indexed: 01/21/2023]
Abstract
Dromedary camels are implicated as reservoirs for the zoonotic transmission of Middle East Respiratory Syndrome coronavirus (MERS-CoV) with the respiratory route thought to be the main mode of transmission. Knowledge and practices regarding MERS among herders, traders and slaughterhouse workers were assessed at Athi-River slaughterhouse, Kenya. Questionnaires were administered, and a check list was used to collect information on hygiene practices among slaughterhouse workers. Of 22 persons, all washed hands after handling camels, 82% wore gumboots, and 65% wore overalls/dustcoats. None of the workers wore gloves or facemasks during slaughter processes. Fourteen percent reported drinking raw camel milk; 90% were aware of zoonotic diseases with most reporting common ways of transmission as: eating improperly cooked meat (90%), drinking raw milk (68%) and slaughter processes (50%). Sixteen (73%) were unaware of MERS-CoV. Use of personal protective clothing to prevent direct contact with discharges and aerosols was lacking. Although few people working with camels were interviewed, those met at this centralized slaughterhouse lacked knowledge about MERS-CoV but were aware of zoonotic diseases and their transmission. These findings highlight need to disseminate information about MERS-CoV and enhance hygiene and biosafety practices among camel slaughterhouse workers to reduce opportunities for potential virus transmission.
Collapse
Affiliation(s)
- Esther Kamau
- State Department of Livestock, Ministry of Agriculture, Livestock and Fisheries, Nyeri, Kenya.,Field Epidemiology and Laboratory Training Programme, Nairobi, Kenya.,Medical Laboratory Sciences Department, Jomo Kenyatta University of Science and Technology, Nairobi, Kenya
| | - Juliette Ongus
- Medical Laboratory Sciences Department, Jomo Kenyatta University of Science and Technology, Nairobi, Kenya
| | - George Gitau
- Department of Clinical Studies, University of Nairobi, Nairobi, Kenya
| | - Tura Galgalo
- Division of Global Health Protection, US Centres for Disease Control and Prevention, Nairobi, Kenya
| | - Sara A Lowther
- Division of Global Health Protection, US Centres for Disease Control and Prevention, Nairobi, Kenya
| | | | - Peninah Munyua
- Division of Global Health Protection, US Centres for Disease Control and Prevention, Nairobi, Kenya
| |
Collapse
|
27
|
Gikonyo S, Kimani T, Matere J, Kimutai J, Kiambi SG, Bitek AO, Juma Ngeiywa KJZ, Makonnen YJ, Tripodi A, Morzaria S, Lubroth J, Rugalema G, Fasina FO. Mapping Potential Amplification and Transmission Hotspots for MERS-CoV, Kenya. ECOHEALTH 2018; 15:372-387. [PMID: 29549589 PMCID: PMC7088189 DOI: 10.1007/s10393-018-1317-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 10/21/2017] [Accepted: 01/24/2018] [Indexed: 02/05/2023]
Abstract
Dromedary camels have been implicated consistently as the source of Middle East respiratory syndrome coronavirus (MERS-CoV) human infections and attention to prevent and control it has focused on camels. To understanding the epidemiological role of camels in the transmission of MERS-CoV, we utilized an iterative empirical process in Geographic Information System (GIS) to identify and qualify potential hotspots for maintenance and circulation of MERS-CoV, and produced risk-based surveillance sites in Kenya. Data on camel population and distribution were used to develop camel density map, while camel farming system was defined using multi-factorial criteria including the agro-ecological zones (AEZs), production and marketing practices. Primary and secondary MERS-CoV seroprevalence data from specific sites were analyzed, and location-based prevalence matching with camel densities was conducted. High-risk convergence points (migration zones, trade routes, camel markets, slaughter slabs) were profiled and frequent cross-border camel movement mapped. Results showed that high camel-dense areas and interaction (markets and migration zones) were potential hotspot for transmission and spread. Cross-border contacts occurred with in-migrated herds at hotspot locations. AEZ differential did not influence risk distribution and plausible risk factors for spatial MERS-CoV hotspots were camel densities, previous cases of MERS-CoV, high seroprevalence and points of camel convergences. Although Kenyan camels are predisposed to MERS-CoV, no shedding is documented to date. These potential hotspots, determined using anthropogenic, system and trade characterizations should guide selection of sampling/surveillance sites, high-risk locations, critical areas for interventions and policy development in Kenya, as well as instigate further virological examination of camels.
