1
|
Tai W, Tian C, Shi H, Chai B, Yu X, Zhuang X, Dong P, Li M, Yin Q, Feng S, Wang W, Zhang O, Liang S, Liu Y, Liu J, Zhu L, Zhao G, Tian M, Yu G, Cheng G. An mRNA vaccine against monkeypox virus inhibits infection by co-activation of humoral and cellular immune responses. Nat Commun 2025; 16:2971. [PMID: 40140411 PMCID: PMC11947304 DOI: 10.1038/s41467-025-58328-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/18/2025] [Indexed: 03/28/2025] Open
Abstract
The persistent monkeypox outbreaks intensify the demand for monkeypox vaccines. Based on the mRNA vaccine platform, we conduct a systematic screening of monkeypox virus (MPXV) surface proteins from two types of viral particles, extracellular enveloped viruses (EVs) and intracellular mature viruses (MVs). This screening unveils 12 important antigens with diverse levels of neutralizing immunogenicity. Further assessment reveals that the combinations of 4, 8, and 12 of these antigens, namely Mix-4, Mix-8, and Mix-12, induce varying degrees of immune protection, with Mix-12 being the most potent. This finding demonstrates the significance of not only the level but also the diversity of the neutralizing antibodies in providing potent immune protection. Additionally, we utilize a T cell-epitope enrichment strategy, analyzing the complete proteome sequence of the MPXV to predict antigenic epitope-rich regions. Integration of these epitope-rich regions into a cellular immune-targeting antigen, named MPX-EPs, showcases that a cellular immune-targeting mRNA vaccine can independently confer immune protection. Furthermore, co-immunization with Mix-12 and MPX-EPs achieves complete protection against MPXV challenge. Overall, these results suggest an effective approach to enhance the immune protection of mRNA vaccines through the specific coordination of humoral and cellular immune responses.
Collapse
MESH Headings
- Animals
- Immunity, Humoral/immunology
- Immunity, Cellular/immunology
- Monkeypox virus/immunology
- Monkeypox virus/genetics
- Mpox, Monkeypox/prevention & control
- Mpox, Monkeypox/immunology
- Mpox, Monkeypox/virology
- Antibodies, Neutralizing/immunology
- Mice
- Antibodies, Viral/immunology
- Viral Vaccines/immunology
- Female
- mRNA Vaccines/immunology
- Epitopes, T-Lymphocyte/immunology
- Mice, Inbred BALB C
- Antigens, Viral/immunology
- Antigens, Viral/genetics
- Vaccines, Synthetic/immunology
- Humans
Collapse
Affiliation(s)
- Wanbo Tai
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, China.
| | - Chongyu Tian
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, China
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Huicheng Shi
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Benjie Chai
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Xinyang Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Xinyu Zhuang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Pengyuan Dong
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, China
| | - Min Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Qi Yin
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Shengyong Feng
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Weixiao Wang
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, China
| | - Oujia Zhang
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Shibo Liang
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yang Liu
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, China
| | - Jianying Liu
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, China
| | - Longchao Zhu
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, China
| | - Guangyu Zhao
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China.
| | - Mingyao Tian
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China.
| | - Gong Cheng
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China.
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, China.
- Southwest United Graduate School, Kunming, China.
| |
Collapse
|
2
|
Airola C, Andaloro S, Gasbarrini A, Ponziani FR. Vaccine Responses in Patients with Liver Cirrhosis: From the Immune System to the Gut Microbiota. Vaccines (Basel) 2024; 12:349. [PMID: 38675732 PMCID: PMC11054513 DOI: 10.3390/vaccines12040349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Vaccines prevent a significant number of deaths annually. However, certain populations do not respond adequately to vaccination due to impaired immune systems. Cirrhosis, a condition marked by a profound disruption of immunity, impairs the normal immunization process. Critical vaccines for cirrhotic patients, such as the hepatitis A virus (HAV), hepatitis B virus (HBV), influenza, pneumococcal, and coronavirus disease 19 (COVID-19), often elicit suboptimal responses in these individuals. The humoral response, essential for immunization, is less effective in cirrhosis due to a decline in B memory cells and an increase in plasma blasts, which interfere with the creation of a long-lasting response to antigen vaccination. Additionally, some T cell subtypes exhibit reduced activation in cirrhosis. Nonetheless, the persistence of memory T cell activity, while not preventing infections, may help to attenuate the severity of diseases in these patients. Alongside that, the impairment of innate immunity, particularly in dendritic cells (DCs), prevents the normal priming of adaptive immunity, interrupting the immunization process at its onset. Furthermore, cirrhosis disrupts the gut-liver axis balance, causing dysbiosis, reduced production of short-chain fatty acids (SCFAs), increased intestinal permeability, and bacterial translocation. Undermining the physiological activity of the immune system, these alterations could impact the vaccine response. Enhancing the understanding of the molecular and cellular factors contributing to impaired vaccination responses in cirrhotic patients is crucial for improving vaccine efficacy in this population and developing better prevention strategies.
Collapse
Affiliation(s)
- Carlo Airola
- Liver Unit, CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (S.A.); (A.G.)
| | - Silvia Andaloro
- Liver Unit, CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (S.A.); (A.G.)
| | - Antonio Gasbarrini
- Liver Unit, CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (S.A.); (A.G.)
- Department of Translational Medicine and Surgery, Catholic University, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Liver Unit, CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (S.A.); (A.G.)
- Department of Translational Medicine and Surgery, Catholic University, 00168 Rome, Italy
| |
Collapse
|
3
|
Iyer RF, Edwards DM, Kolb P, Raué HP, Nelson CA, Epperson ML, Slifka MK, Nolz JC, Hengel H, Fremont DH, Früh K. The secreted protein Cowpox Virus 14 contributes to viral virulence and immune evasion by engaging Fc-gamma-receptors. PLoS Pathog 2022; 18:e1010783. [PMID: 36121874 PMCID: PMC9521928 DOI: 10.1371/journal.ppat.1010783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 09/29/2022] [Accepted: 07/29/2022] [Indexed: 11/19/2022] Open
Abstract
The genome of cowpoxvirus (CPXV) could be considered prototypical for orthopoxviridae (OXPV) since it contains many open reading frames (ORFs) absent or lost in other OPXV, including vaccinia virus (VACV). These additional ORFs are non-essential for growth in vitro but are expected to contribute to the broad host range, virulence and immune evasion characteristics of CPXV. For instance, unlike VACV, CPXV encodes proteins that interfere with T cell stimulation, either directly or by preventing antigen presentation or co-stimulation. When studying the priming of naïve T cells, we discovered that CPXV, but not VACV, encodes a secreted factor that interferes with activation and proliferation of naïve CD8+ and CD4+ T cells, respectively, in response to anti-CD3 antibodies, but not to other stimuli. Deletion mapping revealed that the inhibitory protein is encoded by CPXV14, a small secreted glycoprotein belonging to the poxvirus immune evasion (PIE) family and containing a smallpoxvirus encoded chemokine receptor (SECRET) domain that mediates binding to chemokines. We demonstrate that CPXV14 inhibition of antibody-mediated T cell activation depends on the presence of Fc-gamma receptors (FcγRs) on bystander cells. In vitro, CPXV14 inhibits FcγR-activation by antigen/antibody complexes by binding to FcγRs with high affinity and immobilized CPXV14 can trigger signaling through FcγRs, particularly the inhibitory FcγRIIB. In vivo, CPXV14-deleted virus showed reduced viremia and virulence resulting in reduced weight loss and death compared to wildtype virus whereas both antibody and CD8+ T cell responses were increased in the absence of CPXV14. Furthermore, no impact of CPXV14-deletion on virulence was observed in mice lacking the inhibitory FcγRIIB. Taken together our results suggest that CPXV14 contributes to virulence and immune evasion by binding to host FcγRs.
