1
|
Schiffman A, Cheng Z, Ourthiague D, Hoffmann A. Gene regulatory logic of the interferon-β enhancer contains multiple selectively deployed modes of transcription factor synergy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.04.636520. [PMID: 39975349 PMCID: PMC11838565 DOI: 10.1101/2025.02.04.636520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Type I interferon IFNβ is a key regulator of the immune response, and its dysregulated expression causes disease. The regulation of IFNβ promoter activity has been a touchpoint of mammalian gene control research since the discovery of functional synergy between two stimulus-responsive transcription factors (TFs) nuclear factor kappa B (NFκB) and interferon regulatory factors (IRF). However, subsequent gene knockout studies revealed that this synergy is condition-dependent such that either NFκB or IRF activation can be dispensable, leaving the precise regulatory logic of IFNβ transcription an open question. Here, we developed a series of quantitative enhancer states models of IFNβ expression control and evaluated them with stimulus-response data from TF knockouts. Our analysis confirmed that TF synergy is a hallmark of the regulatory logic but that it need not involve NFκB, as synergy between two adjacent IRF dimers is sufficient. We found that a sigmoidal binding curve at the distal site renders the dual IRF synergy mode ultrasensitive, allowing it only in conditions of high IRF activity upon viral infection. In contrast, the proximal site has high affinity and enables expression in response to bacterial exposure through synergy with NFκB. However, its accessibility is controlled by the competitive repressor p50:p50, which prevents basal IRF levels from synergizing with NFκB, such that NFκB-only stimuli do not activate IFNβ expression. The enhancer states model identifies multiple synergy modes that are accessed differentially in response to different immune threats, enabling a highly stimulus-specific but also versatile regulatory logic for stimulus-specific IFNβ expression.
Collapse
Affiliation(s)
- Allison Schiffman
- Signaling Systems Laboratory, Department of Microbiology, Immunology and Molecular Genetics, and the Institute for Quantitative and Computational Biosciences (QCB), University of California Los Angeles, 611 Charles Young Drive, Los Angeles, CA 90095
| | - Zhang Cheng
- Signaling Systems Laboratory, Department of Microbiology, Immunology and Molecular Genetics, and the Institute for Quantitative and Computational Biosciences (QCB), University of California Los Angeles, 611 Charles Young Drive, Los Angeles, CA 90095
| | - Diana Ourthiague
- Signaling Systems Laboratory, Department of Microbiology, Immunology and Molecular Genetics, and the Institute for Quantitative and Computational Biosciences (QCB), University of California Los Angeles, 611 Charles Young Drive, Los Angeles, CA 90095
| | - Alexander Hoffmann
- Signaling Systems Laboratory, Department of Microbiology, Immunology and Molecular Genetics, and the Institute for Quantitative and Computational Biosciences (QCB), University of California Los Angeles, 611 Charles Young Drive, Los Angeles, CA 90095
| |
Collapse
|
2
|
Barnhart S, Shimizu-Albergine M, Kedar E, Kothari V, Shao B, Krueger M, Hsu CC, Tang J, Kanter JE, Kramer F, Djukovic D, Pascua V, Loo YM, Colonna L, Van den Bogaerde SJ, An J, Gale M, Reue K, Fisher EA, Gharib SA, Elkon KB, Bornfeldt KE. Type I IFN induces long-chain acyl-CoA synthetase 1 to generate a phosphatidic acid reservoir for lipotoxic saturated fatty acids. J Lipid Res 2025; 66:100730. [PMID: 39675509 PMCID: PMC11786746 DOI: 10.1016/j.jlr.2024.100730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/22/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024] Open
Abstract
Long-chain acyl-CoA synthetase 1 (ACSL1) catalyzes the conversion of long-chain fatty acids to acyl-CoAs. ACSL1 is required for β-oxidation in tissues that rely on fatty acids as fuel, but no consensus exists on why ACSL1 is induced by inflammatory mediators in immune cells. We used a comprehensive and unbiased approach to investigate the role of ACSL1 induction by interferon type I (IFN-I) in myeloid cells in vitro and in a mouse model of IFN-I overproduction. Our results show that IFN-I induces ACSL1 in macrophages via its interferon-α/β receptor, and consequently that expression of ACSL1 is increased in myeloid cells from individuals with systemic lupus erythematosus (SLE), an autoimmune condition characterized by increased IFN production. Taking advantage of a myeloid cell-targeted ACSL1-deficient mouse model and a series of lipidomics, proteomics, metabolomics and functional analyses, we show that IFN-I leverages induction of ACSL1 to increase accumulation of fully saturated phosphatidic acid species in macrophages. Conversely, ACSL1 induction is not needed for IFN-I's ability to induce the prototypical IFN-stimulated protein signature or to suppress proliferation or macrophage metabolism. Loss of ACSL1 in IFN-I stimulated myeloid cells enhances apoptosis and secondary necrosis in vitro, especially in the presence of increased saturated fatty acid load, and in a mouse model of atherosclerosis associated with IFN overproduction, resulting in larger lesion necrotic cores. We propose that ACSL1 induction is a mechanism used by IFN-I to increase phosphatidic acid saturation while protecting the cells from saturated fatty acid-induced cell death.
Collapse
Affiliation(s)
- Shelley Barnhart
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA; UW Medicine Diabetes Institute, University of Washington, Seattle, WA
| | - Masami Shimizu-Albergine
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA; UW Medicine Diabetes Institute, University of Washington, Seattle, WA
| | - Eyal Kedar
- Division of Rheumatology, University of Washington, Seattle, WA
| | - Vishal Kothari
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA; UW Medicine Diabetes Institute, University of Washington, Seattle, WA
| | - Baohai Shao
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA; UW Medicine Diabetes Institute, University of Washington, Seattle, WA
| | - Melissa Krueger
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA
| | - Cheng-Chieh Hsu
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA; UW Medicine Diabetes Institute, University of Washington, Seattle, WA
| | - Jingjing Tang
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA; UW Medicine Diabetes Institute, University of Washington, Seattle, WA
| | - Jenny E Kanter
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA; UW Medicine Diabetes Institute, University of Washington, Seattle, WA
| | - Farah Kramer
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA; UW Medicine Diabetes Institute, University of Washington, Seattle, WA
| | - Danijel Djukovic
- Department of Anesthesiology and Pain Medicine, Northwest Metabolomics Research Center, University of Washington, Seattle, WA
| | - Vadim Pascua
- Department of Anesthesiology and Pain Medicine, Northwest Metabolomics Research Center, University of Washington, Seattle, WA
| | - Yueh-Ming Loo
- Department of Immunology, University of Washington, Seattle, WA
| | | | | | - Jie An
- Division of Rheumatology, University of Washington, Seattle, WA
| | - Michael Gale
- Department of Immunology, University of Washington, Seattle, WA
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Edward A Fisher
- Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, NY
| | - Sina A Gharib
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA
| | - Keith B Elkon
- Division of Rheumatology, University of Washington, Seattle, WA
| | - Karin E Bornfeldt
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA; UW Medicine Diabetes Institute, University of Washington, Seattle, WA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA.
| |
Collapse
|
3
|
Aljabali AAA, El-Tanani M, Barh D, Tambuwala MM. COVID-19: Perspectives on innate immune evasion. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 213:171-214. [PMID: 40246344 DOI: 10.1016/bs.pmbts.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
The ongoing global health challenges posed by the SARS-CoV-2, the virus responsible for the COVID-19 pandemic, necessitate a deep understanding of its intricate strategies to evade the innate immune system. This chapter aims to provide insights into the sophisticated mechanisms employed by SARS-CoV-2 in its interaction with pattern recognition receptors (PRRs), with particular emphasis on Toll-like receptors (TLRs) and RIG-I-like receptors (RLRs). By skillfully circumventing these pivotal components, the virus manages to elude detection and impairs the initiation of crucial antiviral immune responses. A notable aspect of SARS-CoV-2's immune evasion tactics lies in its strategic manipulation of cytokine production. This orchestrated modulation disrupts the delicate balance of inflammation, potentially leading to severe complications, including the notorious cytokine storm. In this regard, key viral proteins, such as the spike protein and nucleocapsid protein, emerge as pivotal players in the immune evasion process, further highlighting their significance in the context of COVID-19 pathogenesis. Acquiring a comprehensive understanding of these intricate immune evasion mechanisms holds immense promise for the development of effective treatments against COVID-19. Moreover, it is imperative for vaccine development to consider these evasion strategies to maximize vaccine efficacy. Future therapeutic interventions may involve targeting alternative pathways or augmenting the antiviral immune responses, thereby mitigating the impact of immune evasion, and fostering successful outcomes. By unraveling the underlying mechanisms of innate immune evasion, we advance our comprehension of COVID-19 pathogenesis and pave the way for the development of innovative therapeutic strategies. This comprehensive understanding catalyzes progress, enabling researchers and clinicians to devise novel approaches that combat the challenges posed by SARS-CoV-2 and ultimately improve patient outcomes.
Collapse
Affiliation(s)
- Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan.
| | - Mohamed El-Tanani
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, United Arab Emirates
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics & Applied Biotechnology, Purba Medinipur, West Bengal, India; Department of Genetics, Ecology & Evolution, Institute of Biological Sciences, Belo Horizonte, Brazil
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln, United Kingdom.
| |
Collapse
|
4
|
TNF-α induces AQP4 overexpression in astrocytes through the NF-κB pathway causing cellular edema and apoptosis. Biosci Rep 2022; 42:230993. [PMID: 35260880 PMCID: PMC8935387 DOI: 10.1042/bsr20212224] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 02/17/2022] [Accepted: 02/25/2022] [Indexed: 11/17/2022] Open
Abstract
Aquaporin 4 (AQP4) is highly expressed on astrocytes and is critical for controlling brain water transport in neurological diseases. Tumor necrosis factor (TNF)-α is a common cytokine found in disease microenvironment. The aim of this study was to determine whether TNF-α can regulate the expression of AQP4 in astrocytes. Primary astrocyte cultures were treated with different concentrations of TNF-α and the cell viability was assessed through cell counting kit-8 assay and AQP4 expression was detected by qPCR, western blots, and immunofluorescence assays. The activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway was detected by western blot. Further, dual-luciferase reporting system and chromatin immunoprecipitation were used to detect the transcriptional regulation of AQP4 by p65. These experiments demonstrated that treatment with TNF-α can lead to astrocyte edema and an increase in AQP4 expression. Following TNF-α treatment, the expression levels of P-IKKα/β-IκBα and P-p65 increased significantly over time. The results of the dual-luciferase reporter system and chromatin immunoprecipitation assays revealed that p65 protein and AQP4 promoter had a robust binding effect after TNF-α treatment, and the NF-κB pathway inhibitor, BAY 11-7082 could inhibit these effects of TNF-α. The expression level of AQP4 was significantly decreased upon p65 interference, while the astrocyte viability was significantly increased compared to that in the TNF-α only group. In conclusion, TNF-α activated NF-κB pathway, which promoted the binding of p65 to the AQP4 gene promoter region, and enhanced AQP4 expression, ultimately reducing astrocyte viability and causing cell edema.
Collapse
|
5
|
Evans AB, Winkler CW, Peterson KE. Differences in neuroinvasion and protective innate immune pathways between encephalitic California Serogroup orthobunyaviruses. PLoS Pathog 2022; 18:e1010384. [PMID: 35245345 PMCID: PMC8926202 DOI: 10.1371/journal.ppat.1010384] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 03/16/2022] [Accepted: 02/18/2022] [Indexed: 11/22/2022] Open
Abstract
The California serogroup (CSG) of Orthobunyaviruses comprises several members capable of causing neuroinvasive disease in humans, including La Crosse orthobunyavirus (LACV), Jamestown Canyon orthobunyavirus (JCV), and Inkoo orthobunyavirus (INKV). Despite being genetically and serologically closely related, their disease incidences and pathogenesis in humans and mice differ. We have previously shown that following intraperitoneal inoculation of weanling mice, LACV was highly pathogenic while JCV and INKV were not. To determine why there were differences, we examined the ability of these viruses to invade the CNS and compared the host innate immune responses that regulated viral pathogenesis. We found that LACV was always neuroinvasive, which correlated with its high level of neuroinvasive disease. Interestingly, JCV was not neuroinvasive in any mice, while INKV was neuroinvasive in most mice. The type I interferon (IFN) response was critical for protecting mice from both JCV and INKV disease, although in the periphery JCV induced little IFN expression, while INKV induced high IFN expression. Despite their differing neuroinvasive abilities, JCV and INKV shared innate signaling components required for protection. The presence of either cytoplasmic Rig-I-Like Receptor signaling or endosomal Toll-Like Receptor signaling was sufficient to protect mice from JCV or INKV, however, inhibition of both pathways rendered mice highly susceptible to neurological disease. Comparison of IFN and IFN-stimulated gene (ISG) responses to INKV in the brains of resistant wild type (WT) mice and susceptible immune knockout mice showed similar IFN responses in the brain, but WT mice had higher ISG responses, suggesting induction of key ISGs in the brain is critical for protection of mice from INKV. Overall, these results show that the CSG viruses differ in neuroinvasiveness, which can be independent from their neuropathogenicity. The type I IFN response was crucial for protecting mice from CSG virus-induced neurological disease, however, the exact correlates of protection appear to vary between CSG viruses.
