1
|
Murungi MK, Thomas LF, Bor N, Masaku I, Anyango M, Munywoki PN, Glazer C, Muloi DM, Fèvre EM. Demography of owned dogs across an East African continuum of high-low human density. Prev Vet Med 2025; 239:106518. [PMID: 40158244 DOI: 10.1016/j.prevetmed.2025.106518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/02/2025]
Abstract
Understanding the demographics of domestic dogs is essential for effective disease control strategies, particularly in areas where dogs serve as reservoirs of diseases, such as rabies. In this study, conducted in a region proximate to Nairobi, Kenya, we aimed to address the lack of current data on dog demographics. This area spans a high-to-low human density continuum, providing a unique setting for examining the relationship between human and dog populations. We used a household (HH) survey approach, stratifying the area by human population density and selecting sub-locations for every 10th percentile of the population density stratum. Households were randomly selected across strata to estimate the population of owned dogs, which was then extrapolated to the county level. Additionally, a negative binomial regression model was used to analyse the factors influencing the number of dogs owned by households. We found a human-to-owned dog ratio of 3.3:1, indicating an estimated owned dog population of 421,079 (95 % CI: 408,702-424,950) in a county with 1414,022 humans in the last census, with 65 % of the households owning a mean of 2.45 dogs. Multivariable analysis revealed that the presence of a female dog had the strongest association with owning more dogs (OR = 3.08, CI: 2.71-3.50). Wealthier households (OR = 1.67, 95 % CI: 1.12-2.49), those keeping livestock (OR = 1.67, 95 % CI: 1.36-2.02), and larger households (OR = 1.05, 95 % CI: 1.03-1.07) were significantly more likely to own more dogs. These findings suggest that actual human-dog ratios may be higher than estimated in sub-Saharan Africa. Accurate dog demographic data is important for dog-mediated disease and conditions control strategies due to its important logistical and financial implications for implementing targeted control initiatives to improve public health and animal welfare.
Collapse
Affiliation(s)
- Maurice K Murungi
- International Livestock Research Institute, Nairobi, Kenya; Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom.
| | - Lian F Thomas
- International Livestock Research Institute, Nairobi, Kenya; Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom; Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburg, United Kingdom
| | - Nicholas Bor
- International Livestock Research Institute, Nairobi, Kenya
| | - Ian Masaku
- International Livestock Research Institute, Nairobi, Kenya
| | - Mercy Anyango
- International Livestock Research Institute, Nairobi, Kenya
| | | | - Camille Glazer
- International Livestock Research Institute, Nairobi, Kenya; Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Dishon M Muloi
- International Livestock Research Institute, Nairobi, Kenya; Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Eric M Fèvre
- International Livestock Research Institute, Nairobi, Kenya; Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom.
| |
Collapse
|
2
|
Gharpure R, Vegvari C, Abdissa A, Alimi Y, Anyamba A, Auerbach J, Bett B, Bird BH, Bob NS, Breugelmans JG, Clark J, Cleaveland S, Cramer J, Dawa J, Fay PC, Formenty P, Gerdts V, Gerken KN, Gitonga J, Groschup M, Heighway J, Johnson SAM, Juma J, Kading RC, Kamau M, Kerama S, Lubisi BA, Lutwama J, Luyimbazi D, Marami D, Moore SM, Muturi M, Mwangoka G, Ndiu A, Njenga MK, Njouom R, Nyakarahuka L, Nzietchueng S, Oloo P, Otiende M, Oyola S, Paganini LS, Pandit PS, Punt C, Samy AM, Situma S, Sneddon H, Ten Bosch QA, Tezcan-Ulger S, Thompson PN, Tildesley M, Tinto B, Vesga JF, Wichgers Schreur PP, Hart P. Meeting report: CEPI workshop on Rift Valley fever epidemiology and modeling to inform human vaccine development, Nairobi, 4-5 June 2024. Vaccine 2025; 54:126860. [PMID: 40101455 DOI: 10.1016/j.vaccine.2025.126860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 03/20/2025]
Abstract
Rift Valley fever (RVF) is a zoonotic viral disease that causes epidemics and epizootics among humans and livestock, resulting in substantial health and socioeconomic consequences. Currently, there are no RVF vaccines licensed for humans, but several candidates show promise in early-stage development. Existing gaps in RVF epidemiological data and challenges associated with predicting RVF outbreak risk complicate the planning of efficacy studies, making the pathway to licensure for promising candidates unclear. In June 2024, the Coalition for Epidemic Preparedness Innovations (CEPI) convened a two-day workshop in Nairobi, Kenya, to discuss RVF epidemiology, modeling priorities, and specific gaps relevant to human RVF vaccine development. The workshop included representatives from multiple RVF-endemic countries, key global collaborators, and international health organizations. Workshop participants identified five key priorities: (1) Looking beyond outbreaks: There is a need to better characterize the complex One Health epidemiology of RVF and understand interepidemic persistence of the virus; (2) Better data for better models: Epidemiological modeling is crucial for research, prediction, and planning, but it requires accurate and representative data; (3) New, improved and accessible diagnostics and serological assays: These are needed to inform epidemiology and case definitions, without which RVF research will continue to suffer due to paucity of data and challenges in determining infection and exposure; (4) Defining use cases, regulatory pathways, and implementation strategies for human vaccines: Clarity on these topics will facilitate licensure and effective use of RVF vaccines; and (5) People-centered approaches: Community engagement and involvement of social and behavioral scientists are key to the success of human vaccine research and development and implementation, particularly as the virus impacts livestock and livelihoods. Workshop participants welcomed a renewed focus for RVF epidemiology and modeling, and expressed enthusiasm for continued multidisciplinary collaborations to support enabling sciences for human RVF vaccine research and development.
Collapse
Affiliation(s)
- Radhika Gharpure
- Coalition for Epidemic Preparedness Innovations, Oslo, Norway, London, UK, and Washington, DC, USA.
| | - Carolin Vegvari
- Coalition for Epidemic Preparedness Innovations, Oslo, Norway, London, UK, and Washington, DC, USA
| | | | - Yewande Alimi
- Africa Centres for Disease Control and Prevention, Addis Ababa, Ethiopia
| | - Assaf Anyamba
- University of Maryland Baltimore County and NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - Jochen Auerbach
- Coalition for Epidemic Preparedness Innovations, Oslo, Norway, London, UK, and Washington, DC, USA
| | - Bernard Bett
- International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Brian H Bird
- School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | | | - J Gabrielle Breugelmans
- Coalition for Epidemic Preparedness Innovations, Oslo, Norway, London, UK, and Washington, DC, USA
| | - Jessica Clark
- School of Biodiversity, One Health and Veterinary Medicine, Univeristy of Glasgow, Glasgow, UK
| | - Sarah Cleaveland
- School of Biodiversity, One Health and Veterinary Medicine, Univeristy of Glasgow, Glasgow, UK
| | - Jakob Cramer
- Coalition for Epidemic Preparedness Innovations, Oslo, Norway, London, UK, and Washington, DC, USA
| | - Jeanette Dawa
- Center for Epidemiological Modelling and Analysis, University of Nairobi, Nairobi, Kenya
| | | | | | - Volker Gerdts
- Vaccine and Infectious Disease Organization, University of Saskachewan, Saskatoon, Canada
| | - Keli N Gerken
- University of Liverpool, Institute of Infection, Veterinary, and Ecological Sciences, Liverpool, UK
| | - John Gitonga
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Martin Groschup
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Germany
| | - James Heighway
- Coalition for Epidemic Preparedness Innovations, Oslo, Norway, London, UK, and Washington, DC, USA
| | | | - John Juma
- International Livestock Research Institute (ILRI), Nairobi, Kenya
| | | | | | | | | | | | | | - Dadi Marami
- Haramaya University, College of Health and Medical Sciences, Harar, Ethiopia
| | - Sean M Moore
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Angela Ndiu
- Washington State University Global Health Kenya, Nairobi, Kenya
| | | | | | | | - Serge Nzietchueng
- Food and Agriculture Organization of the United Nations, Nairobi, Kenya
| | - Paul Oloo
- Coalition for Epidemic Preparedness Innovations, Oslo, Norway, London, UK, and Washington, DC, USA
| | - Mark Otiende
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Samuel Oyola
- International Livestock Research Institute (ILRI), Nairobi, Kenya
| | | | - Pranav S Pandit
- School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Carine Punt
- Bunyavax, LARISSA II project, Lelystad, Netherlands
| | - Abdallah M Samy
- Medical Ain Shams Research Institute (MASRI), Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Silvia Situma
- Washington State University Global Health Kenya, Nairobi, Kenya
| | - Heidi Sneddon
- Coalition for Epidemic Preparedness Innovations, Oslo, Norway, London, UK, and Washington, DC, USA
| | | | | | | | - Mike Tildesley
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry, UK
| | - Bachirou Tinto
- Institit de recherche en sciences de la santé (IRSS), Ouagadougou, Burkina Faso
| | | | | | - Peter Hart
- Coalition for Epidemic Preparedness Innovations, Oslo, Norway, London, UK, and Washington, DC, USA.
| |
Collapse
|
3
|
Laine CG, Johnson VE, Scott HM, Arenas-Gamboa AM. Malaria misdiagnosis substantially contributes to the underestimation of global human brucellosis incidence. BMC Public Health 2025; 25:1425. [PMID: 40241014 PMCID: PMC12001719 DOI: 10.1186/s12889-025-22665-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 04/07/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Brucellosis is a neglected and re-emerging zoonotic disease of nearly worldwide distribution. Recently, a new model utilizing publicly available data, voluntarily provided by countries to the World Organization for Animal Health (WOAH), estimated a global annual incidence of at least 1.62-2.10 million cases. However, global and regional knowledge gaps, partially attributed to lack of diagnostic capability and disease unawareness, result in misdiagnosis. METHODS This study incorporated misdiagnosis to assess the potential impact on incidence estimates. Specifically, we examined the potential impact of misdiagnosing brucellosis as malaria. Incidence rates modeled from WOAH data comprised a baseline estimate for brucellosis rates. A range of potential misdiagnosis rates based on World Bank malaria data and scientific literature were utilized to estimate the number of misdiagnosed cases. We assumed a conservative misdiagnosis range of 0.25-4.00% based on clinical studies that reported a 4-11% misdiagnosis rate. RESULTS We show that malaria misdiagnosis can significantly impact global annual incidence estimation of brucellosis. Rates of 0.25% increase brucellosis incidence by 0.34-5.4 M cases, while rates of 4% increase these estimates by 2.43-7.45 M cases. CONCLUSIONS Human brucellosis misdiagnosed as malaria can significantly impact global annual incidence estimates. Enhanced efforts are needed to identify misdiagnosed cases in countries where both diseases are endemic.
Collapse
Affiliation(s)
- Christopher G Laine
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, United States of America
| | - Valen E Johnson
- Department of Statistics, College of Arts and Sciences, Texas A&M University, College Station, TX, United States of America
| | - H Morgan Scott
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, United States of America
| | - Angela M Arenas-Gamboa
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, United States of America.
| |
Collapse
|
4
|
Mwanyalu N, Mwatondo A, Chuchu V, Maina K, Muturi M, Mutiiria M, Chepkwony D, Owiny M, Munyua P. Documenting challenges in achieving rabies elimination by 2030 in low-middle income countries; a Kenyan case study from Lamu County, 2020-2022: mixed methods approach. ONE HEALTH OUTLOOK 2025; 7:6. [PMID: 39924474 PMCID: PMC11809077 DOI: 10.1186/s42522-024-00129-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 12/06/2024] [Indexed: 02/11/2025]
Abstract
BACKGROUND Kenya launched a Rabies Elimination Strategy in 2014, aiming to end human rabies deaths by 2030. In March 2022, Lamu County reported increased cases of human dog bites and suspected rabies deaths to the Ministry of Health (MoH). We aimed to establish the extent of the rabies outbreak in humans and animals and determine the challenges to achieving rabies elimination by 2030. METHODS We extracted dog bite reports from the Kenya Health Information System (KHIS), national surveillance database system, and reviewed medical records at health facilities in Lamu County for suspected human rabies deaths from 2020 to 2022. We obtained information about animal bites and illnesses in deceased persons, checked the availability of anti-rabies vaccines in health facilities, and administered rabies knowledge and practice questionnaires to health workers. For categorical data, frequencies and proportions were determined. RESULTS There were 787 dog bite cases and six human rabies cases. Only a third (2/6) of the rabies cases were uploaded to the KHIS. The county used targeted dog vaccination, and samples were not collected from the biting dogs. Regarding the availability of human rabies vaccines, half (8/16) of the facilities had the human rabies vaccine, and 19% (3/16) had both the human rabies vaccine and rabies immunoglobulin (RIG). Rabies vaccine stock-outs were common at 73% (11/16). Only 25% (18/73) of the health workers reported their first action would be to clean the bite wound with running water and soap for 15 min. Additionally, 86% (54/63) did not know the recommended human rabies vaccine and RIG dosage and schedule, while 25% (18/73) of healthcare workers were satisfied with the existing information-sharing mechanisms between veterinary and human health departments for rabies prevention and control. CONCLUSIONS There was underreporting of rabies cases, a lack of awareness of bite wound management at health facilities, and persistent stockouts of human rabies vaccines. We suggest training healthcare workers on animal bite case management and improving One Health information exchange.
Collapse
Affiliation(s)
- Nassoro Mwanyalu
- Kenya Zoonotic Diseases Unit, Ministry of Health, Nairobi, Kenya.
- Field Epidemiology and Laboratory Training Program, Ministry of Health, Nairobi, Kenya.
- Department of Health Services, Mombasa County Government, Mombasa, Kenya.
| | - Athman Mwatondo
- Kenya Zoonotic Diseases Unit, Ministry of Health, Nairobi, Kenya
- International Livestock Research Institute, Nairobi, Kenya
| | - Veronicah Chuchu
- Kenya Zoonotic Diseases Unit, Ministry of Health, Nairobi, Kenya
- Paul G. Allen School for Global Health, Washington State University, Pullman, USA
| | - Kimani Maina
- Kenya Zoonotic Diseases Unit, Ministry of Health, Nairobi, Kenya
- Field Epidemiology and Laboratory Training Program, Ministry of Health, Nairobi, Kenya
| | - Mathew Muturi
- Kenya Zoonotic Diseases Unit, Ministry of Health, Nairobi, Kenya
- International Livestock Research Institute, Nairobi, Kenya
| | - Mathew Mutiiria
- Kenya Zoonotic Diseases Unit, Ministry of Health, Nairobi, Kenya
- Field Epidemiology and Laboratory Training Program, Ministry of Health, Nairobi, Kenya
| | - Daniel Chepkwony
- Kenya Zoonotic Diseases Unit, Ministry of Health, Nairobi, Kenya
| | - Maurice Owiny
- Field Epidemiology and Laboratory Training Program, Ministry of Health, Nairobi, Kenya
| | - Peninah Munyua
- Division of Global Health Protection, United States Centers for Disease Control and Prevention, Nairobi, Kenya
| |
Collapse
|
5
|
Hassell JM, Angwenyi S, VanAcker MC, Adan A, Bargoiyet N, Bundotich G, Edebe J, Fèvre EM, Gichecha P, Kamau J, Lekenit E, Lekopien A, Leseeto JL, Lupempe KG, Mathenge J, Manini D, Muasa B, Muturi M, Ndanyi R, Ndia M, Ndung'u K, Nyaga N, Rono B, Murray S, Worsley-Tonks KEL, Gakuya F, Lekolool I, Kahariri S, Chege S. A framework for ecologically and socially informed risk reduction before and after outbreaks of wildlife-borne zoonoses. Lancet Planet Health 2025; 9:e41-e52. [PMID: 39855232 DOI: 10.1016/s2542-5196(24)00329-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 01/27/2025]
Abstract
Despite increasing emphasis being placed on the inclusion of upstream ecological and social perspectives for zoonotic disease control, few guidelines exist for practitioners and decision makers to work with communities in identifying suitable, locally relevant interventions and integrating these into public health action plans. With an interdisciplinary group of Kenyan stakeholders, we designed and tested a comprehensive framework for the co-design, evaluation, and prioritisation of beneficiary-oriented, ecologically and socially informed interventions for preventing and controlling outbreaks of wildlife-borne zoonoses. Our approach used four globally important wildlife-borne pathogens-Rift Valley fever virus, Congo-Crimean haemorrhagic fever virus, and the causative agents of anthrax and rabies-enabling stakeholders to develop a shared understanding of complex transmission pathways, identify a broad array of measures targeting ecological, biological, and social processes governing outbreaks of these pathogens, and explore trade-offs for specific interventions. The framework can be applied early in the decision-making process to encourage broader, cross-sectoral co-production of knowledge, ideas, and consensus on the control of complex zoonotic diseases.
Collapse
Affiliation(s)
- James M Hassell
- Global Health Program, Smithsonian's National Zoo & Conservation Biology Institute, Smithsonian Institution, Washington, DC, USA; International Livestock Research Institute, Nairobi, Kenya; Yale School of Public Health, New Haven, CT, USA.
| | - Shaleen Angwenyi
- Global Health Program, Smithsonian's National Zoo & Conservation Biology Institute, Smithsonian Institution, Washington, DC, USA; International Livestock Research Institute, Nairobi, Kenya
| | - Meredith C VanAcker
- Global Health Program, Smithsonian's National Zoo & Conservation Biology Institute, Smithsonian Institution, Washington, DC, USA; International Livestock Research Institute, Nairobi, Kenya
| | - Abdi Adan
- Kenya Wildlife Service, Nairobi, Kenya
| | | | | | - Joseph Edebe
- Wildlife Research and Training Institute, Naivasha, Kenya
| | - Eric M Fèvre
- International Livestock Research Institute, Nairobi, Kenya; Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | | | | | | | - Argeo Lekopien
- Samburu County Directorate of Veterinary Services, Ministry of Agriculture, Livestock and Fisheries, Samburu, Kenya
| | | | | | - James Mathenge
- Wildlife Research and Training Institute, Naivasha, Kenya
| | | | - Bridgit Muasa
- Directorate of Veterinary Services, Ministry of Agriculture and Livestock Development, Nairobi, Kenya
| | - Mathew Muturi
- Zoonotic Disease Unit, Ministry of Agriculture and Livestock Development, Nairobi, Kenya
| | - Romana Ndanyi
- Directorate of Veterinary Services, Ministry of Agriculture and Livestock Development, Nairobi, Kenya
| | - Millicent Ndia
- National Public Health Laboratories, Ministry of Health, Nairobi, Kenya
| | | | - Nazaria Nyaga
- Kajiado County Directorate of Veterinary Services, Ministry of Agriculture, Livestock and Fisheries, Kajiado, Kenya
| | - Bernard Rono
- Veterinary Services Department, Kenya Wildlife Service, Nairobi, Kenya
| | - Suzan Murray
- Global Health Program, Smithsonian's National Zoo & Conservation Biology Institute, Smithsonian Institution, Washington, DC, USA
| | | | - Francis Gakuya
- Wildlife Research and Training Institute, Naivasha, Kenya
| | - Isaac Lekolool
- Veterinary Services Department, Kenya Wildlife Service, Nairobi, Kenya
| | - Samuel Kahariri
- Directorate of Veterinary Services, Ministry of Agriculture and Livestock Development, Nairobi, Kenya
| | - Stephen Chege
- San Diego Zoo Wildlife Alliance, San Diego, CA, USA; VetinWild, Nanyuki, Kenya
| |
Collapse
|
6
|
Madzingira O, Munzel H, Simasiku NM, Lucas LT, Mwenda EN, Chinyoka S, Tjipura-Zaire G, Shilongo F, Borgemeister C, Khaiseb S, Chitanga S, Junglen S. Seroprevalence of Brucella spp. and Rift Valley fever virus infections in communal pastoral cattle at the wildlife-livestock interface, Zambezi region, Namibia. Front Vet Sci 2024; 11:1489815. [PMID: 39726584 PMCID: PMC11670368 DOI: 10.3389/fvets.2024.1489815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction Brucellosis and Rift Valley fever (RVF) are neglected zoonotic diseases (NZD) that threaten public health, animal health, and production in resource-limited countries including Namibia. Methods The objective of this cross-sectional study was to determine Brucella spp. and RVFV seroprevalence in cattle at the wildlife-livestock interface in the Kabbe South constituency (Zambezi region) of Namibia. Cattle sera (n = 371) were randomly collected from 18 cattle herds in six constituency areas and tested for antibodies against Brucella [complement fixation test (CFT) and indirect enzyme-linked immunosorbent (ELISA) assay in parallel] and Rift Valley fever virus (competitive ELISA). Results Apparent individual animal prevalence for Brucella spp. was 5.9% (95% CI: 3.95%-8.81%, 22/371) and 20.8% (95% CI: 16.9%-25.2%, 77/371) based on the CFT and I-ELISA, respectively. For RVFV, apparent and true animal prevalence were 41.0% (95% CI: 36.1%-46.0%, 152/371) and 47.6% (95% CI: 41.8%-53.6%), respectively. Animal and true prevalence of Brucella spp. based on the CFT and ELISA in parallel were 22.6% (95% CI: 18.7%-27.2%, 84/371) and 19.7% (95% CI: 15.6%-24.4%), respectively. About 10.8% (40/371) of cattle tested positive for both Brucella spp. and RVFV antibodies. Prevalence of Brucella-positive cattle herds was 83.3% (15/18). Within herd Brucella spp. seroprevalence was 0%-70%. All cattle herds tested positive for RVFV, with prevalence of 1.7% to 70%. Binomial logistic regression revealed that sex was a significant predictor (p < 0.05) for RVFV seropositivity, but not for Brucella spp. seropositivity (p > 0.05). Test agreement between CFT and I-ELISA when used for the detection of anti-Brucella antibodies was poor (k = 0.2322). Discussion Brucella spp. and RVFV infections were prevalent in communal pastoral cattle at the human-wildlife-livestock interface in the Zambezi region suggesting a higher likelihood of occurrence of reproduction losses in cattle and zoonotic disease in humans. We recommend the enforcement of the requirements for the vaccination of heifers against brucellosis in the affected communal areas to reduce the risk of human infection. The use of One Health principles for the surveillance, prevention and control of Brucella spp. and RVFV infections can promote the effective control of these zoonotic infections at the interface.