Collapse
Affiliation(s)
- Ravi F. Iyer
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - David M. Edwards
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Philipp Kolb
- Institute of Virology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hans-Peter Raué
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Chris A. Nelson
- Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
| | - Megan L. Epperson
- Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
| | - Mark K. Slifka
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Jeffrey C. Nolz
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Hartmut Hengel
- Institute of Virology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daved H. Fremont
- Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
| | - Klaus Früh
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| |
Collapse
|
4
|
Hansen SG, Hancock MH, Malouli D, Marshall EE, Hughes CM, Randall KT, Morrow D, Ford JC, Gilbride RM, Selseth AN, Trethewy RE, Bishop LM, Oswald K, Shoemaker R, Berkemeier B, Bosche WJ, Hull M, Silipino L, Nekorchuk M, Busman-Sahay K, Estes JD, Axthelm MK, Smedley J, Shao D, Edlefsen PT, Lifson JD, Früh K, Nelson JA, Picker LJ. Myeloid cell tropism enables MHC-E-restricted CD8 + T cell priming and vaccine efficacy by the RhCMV/SIV vaccine. Sci Immunol 2022; 7:eabn9301. [PMID: 35714200 PMCID: PMC9387538 DOI: 10.1126/sciimmunol.abn9301] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The strain 68-1 rhesus cytomegalovirus (RhCMV)-based vaccine for simian immunodeficiency virus (SIV) can stringently protect rhesus macaques (RMs) from SIV challenge by arresting viral replication early in primary infection. This vaccine elicits unconventional SIV-specific CD8+ T cells that recognize epitopes presented by major histocompatibility complex (MHC)-II and MHC-E instead of MHC-Ia. Although RhCMV/SIV vaccines based on strains that only elicit MHC-II- and/or MHC-Ia-restricted CD8+ T cells do not protect against SIV, it remains unclear whether MHC-E-restricted T cells are directly responsible for protection and whether these responses can be separated from the MHC-II-restricted component. Using host microRNA (miR)-mediated vector tropism restriction, we show that the priming of MHC-II and MHC-E epitope-targeted responses depended on vector infection of different nonoverlapping cell types in RMs. Selective inhibition of RhCMV infection in myeloid cells with miR-142-mediated tropism restriction eliminated MHC-E epitope-targeted CD8+ T cell priming, yielding an exclusively MHC-II epitope-targeted response. Inhibition with the endothelial cell-selective miR-126 eliminated MHC-II epitope-targeted CD8+ T cell priming, yielding an exclusively MHC-E epitope-targeted response. Dual miR-142 + miR-126-mediated tropism restriction reverted CD8+ T cell responses back to conventional MHC-Ia epitope targeting. Although the magnitude and differentiation state of these CD8+ T cell responses were generally similar, only the vectors programmed to elicit MHC-E-restricted CD8+ T cell responses provided protection against SIV challenge, directly demonstrating the essential role of these responses in RhCMV/SIV vaccine efficacy.
Collapse
Affiliation(s)
- Scott G. Hansen
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Meaghan H. Hancock
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Daniel Malouli
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Emily E. Marshall
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Colette M. Hughes
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Kurt T. Randall
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - David Morrow
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Julia C. Ford
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Roxanne M. Gilbride
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Andrea N. Selseth
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Renee Espinosa Trethewy
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Lindsey M Bishop
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Kelli Oswald
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD 21702
| | - Rebecca Shoemaker
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD 21702
| | - Brian Berkemeier
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD 21702
| | - William J. Bosche
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD 21702
| | - Michael Hull
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD 21702
| | - Lorna Silipino
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD 21702
| | - Michael Nekorchuk
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Kathleen Busman-Sahay
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Jacob D. Estes
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Michael K. Axthelm
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Jeremy Smedley
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Danica Shao
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Paul T. Edlefsen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD 21702
| | - Klaus Früh
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Jay A. Nelson
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Louis J. Picker
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| |
Collapse
|
5
|
Melo-Silva CR, Alves-Peixoto P, Heath N, Tang L, Montoya B, Knudson CJ, Stotesbury C, Ferez M, Wong E, Sigal LJ. Resistance to lethal ectromelia virus infection requires Type I interferon receptor in natural killer cells and monocytes but not in adaptive immune or parenchymal cells. PLoS Pathog 2021; 17:e1009593. [PMID: 34015056 PMCID: PMC8172060 DOI: 10.1371/journal.ppat.1009593] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 06/02/2021] [Accepted: 04/28/2021] [Indexed: 11/18/2022] Open
Abstract
Type I interferons (IFN-I) are antiviral cytokines that signal through the ubiquitous IFN-I receptor (IFNAR). Following footpad infection with ectromelia virus (ECTV), a mouse-specific pathogen, C57BL/6 (B6) mice survive without disease, while B6 mice broadly deficient in IFNAR succumb rapidly. We now show that for survival to ECTV, only hematopoietic cells require IFNAR expression. Survival to ECTV specifically requires IFNAR in both natural killer (NK) cells and monocytes. However, intrinsic IFNAR signaling is not essential for adaptive immune cell responses or to directly protect non-hematopoietic cells such as hepatocytes, which are principal ECTV targets. Mechanistically, IFNAR-deficient NK cells have reduced cytolytic function, while lack of IFNAR in monocytes dampens IFN-I production and hastens virus dissemination. Thus, during a pathogenic viral infection, IFN-I coordinates innate immunity by stimulating monocytes in a positive feedback loop and by inducing NK cell cytolytic function.
Collapse
Affiliation(s)
- Carolina R. Melo-Silva
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Pedro Alves-Peixoto
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Natasha Heath
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Lingjuan Tang
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Brian Montoya
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Cory J. Knudson
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Colby Stotesbury
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Maria Ferez
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Eric Wong
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Luis J. Sigal
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
6
|
Lin LCW, Croft SN, Croft NP, Wong YC, Smith SA, Tang SS, Purcell AW, Tscharke DC. Direct Priming of CD8 + T Cells Persists in the Face of Cowpox Virus Inhibitors of Antigen Presentation. J Virol 2021; 95:JVI.00186-21. [PMID: 33692206 PMCID: PMC8139650 DOI: 10.1128/jvi.00186-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 02/27/2021] [Indexed: 11/30/2022] Open
Abstract
Vaccinia virus (VACV) was the vaccine used to eradicate smallpox and is being repurposed as a vaccine vector. CD8+ T cells are key anti-viral mediators, but require priming to become effector or memory cells. Priming requires an interaction with dendritic cells that are either infected (direct priming), or that have acquired virus proteins but remain uninfected (cross priming). To investigate CD8+ T cell priming pathways for VACV, we engineered the virus to express CPXV12 and CPXV203, two inhibitors of antigen presentation encoded by cowpox virus. These intracellular proteins would be expected to block direct but not cross priming. The inhibitors had diverse impacts on the size of anti-VACV CD8+ T cell responses across epitopes and by different infection routes in mice, superficially suggesting variable use of direct and cross priming. However, when we then tested a form of antigen that requires direct priming, we found surprisingly that CD8+ T cell responses were not diminished by co-expression with CPXV12 and CPXV203. We then directly quantified the impact of CPXV12 and CPXV203 on viral antigen presentation using mass spectrometry, which revealed strong, but incomplete inhibition of antigen presentation by the CPXV proteins. Therefore, direct priming of CD8+ T cells by poxviruses is robust enough to withstand highly potent viral inhibitors of antigen presentation. This is a reminder of the limits of viral immune evasion and shows that viral inhibitors of antigen presentation cannot be assumed to dissect cleanly direct and cross priming of anti-viral CD8+ T cells.ImportanceCD8+ T cells are key to anti-viral immunity, so it is important to understand how they are activated. Many viruses have proteins that protect infected cells from T cell attack by interfering with the process that allows virus infection to be recognised by CD8+ T cells. It is thought that these proteins would also stop infected cells from activating T cells in the first place. However, we show here that this is not the case for two very powerful inhibitory proteins from cowpox virus. This demonstrates the flexibility and robustness of immune processes that turn on the immune responses required to fight infection.
Collapse
Affiliation(s)
- Leon C. W. Lin
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Sarah N. Croft
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Nathan P. Croft
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Yik Chun Wong
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Stewart A. Smith
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Swee-Seong Tang
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Anthony W. Purcell
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - David C. Tscharke
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
7
|
Abstract
The first proof-of-concept studies about the feasibility of genetic vaccines were published over three decades ago, opening the way for future development. The idea of nonviral antigen delivery had multiple advantages over the traditional live or inactivated pathogen-based vaccines, but a great deal of effort had to be invested to turn the idea of genetic vaccination into reality. Although early proof-of-concept studies were groundbreaking, they also showed that numerous aspects of genetic vaccines needed to be improved. Until the early 2000s, the vast majority of effort was invested into the development of DNA vaccines due to the potential issues of instability and low in vivo translatability of messenger RNA (mRNA). In recent years, numerous studies have demonstrated the outstanding abilities of mRNA to elicit potent immune responses against infectious pathogens and different types of cancer, making it a viable platform for vaccine development. Multiple mRNA vaccine platforms have been developed and evaluated in small and large animals and humans and the results seem to be promising. RNA-based vaccines have important advantages over other vaccine approaches including outstanding efficacy, safety, and the potential for rapid, inexpensive, and scalable production. There is a substantial investment by new mRNA companies into the development of mRNA therapeutics, particularly vaccines, increasing the number of basic and translational research publications and human clinical trials underway. This review gives a broad overview about genetic vaccines and mainly focuses on the past and present of mRNA vaccines along with the future directions to bring this potent vaccine platform closer to therapeutic use.