Collapse
Affiliation(s)
- Alyssa B. Evans
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Clayton W. Winkler
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Karin E. Peterson
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| |
Collapse
|
6
|
Zhao M, Zhang Y, Yang X, Jin J, Shen Z, Feng X, Zou T, Deng L, Cheng D, Zhang X, Qin C, Niu C, Ye Z, Zhang X, He J, Hou C, Li G, Han G, Cheng Q, Wang Q, Wei L, Dong J, Zhang J. Myeloid neddylation targets IRF7 and promotes host innate immunity against RNA viruses. PLoS Pathog 2021; 17:e1009901. [PMID: 34506605 PMCID: PMC8432861 DOI: 10.1371/journal.ppat.1009901] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 08/16/2021] [Indexed: 12/03/2022] Open
Abstract
Neddylation, an important type of post-translational modification, has been implicated in innate and adapted immunity. But the role of neddylation in innate immune response against RNA viruses remains elusive. Here we report that neddylation promotes RNA virus-induced type I IFN production, especially IFN-α. More importantly, myeloid deficiency of UBA3 or NEDD8 renders mice less resistant to RNA virus infection. Neddylation is essential for RNA virus-triggered activation of Ifna gene promoters. Further exploration has revealed that mammalian IRF7undergoes neddylation, which is enhanced after RNA virus infection. Even though neddylation blockade does not hinder RNA virus-triggered IRF7 expression, IRF7 mutant defective in neddylation exhibits reduced ability to activate Ifna gene promoters. Neddylation blockade impedes RNA virus-induced IRF7 nuclear translocation without hindering its phosphorylation and dimerization with IRF3. By contrast, IRF7 mutant defective in neddylation shows enhanced dimerization with IRF5, an Ifna repressor when interacting with IRF7. In conclusion, our data demonstrate that myeloid neddylation contributes to host anti-viral innate immunity through targeting IRF7 and promoting its transcriptional activity. With the features of high mutation rates and fast propagation, RNA viruses remain a great challenge for the control and prevention of epidemic. Better understanding of the molecular mechanisms involved in host innate immunity against RNA viruses will facilitate the development of anti-viral drugs and vaccines. Neddylation has been implicated in innate and adapted immunity. But the role of neddylation in RNA virus-triggered type I IFN production remains elusive. Here, using mouse models with myeloid deficiency of UBA3 or NEDD8, we report for the first time that neddylation contributes to innate immunity against RNA viruses in mammals. Neddylation is indispensable for RNA virus-induced IFN-α production although its role in IFN-β production is much blunted in macrophages. In mechanism, neddylation directly targets IRF7 and enhances its transcriptional activity through, at least partially, promoting its nuclear translocation and preventing its dimerization with IRF5, an Ifna repressor when interacting with IRF7. Our study provides insight into the regulation of IRF7 and innate immune signaling.
Collapse
Affiliation(s)
- Min Zhao
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yaolin Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Xiqin Yang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jiayang Jin
- Beijing Institute of Basic Medical Sciences, Beijing, China
- Department of Pathogen Biology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhuo Shen
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Xiaoyao Feng
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Tao Zou
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Lijiao Deng
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Daohai Cheng
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Xueting Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Cheng Qin
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Chunxiao Niu
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Zhenjie Ye
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Xueying Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jia He
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Chunmei Hou
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Ge Li
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Gencheng Han
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Qianqian Cheng
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Qingyang Wang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Lin Wei
- Department of Pathogen Biology, Hebei Medical University, Shijiazhuang, Hebei, China
- * E-mail: (LW); (JD); (JZ)
| | - Jie Dong
- Beijing Institute of Basic Medical Sciences, Beijing, China
- * E-mail: (LW); (JD); (JZ)
| | - Jiyan Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- * E-mail: (LW); (JD); (JZ)
| |
Collapse
|
7
|
Chen Y, Lei X, Jiang Z, Fitzgerald KA. Cellular nucleic acid-binding protein is essential for type I interferon-mediated immunity to RNA virus infection. Proc Natl Acad Sci U S A 2021; 118:e2100383118. [PMID: 34168080 PMCID: PMC8255963 DOI: 10.1073/pnas.2100383118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Type I interferons (IFNs) are innate immune cytokines required to establish cellular host defense. Precise control of IFN gene expression is crucial to maintaining immune homeostasis. Here, we demonstrated that cellular nucleic acid-binding protein (CNBP) was required for the production of type I IFNs in response to RNA virus infection. CNBP deficiency markedly impaired IFN production in macrophages and dendritic cells that were infected with a panel of RNA viruses or stimulated with synthetic double-stranded RNA. Furthermore, CNBP-deficient mice were more susceptible to influenza virus infection than were wild-type mice. Mechanistically, CNBP was phosphorylated and translocated to the nucleus, where it directly binds to the promoter of IFNb in response to RNA virus infection. Furthermore, CNBP controlled the recruitment of IFN regulatory factor (IRF) 3 and IRF7 to IFN promoters for the maximal induction of IFNb gene expression. These studies reveal a previously unrecognized role for CNBP as a transcriptional regulator of type I IFN genes engaged downstream of RNA virus-mediated innate immune signaling, which provides an additional layer of control for IRF3- and IRF7-dependent type I IFN gene expression and the antiviral innate immune response.
Collapse
Affiliation(s)
- Yongzhi Chen
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Xuqiu Lei
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Zhaozhao Jiang
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Katherine A Fitzgerald
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
8
|
Patil AM, Choi JY, Park SO, Uyangaa E, Kim B, Kim K, Eo SK. Type I IFN signaling limits hemorrhage-like disease after infection with Japanese encephalitis virus through modulating a prerequisite infection of CD11b +Ly-6C + monocytes. J Neuroinflammation 2021; 18:136. [PMID: 34130738 PMCID: PMC8204625 DOI: 10.1186/s12974-021-02180-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 05/20/2021] [Indexed: 12/20/2022] Open
Abstract
Background The crucial role of type I interferon (IFN-I, IFN-α/β) is well known to control central nervous system (CNS) neuroinflammation caused by neurotrophic flaviviruses such as Japanese encephalitis virus (JEV) and West Nile virus. However, an in-depth analysis of IFN-I signal-dependent cellular factors that govern CNS-restricted tropism in JEV infection in vivo remains to be elucidated. Methods Viral dissemination, tissue tropism, and cytokine production were examined in IFN-I signal-competent and -incompetent mice after JEV inoculation in tissues distal from the CNS such as the footpad. Bone marrow (BM) chimeric models were used for defining hematopoietic and tissue-resident cells in viral dissemination and tissue tropism. Results The paradoxical and interesting finding was that IFN-I signaling was essentially required for CNS neuroinflammation following JEV inoculation in distal footpad tissue. IFN-I signal-competent mice died after a prolonged neurological illness, but IFN-I signal-incompetent mice all succumbed without neurological signs. Rather, IFN-I signal-incompetent mice developed hemorrhage-like disease as evidenced by thrombocytopenia, functional injury of the liver and kidney, increased vascular leakage, and excessive cytokine production. This hemorrhage-like disease was closely associated with quick viral dissemination and impaired IFN-I innate responses before invasion of JEV into the CNS. Using bone marrow (BM) chimeric models, we found that intrinsic IFN-I signaling in tissue-resident cells in peripheral organs played a major role in inducing the hemorrhage-like disease because IFN-I signal-incompetent recipients of BM cells from IFN-I signal-competent mice showed enhanced viral dissemination, uncontrolled cytokine production, and increased vascular leakage. IFN-I signal-deficient hepatocytes and enterocytes were permissive to JEV replication with impaired induction of antiviral IFN-stimulated genes, and neuron cells derived from both IFN-I signal-competent and -incompetent mice were vulnerable to JEV replication. Finally, circulating CD11b+Ly-6C+ monocytes infiltrated into the distal tissues inoculated by JEV participated in quick viral dissemination to peripheral organs of IFN-I signal-incompetent mice at an early stage. Conclusion An IFN-I signal-dependent model is proposed to demonstrate how CD11b+Ly-6C+ monocytes are involved in restricting the tissue tropism of JEV to the CNS.
Collapse
Affiliation(s)
- Ajit Mahadev Patil
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Jin Young Choi
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Seong Ok Park
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Erdenebelig Uyangaa
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Bumseok Kim
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Koanhoi Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Seong Kug Eo
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea.
| |
Collapse
|
9
|
Kc M, Ngunjiri JM, Lee J, Ahn J, Elaish M, Ghorbani A, Abundo MEC, Lee K, Lee CW. Avian Toll-like receptor 3 isoforms and evaluation of Toll-like receptor 3-mediated immune responses using knockout quail fibroblast cells. Poult Sci 2020; 99:6513-6524. [PMID: 33248566 PMCID: PMC7704946 DOI: 10.1016/j.psj.2020.09.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 08/12/2020] [Accepted: 09/11/2020] [Indexed: 12/28/2022] Open
Abstract
Toll-like receptor 3 (TLR3) induces host innate immune response on recognition of viral double-stranded RNA (dsRNA). Although several studies of avian TLR3 have been reported, none of these studies used a gene knockout (KO) model to directly assess its role in inducing the immune response and effect on other dsRNA receptors. In this study, we determined the coding sequence of quail TLR3, identified isoforms, and generated TLR3 KO quail fibroblast (QT-35) cells using a CRISPR/Cas9 system optimized for avian species. The TLR3-mediated immune response was studied by stimulating the wild-type (WT) and KO QT-35 cells with synthetic dsRNA or polyinosinic:polycytidylic acid [poly(I:C)] or infecting the cells with different RNA viruses such as influenza A virus, avian reovirus, and vesicular stomatitis virus. The direct poly(I:C) treatment significantly increased IFN-β and IL-8 gene expression along with the cytoplasmic dsRNA receptor, melanoma differentiation-associated gene 5 (MDA5), in WT cells, whereas no changes in all corresponding genes were observed in KO cells. We further confirmed the antiviral effects of poly(I:C)-induced TLR3-mediated immunity by demonstrating significant reduction of virus titer in poly(I:C)-treated WT cells, but not in TLR3 KO cells. On virus infection, varying levels of IFN-β, IL-8, TLR3, and MDA5 gene upregulation were observed depending on the viruses. No major differences in gene expression level were observed between WT and TLR3 KO cells, which suggests a relatively minor role of TLR3 in sensing and exerting immune response against the viruses tested in vitro. Our data show that quail TLR3 is an important endosomal dsRNA receptor responsible for regulation of type I interferon and proinflammatory cytokine, and affect the expression of MDA5, another dsRNA receptor, most likely through cytokine-mediated communication.
Collapse
Affiliation(s)
- Mahesh Kc
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, USA
| | - John M Ngunjiri
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, USA
| | - Joonbum Lee
- Department of Animal Sciences, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, USA
| | - Jinsoo Ahn
- Department of Animal Sciences, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, USA
| | - Mohamed Elaish
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, USA; Poultry Diseases Department, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Amir Ghorbani
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, USA
| | - Michael E C Abundo
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, USA
| | - Kichoon Lee
- Department of Animal Sciences, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, USA.
| | - Chang-Won Lee
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, USA.
| |
Collapse
|
10
|
Chaudhari J, Liew CS, Workman AM, Riethoven JJM, Steffen D, Sillman S, Vu HLX. Host Transcriptional Response to Persistent Infection with a Live-Attenuated Porcine Reproductive and Respiratory Syndrome Virus Strain. Viruses 2020; 12:v12080817. [PMID: 32731586 PMCID: PMC7474429 DOI: 10.3390/v12080817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/15/2020] [Accepted: 07/24/2020] [Indexed: 12/13/2022] Open
Abstract
Both virulent and live-attenuated porcine reproductive and respiratory syndrome virus (PRRSV) strains can establish persistent infection in lymphoid tissues of pigs. To investigate the mechanisms of PRRSV persistence, we performed a transcriptional analysis of inguinal lymphoid tissue collected from pigs experimentally infected with an attenuated PRRSV strain at 46 days post infection. A total of 6404 differentially expressed genes (DEGs) were detected of which 3960 DEGs were upregulated and 2444 DEGs were downregulated. Specifically, genes involved in innate immune responses and chemokines and receptors associated with T-cell homing to lymphoid tissues were down regulated. As a result, homing of virus-specific T-cells to lymphoid tissues seems to be ineffective, evidenced by the lower frequencies of virus-specific T-cell in lymphoid tissue than in peripheral blood. Genes associated with T-cell exhaustion were upregulated. Likewise, genes involved in the anti-apoptotic pathway were upregulated. Collectively, the data suggested that the live-attenuated PRRSV strain establishes a pro-survival microenvironment in lymphoid tissue by suppressing innate immune responses, T-cell homing, and preventing cell apoptosis.
Collapse
Affiliation(s)
- Jayeshbhai Chaudhari
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (D.S.); (S.S.)
| | - Chia-Sin Liew
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (C.-S.L.); (J.-J.M.R.)
| | - Aspen M. Workman
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933, USA;
| | - Jean-Jack M. Riethoven
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (C.-S.L.); (J.-J.M.R.)
| | - David Steffen
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (D.S.); (S.S.)
| | - Sarah Sillman
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (D.S.); (S.S.)
| | - Hiep L. X. Vu
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Correspondence: ; Tel.: +1-402-472-4528
| |
Collapse
|
11
|
Fischer L, Lucendo-Villarin B, Hay DC, O’Farrelly C. Human PSC-Derived Hepatocytes Express Low Levels of Viral Pathogen Recognition Receptors, but Are Capable of Mounting an Effective Innate Immune Response. Int J Mol Sci 2020; 21:ijms21113831. [PMID: 32481600 PMCID: PMC7312201 DOI: 10.3390/ijms21113831] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 04/30/2020] [Accepted: 05/24/2020] [Indexed: 01/19/2023] Open
Abstract
Hepatocytes are key players in the innate immune response to liver pathogens but are challenging to study because of inaccessibility and a short half-life. Recent advances in in vitro differentiation of hepatocyte-like cells (HLCs) facilitated studies of hepatocyte-pathogen interactions. Here, we aimed to define the anti-viral innate immune potential of human HLCs with a focus on toll-like receptor (TLR)-expression and the presence of a metabolic switch. We analysed cytoplasmic pattern recognition receptor (PRR)- and endosomal TLR-expression and activity and adaptation of HLCs to an inflammatory environment. We found that transcript levels of retinoic acid inducible gene I (RIG-I), melanoma differentiation antigen 5 (MDA5), and TLR3 became downregulated during differentiation, indicating the acquisition of a more tolerogenic phenotype, as expected in healthy hepatocytes. HLCs responded to activation of RIG-I by producing interferons (IFNs) and IFN-stimulated genes. Despite low-level expression of TLR3, receptor expression was upregulated in an inflammatory environment. TLR3 signalling induced expression of proinflammatory cytokines at the gene level, indicating that several PRRs need to interact for successful innate immune activation. The inflammatory responsiveness of HLCs was accompanied by the downregulation of cytochrome P450 3A and 1A2 activity and decreased serum protein production, showing that the metabolic switch seen in primary hepatocytes during anti-viral responses is also present in HLCs.