Collapse
Affiliation(s)
- Oscar Madzingira
- Department of Preclinical Veterinary Studies, School of Veterinary Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, Windhoek, Namibia
| | - Hannah Munzel
- Institute of Virology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlinand Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nicky Mowa Simasiku
- Department of Preclinical Veterinary Studies, School of Veterinary Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, Windhoek, Namibia
| | - Leo Tileni Lucas
- Department of Preclinical Veterinary Studies, School of Veterinary Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, Windhoek, Namibia
| | - Evelyn Nanjeke Mwenda
- Department of Preclinical Veterinary Studies, School of Veterinary Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, Windhoek, Namibia
| | - Simbarashe Chinyoka
- Department of Preclinical Veterinary Studies, School of Veterinary Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, Windhoek, Namibia
| | - Georgina Tjipura-Zaire
- Central Veterinary Laboratory, Directorate of Veterinary Services, Ministry of Agriculture, Water and Land Reform, Windhoek, Namibia
| | - Frieda Shilongo
- Central Veterinary Laboratory, Directorate of Veterinary Services, Ministry of Agriculture, Water and Land Reform, Windhoek, Namibia
| | | | - Siegfried Khaiseb
- Department of Preclinical Veterinary Studies, School of Veterinary Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, Windhoek, Namibia
| | - Simbarashe Chitanga
- Department of Preclinical Veterinary Studies, School of Veterinary Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, Windhoek, Namibia
| | - Sandra Junglen
- Institute of Virology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlinand Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
7
|
Omani R, Cavalerie L, Daud A, Cook EA, Nakadio E, Fèvre EM, Gitao G, Robinson J, Nanyingi M, Baylis M, Kimeli P, Onono J. Goat seropositivity as an indicator of Rift Valley fever (RVF) infection in human populations: A case-control study of the 2018 Rift Valley fever outbreak in Wajir County, Kenya. One Health 2024; 19:100921. [PMID: 39525857 PMCID: PMC11546121 DOI: 10.1016/j.onehlt.2024.100921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 10/17/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
Rift Valley fever (RVF) is a viral zoonosis, which is considered as a threat to food security in the Horn of Africa. In Kenya, RVF is the 5th ranked priority zoonotic disease due to its high morbidity and mortality, frequent outbreak events, and associated socioeconomic impacts during outbreak events. In 2018, an RVF outbreak was confirmed in Kenya's Siaya, Wajir, and Marsabit counties. During this outbreak, 30 people were confirmed infected with RVF through laboratory tests; 21 in Wajir, 8 in Marsabit, and 1 in Siaya Counties. Seventy-five (75) households (15 cases and 60 controls) were selected and interviewed using a case-control study design in 2021 (?). A case was a household with a member who was diagnosed with RVF in 2018. In addition, a total of 1029 animals were purposively selected within these households and serologically tested for RVF. The study aimed to estimate the contribution of various risk factors to RVF human occurrence in Kenya with a special focus on Wajir County. Wajir County was chosen due to high number of confirmed human cases reported in the 2018 outbreak. A univariable regression model revealed that owner-reported RVF virus exposure in livestock significantly increased the odds of an RVF human case in the household by 32.7 times (95 % CI 4.0-267.4). The respondent being linked to a goat flock that was IgG-positive increased the odds of an RVF human case by 3.8 times (95 % CI 1.17-12.3). In the final multivariable analysis, the respondent being linked to their own animals affected by RVF increased odds of having an RVF human case in the household by 56.9 times (95 % CI 4.6-700.4), while the respondent being linked to a neighbor household member affected decreased odds of having a RVF human case by 0.1 times (95 % CI 0.08-0.75). In summary, these results have revealed a potential link for the spread of RVF infection from animals to humans in pastoralist households, hence it is critical to carry out targeted, community education, One Health surveillance, prevention, and control measures against the disease. This will be critical to protecting humans against potential spillovers of infections during outbreak events in livestock.
Collapse
Affiliation(s)
- Ruth Omani
- International Livestock Research Institute, Nairobi, P.O. Box 30709-00100, Kenya
- Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium
| | - Lisa Cavalerie
- University of Liverpool, Institute of Infection, Veterinary and Ecological Sciences, Liverpool L69 3BX, UK
- International Livestock Research Institute, Addis Ababa, P.O. Box 5689, Ethiopia
| | - Abukar Daud
- County Department of Agriculture, Livestock & Fisheries, Wajir County Government, Kenya
| | - Elizabeth A.J. Cook
- International Livestock Research Institute, Nairobi, P.O. Box 30709-00100, Kenya
| | - Erenius Nakadio
- International Livestock Research Institute, Nairobi, P.O. Box 30709-00100, Kenya
- Directorate of Veterinary Services, Turkana County Government, Kenya
| | - Eric M. Fèvre
- International Livestock Research Institute, Nairobi, P.O. Box 30709-00100, Kenya
- University of Liverpool, Institute of Infection, Veterinary and Ecological Sciences, Liverpool L69 3BX, UK
| | - George Gitao
- Department of Veterinary Pathology, Microbiology and Parasitology, University of Nairobi, P.O. Box, 29053, Kangemi, Kenya
| | - Jude Robinson
- University of Glasgow School of Social and Political Sciences, 42 Bute Gardens, University of Glasgow, Glasgow G12 8RT, UK
| | - Mark Nanyingi
- International Livestock Research Institute, Nairobi, P.O. Box 30709-00100, Kenya
- University of Liverpool, Institute of Infection, Veterinary and Ecological Sciences, Liverpool L69 3BX, UK
| | - Matthew Baylis
- University of Liverpool, Institute of Infection, Veterinary and Ecological Sciences, Liverpool L69 3BX, UK
| | - Peter Kimeli
- Department of Clinical Studies, University of Nairobi, P.O. Box, 29053, Kangemi, Kenya
| | - Joshua Onono
- Department of Public Health Pharmacology & Toxicology, University of Nairobi, P.O. Box, 29053, Kangemi, Kenya
| |
Collapse
|
8
|
Geteri F, Dawa J, Gachohi J, Kadivane S, Humwa F, Okunga E. A recent history of disease outbreaks in Kenya, 2007-2022: Findings from routine surveillance data. BMC Res Notes 2024; 17:309. [PMID: 39407228 PMCID: PMC11481684 DOI: 10.1186/s13104-024-06930-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 09/02/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Africa reports the highest number of outbreaks globally, accounting for 39% of all outbreaks in 2022. The Integrated Disease Surveillance and Response strategy in Kenya ensures the reporting of outbreaks up to the national level. We present a summary of the burden of reported disease outbreaks in Kenya, 2007-2022. METHODS We reviewed historical surveillance data, 2007-2022, summarized the annual caseload and deaths of reported outbreaks, and classified the outbreaks into 3 categories, that is high, moderate, and low burden. A nested Poisson regression model was fit to determine whether there was a significant increase in the number of diseases and counties reporting outbreaks over time. RESULTS Twenty-three diseases were reported. COVID-19, cholera, epidemic malaria, kala-azar, and measles were associated with a high disease burden. The highest number of diseases reported in a single year was 10. We observed an increase in the number of outbreaks over time (IRR = 1.26, 95% CI [1.22-1.29], p < 0.001), and an increase in the number of counties reporting outbreaks over time (r = 0.97, p < 0.001). CONCLUSION There was an increase in the frequency and geographic occurrence of outbreaks. The differences in outbreak occurrence between counties necessitate targeted and enhanced preventive, preparedness, and response interventions at the sub-national level to reduce the burden of outbreaks.
Collapse
Affiliation(s)
- Farida Geteri
- Disease Surveillance and Response Unit, Ministry of Health, Nairobi City, Kenya.
| | - Jeanette Dawa
- Center for Epidemiological Modelling and Analysis, University of Nairobi, Nairobi City, Kenya
| | - John Gachohi
- Washington State University - Global Health Programs, Nairobi City, Kenya
| | - Samuel Kadivane
- Disease Surveillance and Response Unit, Ministry of Health, Nairobi City, Kenya
| | - Felix Humwa
- Africa Society for Laboratory Science, Addis Ababa, Ethiopia
| | - Emmanuel Okunga
- Disease Surveillance and Response Unit, Ministry of Health, Nairobi City, Kenya
| |
Collapse
|
9
|
Akinsulie OC, Adebowale OO, Adesola RO, Banwo OG, Idris I, Ogunleye SC, Fasakin O, Bakre A, Oladapo IP, Aliyu VA, Waniwa EO, Fasiku O, Joshi M, Olorunshola M. Holistic application of the one health approach in the prevention and control of rabies: plausible steps towards achieving the 2030 vision in Africa. ONE HEALTH OUTLOOK 2024; 6:22. [PMID: 39261974 PMCID: PMC11389241 DOI: 10.1186/s42522-024-00108-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 06/07/2024] [Indexed: 09/13/2024]
Abstract
Rabies remains a significant public health challenge in Africa, primarily burdening impoverished rural communities, with children and young adults being the most vulnerable. Achieving complete elimination in the continent by 2030 requires a coordinated effort hinged on the One Health concept, external support from international organizations like the World Health Organization (WHO) and the national governments of endemic countries. Here, we reviewed the various socio-economic and ecological factors influencing the spatial distribution and molecular epidemiology of the disease. To mitigate the transmission of rabies on a global scale, and specifically in Africa, we proposed a multi-pronged approach including enhanced access to healthcare resources, cultural sensitization and massive health promotion with efforts geared towards promoting responsible dog and pet ownership and population management, effective monitoring, and mitigation of environmental changes.
Collapse
Affiliation(s)
- Olalekan Chris Akinsulie
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA.
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria.
| | | | - Ridwan Olamilekan Adesola
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olamilekan Gabriel Banwo
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ibrahim Idris
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Usman Danfodiyo University, Sokoto, Nigeria
| | - Seto Charles Ogunleye
- Comparative Biomedical Sciences, Mississippi State University, Mississippi State, Starkville, MS, 39760, USA
| | | | - Adetolase Bakre
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ifeoluwa Peace Oladapo
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Victor Ayodele Aliyu
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Emily Onesai Waniwa
- Central Veterinary Laboratory, Division of Veterinary Technical Services, Ministry of Lands, Agriculture, Water and Rural Resettlement, Harare, Zimbabwe
| | - Oluwatobi Fasiku
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Melina Joshi
- Center for Molecular Dynamics Nepal, Kathmandu, Nepal.
| | - Mercy Olorunshola
- Department of Biological Sciences, State University of New York at Binghamton, Binghamton, NY, USA
| |
Collapse
|
10
|
Wainaina M, Wasonga J, Cook EAJ. Epidemiology of human and animal leptospirosis in Kenya: A systematic review and meta-analysis of disease occurrence, serogroup diversity and risk factors. PLoS Negl Trop Dis 2024; 18:e0012527. [PMID: 39331677 PMCID: PMC11463743 DOI: 10.1371/journal.pntd.0012527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 10/09/2024] [Accepted: 09/10/2024] [Indexed: 09/29/2024] Open
Abstract
BACKGROUND Leptospirosis is a priority zoonotic disease in Kenya, but an in-depth review of its presence in humans, animals and the environment is lacking. Therefore, we conducted this systematic review and meta-analysis to understand the epidemiological situation to date. METHODOLOGY We searched for literature in African journals online, AGRIS, Embase, the Leptospira WOAH reference laboratory library, ProMED-mail, PubMed, Scopus, Web of Science, and the institutional repositories of 33 academic institutions and included 66 publications on leptospirosis in Kenya which spanned from 1951 to 2022. The review was registered on the International Platform of Registered Systematic Review and Meta-analysis Protocols (INPLASY). FINDINGS Most investigations were done in rural and urban areas in western, southern, central, and coastal areas in Kenya and the largely pastoral eastern and northern areas were under-represented. A wide host range of domestic animals and wildlife was revealed, and occupational exposure was an important risk factor for humans. The microscopic agglutination test (MAT) was the most frequent test, particularly common in studies conducted during the 1980s and 1990s. However, varying MAT panels and cut-off titres were observed. The overall seroprevalence in cattle was 28.2% (95% confidence intervals [CI]: 12.0-53.0; heterogeneity: I2 = 96.7%, τ2 = 1.4), and 11.0% in goats (95% CI: 5.4-21.2; heterogeneity: I2 = 78.8%, τ2 = 0.4). Molecular tests were seldom used to determine species and illustrate strain diversity. There was a lack of awareness of leptospirosis among farmers and health practitioners. CONCLUSION The widespread presence of leptospires and inadequate diagnostic capacity demonstrate that leptospirosis is a common but underreported disease in Kenya. Raising awareness and boosting the country's diagnostic capacity is crucial to timely detection and disease control.
Collapse
Affiliation(s)
- Martin Wainaina
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Joseph Wasonga
- Animal and Human Health Department, International Livestock Research Institute, Nairobi, Kenya
| | | |
Collapse
|
11
|
Castonguay AC, Chowdhury S, Shanta IS, Schrijver B, Schrijver R, Wang S, Soares Magalhães RJ. A Generalizable Prioritization Protocol for Climate-Sensitive Zoonotic Diseases. Trop Med Infect Dis 2024; 9:188. [PMID: 39195626 PMCID: PMC11359478 DOI: 10.3390/tropicalmed9080188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024] Open
Abstract
Emerging and re-emerging zoonotic diseases pose a significant threat to global health and economic security. This threat is further aggravated by amplifying drivers of change, including climate hazards and landscape alterations induced by climate change. Given the complex relationships between climate change and zoonotic disease health outcomes, a structured decision-making process is required to effectively identify pathogens of greatest concern to prioritize prevention and surveillance efforts. Here, we describe a workshop-based expert elicitation process in six steps to prioritize climate-sensitive zoonoses based on a structured approach to defining criteria for climate sensitivity. Fuzzy analytical hierarchy process methodology is used to analyze data provided by experts across human, animal, and environmental health sectors accounting for uncertainties at different stages of the prioritization process. We also present a new interactive expert elicitation interface that facilitates data collection and real-time visualization of prioritization results. The novel approach presented in this paper offers a generalized platform for prioritizing climate-sensitive zoonoses at a national or regional level. This allows for a structured decision-making support process when allocating limited financial and personnel resources to enhance preparedness and response to zoonotic diseases amplified by climate change.
Collapse
Affiliation(s)
- Adam C. Castonguay
- Queensland Alliance for One Health Sciences, School of Veterinary Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Sukanta Chowdhury
- International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka 1213, Bangladesh; (S.C.); (I.S.S.)
| | - Ireen Sultana Shanta
- International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka 1213, Bangladesh; (S.C.); (I.S.S.)
| | - Bente Schrijver
- VetEffect, 3723 BG Bilthoven, The Netherlands; (B.S.); (R.S.)
| | - Remco Schrijver
- VetEffect, 3723 BG Bilthoven, The Netherlands; (B.S.); (R.S.)
| | | | - Ricardo J. Soares Magalhães
- Queensland Alliance for One Health Sciences, School of Veterinary Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- Children’s Health and Environment Program, UQ Children’s Health Research Centre, The University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
12
|
Manyenya S, Nthiwa D, Lutta HO, Muturi M, Nyamota R, Mwatondo A, Watene G, Akoko J, Bett B. Multiple pathogens co-exposure and associated risk factors among cattle reared in a wildlife-livestock interface area in Kenya. Front Vet Sci 2024; 11:1415423. [PMID: 39119353 PMCID: PMC11306132 DOI: 10.3389/fvets.2024.1415423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction Understanding multi-pathogen infections/exposures in livestock is critical to inform prevention and control measures against infectious diseases. We investigated the co-exposure of foot-and-mouth disease virus (FMDV), Brucella spp., Leptospira spp., and Coxiella burnetii in cattle in three zones stratified by land use change and with different wildlife-livestock interactions in Narok county, Kenya. We also assessed potential risk factors associated with the transmission of these pathogens in cattle. Methods We identified five villages purposively, two each for areas with intensive (zone 1) and moderate wildlife-livestock interactions (zone 2) and one for locations with low wildlife-livestock interactions (zone 3). We sampled 1,170 cattle from 390 herds through a cross-sectional study and tested the serum samples for antibodies against the focal pathogens using enzyme-linked immunosorbent assay (ELISA) kits. A questionnaire was administered to gather epidemiological data on the putative risk factors associated with cattle's exposure to the investigated pathogens. Data were analyzed using the Bayesian hierarchical models with herd number as a random effect to adjust for the within-herd clustering of the various co-exposures among cattle. Results Overall, 88.0% (95% CI: 85.0-90.5) of the cattle tested positive for at least one of the targeted pathogens, while 41.7% (95% CI: 37.7-45.8) were seropositive to at least two pathogens. FMDV and Brucella spp. had the highest co-exposure at 33.7% (95% CI: 30.9-36.5), followed by FMDV and Leptospira spp. (21.8%, 95% CI: 19.5-24.4), Leptospira spp. and Brucella spp. (8.8%, 95% CI: 7.2-10.6), FMDV and C. burnetii (1.5%, 95% CI: 0.7-2.8), Brucella spp. and C. burnetii (1.0%, 95% CI: 0.3-2.2), and lowest for Leptospira spp. and C. burnetii (0.3%, 95% CI: 0.0-1.2). Cattle with FMDV and Brucella spp., and Brucella spp. and Leptospira spp. co-exposures and those simultaneously exposed to FMDV, Brucella spp. and Leptospira spp. were significantly higher in zone 1 than in zones 2 and 3. However, FMDV and Leptospira spp. co-exposure was higher in zones 1 and 2 than zone 3. Discussion/conclusion We recommend the establishment of a One Health surveillance system in the study area to reduce the morbidity of the targeted zoonotic pathogens in cattle and the risks of transmission to humans.