Collapse
|
8
|
Harizaj A, De Smedt SC, Lentacker I, Braeckmans K. Physical transfection technologies for macrophages and dendritic cells in immunotherapy. Expert Opin Drug Deliv 2020; 18:229-247. [PMID: 32985919 DOI: 10.1080/17425247.2021.1828340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Dendritic cells (DCs) and macrophages, two important antigen presenting cells (APCs) of the innate immune system, are being explored for the use in cell-based cancer immunotherapy. For this application, the therapeutic potential of patient-derived APCs is increased by delivering different types of functional macromolecules, such as mRNA and pDNA, into their cytosol. Compared to the use of viral and non-viral delivery vectors, physical intracellular delivery techniques are known to be more straightforward, more controllable, faster and generate high delivery efficiencies. AREAS COVERED This review starts with electroporation as the most traditional physical transfection method, before continuing with the more recent technologies such as sonoporation, nanowires and microfluidic cell squeezing. A description is provided of each of those intracellular delivery technologies with their strengths and weaknesses, especially paying attention to delivery efficiency and safety profile. EXPERT OPINION Given the common use of electroporation for the production of therapeutic APCs, it is recommended that more detailed studies are performed on the effect of electroporation on APC fitness, even down to the genetic level. Newer intracellular delivery technologies seem to have less impact on APC functionality but further work is needed to fully uncover their suitability to transfect APCs with different types of macromolecules.
Collapse
Affiliation(s)
- Aranit Harizaj
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| | - Ine Lentacker
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| |
Collapse
|
9
|
Wong E, Montoya B, Stotesbury C, Ferez M, Xu RH, Sigal LJ. Langerhans Cells Orchestrate the Protective Antiviral Innate Immune Response in the Lymph Node. Cell Rep 2020; 29:3047-3059.e3. [PMID: 31801072 PMCID: PMC6927544 DOI: 10.1016/j.celrep.2019.10.118] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 09/17/2019] [Accepted: 10/29/2019] [Indexed: 12/22/2022] Open
Abstract
During disseminating viral infections, a swift innate immune response (IIR) in the draining lymph node (dLN) that restricts systemic viral spread is critical for optimal resistance to disease. However, it is unclear how this IIR is orchestrated. We show that after footpad infection of mice with ectromelia virus, dendritic cells (DCs) highly expressing major histocompatibility complex class II (MHC class IIhi DCs), including CD207+ epidermal Langerhans cells (LCs), CD103+CD207+ double-positive dermal DCs (DP-DCs), and CD103−CD207− double-negative dermal DCs (DN-DCs) migrate to the dLN from the skin carrying virus. MHC class IIhi DCs, predominantly LCs and DP-DCs, are the first cells upregulating IIR cytokines in the dLN. Preventing MHC class IIhi DC migration or depletion of LCs, but not DP-DC deficiency, suppresses the IIR in the dLN and results in high viral lethality. Therefore, LCs are the architects of an early IIR in the dLN that is critical for optimal resistance to a disseminating viral infection. Wong et al. show that by producing chemokines that recruit monocytes and by upregulating NKG2D ligands that activate ILCs, Langerhans cells are responsible for the innate immune cascade in the lymph node that is critical for survival of infection with a disseminating virus.
Collapse
Affiliation(s)
- Eric Wong
- Department of Microbiology and Immunology, Thomas Jefferson University, BLSB 709 233 South 10(th) Street, Philadelphia, PA 19107, USA
| | - Brian Montoya
- Department of Microbiology and Immunology, Thomas Jefferson University, BLSB 709 233 South 10(th) Street, Philadelphia, PA 19107, USA
| | - Colby Stotesbury
- Department of Microbiology and Immunology, Thomas Jefferson University, BLSB 709 233 South 10(th) Street, Philadelphia, PA 19107, USA
| | - Maria Ferez
- Department of Microbiology and Immunology, Thomas Jefferson University, BLSB 709 233 South 10(th) Street, Philadelphia, PA 19107, USA
| | - Ren-Huan Xu
- Immune Cell Development and Host Defense Program, Research Institute of Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Luis J Sigal
- Department of Microbiology and Immunology, Thomas Jefferson University, BLSB 709 233 South 10(th) Street, Philadelphia, PA 19107, USA.
| |
Collapse
|
10
|
Kinetically distinct processing pathways diversify the CD8 + T cell response to a single viral epitope. Proc Natl Acad Sci U S A 2020; 117:19399-19407. [PMID: 32719124 DOI: 10.1073/pnas.2004372117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The source proteins from which CD8+ T cell-activating peptides are derived remain enigmatic. Glycoproteins are particularly challenging in this regard owing to several potential trafficking routes within the cell. By engineering a glycoprotein-derived epitope to contain an N-linked glycosylation site, we determined that optimal CD8+ T cell expansion and function were induced by the peptides that are rapidly produced from the exceedingly minor fraction of protein mislocalized to the cytosol. In contrast, peptides derived from the much larger fraction that undergoes translocation and quality control are produced with delayed kinetics and induce suboptimal CD8+ T cell responses. This dual system of peptide generation enhances CD8+ T cell participation in diversifying both antigenicity and the kinetics of peptide display.
Collapse
|
11
|
Chronic Lymphocytic Choriomeningitis Infection Causes Susceptibility to Mousepox and Impairs Natural Killer Cell Maturation and Function. J Virol 2020; 94:JVI.01831-19. [PMID: 31776282 DOI: 10.1128/jvi.01831-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 11/25/2019] [Indexed: 11/20/2022] Open
Abstract
Chronic viral infections. like those of humans with cytomegalovirus, human immunodeficiency virus (even when under antiretroviral therapy), and hepatitis C virus or those of mice with lymphocytic choriomeningitis virus (LCMV) clone 13 (CL13), result in immune dysfunction that predisposes the host to severe infections with unrelated pathogens. It is known that C57BL/6 (B6) mice are resistant to mousepox, a lethal disease caused by the orthopoxvirus ectromelia virus (ECTV), and that this resistance requires natural killer (NK) cells and other immune cells. We show that most B6 mice chronically infected with CL13 succumb to mousepox but that most of those that recovered from acute infection with the LCMV Armstrong (Arm) strain survive. We also show that B6 mice chronically infected with CL13 and those that recovered from Arm infection have a reduced frequency and a reduced number of NK cells. However, at steady state, NK cells in mice that have recovered from Arm infection mature normally and, in response to ECTV, get activated, become more mature, proliferate, and increase their cytotoxicity in vivo Conversely, in mice chronically infected with CL13, NK cells are immature and residually activated, and following ECTV infection, they do not mature, proliferate, or increase their cytotoxicity. Given the well-established importance of NK cells in resistance to mousepox, these data suggest that the NK cell dysfunction caused by CL13 persistence may contribute to the susceptibility of CL13-infected mice to mousepox. Whether chronic infections similarly affect NK cells in humans should be explored.IMPORTANCE Infection of adult mice with the clone 13 (CL13) strain of lymphocytic choriomeningitis virus (LCMV) is extensively used as a model of chronic infection. In this paper, we show that mice chronically infected with CL13 succumb to challenge with ectromelia virus (ECTV; the agent of mousepox) and that natural killer (NK) cells in CL13-infected mice are reduced in numbers and have an immature and partially activated phenotype but do respond to ECTV. These data may provide additional clues why humans chronically infected with certain pathogens are less resistant to viral diseases.
Collapse
|
12
|
Cueto FJ, Del Fresno C, Sancho D. DNGR-1, a Dendritic Cell-Specific Sensor of Tissue Damage That Dually Modulates Immunity and Inflammation. Front Immunol 2020; 10:3146. [PMID: 32117205 PMCID: PMC7018937 DOI: 10.3389/fimmu.2019.03146] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/27/2019] [Indexed: 11/13/2022] Open
Abstract
DNGR-1 (encoded by CLEC9A) is a C-type lectin receptor (CLR) with an expression profile that is mainly restricted to type 1 conventional dendritic cells (cDC1s) both in mice and humans. This delimited expression pattern makes it appropriate for defining a cDC1 signature and for therapeutic targeting of this population, promoting immunity in mouse models. Functionally, DNGR-1 binds F-actin, which is confined within the intracellular space in healthy cells, but is exposed when plasma membrane integrity is compromised, as happens in necrosis. Upon F-actin binding, DNGR-1 signals through SYK and mediates cross-presentation of dead cell-associated antigens. Cross-presentation to CD8+ T cells promoted by DNGR-1 during viral infections is key for cross-priming tissue-resident memory precursors in the lymph node. However, in contrast to other closely related CLRs such as Dectin-1, DNGR-1 does not activate NFκB. Instead, recent findings show that DNGR-1 can activate SHP-1 to limit inflammation triggered by heterologous receptors, which results in reduced production of inflammatory chemokines and neutrophil recruitment into damaged tissues in both sterile and infectious processes. Hence, DNGR-1 reduces immunopathology associated with tissue damage, promoting disease tolerance to safeguard tissue integrity. How DNGR-1 signals are conditioned by the microenvironment and the detailed molecular mechanisms underlying DNGR-1 function have not been elucidated. Here, we review the expression pattern and structural features of DNGR-1, and the biological relevance of the detection of tissue damage through this CLR.