Collapse
Affiliation(s)
- Lena Fischer
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland;
| | | | - David C. Hay
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK;
- Correspondence: (D.C.H.); (C.O.)
| | - Cliona O’Farrelly
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland;
- School of Medicine, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin 2, Ireland
- Correspondence: (D.C.H.); (C.O.)
| |
Collapse
|
12
|
Park SM, Omatsu T, Zhao Y, Yoshida N, Shah P, Zagani R, Reinecker HC. T cell fate following Salmonella infection is determined by a STING-IRF1 signaling axis in mice. Commun Biol 2019; 2:464. [PMID: 31840109 PMCID: PMC6906324 DOI: 10.1038/s42003-019-0701-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022] Open
Abstract
The innate immune response following infection with entero-invasive bacterial species is triggered upon release of cyclic di-guanylate monophosphate (c-di-GMP) into the host cell cytosol. Bacterial c-di-GMP activates the intracellular Sensor Stimulator of Interferon Genes (STING), encoded by Tmem173 in mice. Here we identify Interferon Regulatory Factor (IRF) 1 as a critical effector of STING-mediated microbial DNA sensing that is responsible for TH17 cell generation in the mucosal immune system. We find that STING activation induces IRF1-dependent transcriptional programs in dendritic cells (DCs) that define T cell fate determination, including induction of Gasdermin D, IL-1 family member cytokines, and enzymes for eicosanoid synthesis. Our results show that IRF1-dependent transcriptional programs in DCs are a prerequisite for antigen-specific TH17 subspecification in response to microbial c-di-GMP and Salmonella typhimurium infection. Our identification of a STING-IRF1 signaling axis for adaptive host defense control will aid further understanding of infectious disease mechanisms.
Collapse
Affiliation(s)
- Sung-Moo Park
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Tatsushi Omatsu
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Yun Zhao
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Naohiro Yoshida
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Pankaj Shah
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Rachid Zagani
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Hans-Christian Reinecker
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| |
Collapse
|
13
|
Londrigan SL, Wakim LM, Smith J, Haverkate AJ, Brooks AG, Reading PC. IFITM3 and type I interferons are important for the control of influenza A virus replication in murine macrophages. Virology 2019; 540:17-22. [PMID: 31731106 DOI: 10.1016/j.virol.2019.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 12/23/2022]
Abstract
Abortive infection of macrophages serves as a "dead end" for most seasonal influenza A virus (IAV) strains, and it is likely to contribute to effective host defence. Interferon (IFN)-induced transmembrane protein 3 (IFITM3) restricts the early stages of IAV replication in epithelial cells, but IFITM3 restriction of IAV replication in macrophages has not been previously investigated. Herein, macrophages isolated from IFITM3-deficient mice were more susceptible to initial IAV infection, but late-stage viral replication was still controlled through abortive infection. Strikingly, IFNα/β receptor (IFNAR)-deficient macrophages infected with IAV were not only more susceptible to initial infection, but these cells also supported productive viral replication. Significantly, we have established that abortive IAV infection in macrophages is controlled through a type I IFN-dependent mechanism, where late-stage IAV replication can proceed in the absence of type I IFN responses. These findings provide novel mechanistic insight into macrophage-specific processes that potently shut down IAV replication.
Collapse
Affiliation(s)
- Sarah L Londrigan
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Victoria, 3000, Australia.
| | - Linda M Wakim
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Victoria, 3000, Australia
| | - Jeffrey Smith
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Victoria, 3000, Australia
| | - Anne J Haverkate
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Victoria, 3000, Australia
| | - Andrew G Brooks
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Victoria, 3000, Australia
| | - Patrick C Reading
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Victoria, 3000, Australia; WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Victoria, 3000, Australia
| |
Collapse
|
14
|
de Marcken M, Dhaliwal K, Danielsen AC, Gautron AS, Dominguez-Villar M. TLR7 and TLR8 activate distinct pathways in monocytes during RNA virus infection. Sci Signal 2019; 12:12/605/eaaw1347. [DOI: 10.1126/scisignal.aaw1347] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human blood CD14+monocytes are bone marrow–derived white blood cells that sense and respond to pathogens. Although innate immune activation by RNA viruses preferentially occurs through intracellular RIG-I–like receptors, other nucleic acid recognition receptors, such as Toll-like receptors (TLRs), play a role in finely programming the final outcome of virus infection. Here, we dissected how human monocytes respond to infection with either Coxsackie (CV), encephalomyocarditis (EMCV), influenza A (IAV), measles (MV), Sendai (SV), or vesicular stomatitis (VSV) virus. We found that in monocytes, type I interferon (IFN) and cytokine responses to infection were RNA virus specific and differentially involved TLR7 and TLR8, which sense single-stranded RNA. These TLRs activated distinct signaling cascades in monocytes, which correlated with differences in the production of cytokines involved in the polarization of CD4+T helper cells. Furthermore, we found that TLR7 signaling specifically increased expression of the transcription factor FOSL1, which reduced IL-27 and TNFα production by monocytes. TLR7, but not TLR8, activation of monocytes also stimulated Ca2+flux that prevented type I IFN responses. Our work demonstrates that in human monocytes, TLR7 and TLR8 triggered different signaling pathways that contribute to distinct phenotypes during RNA virus infection. In addition, we defined individual targets within these pathways that promoted specific T helper and antiviral responses.
Collapse
Affiliation(s)
- Marine de Marcken
- Department of Neurology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Khushwant Dhaliwal
- Department of Neurology, Yale School of Medicine, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
15
|
Dendritic cell-associated MAVS is required to control West Nile virus replication and ensuing humoral immune responses. PLoS One 2019; 14:e0218928. [PMID: 31242236 PMCID: PMC6594639 DOI: 10.1371/journal.pone.0218928] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/12/2019] [Indexed: 01/09/2023] Open
Abstract
Mitochondrial antiviral signaling protein (MAVS) is a critical innate immune signaling protein that directs the actions of the RIG-I-like receptor (RLR) signaling pathway of RNA virus recognition and initiation of anti-viral immunity against West Nile virus (WNV). In the absence of MAVS, mice die more rapidly after infection with the pathogenic WNV-Texas (TX) strain, but also produce elevated WNV-specific IgG concomitant with increased viral burden. Here we investigated whether there was a B cell intrinsic role for MAVS during the development of protective humoral immunity following WNV infection. MAVS-/- mice survived infection from the non-pathogenic WNV-Madagascar (MAD) strain, with limited signs of disease. Compared to wildtype (WT) controls, WNV-MAD-infected MAVS-/- mice had elevated serum neutralizing antibodies, splenic germinal center B cells, plasma cells and effector T cells. We found that when rechallenged with the normally lethal WNV-TX, MAVS-/- mice previously infected with WNV-MAD were protected from disease. Thus, protective humoral and cellular immune responses can be generated in absence of MAVS. Mice with a conditional deletion of MAVS only in CD11c+ dendritic cells phenocopied MAVS whole body knockout mice in their humoral responses to WNV-MAD, displaying elevated virus titers and neutralizing antibodies. Conversely, a B cell-specific deletion of MAVS had no effect on immune responses to WNV-MAD compared to WT controls. Thus, MAVS in dendritic cells is required to control WNV replication and thereby regulate downstream humoral immune responses.
Collapse
|
16
|
Involvement of Interferon Regulatory Factor 7 in Nicotine's Suppression of Antiviral Immune Responses. J Neuroimmune Pharmacol 2019; 14:551-564. [PMID: 31154625 DOI: 10.1007/s11481-019-09845-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 03/05/2019] [Indexed: 01/16/2023]
Abstract
Nicotine, the active ingredient in tobacco smoke, suppresses antiviral responses. Interferon regulatory factors (IRFs) regulate transcription of type I interferons (IFNs) and IFN-stimulated genes (ISGs) in this response. IRF7 is a key member of the IRF family. Expression of Irf7 is elevated in the brains of virus-infected animals, including human immunodeficiency virus-1 transgenic (HIV-1Tg) rats. We hypothesized that IRF7 affects nicotine's modulation of antiviral responses. Using CRISPR/Cas9 system, IRF7-mutant cell lines were created from human embryonic kidney 293FT cells in which 16 nicotinic acetylcholine receptors (nAChRs) were detected. Decreased expression of IRF7 was confirmed at both the mRNA and protein levels, as was IRF7-regulated cell growth in two IRF7-mutant cell lines, designated IRF7-Δ7 and IRF7-Δ11. In IRF7-Δ7 cells, expression of two nAChR genes, CHRNA3 and CHRNA9, changed modestly. After stimulation with polyinosinic-polycytidylic acid (poly I:C) (0.25 μg/ml) for 4 h to mimic viral infection, 293FT wild-type (WT) and IRF7-Δ7 cells were treated with 0, 1, or 100 μM nicotine for 24 h, which increased IFN-β expression in both types of cells but elevation was higher in WT cells (p < 0.001). Expression was significantly suppressed in WT cells (p < 0.001) but not in IRF7-Δ7 cells by 24-h nicotine exposure. Poly I:C stimulation increased mRNA expression of retinoic-acid-inducible protein I (RIG-I), melanoma-differentiation-associated gene 5 (MDA5), IFN-stimulated gene factor 3 (ISG3) complex, and IFN-stimulated genes (IRF7, ISG15, IFIT1, OAS1); nicotine attenuated mRNA expression only in WT cells. Overall, IRF7 is critical to nicotine's effect on the antiviral immune response. Graphical Abstract Involvement of IRF7 in nicotine's suppression of poly I:C-induced antiviral immune responses. PAMPs, such as a synthetic viral analogue of dsRNA poly I:C attack cells, will be recognized by PRRs, and the host innate immunity against viral infection will be activated. PRRs signaling trigger phosphorylation of IRF7 and IRF3 to induce their translocation to the nucleus and result in the production of type I IFNs. Then IFNs bind to IFNAR to activate the transcription factor ISGF3, a complex consisting of STAT1, STAT2, and IRF9. Further, it induces the expression of ISGs, including IFIT1, OAS1, IRF7, ISG15, etc. Nicotine suppresses the immune responses stimulated by poly I:C. In the IRF7-mutant cells, nicotine's suppressive effects on poly I:C-stimulated immune responses were restrained.
Collapse
|
17
|
Stegelmeier AA, van Vloten JP, Mould RC, Klafuric EM, Minott JA, Wootton SK, Bridle BW, Karimi K. Myeloid Cells during Viral Infections and Inflammation. Viruses 2019; 11:E168. [PMID: 30791481 PMCID: PMC6410039 DOI: 10.3390/v11020168] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/15/2019] [Accepted: 02/16/2019] [Indexed: 12/11/2022] Open
Abstract
Myeloid cells represent a diverse range of innate leukocytes that are crucial for mounting successful immune responses against viruses. These cells are responsible for detecting pathogen-associated molecular patterns, thereby initiating a signaling cascade that results in the production of cytokines such as interferons to mitigate infections. The aim of this review is to outline recent advances in our knowledge of the roles that neutrophils and inflammatory monocytes play in initiating and coordinating host responses against viral infections. A focus is placed on myeloid cell development, trafficking and antiviral mechanisms. Although known for promoting inflammation, there is a growing body of literature which demonstrates that myeloid cells can also play critical regulatory or immunosuppressive roles, especially following the elimination of viruses. Additionally, the ability of myeloid cells to control other innate and adaptive leukocytes during viral infections situates these cells as key, yet under-appreciated mediators of pathogenic inflammation that can sometimes trigger cytokine storms. The information presented here should assist researchers in integrating myeloid cell biology into the design of novel and more effective virus-targeted therapies.
Collapse
Affiliation(s)
- Ashley A Stegelmeier
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Jacob P van Vloten
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Robert C Mould
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Elaine M Klafuric
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Jessica A Minott
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Sarah K Wootton
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Byram W Bridle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Khalil Karimi
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
18
|
Duan X, Liao X, Li S, Li Y, Xu M, Wang Y, Ye H, Zhao H, Yang C, Zhu X, Chen L. Transmembrane protein 2 inhibits Zika virus replication through activation of the Janus kinase/signal transducers and activators of transcription signaling pathway. Future Virol 2019. [DOI: 10.2217/fvl-2018-0115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Aim: TMEM2 has been demonstrated to suppress HBV infection by activating the Jak/STAT pathway. In this study, we sought to explore the mechanism by which TMEM2 effects on Zika virus (ZIKV) replication. Materials & methods: TMEM2 was overexpressed. Selected gene mRNA, p-STAT1 levels and interferon stimulated response element activity were examined by qRT-PCR, Western blot and luciferase assay respectively. Results: Overexpression of TMEM2 significantly inhibited ZIKV replication, upregulated MDA5 and RIG-I expression, increased IFN-β promoter activity and IFN-β expression. Overexpression of TMEM2 enhanced the Jak/STAT signaling including increased p-STAT1 level, ISRE activity as well as the expression of several antiviral interferon-stimulated genes. Conclusion: TMEM2 inhibited ZIKV replication through increased IFN-β production and enhanced activation of the Jak/STAT signaling pathway.