Collapse
Affiliation(s)
- Stephen Gikonyo
- Emergency Centre for Transboundary Animal Diseases - (ECTAD) Kenya, Food and Agriculture Organization of the United Nations (FAO), UN Office in Nairobi, Gigiri, Kenya
| | - Tabitha Kimani
- Emergency Centre for Transboundary Animal Diseases - (ECTAD), Regional Office for East Africa Kenya, Food and Agriculture Organization of the United Nations (FAO), UN Office in Nairobi, Gigiri, Kenya
| | - Joseph Matere
- Emergency Centre for Transboundary Animal Diseases - (ECTAD) Kenya, Food and Agriculture Organization of the United Nations (FAO), UN Office in Nairobi, Gigiri, Kenya
| | - Joshua Kimutai
- Emergency Centre for Transboundary Animal Diseases - (ECTAD) Kenya, Food and Agriculture Organization of the United Nations (FAO), UN Office in Nairobi, Gigiri, Kenya
| | - Stella G Kiambi
- Emergency Centre for Transboundary Animal Diseases - (ECTAD) Kenya, Food and Agriculture Organization of the United Nations (FAO), UN Office in Nairobi, Gigiri, Kenya
| | - Austine O Bitek
- Emergency Centre for Transboundary Animal Diseases - (ECTAD) Kenya, Food and Agriculture Organization of the United Nations (FAO), UN Office in Nairobi, Gigiri, Kenya
| | - K J Z Juma Ngeiywa
- Directorate of Veterinary Services, State Department of Livestock, Ministry of Agriculture, Livestock and Fisheries, Nairobi, Kenya
| | - Yilma J Makonnen
- Emergency Centre for Transboundary Animal Diseases - (ECTAD), Regional Office for East Africa Kenya, Food and Agriculture Organization of the United Nations (FAO), UN Office in Nairobi, Gigiri, Kenya
| | - Astrid Tripodi
- Animal Health Service, Animal Production and Health Division, Food and Agriculture Organization of the UN (FAO), Rome, Italy
| | - Subhash Morzaria
- Animal Health Service, Animal Production and Health Division, Food and Agriculture Organization of the UN (FAO), Rome, Italy
| | - Juan Lubroth
- Animal Health Service, Animal Production and Health Division, Food and Agriculture Organization of the UN (FAO), Rome, Italy
| | - Gabriel Rugalema
- Emergency Centre for Transboundary Animal Diseases - (ECTAD) Kenya, Food and Agriculture Organization of the United Nations (FAO), UN Office in Nairobi, Gigiri, Kenya
| | - Folorunso Oludayo Fasina
- Emergency Centre for Transboundary Animal Diseases - (ECTAD) Kenya, Food and Agriculture Organization of the United Nations (FAO), UN Office in Nairobi, Gigiri, Kenya.
- Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
28
|
Browne AS, Fèvre EM, Kinnaird M, Muloi DM, Wang CA, Larsen PS, O'Brien T, Deem SL. Serosurvey of Coxiella burnetii (Q fever) in Dromedary Camels (Camelus dromedarius) in Laikipia County, Kenya. Zoonoses Public Health 2017; 64:543-549. [PMID: 28176495 PMCID: PMC5655913 DOI: 10.1111/zph.12337] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Indexed: 12/19/2022]
Abstract
Dromedary camels (Camelus dromedarius) are an important protein source for people in semi-arid and arid regions of Africa. In Kenya, camel populations have grown dramatically in the past few decades resulting in the potential for increased disease transmission between humans and camels. An estimated four million Kenyans drink unpasteurized camel milk, which poses a disease risk. We evaluated the seroprevalence of a significant zoonotic pathogen, Coxiella burnetii (Q fever), among 334 camels from nine herds in Laikipia County, Kenya. Serum testing revealed 18.6% positive seroprevalence of Coxiella burnetii (n = 344). Increasing camel age was positively associated with C. burnetii seroprevalence (OR = 5.36). Our study confirmed that camels living in Laikipia County, Kenya, have been exposed to the zoonotic pathogen, C. burnetii. Further research to evaluate the role of camels in disease transmission to other livestock, wildlife and humans in Kenya should be conducted.