Collapse
Affiliation(s)
- Francisco J Cueto
- Laboratory of Immunobiology, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Carlos Del Fresno
- Laboratory of Immunobiology, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - David Sancho
- Laboratory of Immunobiology, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| |
Collapse
|
13
|
Arokiasamy S, Balderstone MJM, De Rossi G, Whiteford JR. Syndecan-3 in Inflammation and Angiogenesis. Front Immunol 2020; 10:3031. [PMID: 31998313 PMCID: PMC6962229 DOI: 10.3389/fimmu.2019.03031] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/10/2019] [Indexed: 01/04/2023] Open
Abstract
Syndecans are a four member multifunctional family of cell surface molecules with diverse biological roles. Syndecan-3 (SDC3) is the largest of these, but in comparison to the other family members relatively little is known about this molecule. SDC3 null mice grow and develop normally, all be it with subtle anatomical phenotypes in the brain. Roles for this molecule in both neuronal and brain tissue have been identified, and is associated with altered satiety responses. Recent studies suggest that SDC3 expression is not restricted to neuronal tissues and has important roles in inflammatory disorders such as rheumatoid arthritis, disease associated processes such as angiogenesis and in the facilitation of infection of dendritic cells by HIV. The purpose of this review article is to explore these new biological insights into SDC3 functions in inflammatory disease.
Collapse
Affiliation(s)
- Samantha Arokiasamy
- Barts and the London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Michaela J. M. Balderstone
- Barts and the London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Giulia De Rossi
- Department of Cell Biology, UCL Institute of Ophthalmology, London, United Kingdom
| | - James R. Whiteford
- Barts and the London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
14
|
Wong EB, Montoya B, Ferez M, Stotesbury C, Sigal LJ. Resistance to ectromelia virus infection requires cGAS in bone marrow-derived cells which can be bypassed with cGAMP therapy. PLoS Pathog 2019; 15:e1008239. [PMID: 31877196 PMCID: PMC6974301 DOI: 10.1371/journal.ppat.1008239] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 01/21/2020] [Accepted: 11/25/2019] [Indexed: 01/07/2023] Open
Abstract
Cells sensing infection produce Type I interferons (IFN-I) to stimulate Interferon Stimulated Genes (ISGs) that confer resistance to viruses. During lympho-hematogenous spread of the mouse pathogen ectromelia virus (ECTV), the adaptor STING and the transcription factor IRF7 are required for IFN-I and ISG induction and resistance to ECTV. However, it is unknown which cells sense ECTV and which pathogen recognition receptor (PRR) upstream of STING is required for IFN-I and ISG induction. We found that cyclic-GMP-AMP (cGAMP) synthase (cGAS), a DNA-sensing PRR, is required in bone marrow-derived (BMD) but not in other cells for IFN-I and ISG induction and for resistance to lethal mousepox. Also, local administration of cGAMP, the product of cGAS that activates STING, rescues cGAS but not IRF7 or IFN-I receptor deficient mice from mousepox. Thus, sensing of infection by BMD cells via cGAS and IRF7 is critical for resistance to a lethal viral disease in a natural host. During primary acute systemic viral infections, cells sensing virus through Pathogen Recognition Receptors (PRR) can produce Type I interferons (IFN-I) to induce an anti-viral state that curbs viral spread and protect from viral disease. The dissection of the specific cells, receptors and downstream pathways required for IFN-I production during viral infection in vivo is necessary to improve anti-viral therapies. In this study, we demonstrated that the cytosolic PRR cGAS in hematopoietic cells but not in parenchymal cells is required for protection against ectromelia virus, the archetype for viruses that spread through the lympho-hematogenous route. We also show that cGAS deficiency can be bypassed by local administration of cyclic-GMP-AMP (cGAMP) by inducing IFN-I only in the skin and in the presence of virus. Our study provides novel insights into the cGAS signaling pathway and highlights the potential of cGAMP as an efficient anti-viral treatment.
Collapse
Affiliation(s)
- Eric B. Wong
- Thomas Jefferson University, Department of Microbiology and Immunology, Philadelphia, Pennsylvania, United States of America
| | - Brian Montoya
- Thomas Jefferson University, Department of Microbiology and Immunology, Philadelphia, Pennsylvania, United States of America
| | - Maria Ferez
- Thomas Jefferson University, Department of Microbiology and Immunology, Philadelphia, Pennsylvania, United States of America
| | - Colby Stotesbury
- Thomas Jefferson University, Department of Microbiology and Immunology, Philadelphia, Pennsylvania, United States of America
| | - Luis J. Sigal
- Thomas Jefferson University, Department of Microbiology and Immunology, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
15
|
Modified Vaccinia Virus Ankara Can Induce Optimal CD8 + T Cell Responses to Directly Primed Antigens Depending on Vaccine Design. J Virol 2019; 93:JVI.01154-19. [PMID: 31375596 PMCID: PMC6803277 DOI: 10.1128/jvi.01154-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 07/29/2019] [Indexed: 01/19/2023] Open
Abstract
A variety of strains of vaccinia virus (VACV) have been used as recombinant vaccine vectors with the aim of inducing robust CD8+ T cell immunity. While much of the pioneering work was done with virulent strains, such as Western Reserve (WR), attenuated strains such as modified vaccinia virus Ankara (MVA) are more realistic vectors for clinical use. To unify this literature, side-by-side comparisons of virus strains are required. Here, we compare the form of antigen that supports optimal CD8+ T cell responses for VACV strains WR and MVA using equivalent constructs. We found that for multiple antigens, minimal antigenic constructs (epitope minigenes) that prime CD8+ T cells via the direct presentation pathway elicited optimal responses from both vectors, which was surprising because this finding contradicts the prevailing view in the literature for MVA. We then went on to explore the discrepancy between current and published data for MVA, finding evidence that the expression locus and in some cases the presence of the viral thymidine kinase may influence the ability of this strain to prime optimal responses from antigens that require direct presentation. This extends our knowledge of the design parameters for VACV vectored vaccines, especially those based on MVA.IMPORTANCE Recombinant vaccines based on vaccinia virus and particularly attenuated strains such as MVA are in human clinical trials, but due to the complexity of these large vectors much remains to be understood about the design parameters that alter their immunogenicity. Previous work had found that MVA vectors should be designed to express stable protein in order to induce robust immunity by CD8+ (cytotoxic) T cells. Here, we found that the primacy of stable antigen is not generalizable to all designs of MVA and may depend where a foreign antigen is inserted into the MVA genome. This unexpected finding suggests that there is an interaction between genome location and the best form of antigen for optimal T cell priming in MVA and thus possibly other vaccine vectors. It also highlights that our understanding of antigen presentation by even the best studied of vaccine vectors remains incomplete.
Collapse
|
16
|
Kotsias F, Cebrian I, Alloatti A. Antigen processing and presentation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 348:69-121. [PMID: 31810556 DOI: 10.1016/bs.ircmb.2019.07.005] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dendritic cells are at the center of immune responses. They are defined by their ability to sense the environment, take up and process antigen, migrate to secondary lymphoid organs, where they present antigens to the adaptive immune system. In particular, they present lipids and proteins from pathogens, which they encountered in peripheral tissues, to T cells in order to induce a specific effector immune response. These complex antigens need to be broken down into peptides of a certain length in association with Major Histocompatibility Complex (MHC) molecules. Presentation of MHC/antigen complexes alongside costimulatory molecules and secretion of proinflammatory cytokines will induce an appropriate immune response. This interaction between dendritic cells and T cells takes place at defined locations within secondary lymphoid organs. In this review, we discuss the current knowledge and recent advances on the cellular and molecular mechanisms that underlie antigen processing and the subsequent presentation to T lymphocytes.