Collapse
Affiliation(s)
- Xiaoqiong Duan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Xinzhong Liao
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Shilin Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Yujia Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Min Xu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Yancui Wang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Haiyan Ye
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Hang Zhao
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Chunhui Yang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Xiang Zhu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen Univekrsity, Guangzhou 510000, PR China
| | - Limin Chen
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
- Toronto General Research Institute, University of Toronto, Toronto, M5G1L6, Ontario, Canada
| |
Collapse
|
19
|
Vig PJS, Lu D, Paul AM, Kuwar R, Lopez M, Stokic DS, Leis AA, Garrett MR, Bai F. Differential Expression of Genes Related to Innate Immune Responses in Ex Vivo Spinal Cord and Cerebellar Slice Cultures Infected with West Nile Virus. Brain Sci 2018; 9:brainsci9010001. [PMID: 30586874 PMCID: PMC6356470 DOI: 10.3390/brainsci9010001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/14/2018] [Accepted: 12/18/2018] [Indexed: 12/11/2022] Open
Abstract
West Nile virus (WNV) infection results in a spectrum of neurological symptoms, ranging from a benign fever to severe WNV neuroinvasive disease with high mortality. Many who recover from WNV neuroinvasive infection present with long-term deficits, including weakness, fatigue, and cognitive problems. While neurons are a main target of WNV, other cell types, especially astrocytes, play an important role in promoting WNV-mediated central nervous system (CNS) damage. Conversely, it has been shown that cultured primary astrocytes secrete high levels of interferons (IFNs) immediately after WNV exposure to protect neighboring astrocytes, as well as neurons. However, how intrinsic responses to WNV in specific cell types and different regions of the brain modify immune protection is not fully understood. Here, we used a mouse ex vivo spinal cord slice culture (SCSC) and cerebellar slice culture (CSC) models to determine the innate immune responses specific to the CNS during WNV infection. Slices were prepared from the spinal cord and cerebellar tissue of 7–9-day-old mouse pups. Four-day-old SCSC or CSC were infected with 1 × 103 or 1 × 105 PFU of WNV, respectively. After 12 h exposure to WNV and 3 days post-infection in normal growth media, the pooled slice cultures were processed for total RNA extraction and for gene expression patterns using mouse Affymetrix arrays. The expression patterns of a number of genes were significantly altered between the mock- and WNV-treated groups, both in the CSCs and SCSCs. However, distinct differences were observed when CSC data were compared with SCSC. CSCs showed robust induction of interferons (IFNs), IFN-stimulated genes (ISGs), and regulatory factors. Some of the antiviral genes related to IFN were upregulated more than 25-fold in CSCs as compared to mock or SCSC. Though SCSCs had twice the number of dysregulated genes, as compared CSCs, they exhibited a much subdued IFN response. In addition, SCSCs showed astrogliosis and upregulation of astrocytic marker genes. In sum, our results suggest that early anti-inflammatory response to WNV infection in CSCs may be due to large population of distinct astrocytic cell types, and lack of those specialized astrocytes in SCSC may make spinal cord cells more susceptible to WNV damage. Further, the understanding of early intrinsic immune response events in WNV-infected ex vivo culture models could help develop potential therapies against WNV.
Collapse
Affiliation(s)
- Parminder J S Vig
- Departments of Neurology, University of Mississippi Medical Center, Jackson, MS 39216, USA.
- Biochemistry, University of Mississippi Medical Center, Jackson, MS 39216, USA.
- Neurobiology & Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | - Deyin Lu
- Departments of Neurology, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | - Amber M Paul
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA.
| | - Ram Kuwar
- Virginia Commonwealth University, Richmond, VA 23284, USA.
| | - Maria Lopez
- Departments of Neurology, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | - Dobrivoje S Stokic
- Neurobiology & Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS 39216, USA.
- Methodist Rehabilitation Center, Jackson, MS 39216, USA.
| | - A Arturo Leis
- Methodist Rehabilitation Center, Jackson, MS 39216, USA.
| | - Michael R Garrett
- Experimental Therapeutics and Pharmacology, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | - Fengwei Bai
- Departments of Neurology, University of Mississippi Medical Center, Jackson, MS 39216, USA.
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA.
| |
Collapse
|
20
|
Chow KT, Driscoll C, Loo YM, Knoll M, Gale M. IRF5 regulates unique subset of genes in dendritic cells during West Nile virus infection. J Leukoc Biol 2018; 105:411-425. [PMID: 30457675 DOI: 10.1002/jlb.ma0318-136rrr] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/14/2018] [Accepted: 10/17/2018] [Indexed: 01/08/2023] Open
Abstract
Pathogen recognition receptor (PRR) signaling is critical for triggering innate immune activation and the expression of immune response genes, including genes that impart restriction against virus replication. RIG-I-like receptors and TLRs are PRRs that signal immune activation and drive the expression of antiviral genes and the production of type I IFN leading to induction of IFN-stimulated genes, in part through the interferon regulatory factor (IRF) family of transcription factors. Previous studies with West Nile virus (WNV) showed that IRF3 and IRF7 regulate IFN expression in fibroblasts and neurons, whereas macrophages and dendritic cells (DCs) retained the ability to induce IFN-β in the absence of IRF3 and IRF7 in a manner implicating IRF5 in PRR signaling actions. Here we assessed the contribution of IRF5 to immune gene induction in response to WNV infection in DCs. We examined IRF5-dependent gene expression and found that loss of IRF5 in mice resulted in modest and subtle changes in the expression of WNV-regulated genes. Anti-IRF5 chromatin immunoprecipitation with next-generation sequencing of genomic DNA coupled with mRNA analysis revealed unique IRF5 binding motifs within the mouse genome that are distinct from the canonical IRF binding motif and that link with IRF5-target gene expression. Using integrative bioinformatics analyses, we identified new IRF5 primary target genes in DCs in response to virus infection. This study provides novel insights into the distinct and unique innate immune and immune gene regulatory program directed by IRF5.
Collapse
Affiliation(s)
- Kwan T Chow
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, USA.,Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Connor Driscoll
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, USA
| | - Yueh-Ming Loo
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, USA
| | - Megan Knoll
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, USA
| | - Michael Gale
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, USA
| |
Collapse
|
21
|
Schultz KLW, Troisi EM, Baxter VK, Glowinski R, Griffin DE. Interferon regulatory factors 3 and 7 have distinct roles in the pathogenesis of alphavirus encephalomyelitis. J Gen Virol 2018; 100:46-62. [PMID: 30451651 DOI: 10.1099/jgv.0.001174] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Interferon (IFN) regulatory factors (IRFs) are important determinants of the innate response to infection. We evaluated the role(s) of combined and individual IRF deficiencies in the outcome of infection of C57BL/6 mice with Sindbis virus, an alphavirus that infects neurons and causes encephalomyelitis. The brain and spinal cord levels of Irf7, but not Irf3 mRNAs, were increased after infection. IRF3/5/7-/- and IRF3/7-/- mice died within 3-4 days with uncontrolled virus replication, similar to IFNα receptor-deficient mice, while all wild-type (WT) mice recovered. IRF3-/- and IRF7-/- mice had brain levels of IFNα that were lower, but brain and spinal cord levels of IFNβ and IFN-stimulated gene mRNAs that were similar to or higher than WT mice without detectable serum IFN or increases in Ifna or Ifnb mRNAs in the lymph nodes, indicating that the differences in outcome were not due to deficiencies in the central nervous system (CNS) type I IFN response. IRF3-/- mice developed persistent neurological deficits and had more spinal cord inflammation and higher CNS levels of Il1b and Ifnγ mRNAs than WT mice, but all mice survived. IRF7-/- mice died 5-8 days after infection with rapidly progressive paralysis and differed from both WT and IRF3-/- mice in the induction of higher CNS levels of IFNβ, tumour necrosis factor (TNF) α and Cxcl13 mRNA, delayed virus clearance and more extensive cell death. Therefore, fatal disease in IRF7-/- mice is likely due to immune-mediated neurotoxicity associated with failure to regulate the production of inflammatory cytokines such as TNFα in the CNS.
Collapse
Affiliation(s)
- Kimberly L W Schultz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.,†Present address: Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Elizabeth M Troisi
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Victoria K Baxter
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.,‡Present address: University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rebecca Glowinski
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.,§Present address: Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Diane E Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
22
|
Lindqvist R, Överby AK. The Role of Viperin in Antiflavivirus Responses. DNA Cell Biol 2018; 37:725-730. [DOI: 10.1089/dna.2018.4328] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Richard Lindqvist
- Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Umeå Center for Microbial Research, Umeå Univeristy, Umeå, Sweden
| | - Anna K. Överby
- Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Umeå Center for Microbial Research, Umeå Univeristy, Umeå, Sweden
| |
Collapse
|
23
|
Carlin AF, Plummer EM, Vizcarra EA, Sheets N, Joo Y, Tang W, Day J, Greenbaum J, Glass CK, Diamond MS, Shresta S. An IRF-3-, IRF-5-, and IRF-7-Independent Pathway of Dengue Viral Resistance Utilizes IRF-1 to Stimulate Type I and II Interferon Responses. Cell Rep 2018; 21:1600-1612. [PMID: 29117564 DOI: 10.1016/j.celrep.2017.10.054] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 07/25/2017] [Accepted: 10/13/2017] [Indexed: 01/19/2023] Open
Abstract
Interferon-regulatory factors (IRFs) are a family of transcription factors (TFs) that translate viral recognition into antiviral responses, including type I interferon (IFN) production. Dengue virus (DENV) and other clinically important flaviviruses are suppressed by type I IFN. While mice lacking the type I IFN receptor (Ifnar1-/-) succumb to DENV infection, we found that mice deficient in three transcription factors controlling type I IFN production (Irf3-/-Irf5-/-Irf7-/- triple knockout [TKO]) survive DENV challenge. DENV infection of TKO mice resulted in minimal type I IFN production but a robust type II IFN (IFN-γ) response. Using loss-of-function approaches for various molecules, we demonstrate that the IRF-3-, IRF-5-, IRF-7-independent pathway predominantly utilizes IFN-γ and, to a lesser degree, type I IFNs. This pathway signals via IRF-1 to stimulate interleukin-12 (IL-12) production and IFN-γ response. These results reveal a key antiviral role for IRF-1 by activating both type I and II IFN responses during DENV infection.
Collapse
Affiliation(s)
- Aaron F Carlin
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Emily M Plummer
- Division of Inflammation Biology, La Jolla Institute for Allergy & Immunology, La Jolla, CA, USA
| | - Edward A Vizcarra
- Division of Inflammation Biology, La Jolla Institute for Allergy & Immunology, La Jolla, CA, USA
| | - Nicholas Sheets
- Division of Inflammation Biology, La Jolla Institute for Allergy & Immunology, La Jolla, CA, USA
| | - Yunichel Joo
- Division of Inflammation Biology, La Jolla Institute for Allergy & Immunology, La Jolla, CA, USA
| | - William Tang
- Division of Inflammation Biology, La Jolla Institute for Allergy & Immunology, La Jolla, CA, USA
| | - Jeremy Day
- Division of Inflammation Biology, La Jolla Institute for Allergy & Immunology, La Jolla, CA, USA
| | - Jay Greenbaum
- Division of Inflammation Biology, La Jolla Institute for Allergy & Immunology, La Jolla, CA, USA
| | - Christopher K Glass
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA; Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Michael S Diamond
- Departments of Medicine, Pathology and Immunology, and Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sujan Shresta
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA; Division of Inflammation Biology, La Jolla Institute for Allergy & Immunology, La Jolla, CA, USA.
| |
Collapse
|
24
|
Strange DP, Green R, Siemann DN, Gale M, Verma S. Immunoprofiles of human Sertoli cells infected with Zika virus reveals unique insights into host-pathogen crosstalk. Sci Rep 2018; 8:8702. [PMID: 29880853 PMCID: PMC5992156 DOI: 10.1038/s41598-018-27027-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/16/2018] [Indexed: 02/07/2023] Open
Abstract
Confirmed reports of Zika virus (ZIKV) in seminal fluid months after clearance of viremia suggests that ZIKV can establish persistent infection in the seminiferous tubules, an immune privileged site of the testis. The seminiferous tubule epithelium is mainly composed of Sertoli cells that function to nourish and protect developing germ cells. We recently demonstrated that primary human Sertoli cells (hSeC) were highly susceptible to ZIKV as compared to dengue virus without causing cell death and thus may act as a reservoir for ZIKV in the testes. However, the cellular and immune responses of hSeC to infection with ZIKV or any other virus are not yet characterized. Using genome-wide RNA-seq to compare immunoprofiles of hSeC, we show that the most prominent response to ZIKV at early stage of infection was suppression of cell growth and proliferation functional pathways. Peak virus replication was associated with induction of multiple antiviral defense pathways. Unique ZIKV-associated signatures included dysregulation of germ cell-Sertoli cell junction signaling. This study demonstrates that hSeC are capable of signaling through canonical pro-inflammatory pathways and provides insights into unique cell-type-specific response induced by ZIKV in association with viral persistence in the testes.