Collapse
Affiliation(s)
- A. S. Browne
- Molecular Epidemiology and Public Health LaboratoryHopkirk Research InstituteMassey UniversityPalmerston NorthNZ
| | - E. M. Fèvre
- Institute of Infection and Global HealthUniversity of LiverpoolNestonUK
- International Livestock Research InstituteNairobiKE
| | | | - D. M. Muloi
- Centre for Immunity, Infection and EvolutionUniversity of EdinburghEdinburghUK
| | - C. A. Wang
- College of Veterinary MedicineNorth Carolina State UniversityRaleighNCUSA
| | - P. S. Larsen
- Department of EpidemiologySchool of Public HealthUniversity of MichiganAnn ArborMIUSA
| | - T. O'Brien
- Mpala Research CentreNanyukiKE
- Wildlife Conservation SocietyGlobal Conservation ProgramsBronx, New YorkNYUSA
| | - S. L. Deem
- Saint Louis Zoo Institute for Conservation MedicineSaint LouisMOUSA
| |
Collapse
|
29
|
Kasem S, Qasim I, Al-Hufofi A, Hashim O, Alkarar A, Abu-Obeida A, Gaafer A, Elfadil A, Zaki A, Al-Romaihi A, Babekr N, El-Harby N, Hussien R, Al-Sahaf A, Al-Doweriej A, Bayoumi F, Poon LLM, Chu DKW, Peiris M, Perera RAPM. Cross-sectional study of MERS-CoV-specific RNA and antibodies in animals that have had contact with MERS patients in Saudi Arabia. J Infect Public Health 2017; 11:331-338. [PMID: 28993171 PMCID: PMC7102853 DOI: 10.1016/j.jiph.2017.09.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 08/22/2017] [Accepted: 09/09/2017] [Indexed: 12/20/2022] Open
Abstract
Background Middle East respiratory syndrome coronavirus (MERS-CoV) is a newly emerged coronavirus that is associated with a severe respiratory disease in humans in the Middle East. The epidemiological profiles of the MERS-CoV infections suggest zoonotic transmission from an animal reservoir to humans. Methods This study was designed to investigate animal herds associated with Middle East respiratory syndrome (MERS)-infected patients in Saudi Arabia, during the last three years (2014–2016). Nasal swabs and serum samples from 584 dromedary camels, 39 sheep, 51 goats, and 2 cattle were collected. Nasal samples from camels, sheep, goats, and cattle were examined by real-time reverse-transcription PCR (RT-PCR) to detect MERS-CoV RNA, and the Anti-MERS ELISA assay was performed to detect camel humeral immune response (IgG) to MERS-CoV S1 antigen infection. The complete genome sequencing of ten MERS-CoV camel isolates and phylogenetic analysis was performed. Results The data indicated that seventy-five dromedary camels were positive for MERS-CoV RNA; the virus was not detected in sheep, goats, and cattle. MERS-CoV RNA from infected camels was not detected beyond 2 weeks after the first positive result was detected in nasal swabs obtained from infected camels. Anti-MERS ELISA assays showed that 70.9% of camels related to human cases had antibodies to MERS-CoV. The full genome sequences of the ten MERS-CoV camel isolates were identical to their corresponding patients and were grouped together within the larger MERS-CoV sequences cluster for human and camel isolates reported form the Arabian Peninsula. Conclusions These findings indicate that camels are a significant reservoir for the maintenance of MERS-CoVs, and they are an important source of human infection with MERS.
Collapse
Affiliation(s)
- Samy Kasem
- Department of Animal Resources, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh 11195, Saudi Arabia; Department of Virology, Faculty of Veterinary Medicine, Kafrelsheikh University, El Geish Street, Kafrelsheikh 33516, Egypt.