Collapse
Affiliation(s)
- Fiorella Kotsias
- Cátedra de Virología, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina; Instituto de Investigaciones en Producción Animal (INPA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Ignacio Cebrian
- Facultad de Ciencias Médicas, Instituto de Histología y Embriología de Mendoza (IHEM)-CONICET/Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Andrés Alloatti
- Facultad de Ciencias Médicas, Instituto de Inmunología Clínica y Experimental de Rosario (IDICER)-CONICET/Universidad Nacional de Rosario, Rosario, Argentina.
| |
Collapse
|
17
|
Murata Y, Kawashima K, Sheikh K, Tanaka Y, Isogawa M. Intrahepatic Cross-Presentation and Hepatocellular Antigen Presentation Play Distinct Roles in the Induction of Hepatitis B Virus-Specific CD8 + T Cell Responses. J Virol 2018; 92:e00920-18. [PMID: 30089700 PMCID: PMC6189498 DOI: 10.1128/jvi.00920-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 07/31/2018] [Indexed: 01/05/2023] Open
Abstract
CD8+ T cells are the key cellular effectors mediating the clearance of hepatitis B virus (HBV) infections. However, early immunological events surrounding the priming of HBV-specific CD8+ T cell responses remain poorly understood. This study examined the importance of priming location and the relative contribution of endogenous antigen presentation by hepatocytes versus cross-presentation by bone marrow-derived cells to the induction of functional HBV-specific CD8+ T cell responses using the animal models of acute and chronic HBV infection. Functional HBV-specific CD8+ T cell responses could be induced to intrahepatically expressed HBV even when T cell homing to the lymphoid tissues was severely suppressed, suggesting that functional priming could occur in the liver. The expansion of HBV-specific CD8+ T cells was significantly reduced in the mice whose major histocompatibility complex (MHC) class I expression was mostly restricted to nonhematopoietic cells, suggesting the importance of cross-presentation by hematopoietic cells in the induction of HBV-specific CD8+ T cells. Strikingly, the expansion and cytolytic differentiation of HBV-specific CD8+ T cells were reduced even more severely in the mice whose MHC class I expression was restricted to hematopoietic cells. Collectively, these results indicate that cross-presentation is required but relatively inefficient in terms of inducing the cytolytic differentiation of HBV-specific CD8+ T cells by itself. Instead, the expansion and functional differentiation of HBV-specific CD8+ T cells are primarily dependent on hepatocellular antigen presentation.IMPORTANCE Hepatitis B virus (HBV) causes acute and chronic hepatitis. Approximately 260 million people are chronically infected with HBV and under an increased risk of developing cirrhosis and hepatocellular carcinoma. Host immune responses, particularly HBV-specific CD8+ T cell responses, largely determine the outcome of HBV infection. It is widely accepted that antigen inexperienced CD8+ T cells should be initially activated by professional antigen-presenting cells (pAPCs) in lymphoid tissues to differentiate into effector CD8+ T cells. However, this notion has not been tested for HBV-specific CD8+ T cells. In this study, we show that HBV-specific CD8+ T cell responses can be induced in the liver. Surprisingly, antigen presentation by hepatocytes is more important than cross-presentation by hematopoietic cells for the induction of HBV-specific CD8+ T cell responses. These results revealed a previously unappreciated role of antigen presentation by hepatocytes in the induction of HBV-specific CD8+ T cell responses.
Collapse
Affiliation(s)
- Yasuhiro Murata
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, USA
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Keigo Kawashima
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Knvul Sheikh
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, USA
| | - Yasuhito Tanaka
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Masanori Isogawa
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, USA
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
18
|
Lauron EJ, Yang L, Elliott JI, Gainey MD, Fremont DH, Yokoyama WM. Cross-priming induces immunodomination in the presence of viral MHC class I inhibition. PLoS Pathog 2018; 14:e1006883. [PMID: 29444189 PMCID: PMC5812664 DOI: 10.1371/journal.ppat.1006883] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 01/17/2018] [Indexed: 01/07/2023] Open
Abstract
Viruses have evolved mechanisms of MHCI inhibition in order to evade recognition by cytotoxic CD8+ T cells (CTLs), which is well-illustrated by our prior studies on cowpox virus (CPXV) that encodes potent MHCI inhibitors. Deletion of CPXV viral MHCI inhibitors markedly attenuated in vivo infection due to effects on CTL effector function, not priming. However, the CTL response to CPXV in C57BL/6 mice is dominated by a single peptide antigen presented by H-2Kb. Here we evaluated the effect of viral MHCI inhibition on immunodominant (IDE) and subdominant epitopes (SDE) as this has not been thoroughly examined. We found that cross-priming, but not cross-dressing, is the main mechanism driving IDE and SDE CTL responses following CPXV infection. Secretion of the immunodominant antigen was not required for immunodominance. Instead, immunodominance was caused by CTL interference, known as immunodomination. Both immunodomination and cross-priming of SDEs were not affected by MHCI inhibition. SDE-specific CTLs were also capable of exerting immunodomination during primary and secondary responses, which was in part dependent on antigen abundance. Furthermore, CTL responses directed solely against SDEs protected against lethal CPXV infection, but only in the absence of the CPXV MHCI inhibitors. Thus, both SDE and IDE responses can contribute to protective immunity against poxviruses, implying that these principles apply to poxvirus-based vaccines. The use of vaccinia virus (VACV) to eradicate smallpox is the arguably the most successful demonstration of vaccination. The VACV vaccine also provides cross-protection against related zoonotic orthopoxviruses, including monkey poxvirus (MXPV) and CPXV, which circulate between various animal hosts and humans. Interestingly, Edward Jenner first demonstrated the concept of vaccination against smallpox in the late 1700s using CPXV. He also made the curious observation that CPXV vaccination did not always protect against recurrent exposure to CPXV. Jenner’s observations may be explained by the ability for CPXV to evade antiviral CD8+ T cell immune responses. To evade CD8+ T cells, CPXV inhibits MHCI antigen presentation, which is required to prime CD8+ T cells. Importantly, CPXV is the only orthopoxvirus that inhibits MHCI and thus provides a unique opportunity to investigate the effects of viral MHCI inhibition on CD8+ T cell priming. Here, we examine the factors that contribute to priming of CPXV-specific CD8+ T cells and show that viral MHCI inhibition does not affect CD8+ T cell priming, but prior CPXV immunization does inhibit priming during subsequent exposure to CPXV. The effects of pre-existing poxvirus immunity are therefore important to consider if poxvirus-based vaccines against various diseases are to be widely used.
Collapse
Affiliation(s)
- Elvin J. Lauron
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Liping Yang
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jabari I. Elliott
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Maria D. Gainey
- Department of Biology, Western Carolina University, Cullowhee, North Carolina, United States of America
| | - Daved H. Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Wayne M. Yokoyama
- Division of Rheumatology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
19
|
Zaric M, Becker PD, Hervouet C, Kalcheva P, Ibarzo Yus B, Cocita C, O'Neill LA, Kwon SY, Klavinskis LS. Long-lived tissue resident HIV-1 specific memory CD8 + T cells are generated by skin immunization with live virus vectored microneedle arrays. J Control Release 2017; 268:166-175. [PMID: 29056444 PMCID: PMC5735037 DOI: 10.1016/j.jconrel.2017.10.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/13/2017] [Accepted: 10/14/2017] [Indexed: 11/23/2022]
Abstract
The generation of tissue resident memory (TRM) cells at the body surfaces to provide a front line defence against invading pathogens represents an important goal in vaccine development for a wide variety of pathogens. It has been widely assumed that local vaccine delivery to the mucosae is necessary to achieve that aim. Here we characterise a novel micro-needle array (MA) delivery system fabricated to deliver a live recombinant human adenovirus type 5 vaccine vector (AdHu5) encoding HIV-1 gag. We demonstrate rapid dissolution kinetics of the microneedles in skin. Moreover, a consequence of MA vaccine cargo release was the generation of long-lived antigen-specific CD8+ T cells that accumulate in mucosal tissues, including the female genital and respiratory tract. The memory CD8+ T cell population maintained in the peripheral mucosal tissues was attributable to a MA delivered AdHu5 vaccine instructing CD8+ T cell expression of CXCR3+, CD103+, CD49a+, CD69+, CD127+ homing, retention and survival markers. Furthermore, memory CD8+ T cells generated by MA immunization significantly expanded upon locally administered antigenic challenge and showed a predominant poly-functional profile producing high levels of IFNγ and Granzyme B. These data demonstrate that skin vaccine delivery using microneedle technology induces mobilization of long lived, poly-functional CD8+ T cells to peripheral tissues, phenotypically displaying hallmarks of residency and yields new insights into how to design and deliver effective vaccine candidates with properties to exert local immunosurveillance at the mucosal surfaces.
Collapse
Affiliation(s)
- Marija Zaric
- Peter Gorer Department of Immunobiology, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, United Kingdom
| | - Pablo Daniel Becker
- Peter Gorer Department of Immunobiology, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, United Kingdom
| | - Catherine Hervouet
- Peter Gorer Department of Immunobiology, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, United Kingdom
| | - Petya Kalcheva
- Peter Gorer Department of Immunobiology, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, United Kingdom
| | - Barbara Ibarzo Yus
- Peter Gorer Department of Immunobiology, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, United Kingdom
| | - Clement Cocita
- Peter Gorer Department of Immunobiology, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, United Kingdom
| | - Lauren Alexandra O'Neill
- Peter Gorer Department of Immunobiology, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, United Kingdom
| | | | - Linda Sylvia Klavinskis
- Peter Gorer Department of Immunobiology, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, United Kingdom.
| |
Collapse
|
20
|
Cruz FM, Colbert JD, Merino E, Kriegsman BA, Rock KL. The Biology and Underlying Mechanisms of Cross-Presentation of Exogenous Antigens on MHC-I Molecules. Annu Rev Immunol 2017; 35:149-176. [PMID: 28125356 PMCID: PMC5508990 DOI: 10.1146/annurev-immunol-041015-055254] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
To monitor the health of cells, the immune system tasks antigen-presenting cells with gathering antigens from other cells and bringing them to CD8 T cells in the form of peptides bound to MHC-I molecules. Most cells would be unable to perform this function because they use their MHC-I molecules to exclusively present peptides derived from the cell's own proteins. However, the immune system evolved mechanisms for dendritic cells and some other phagocytes to sample and present antigens from the extracellular milieu on MHC-I through a process called cross-presentation. How this important task is accomplished, its role in health and disease, and its potential for exploitation are the subject of this review.