Collapse
Affiliation(s)
- Daniel P Strange
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Richard Green
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington School of Medicine, Seattle, Washington, USA
| | - David N Siemann
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Michael Gale
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington School of Medicine, Seattle, Washington, USA.
| | - Saguna Verma
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, USA.
| |
Collapse
|
25
|
Abstract
The use of a mouse model to study the breadth of symptoms and disease severity seen in human West Nile virus (WNV) infection can provide insight into the kinetics of the immune response and the specific pathways responsible for control of WNV infection and viral clearance. Here, we provide protocols for performing WNV infection of mice, as well as complete immunophenotyping analysis of the cellular immune response to infection in both the periphery and the central nervous system in a mouse model of WNV infection. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Jessica B Graham
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Jessica L Swarts
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Jennifer M Lund
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Department of Global Health, University of Washington, Seattle, Washington
| |
Collapse
|
26
|
Aliota MT, Bassit L, Bradrick SS, Cox B, Garcia-Blanco MA, Gavegnano C, Friedrich TC, Golos TG, Griffin DE, Haddow AD, Kallas EG, Kitron U, Lecuit M, Magnani DM, Marrs C, Mercer N, McSweegan E, Ng LFP, O'Connor DH, Osorio JE, Ribeiro GS, Ricciardi M, Rossi SL, Saade G, Schinazi RF, Schott-Lerner GO, Shan C, Shi PY, Watkins DI, Vasilakis N, Weaver SC. Zika in the Americas, year 2: What have we learned? What gaps remain? A report from the Global Virus Network. Antiviral Res 2017; 144:223-246. [PMID: 28595824 PMCID: PMC5920658 DOI: 10.1016/j.antiviral.2017.06.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 06/01/2017] [Indexed: 12/25/2022]
Abstract
In response to the outbreak of Zika virus (ZIKV) infection in the Western Hemisphere and the recognition of a causal association with fetal malformations, the Global Virus Network (GVN) assembled an international taskforce of virologists to promote basic research, recommend public health measures and encourage the rapid development of vaccines, antiviral therapies and new diagnostic tests. In this article, taskforce members and other experts review what has been learned about ZIKV-induced disease in humans, its modes of transmission and the cause and nature of associated congenital manifestations. After describing the make-up of the taskforce, we summarize the emergence of ZIKV in the Americas, Africa and Asia, its spread by mosquitoes, and current control measures. We then review the spectrum of primary ZIKV-induced disease in adults and children, sites of persistent infection and sexual transmission, then examine what has been learned about maternal-fetal transmission and the congenital Zika syndrome, including knowledge obtained from studies in laboratory animals. Subsequent sections focus on vaccine development, antiviral therapeutics and new diagnostic tests. After reviewing current understanding of the mechanisms of emergence of Zika virus, we consider the likely future of the pandemic.
Collapse
Affiliation(s)
- Matthew T Aliota
- Department of Pathobiological Sciences, University of Wisconsin-Madison, USA
| | - Leda Bassit
- Center for AIDS Research, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Shelton S Bradrick
- Department of Biochemistry and Molecular Biology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Bryan Cox
- Center for AIDS Research, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Mariano A Garcia-Blanco
- Department of Biochemistry and Molecular Biology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Christina Gavegnano
- Center for AIDS Research, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Thomas C Friedrich
- Department of Pathobiological Sciences, University of Wisconsin-Madison, USA; Wisconsin National Primate Research Center, University of Wisconsin-Madison, USA
| | - Thaddeus G Golos
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, USA; Department of Comparative Biosciences, University of Wisconsin-Madison, USA; Department of Obstetrics and Gynecology, University of Wisconsin-Madison, USA
| | - Diane E Griffin
- Global Virus Network, 725 West Lombard St., Baltimore, MD, USA; W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Andrew D Haddow
- Global Virus Network, 725 West Lombard St., Baltimore, MD, USA; Virology Division, United States Army Medical Research Institute of Infectious Diseases, Ft. Detrick, MD, 21702, USA
| | - Esper G Kallas
- Global Virus Network, 725 West Lombard St., Baltimore, MD, USA; Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, Brazil
| | - Uriel Kitron
- Department of Environmental Sciences, Emory University, Atlanta, GA, USA
| | - Marc Lecuit
- Global Virus Network, 725 West Lombard St., Baltimore, MD, USA; Institut Pasteur, Biology of Infection Unit and INSERM Unit 1117, France; Paris Descartes University, Sorbonne Paris Cité, Division of Infectious Diseases and Tropical Medicine, Necker- Enfants Malades University Hospital, Institut Imagine, Paris, France
| | - Diogo M Magnani
- Department of Pathology, University of Miami, Miami, FL, USA
| | - Caroline Marrs
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| | - Natalia Mercer
- Global Virus Network, 725 West Lombard St., Baltimore, MD, USA
| | | | - Lisa F P Ng
- Global Virus Network, 725 West Lombard St., Baltimore, MD, USA; Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - David H O'Connor
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, USA; Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, USA
| | - Jorge E Osorio
- Global Virus Network, 725 West Lombard St., Baltimore, MD, USA; Department of Pathobiological Sciences, University of Wisconsin-Madison, USA
| | - Guilherme S Ribeiro
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz and Instituto de Saúde Coletiva, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | | | - Shannan L Rossi
- Department of Microbiology & Immunology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - George Saade
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| | - Raymond F Schinazi
- Global Virus Network, 725 West Lombard St., Baltimore, MD, USA; Center for AIDS Research, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Geraldine O Schott-Lerner
- Department of Biochemistry and Molecular Biology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Chao Shan
- Department of Biochemistry and Molecular Biology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - David I Watkins
- Global Virus Network, 725 West Lombard St., Baltimore, MD, USA; Department of Pathology, University of Miami, Miami, FL, USA
| | - Nikos Vasilakis
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Scott C Weaver
- Global Virus Network, 725 West Lombard St., Baltimore, MD, USA; Department of Microbiology & Immunology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
27
|
Gavegnano C, Bassit LC, Cox BD, Hsiao HM, Johnson EL, Suthar M, Chakraborty R, Schinazi RF. Jak Inhibitors Modulate Production of Replication-Competent Zika Virus in Human Hofbauer, Trophoblasts, and Neuroblastoma cells. Pathog Immun 2017; 2:199-218. [PMID: 28776046 PMCID: PMC5538373 DOI: 10.20411/pai.v2i2.190] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Zika Virus (ZIKV) is a flavivirus that has been implicated in causing brain deformations, birth defects, and microcephaly in fetuses, and associated with Guillain-Barre syndrome. Mechanisms responsible for transmission of ZIKV across the placenta to the fetus are incompletely understood. Herein, we define key events modulating infection in clinically relevant cells, including primary placental macrophages (human Hofbauer cells; HC), trophoblasts, and neuroblastoma cells. Consistent with previous findings, HC and trophoblasts are permissive to ZIKV infection. Decrease of interferon signaling by Jak ½ inhibition (using ruxolitinib) significantly increased ZIKV replication in HC, trophoblasts, and neuroblasts. Enhanced ZIKV production in ruxolitinib-treated HC was associated with increased expression of HLA-DR and DC-SIGN. Nucleoside analogs blocked ruxolitinib-mediated production of extracellular virus. Although low-level ZIKV infection occurred in untreated HC and trophoblasts, replicating virions were incapable of infecting naive Vero cells. These deficient virions from untreated HC have “thin-coats” suggesting an immature structure. Blocking Jak ½ signaling (with ruxolitinib) restored replication competence as virions produced under these conditions confer cytopathic effects to naive Vero cells. These data demonstrate that Jak-STAT signaling directly impacts the ability of primary placental cells to produce replication-competent virus and is a key determinant in the production of mature virions in clinically relevant cells, including HC and trophoblasts. Design of targeted agents to prevent ZIKV replication in the placenta should consider Jak ½ signaling, the impact of its block on ZIKV infection, and subsequent transmission to the fetus.
Collapse
Affiliation(s)
- Christina Gavegnano
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Leda C Bassit
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Bryan D Cox
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Hui-Mien Hsiao
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Erica L Johnson
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Mehul Suthar
- Emory Vaccine Center, Yerkes National Primate Center, Emory University, Atlanta, Georgia
| | - Rana Chakraborty
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Raymond F Schinazi
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University, Atlanta, Georgia
| |
Collapse
|
28
|
Pryke KM, Abraham J, Sali TM, Gall BJ, Archer I, Liu A, Bambina S, Baird J, Gough M, Chakhtoura M, Haddad EK, Kirby IT, Nilsen A, Streblow DN, Hirsch AJ, Smith JL, DeFilippis VR. A Novel Agonist of the TRIF Pathway Induces a Cellular State Refractory to Replication of Zika, Chikungunya, and Dengue Viruses. mBio 2017; 8:e00452-17. [PMID: 28465426 PMCID: PMC5414005 DOI: 10.1128/mbio.00452-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 04/11/2017] [Indexed: 01/23/2023] Open
Abstract
The ongoing concurrent outbreaks of Zika, Chikungunya, and dengue viruses in Latin America and the Caribbean highlight the need for development of broad-spectrum antiviral treatments. The type I interferon (IFN) system has evolved in vertebrates to generate tissue responses that actively block replication of multiple known and potentially zoonotic viruses. As such, its control and activation through pharmacological agents may represent a novel therapeutic strategy for simultaneously impairing growth of multiple virus types and rendering host populations resistant to virus spread. In light of this strategy's potential, we undertook a screen to identify novel interferon-activating small molecules. Here, we describe 1-(2-fluorophenyl)-2-(5-isopropyl-1,3,4-thiadiazol-2-yl)-1,2-dihydrochromeno[2,3-c]pyrrole-3,9-dione, which we termed AV-C. Treatment of human cells with AV-C activates innate and interferon-associated responses that strongly inhibit replication of Zika, Chikungunya, and dengue viruses. By utilizing genome editing, we investigated the host proteins essential to AV-C-induced cellular states. This showed that the compound requires a TRIF-dependent signaling cascade that culminates in IFN regulatory factor 3 (IRF3)-dependent expression and secretion of type I interferon to elicit antiviral responses. The other canonical IRF3-terminal adaptor proteins STING and IPS-1/MAVS were dispensable for AV-C-induced phenotypes. However, our work revealed an important inhibitory role for IPS-1/MAVS, but not TRIF, in flavivirus replication, implying that TRIF-directed viral evasion may not occur. Additionally, we show that in response to AV-C, primary human peripheral blood mononuclear cells secrete proinflammatory cytokines that are linked with establishment of adaptive immunity to viral pathogens. Ultimately, synthetic innate immune activators such as AV-C may serve multiple therapeutic purposes, including direct antimicrobial responses and facilitation of pathogen-directed adaptive immunity.IMPORTANCE The type I interferon system is part of the innate immune response that has evolved in vertebrates as a first line of broad-spectrum immunological defense against an unknowable diversity of microbial, especially viral, pathogens. Here, we characterize a novel small molecule that artificially activates this response and in so doing generates a cellular state antagonistic to growth of currently emerging viruses: Zika virus, Chikungunya virus, and dengue virus. We also show that this molecule is capable of eliciting cellular responses that are predictive of establishment of adaptive immunity. As such, this agent may represent a powerful and multipronged therapeutic tool to combat emerging and other viral diseases.
Collapse
Affiliation(s)
- Kara M Pryke
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Jinu Abraham
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Tina M Sali
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Bryan J Gall
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Iris Archer
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Andrew Liu
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Shelly Bambina
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, Oregon, USA
| | - Jason Baird
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, Oregon, USA
| | - Michael Gough
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, Oregon, USA
| | - Marita Chakhtoura
- Division of Infectious Diseases and HIV Medicine, Drexel College of Medicine, Philadelphia, Pennsylvania, USA
| | - Elias K Haddad
- Division of Infectious Diseases and HIV Medicine, Drexel College of Medicine, Philadelphia, Pennsylvania, USA
| | - Ilsa T Kirby
- Veterans Affairs Medical Center, Portland, Oregon, USA
| | - Aaron Nilsen
- Veterans Affairs Medical Center, Portland, Oregon, USA
| | - Daniel N Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Alec J Hirsch
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Jessica L Smith
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Victor R DeFilippis
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
29
|
Chemokine Receptor Ccr7 Restricts Fatal West Nile Virus Encephalitis. J Virol 2017; 91:JVI.02409-16. [PMID: 28356527 DOI: 10.1128/jvi.02409-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/07/2017] [Indexed: 12/26/2022] Open
Abstract
West Nile virus (WNV) is a mosquito-transmitted flavivirus that can cause debilitating encephalitis. To delineate the mechanisms behind this pathology, we studied Ccr7-deficient mice, which afforded us the capacity to study infection in mice with disrupted peripheral cellular trafficking events. The loss of Ccr7 resulted in an immediate pan-leukocytosis that remained elevated throughout the infection. This leukocytosis resulted in a significant enhancement of leukocyte accumulation within the central nervous system (CNS). Despite an excess of virus-specific T cells in the CNS, Ccr7-deficient mice had significantly higher CNS viral loads and mortality rates than wild-type animals. Mechanistically, the elevated trafficking of infected myeloid cells into the brain in Ccr7-deficient mice resulted in increased levels of WNV in the CNS, thereby effectively contributing to neuroinflammation and lowering viral clearance. Combined, our experiments suggest that during WNV infection, Ccr7 is a gatekeeper for nonspecific viral transference to the brain.IMPORTANCE In this study, we show that Ccr7 is required for the sufficient migration of dendritic cells and T cells into the draining lymph node immediately following infection and for the restriction of leukocyte migration into the brain. Further, the severe loss of dendritic cells in the draining lymph node had no impact on viral replication in this organ, suggesting that WNV may migrate from the skin into the lymph node through another mechanism. Most importantly, we found that the loss of Ccr7 results in a significant leukocytosis, leading to hypercellularity within the CNS, where monocytes/macrophages contribute to CNS viremia, neuroinflammation, and increased mortality. Together, our data point to Ccr7 as a critical host defense restriction factor limiting neuroinflammation during acute viral infection.
Collapse
|
30
|
Yockey LJ, Varela L, Rakib T, Khoury-Hanold W, Fink SL, Stutz B, Szigeti-Buck K, Van den Pol A, Lindenbach BD, Horvath TL, Iwasaki A. Vaginal Exposure to Zika Virus during Pregnancy Leads to Fetal Brain Infection. Cell 2016; 166:1247-1256.e4. [PMID: 27565347 DOI: 10.1016/j.cell.2016.08.004] [Citation(s) in RCA: 293] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 07/29/2016] [Accepted: 08/03/2016] [Indexed: 12/11/2022]
Abstract
Zika virus (ZIKV) can be transmitted sexually between humans. However, it is unknown whether ZIKV replicates in the vagina and impacts the unborn fetus. Here, we establish a mouse model of vaginal ZIKV infection and demonstrate that, unlike other routes, ZIKV replicates within the genital mucosa even in wild-type (WT) mice. Mice lacking RNA sensors or transcription factors IRF3 and IRF7 resulted in higher levels of local viral replication. Furthermore, mice lacking the type I interferon (IFN) receptor (IFNAR) became viremic and died of infection after a high-dose vaginal ZIKV challenge. Notably, vaginal infection of pregnant dams during early pregnancy led to fetal growth restriction and infection of the fetal brain in WT mice. This was exacerbated in mice deficient in IFN pathways, leading to abortion. Our study highlights the vaginal tract as a highly susceptible site of ZIKV replication and illustrates the dire disease consequences during pregnancy.