| | - Ibraheem Qasim
- Department of Animal Resources, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh 11195, Saudi Arabia
| | - Ali Al-Hufofi
- Department of Veterinary Laboratory, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh 11195, Saudi Arabia
| | - Osman Hashim
- Department of Animal Resources, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh 11195, Saudi Arabia
| | - Ali Alkarar
- Department of Animal Resources, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh 11195, Saudi Arabia
| | - Ali Abu-Obeida
- Department of Animal Resources, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh 11195, Saudi Arabia
| | - Albagir Gaafer
- Department of Animal Resources, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh 11195, Saudi Arabia
| | - Abdelhamid Elfadil
- Department of Animal Resources, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh 11195, Saudi Arabia
| | - Ahmed Zaki
- Department of Veterinary Laboratory, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh 11195, Saudi Arabia
| | - Ahmed Al-Romaihi
- Department of Veterinary Laboratory, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh 11195, Saudi Arabia
| | - Nasereldeen Babekr
- Department of Animal Resources, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh 11195, Saudi Arabia
| | - Nadr El-Harby
- Department of Animal Resources, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh 11195, Saudi Arabia
| | - Raed Hussien
- Department of Animal Resources, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh 11195, Saudi Arabia
| | - Ali Al-Sahaf
- Department of Animal Resources, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh 11195, Saudi Arabia
| | - Ali Al-Doweriej
- Department of Animal Resources, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh 11195, Saudi Arabia
| | - Faisal Bayoumi
- Department of Animal Resources, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh 11195, Saudi Arabia
| | - Leo L M Poon
- Public Health Laboratory Sciences, School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Daniel K W Chu
- Public Health Laboratory Sciences, School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Malik Peiris
- Public Health Laboratory Sciences, School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Ranawaka A P M Perera
- Public Health Laboratory Sciences, School of Public Health, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
30
|
|
31
|
Salem E, Cook EAJ, Lbacha HA, Oliva J, Awoume F, Aplogan GL, Hymann EC, Muloi D, Deem SL, Alali S, Zouagui Z, Fèvre EM, Meyer G, Ducatez MF. Serologic Evidence for Influenza C and D Virus among Ruminants and Camelids, Africa, 1991-2015. Emerg Infect Dis 2017; 23:1556-1559. [PMID: 28820371 PMCID: PMC5572875 DOI: 10.3201/eid2309.170342] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Influenza D virus has been identified in America, Europe, and Asia. We detected influenza D virus antibodies in cattle and small ruminants from North (Morocco) and West (Togo and Benin) Africa. Dromedary camels in Kenya harbored influenza C or D virus antibodies, indicating a potential new host for these viruses.
Collapse
|
32
|
Munyua P, Corman VM, Bitek A, Osoro E, Meyer B, Müller MA, Lattwein E, Thumbi SM, Murithi R, Widdowson MA, Drosten C, Njenga MK. No Serologic Evidence of Middle East Respiratory Syndrome Coronavirus Infection Among Camel Farmers Exposed to Highly Seropositive Camel Herds: A Household Linked Study, Kenya, 2013. Am J Trop Med Hyg 2017; 96:1318-1324. [PMID: 28719257 DOI: 10.4269/ajtmh.16-0880] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
AbstractHigh seroprevalence of Middle East respiratory syndrome coronavirus (MERS-CoV) among camels has been reported in Kenya and other countries in Africa. To date, the only report of MERS-CoV seropositivity among humans in Kenya is of two livestock keepers with no known contact with camels. We assessed whether persons exposed to seropositive camels at household level had serological evidence of infection. In 2013, 760 human and 879 camel sera were collected from 275 and 85 households respectively in Marsabit County. Data on human and animal demographics and type of contact with camels were collected. Human and camel sera were tested for anti-MERS-CoV IgG using a commercial enzyme-linked immunosorbent assay (ELISA) test. Human samples were confirmed by plaque reduction neutralization test (PRNT). Logistic regression was used to identify factors associated with seropositivity. The median age of persons sampled was 30 years (range: 5-90) and 50% were males. A quarter (197/760) of the participants reported having had contact with camels defined as milking, feeding, watering, slaughtering, or herding. Of the human sera, 18 (2.4%) were positive on ELISA but negative by PRNT. Of the camel sera, 791 (90%) were positive on ELISA. On univariate analysis, higher prevalence was observed in female and older camels over 4 years of age (P < 0.05). On multivariate analysis, only age remained significantly associated with increased odds of seropositivity. Despite high seroprevalence among camels, there was no serological confirmation of MERS-CoV infection among camel pastoralists in Marsabit County. The high seropositivity suggests that MERS-CoV or other closely related virus continues to circulate in camels and highlights ongoing potential for animal-to-human transmission.