Collapse
Affiliation(s)
- Freidrich M Cruz
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01655; , , , ,
| | - Jeff D Colbert
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01655; , , , ,
| | - Elena Merino
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01655; , , , ,
| | - Barry A Kriegsman
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01655; , , , ,
| | - Kenneth L Rock
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01655; , , , ,
| |
Collapse
|
21
|
Abstract
The cDC1 subset of classical dendritic cells is specialized for priming CD8 T cell responses through the process of cross-presentation. The molecular mechanisms of cross-presentation remain incompletely understood because of limited biochemical analysis of rare cDC1 cells, difficulty in their genetic manipulation, and reliance on
in vitro systems based on monocyte- and bone-marrow-derived dendritic cells. This review will discuss cross-presentation from the perspective of studies with monocyte- or bone-marrow-derived dendritic cells while highlighting the need for future work examining cDC1 cells. We then discuss the role of cDC1s as a cellular platform to combine antigen processing for class I and class II MHC presentation to allow the integration of “help” from CD4 T cells during priming of CD8 T cell responses.
Collapse
Affiliation(s)
- Derek Theisen
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Kenneth Murphy
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA; Howard Hughes Medical Institute, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| |
Collapse
|
22
|
Gasteiger G, Ataide M, Kastenmüller W. Lymph node - an organ for T-cell activation and pathogen defense. Immunol Rev 2016; 271:200-20. [PMID: 27088916 DOI: 10.1111/imr.12399] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The immune system is a multicentered organ that is characterized by intimate interactions between its cellular components to efficiently ward off invading pathogens. A key constituent of this organ system is the distinct migratory activity of its cellular elements. The lymph node represents a pivotal meeting point of immune cells where adaptive immunity is induced and regulated. Additionally, besides barrier tissues, the lymph node is a critical organ where invading pathogens need to be eliminated in order to prevent systemic distribution of virulent microbes. Here, we explain how the lymph node is structurally and functionally organized to fulfill these two critical functions - pathogen defense and orchestration of adaptive immunity. We will discuss spatio-temporal aspects of cellular immune responses focusing on CD8 T cells and review how and where these cells are activated in the context of viral infections, as well as how viral antigen expression kinetics and different antigen presentation pathways are involved. Finally, we will describe how such responses are regulated and 'helped', and discuss how this relates to intranodal positioning and cellular migration of the various cellular components that are involved in these processes.
Collapse
Affiliation(s)
- Georg Gasteiger
- Institute of Medical Microbiology and Hygiene & FZI Research Center for Immunotherapy, University of Mainz Medical Center, Mainz, Germany
| | - Marco Ataide
- Institute of Experimental Immunology, University of Bonn, Bonn, Germany
| | | |
Collapse
|
23
|
Iborra S, Martínez-López M, Khouili SC, Enamorado M, Cueto FJ, Conde-Garrosa R, Del Fresno C, Sancho D. Optimal Generation of Tissue-Resident but Not Circulating Memory T Cells during Viral Infection Requires Crosspriming by DNGR-1 + Dendritic Cells. Immunity 2016; 45:847-860. [PMID: 27692611 DOI: 10.1016/j.immuni.2016.08.019] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 02/15/2016] [Accepted: 08/10/2016] [Indexed: 12/16/2022]
Abstract
Despite the crucial role of tissue-resident memory T (Trm) cells in protective immunity, their priming remains poorly understood. Here, we have shown differential priming requirements for Trm versus circulating memory CD8+ T cells. In vaccinia cutaneous-infected mice, DNGR-1-mediated crosspresentation was required for optimal Trm cell priming but not for their skin differentiation or for circulating memory T cell generation. DNGR-1+ dendritic cells (DCs) promoted T-bet transcription-factor induction and retention of CD8+ T cells in the lymph nodes (LNs). Inhibition of LN egress enhanced Trm cell generation, whereas genetic or antibody blockade of DNGR-1 or specific signals provided during priming by DNGR-1+ DCs, such as interleukin-12 (IL-12), IL-15, or CD24, impaired Trm cell priming. DNGR-1 also regulated Trm cell generation during influenza infection. Moreover, protective immunity depended on optimal Trm cell induction by DNGR-1+ DCs. Our results reveal specific priming requirements for CD8+ Trm cells during viral infection and vaccination.
Collapse
Affiliation(s)
- Salvador Iborra
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, Madrid, 28029, Spain.
| | - María Martínez-López
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, Madrid, 28029, Spain
| | - Sofía C Khouili
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, Madrid, 28029, Spain
| | - Michel Enamorado
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, Madrid, 28029, Spain
| | - Francisco J Cueto
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, Madrid, 28029, Spain; Department of Biochemistry, Faculty of Medicine, Universidad Autónoma de Madrid, Calle Arzobispo Morcillo 4, Madrid, 28029, Spain
| | - Ruth Conde-Garrosa
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, Madrid, 28029, Spain
| | - Carlos Del Fresno
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, Madrid, 28029, Spain
| | - David Sancho
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, Madrid, 28029, Spain.
| |
Collapse
|
24
|
Hamimi C, David A, Versmisse P, Weiss L, Bruel T, Zucman D, Appay V, Moris A, Ungeheuer MN, Lascoux-Combe C, Barré-Sinoussi F, Muller-Trutwin M, Boufassa F, Lambotte O, Pancino G, Sáez-Cirión A, ANRS CO21 CODEX cohort. Dendritic Cells from HIV Controllers Have Low Susceptibility to HIV-1 Infection In Vitro but High Capacity to Capture HIV-1 Particles. PLoS One 2016; 11:e0160251. [PMID: 27505169 PMCID: PMC4978443 DOI: 10.1371/journal.pone.0160251] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/15/2016] [Indexed: 01/03/2023] Open
Abstract
HIV controllers (HICs), rare HIV-1 infected individuals able to control viral replication without antiretroviral therapy, are characterized by an efficient polyfunctional and cytolytic HIV-specific CD8+ T cell response. The mechanisms underlying the induction and maintenance of such response in many HICs despite controlled viremia are not clear. Dendritic cells play a crucial role in the generation and reactivation of T cell responses but scarce information is available on those cells in HICs. We found that monocyte derived dendritic cells (MDDCs) from HICs are less permissive to HIV-1 infection than cells from healthy donors. In contrast MDDCs from HICs are particularly efficient at capturing HIV-1 particles when compared to cells from healthy donors or HIV-1 patients with suppressed viral load on antiretroviral treatment. MDDCs from HICs expressed on their surface high levels of syndecan-3, DC-SIGN and MMR, which could cooperate to facilitate HIV-1 capture. The combination of low susceptibility to HIV-1 infection but enhanced capacity to capture particles might allow MDDCs from HICs to preserve their function from the deleterious effect of infection while facilitating induction of HIV-specific CD8+ T cells by cross-presentation in a context of low viremia.