Collapse
Affiliation(s)
- Sophina Manyenya
- Department of Biological Sciences, University of Embu, Embu, Kenya
| | - Daniel Nthiwa
- Department of Biological Sciences, University of Embu, Embu, Kenya
- International Livestock Research Institute, Nairobi, Kenya
| | - Harrison Osundwa Lutta
- Biotechnology Research Institute, Kabete Centre, Kenya Agricultural and Livestock Research Organization, Nairobi, Kenya
| | - Mathew Muturi
- Kenya Zoonotic Disease Unit, Ministry of Health and Ministry of Agriculture, Livestock, and Fisheries, Nairobi, Kenya
| | | | - Athman Mwatondo
- Kenya Zoonotic Disease Unit, Ministry of Health and Ministry of Agriculture, Livestock, and Fisheries, Nairobi, Kenya
| | - Grace Watene
- International Livestock Research Institute, Nairobi, Kenya
| | - James Akoko
- International Livestock Research Institute, Nairobi, Kenya
| | - Bernard Bett
- International Livestock Research Institute, Nairobi, Kenya
| |
Collapse
|
13
|
Kahariri S, Thumbi SM, Bett B, Mureithi MW, Nyaga N, Ogendo A, Muturi M, Thomas LF. The evolution of Kenya's animal health surveillance system and its potential for efficient detection of zoonoses. Front Vet Sci 2024; 11:1379907. [PMID: 38966562 PMCID: PMC11223174 DOI: 10.3389/fvets.2024.1379907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/22/2024] [Indexed: 07/06/2024] Open
Abstract
Introduction Animal health surveillance systems in Kenya have undergone significant changes and faced various challenges throughout the years. Methods In this article, we present a comprehensive overview of the Kenya animal health surveillance system (1944 to 2024), based on a review of archived documents, a scoping literature review, and an examination of past surveillance assessments and evaluation reports. Results The review of archived documents revealed key historical events that have shaped the surveillance system. These include the establishment of the Directorate of Veterinary Services in 1895, advancements in livestock farming, the implementation of mandatory disease control interventions in 1944, the growth of veterinary services from a section to a ministry in 1954, the disruption caused by the Mau Mau insurrection from 1952 to 1954, which led to the temporary halt of agriculture in certain regions until 1955, the transition of veterinary clinical services from public to private, and the progressive privatization plan for veterinary services starting in 1976. Additionally, we highlight the development of electronic surveillance from 2003 to 2024. The scoping literature review, assessments and evaluation reports uncovered several strengths and weaknesses of the surveillance system. Among the strengths are a robust legislative framework, the adoption of technology in surveillance practices, the existence of a formal intersectoral coordination platform, the implementation of syndromic, sentinel, and community-based surveillance methods, and the presence of a feedback mechanism. On the other hand, the system's weaknesses include the inadequate implementation of strategies and enforcement of laws, the lack of standard case definitions for priority diseases, underutilization of laboratory services, the absence of formal mechanisms for data sharing across sectors, insufficient resources for surveillance and response, limited integration of surveillance and laboratory systems, inadequate involvement of private actors and communities in disease surveillance, and the absence of a direct supervisory role between the national and county veterinary services. Discussion and recommendations To establish an effective early warning system, we propose the integration of surveillance systems and the establishment of formal data sharing mechanisms. Furthermore, we recommend enhancing technological advancements and adopting artificial intelligence in surveillance practices, as well as implementing risk-based surveillance to optimize the allocation of surveillance resources.
Collapse
Affiliation(s)
- Samuel Kahariri
- Directorate of Veterinary Services, Nairobi, Kenya
- International Livestock Research Institute, Nairobi, Kenya
- Department of Medical Microbiology and Immunology, Faculty of Health Sciences, University of Nairobi, Nairobi, Kenya
- Centre for Epidemiological Modelling and Analysis, Institute of Tropical and Infectious Diseases, University of Nairobi, Nairobi, Kenya
| | - S. M. Thumbi
- Centre for Epidemiological Modelling and Analysis, Institute of Tropical and Infectious Diseases, University of Nairobi, Nairobi, Kenya
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA, United States
| | - Bernard Bett
- International Livestock Research Institute, Nairobi, Kenya
| | - Marianne W. Mureithi
- Department of Medical Microbiology and Immunology, Faculty of Health Sciences, University of Nairobi, Nairobi, Kenya
| | - Nazaria Nyaga
- County Directorate of Veterinary Services, Kajiado, Kenya
| | - Allan Ogendo
- County Directorate of Veterinary Services, Busia, Kenya
| | - Mathew Muturi
- Directorate of Veterinary Services, Nairobi, Kenya
- International Livestock Research Institute, Nairobi, Kenya
- Centre for Epidemiological Modelling and Analysis, Institute of Tropical and Infectious Diseases, University of Nairobi, Nairobi, Kenya
| | - Lian Francesca Thomas
- International Livestock Research Institute, Nairobi, Kenya
- Institute of Infection Veterinary and Ecological Sciences, University of Liverpool, Neston, United Kingdom
| |
Collapse
|
14
|
Kamau MW, Witte C, Goosen W, Mutinda M, Villinger J, Getange D, Khogali R, von Fricken ME, Fèvre EM, Zimmerman D, Linton YM, Miller M. Comparison of test performance of a conventional PCR and two field-friendly tests to detect Coxiella burnetii DNA in ticks using Bayesian latent class analysis. Front Vet Sci 2024; 11:1396714. [PMID: 38962707 PMCID: PMC11220323 DOI: 10.3389/fvets.2024.1396714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/10/2024] [Indexed: 07/05/2024] Open
Abstract
Introduction Coxiella burnetii (C. burnetii)-infected livestock and wildlife have been epidemiologically linked to human Q fever outbreaks. Despite this growing zoonotic threat, knowledge of coxiellosis in wild animals remains limited, and studies to understand their epidemiologic role are needed. In C. burnetii-endemic areas, ticks have been reported to harbor and spread C. burnetii and may serve as indicators of risk of infection in wild animal habitats. Therefore, the aim of this study was to compare molecular techniques for detecting C. burnetii DNA in ticks. Methods In total, 169 ticks from wild animals and cattle in wildlife conservancies in northern Kenya were screened for C. burnetii DNA using a conventional PCR (cPCR) and two field-friendly techniques: Biomeme's C. burnetii qPCR Go-strips (Biomeme) and a new C. burnetii PCR high-resolution melt (PCR-HRM) analysis assay. Results were evaluated, in the absence of a gold standard test, using Bayesian latent class analysis (BLCA) to characterize the proportion of C. burnetii positive ticks and estimate sensitivity (Se) and specificity (Sp) of the three tests. Results The final BLCA model included main effects and estimated that PCR-HRM had the highest Se (86%; 95% credible interval: 56-99%), followed by the Biomeme (Se = 57%; 95% credible interval: 34-90%), with the estimated Se of the cPCR being the lowest (24%, 95% credible interval: 10-47%). Specificity estimates for all three assays ranged from 94 to 98%. Based on the model, an estimated 16% of ticks had C. burnetii DNA present. Discussion These results reflect the endemicity of C. burnetii in northern Kenya and show the promise of the PCR-HRM assay for C. burnetii surveillance in ticks. Further studies using ticks and wild animal samples will enhance understanding of the epidemiological role of ticks in Q fever.
Collapse
Affiliation(s)
- Maureen W. Kamau
- Mpala Research Centre, Nanyuki, Kenya
- Division of Molecular Biology and Human Genetics, Department of Science, and Innovation – National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Stellenbosch, South Africa
- Global Health Program, Smithsonian National Zoo Conservation Biology Institute, Washington, DC, United States
| | - Carmel Witte
- Division of Molecular Biology and Human Genetics, Department of Science, and Innovation – National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Stellenbosch, South Africa
- The Center for Wildlife Studies, South Freeport, ME, United States
| | - Wynand Goosen
- Division of Molecular Biology and Human Genetics, Department of Science, and Innovation – National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Stellenbosch, South Africa
| | | | - Jandouwe Villinger
- International Centre of Insect Physiology and Ecology (ICIPE), Nairobi, Kenya
| | - Dennis Getange
- International Centre of Insect Physiology and Ecology (ICIPE), Nairobi, Kenya
| | - Rua Khogali
- International Centre of Insect Physiology and Ecology (ICIPE), Nairobi, Kenya
| | - Michael E. von Fricken
- College of Public Health and Health Professionals, Department of Environmental and Global Health University of Florida, Gainesville, FL, United States
| | - Eric Maurice Fèvre
- International Livestock Research Institute, Nairobi, Kenya
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Dawn Zimmerman
- Veterinary Initiative for Endangered Wildlife, Bozeman, MT, United States
| | - Yvonne-Marie Linton
- Walter Reed Biosystematics Unit (WRBU) Smithsonian Institution Museum Support Center, Suitland, MD, United States
- One Health Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
- Department of Entomology, Smithsonian Institution, National Museum of Natural History (NMNH), Washington, DC, United States
| | - Michele Miller
- Division of Molecular Biology and Human Genetics, Department of Science, and Innovation – National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
15
|
Douglas KO, Punu G, Van Vliet N. Prioritization of zoonoses of wildlife origin for multisectoral one health collaboration in Guyana, 2022. One Health 2024; 18:100730. [PMID: 38644970 PMCID: PMC11031778 DOI: 10.1016/j.onehlt.2024.100730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/10/2024] [Indexed: 04/23/2024] Open
Abstract
Background The human population in Guyana, located on the South American continent, is vulnerable to zoonotic diseases due to an appreciable reliance on Neotropical wildlife as a food source and for trade. An existing suboptimal health surveillance system may affect the effective monitoring of important zoonotic diseases. To effectively address this deficit, a One Health zoonotic disease prioritization workshop was conducted to identify nationally significant zoonoses. Methods Prioritization of zoonotic diseases was conducted for the first time in Guyana & Caribbean region using literature review, prioritization criteria and a risk prioritization tool in combination with a consultative One Health workshop. This involved multisectoral experts from varied disciplines of social, human, animal, and environmental health to prioritize zoonotic diseases using a modified semi-quantitative One Health Zoonotic Disease Prioritization (OHZDP) tool. The inclusion and exclusion criteria were applied to pathogen hazards in existence among wildlife in Guyana during the hazard identification phase. Results In total, fifty zoonoses were chosen for prioritization. Based on their weighted score, prioritized diseases were ranked in order of relative importance using a one-to-five selection scale. In Guyana, this zoonotic disease prioritization method is the first significant step toward bringing together specialists from the fields of human, animal, and environmental health. Following discussion of the OHZDP Tool output among disease experts, a final zoonotic disease list, including tuberculosis, leptospirosis, gastroenteritis, rabies, coronavirus, orthopoxvirus, viral hemorrhagic fevers, and hepatitis were identified as the top eight priority zoonoses in Guyana. Conclusions This represents the first prioritization of nationally significant zoonotic diseases in Guyana and the English-speaking Caribbean. This One Health strategy to prioritize these eight zoonoses of wildlife origin is a step that will support future tracking and monitoring for disease prevalence among humans and wildlife and can be used as a decision-making guide for policymakers and stakeholders in Guyana.
Collapse
Affiliation(s)
- Kirk O. Douglas
- Centre for Biosecurity Studies, The University of the West Indies, Cave Hill Campus, Cave Hill BB11000, Barbados
| | - Govindra Punu
- Center for International Forestry Research (CIFOR), Jalan CIFOR Situ Gede, Bogor Barat, Bogor 16115, Jawa Barat, Indonesia
| | - Nathalie Van Vliet
- Center for International Forestry Research (CIFOR), Jalan CIFOR Situ Gede, Bogor Barat, Bogor 16115, Jawa Barat, Indonesia
| |
Collapse
|
16
|
Rai BD, Tessema GA, Fritschi L, Pereira G. The application of the One Health approach in the management of five major zoonotic diseases using the World Bank domains: A scoping review. One Health 2024; 18:100695. [PMID: 39010967 PMCID: PMC11247293 DOI: 10.1016/j.onehlt.2024.100695] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/13/2024] [Indexed: 07/17/2024] Open
Abstract
The international authorities, such as the Food and Agriculture Organization of the United Nations, World Health Organization, World Organization for Animal Health, United Nations Environment Programme, and World Bank, have endorsed the One Health concept as an effective approach to optimize the health of people, animals, and the environment. The One Health concept is considered as an integrated and unifying approach with the objective of sustainably balancing and optimizing the health of people, animals, and ecosystems. Despite variations in its definitions, the underlying principle remains consistent - recognizing the interconnected and interdependent health of humans, animals, and the environment, necessitating interdisciplinary collaboration to optimize health outcomes. The One Health approach has been applied in numerous countries for detecting, managing, and controlling diseases. Moreover, the concept has found application in various areas, including antimicrobial resistance, food safety, and ecotoxicology, with a growing demand. There is a growing consensus that the One Health concept and the United Nations Sustainable Development Goals mutually reinforce each other. The World Bank has recommended five domains as foundational building blocks for operationalising the One Health approach, which includes: i) One Health stakeholders, roles, and responsibilities; ii) financial and personal resources; iii) communication and information; iv) technical infrastructure; and v) governance. The domains provide a generalised overview of the One Health concept and guide to its application. We conducted a scoping review following the five-staged Arksey and O'Malley's framework. The objective of the review was to map and synthesise available evidence of application of the One Health approach to five major zoonotic diseases using the World Bank domains. Publications from the year 2004, marking the inception of the term 'One Health,' to 2022 were included. Information was charted and categorised against the World Bank domains identified as a priori. We included 1132 records obtained from three databases: Embase, Medline, and Global Health; as well as other sources. After excluding duplicates, screening for titles and abstracts, and full text screening, 20 articles that contained descriptions of 29 studies that implemented the One Health approach were selected for the review. We found that included studies varied in the extent to which the five domains were utilised. Less than half the total studies (45%) used all the five domains and none of the studies used all the sub-domains. The environmental sector showed an underrepresentation in the application of the One Health approach to zoonotic diseases as 14 (48%) studies in 10 articles did not mention it as a stakeholder. Sixty two percent of the studies mentioned receiving support from international partners in implementing the One Health approach and 76% of the studies were supported by international donors to conduct the studies. The review identified disparate funding mechanisms employed in the implementation of the One Health approach. However, there were limited discussions on plans for continuity and viability of these funding mechanisms in the future.
Collapse
Affiliation(s)
- Bir Doj Rai
- Curtin School of Population Health, Curtin University, 400 Kent St, Bentley, Perth, Western Australia 6102, Australia
| | - Gizachew A. Tessema
- Curtin School of Population Health, Curtin University, 400 Kent St, Bentley, Perth, Western Australia 6102, Australia
- enAble Institute, Curtin University, 400 Kent St, Bentley, Perth, Western Australia 6102, Australia
| | - Lin Fritschi
- Curtin School of Population Health, Curtin University, 400 Kent St, Bentley, Perth, Western Australia 6102, Australia
| | - Gavin Pereira
- Curtin School of Population Health, Curtin University, 400 Kent St, Bentley, Perth, Western Australia 6102, Australia
- enAble Institute, Curtin University, 400 Kent St, Bentley, Perth, Western Australia 6102, Australia
| |
Collapse
|
17
|
Grace D, Amenu K, Daborn CJ, Knight-Jones T, Huntington B, Young S, Poole J, Rushton J. Current and potential use of animal disease data by stakeholders in the global south and north. Prev Vet Med 2024; 226:106189. [PMID: 38547559 DOI: 10.1016/j.prevetmed.2024.106189] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/16/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024]
Abstract
What cannot be measured will not be managed. The Global Burden of Animal Diseases (GBADs) will generate information on animal disease burdens by species, production system, type and gender of farmer and consumer, geographical region, and time period. To understand the demand for burden of animal disease (BAD) data and how end-users might benefit from this, we reviewed the literature on animal diseases prioritisation processes (ADPP) and conducted a survey of BAD information users. The survey covered their current use of data and prioritizations as well as their needs for different, more, and better information. We identified representative (geography, sector, species) BAD experts from the authors' networks and publicly available documents and e-mailed 1485 experts. Of 791 experts successfully contacted, 271 responded (34% response rate), and 185 complete and valid responses were obtained. Most respondents came from the public sector followed by academia/research, and most were affiliated to institutions in low- and middle-income countries (LMICs). Of the six ADPPs commonly featured in literature, only three were recognised by more than 40% of experts. An additional 23 ADPPs were used. Awareness of ADDPs varied significantly by respondents. Respondents ranked animal disease priorities. We used exploded logit to combine first, second and third disease priorities to better understand prioritzation and their determinants. Expert priorities differed significantly from priorities identified by the ADDPs, and also from the priorities stated veterinary services as reported in a survey for a World Organisation of Animal Health (WOAH) technical item. Respondents identified 15 different uses of BAD data. The most common use was presenting evidence (publications, official reports, followed by disease management, policy development and proposal writing). Few used disease data for prioritzation or resource allocation, fewer routinely used economic data for decision making, and less than half were aware of the use of decision support tools (DSTs). Nearly all respondents considered current BAD metrics inadequate, most considered animal health information insufficiently available and not evidence-based, and most expressed concerns that decision-making processes related to animal health lacked transparency and fairness. Cluster analysis suggested three clusters of BAD users and will inform DSTs to help them better meet their specific objectives. We conclude that there is a lack of satisfaction with current BAD information, and with existing ADDPs, contributing to sub-optimal decision making. Improved BAD data would have multiple uses by different stakeholders leading to better evidenced decisions and policies; moreover, clients will need support (including DSTs) to optimally use BAD information.
Collapse
Affiliation(s)
- Delia Grace
- Natural Resources Institute, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK; International Livestock Research Institute, Bole, Addis Ababa, Ethiopia.
| | - Kebede Amenu
- International Livestock Research Institute, Bole, Addis Ababa, Ethiopia
| | | | | | | | - Stephen Young
- Natural Resources Institute, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK
| | - Jane Poole
- International Livestock Research Institute, Nairobi, Kenya
| | | |
Collapse
|
18
|
Wang KC, Chang CL, Wei SH, Chang CC. The study on setting priorities of zoonotic agents for medical preparedness and allocation of research resources. PLoS One 2024; 19:e0299527. [PMID: 38687751 PMCID: PMC11060589 DOI: 10.1371/journal.pone.0299527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/13/2024] [Indexed: 05/02/2024] Open
Abstract
The aim of this study is to develop a scoring platform to be used as a reference for both medical preparedness and research resource allocation in the prioritization of zoonoses. Using a case-control design, a comprehensive analysis of 46 zoonoses was conducted to identify factors influencing disease prioritization. This analysis provides a basis for constructing models and calculating prioritization scores for different diseases. The case group (n = 23) includes diseases that require immediate notification to health authorities within 24 hours of diagnosis. The control group (n = 23) includes diseases that do not require such immediate notification. Two different models were developed for primary disease prioritization: one model incorporated the four most commonly used prioritization criteria identified through an extensive literature review. The second model used the results of multiple logistic regression analysis to identify significant factors (with p-value less than 0.1) associated with 24-hour reporting, allowing for objective determination of disease prioritization criteria. These different modeling approaches may result in different weights and positive or negative effects of relevant factors within each model. Our study results highlight the variability of zoonotic disease information across time and geographic regions. It provides an objective platform to rank zoonoses and highlights the critical need for regular updates in the prioritization process to ensure timely preparedness. This study successfully established an objective framework for assessing the importance of zoonotic diseases. From a government perspective, it advocates applying principles that consider disease characteristics and medical resource preparedness in prioritization. The results of this study also emphasize the need for dynamic prioritization to effectively improve preparedness to prevent and control disease.