Collapse
Affiliation(s)
- Laura J Yockey
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06520 USA
| | - Luis Varela
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520 USA
| | - Tasfia Rakib
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06520 USA
| | - William Khoury-Hanold
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06520 USA
| | - Susan L Fink
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06520 USA; Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, 06520 USA
| | - Bernardo Stutz
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520 USA
| | - Klara Szigeti-Buck
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520 USA
| | - Anthony Van den Pol
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, 06520 USA
| | - Brett D Lindenbach
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, 06520 USA
| | - Tamas L Horvath
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520 USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06520 USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, 06520 USA.
| |
Collapse
|
31
|
Hatesuer B, Hoang HTT, Riese P, Trittel S, Gerhauser I, Elbahesh H, Geffers R, Wilk E, Schughart K. Deletion of Irf3 and Irf7 Genes in Mice Results in Altered Interferon Pathway Activation and Granulocyte-Dominated Inflammatory Responses to Influenza A Infection. J Innate Immun 2016; 9:145-161. [PMID: 27811478 DOI: 10.1159/000450705] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 09/09/2016] [Indexed: 12/11/2022] Open
Abstract
The interferon (IFN) pathway plays an essential role in the innate immune response following viral infections and subsequent shaping of adaptive immunity. Infections with influenza A viruses (IAV) activate the IFN pathway after the recognition of pathogen-specific molecular patterns by respective pattern recognition receptors. The IFN regulatory factors IRF3 and IRF7 are key players in the regulation of type I and III IFN genes. In this study, we analyzed the role of IRF3 and IRF7 for the host response to IAV infections in Irf3-/-, Irf7-/-, and Irf3-/-Irf7-/- knockout mice. While the absence of IRF3 had only a moderate impact on IFN expression, deletion of IRF7 completely abolished IFNα production after infection. In contrast, lack of both IRF3 and IRF7 resulted in the absence of both IFNα and IFNβ after IAV infection. In addition, IAV infection of double knockout mice resulted in a strong increase of mortality associated with a massive influx of granulocytes in the lung and reduced activation of the adaptive immune response.
Collapse
Affiliation(s)
- Bastian Hatesuer
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Montgomery RR. Age-related alterations in immune responses to West Nile virus infection. Clin Exp Immunol 2016; 187:26-34. [PMID: 27612657 DOI: 10.1111/cei.12863] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2016] [Indexed: 12/25/2022] Open
Abstract
West Nile virus (WNV) is the most important causative agent of viral encephalitis worldwide and an important public health concern in the United States due to its high prevalence, severe disease, and the absence of effective treatments. Infection with WNV is mainly asymptomatic, but some individuals develop severe, possibly fatal, neurological disease. Individual host factors play a role in susceptibility to WNV infection, including genetic polymorphisms in key anti-viral immune genes, but age is the most well-defined risk factor for susceptibility to severe disease. Ageing is associated with distinct changes in immune cells and a decline in immune function leading to increased susceptibility to infection and reduced responses to vaccination. WNV is detected by pathogen recognition receptors including Toll-like receptors (TLRs), which show reduced expression and function in ageing. Neutrophils, monocyte/macrophages and dendritic cells, which first recognize and respond to infection, show age-related impairment of many functions relevant to anti-viral responses. Natural killer cells control many viral infections and show age-related changes in phenotype and functional responses. A role for the regulatory receptors Mertk and Axl in blood-brain barrier permeability and in facilitating viral uptake through phospholipid binding may be relevant for susceptibility to WNV, and age-related up-regulation of Axl has been noted previously in human dendritic cells. Understanding the specific immune parameters and mechanisms that influence susceptibility to symptomatic WNV may lead to a better understanding of increased susceptibility in elderly individuals and identify potential avenues for therapeutic approaches: an especially relevant goal, as the world's populating is ageing.
Collapse
Affiliation(s)
- R R Montgomery
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
33
|
Hirai-Yuki A, Hensley L, McGivern DR, González-López O, Das A, Feng H, Sun L, Wilson JE, Hu F, Feng Z, Lovell W, Misumi I, Ting JPY, Montgomery S, Cullen J, Whitmire JK, Lemon SM. MAVS-dependent host species range and pathogenicity of human hepatitis A virus. Science 2016; 353:1541-1545. [PMID: 27633528 PMCID: PMC5068972 DOI: 10.1126/science.aaf8325] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 09/02/2016] [Indexed: 12/24/2022]
Abstract
Hepatotropic viruses are important causes of human disease, but the intrahepatic immune response to hepatitis viruses is poorly understood because of a lack of tractable small- animal models. We describe a murine model of hepatitis A virus (HAV) infection that recapitulates critical features of type A hepatitis in humans. We demonstrate that the capacity of HAV to evade MAVS-mediated type I interferon responses defines its host species range. HAV-induced liver injury was associated with interferon-independent intrinsic hepatocellular apoptosis and hepatic inflammation that unexpectedly resulted from MAVS and IRF3/7 signaling. This murine model thus reveals a previously undefined link between innate immune responses to virus infection and acute liver injury, providing a new paradigm for viral pathogenesis in the liver.
Collapse
Affiliation(s)
- Asuka Hirai-Yuki
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27517, USA. Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27517, USA
| | - Lucinda Hensley
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27517, USA. Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27517, USA
| | - David R McGivern
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27517, USA. Department of Medicine, University of North Carolina, Chapel Hill, NC 27517, USA
| | - Olga González-López
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27517, USA. Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27517, USA
| | - Anshuman Das
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27517, USA. Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27517, USA
| | - Hui Feng
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27517, USA. Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27517, USA
| | - Lu Sun
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27517, USA. Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27517, USA
| | - Justin E Wilson
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27517, USA. Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27517, USA. Department of Genetics, University of North Carolina, Chapel Hill, NC 27517, USA
| | - Fengyu Hu
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27517, USA. Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27517, USA
| | - Zongdi Feng
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27517, USA. Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27517, USA
| | - William Lovell
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27517, USA
| | - Ichiro Misumi
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27517, USA. Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27517, USA. Department of Genetics, University of North Carolina, Chapel Hill, NC 27517, USA
| | - Jenny P-Y Ting
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27517, USA. Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27517, USA. Department of Genetics, University of North Carolina, Chapel Hill, NC 27517, USA
| | - Stephanie Montgomery
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27517, USA. Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27517, USA
| | - John Cullen
- Department of Population Health and Pathobiology, North Carolina State University College of Veterinary Medicine, Raleigh, NC 27607, USA
| | - Jason K Whitmire
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27517, USA. Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27517, USA. Department of Genetics, University of North Carolina, Chapel Hill, NC 27517, USA
| | - Stanley M Lemon
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27517, USA. Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27517, USA. Department of Medicine, University of North Carolina, Chapel Hill, NC 27517, USA.
| |
Collapse
|
34
|
Martin LB, Burgan SC, Adelman JS, Gervasi SS. Host Competence: An Organismal Trait to Integrate Immunology and Epidemiology. Integr Comp Biol 2016; 56:1225-1237. [DOI: 10.1093/icb/icw064] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
35
|
Mancino A, Natoli G. Specificity and Function of IRF Family Transcription Factors: Insights from Genomics. J Interferon Cytokine Res 2016; 36:462-9. [DOI: 10.1089/jir.2016.0004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Alessandra Mancino
- Department of Experimental Oncology, European Institute of Oncology (IEO), Milan, Italy
| | - Gioacchino Natoli
- Department of Experimental Oncology, European Institute of Oncology (IEO), Milan, Italy
| |
Collapse
|
36
|
Quicke KM, Bowen JR, Johnson EL, McDonald CE, Ma H, O'Neal JT, Rajakumar A, Wrammert J, Rimawi BH, Pulendran B, Schinazi RF, Chakraborty R, Suthar MS. Zika Virus Infects Human Placental Macrophages. Cell Host Microbe 2016; 20:83-90. [PMID: 27247001 DOI: 10.1016/j.chom.2016.05.015] [Citation(s) in RCA: 369] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 05/16/2016] [Accepted: 05/19/2016] [Indexed: 12/28/2022]
Abstract
The recent Zika virus (ZIKV) outbreak in Brazil has been directly linked to increased cases of microcephaly in newborns. Current evidence indicates that ZIKV is transmitted vertically from mother to fetus. However, the mechanism of intrauterine transmission and the cell types involved remain unknown. We demonstrate that the contemporary ZIKV strain PRVABC59 (PR 2015) infects and replicates in primary human placental macrophages, called Hofbauer cells, and to a lesser extent in cytotrophoblasts, isolated from villous tissue of full-term placentae. Viral replication coincides with induction of type I interferon (IFN), pro-inflammatory cytokines, and antiviral gene expression, but with minimal cell death. Our results suggest a mechanism for intrauterine transmission in which ZIKV gains access to the fetal compartment by directly infecting placental cells and disrupting the placental barrier.
Collapse
Affiliation(s)
- Kendra M Quicke
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA; Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - James R Bowen
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA; Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Erica L Johnson
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Circe E McDonald
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA; Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Huailiang Ma
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329, USA; Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Justin T O'Neal
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA; Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Augustine Rajakumar
- Department of Gynecology and Obstetrics, Division of Maternal Fetal Medicine and Reproductive Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Jens Wrammert
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA; Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Bassam H Rimawi
- Department of Gynecology and Obstetrics, Division of Maternal Fetal Medicine and Reproductive Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Bali Pulendran
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329, USA; Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Raymond F Schinazi
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA; Center for AIDS Research, Laboratory of Biochemical Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Rana Chakraborty
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Mehul S Suthar
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA; Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329, USA.
| |
Collapse
|
37
|
Wang F, Alain T, Szretter KJ, Stephenson K, Pol JG, Atherton MJ, Hoang HD, Fonseca BD, Zakaria C, Chen L, Rangwala Z, Hesch A, Chan ESY, Tuinman C, Suthar MS, Jiang Z, Ashkar AA, Thomas G, Kozma SC, Gale M, Fitzgerald KA, Diamond MS, Mossman K, Sonenberg N, Wan Y, Lichty BD. S6K-STING interaction regulates cytosolic DNA-mediated activation of the transcription factor IRF3. Nat Immunol 2016; 17:514-522. [PMID: 27043414 PMCID: PMC4917298 DOI: 10.1038/ni.3433] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 03/08/2016] [Indexed: 12/17/2022]
Abstract
Cytosolic DNA-mediated activation of the transcription factor IRF3 is a key event in host antiviral responses. Here we found that infection with DNA viruses induced interaction of the metabolic checkpoint kinase mTOR downstream effector and kinase S6K1 and the signaling adaptor STING in a manner dependent on the DNA sensor cGAS. We further demonstrated that the kinase domain, but not the kinase function, of S6K1 was required for the S6K1-STING interaction and that the TBK1 critically promoted this process. The formation of a tripartite S6K1-STING-TBK1 complex was necessary for the activation of IRF3, and disruption of this signaling axis impaired the early-phase expression of IRF3 target genes and the induction of T cell responses and mucosal antiviral immunity. Thus, our results have uncovered a fundamental regulatory mechanism for the activation of IRF3 in the cytosolic DNA pathway.
Collapse
Affiliation(s)
- Fuan Wang
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- MG DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Tommy Alain
- Children’s Hospital of Eastern Ontario Research Institute and Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Kristy J. Szretter
- Department of Medicine, Molecular Microbiology, Pathology & Immunology, Washington, University School of Medicine, St Louis, MO 63110, United States of America
| | - Kyle Stephenson
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- MG DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan G. Pol
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- MG DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Matthew J. Atherton
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- MG DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Huy-Dung Hoang
- Children’s Hospital of Eastern Ontario Research Institute and Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Bruno D. Fonseca
- Children’s Hospital of Eastern Ontario Research Institute and Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Chadi Zakaria
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Lan Chen
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- MG DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Zainab Rangwala
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- MG DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Adam Hesch
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- MG DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Eva Sin Yan Chan
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- MG DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Carly Tuinman
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- MG DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Mehul S. Suthar
- Department of Pediatrics, Emory Vaccine Center, Emory University, Atlanta, GA 30329, United States of America
| | - Zhaozhao Jiang
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, United States of America
| | - Ali A. Ashkar
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- MG DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - George Thomas
- Department of of Internal Medicine, Division of Hematology/Oncology, University of Cincinnati Medical School, Cincinnati, 45267-0508 OH, United States of America
- Laboratory of Metabolism and Cancer, Catalan Institute of Oncology, ICO, Bellvitge Biomedical Research Institute, IDIBELL, 08908 Barcelona, Spain
- Departament Ciències Fisiològiques II, Facultat de Medicina, Universitat de Barcelona, 08908, Barcelona, Spain
| | - Sara C. Kozma
- Department of of Internal Medicine, Division of Hematology/Oncology, University of Cincinnati Medical School, Cincinnati, 45267-0508 OH, United States of America
- Laboratory of Metabolism and Cancer, Catalan Institute of Oncology, ICO, Bellvitge Biomedical Research Institute, IDIBELL, 08908 Barcelona, Spain
| | - Michael Gale
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, WA98195, United States of America
| | - Katherine A. Fitzgerald
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, United States of America
| | - Michael S. Diamond
- Department of Medicine, Molecular Microbiology, Pathology & Immunology, Washington, University School of Medicine, St Louis, MO 63110, United States of America
| | - Karen Mossman
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- MG DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Yonghong Wan
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- MG DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Brian D. Lichty
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- MG DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
38
|
Abstract
Mitochondria are unique dynamic organelles that evolved from free-living bacteria into endosymbionts of mammalian hosts (Sagan 1967; Hatefi 1985). They have a distinct ~16.6 kb closed circular DNA genome coding for 13 polypeptides (Taanman 1999). In addition, a majority of the ~1500 mitochondrial proteins are encoded in the nucleus and transported to the mitochondria (Bonawitz et al. 2006). Mitochondria have two membranes: an outer smooth membrane and a highly folded inner membrane called cristae, which encompasses the matrix that houses the enzymes of the tricarboxylic acid (TCA) cycle and lipid metabolism. The inner mitochondrial membrane houses the protein complexes comprising the electron transport chain (ETC) (Hatefi 1985).