Collapse
Affiliation(s)
- Chiraz Hamimi
- Institut Pasteur, Régulation des Infections Rétrovirales, Paris, France
| | - Annie David
- Institut Pasteur, HIV Inflammation et Persistance, Paris, France
| | - Pierre Versmisse
- Institut Pasteur, Régulation des Infections Rétrovirales, Paris, France
| | - Laurence Weiss
- Institut Pasteur, Régulation des Infections Rétrovirales, Paris, France
- AP-HP Hôpital Européen Georges Pompidou, Paris, France
- Université Paris Descartes; Sorbonne Paris-Cité; Paris, France
| | - Timothée Bruel
- Université Paris Sud, UMR-1184, Le Kremlin-Bicêtre, France
- CEA, DSV/iMETI, Division of Immuno-Virology, IDMIT, Fontenay-aux-Roses, France
| | - David Zucman
- Hopital Foch, Service de médecine interne, Suresnes, France
| | - Victor Appay
- Sorbonne Universités, UPMC Univ Paris 06, DHU FAST, CR7, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
- INSERM, U1135, CIMI-Paris, Paris, France
| | - Arnaud Moris
- Sorbonne Universités, UPMC Univ Paris 06, DHU FAST, CR7, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
- INSERM, U1135, CIMI-Paris, Paris, France
- CNRS, ERL 8255, CIMI-Paris, Paris, France
| | - Marie-Noëlle Ungeheuer
- Institut Pasteur, Plate-forme Investigation Clinique et Accès aux Ressources Biologiques (ICAReB), Paris, France
| | | | | | | | - Faroudy Boufassa
- INSERM U1018, Faculté de Médecine Paris Sud, Le Kremlin-Bicêtre, France
| | - Olivier Lambotte
- Université Paris Sud, UMR-1184, Le Kremlin-Bicêtre, France
- CEA, DSV/iMETI, Division of Immuno-Virology, IDMIT, Fontenay-aux-Roses, France
- Inserm, U1184, Center for immunology of viral infections and autoimmune diseases, Le Kremlin-Bicêtre, France
- APHP, Hôpitaux Universitaires Paris Sud, Service de Médecine Interne–Immunologie Clinique, le Kremlin Bicêtre, France
| | | | - Asier Sáez-Cirión
- Institut Pasteur, HIV Inflammation et Persistance, Paris, France
- * E-mail:
| | | |
Collapse
|
25
|
Norbury CC. Defining cross presentation for a wider audience. Curr Opin Immunol 2016; 40:110-6. [DOI: 10.1016/j.coi.2016.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 04/03/2016] [Indexed: 01/10/2023]
|
26
|
Sequential Activation of Two Pathogen-Sensing Pathways Required for Type I Interferon Expression and Resistance to an Acute DNA Virus Infection. Immunity 2016; 43:1148-59. [PMID: 26682986 DOI: 10.1016/j.immuni.2015.11.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 06/29/2015] [Accepted: 11/19/2015] [Indexed: 01/14/2023]
Abstract
Toll-like receptor 9 (TLR9), its adaptor MyD88, the downstream transcription factor interferon regulatory factor 7 (IRF7), and type I interferons (IFN-I) are all required for resistance to infection with ectromelia virus (ECTV). However, it is not known how or in which cells these effectors function to promote survival. Here, we showed that after infection with ECTV, the TLR9-MyD88-IRF7 pathway was necessary in CD11c(+) cells for the expression of proinflammatory cytokines and the recruitment of inflammatory monocytes (iMos) to the draining lymph node (dLN). In the dLN, the major producers of IFN-I were infected iMos, which used the DNA sensor-adaptor STING to activate IRF7 and nuclear factor κB (NF-κB) signaling to induce the expression of IFN-α and IFN-β, respectively. Thus, in vivo, two pathways of DNA pathogen sensing act sequentially in two distinct cell types to orchestrate resistance to a viral disease.
Collapse
|
27
|
Schuren AB, Costa AI, Wiertz EJ. Recent advances in viral evasion of the MHC Class I processing pathway. Curr Opin Immunol 2016; 40:43-50. [PMID: 27065088 DOI: 10.1016/j.coi.2016.02.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/12/2016] [Accepted: 02/22/2016] [Indexed: 11/17/2022]
Abstract
T-cell mediated adaptive immunity against viruses relies on recognition of virus-derived peptides by CD4(+) and CD8(+) T cells. Detection of pathogen-derived peptide-MHC-I complexes triggers CD8(+) T cells to eliminate the infected cells. Viruses have evolved several mechanisms to avoid recognition, many of which target the MHC-I antigen-processing pathway. While many immune evasion strategies have been described in the context of herpesvirus infections, it is becoming clear that this 'disguise' ability is more widespread. Here, we address recent findings in viral evasion of the MHC-I antigen presentation pathway and the impact on CD8(+) T cell responses.
Collapse
Affiliation(s)
- Anouk Bc Schuren
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ana I Costa
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Emmanuel Jhj Wiertz
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
28
|
Abstract
CD8 T lymphocytes are a major cell population of the adaptive immune system. A fundamental characteristic of the CD8 T lymphocyte pool is that it is composed of millions of clones; each with a unique T cell receptor capable of recognizing a limited number of peptides displayed at the cell surface bound to the grooves of major histocompatibility complex class I (MHC I) molecules. Naïve CD8 T lymphocytes are normally resting and circulate between the blood and secondary lymphoid organs in search of their cognate peptide–MHC complexes. During viral infections, bone marrow–derived professional antigen-presenting cells (pAPCs) in secondary lymphoid organs display viral peptides on their MHC I molecules. Specific CD8 T lymphocytes that recognize these peptide–MHC adducts become activated (primed), proliferate extensively, and develop into effectors capable of killing infected cells, identified by the presence at their surface of the pertinent viral peptide–MHC complexes. This article describes how the process of priming naïve CD8 T lymphocytes occurs.
Collapse
|
29
|
Virological and preclinical characterization of a dendritic cell targeting, integration-deficient lentiviral vector for cancer immunotherapy. J Immunother 2015; 38:41-53. [PMID: 25658613 PMCID: PMC4323576 DOI: 10.1097/cji.0000000000000067] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Dendritic cells (DCs) are essential antigen-presenting cells for the initiation of cytotoxic T-cell responses and therefore attractive targets for cancer immunotherapy. We have developed an integration-deficient lentiviral vector termed ID-VP02 that is designed to deliver antigen-encoding nucleic acids selectively to human DCs in vivo. ID-VP02 utilizes a genetically and glycobiologically engineered Sindbis virus glycoprotein to target human DCs through the C-type lectin DC-SIGN (CD209) and also binds to the homologue murine receptor SIGNR1. Specificity of ID-VP02 for antigen-presenting cells in the mouse was confirmed through biodistribution studies showing that following subcutaneous administration, transgene expression was only detectable at the injection site and the draining lymph node. A single immunization with ID-VP02 induced a high level of antigen-specific, polyfunctional effector and memory CD8 T-cell responses that fully protected against vaccinia virus challenge. Upon homologous readministration, ID-VP02 induced a level of high-quality secondary effector and memory cells characterized by stable polyfunctionality and expression of IL-7Rα. Importantly, a single injection of ID-VP02 also induced robust cytotoxic responses against an endogenous rejection antigen of CT26 colon carcinoma cells and conferred both prophylactic and therapeutic antitumor efficacy. ID-VP02 is the first lentiviral vector which combines integration deficiency with DC targeting and is currently being investigated in a phase I trial in cancer patients.
Collapse
|
30
|
Tscharke DC, Croft NP, Doherty PC, La Gruta NL. Sizing up the key determinants of the CD8+ T cell response. Nat Rev Immunol 2015; 15:705-16. [DOI: 10.1038/nri3905] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Eickhoff S, Brewitz A, Gerner MY, Klauschen F, Komander K, Hemmi H, Garbi N, Kaisho T, Germain RN, Kastenmüller W. Robust Anti-viral Immunity Requires Multiple Distinct T Cell-Dendritic Cell Interactions. Cell 2015; 162:1322-37. [PMID: 26296422 DOI: 10.1016/j.cell.2015.08.004] [Citation(s) in RCA: 241] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 06/07/2015] [Accepted: 07/23/2015] [Indexed: 11/30/2022]
Abstract
Host defense against viruses and intracellular parasites depends on effector CD8(+) T cells, whose optimal clonal expansion, differentiation, and memory properties require signals from CD4(+) T cells. Here, we addressed the role of dendritic cell (DC) subsets in initial activation of the two T cell types and their co-operation. Surprisingly, initial priming of CD4(+) and CD8(+) T cells was spatially segregated within the lymph node and occurred on different DCs with temporally distinct patterns of antigen presentation via MHCI versus MHCII molecules. DCs that co-present antigen via both MHC molecules were detected at a later stage; these XCR1(+) DCs are the critical platform involved in CD4(+) T cell augmentation of CD8(+) T cell responses. These findings delineate the complex choreography of cellular interactions underlying effective cell-mediated anti-viral responses, with implications for basic DC subset biology, as well as for translational application to the development of vaccines that evoke optimal T cell immunity.