Collapse
Affiliation(s)
- Peninah Munyua
- Global Disease Detection Program, Division of Global Health Protection, U.S. Centers for Disease Control and Prevention, Nairobi, Kenya
| | - Victor Max Corman
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany.,German Centre for Infection Research, Partner Site Bonn-Cologne, Bonn, Germany
| | - Austine Bitek
- State Department of Veterinary Services; Ministry of Agriculture Livestock and Fisheries, Nairobi, Kenya
| | - Eric Osoro
- Department of Preventive and Promotive Health, Ministry of Health, Nairobi, Kenya
| | - Benjamin Meyer
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
| | - Marcel A Müller
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
| | | | - S M Thumbi
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington.,Center for Global Health Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Rees Murithi
- State Department of Veterinary Services; Ministry of Agriculture Livestock and Fisheries, Nairobi, Kenya
| | - Marc-Alain Widdowson
- Global Disease Detection Program, Division of Global Health Protection, U.S. Centers for Disease Control and Prevention, Nairobi, Kenya
| | - Christian Drosten
- German Centre for Infection Research, Partner Site Bonn-Cologne, Bonn, Germany.,Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
| | - M Kariuki Njenga
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington.,Center for Global Health Research, Kenya Medical Research Institute, Nairobi, Kenya
| |
Collapse
|
33
|
Correction: Serological Evidence of MERS-CoV Antibodies in Dromedary Camels (Camelus dromedaries) in Laikipia County, Kenya. PLoS One 2017; 12:e0178310. [PMID: 28542448 PMCID: PMC5436855 DOI: 10.1371/journal.pone.0178310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
34
|
Miguel E, Chevalier V, Ayelet G, Ben Bencheikh MN, Boussini H, Chu DK, El Berbri I, Fassi-Fihri O, Faye B, Fekadu G, Grosbois V, Ng BC, Perera RA, So TY, Traore A, Roger F, Peiris M. Risk factors for MERS coronavirus infection in dromedary camels in Burkina Faso, Ethiopia, and Morocco, 2015. Euro Surveill 2017; 22:30498. [PMID: 28382915 PMCID: PMC5388105 DOI: 10.2807/1560-7917.es.2017.22.13.30498] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 02/03/2017] [Indexed: 11/20/2022] Open
Abstract
Understanding Middle East respiratory syndrome coronavirus (MERS-CoV) transmission in dromedary camels is important, as they consitute a source of zoonotic infection to humans. To identify risk factors for MERS-CoV infection in camels bred in diverse conditions in Burkina Faso, Ethiopia and Morocco, blood samples and nasal swabs were sampled in February-March 2015. A relatively high MERS-CoV RNA rate was detected in Ethiopia (up to 15.7%; 95% confidence interval (CI): 8.2-28.0), followed by Burkina Faso (up to 12.2%; 95% CI: 7-20.4) and Morocco (up to 7.6%; 95% CI: 1.9-26.1). The RNA detection rate was higher in camels bred for milk or meat than in camels for transport (p = 0.01) as well as in younger camels (p = 0.06). High seropositivity rates (up to 100%; 95% CI: 100-100 and 99.4%; 95% CI: 95.4-99.9) were found in Morocco and Ethiopia, followed by Burkina Faso (up to 84.6%; 95% CI: 77.2-89.9). Seropositivity rates were higher in large/medium herds (≥51 camels) than small herds (p = 0.061), in camels raised for meat or milk than for transport (p = 0.01), and in nomadic or sedentary herds than in herds with a mix of these lifestyles (p < 0.005).