Collapse
Affiliation(s)
- David M. Hockenbery
- Clinical Research Divison, Fred Hutchinson Cancer Research Center, Seattle, Washington USA
| |
Collapse
|
39
|
Yu X, Wang H, Li X, Guo C, Yuan F, Fisher PB, Wang XY. Activation of the MDA-5-IPS-1 Viral Sensing Pathway Induces Cancer Cell Death and Type I IFN-Dependent Antitumor Immunity. Cancer Res 2016; 76:2166-76. [PMID: 26893477 DOI: 10.1158/0008-5472.can-15-2142] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 02/04/2016] [Indexed: 01/08/2023]
Abstract
Melanoma differentiation-associated gene 5 (MDA-5, IFIH1), a cytosolic innate pattern recognition receptor, functions as a first line of defense against viral infection by sensing double-stranded RNA. Ectopic expression of MDA-5 has been shown to induce cancer cell death, but the mechanism of action by which MDA-5 exerts these cytotoxic effects is unclear. Here, we demonstrate that ectopic expression of MDA-5 via replication-incompetent adenovirus (Ad.Mda-5) initiates multiple signaling cascades, culminating in cytotoxicity and type I IFN production in mouse and human prostate cancer cells. This intrinsic dual activity of MDA-5 required the adaptor protein IFNβ promoter stimulator 1 (IPS-1, MAVS) and could be functionally uncoupled. MDA-5 lacking N-terminal caspase recruitment domains (CARD) engaged an intracellular death program in cancer cells but was unable to efficiently stimulate the expression of IFNβ. In contrast to cancer cells susceptible to MDA-5-mediated cytotoxicity, normal cells were highly resistant and instead developed a robust type I IFN response. Strikingly, intratumoral delivery of Ad.Mda-5 led to regression of preestablished prostate cancers and development of long-lasting antitumor immune memory, which was primarily attributed to the activation of tumor-reactive cytotoxic T lymphocytes and/or natural killer cells. Using the CARD-truncated MDA-5 mutant, silencing of IPS-1, and antibody blockade of the IFNα/β receptor, we further demonstrate that type I IFN signaling was crucial for in situ MDA-5-induced protective antitumor immunity. Therefore, deliberately targeting the evolutionarily conserved MDA-5-IPS-1 antiviral pathway in tumors can provoke parallel tumoricidal and immunostimulatory effects that bridge innate and adaptive immune responses for the therapeutic treatment of cancer. Cancer Res; 76(8); 2166-76. ©2016 AACR.
Collapse
Affiliation(s)
- Xiaofei Yu
- Department of Human & Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Hongxia Wang
- Department of Human & Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Xia Li
- Department of Human & Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Chunqing Guo
- Department of Human & Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Fang Yuan
- Department of Human & Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Paul B Fisher
- Department of Human & Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia. VCU Institute of Molecular Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia. VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia.
| | - Xiang-Yang Wang
- Department of Human & Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia. VCU Institute of Molecular Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia. VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia.
| |
Collapse
|
40
|
Liu Q, Ding JL. The molecular mechanisms of TLR-signaling cooperation in cytokine regulation. Immunol Cell Biol 2016; 94:538-42. [PMID: 26860369 DOI: 10.1038/icb.2016.18] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 02/02/2016] [Accepted: 02/07/2016] [Indexed: 12/19/2022]
Abstract
Innate immune cells recognize pathogens through pattern recognition receptors (PRRs), and activation of PRRs induces downstream signaling pathways to mount appropriate immune responses. Pathogens usually carry multiple ligands, which can simultaneously activate multiple PRRs. The cooperation of multiple PRRs and consequential crosstalk between their downstream pathways could enhance cytokine expression, which is required for effective immune responses. On the other hand, immune over-activation could also harm the host if immune homeostasis is not restored. Therefore, it is important to understand the mechanisms of PRR cooperation during an infection. As the best characterized PRRs, Toll-like receptors (TLRs) have an important role in pathogen recognition, and crosstalk among TLRs is common. In this review, we provide an update on the recent findings on the mechanisms of TLR cooperation. We summarize the known mechanisms and provide a future perspective on TLR crosstalk study, with a caution against the use of multiple TLR ligands as adjuvants in therapeutic strategies.
Collapse
Affiliation(s)
- Qian Liu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Jeak Ling Ding
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| |
Collapse
|
41
|
Bosco A, Wiehler S, Proud D. Interferon regulatory factor 7 regulates airway epithelial cell responses to human rhinovirus infection. BMC Genomics 2016; 17:76. [PMID: 26810609 PMCID: PMC4727386 DOI: 10.1186/s12864-016-2405-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/18/2016] [Indexed: 12/11/2022] Open
Abstract
Background Human rhinoviruses (HRV) cause the majority of colds and trigger exacerbations of chronic lower airway diseases. Airway epithelial cells are the primary site for HRV infection and replication, and the initiation of host inflammatory responses. At present, the molecular mechanisms that underpin HRV responses in airway epithelial cells are incompletely understood. The aim of this study was to employ microarray profiling, upstream regulator analysis, and siRNA mediated gene silencing to further our understanding of the role of interferon regulatory factor 7 (IRF7) in this response. Methods Primary human bronchial epithelial cells (HBE) where transfected with siRNA that targets IRF7 or a non-silencing control (all-star control) using Lipofectamine. The cells were allowed to recover, and then cultured in the presence or absence of HRV-16 for 24 h. Global patterns of gene expression were profiled on microarrays. A subset of genes identified in the microarray study were validated at the mRNA and/or protein level using real time RT-qPCR, ELISA, and western blots. Results Hundreds of genes were upregulated in HBE during HRV infection. Pathways analysis demonstrated that these genes were mainly involved in type I and II interferon signaling, RIG-I/MDA5 signaling, antigen processing and presentation, and apoptosis. Upstream regulator analysis of these data suggested that IRF7 was a major molecular driver of this response. Knockdown of IRF7 reduced the HRV-driven upregulation of genes involved in antiviral responses (interferon signaling, Toll-like receptor signaling, NOD-like receptor signaling, RIG-I/MDA5 signaling), and increased the expression of genes that promote inflammation (e.g. CXCL5, IL-33, IL1RL1) and the response to oxidative stress. However, the majority of genes that were perturbed by HRV in HBE cells including those that are known to be regulated by IRF7 were insensitive to IRF7 knockdown. Upstream regulator analysis of the part of the response that was insensitive to IRF7 knockdown suggested it was driven by NF-κB, STAT1, STAT3, and IRF1. Conclusions Our findings demonstrate that IRF7 regulates the expression of genes involved in antiviral immunity, inflammation, and the response to oxidative stress during HRV infections in HBE cells, and also suggests that other transcription factors play a major role in this response. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2405-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anthony Bosco
- Telethon Kids Institute, University of Western Australia, PO Box 855, West Perth, WA, 6872, Australia.
| | - Shahina Wiehler
- Airway Inflammation Research Group, Snyder Institute for Chronic Diseases, and the Department of Physiology & Pharmacology, University of Calgary Faculty of Medicine, Calgary, AB, Canada.
| | - David Proud
- Airway Inflammation Research Group, Snyder Institute for Chronic Diseases, and the Department of Physiology & Pharmacology, University of Calgary Faculty of Medicine, Calgary, AB, Canada.
| |
Collapse
|
42
|
Lucas TM, Richner JM, Diamond MS. The Interferon-Stimulated Gene Ifi27l2a Restricts West Nile Virus Infection and Pathogenesis in a Cell-Type- and Region-Specific Manner. J Virol 2015; 90:2600-15. [PMID: 26699642 PMCID: PMC4810731 DOI: 10.1128/jvi.02463-15] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/15/2015] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED The mammalian host responds to viral infections by inducing expression of hundreds of interferon-stimulated genes (ISGs). While the functional significance of many ISGs has yet to be determined, their cell type and temporal nature of expression suggest unique activities against specific pathogens. Using a combination of ectopic expression and gene silencing approaches in cell culture, we previously identified Ifi27l2a as a candidate antiviral ISG within neuronal subsets of the central nervous system (CNS) that restricts infection by West Nile virus (WNV), an encephalitic flavivirus of global concern. To investigate the physiological relevance of Ifi27l2a in the context of viral infection, we generated Ifi27l2a(-/-) mice. Although adult mice lacking Ifi27l2a were more vulnerable to lethal WNV infection, the viral burden was greater only within the CNS, particularly in the brain stem, cerebellum, and spinal cord. Within neurons of the cerebellum and brain stem, in the context of WNV infection, a deficiency of Ifi27l2a was associated with less cell death, which likely contributed to sustained viral replication and higher titers in these regions. Infection studies in a primary cell culture revealed that Ifi27l2a(-/-) cerebellar granule cell neurons and macrophages but not cerebral cortical neurons, embryonic fibroblasts, or dendritic cells sustained higher levels of WNV infection than wild-type cells and that this difference was greater under conditions of beta interferon (IFN-β) pretreatment. Collectively, these findings suggest that Ifi27l2a has an antiviral phenotype in subsets of cells and that at least some ISGs have specific inhibitory functions in restricted tissues. IMPORTANCE The interferon-stimulated Ifi27l2a gene is expressed differentially within the central nervous system upon interferon stimulation or viral infection. Prior studies in cell culture suggested an antiviral role for Ifi27l2a during infection by West Nile virus (WNV). To characterize its antiviral activity in vivo, we generated mice with a targeted gene deletion of Ifi27l2a. Based on extensive virological analyses, we determined that Ifi27l2a protects mice from WNV-induced mortality by contributing to the control of infection of the hindbrain and spinal cord, possibly by regulating cell death of neurons. This antiviral activity was validated in granule cell neurons derived from the cerebellum and in macrophages but was not observed in other cell types. Collectively, these data suggest that Ifi27l2a contributes to innate immune restriction of WNV in a cell-type- and tissue-specific manner.
Collapse
Affiliation(s)
- Tiffany M Lucas
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Justin M Richner
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA The Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
43
|
Zhang X, Jiang D, Li H. The interferon regulatory factors as novel potential targets in the treatment of cardiovascular diseases. Br J Pharmacol 2015; 172:5457-5476. [PMID: 25131895 PMCID: PMC4667854 DOI: 10.1111/bph.12881] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/26/2014] [Accepted: 08/12/2014] [Indexed: 02/06/2023] Open
Abstract
The family of interferon regulatory factors (IRFs) consists of nine members (IRF1-IRF9) in mammals. They act as transcription factors for the interferons and thus exert essential regulatory functions in the immune system and in oncogenesis. Recent clinical and experimental studies have identified critically important roles of the IRFs in cardiovascular diseases, arising from their participation in divergent and overlapping molecular programmes beyond the immune response. Here we review the current knowledge of the regulatory effects and mechanisms of IRFs on the immune system. The role of IRFs and their potential molecular mechanisms as novel stress sensors and mediators of cardiovascular diseases are highlighted.
Collapse
Affiliation(s)
- Xiao‐Jing Zhang
- Department of Cardiology, Renmin HospitalWuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of MacauMacaoChina
| | - Ding‐Sheng Jiang
- Department of Cardiology, Renmin HospitalWuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
| | - Hongliang Li
- Department of Cardiology, Renmin HospitalWuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
| |
Collapse
|
44
|
Benitez AA, Spanko LA, Bouhaddou M, Sachs D, tenOever BR. Engineered Mammalian RNAi Can Elicit Antiviral Protection that Negates the Requirement for the Interferon Response. Cell Rep 2015; 13:1456-1466. [PMID: 26549455 DOI: 10.1016/j.celrep.2015.10.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/10/2015] [Accepted: 10/07/2015] [Indexed: 12/20/2022] Open
Abstract
Although the intrinsic antiviral cell defenses of many kingdoms utilize pathogen-specific small RNAs, the antiviral response of chordates is primarily protein based and not uniquely tailored to the incoming microbe. In an effort to explain this evolutionary bifurcation, we determined whether antiviral RNAi was sufficient to replace the protein-based type I interferon (IFN-I) system of mammals. To this end, we recreated an RNAi-like response in mammals and determined its effectiveness to combat influenza A virus in vivo in the presence and absence of the canonical IFN-I system. Mammalian antiviral RNAi, elicited by either host- or virus-derived small RNAs, effectively attenuated virus and prevented disease independently of the innate immune response. These data find that chordates could have utilized RNAi as their primary antiviral cell defense and suggest that the IFN-I system emerged as a result of natural selection imposed by ancient pathogens.