Collapse
Affiliation(s)
- Kung-Ching Wang
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung, Taiwan, R.O.C
| | - Chia-Lin Chang
- Department of Applied Economics, National Chung Hsing University, Taichung, Taiwan, R.O.C
| | - Sung-Hsi Wei
- Children’s Hospital, China Medical University, Taichung, Taiwan, R.O.C
| | - Chao-Chin Chang
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung, Taiwan, R.O.C
| |
Collapse
|
19
|
Llorente-Nieto P, González-Alcaide G, Ramos-Rincón JM. Mass gathering in Qatar 2022 World Cup. What should be especially monitored? J Infect Public Health 2024; 17 Suppl 1:11-15. [PMID: 37012099 DOI: 10.1016/j.jiph.2023.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
OBJECTIVES At the end of 2022, the football world championship will be held in Qatar. These types of meetings require a risk analysis. It proposes an approach to determine which health risks should be prioritized. METHOD We use a mixed methodology (Hierarchical Process Analysis, World Health Organization STAR and European Commission INFORM) to determine the risk level of a total of 12 health entities. RESULTS Our analysis identifies 6 health entities with a moderate risk. There are 4 whose valuation is as low risk and 2 as very low. CONCLUSIONS In our work we focus the analysis from a point of view of the route of transmission or presentation of health events, which facilitates a visualization of the preventive measures to be implemented, both organizationally and individually by the attendees.
Collapse
Affiliation(s)
- Pedro Llorente-Nieto
- Centro de Salud Pública de Denia, Conselleria de Sanitat i Salut Publica, Alicante, Spain; Department of History of Science, Universitat d'Valencia, Valencia, Spain.
| | | | - José-Manuel Ramos-Rincón
- Internal Medicine Service - General University Hospital of Alicante, Instituto de Sanitario de Investigación Biomédica (ISABIAL), Alicante, Spain; Department of Clinical Medicine, Miguel Hernández University of Elche, Alicante, Spain.
| |
Collapse
|
20
|
Majiwa H, Bukachi SA, Omia D, Fèvre EM. Knowledge, perceptions, and practices around zoonotic diseases among actors in the livestock trade in the Lake Victoria crescent ecosystem in East Africa. Front Public Health 2024; 11:1199664. [PMID: 38264255 PMCID: PMC10805025 DOI: 10.3389/fpubh.2023.1199664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 12/19/2023] [Indexed: 01/25/2024] Open
Abstract
Background Zoonotic diseases such as anthrax, rabies, brucellosis, and Rift Valley fever pose a direct threat to health and undercut livelihoods in the communities in which they occur. A combination of anthropogenic and animal activities like migration and interaction with wildlife and their respective parasites and vectors drives the emergence and re-emergence of zoonotic diseases. Consequently, One Health interdisciplinary approaches that incorporate social scientists can provide key insights into complex local perceptions. The approach calls for collaboration between the human and animal health sectors, including the sharing of disease surveillance data necessary to alleviate disease impacts. Livestock traders interact closely with livestock, which puts them at elevated risk of infection and creates conditions by which they may spread zoonotic disease. It is thus essential to examine practices among actors involved in the livestock trade to understand the most appropriate ways to mitigate these risks. Methods A qualitative study was conducted among the actors in the livestock trade in Busia County on their knowledge and perceptions of zoonotic diseases and practices that may contribute to the spread, control, and prevention of zoonotic disease transmission. A thematic analysis framework was used to categorize and synthesize data from in-depth interviews (IDIs), key informant interviews (KIIs), and structured observations. Results Whereas participants could list livestock diseases, they could not identify which ones were zoonoses, demonstrating insufficient knowledge of zoonosis. They identify sick animals by checking for dropped ears, excess mucus production, diarrhea, bloody urinal discharge, and general animal activity levels. To prevent the spread of these diseases, they wash their animals, isolate sick animals from the rest of the stock, and vaccinate their animals. They seek help from animal health professionals for sick animals as part of curative practices. This shows that they perceive the diseases as serious and that they need to be attended to by professionals. The results also show that they perceive animals from outside the region to be more vulnerable to diseases compared to those from within. The actors in the livestock trade engage in practices like skinning dead animals before burying them; to them, this is a normal practice. Some also consume dead carcasses. These increase the risk of zoonotic disease transmission. Conclusion The actors involved in the livestock trade are critical in the prevention and elimination of zoonotic diseases; hence, they need to be involved when developing intervention programs and policies for animal health extension services. Training them as a continuum of animal health workers blends lay and professional knowledge, which, alongside their intense contact with large numbers of animals, becomes a critical disease surveillance tool. Increasing awareness of zoonoses by using multi-disciplinary teams with social scientists is urgently needed so that practices like skinning dead animals before disposing of them and consumption of dead carcasses can be minimized.
Collapse
Affiliation(s)
- Hamilton Majiwa
- Institute of Anthropology Gender and African Studies, University of Nairobi, Nairobi, Kenya
| | - Salome A. Bukachi
- Institute of Anthropology Gender and African Studies, University of Nairobi, Nairobi, Kenya
| | - Dalmas Omia
- Institute of Anthropology Gender and African Studies, University of Nairobi, Nairobi, Kenya
| | - Eric M. Fèvre
- International Livestock Research Institute, Nairobi, Kenya
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, United Kingdom
| |
Collapse
|
21
|
Park SM, Choi C, Rhee MS. One Health approach for prioritization of potential foodborne pathogens: Risk-ranking, Delphi survey, and criteria evaluation pre- and post-COVID-19 pandemic. Compr Rev Food Sci Food Saf 2024; 23:e13258. [PMID: 38284613 DOI: 10.1111/1541-4337.13258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 01/30/2024]
Abstract
Frequent foodborne illnesses with unknown causative agents highlight the need to explore zoonotic potential foodborne pathogens (PFPs). An effective PFP prioritization tool is indispensable, especially after experiencing the recent pandemic caused by zoonotic SARS-CoV-2. Risk information on pathogens (excluding 30 known foodborne pathogens) provided by governmental and international organizations was reviewed to generate a list of PFPs. Risk-ranking of PFPs was conducted based on a literature review of food poisoning or detection cases, and the ranks were determined with a decision tree. PFPs were prioritized by infectious disease (ID), veterinary medicine (VET), and food safety (FS) experts through a pre- and postpandemic Delphi survey, and key criteria in their decisions were illuminated. Among 339 PFPs, 32 rank-1 PFPs were involved in the foodborne outbreak(s). Discrepancies in opinions on prioritization between experts in different fields deepened after the pandemic. Only VET and FS experts valued the plausibility of foodborne transmission in evaluating bacteria and viruses, and a significant correlation between their selection of PFPs was found (p < .05). The impact of the pandemic induced all fields to focus more on human transmission and severity/fatality in prioritizing viruses, and only FS experts emphasized the plausibility of foodborne transmission after the pandemic. In contrast to prioritizing bacteria or viruses, ID and VET experts are unusually focused on foodborne transmission when prioritizing parasites. Criteria of consensus deduced by interdisciplinary experts with different interests and the criteria directly related to foodborne transmission should be acknowledged for adequate PFP prioritization.
Collapse
Affiliation(s)
- Sun Min Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Changsun Choi
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, Anseong-si, Gyeonggi, Republic of Korea
| | - Min Suk Rhee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
22
|
Osman AY, Mohamed H, Mumin FI, Mahrous H, Saidouni A, Elmi SA, Adawe AK, Mo'allim AA, Lubogo M, Malik SMMR, Mwatondo A, Raji T, Ahmed AD, Zumla A, Dar O, Kock R, Mor SM. Prioritization of zoonoses for multisectoral, One Health collaboration in Somalia, 2023. One Health 2023; 17:100634. [PMID: 38024279 PMCID: PMC10665150 DOI: 10.1016/j.onehlt.2023.100634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 12/01/2023] Open
Abstract
Background The human population of Somalia is vulnerable to zoonoses due to a high reliance on animal husbandry. This disease risk is exacerbated by relatively low income (poverty) and weak state capacity for health service delivery in the country as well as climate extremes and geopolitical instability in the region. To address this threat to public health efficiently and effectively, it is essential that all sectors have a common understanding of the priority zoonotic diseases of greatest concern to the country. Methods Representatives from human, animal (domestic and wildlife), agriculture, and environmental health sectors undertook a multisectoral prioritization exercise using the One Health Zoonotic Disease Prioritization (OHZDP) tool developed by the United States CDC. The process involved: reviewing available literature and creating a longlist of zoonotic diseases for potential inclusion; developing and weighting criteria for establishing the importance of each zoonoses; formulating categorical questions (indicators) for each criteria; scoring each disease according to the criteria; and finally ranking the diseases based on the final score. Participants then brainstormed and suggested strategic action plans to prevent, and control prioritized zoonotic diseases. Results Thirty-three zoonoses were initially considered for prioritization. Final criteria for ranking included: 1) socioeconomic impact (including sensitivity) in Somalia; 2) burden of disease in humans in Somalia); 3) availability of intervention in Somalia; 4) environmental factors/determinants; and 5) burden of disease in animals in Somalia. Following scoring of each zoonotic disease against these criteria, and further discussion of the OHZDP tool outputs, seven priority zoonoses were identified for Somalia: Rift Valley fever, Middle East respiratory syndrome, anthrax, trypanosomiasis, brucellosis, zoonotic enteric parasites (including Giardia and Cryptosporidium), and zoonotic influenza viruses. Conclusions The final list of seven priority zoonotic diseases will serve as a foundation for strengthening One Health approaches for disease prevention and control in Somalia. It will be used to: shape improved multisectoral linkages for integrated surveillance systems and laboratory networks for improved human, animal, and environmental health; establish multisectoral public health emergency preparedness and response plans using One Health approaches; and enhance workforce capacity to prevent, control and respond to priority zoonotic diseases.
Collapse
Affiliation(s)
- Abdinasir Yusuf Osman
- Royal Veterinary College, University of London, London, UK
- National Institute of Health, Ministry of Health, Mogadishu, Somalia
| | - Halima Mohamed
- Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Farah I. Mumin
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, UK
- International Livestock Research Institute, Addis Ababa, Ethiopia
- Red Sea University, Bosaso, Somalia
| | - Heba Mahrous
- World Health Organization, Regional Office for the Eastern Mediterranean, Cairo, Egypt
| | - Asma Saidouni
- World Health Organization, Regional Office for the Eastern Mediterranean, Cairo, Egypt
| | - Sharifo Ali Elmi
- Ministry of Livestock Forestry and Range, Mogadishu, Somalia
- Faculty of Veterinary Medicine, University Malaysia Kelantan, Kelantan, Malaysia
| | | | | | - Mutaawe Lubogo
- World Health Organization, Country Office, Mogadishu, Somalia
| | | | | | - Tajudeen Raji
- Africa Centres for Disease Control and Prevention, Addis Ababa, Ethiopia
| | | | - Alimuddin Zumla
- National Institute for Health and Care Research Biomedical Research Centre, University College London Hospitals NHS Foundation Trust, London, UK
- Department of Infection, Division of Infection and Immunity, University College London, London, UK
| | - Osman Dar
- Global Health Programme, Royal Institute of International Affairs, London, UK
- Global Operations, United Kingdom Health Security Agency, London, UK
| | - Richard Kock
- Royal Veterinary College, University of London, London, UK
| | - Siobhan M. Mor
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, UK
- International Livestock Research Institute, Addis Ababa, Ethiopia
| |
Collapse
|
23
|
Mor N. Organising for One Health in a developing country. One Health 2023; 17:100611. [PMID: 37588424 PMCID: PMC10425406 DOI: 10.1016/j.onehlt.2023.100611] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/18/2023] Open
Abstract
Globally, zoonotic diseases pose an enormous and growing public health challenge, and developing countries like India are at the epicentre of it. Although there is general recognition of this reality, governments around the world have struggled to organise appropriately to respond to it. The widely held view is that organising for One Health requires effective cross-sectoral collaboration, but the prerequisites to enable such collaboration appear almost unattainable. Perhaps an entirely different approach is needed, which is over and above effective collaborations between competing government ministries. The approach would have to recognise that while any organisational response will need to be able to address identified zoonotic diseases and respond effectively to them in times of crises, it would also be required to have the ability to shape the response to megatrends such as climate change, deforestation, and the underlying development models of the country. The paper analyses the success and failures associated with the way in which India, Bangladesh, Kenya, and Rwanda have organised for One Health. It also studies the underlying pathways through which zoonotic spillovers take place, and epidemics gather momentum. Based on these critical analyses, the paper concludes that attempts to build single overarching units to address these challenges have only been partially effective. Given the scale and complexity of the challenge, it recommends that, even at the risk of duplication and the very real possibility that unaddressed gaps will remain, an approach, which builds multiple sharply focused units, would have a greater chance of success.
Collapse
Affiliation(s)
- Nachiket Mor
- Banyan Academy of Leadership in Mental Health, India
| |
Collapse
|
24
|
Mumin FI, Fenton A, Osman AY, Mor SM. Zoonoses research in Somalia: A scoping review using a One Health approach. One Health 2023; 17:100626. [PMID: 38024257 PMCID: PMC10665144 DOI: 10.1016/j.onehlt.2023.100626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/31/2023] [Indexed: 12/01/2023] Open
Abstract
Zoonoses are likely to cause a substantial burden on both human and animal health systems in Somalia, given the close proximity between the pastoralist majority and their livestock. However, decades of instability leading to weak disease surveillance have meant that data on the burden of zoonoses is lacking. The aim of this scoping review was to assess and synthesize the available literature on the presence and burden of zoonoses in Somalia. We used keywords to search Web of Science for relevant publications. Studies were included if they contained relevant data on a zoonosis and were undertaken in Somalia or were undertaken in another country where exposure could reasonably be assumed to have occurred in Somalia (e.g., migrants/refugees, returning soldiers, exported animals). Studies were not included if they focused on Somali ethnic communities permanently living elsewhere or if zoonotic aspects were not considered. We extracted data on disease(s) reported, geographic focus, data reported (human, animal, environment), study design and author affiliation. A total of 22 zoonotic infections were documented in 76 publications. The most frequently studied diseases were Rift Valley Fever (n = 15, 17%), brucellosis (n = 13, 14%) and hepatitis E (n = 10, 11%). Around 30% of papers reported data from relevant populations outside Somalia. Only 18 papers undertook laboratory analysis within Somalia. Most papers reported data on humans (45%) and animals (36%) with limited research on the environmental domain. Descriptive studies (47%) dominated and most were led by non-Somali researchers (89% in first authors and 95% of last authors). This study highlights the need for well-designed zoonoses research in Somalia supported by capacity building of local researchers and investments in diagnostic laboratories.
Collapse
Affiliation(s)
- Farah I. Mumin
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, United Kingdom
- International Livestock Research Institute, Addis Ababa, Ethiopia
- Faculty of Veterinary Medicine, Red Sea University, Bosaso, Puntland State, Somalia
| | - Andy Fenton
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, United Kingdom
| | - Abdinasir Yusuf Osman
- Royal Veterinary College, University of London, London, United Kingdom
- National Institute of Health, Ministry of Health, Mogadishu, Somalia
| | - Siobhan M. Mor
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, United Kingdom
- International Livestock Research Institute, Addis Ababa, Ethiopia
| |
Collapse
|
25
|
Akoko JM, Mwatondo A, Muturi M, Wambua L, Abkallo HM, Nyamota R, Bosire C, Oloo S, Limbaso KS, Gakuya F, Nthiwa D, Bartlow A, Middlebrook E, Fair J, Ogutu JO, Gachohi J, Njenga K, Bett B. Mapping brucellosis risk in Kenya and its implications for control strategies in sub-Saharan Africa. Sci Rep 2023; 13:20192. [PMID: 37980384 PMCID: PMC10657468 DOI: 10.1038/s41598-023-47628-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/16/2023] [Indexed: 11/20/2023] Open
Abstract
In Sub-Saharan Africa (SSA), effective brucellosis control is limited, in part, by the lack of long-term commitments by governments to control the disease and the absence of reliable national human and livestock population-based data to inform policies. Therefore, we conducted a study to establish the national prevalence and develop a risk map for Brucella spp. in cattle to contribute to plans to eliminate the disease in Kenya by the year 2040. We randomly generated 268 geolocations and distributed them across Kenya, proportionate to the area of each of the five agroecological zones and the associated cattle population. Cattle herds closest to each selected geolocation were identified for sampling. Up to 25 cattle were sampled per geolocation and a semi-structured questionnaire was administered to their owners. We tested 6,593 cattle samples for Brucella immunoglobulin G (IgG) antibodies using an Enzyme-linked immunosorbent assay (ELISA). We assessed potential risk factors and performed spatial analyses and prevalence mapping using approximate Bayesian inference implemented via the integrated nested Laplace approximation (INLA) method. The national Brucella spp. prevalence was 6.8% (95% CI: 6.2-7.4%). Exposure levels varied significantly between agro-ecological zones, with a high of 8.5% in the very arid zone with the lowest agricultural potential relative to a low of 0.0% in the agro-alpine zone with the highest agricultural potential. Additionally, seroprevalence increased with herd size, and the odds of seropositivity were significantly higher for females and adult animals than for males or calves. Similarly, animals with a history of abortion, or with multiple reproductive syndromes had higher seropositivity than those without. At the herd level, the risk of Brucella spp. transmission was higher in larger herds, and herds with a history of reproductive problems such as abortion, giving birth to weak calves, or having swollen testes. Geographic localities with high Brucella seroprevalence occurred in northern, eastern, and southern regions of Kenya all primarily characterized by semi-arid or arid agro-ecological zones dominated by livestock pastoralism interspersed with vast areas with mixed livestock-wildlife systems. The large spatial extent of our survey provides compelling evidence for the widespread geographical distribution of brucellosis risk across Kenya in a manner easily understandable for policymakers. Our findings can provide a basis for risk-stratified pilot studies aiming to investigate the cost-effectiveness and efficacy of singular and combined preventive intervention strategies that seek to inform Kenya's Brucellosis Control Policy.
Collapse
Affiliation(s)
- James M Akoko
- International Livestock Research Institute, Nairobi, Kenya.
| | - Athman Mwatondo
- International Livestock Research Institute, Nairobi, Kenya
- Zoonotic Disease Unit, Nairobi, Kenya
- Department of Medical Microbiology and Immunology, Faculty of Health, University of Nairobi, Nairobi, Kenya
| | - Mathew Muturi
- International Livestock Research Institute, Nairobi, Kenya
- Zoonotic Disease Unit, Nairobi, Kenya
- Faculty of Veterinary Medicine, Dahlem Research School of Biomedical Sciences, Freie Universität Berlin, Berlin, Germany
| | - Lillian Wambua
- International Livestock Research Institute, Nairobi, Kenya
- World Organisation for Animal Health, Sub-Regional Representation for Eastern Africa, Nairobi, Kenya
| | | | | | | | - Stephen Oloo
- International Livestock Research Institute, Nairobi, Kenya
| | | | - Francis Gakuya
- Wildlife Research and Training Institute, Naivasha, Kenya
| | - Daniel Nthiwa
- Department of Biological Sciences, University of Embu, Embu, Kenya
| | | | | | - Jeanne Fair
- Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Joseph O Ogutu
- Biostatistics Unit, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| | - John Gachohi
- Global Health Programme, Washington State University, Nairobi, Kenya
- School of Public Health, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
- Paul G, Allen School of Global Health, Washington State University, Pullman, WA, 99164, USA
| | - Kariuki Njenga
- Global Health Programme, Washington State University, Nairobi, Kenya
- Paul G, Allen School of Global Health, Washington State University, Pullman, WA, 99164, USA
| | - Bernard Bett
- International Livestock Research Institute, Nairobi, Kenya
| |
Collapse
|
26
|
Riley T, Lovett R, Cumming B, Meredith A, Anderson NE, Thandrayen J. Data analysis of zoonoses notifications in Aboriginal and Torres Strait Islander populations in Australia 1996-2021: implications for One Health. Front Public Health 2023; 11:1175835. [PMID: 37900024 PMCID: PMC10602743 DOI: 10.3389/fpubh.2023.1175835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/27/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Zoonoses are a health concern for Aboriginal and Torres Strait Islander peoples in Australia that face elevated risk of disease related to the environment and animals. Internationally, One Health is encouraged to effectively manage zoonoses by taking integrated approaches involving animal, human, and environmental health sectors to improve health outcomes. However, Australia's health systems manage zoonotic diseases in animals and people separately which does not support a One Health approach. For the effective management of zoonoses, a strong evidence base and database regarding the epidemiology of zoonotic pathogens is needed. However, we currently lack this evidence limiting our understanding of the impact of zoonoses on Aboriginal and Torres Strait Islander populations. Methods As a first step towards building the evidence base, we undertook a descriptive analysis of Aboriginal and Torres Strait Islander zoonotic notifications in Australia from 1996 to 2021. We presented notifications as annual notification rates per 100,000 population, and percentages of notifications by state, remoteness, sex, and age group. Results Salmonellosis and campylobacteriosis were the most notified zoonoses with the highest annual notification rates of 99.75 and 87.46 per 100,000 population, respectively. The north of Australia (Queensland, Northern Territory and Western Australia), remote and outer regional areas, and young children (0-4 years of age) had the highest percentages of notifications. Discussion To our knowledge, these findings are the first national presentation of the epidemiology of zoonoses within Aboriginal and Torres Strait Islander populations. A greater understanding of transmission, prevalence and impact of zoonoses on Aboriginal and Torres Strait Islander peoples (including animal and environmental health factors) is required to inform their effective management through a One Health approach.