Collapse
Affiliation(s)
- Eve Miguel
- Cirad UPR AGIRs, Montpellier, France
- UMR CNRS, IRD, UM, 5290 MIVEGEC, Montpellier, France
| | | | | | | | | | - Daniel Kw Chu
- School of Public Health, The University of Hong Kong, Hong Kong Special Adminstrative Region, China
| | | | | | | | | | | | - Bryan Cy Ng
- School of Public Health, The University of Hong Kong, Hong Kong Special Adminstrative Region, China
| | - Ranawaka Apm Perera
- School of Public Health, The University of Hong Kong, Hong Kong Special Adminstrative Region, China
| | - T Y So
- School of Public Health, The University of Hong Kong, Hong Kong Special Adminstrative Region, China
| | | | | | - Malik Peiris
- School of Public Health, The University of Hong Kong, Hong Kong Special Adminstrative Region, China
| |
Collapse
|
35
|
Falzarano D, Kamissoko B, de Wit E, Maïga O, Cronin J, Samaké K, Traoré A, Milne-Price S, Munster VJ, Sogoba N, Niang M, Safronetz D, Feldmann H. Dromedary camels in northern Mali have high seropositivity to MERS-CoV. One Health 2017; 3:41-43. [PMID: 28616502 PMCID: PMC5454179 DOI: 10.1016/j.onehlt.2017.03.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/07/2017] [Accepted: 03/09/2017] [Indexed: 12/02/2022] Open
Abstract
A high percentage (up to 90%) of dromedary camels in the Middle East as well as eastern and central Africa have antibodies to Middle East respiratory syndrome coronavirus (MERS-CoV). Here we report comparably high positivity of MERS-CoV antibodies in dromedary camels from northern Mali. This extends the range of MERS-CoV further west in Africa than reported to date and cautions that MERS-CoV should be considered in cases of severe respiratory disease in the region. Dromedary camels in northern Mali have serological evidence of exposure to MERS-CoV. 88% of camels tested were ELISA positive. 78% of camels had neutralizing antibodies. MERS should be considered to be present in northern Malian camels.
Collapse
Affiliation(s)
- Darryl Falzarano
- Laboratory of Virology, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, 903 South 4th Street, Hamilton, MT 59840, USA
| | - Badian Kamissoko
- Laboratoire Central Vétérinaire, Route de Koulikoro, BP 2295 Bamako, Mali
| | - Emmie de Wit
- Laboratory of Virology, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, 903 South 4th Street, Hamilton, MT 59840, USA
| | - Ousmane Maïga
- International Center for Excellence in Research, Malaria Research and Training Center, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Jacqueline Cronin
- Laboratory of Virology, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, 903 South 4th Street, Hamilton, MT 59840, USA
| | - Kassim Samaké
- Laboratoire Central Vétérinaire, Route de Koulikoro, BP 2295 Bamako, Mali
| | - Abdalah Traoré
- Laboratoire Central Vétérinaire, Route de Koulikoro, BP 2295 Bamako, Mali
| | - Shauna Milne-Price
- Laboratory of Virology, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, 903 South 4th Street, Hamilton, MT 59840, USA
| | - Vincent J Munster
- Laboratory of Virology, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, 903 South 4th Street, Hamilton, MT 59840, USA
| | - Nafomon Sogoba
- International Center for Excellence in Research, Malaria Research and Training Center, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Mamadou Niang
- Laboratoire Central Vétérinaire, Route de Koulikoro, BP 2295 Bamako, Mali
| | - David Safronetz
- Laboratory of Virology, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, 903 South 4th Street, Hamilton, MT 59840, USA
| | - Heinz Feldmann
- Laboratory of Virology, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, 903 South 4th Street, Hamilton, MT 59840, USA
| |
Collapse
|
36
|
Robinette C, Saffran L, Ruple A, Deem SL. Zoos and public health: A partnership on the One Health frontier. One Health 2016; 3:1-4. [PMID: 28616495 PMCID: PMC5454182 DOI: 10.1016/j.onehlt.2016.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/31/2016] [Accepted: 11/15/2016] [Indexed: 11/11/2022] Open
Abstract
Today, accredited zoos are not just places for entertainment, they are actively involved in research for conservation and health. During recent decades in which the challenges for biodiversity conservation and public health have escalated, zoos have made significant changes to address these difficulties. Zoos increasingly have four key areas of focus: education, recreation, conservation, and research. These key areas are important in addressing an interrelated global conservation (i.e. habitat and wildlife loss) and public health crisis. Zoo and public health professionals working together within a One Health framework represent a powerful alliance to address current and future conservation and public health problems around the world. For researchers, practitioners, and students, the collaboration between zoos and public health institutions offers the opportunity to both teach and operationalize this transdisciplinary approach. Using examples from our programs, we give a template for moving forward with collaborative initiatives and sustainable solutions involving partners in both zoos and public health institutions. We provide examples of cooperative programs and suggest a model for consideration in the development of further activities in this area.