Collapse
Affiliation(s)
- Asiel Arturo Benitez
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Laura Adrienne Spanko
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mehdi Bouhaddou
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - David Sachs
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | |
Collapse
|
45
|
Interferon-Regulatory Factor 5-Dependent Signaling Restricts Orthobunyavirus Dissemination to the Central Nervous System. J Virol 2015; 90:189-205. [PMID: 26468541 DOI: 10.1128/jvi.02276-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 10/03/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Interferon (IFN)-regulatory factor 5 (IRF-5) is a transcription factor that induces inflammatory responses after engagement and signaling by pattern recognition receptors. To define the role of IRF-5 during bunyavirus infection, we evaluated Oropouche virus (OROV) and La Crosse virus (LACV) pathogenesis and immune responses in primary cells and in mice with gene deletions in Irf3, Irf5, and Irf7 or in Irf5 alone. Deletion of Irf3, Irf5, and Irf7 together resulted in uncontrolled viral replication in the liver and spleen, hypercytokinemia, extensive liver injury, and an early-death phenotype. Remarkably, deletion of Irf5 alone resulted in meningoencephalitis and death on a more protracted timeline, 1 to 2 weeks after initial OROV or LACV infection. The clinical signs in OROV-infected Irf5(-/-) mice were associated with abundant viral antigen and terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL)-positive cells in several regions of the brain. Circulating dendritic cell (DC) subsets in Irf5(-/-) mice had higher levels of OROV RNA in vivo yet produced lower levels of type I IFN than wild-type (WT) cells. This result was supported by data obtained in vitro, since a deficiency of IRF-5 resulted in enhanced OROV infection and diminished type I IFN production in bone marrow-derived DCs. Collectively, these results indicate a key role for IRF-5 in modulating the host antiviral response in peripheral organs that controls bunyavirus neuroinvasion in mice. IMPORTANCE Oropouche virus (OROV) and La Crosse virus (LACV) are orthobunyaviruses that are transmitted by insects and cause meningitis and encephalitis in subsets of individuals in the Americas. Recently, we demonstrated that components of the type I interferon (IFN) induction pathway, particularly the regulatory transcription factors IRF-3 and IRF-7, have key protective roles during OROV infection. However, the lethality in Irf3(-/-) Irf7(-/-) (DKO) mice infected with OROV was not as rapid or complete as observed in Ifnar(-/-) mice, indicating that other transcriptional factors associated with an IFN response contribute to antiviral immunity against OROV. Here, we evaluated bunyavirus replication, tissue tropism, and cytokine production in primary cells and mice lacking IRF-5. We demonstrate an important role for IRF-5 in preventing neuroinvasion and the ensuing encephalitis caused by OROV and LACV.
Collapse
|
46
|
Montgomery RR, Murray KO. Risk factors for West Nile virus infection and disease in populations and individuals. Expert Rev Anti Infect Ther 2015; 13:317-25. [PMID: 25637260 PMCID: PMC4939899 DOI: 10.1586/14787210.2015.1007043] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
West Nile virus (WNV) is a mosquito-borne enveloped positive-strand RNA virus that emerged in North America in 1999 in New York City. Over the past 15 years, WNV has become established throughout the USA and has spread into Canada, Mexico and the Caribbean. CDC reports indicate >41,000 clinical cases, including more than 1700 fatalities. An estimated 3 million people in the USA may have been infected to date. Infection with WNV is dependent on many factors including climate, mosquito habitats and immunologically naïve bird populations. In addition, variations within individuals contribute to the risk of severe disease, in particular, advanced age, hypertension, immunosuppression and critical elements of the immune response. Recent advances in technology now allow detailed analysis of complex immune interactions relevant to disease susceptibility.
Collapse
Affiliation(s)
- Ruth R. Montgomery
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut 06520
| | - Kristy O. Murray
- Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| |
Collapse
|
47
|
Oropouche virus infection and pathogenesis are restricted by MAVS, IRF-3, IRF-7, and type I interferon signaling pathways in nonmyeloid cells. J Virol 2015; 89:4720-37. [PMID: 25717109 DOI: 10.1128/jvi.00077-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 02/18/2015] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED Oropouche virus (OROV) is a member of the Orthobunyavirus genus in the Bunyaviridae family and a prominent cause of insect-transmitted viral disease in Central and South America. Despite its clinical relevance, little is known about OROV pathogenesis. To define the host defense pathways that control OROV infection and disease, we evaluated OROV pathogenesis and immune responses in primary cells and mice that were deficient in the RIG-I-like receptor signaling pathway (MDA5, RIG-I, or MAVS), downstream regulatory transcription factors (IRF-3 or IRF-7), beta interferon (IFN-β), or the receptor for type I IFN signaling (IFNAR). OROV replicated to higher levels in primary fibroblasts and dendritic cells lacking MAVS signaling, the transcription factors IRF-3 and IRF-7, or IFNAR than in wild-type (WT) cells. In mice, deletion of IFNAR, MAVS, or IRF-3 and IRF-7 resulted in uncontrolled OROV replication, hypercytokinemia, extensive liver damage, and death, whereas WT congenic animals failed to develop disease. Unexpectedly, mice with a selective deletion of IFNAR on myeloid cells (CD11c Cre(+) Ifnar(f/f) or LysM Cre(+) Ifnar(f/f)) did not sustain enhanced disease with OROV or a selective (flox/flox) deletion La Crosse virus, a closely related encephalitic orthobunyavirus. In bone marrow chimera studies, recipient irradiated Ifnar(-/-) mice reconstituted with WT hematopoietic cells sustained high levels of OROV replication and liver damage, whereas WT mice reconstituted with Ifnar(-/-) bone marrow were resistant to disease. Collectively, these results establish a dominant protective role for MAVS, IRF-3 and IRF-7, and IFNAR in restricting OROV infection and tissue injury and suggest that IFN signaling in nonmyeloid cells contributes to the host defense against orthobunyaviruses. IMPORTANCE Oropouche virus (OROV) is an emerging arthropod-transmitted orthobunyavirus that causes episodic outbreaks of a debilitating febrile illness in humans in countries of South and Central America. The continued expansion of the range and number of its arthropod vectors increases the likelihood that OROV will spread into new regions. At present, the pathogenesis of OROV in humans or other vertebrate animals remains poorly understood. To define cellular mechanisms of control of OROV infection, we performed infection studies in a series of primary cells and mice that were deficient in key innate immune genes involved in pathogen recognition and control. Our results establish that a MAVS-dependent type I IFN signaling pathway has a dominant role in restricting OROV infection and pathogenesis in vivo.
Collapse
|
48
|
Storek KM, Gertsvolf NA, Ohlson MB, Monack DM. cGAS and Ifi204 cooperate to produce type I IFNs in response to Francisella infection. THE JOURNAL OF IMMUNOLOGY 2015; 194:3236-45. [PMID: 25710914 DOI: 10.4049/jimmunol.1402764] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Type I IFN production is an important host immune response against viral and bacterial infections. However, little is known about the ligands and corresponding host receptors that trigger type I IFN production during bacterial infections. We used a model intracellular pathogen, Francisella novicida, to begin characterizing the type I IFN response to bacterial pathogens. F. novicida replicates in the cytosol of host cells and elicits a robust type I IFN response that is largely TLR independent, but is dependent on the adapter molecule STING, suggesting that the type I IFN stimulus during F. novicida infection is cytosolic. In this study, we report that the cytosolic DNA sensors, cyclic GMP-AMP synthase (cGAS) and Ifi204, are both required for the STING-dependent type I IFN response to F. novicida infection in both primary and immortalized murine macrophages. We created cGAS, Ifi204, and Sting functional knockouts in RAW264.7 macrophages and demonstrated that cGAS and Ifi204 cooperate to sense dsDNA and activate the STING-dependent type I IFN pathway. In addition, we show that dsDNA from F. novicida is an important type I IFN stimulating ligand. One outcome of cGAS-STING signaling is the activation of the absent in melanoma 2 inflammasome in response to F. novicida infection. Whereas the absent in melanoma 2 inflammasome is beneficial to the host during F. novicida infection, type I IFN signaling by STING and IFN regulatory factor 3 is detrimental to the host during F. novicida infection. Collectively, our studies indicate that cGAS and Ifi204 cooperate to sense cytosolic dsDNA and F. novicida infection to produce a strong type I IFN response.
Collapse
Affiliation(s)
- Kelly M Storek
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305; and
| | - Nina A Gertsvolf
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305; and
| | | | - Denise M Monack
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305; and
| |
Collapse
|
49
|
Clarke BD, Roby JA, Slonchak A, Khromykh AA. Functional non-coding RNAs derived from the flavivirus 3' untranslated region. Virus Res 2015; 206:53-61. [PMID: 25660582 DOI: 10.1016/j.virusres.2015.01.026] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/28/2015] [Accepted: 01/29/2015] [Indexed: 12/25/2022]
Abstract
Flaviviruses are single-stranded positive sense RNA enveloped viruses. The flavivirus genus includes important human pathogens such as dengue virus (DENV), West Nile virus (WNV), yellow fever virus (YFV), Japanese encephalitis virus (JEV), tick-borne encephalitis virus (TBEV), and Murray Valley encephalitis virus (MVEV). In addition to the viral proteins and viral genomic RNA, flaviviruses produce at least two functional non-coding RNAs derived from the 3' untranslated region (3'UTR), the subgenomic flavivirus RNA (sfRNA) and a putative WNV miRNA (KUN-miR-1). In this review we summarize published data from studies with WNV, YFV, DENV, JEV, and MVEV on sfRNA production following incomplete degradation of the viral genomic RNA by the cellular 5'-3' exoribonuclease 1 (XRN1), RNA structural elements involved in stalling XRN1 to generate sfRNA, and functions of sfRNA in modulating cellular mRNA decay and RNAi pathways as well as in modulating anti-viral type I interferon response. In addition, we also summarize data on the mechanisms of biogenesis of 3'UTR-derived KUN-miR-1 and its function in WNV replication in mosquito host, along with recent findings on a discovery of a second potential flaviviral miRNA vsRNA5, derived from the 3'UTR of DENV. This review thus summarizes the known mechanisms of generation and the functions of flaviviral 3'UTR-derived non-coding RNAs.
Collapse
Affiliation(s)
- B D Clarke
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - J A Roby
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - A Slonchak
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - A A Khromykh
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane 4072, Australia.
| |
Collapse
|
50
|
Melian EB, Hall-Mendelin S, Du F, Owens N, Bosco-Lauth AM, Nagasaki T, Rudd S, Brault AC, Bowen RA, Hall RA, van den Hurk AF, Khromykh AA. Programmed ribosomal frameshift alters expression of west nile virus genes and facilitates virus replication in birds and mosquitoes. PLoS Pathog 2014; 10:e1004447. [PMID: 25375107 PMCID: PMC4223154 DOI: 10.1371/journal.ppat.1004447] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 09/04/2014] [Indexed: 01/28/2023] Open
Abstract
West Nile virus (WNV) is a human pathogen of significant medical importance with close to 40,000 cases of encephalitis and more than 1,600 deaths reported in the US alone since its first emergence in New York in 1999. Previous studies identified a motif in the beginning of non-structural gene NS2A of encephalitic flaviviruses including WNV which induces programmed −1 ribosomal frameshift (PRF) resulting in production of an additional NS protein NS1′. We have previously demonstrated that mutant WNV with abolished PRF was attenuated in mice. Here we have extended our previous observations by showing that PRF does not appear to have a significant role in virus replication, virion formation, and viral spread in several cell lines in vitro. However, we have also shown that PRF induces an over production of structural proteins over non-structural proteins in virus-infected cells and that mutation abolishing PRF is present in ∼11% of the wild type virus population. In vivo experiments in house sparrows using wild type and PRF mutant of New York 99 strain of WNV viruses showed some attenuation for the PRF mutant virus. Moreover, PRF mutant of Kunjin strain of WNV showed significant decrease compared to wild type virus infection in dissemination of the virus from the midgut through the haemocoel, and ultimately the capacity of infected mosquitoes to transmit virus. Thus our results demonstrate an important role for PRF in regulating expression of viral genes and consequently virus replication in avian and mosquito hosts. Programmed ribosomal frameshift (PRF) is a strategy used by some viruses to regulate expression of viral genes and/or generate additional gene products for the benefit of the virus. Encephalitic flaviruses from Japanese encephalitis virus serogroup encode PRF motif in the beginning of nonstructural gene NS2A that results in production of an additional nonstructural protein NS1′ which for West Nile virus (WNV) consists of NS1 protein with 52 amino acid addition at the C terminus. Our previous studies showed that abolishing PFR and NS1′ production attenuated WNV virulence in mice. Here we show by using wild type and PRF-deficient WNV mutant that PRF induces overproduction of structural proteins, which facilitates virus replication in birds and mosquitoes while having no advantage for virus replication in cell lines in vitro. Presence of PRF/NS1′ allowed more efficient virus dissemination in the body of mosquitoes after taking infected blood meal and subsequent accumulation of the virus in saliva to facilitate transmission. Combined with our previous data in mice, the results obtained in this study demonstrate that while having no advantage for WNV replication in vitro, PRF provides advantage for WNV replication in vivo in mammalian, avian and mosquito hosts most likely by overproducing viral structural proteins and generating NS1′.
Collapse
Affiliation(s)
- Ezequiel Balmori Melian
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Sonja Hall-Mendelin
- Virology, Public and Environmental Health, Forensic and Scientific Services, Department of Health, Queensland Government, Coopers Plains, Queensland, Australia
| | - Fangyao Du
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Nick Owens
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Angela M. Bosco-Lauth
- Division of Vector-Borne Diseases, Centers for Disease Prevention and Control, Fort Collins, Colorado, United States of America
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Tomoko Nagasaki
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Stephen Rudd
- Queensland Facility for Advanced Bioinformatics (QFAB), University of Queensland, Brisbane, Queensland, Australia
| | - Aaron C. Brault
- Division of Vector-Borne Diseases, Centers for Disease Prevention and Control, Fort Collins, Colorado, United States of America
| | - Richard A. Bowen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Roy A. Hall
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Andrew F. van den Hurk
- Virology, Public and Environmental Health, Forensic and Scientific Services, Department of Health, Queensland Government, Coopers Plains, Queensland, Australia
| | - Alexander A. Khromykh
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
- * E-mail:
| |
Collapse
|