Collapse
Affiliation(s)
- Tamara Riley
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, ACT, Australia
| | - Raymond Lovett
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, ACT, Australia
| | - Bonny Cumming
- Animal Management in Rural and Remote Indigenous Communities (AMRRIC), Darwin, NT, Australia
| | - Anna Meredith
- The Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Roslin, United Kingdom
| | - Neil E. Anderson
- The Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Roslin, United Kingdom
| | - Joanne Thandrayen
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
27
|
Amenu K, McIntyre KM, Moje N, Knight-Jones T, Rushton J, Grace D. Approaches for disease prioritization and decision-making in animal health, 2000-2021: a structured scoping review. Front Vet Sci 2023; 10:1231711. [PMID: 37876628 PMCID: PMC10593474 DOI: 10.3389/fvets.2023.1231711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/06/2023] [Indexed: 10/26/2023] Open
Abstract
This scoping review identifies and describes the methods used to prioritize diseases for resource allocation across disease control, surveillance, and research and the methods used generally in decision-making on animal health policy. Three electronic databases (Medline/PubMed, Embase, and CAB Abstracts) were searched for articles from 2000 to 2021. Searches identified 6, 395 articles after de-duplication, with an additional 64 articles added manually. A total of 6, 460 articles were imported to online document review management software (sysrev.com) for screening. Based on inclusion and exclusion criteria, 532 articles passed the first screening, and after a second round of screening, 336 articles were recommended for full review. A total of 40 articles were removed after data extraction. Another 11 articles were added, having been obtained from cross-citations of already identified articles, providing a total of 307 articles to be considered in the scoping review. The results show that the main methods used for disease prioritization were based on economic analysis, multi-criteria evaluation, risk assessment, simple ranking, spatial risk mapping, and simulation modeling. Disease prioritization was performed to aid in decision-making related to various categories: (1) disease control, prevention, or eradication strategies, (2) general organizational strategy, (3) identification of high-risk areas or populations, (4) assessment of risk of disease introduction or occurrence, (5) disease surveillance, and (6) research priority setting. Of the articles included in data extraction, 50.5% had a national focus, 12.3% were local, 11.9% were regional, 6.5% were sub-national, and 3.9% were global. In 15.2% of the articles, the geographic focus was not specified. The scoping review revealed the lack of comprehensive, integrated, and mutually compatible approaches to disease prioritization and decision support tools for animal health. We recommend that future studies should focus on creating comprehensive and harmonized frameworks describing methods for disease prioritization and decision-making tools in animal health.
Collapse
Affiliation(s)
- Kebede Amenu
- Global Burden of Animal Diseases (GBADs) Programme, University of Liverpool, Liverpool, United Kingdom
- Department of Microbiology, Immunology and Veterinary, Public Health, College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Ethiopia
- Animal and Human Health Program, International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - K. Marie McIntyre
- Global Burden of Animal Diseases (GBADs) Programme, University of Liverpool, Liverpool, United Kingdom
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Modelling, Evidence and Policy Group, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Nebyou Moje
- Department of Biomedical Sciences, College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Ethiopia
| | - Theodore Knight-Jones
- Global Burden of Animal Diseases (GBADs) Programme, University of Liverpool, Liverpool, United Kingdom
- Animal and Human Health Program, International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - Jonathan Rushton
- Global Burden of Animal Diseases (GBADs) Programme, University of Liverpool, Liverpool, United Kingdom
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Delia Grace
- Global Burden of Animal Diseases (GBADs) Programme, University of Liverpool, Liverpool, United Kingdom
- Food and Markets Department, Natural Resources Institute, University of Greenwich, London, United Kingdom
- Animal and Human Health Program, International Livestock Research Institute (ILRI), Nairobi, Kenya
| |
Collapse
|
28
|
Mwatondo A, Muturi M, Akoko J, Nyamota R, Nthiwa D, Maina J, Omolo J, Gichuhi S, Mureithi MW, Bett B. Seroprevalence and related risk factors of Brucella spp. in livestock and humans in Garbatula subcounty, Isiolo county, Kenya. PLoS Negl Trop Dis 2023; 17:e0011682. [PMID: 37844102 PMCID: PMC10602376 DOI: 10.1371/journal.pntd.0011682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/26/2023] [Accepted: 09/26/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Brucellosis is a neglected zoonotic disease that affects both animals and humans, causing debilitating illness in humans and socio-economic losses in livestock-keeping households globally. The disease is endemic in many developing countries, including Kenya, but measures to prevent and control the disease are often inadequate among high-risk populations. This study aimed to investigate the human and livestock seroprevalence of brucellosis and associated risk factors of Brucella spp. in a pastoralist region of northern Kenya. METHODS A cross-sectional survey was conducted using a two-stage cluster sampling method to select households, livestock, and humans for sampling. Blood samples were collected from 683 humans and 2157 animals, and Brucella immunoglobulin G (IgG) antibodies were detected using enzyme-linked immunosorbent assays. A structured questionnaire was used to collect data on potential risk factors associated with human and animal exposures. Risk factors associated with Brucella spp. exposures in humans and livestock were identified using Multivariate logistic regression. RESULTS The results indicated an overall livestock Brucella spp. seroprevalence of 10.4% (95% Confidence Interval (CI): 9.2-11.7). Camels had the highest exposure rates at 19.6% (95% CI: 12.4-27.3), followed by goats at 13.2% (95% CI: 9.3-17.1), cattle at 13.1% (95% CI: 11.1-15.3) and sheep at 5.4% (95% CI: 4.0-6.9). The herd-level seroprevalence was 51.7% (95% CI: 47.9-55.7). Adult animals (Adjusted Odds Ratio (aOR) = 2.3, CI: 1.3-4.0), female animals (aOR = 1.7, CI: 1.1-2.6), and large herd sizes (aOR = 2.3, CI: 1.3-4.0) were significantly associated with anti-brucella antibody detection while sheep had significantly lower odds of Brucella spp. exposure compared to cattle (aOR = 1.3, CI: 0.8-2.1) and camels (aOR = 2.4, CI: 1.2-4.8). Human individual and household seroprevalences were 54.0% (95% CI: 50.2-58.0) and 86.4% (95% CI: 84.0-89.0), respectively. Significant risk factors associated with human seropositivity included being male (aOR = 2.1, CI:1.3-3.2), residing in Sericho ward (aOR = 1.6, CI:1.1-2.5) and having no formal education (aOR = 3.0, CI:1.5-5.9). There was a strong correlation between human seropositivity and herd exposure (aOR = 1.6, CI:1.2-2.3). CONCLUSIONS The study provides evidence of high human and livestock exposures to Brucella spp. and identifies important risk factors associated with disease spread. These findings emphasize the need for targeted prevention and control measures to curb the spread of brucellosis and implement a One Health surveillance to ensure early detection of the disease in Isiolo County, Northern Kenya.
Collapse
Affiliation(s)
- Athman Mwatondo
- Department of Medical Microbiology and Immunology, University of Nairobi, Nairobi, Kenya
- International Livestock Research Institute, Nairobi, Kenya
- Zoonotic Disease Unit, Ministry of Health, Nairobi, Kenya
| | - Mathew Muturi
- International Livestock Research Institute, Nairobi, Kenya
- Dahlem Research School of Biomedical Sciences, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Zoonotic Disease Unit, Ministry of Agriculture, Livestock and Fisheries, Nairobi, Kenya
| | - James Akoko
- International Livestock Research Institute, Nairobi, Kenya
| | | | - Daniel Nthiwa
- Department of Biological Sciences, University of Embu, Embu, Kenya
| | - Josphat Maina
- Zoonotic Disease Unit, Ministry of Health, Nairobi, Kenya
| | - Jack Omolo
- County Government of Kilifi, Department of Agriculture, Livestock Development and Fisheries, Kilifi, Kenya
| | - Stephen Gichuhi
- Department of Ophthalmology, University of Nairobi, Nairobi, Kenya
| | - Marianne W. Mureithi
- Department of Medical Microbiology and Immunology, University of Nairobi, Nairobi, Kenya
| | - Bernard Bett
- International Livestock Research Institute, Nairobi, Kenya
| |
Collapse
|
29
|
Nyamota R, Maina J, Akoko J, Nthiwa D, Mwatondo A, Muturi M, Wambua L, Middlebrook EA, Bartlow AW, Fair JM, Bett B. Seroprevalence of Brucella spp. and Rift Valley fever virus among slaughterhouse workers in Isiolo County, northern Kenya. PLoS Negl Trop Dis 2023; 17:e0011677. [PMID: 37797043 PMCID: PMC10581456 DOI: 10.1371/journal.pntd.0011677] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 10/17/2023] [Accepted: 09/22/2023] [Indexed: 10/07/2023] Open
Abstract
Brucella spp. and Rift Valley fever virus (RVFV) are classified as priority zoonotic agents in Kenya, based on their public health and socioeconomic impact on the country. Data on the pathogen-specific and co-exposure levels is scarce due to limited active surveillance. This study investigated seroprevalence and co-exposure of Brucella spp. and RVFV and associated risk factors among slaughterhouse workers in Isiolo County, northern Kenya. A cross-sectional serosurvey was done in all 19 slaughterhouses in Isiolo County, enrolling 378 participants into the study. The overall seroprevalences for Brucella spp. and RVFV were 40.2% (95% CI: 35.2-45.4) and 18.3% (95% CI: 14.5-22.5), respectively while 10.3% (95% CI 7.4%-13.8%) of individuals were positive for antibodies against both Brucella spp. and RVFV. Virus neutralisation tests (VNT) confirmed anti-RVFV antibodies in 85% of ELISA-positive samples. Our seroprevalence results were comparable to community-level seroprevalences previously reported in the area. Since most of the study participants were not from livestock-keeping households, our findings attribute most of the detected infections to occupational exposure. The high exposure levels indicate slaughterhouse workers are the most at-risk population and there is need for infection, prevention, and control programs among this high-risk group. This is the first VNT confirmation of virus-neutralising antibodies among slaughterhouse workers in Isiolo County and corroborates reports of the area being a high-risk RVFV area as occasioned by previously reported outbreaks. This necessitates sensitization campaigns to enhance awareness of the risks involved and appropriate mitigation measures.
Collapse
Affiliation(s)
| | - Josphat Maina
- Kenya Zoonotic Disease Unit, Ministry of Health and Ministry of Agriculture, Livestock and Fisheries, Nairobi, Kenya
| | - James Akoko
- International Livestock Research Institute, Nairobi, Kenya
| | - Daniel Nthiwa
- Department of Biological Sciences, University of Embu, Embu, Kenya
| | - Athman Mwatondo
- International Livestock Research Institute, Nairobi, Kenya
- Kenya Zoonotic Disease Unit, Ministry of Health and Ministry of Agriculture, Livestock and Fisheries, Nairobi, Kenya
| | - Mathew Muturi
- International Livestock Research Institute, Nairobi, Kenya
- Kenya Zoonotic Disease Unit, Ministry of Health and Ministry of Agriculture, Livestock and Fisheries, Nairobi, Kenya
- Department of Veterinary Medicine, Dahlem Research School of Biomedical Sciences (DRS), Freie Universität Berlin, Berlin, Germany
| | - Lillian Wambua
- World Organization for Animal Health, Sub-Regional Representation for Eastern Africa, Nairobi, Kenya
| | - Earl A Middlebrook
- Genomics and Bioanalytic, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Andrew W Bartlow
- Genomics and Bioanalytic, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Jeanne M Fair
- Genomics and Bioanalytic, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Bernard Bett
- International Livestock Research Institute, Nairobi, Kenya
| |
Collapse
|
30
|
Muturi M, Mwatondo A, Nijhof AM, Akoko J, Nyamota R, Makori A, Nyamai M, Nthiwa D, Wambua L, Roesel K, Thumbi SM, Bett B. Ecological and subject-level drivers of interepidemic Rift Valley fever virus exposure in humans and livestock in Northern Kenya. Sci Rep 2023; 13:15342. [PMID: 37714941 PMCID: PMC10504342 DOI: 10.1038/s41598-023-42596-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023] Open
Abstract
Nearly a century after the first reports of Rift Valley fever (RVF) were documented in Kenya, questions on the transmission dynamics of the disease remain. Specifically, data on viral maintenance in the quiescent years between epidemics is limited. We implemented a cross-sectional study in northern Kenya to determine the seroprevalence, risk factors, and ecological predictors of RVF in humans and livestock during an interepidemic period. Six hundred seventy-six human and 1,864 livestock samples were screened for anti-RVF Immunoglobulin G (IgG). Out of the 1,864 livestock samples tested for IgG, a subset of 1,103 samples was randomly selected for additional testing to detect the presence of anti-RVFV Immunoglobulin M (IgM). The anti-RVF virus (RVFV) IgG seropositivity in livestock and humans was 21.7% and 28.4%, respectively. RVFV IgM was detected in 0.4% of the livestock samples. Participation in the slaughter of livestock and age were positively associated with RVFV exposure in humans, while age was a significant factor in livestock. We detected significant interaction between rainfall and elevation's influence on livestock seropositivity, while in humans, elevation was negatively associated with RVF virus exposure. The linear increase of human and livestock exposure with age suggests an endemic transmission cycle, further corroborated by the detection of IgM antibodies in livestock.
Collapse
Affiliation(s)
- Mathew Muturi
- Department of Veterinary Medicine, Dahlem Research School of Biomedical Sciences (DRS), Freie Universität Berlin, Berlin, Germany.
- International Livestock Research Institute, Nairobi, Kenya.
- Kenya Zoonotic Disease Unit, Ministry of Health and Ministry of Agriculture, Nairobi, Kenya.
- Center for Epidemiological Modelling and Analysis-University of Nairobi, Nairobi, Kenya.
| | - Athman Mwatondo
- International Livestock Research Institute, Nairobi, Kenya
- Kenya Zoonotic Disease Unit, Ministry of Health and Ministry of Agriculture, Nairobi, Kenya
- Department of Medical Microbiology and Immunology, University of Nairobi, Nairobi, Kenya
| | - Ard M Nijhof
- Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Univesität Berlin, Berlin, Germany
| | - James Akoko
- International Livestock Research Institute, Nairobi, Kenya
| | | | - Anita Makori
- Center for Epidemiological Modelling and Analysis-University of Nairobi, Nairobi, Kenya
- Paul G Allen School for Global Health, Washington State University, Pullman, WA, USA
| | - Mutono Nyamai
- Center for Epidemiological Modelling and Analysis-University of Nairobi, Nairobi, Kenya
- Paul G Allen School for Global Health, Washington State University, Pullman, WA, USA
| | - Daniel Nthiwa
- Department of Biological Sciences, University of Embu, Embu, Kenya
| | - Lilian Wambua
- International Livestock Research Institute, Nairobi, Kenya
| | | | - S M Thumbi
- Center for Epidemiological Modelling and Analysis-University of Nairobi, Nairobi, Kenya
- Paul G Allen School for Global Health, Washington State University, Pullman, WA, USA
- Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, Scotland, UK
| | - Bernard Bett
- International Livestock Research Institute, Nairobi, Kenya
| |
Collapse
|
31
|
Mburu CM, Bukachi S, Majiwa H, Ongore D, Baylis M, Mochabo K, Fevre E, Howland O. Prioritization of livestock diseases by pastoralists in Oloitoktok Sub County, Kajiado County, Kenya. PLoS One 2023; 18:e0287456. [PMID: 37436965 DOI: 10.1371/journal.pone.0287456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/06/2023] [Indexed: 07/14/2023] Open
Abstract
INTRODUCTION Livestock diseases are a big challenge for the livelihood of pastoralists in sub-Saharan Africa because they reduce livestock productivity and increase mortality. Based on the literature available there is limited understanding on how pastoralists prioritize these diseases in the context of their culture, ecosystems and livelihoods. A study was conducted to provide insights on lay prioritization of animal diseases by pastoralists in Kenya. METHODOLOGY A qualitative study was undertaken between March and July 2021. Thirty in-depth interviews and six focus group discussions (FGDs) were conducted with community members to explore community attitudes on livestock diseases prioritization. Male and female livestock keepers were purposively selected and interviewed and they were all long-term residents of the area. Fourteen key informant interviews (KIIs) were conducted with professionals from different key sectors to provide detailed stakeholder perspectives on livestock diseases. The interviews were analyzed thematically using the QSR Nvivo software to identify the emerging themes related to the study objectives. RESULTS The pastoralists prioritized livestock diseases based on effect on their economic wellbeing, cultural values and utilization of ecosystem services. There were gender variabilities in how diseases were prioritized among the pastoralists. Men cited high priority diseases as foot and mouth disease and contagious bovine pleuropneumonia due to their regular occurrence and effect on livelihood. Notably, women regarded coenuruses as very important because it affected sheep and goats with a high mortality rate and lumpy skin disease because it rendered the meat from the carcasses inedible. Malignant catarrhal fever and trypanosomiasis were noted as some of the common diseases in the livestock-wildlife interface but not cited as priority diseases. Challenges related to disease control in pastoralist contexts exist including limited access to livestock treatment services, inadequate information on disease impact and complex environmental factors. CONCLUSION This study sheds light on the body of knowledge in Kenya regarding livestock diseases and their prioritization by livestock keepers. This could aid in the development of a common disease control framework and prioritization at the local level which would take into consideration the dynamic socio-cultural, ecological, livelihood and economic contexts of the communities.
Collapse
Affiliation(s)
- Caroline M Mburu
- Department of Social Anthropology, University of St Andrews, St Andrews, Scotland, United Kingdom
| | - Salome Bukachi
- Institute of Anthropology, Gender and African Studies, University of Nairobi, Nairobi, Kenya
| | - Hamilton Majiwa
- Institute of Anthropology, Gender and African Studies, University of Nairobi, Nairobi, Kenya
| | - Dismas Ongore
- School of Public Health, University of Nairobi, Nairobi, Kenya
| | - Matthew Baylis
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Kennedy Mochabo
- Faculty of Veterinary Medicine and Surgery, Egerton University, Nakuru, Kenya
| | - Eric Fevre
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Olivia Howland
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
32
|
Cornell TR, Thomas LF, Cook EAJ, Pinchbeck G, Bettridge J, Gordon L, Kivali V, Kiyong’a A, Fèvre EM, Scantlebury CE. Evidence of Histoplasma capsulatum seropositivity and exploration of risk factors for exposure in Busia county, western Kenya: Analysis of the PAZ dataset. PLoS Negl Trop Dis 2023; 17:e0011295. [PMID: 37172015 PMCID: PMC10180684 DOI: 10.1371/journal.pntd.0011295] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/07/2023] [Indexed: 05/14/2023] Open
Abstract
BACKGROUND Despite recognition of histoplasmosis as a disease of national public health concern in Kenya, the burden of Histoplasma capsulatum in the general population remains unknown. This study examined the human seroprevalence of anti-Histoplasma antibody and explored associations between seropositivity and demographic and environmental variables, in Busia county, western Kenya. METHODOLOGY Biobanked serum samples and associated data, from a previous cross-sectional survey, were examined. Latex agglutination tests to detect the presence of anti-Histoplasma antibody were performed on serum samples from 670 survey respondents, representing 178 households within 102 sub-locations. Potential epidemiologic risk factors for H. capsulatum exposure were explored using multi-level multivariable logistic regression analysis with household and sub-location included as random effects. PRINCIPAL FINDINGS The apparent sample seroprevalence of anti-Histoplasma antibody was 15.5% (n = 104/670, 95% Confidence Interval (CI) 12.9-18.5%). A multivariable logistic regression model identified increased odds of H. capsulatum seropositivity in respondents reporting rats within the household within the previous 12 months (OR = 2.99 90% CI 1.04-8.55, p = 0.04). Compared to respondents aged 25-34 years, the odds of seropositivity were higher in respondents aged 15-24 years (OR = 2.70 90% CI 1.04-6.97, p = 0.04). CONCLUSIONS The seroprevalence result provides a baseline for sample size approximations for future epidemiologic studies of the burden of H. capsulatum exposure in Busia county. The final model explored theoretically plausible risk factors for H. capsulatum exposure in the region. A number of factors may contribute to the complex epidemiological picture impacting H. capsulatum exposure status at the human-animal-environment interface in western Kenya. Focussed H. capsulatum research is warranted to determine the contextual significance of identified associations, and in representative sample populations.