Collapse
Affiliation(s)
- C Robinette
- Department of Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, United States
| | - L Saffran
- University of Missouri, Columbia, MO 65201, United States
| | - A Ruple
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, United States
| | - S L Deem
- University of Missouri, Columbia, MO 65201, United States.,Institute for Conservation Medicine, Saint Louis Zoo, St. Louis, MO 63110, United States
| |
Collapse
|
37
|
Funk AL, Goutard FL, Miguel E, Bourgarel M, Chevalier V, Faye B, Peiris JSM, Van Kerkhove MD, Roger FL. MERS-CoV at the Animal-Human Interface: Inputs on Exposure Pathways from an Expert-Opinion Elicitation. Front Vet Sci 2016; 3:88. [PMID: 27761437 PMCID: PMC5051548 DOI: 10.3389/fvets.2016.00088] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 09/14/2016] [Indexed: 12/30/2022] Open
Abstract
Nearly 4 years after the first report of the emergence of Middle-East respiratory syndrome Coronavirus (MERS-CoV) and nearly 1800 human cases later, the ecology of MERS-CoV, its epidemiology, and more than risk factors of MERS-CoV transmission between camels are poorly understood. Knowledge about the pathways and mechanisms of transmission from animals to humans is limited; as of yet, transmission risks have not been quantified. Moreover the divergent sanitary situations and exposures to animals among populations in the Arabian Peninsula, where human primary cases appear to dominate, vs. other regions in the Middle East and Africa, with no reported human clinical cases and where the virus has been detected only in dromedaries, represents huge scientific and health challenges. Here, we have used expert-opinion elicitation in order to obtain ideas on relative importance of MERS-CoV risk factors and estimates of transmission risks from various types of contact between humans and dromedaries. Fourteen experts with diverse and extensive experience in MERS-CoV relevant fields were enrolled and completed an online questionnaire that examined pathways based on several scenarios, e.g., camels-camels, camels-human, bats/other species to camels/humans, and the role of diverse biological substances (milk, urine, etc.) and potential fomites. Experts believed that dromedary camels play the largest role in MERS-CoV infection of other dromedaries; however, they also indicated a significant influence of the season (i.e. calving or weaning periods) on transmission risk. All experts thought that MERS-CoV-infected dromedaries and asymptomatic humans play the most important role in infection of humans, with bats and other species presenting a possible, but yet undefined, risk. Direct and indirect contact of humans with dromedary camels were identified as the most risky types of contact, when compared to consumption of various camel products, with estimated "most likely" incidence risks of at least 22 and 13% for direct and indirect contact, respectively. The results of our study are consistent with available, yet very limited, published data regarding the potential pathways of transmission of MERS-CoV at the animal-human interface. These results identify key knowledge gaps and highlight the need for more comprehensive, yet focused research to be conducted to better understand transmission between dromedaries and humans.
Collapse
Affiliation(s)
| | | | - Eve Miguel
- Cirad, UPR AGIRs Research Unit, Montpellier, France; UMR MIVEGEC, IRD 224-CNRS 5290-UM, Montpellier, France
| | | | | | - Bernard Faye
- Cirad, UPR AGIRs Research Unit , Montpellier , France
| | - J S Malik Peiris
- HKU-Pasteur Research Pole, Hong Kong, China; School of Public Health, University of Hong Kong, Hong Kong, China
| | | | | |
Collapse
|
38
|
Younan M, Bornstein S, Gluecks IV. MERS and the dromedary camel trade between Africa and the Middle East. Trop Anim Health Prod 2016; 48:1277-82. [PMID: 27324244 PMCID: PMC7089074 DOI: 10.1007/s11250-016-1089-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 06/08/2016] [Indexed: 12/21/2022]
Abstract
Dromedary camels are the most likely source for the coronavirus that sporadically causes Middle East respiratory syndrome (MERS) in humans. Serological results from archived camel sera provide evidence for circulation of MERS coronavirus (MERS-CoV) among dromedary camels in the Greater Horn of Africa as far back as 1983 and in Saudi Arabia as far back as 1992. High seroprevalences of MERS-CoV antibodies and the high virus prevalence in Saudi Arabian dromedary camels indicate an endemicity of the virus in the Arabian Peninsula, which predates the 2012 human MERS index case. Saudi Arabian dromedary camels show significantly higher MERS-CoV carrier rates than dromedary camels imported from Africa. Two MERS-CoV lineages identified in Nigerian camels were found to be genetically distinct from those found in camels and humans in the Middle East. This supports the hypothesis that camel imports from Africa are not of significance for circulation of the virus in camel populations of the Arabian Peninsula.
Collapse
Affiliation(s)
- M Younan
- Animal Health and Livestock Consultant, P.O. Box 847-10400, Nanyuki, Kenya.
| | - S Bornstein
- National Veterinary Institute, Uppsala, Sweden
| | - I V Gluecks
- Animal Health and Livestock Consultant, P.O. Box 25654-00603, Nairobi, Kenya
| |
Collapse
|
39
|
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV), an emerging infectious disease of growing global importance, has caused severe acute respiratory disease in more than 1600 people, resulting in almost 600 deaths. The high case fatality rate, growing geographic distribution and vaguely defined epidemiology of this novel pathogen have created an urgent need for effective public health countermeasures, including safe and effective treatment strategies. Despite the relatively few numbers of cases to date, research and development of MERS-CoV therapeutic candidates is advancing quickly. This review surveys the landscape of these efforts and assesses their potential for use in affected populations.
Collapse
Affiliation(s)
- Kayvon Modjarrad
- US Military HIV Research Program, Walter Reed Army Institute of Research, Bethesda, USA
| |
Collapse
|
40
|
Mackay IM, Arden KE. MERS coronavirus: diagnostics, epidemiology and transmission. Virol J 2015; 12:222. [PMID: 26695637 PMCID: PMC4687373 DOI: 10.1186/s12985-015-0439-5] [Citation(s) in RCA: 240] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/27/2015] [Indexed: 01/04/2023] Open
Abstract
The first known cases of Middle East respiratory syndrome (MERS), associated with infection by a novel coronavirus (CoV), occurred in 2012 in Jordan but were reported retrospectively. The case first to be publicly reported was from Jeddah, in the Kingdom of Saudi Arabia (KSA). Since then, MERS-CoV sequences have been found in a bat and in many dromedary camels (DC). MERS-CoV is enzootic in DC across the Arabian Peninsula and in parts of Africa, causing mild upper respiratory tract illness in its camel reservoir and sporadic, but relatively rare human infections. Precisely how virus transmits to humans remains unknown but close and lengthy exposure appears to be a requirement. The KSA is the focal point of MERS, with the majority of human cases. In humans, MERS is mostly known as a lower respiratory tract (LRT) disease involving fever, cough, breathing difficulties and pneumonia that may progress to acute respiratory distress syndrome, multiorgan failure and death in 20% to 40% of those infected. However, MERS-CoV has also been detected in mild and influenza-like illnesses and in those with no signs or symptoms. Older males most obviously suffer severe disease and MERS patients often have comorbidities. Compared to severe acute respiratory syndrome (SARS), another sometimes- fatal zoonotic coronavirus disease that has since disappeared, MERS progresses more rapidly to respiratory failure and acute kidney injury (it also has an affinity for growth in kidney cells under laboratory conditions), is more frequently reported in patients with underlying disease and is more often fatal. Most human cases of MERS have been linked to lapses in infection prevention and control (IPC) in healthcare settings, with approximately 20% of all virus detections reported among healthcare workers (HCWs) and higher exposures in those with occupations that bring them into close contact with camels. Sero-surveys have found widespread evidence of past infection in adult camels and limited past exposure among humans. Sensitive, validated reverse transcriptase real-time polymerase chain reaction (RT-rtPCR)-based diagnostics have been available almost from the start of the emergence of MERS. While the basic virology of MERS-CoV has advanced over the past three years, understanding of the interplay between camel, environment, and human remains limited.
Collapse
Affiliation(s)
- Ian M Mackay
- Department of Health, Public and Environmental Health Virology Laboratory, Forensic and Scientific Services, Archerfield, QLD, Australia.
- The University of Queensland, St Lucia, QLD, Australia.
- Queensland University of Technology, George St, Brisbane, QLD, Australia.
| | | |
Collapse
|