Collapse
Affiliation(s)
- Tessa Rose Cornell
- Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, United Kingdom
| | - Lian Francesca Thomas
- Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, United Kingdom
- International Livestock Research Institute (ILRI), Nairobi, Kenya
| | | | - Gina Pinchbeck
- Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, United Kingdom
| | - Judy Bettridge
- Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, United Kingdom
- International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Lauren Gordon
- Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, United Kingdom
| | - Velma Kivali
- International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Alice Kiyong’a
- International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Eric Maurice Fèvre
- Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, United Kingdom
- International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Claire Elizabeth Scantlebury
- Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
33
|
Abstract
The burden of fungal infections has been on the rise globally and remains a significant public health concern in Kenya. We estimated the incidence and prevalence of fungal infections using all mycology publications in Kenya up to January 2023, and from neighbouring countries where data lacked. We used deterministic modelling using populations at risk to calculate the disease burden. The total burden of serious fungal infections is estimated to affect 6,328,294 persons which translates to 11.57% of the Kenyan population. Those suffering from chronic infections such as chronic pulmonary aspergillosis are estimated to be 100,570 people (0.2% of the population) and probably nearly 200,000 with fungal asthma, all treatable with oral antifungal therapy. Serious acute fungal infections secondary to HIV (cryptococcal meningitis, disseminated histoplasmosis, pneumocystis pneumonia, and mucosal candidiasis) affect 196,543 adults and children (0.4% of the total population), while cancer-related invasive fungal infection cases probably exceed 2,299 and those in intensive care about 1,230 incident cases, including Candida auris bloodstream infection. The burden of fungal infections in Kenya is high; however, limited diagnostic test availability, low clinician awareness and inadequate laboratory capacity constrain the country's health system in responding to the syndemic of fungal disease in Kenya.
Collapse
Affiliation(s)
- Stanley N. Ratemo
- Research Department, Kisii Teaching and Referral Hospital, Kisii, Kenya
| | - David W Denning
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Global Action for Fungal Infections (GAFFI), Geneva, Switzerland
| |
Collapse
|
34
|
Thukral H, Shanmugasundaram K, Riyesh T, Kumar N, Singha H, Gambhir D, Laura A, Tiwari S, Gulati BR. Multisectoral prioritization of zoonotic diseases in Haryana (India) using one health approach. Prev Vet Med 2023; 212:105835. [PMID: 36642015 DOI: 10.1016/j.prevetmed.2022.105835] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023]
Abstract
Zoonotic diseases have huge livestock and public health burden worldwide, including India. Prioritizing zoonotic diseases is one of the important tasks under 'One Health' as it facilitates effective policy making, proper allocation of resources and promotion of multisectoral collaboration. Although some efforts have been made to prioritizing zoonotic diseases at national level in India, it is important to identify priority diseases in regional settings due to wide variation in climate and demography of different states. Therefore, the present study aims to prioritize zoonotic diseases for the state of Haryana (India). One Health Zoonotic Disease Prioritization (OHZDP) tool was used in this study to prioritize zoonotic diseases. Based on literature review of the past 23 years (2000-2022) on prevalence, morbidity, and mortality of zoonotic diseases, twenty-three high-scoring zoonotic diseases in Haryana and neighboring states of India were initially shortlisted for prioritization. A three-day participatory workshop was conducted involving 17 experts representing the Health, Animal Husbandry and Wildlife departments of Haryana. The Analytical Hierarchy Process (AHP) was used to rank the criteria, which were used to score the selected diseases using the decision tree analysis. The participants selected the following 7 criteria along with their relative weights to score the diseases: (1) Severity of disease in humans, (2) Severity of disease in animals, (3) Presence of disease in the region, (4) Transmission and outbreak potential, (5) Socio-economic impact, (6) Availability of interventions, and (7) Existing inter-sectoral collaboration for surveillance and reporting. The top scoring eight diseases selected as priority zoonotic diseases for Haryana were rabies, Japanese encephalitis, bovine tuberculosis, leptospirosis, avian influenza (H5N1), brucellosis, glanders and Influenza A (H1N1). Sensitivity analysis did not reveal any significant variation in prioritization results by varying criteria weights. This is the first systemic attempt to prioritize zoonotic diseases in the state and this will help in formulating effective monitoring, prevention, and control strategies for zoonotic diseases in the regional settings.
Collapse
Affiliation(s)
- Hanul Thukral
- ICAR - National Research Centre on Equines, Hisar, Haryana, India.
| | | | - T Riyesh
- ICAR - National Research Centre on Equines, Hisar, Haryana, India.
| | - Naveen Kumar
- ICAR - National Research Centre on Equines, Hisar, Haryana, India.
| | | | - Dolly Gambhir
- State Integrated Disease Surveillance Programme, Panchkula, Haryana, India.
| | - Azad Laura
- Department of Animal Husbandry and Dairying, Pashudhan Bhawan, Panchkula, Haryana, India.
| | - Simmi Tiwari
- National Centre for Disease Control, New Delhi, India.
| | - Baldev R Gulati
- ICAR - National Research Centre on Equines, Hisar, Haryana, India.
| |
Collapse
|
35
|
Owiny MO, Ngare BK, Mugo BC, Rotich J, Mutembei A, Chepkorir K, Sitawa R, Obonyo M, Onono JO. Assessment of community perceptions and risk to common zoonotic diseases among communities living at the human-livestock-wildlife interface in Nakuru West, Kenya: A participatory epidemiology approach. PLoS Negl Trop Dis 2023; 17:e0011086. [PMID: 36701376 PMCID: PMC9904458 DOI: 10.1371/journal.pntd.0011086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 02/07/2023] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Zoonoses account for most of the emerging and re-emerging infections in Kenya and in other low to medium-income countries across the world. The human-livestock-wildlife interface provides a nexus where transmission and spread of these zoonotic diseases could occur among communities farming in these areas. We sought to identify perceptions of the community living near the Lake Nakuru National Park in Kenya. METHODS We used participatory epidemiology techniques (PE) involving Focus Group Discussion (FGD) among community members and Key Informant Interviews (KII) with the health, veterinary, and administration officers in July 2020. We used listing, pairwise matching, and proportional piling techniques during the FGDs in the randomly selected villages in the study area from a list of villages provided by the area government officers. Kruskal-Wallis test was used to compare the median scores between the zoonotic diseases, source of information, and response to disease occurrence. Medians with a z-score greater than 1.96 at 95% Confidence Level were considered to be significant. Content analysis was used to rank qualitative variables. RESULTS We conducted seven FGDs and four KIIs. A total of 89 participants took part in the FGDs with their ages ranging from 26 to 85 years. Common zoonotic diseases identified by participants included anthrax, rabies, and brucellosis. Anthrax was considered to have the greatest impact by the participants (median = 4, z>1.96), while 4/7 (57%) of the FGDs identified consumption of uninspected meat as a way that people can get infected with zoonotic diseases. Community Health Volunteers (Median = 28, z = 2.13) and the government veterinary officer (median = 7, z = 1.8) were the preferred sources of information during disease outbreaks. CONCLUSION The participants knew the zoonotic diseases common in the area and how the diseases can be acquired. We recommend increased involvement of the community in epidemio-surveillance of zoonotic diseases at the human-wildlife-livestock interface.
Collapse
Affiliation(s)
- Maurice Omondi Owiny
- Kenya Field Epidemiology and Laboratory Training Program, Ministry of Health, Nairobi, Kenya
- * E-mail:
| | - Ben Kipchumba Ngare
- Kenya Field Epidemiology and Laboratory Training Program, Ministry of Health, Nairobi, Kenya
| | - Bernard Chege Mugo
- Kenya Field Epidemiology and Laboratory Training Program, Ministry of Health, Nairobi, Kenya
| | - Jacob Rotich
- Department of Health, County Government of Nakuru, Nakuru, Kenya
| | - Arithi Mutembei
- Department of Agriculture, Wajir County Government, Wajir, Kenya
| | | | - Rinah Sitawa
- Ministry of Agriculture, Livestock and Fisheries, Nairobi, Kenya
- Food and Agriculture Organization of the United Nations, Nairobi, Kenya
| | - Mark Obonyo
- Ministry of Agriculture, Livestock and Fisheries, Nairobi, Kenya
- Food and Agriculture Organization of the United Nations, Nairobi, Kenya
| | - Joshua Orungo Onono
- Department of Public Health, Pharmacology and Toxicology, University of Nairobi, Nairobi, Kenya
| |
Collapse
|
36
|
Gachohi J, Bett B, Otieno F, Mogoa E, Njoki P, Muturi M, Mwatondo A, Osoro E, Ngere I, Dawa J, Nasimiyu C, Oyas H, Njagi O, Canfield S, Blackburn J, Njenga K. Anthrax hotspot mapping in Kenya support establishing a sustainable two-phase elimination program targeting less than 6% of the country landmass. Sci Rep 2022; 12:21670. [PMID: 36522381 PMCID: PMC9755300 DOI: 10.1038/s41598-022-24000-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/08/2022] [Indexed: 12/23/2022] Open
Abstract
Using data collected from previous (n = 86) and prospective (n = 132) anthrax outbreaks, we enhanced prior ecological niche models (ENM) and added kernel density estimation (KDE) approaches to identify anthrax hotspots in Kenya. Local indicators of spatial autocorrelation (LISA) identified clusters of administrative wards with a relatively high or low anthrax reporting rate to determine areas of greatest outbreak intensity. Subsequently, we modeled the impact of vaccinating livestock in the identified hotspots as a national control measure. Anthrax suitable areas included high agriculture zones concentrated in the western, southwestern and central highland regions, consisting of 1043 of 1450 administrative wards, covering 18.5% country landmass, and hosting 30% of the approximately 13 million cattle population in the country. Of these, 79 wards covering 5.5% landmass and hosting 9% of the cattle population fell in identified anthrax hotspots. The rest of the 407 administrative wards covering 81.5% of the country landmass, were classified as low anthrax risk areas and consisted of the expansive low agricultural arid and semi-arid regions of the country that hosted 70% of the cattle population, reared under the nomadic pastoralism. Modelling targeted annual vaccination of 90% cattle population in hotspot administrative wards reduced > 23,000 human exposures. These findings support an economically viable first phase of anthrax control program in low-income countries where the disease is endemic, that is focused on enhanced animal and human surveillance in burden hotspots, followed by rapid response to outbreaks anchored on public education, detection and treatment of infected humans, and ring vaccination of livestock. Subsequently, the global anthrax elimination program focused on sustained vaccination and surveillance in livestock in the remaining few hotspots for a prolonged period (> 10 years) may be implemented.
Collapse
Affiliation(s)
- John Gachohi
- grid.411943.a0000 0000 9146 7108School of Public Health, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya ,Washington State University Global Health Program, Washington State University, P. O. Box 72938, Nairobi, 00200 Kenya ,grid.30064.310000 0001 2157 6568Paul G, Allen School of Global Health, Washington State University, Pullman, WA99164 USA
| | - Bernard Bett
- grid.419369.00000 0000 9378 4481International Livestock Research Institute, Nairobi, Kenya
| | - Fredrick Otieno
- grid.419369.00000 0000 9378 4481International Livestock Research Institute, Nairobi, Kenya
| | - Eddy Mogoa
- grid.10604.330000 0001 2019 0495Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - Peris Njoki
- Washington State University Global Health Program, Washington State University, P. O. Box 72938, Nairobi, 00200 Kenya
| | - Mathew Muturi
- grid.419369.00000 0000 9378 4481International Livestock Research Institute, Nairobi, Kenya ,Kenya Zoonotic Disease Unit, Nairobi, Kenya ,grid.463427.0Kenya Ministry of Agriculture, Livestock and Fisheries, Nairobi, Kenya
| | - Athman Mwatondo
- grid.419369.00000 0000 9378 4481International Livestock Research Institute, Nairobi, Kenya ,Kenya Zoonotic Disease Unit, Nairobi, Kenya ,grid.415727.2Ministry of Health, Nairobi, Kenya
| | - Eric Osoro
- Washington State University Global Health Program, Washington State University, P. O. Box 72938, Nairobi, 00200 Kenya ,grid.30064.310000 0001 2157 6568Paul G, Allen School of Global Health, Washington State University, Pullman, WA99164 USA
| | - Isaac Ngere
- Washington State University Global Health Program, Washington State University, P. O. Box 72938, Nairobi, 00200 Kenya ,grid.30064.310000 0001 2157 6568Paul G, Allen School of Global Health, Washington State University, Pullman, WA99164 USA
| | - Jeanette Dawa
- Washington State University Global Health Program, Washington State University, P. O. Box 72938, Nairobi, 00200 Kenya ,grid.30064.310000 0001 2157 6568Paul G, Allen School of Global Health, Washington State University, Pullman, WA99164 USA
| | - Carolyne Nasimiyu
- Washington State University Global Health Program, Washington State University, P. O. Box 72938, Nairobi, 00200 Kenya ,grid.30064.310000 0001 2157 6568Paul G, Allen School of Global Health, Washington State University, Pullman, WA99164 USA
| | - Harry Oyas
- grid.463427.0Kenya Ministry of Agriculture, Livestock and Fisheries, Nairobi, Kenya
| | - Obadiah Njagi
- grid.463427.0Kenya Ministry of Agriculture, Livestock and Fisheries, Nairobi, Kenya
| | - Samuel Canfield
- grid.15276.370000 0004 1936 8091Spatial Epidemiology and Ecology Research Laboratory, Department of Geography, University of Florida, Gainesville, FL 32611 USA
| | - Jason Blackburn
- grid.15276.370000 0004 1936 8091Spatial Epidemiology and Ecology Research Laboratory, Department of Geography, University of Florida, Gainesville, FL 32611 USA ,grid.15276.370000 0004 1936 8091Emerging Pathogens Institute, University of Florida, 2055 Mowry Road, Gainesville, FL 32611 USA
| | - Kariuki Njenga
- Washington State University Global Health Program, Washington State University, P. O. Box 72938, Nairobi, 00200 Kenya ,grid.30064.310000 0001 2157 6568Paul G, Allen School of Global Health, Washington State University, Pullman, WA99164 USA
| |
Collapse
|
37
|
Muema J, Oboge H, Mutono N, Makori A, Oyugi J, Bukania Z, Njuguna J, Jost C, Ogoti B, Omulo S, Thumbi SM. Sero - epidemiology of brucellosis in people and their livestock: A linked human - animal cross-sectional study in a pastoralist community in Kenya. Front Vet Sci 2022; 9:1031639. [PMID: 36467641 PMCID: PMC9716101 DOI: 10.3389/fvets.2022.1031639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/03/2022] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Brucellosis is associated with massive livestock production losses and human morbidity worldwide. Efforts to control brucellosis among pastoralist communities are limited by scarce data on the prevalence and risk factors for exposure despite the high human-animal interactions in these communities. This study simultaneously assessed the seroprevalence of brucellosis and associated factors of exposure among pastoralists and their livestock in same households. METHODS We conducted a cross-sectional study in pastoralist communities in Marsabit County - Kenya. A total of 1,074 women and 225 children participated and provided blood samples. Blood was also drawn from 1,876 goats, 322 sheep and 189 camels. Blood samples were collected to be screened for the presence of anti-Brucella IgG antibodies using indirect IgG Enzyme-Linked Immunosorbent Assay (ELISA) kits. Further, Individual, household and herd-level epidemiological information were captured using a structured questionnaire. Group differences were compared using the Pearson's Chi-square test, and p-values < 0.05 considered statistically significant. Generalized mixed-effects multivariable logistic human and animal models using administrative ward as the random effect was used to determine variables correlated to the outcome. RESULTS Household-level seropositivity was 12.7% (95% CI: 10.7-14.8). The individual human seroprevalence was 10.8% (9.1-12.6) with higher seroprevalence among women than children (12.4 vs. 3.1%, p < 0.001). Herd-level seroprevalence was 26.1% (23.7-28.7) and 19.2% (17.6-20.8) among individual animals. Goats had the highest seroprevalence 23.1% (21.2 - 25.1), followed by sheep 6.8% (4.3-10.2) and camels 1.1% (0.1-3.8). Goats and sheep had a higher risk of exposure OR = 3.8 (95% CI 2.4-6.7, p < 0.001) and 2.8 (1.2-5.6, p < 0.007), respectively relative to camels. Human and animal seroprevalence were significantly associated (OR = 1.8, [95%CI: 1.23-2.58], p = 0.002). Herd seroprevalence varied by household head education (OR = 2.45, [1.67-3.61, p < 0.001]) and herd size (1.01, [1.00-1.01], p < 0.001). CONCLUSIONS The current study showed evidence that brucellosis is endemic in this pastoralist setting and there is a significant association between animal and human brucellosis seropositivity at household level representing a potential occupational risk. Public health sensitization and sustained human and animal brucellosis screening are required.
Collapse
Affiliation(s)
- Josphat Muema
- Institute of Tropical and Infectious Diseases, University of Nairobi, Nairobi, Kenya
- Washington State University Global Health Program - Kenya, Nairobi, Kenya
- Feed the Future Innovation Lab for Animal Health, Washington State University, Pullman, WA, United States
| | - Harriet Oboge
- Washington State University Global Health Program - Kenya, Nairobi, Kenya
- Feed the Future Innovation Lab for Animal Health, Washington State University, Pullman, WA, United States
| | - Nyamai Mutono
- Washington State University Global Health Program - Kenya, Nairobi, Kenya
- Feed the Future Innovation Lab for Animal Health, Washington State University, Pullman, WA, United States
- Centre for Epidemiological Modeling and Analysis, University of Nairobi, Nairobi, Kenya
| | - Anita Makori
- Washington State University Global Health Program - Kenya, Nairobi, Kenya
- Centre for Epidemiological Modeling and Analysis, University of Nairobi, Nairobi, Kenya
| | - Julius Oyugi
- Institute of Tropical and Infectious Diseases, University of Nairobi, Nairobi, Kenya
| | - Zipporah Bukania
- Center for Public Health Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Joseph Njuguna
- Food and Agriculture Organization of the United Nations, Nairobi, Kenya
| | - Christine Jost
- United States Agency for International Development's Bureau for Humanitarian Assistance (USAID/BHA), Washington, DC, United States
- Global Health Support Initiative III, Social Solutions International, Washington, DC, United States
| | - Brian Ogoti
- Washington State University Global Health Program - Kenya, Nairobi, Kenya
- Centre for Epidemiological Modeling and Analysis, University of Nairobi, Nairobi, Kenya
| | - Sylvia Omulo
- Institute of Tropical and Infectious Diseases, University of Nairobi, Nairobi, Kenya
- Washington State University Global Health Program - Kenya, Nairobi, Kenya
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA, United States
| | - S. M. Thumbi
- Institute of Tropical and Infectious Diseases, University of Nairobi, Nairobi, Kenya
- Feed the Future Innovation Lab for Animal Health, Washington State University, Pullman, WA, United States
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA, United States
- South African Center for Epidemiological Modeling Analysis, Stellenbosch, South Africa
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
38
|
Muema J, Nyamai M, Wheelhouse N, Njuguna J, Jost C, Oyugi J, Bukania Z, Oboge H, Ogoti B, Makori A, Fernandez MDP, Omulo S, Thumbi S. Endemicity of Coxiella burnetii infection among people and their livestock in pastoral communities in northern Kenya. Heliyon 2022; 8:e11133. [PMID: 36303929 PMCID: PMC9593183 DOI: 10.1016/j.heliyon.2022.e11133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/26/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Background Coxiella burnetti can be transmitted to humans primarily through inhaling contaminated droplets released from infected animals or consumption of contaminated dairy products. Despite its zoonotic nature and the close association pastoralist communities have with their livestock, studies reporting simultaneous assessment of C. burnetti exposure and risk-factors among people and their livestock are scarce. Objective This study therefore estimated the seroprevalence of Q-fever and associated risk factors of exposure in people and their livestock. Materials and methods We conducted a cross-sectional study in pastoralist communities in Marsabit County in northern Kenya. A total of 1,074 women and 225 children were enrolled and provided blood samples for Q-fever testing. Additionally, 1,876 goats, 322 sheep and 189 camels from the same households were sampled. A structured questionnaire was administered to collect individual- and household/herd-level data. Indirect IgG ELISA kits were used to test the samples. Results Household-level seropositivity was 13.2% [95% CI: 11.2–15.3]; differences in seropositivity levels among women and children were statistically insignificant (p = 0.8531). Lactating women had higher odds of exposure, odds ratio (OR) = 2.4 [1.3–5.3], while the odds of exposure among children increased with age OR = 1.1 [1.0–1.1]. Herd-level seroprevalence was 83.7% [81.7–85.6]. Seropositivity among goats was 74.7% [72.7–76.7], while that among sheep and camels was 56.8% [51.2–62.3] and 38.6% [31.6–45.9], respectively. Goats and sheep had a higher risk of exposure OR = 5.4 [3.7–7.3] and 2.6 [1.8–3.4], respectively relative to camels. There was no statistically significant association between Q-fever seropositivity and nutrition status in women, p = 0.900 and children, p = 1.000. We found no significant association between exposure in people and their livestock at household level (p = 0.724) despite high animal exposure levels, suggesting that Q-fever exposure in humans may be occurring at a scale larger than households. Conclusion The one health approach used in this study revealed that Q-fever is endemic in this setting. Longitudinal studies of Q-fever burden and risk factors simultaneously assessed in human and animal populations as well as the socioeconomic impacts of the disease and further explore the role of environmental factors in Q-fever epidemiology are required. Such evidence may form the basis for designing Q-fever prevention and control strategies.
Collapse
Affiliation(s)
- Josphat Muema
- Institute of Tropical and Infectious Diseases, University of Nairobi, Nairobi, Kenya,Washington State University Global Health Program – Kenya, Nairobi, Kenya,Feed the Future Innovation Lab for Animal Health, Washington State University, USA,Corresponding author.
| | - Mutono Nyamai
- Washington State University Global Health Program – Kenya, Nairobi, Kenya,Feed the Future Innovation Lab for Animal Health, Washington State University, USA,Center for Epidemiological Modelling and Analysis, University of Nairobi, Nairobi, Kenya
| | | | - Joseph Njuguna
- Food and Agriculture Organization of the United Nations, Nairobi, Kenya
| | - Christine Jost
- United States Agency for International Development's Bureau for Humanitarian Assistance (USAID/BHA), Washington, DC, USA,Global Health Support Initiative III, Social Solutions International, Washington DC, USA
| | - Julius Oyugi
- Institute of Tropical and Infectious Diseases, University of Nairobi, Nairobi, Kenya
| | - Zipporah Bukania
- Center for Public Health Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Harriet Oboge
- Washington State University Global Health Program – Kenya, Nairobi, Kenya,Feed the Future Innovation Lab for Animal Health, Washington State University, USA
| | - Brian Ogoti
- Washington State University Global Health Program – Kenya, Nairobi, Kenya,Center for Epidemiological Modelling and Analysis, University of Nairobi, Nairobi, Kenya
| | - Anita Makori
- Washington State University Global Health Program – Kenya, Nairobi, Kenya,Center for Epidemiological Modelling and Analysis, University of Nairobi, Nairobi, Kenya
| | | | - Sylvia Omulo
- Institute of Tropical and Infectious Diseases, University of Nairobi, Nairobi, Kenya,Feed the Future Innovation Lab for Animal Health, Washington State University, USA,Paul G. Allen School for Global Health, Washington State University, Pullman, USA
| | - S.M. Thumbi
- Institute of Tropical and Infectious Diseases, University of Nairobi, Nairobi, Kenya,Feed the Future Innovation Lab for Animal Health, Washington State University, USA,Center for Epidemiological Modelling and Analysis, University of Nairobi, Nairobi, Kenya,Paul G. Allen School for Global Health, Washington State University, Pullman, USA,South African Center for Epidemiological Modelling Analysis, South Africa,Institute of Immunology and Infection Research, University of Edinburgh, UK
| |
Collapse
|
39
|
Korniienko LY, Ukhovskyi VV, Moroz OA, Chechet OM, Haidei OS, Tsarenko TM, Bondarenko TM, Karpulenko MS, Nenych NP. Epizootological and epidemiological situation of anthrax in Ukraine in the context of mandatory specific prevention in susceptible animals. REGULATORY MECHANISMS IN BIOSYSTEMS 2022. [DOI: 10.15421/022245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
The problem of zoonoses remains relevant in the context of reliable prevention of human disease and effective ways to achieve this result, in particular through the impact on susceptible animals by the efforts of veterinary medicine. Anthrax is an acute, particularly dangerous infectious disease of all species of farm, domestic and wild animals, as well as humans, which is caused by Bacillus anthracis microbes. The causative agent of anthrax belongs to the group of aerobic spore-forming bacteria and exists in two main forms: vegetative and spore. The vegetative form in the body of an infected animal can form a "capsule". In Ukraine, according to the provisions of the current "Instruction for the prevention and control of animal anthrax" (2000), the main method of preventing anthrax among animals is regular vaccination of animals susceptible to this disease. The authors conducted a retrospective analysis of the epizootic and epidemiological situation of anthrax in Ukraine for the period 1994–2021 and made a critical assessment of the performance of mandatory measures for specific prevention of susceptible animals. In order to find out the ecological and geographical features of the spread of anthrax, data on outbreaks of the disease in cattle, swine, small ruminants and humans on the territory of Ukraine were analyzed by regions for the time period under investigation. Over the past 28 years in Ukraine, animal anthrax was registered in in all areas except Zhytomyr region. In total, during the analyzed period, 177 affected points and 637 infected animals (cattle, small ruminants, pigs, horses, wild and fur-bearing animals, dogs) were registered (estimated at 3.59 animals per outbreak). Cattle were most often involved in the epizootic process, followed by pigs and small ruminants, while horses and other animal species were least infected. Ecological and geographical analysis showed that the largest number of affected points among animals during the analyzed period was found in Kyiv, Volyn, Kharkiv, Luhansk, Khmelnytskyi, Cherkasy, Odesa, and Vinnytsia regions. A small number of affected points during the analyzed period were found in Zakarpattia, Ternopil, Kherson, Autonomous Republic of Crimea, Poltava, Dnipropetrovsk and Ivano-Frankivsk regions. During the analyzed period, 68 people in 11 regions of Ukraine were infected with anthrax, 15 outbreaks were registered (4.46 people per outbreak). Most cases were reported in Donetsk, Kyiv and Odesa regions. The association between outbreaks of anthrax in animals and cases of anthrax among humans has been established, this dependency was 86.6% (the index of contiguity, which takes into account the number of years with simultaneous registration of animal and human cases, was 0.5). The authors thoroughly proved that it is vaccination among susceptible animals that will finally prevent the incidence of anthrax among people.
Collapse
|
40
|
Wainaina M, Lindahl JF, Dohoo I, Mayer-Scholl A, Roesel K, Mbotha D, Roesler U, Grace D, Bett B, Al Dahouk S. Longitudinal Study of Selected Bacterial Zoonoses in Small Ruminants in Tana River County, Kenya. Microorganisms 2022; 10:microorganisms10081546. [PMID: 36013964 PMCID: PMC9414833 DOI: 10.3390/microorganisms10081546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/19/2022] Open
Abstract
Brucellosis, Q fever, and leptospirosis are priority zoonoses worldwide, yet their epidemiology is understudied, and studies investigating multiple pathogens are scarce. Therefore, we selected 316 small ruminants in irrigated, pastoral, and riverine settings in Tana River County and conducted repeated sampling for animals that were initially seronegative between September 2014 and June 2015. We carried out serological and polymerase chain reaction tests and determined risk factors for exposure. The survey-weighted serological incidence rates were 1.8 (95% confidence intervals [CI]: 1.3–2.5) and 1.3 (95% CI: 0.7–2.3) cases per 100 animal-months at risk for Leptospira spp. and C. burnetii, respectively. We observed no seroconversions for Brucella spp. Animals from the irrigated setting had 6.83 (95% CI: 2.58–18.06, p-value = 0.01) higher odds of seropositivity to C. burnetii than those from riverine settings. Considerable co-exposure of animals to more than one zoonosis was also observed, with animals exposed to one zoonosis generally having 2.5 times higher odds of exposure to a second zoonosis. The higher incidence of C. burnetii and Leptospira spp. infections, which are understudied zoonoses in Kenya compared to Brucella spp., demonstrate the need for systematic prioritization of animal diseases to enable the appropriate allocation of resources.
Collapse
Affiliation(s)
- Martin Wainaina
- Department of Biological Safety, German Federal Institute for Risk Assessment, 12277 Berlin, Germany; (A.M.-S.); (S.A.D.)
- Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany; (K.R.); (D.M.)
- Animal & Human Health Program, International Livestock Research Institute, Nairobi 00100, Kenya; (J.F.L.); (D.G.); (B.B.)
- Correspondence:
| | - Johanna F. Lindahl
- Animal & Human Health Program, International Livestock Research Institute, Nairobi 00100, Kenya; (J.F.L.); (D.G.); (B.B.)
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, 75237 Uppsala, Sweden
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Ian Dohoo
- Centre for Veterinary Epidemiologic Research, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada;
| | - Anne Mayer-Scholl
- Department of Biological Safety, German Federal Institute for Risk Assessment, 12277 Berlin, Germany; (A.M.-S.); (S.A.D.)
| | - Kristina Roesel
- Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany; (K.R.); (D.M.)
- Animal & Human Health Program, International Livestock Research Institute, Nairobi 00100, Kenya; (J.F.L.); (D.G.); (B.B.)
| | - Deborah Mbotha
- Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany; (K.R.); (D.M.)
- Animal & Human Health Program, International Livestock Research Institute, Nairobi 00100, Kenya; (J.F.L.); (D.G.); (B.B.)
| | - Uwe Roesler
- Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, 14163 Berlin, Germany;
| | - Delia Grace
- Animal & Human Health Program, International Livestock Research Institute, Nairobi 00100, Kenya; (J.F.L.); (D.G.); (B.B.)
- Natural Resources Institute, University of Greenwich, Kent ME4 4TB, UK
| | - Bernard Bett
- Animal & Human Health Program, International Livestock Research Institute, Nairobi 00100, Kenya; (J.F.L.); (D.G.); (B.B.)
| | - Sascha Al Dahouk
- Department of Biological Safety, German Federal Institute for Risk Assessment, 12277 Berlin, Germany; (A.M.-S.); (S.A.D.)
- Department of Internal Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany
| |
Collapse
|
41
|
Mwaki DM, Kidambasi KO, Kinyua J, Ogila K, Kigen C, Getange D, Villinger J, Masiga DK, Carrington M, Bargul JL. Molecular detection of novel Anaplasma sp . and zoonotic hemopathogens in livestock and their hematophagous biting keds (genus Hippobosca) from Laisamis, northern Kenya. OPEN RESEARCH AFRICA 2022; 5:23. [PMID: 37396343 PMCID: PMC10314185 DOI: 10.12688/openresafrica.13404.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/13/2022] [Indexed: 07/04/2023]
Abstract
Background: Livestock are key sources of livelihood among pastoral communities. Livestock productivity is chiefly constrained by pests and diseases. Due to inadequate disease surveillance in northern Kenya, little is known about pathogens circulating within livestock and the role of livestock-associated biting keds (genus Hippobosca) in disease transmission. We aimed to identify the prevalence of selected hemopathogens in livestock and their associated blood-feeding keds. Methods: We randomly collected 389 blood samples from goats (245), sheep (108), and donkeys (36), as well as 235 keds from both goats and sheep (116), donkeys (11), and dogs (108) in Laisamis, Marsabit County, northern Kenya. We screened all samples for selected hemopathogens by high-resolution melting (HRM) analysis and sequencing of PCR products amplified using primers specific to the genera: Anaplasma, Trypanosoma, Clostridium, Ehrlichia, Brucella, Theileria, and Babesia. Results: In goats, we detected Anaplasma ovis (84.5%), a novel Anaplasma sp. (11.8%), Trypanosoma vivax (7.3%), Ehrlichia canis (66.1%), and Theileria ovis (0.8%). We also detected A. ovis (93.5%), E. canis (22.2%), and T. ovis (38.9%) in sheep. In donkeys, we detected ' Candidatus Anaplasma camelii' (11.1%), T. vivax (22.2%), E. canis (25%), and Theileria equi (13.9%). In addition, keds carried the following pathogens; goat/sheep keds - T. vivax (29.3%) , Trypanosoma evansi (0.86%), Trypanosoma godfreyi (0.86%), and E. canis (51.7%); donkey keds - T. vivax (18.2%) and E. canis (63.6%); and dog keds - T. vivax (15.7%), T. evansi (0.9%), Trypanosoma simiae (0.9%) , E. canis (76%), Clostridium perfringens (46.3%), Bartonella schoenbuchensis (76%), and Brucella abortus (5.6%). Conclusions: We found that livestock and their associated ectoparasitic biting keds carry a number of infectious hemopathogens, including the zoonotic B. abortus. Dog keds harbored the most pathogens, suggesting dogs, which closely interact with livestock and humans, as key reservoirs of diseases in Laisamis. These findings can guide policy makers in disease control.
Collapse
Affiliation(s)
- Daniel M. Mwaki
- Animal Health Department/Molecular Biology and Bioinformatics Unit, International Centre of Insect Physiology and Ecology (icipe), Nairobi, P.O. BOX 30772-00100, Kenya
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, P.O. BOX 62000-00200, Kenya
- Department of Zoology, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, P.O. Box 62000-00200, Kenya
| | - Kevin O. Kidambasi
- Animal Health Department/Molecular Biology and Bioinformatics Unit, International Centre of Insect Physiology and Ecology (icipe), Nairobi, P.O. BOX 30772-00100, Kenya
| | - Johnson Kinyua
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, P.O. BOX 62000-00200, Kenya
| | - Kenneth Ogila
- Department of Zoology, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, P.O. Box 62000-00200, Kenya
| | - Collins Kigen
- Animal Health Department/Molecular Biology and Bioinformatics Unit, International Centre of Insect Physiology and Ecology (icipe), Nairobi, P.O. BOX 30772-00100, Kenya
| | - Dennis Getange
- Animal Health Department/Molecular Biology and Bioinformatics Unit, International Centre of Insect Physiology and Ecology (icipe), Nairobi, P.O. BOX 30772-00100, Kenya
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, P.O. BOX 62000-00200, Kenya
| | - Jandouwe Villinger
- Animal Health Department/Molecular Biology and Bioinformatics Unit, International Centre of Insect Physiology and Ecology (icipe), Nairobi, P.O. BOX 30772-00100, Kenya
| | - Daniel K. Masiga
- Animal Health Department/Molecular Biology and Bioinformatics Unit, International Centre of Insect Physiology and Ecology (icipe), Nairobi, P.O. BOX 30772-00100, Kenya
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Joel L. Bargul
- Animal Health Department/Molecular Biology and Bioinformatics Unit, International Centre of Insect Physiology and Ecology (icipe), Nairobi, P.O. BOX 30772-00100, Kenya
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, P.O. BOX 62000-00200, Kenya
| |
Collapse
|
42
|
Pham-Thanh L, Nhu TV, Nguyen TV, Tran KV, Nguyen KC, Nguyen HT, Ngo Thi Hoa, Padungtod P. Zoonotic pathogens and diseases detected in Vietnam, 2020-2021. One Health 2022; 14:100398. [PMID: 35686154 PMCID: PMC9171505 DOI: 10.1016/j.onehlt.2022.100398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/03/2022] [Accepted: 05/07/2022] [Indexed: 11/17/2022] Open
Abstract
Vietnam has been identified as a country at high-risk for emergence and re-emergence of zoonotic diseases. The government of Vietnam recognized five priority zoonoses, including highly pathogenic avian influenza, rabies, leptospirosis, anthrax, and Streptococcus suis, and established a framework for One Health investigation and response to these diseases. From July 2020 to February 2021, quantitative data of zoonoses were collected from an online survey in 61 of 63 provinces based on either clinical diagnosis or laboratory confirmation. The responses were followed up by using in-depth interviews, and scientific literatures on zoonoses in Vietnam during 2010 to 2020 were reviewed. A total of 234 human health professionals and 95 animal health professionals responded to the survey. The proportion of clinical-based respondents was higher than laboratory-based respondents in both human health (130/234, 55.6%) and animal health (65/95, 68.4%) sectors. There were differences in the reported frequency of zoonoses between human and animal health professionals, and between clinical-based and laboratory-based respondents. Rabies was the most serious zoonotic disease based on the number of human cases and the geographic distribution. No human cases of avian influenza infection have been reported since 2015, although the H5 subtype viruses have been found in poultry. Besides, some bacterial, fungal, and parasitic zoonoses were detected in both humans and animals. Out of the 75 zoonoses identified, we recommend that the original five prioritized zoonoses, plus 24 additional zoonoses, should be targeted for future prevention, detection, and control under One Health approach in Vietnam.
Collapse
Affiliation(s)
- Long Pham-Thanh
- Department of Animal Health, Ministry of Agriculture and Rural Development, Hanoi, Vietnam
| | - Thu Van Nhu
- Food and Agriculture Organization of the United Nations (FAO), Country Office for Vietnam, Hanoi, Vietnam
| | - Trung Vinh Nguyen
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Department Veterinary Medicine, College of Agriculture, Can Tho University, Can Tho, Vietnam
| | - Khang Vuong Tran
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Khanh Cong Nguyen
- National Institute of Hygiene and Epidemiology, Ministry of Health, Hanoi, Vietnam
| | - Huong Thi Nguyen
- General Department of Preventive Medicine, Ministry of Health, Hanoi, Vietnam
| | - Ngo Thi Hoa
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
- Nuffield Department of Clinical Medicine, Oxford University, Oxford, UK
| | - Pawin Padungtod
- Food and Agriculture Organization of the United Nations (FAO), Country Office for Vietnam, Hanoi, Vietnam
| |
Collapse
|
43
|
Human brucellosis: Widespread information deficiency hinders an understanding of global disease frequency. PLoS Negl Trop Dis 2022; 16:e0010404. [PMID: 35580076 PMCID: PMC9113565 DOI: 10.1371/journal.pntd.0010404] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/08/2022] [Indexed: 12/02/2022] Open
Abstract
Background For decades, human brucellosis has been recognized worldwide as a significant cause of morbidity, yet the annual incidence of this disease remains unknown. We analyzed this frequency, using international reports (2005–2019), identifying information gaps, and distinguishing a possible path forward. Methodology/Principal findings A novel approach to estimating the incidence of this disease was explored. We utilized annual health data extracted from the World Organization for Animal Health (OIE)–World Animal Health Information System (WAHIS) database, assessing the dataset completeness and representativeness of the data for the world population. Additionally, we assessed the reported country level human brucellosis case counts and the factors that influenced the observed changes over time. Our analysis revealed incomplete and unrepresentative information, preventing the estimation of annual human brucellosis case incidence at the global level. In the OIE-WAHIS database, only 48.4% of the required reports have been submitted as of 2019, with approximately 47.3% of the world population represented. Additionally, geographic regions were disproportionate in completeness, representativeness, and actual reported case counts. Africa and Asia constituted the majority of reported cases, while simultaneously submitting the lowest percentage of reports as well as covering the lowest percentage of their populations within those reports, when compared to the rest of the world. Conclusions/Significance The global annual frequency of human brucellosis cases remains elusive. Furthermore, there exists great heterogeneity in diagnostic, surveillance, and reporting systems worldwide, calling into question the validity of available information. This study reveals that the Neglected Zoonotic Disease priority status for brucellosis should be restored. Despite brucellosis being a major concern worldwide, particularly for populations residing within resource-limited settings, a suitable estimate of annual incidence is currently nonexistent for human disease. To our knowledge, this is the first study to characterize global human brucellosis frequency by utilizing nationally reported case data supplied to the global intergovernmental public health authorities. The combined records demonstrate that within currently available and established international reporting systems, there are insufficient data to calculate the annual global frequency of human brucellosis. Furthermore, the regional differences in populations represented within reports, as well as actual reported case counts, bias the correct interpretation of the overall human brucellosis disease frequency. This suggests that broadcasting a specific global quantity of new cases each year is misleading and, accordingly, there is presently no way to assess the global public health impact of this disease. In past years, disease prioritization by individual countries, including the reallocation of funds to national surveillance, have been demonstrated to positively impact the completeness and representativeness of the data. In the future, the international community must similarly reallocate resources to understand and fill gaps within the available information. Application of this information can be directed towards effectively pinpointing disease burden and efficient control strategies. The reinstatement of human brucellosis as a priority Neglected Zoonotic Disease by the WHO would substantially facilitate this process.
Collapse
|
44
|
Lukambagire AS, Shirima GM, Shayo DD, Mathew C, Yapi RB, Kasanga CJ, Mmbaga BT, Kazwala RR, Halliday JEB. Brucellosis testing patterns at health facilities in Arusha region, northern Tanzania. PLoS One 2022; 17:e0265612. [PMID: 35320293 PMCID: PMC8942238 DOI: 10.1371/journal.pone.0265612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 03/04/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Brucellosis is listed as one of six priority zoonoses in Tanzania's One Health strategic plan which highlights gaps in data needed for the surveillance and estimation of human brucellosis burdens. This study collected data on current testing practices and test results for human brucellosis in Arusha region, northern Tanzania. METHODS Retrospective data were extracted from records at 24 health facilities in Arusha region for the period January 2012 to May 2018. Data were captured on: the test reagents used for brucellosis, procurement and testing protocols, the monthly number of patients tested for brucellosis and the monthly number testing positive. Generalised linear mixed models were used to evaluate relationships between health facility characteristics and the probability that brucellosis testing was conducted in a given month, and the proportion of individuals testing positive. RESULTS Four febrile Brucella agglutination tests were used widely. The probability of testing for brucellosis in a given month was significantly associated with an interaction between year of testing and facility ownership. Test probability increased over time with more pronounced increases in privately owned as compared to government facilities. The proportion of individuals testing positive for brucellosis was significantly associated with facility type and district, with individuals tested in hospitals in Meru, Monduli and Ngorongoro districts more likely to test positive. CONCLUSIONS Febrile Brucella agglutination tests, known for their poor performance, were the mainstay of brucellosis testing at health facilities in northern Tanzania. The study indicates that historical data on human brucellosis in Arusha and other regions are likely to provide an inaccurate measure of true disease burden due to poor performance of the tests used and variation in testing practices. Measures to address these identified shortcomings could greatly improve quality of testing and surveillance data on brucellosis and ultimately inform prevention and control of this priority disease.
Collapse
Affiliation(s)
- AbdulHamid Settenda Lukambagire
- College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
- Kilimanjaro Christian Medical University College-Kilimanjaro Clinical Research Institute, Moshi, Tanzania
| | | | - Damas Davis Shayo
- Regional Health Management Team, Arusha Regional Medical Office, Arusha, Tanzania
| | - Coletha Mathew
- College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Richard B. Yapi
- Centre d’Entomologie Médicale et Vétérinaire Université Alassane Ouattara, Bouaké, Côte d’Ivoire
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Abidjan, Côte d’Ivoire
| | - Christopher Julius Kasanga
- College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Blandina Theophile Mmbaga
- Kilimanjaro Christian Medical University College-Kilimanjaro Clinical Research Institute, Moshi, Tanzania
- Kilimanjaro Christian Medical University College, Moshi, Tanzania
- Duke Global Health Institute, Durham, North Carolina, United States of America
| | - Rudovick Reuben Kazwala
- College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Jo E. B. Halliday
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
45
|
Shanbehzadeh M, Nopour R, Kazemi-Arpanahi H. Designing a standardized framework for data integration between zoonotic diseases systems: Towards one health surveillance. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.100893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
46
|
Mwololo D, Nthiwa D, Kitala P, Abuom T, Wainaina M, Kairu-Wanyoike S, Lindahl JF, Ontiri E, Bukachi S, Njeru I, Karanja J, Sang R, Grace D, Bett B. Sero-epidemiological survey of Coxiella burnetii in livestock and humans in Tana River and Garissa counties in Kenya. PLoS Negl Trop Dis 2022; 16:e0010214. [PMID: 35239658 PMCID: PMC8923444 DOI: 10.1371/journal.pntd.0010214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 03/15/2022] [Accepted: 01/28/2022] [Indexed: 01/17/2023] Open
Abstract
Background Coxiella burnetii is a widely distributed pathogen, but data on its epidemiology in livestock, and human populations remain scanty, especially in developing countries such as Kenya. We used the One Health approach to estimate the seroprevalance of C. burnetii in cattle, sheep, goats and human populations in Tana River county, and in humans in Garissa county, Kenya. We also identified potential determinants of exposure among these hosts. Methods Data were collected through a cross-sectional study. Serum samples were taken from 2,727 animals (466 cattle, 1,333 goats, and 928 sheep) and 974 humans and screened for Phase I/II IgG antibodies against C. burnetii using enzyme-linked immunosorbent assay (ELISA). Data on potential factors associated with animal and human exposure were collected using a structured questionnaire. Multivariable analyses were performed with households as a random effect to adjust for the within-household correlation of C. burnetii exposure among animals and humans, respectively. Results The overall apparent seroprevalence estimates of C. burnetii in livestock and humans were 12.80% (95% confidence interval [CI]: 11.57–14.11) and 24.44% (95% CI: 21.77–27.26), respectively. In livestock, the seroprevalence differed significantly by species (p < 0.01). The highest seroprevalence estimates were observed in goats (15.22%, 95% CI: 13.34-17.27) and sheep (14.22%, 95% CI: 12.04–16.64) while cattle (3.00%, 95% CI: 1.65–4.99) had the lowest seroprevalence. Herd-level seropositivity of C. burnetii in livestock was not positively associated with human exposure. Multivariable results showed that female animals had higher odds of seropositivity for C. burnetii than males, while for animal age groups, adult animals had higher odds of seropositivity than calves, kids or lambs. For livestock species, both sheep and goats had significantly higher odds of seropositivity than cattle. In human populations, men had a significantly higher odds of testing positive for C. burnetii than women. Conclusions This study provides evidence of livestock and human exposure to C. burnetii which could have serious economic implications on livestock production and impact on human health. These results also highlight the need to establish active surveillance in the study area to reduce the disease burden associated with this pathogen. Q fever caused by Coxiella burnetii is a significant zoonotic disease that affects wildlife, domestic animals and humans. This study determined the prevalence of antibodies to C. burnetii in livestock (cattle, sheep, and goats) and human populations in arid and semi-arid areas of Kenya between December 2013 and February 2014. We also identified potential factors that were associated with exposure among the above-targeted hosts. Results from this study showed considerable exposure in both livestock and human populations. However, human exposure to this pathogen at the household level was not correlated with herd-level seropositivity. Further studies are needed to elucidate the transmission routes of this pathogen among humans.
Collapse
Affiliation(s)
- Damaris Mwololo
- Directorate of Veterinary Services, Ministry of Agriculture, Livestock, Fisheries and Cooperatives, Nairobi, Kenya
| | - Daniel Nthiwa
- Department of Biological Sciences, University of Embu, Embu, Kenya
- International Livestock Research Institute, Nairobi, Kenya
- * E-mail:
| | - Philip Kitala
- Department of Public Health, Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - Tequiero Abuom
- Department of Clinical Medicine, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | | | - Salome Kairu-Wanyoike
- Department of Veterinary Services, Ministry of Agriculture, Livestock and Fisheries, Nairobi, Kenya
| | - Johanna F. Lindahl
- International Livestock Research Institute, Nairobi, Kenya
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Enoch Ontiri
- International Livestock Research Institute, Nairobi, Kenya
| | - Salome Bukachi
- Institute of Anthropology, University of Nairobi, Nairobi, Kenya
| | - Ian Njeru
- Division of Disease Surveillance and Response, Ministry of Public Health and Sanitation, Kenyatta National Hospital, Nairobi, Kenya
| | - Joan Karanja
- Division of Disease Surveillance and Response, Ministry of Public Health and Sanitation, Kenyatta National Hospital, Nairobi, Kenya
| | | | - Delia Grace
- International Livestock Research Institute, Nairobi, Kenya
- Natural Resources Institute, University of Greenwich, Kent, United Kingdom
| | - Bernard Bett
- International Livestock Research Institute, Nairobi, Kenya
| |
Collapse
|
47
|
Wang X, Rainey JJ, Goryoka GW, Liang Z, Wu S, Wen L, Duan R, Qin S, Huang H, Kharod G, Rao CY, Salyer SJ, Behravesh CB, Jing H. Using a One Health approach to prioritize zoonotic diseases in China, 2019. PLoS One 2021; 16:e0259706. [PMID: 34797849 PMCID: PMC8604330 DOI: 10.1371/journal.pone.0259706] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 10/26/2021] [Indexed: 12/24/2022] Open
Abstract
Background China is vulnerable to zoonotic disease transmission due to a large agricultural work force, sizable domestic livestock population, and a highly biodiverse ecology. To better address this threat, representatives from the human, animal, and environmental health sectors in China held a One Health Zoonotic Disease Prioritization (OHZDP) workshop in May 2019 to develop a list of priority zoonotic diseases for multisectoral, One Health collaboration. Methods Representatives used the OHZDP Process, developed by the US Centers for Disease Control and Prevention (US CDC), to prioritize zoonotic diseases for China. Representatives defined the criteria used for prioritization and determined questions and weights for each individual criterion. A review of English and Chinese literature was conducted prior to the workshop to collect disease specific information on prevalence, morbidity, mortality, and Disability-Adjusted Life Years (DALYs) from China and the Western Pacific Region for zoonotic diseases considered for prioritization. Results Thirty zoonotic diseases were evaluated for prioritization. Criteria selected included: 1) disease hazard/severity (case fatality rate) in humans, 2) epidemic scale and intensity (in humans and animals) in China, 3) economic impact, 4) prevention and control, and 5) social impact. Disease specific information was obtained from 792 articles (637 in English and 155 in Chinese) and subject matter experts for the prioritization process. Following discussion of the OHZDP Tool output among disease experts, five priority zoonotic diseases were identified for China: avian influenza, echinococcosis, rabies, plague, and brucellosis. Conclusion Representatives agreed on a list of five priority zoonotic diseases that can serve as a foundation to strengthen One Health collaboration for disease prevention and control in China; this list was developed prior to the emergence of SARS-CoV-2 and the COVID-19 pandemic. Next steps focused on establishing a multisectoral, One Health coordination mechanism, improving multisectoral linkages in laboratory testing and surveillance platforms, creating multisectoral preparedness and response plans, and increasing workforce capacity.
Collapse
Affiliation(s)
- Xin Wang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jeanette J. Rainey
- Division of Global Health Protection, United States Centers for Disease Control and Prevention, Beijing, China
| | - Grace W. Goryoka
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Zuoru Liang
- Center for Global Public Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shuyu Wu
- Division of Global Health Protection, United States Centers for Disease Control and Prevention, Beijing, China
| | - Liming Wen
- Yinchuan Animal Center for Disease Control and Prevention, Yinchuan, Ningxia, China
| | - Ran Duan
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shuai Qin
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Haodi Huang
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Grishma Kharod
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Carol Y. Rao
- Division of Global Health Protection, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Stephanie J. Salyer
- Division of Global Health Protection, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Casey Barton Behravesh
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Huaiqi Jing
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- * E-mail:
| |
Collapse
|
48
|
Mremi IR, George J, Rumisha SF, Sindato C, Kimera SI, Mboera LEG. Twenty years of integrated disease surveillance and response in Sub-Saharan Africa: challenges and opportunities for effective management of infectious disease epidemics. ONE HEALTH OUTLOOK 2021; 3:22. [PMID: 34749835 PMCID: PMC8575546 DOI: 10.1186/s42522-021-00052-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/18/2021] [Indexed: 05/15/2023]
Abstract
INTRODUCTION This systematic review aimed to analyse the performance of the Integrated Disease Surveillance and Response (IDSR) strategy in Sub-Saharan Africa (SSA) and how its implementation has embraced advancement in information technology, big data analytics techniques and wealth of data sources. METHODS HINARI, PubMed, and advanced Google Scholar databases were searched for eligible articles. The review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis Protocols. RESULTS A total of 1,809 articles were identified and screened at two stages. Forty-five studies met the inclusion criteria, of which 35 were country-specific, seven covered the SSA region, and three covered 3-4 countries. Twenty-six studies assessed the IDSR core functions, 43 the support functions, while 24 addressed both functions. Most of the studies involved Tanzania (9), Ghana (6) and Uganda (5). The routine Health Management Information System (HMIS), which collects data from health care facilities, has remained the primary source of IDSR data. However, the system is characterised by inadequate data completeness, timeliness, quality, analysis and utilisation, and lack of integration of data from other sources. Under-use of advanced and big data analytical technologies in performing disease surveillance and relating multiple indicators minimises the optimisation of clinical and practice evidence-based decision-making. CONCLUSIONS This review indicates that most countries in SSA rely mainly on traditional indicator-based disease surveillance utilising data from healthcare facilities with limited use of data from other sources. It is high time that SSA countries consider and adopt multi-sectoral, multi-disease and multi-indicator platforms that integrate other sources of health information to provide support to effective detection and prompt response to public health threats.
Collapse
Affiliation(s)
- Irene R Mremi
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, Morogoro, Tanzania.
- SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro, Tanzania.
- National Institute for Medical Research, Dar es Salaam, Tanzania.
| | - Janeth George
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, Morogoro, Tanzania
- SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Susan F Rumisha
- National Institute for Medical Research, Dar es Salaam, Tanzania
- Malaria Atlas Project, Geospatial Health and Development, Telethon Kids Institute, West Perth, Australia
| | - Calvin Sindato
- SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro, Tanzania
- National Institute for Medical Research, Tabora Research Centre, Tabora, Tanzania
| | - Sharadhuli I Kimera
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Leonard E G Mboera
- SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro, Tanzania
| |
Collapse
|
49
|
Mugo BC, Lekopien C, Owiny M. 'We dry contaminated meat to make it safe': An assessment of knowledge, attitude and practices on anthrax during an outbreak, Kisumu, Kenya, 2019. PLoS One 2021; 16:e0259017. [PMID: 34735481 PMCID: PMC8568283 DOI: 10.1371/journal.pone.0259017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 10/12/2021] [Indexed: 12/02/2022] Open
Abstract
Introduction Anthrax is the highest-ranked priority zoonotic disease in Kenya with about ten human cases annually. Anthrax outbreak was reported in Kisumu East Sub County after some villagers slaughtered and ate beef from a cow suspected to have died of anthrax. We aimed at establishing the magnitude of the outbreak, described associated factors, and assessed community knowledge, attitude, and practices on anthrax. Methods We reviewed human and animal records, conducted case search and contact tracing using standard case definitions in the period from July 1through to July 28, 2019. A cross-sectional study was conducted to assess community knowledge, attitude, and practices towards anthrax. The household selection was done using multistage sampling. We cleaned and analyzed data in Ms. Excel and Epi Info. Descriptive statistics were carried out for continuous and categorical variables while analytical statistics for the association between dependent and independent variables were calculated. Results Out of 53 persons exposed through consumption or contact with suspicious beef, 23 cases (confirmed: 1, probable: 4, suspected: 18) were reviewed. The proportion of females was 52.17% (12/23), median age 13.5 years and range 45 years. The attack rate was 43.4% (23/53) and the case fatality rate was 4.35% (1/23). Knowledge level, determined by dividing those considered to be ‘having good knowledge’ on anthrax (numerator) by the total number of respondents (denominator) in the population regarding cause, transmission, symptoms and prevention was 51% for human anthrax and 52% for animal anthrax. Having good knowledge on anthrax was associated with rural residence [OR = 5.5 (95% CI 2.1–14.4; p<0.001)], having seen a case of anthrax [OR = 6.2 (95% CI 2.8–14.2; p<0.001)] and among those who present cattle for vaccination [OR = 2.6 (95% CI 1.2–5.6; p = 0.02)]. About 23.2% (26/112) would slaughter and sell beef to neighbors while 63.4% (71/112) would bury or burn the carcass. Nearly 93.8% (105/112) believed vaccination prevents anthrax. However, 5.4% (62/112) present livestock for vaccination. Conclusion Most anthrax exposures were through meat consumption. Poor knowledge of the disease might hamper prevention and control efforts.
Collapse
Affiliation(s)
- Bernard Chege Mugo
- Field Epidemiology and Laboratory Training Program, Ministry of Health, Nairobi, Kenya
- * E-mail:
| | - Cornelius Lekopien
- Field Epidemiology and Laboratory Training Program, Ministry of Health, Nairobi, Kenya
| | - Maurice Owiny
- Field Epidemiology and Laboratory Training Program, Ministry of Health, Nairobi, Kenya
| |
Collapse
|
50
|
Critical Systematic Review of Zoonoses and Transboundary Animal Diseases' Prioritization in Africa. Pathogens 2021; 10:pathogens10080976. [PMID: 34451440 PMCID: PMC8401284 DOI: 10.3390/pathogens10080976] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Disease prioritization aims to enhance resource use efficiency concerning human and animal health systems’ preparedness and response to the most important problems for the optimization of beneficial outcomes. In sub-Sahara Africa (SSA), several prioritizations of zoonoses and transboundary animal diseases (TADs) have been implemented at different scales to characterize potential disease impacts. Method and principal findings: In this systematic review, we analyze the methodologies used, outcomes, and their relevance by discussing criteria required to align decision-makers’ perceptions of impacts to those of other stakeholders for different prioritization in SSA. In general, the sectorial representativeness of stakeholders for processes implemented with the support of international partners showed slight differences with the absence of local stakeholders. Whatever the tool prioritized, zoonoses were similar in general because of the structured nature of those tools in assessing decision-makers’ preferences through value trade-offs between criteria while ensuring transparency and reproducibility. However, by involving field practitioners and farmers, there were different outcomes with processes concerning only decision makers and experts who were more sensitive to infectious TADs, while the former raised parasitic disease constraints. In this context, multicriteria decision analysis-based zoonoses and TADs prioritizations involving a balanced participation of stakeholders might contribute to bridging these divergences, whatever the scale. Conclusion and significance: Prioritization processes were important steps toward building and harmonizing technical laboratory and surveillance networks to coordinate projects to address priority zoonoses and TADs at the country and/or sub-regional level. Those processes should be enhanced.
Collapse
|