Collapse
Affiliation(s)
- Sarah Eickhoff
- Institute for Experimental Immunology, University of Bonn, 53105 Bonn, Germany
| | - Anna Brewitz
- Institute for Experimental Immunology, University of Bonn, 53105 Bonn, Germany
| | - Michael Y Gerner
- Lymphocyte Biology Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Frederick Klauschen
- Institute of Pathology, Charité University Hospital Berlin, 10117 Berlin, Germany
| | - Karl Komander
- Institute for Experimental Immunology, University of Bonn, 53105 Bonn, Germany
| | - Hiroaki Hemmi
- Laboratory for Immune Regulation, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan; Laboratory for Inflammatory Regulation, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Yokohama, Kanagawa 230-0045, Japan
| | - Natalio Garbi
- Institute for Experimental Immunology, University of Bonn, 53105 Bonn, Germany
| | - Tsuneyasu Kaisho
- Laboratory for Immune Regulation, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan; Laboratory for Inflammatory Regulation, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Yokohama, Kanagawa 230-0045, Japan
| | - Ronald Nathan Germain
- Lymphocyte Biology Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
32
|
Sei JJ, Haskett S, Kaminsky LW, Lin E, Truckenmiller ME, Bellone CJ, Buller RM, Norbury CC. Peptide-MHC-I from Endogenous Antigen Outnumber Those from Exogenous Antigen, Irrespective of APC Phenotype or Activation. PLoS Pathog 2015; 11:e1004941. [PMID: 26107264 PMCID: PMC4479883 DOI: 10.1371/journal.ppat.1004941] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 05/08/2015] [Indexed: 12/19/2022] Open
Abstract
Naïve anti-viral CD8+ T cells (TCD8+) are activated by the presence of peptide-MHC Class I complexes (pMHC-I) on the surface of professional antigen presenting cells (pAPC). Increasing the number of pMHC-I in vivo can increase the number of responding TCD8+. Antigen can be presented directly or indirectly (cross presentation) from virus-infected and uninfected cells, respectively. Here we determined the relative importance of these two antigen presenting pathways in mousepox, a natural disease of the mouse caused by the poxvirus, ectromelia (ECTV). We demonstrated that ECTV infected several pAPC types (macrophages, B cells, and dendritic cells (DC), including DC subsets), which directly presented pMHC-I to naïve TCD8+ with similar efficiencies in vitro. We also provided evidence that these same cell-types presented antigen in vivo, as they form contacts with antigen-specific TCD8+. Importantly, the number of pMHC-I on infected pAPC (direct presentation) vastly outnumbered those on uninfected cells (cross presentation), where presentation only occurred in a specialized subset of DC. In addition, prior maturation of DC failed to enhance antigen presentation, but markedly inhibited ECTV infection of DC. These results suggest that direct antigen presentation is the dominant pathway in mice during mousepox. In a broader context, these findings indicate that if a virus infects a pAPC then the presentation by that cell is likely to dominate over cross presentation as the most effective mode of generating large quantities of pMHC-I is on the surface of pAPC that endogenously express antigens. Recent trends in vaccine design have focused upon the introduction of exogenous antigens into the MHC Class I processing pathway (cross presentation) in specific pAPC populations. However, use of a pantropic viral vector that targets pAPC to express antigen endogenously likely represents a more effective vaccine strategy than the targeting of exogenous antigen to a limiting pAPC subpopulation. To induce a protective cell type (CD8+ T cells) following virus infection, it is necessary to present degraded fragments of viral protein in complex with self molecules on the surface of so-called antigen presenting cells (APC). This process can occur in infected or uninfected APC and has been studied and quantified extensively in experimental setups in the lab. However, the extent to which presentation by infected or uninfected cells contribute to the induction of a protective CD8+ T cell response has not been studied extensively during a natural infection in a mouse model. Here we use a natural mouse virus to examine importantly, quantify, the contribution of presentation of the fragments of viral protein by infected or uninfected cells. We find that the presentation by infected cells dwarfs that seen by uninfected cells. The importance of this work lies in the fact that, if infected cells present way more antigen than uninfected cells, successful vaccine design should utilize this observation to make a vaccine where infected cells expressing virus proteins are the prevalent mode of induction of CD8+ T cells.
Collapse
Affiliation(s)
- Janet J. Sei
- Department of Microbiology and Immunology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania, United States of America
| | - Scott Haskett
- Department of Molecular Microbiology and Immunology, Saint Louis University Health Sciences Center, St. Louis, Missouri, United States of America
| | - Lauren W. Kaminsky
- Department of Microbiology and Immunology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania, United States of America
| | - Eugene Lin
- Department of Microbiology and Immunology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania, United States of America
| | - Mary E. Truckenmiller
- Department of Microbiology and Immunology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania, United States of America
| | - Clifford J. Bellone
- Department of Molecular Microbiology and Immunology, Saint Louis University Health Sciences Center, St. Louis, Missouri, United States of America
| | - R. Mark Buller
- Department of Molecular Microbiology and Immunology, Saint Louis University Health Sciences Center, St. Louis, Missouri, United States of America
| | - Christopher C. Norbury
- Department of Microbiology and Immunology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
33
|
Abstract
Cross-presentation designates the presentation of exogenous antigens on major histocompatibility complex class I molecules and is essential for the initiation of cytotoxic immune responses. It is now well established that dendritic cells (DCs) are the best cross-presenting cells. In this chapter, we will discuss recent advances in our understanding of the molecular mechanisms of cross-presentation. We will also describe the different DC subsets identified in mouse and human, and their functional specialization for cross-presentation. Finally, we will summarize the current knowledge of the role of cross-presentation in pathological situations.
Collapse
Affiliation(s)
- Elodie Segura
- Institut Curie, Paris Cedex 05, France; INSERM U932, Paris Cedex 05, France.
| | | |
Collapse
|
34
|
Lahaye X, Manel N. Viral and cellular mechanisms of the innate immune sensing of HIV. Curr Opin Virol 2015; 11:55-62. [PMID: 25697108 DOI: 10.1016/j.coviro.2015.01.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 01/26/2015] [Accepted: 01/26/2015] [Indexed: 01/08/2023]
Abstract
HIV-1 replicates in immune cells that normally respond to incoming viruses and induce antiviral immune responses. Under this constant surveillance, how HIV-1 interacts with the host to escape immune control and causes immunopathology is still being untangled. Recently, a series of HIV-1 interactions with innate sensors of viruses expressed by immune target cells have been identified. Here, we review the HIV-1 factors that escape, engage and regulate these innate immune sensors. We discuss the general principles of these interactions as well as the remarkable cell-type specificity of the regulatory mechanisms and their resulting immune responses. Innate sensors directly intersect viral replication with immunity, and understanding their triggering, or lack thereof, improves our ability to design immune interventions.
Collapse
Affiliation(s)
- Xavier Lahaye
- Institut Curie, 12 rue Lhomond, 75005 Paris, France; INSERM U932, 12 rue Lhomond, 75005 Paris, France
| | - Nicolas Manel
- Institut Curie, 12 rue Lhomond, 75005 Paris, France; INSERM U932, 12 rue Lhomond, 75005 Paris, France.
| |
Collapse
|
35
|
Heipertz EL, Davies ML, Lin E, Norbury CC. Prolonged antigen presentation following an acute virus infection requires direct and then cross-presentation. THE JOURNAL OF IMMUNOLOGY 2014; 193:4169-77. [PMID: 25225666 DOI: 10.4049/jimmunol.1302565] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Antiviral CD8(+) T cell recognition of MHC class I-peptide complexes on the surface of professional APCs is a requisite step in an effective immune response following many potentially lethal infections. Although MHC class I-peptide production is thought to be closely linked to the continued presence of virus, several studies have shown that the persistence of Ag presentation occurs for an extended period of time following the clearance of RNA viruses. However, the mechanism responsible for Ag presentation persistence following viral clearance was unknown until now. In this study, we used a recombinant DNA virus expressing different forms of a model Ag to study the mechanism of prolonged Ag presentation in mice. We determined that the persistence of Ag presentation consists of three distinct mechanistic phases, as follows: ongoing viral replication, persistence of virally infected cells, and cross-presentation of Ag. These data will allow manipulation of the form of Ag contained within viral vectors to produce the most effective and protective CD8(+) T cell response to be generated following vaccination.
Collapse
Affiliation(s)
- Erica L Heipertz
- Department of Microbiology and Immunology, Pennsylvania State University Milton S. Hershey Medical Center, Hershey, PA 17033
| | - Michael L Davies
- Department of Microbiology and Immunology, Pennsylvania State University Milton S. Hershey Medical Center, Hershey, PA 17033
| | - Eugene Lin
- Department of Microbiology and Immunology, Pennsylvania State University Milton S. Hershey Medical Center, Hershey, PA 17033
| | - Christopher C Norbury
- Department of Microbiology and Immunology, Pennsylvania State University Milton S. Hershey Medical Center, Hershey, PA 17033
| |
Collapse
|
36
|
Hosmalin A. Mining the resource of cross-presentation. Front Immunol 2014; 5:62. [PMID: 24578703 PMCID: PMC3936470 DOI: 10.3389/fimmu.2014.00062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 02/03/2014] [Indexed: 11/15/2022] Open
Affiliation(s)
- Anne Hosmalin
- INSERM U1016, Institut Cochin , Paris , France ; CNRS UMR8104 , Paris , France ; University of Paris Descartes , Paris , France ; Assistance Publique-Hôpitaux de Paris, Hôpital Cochin , Paris , France
| |
Collapse
|
37
|
Systemic toll-like receptor ligation and selective killing of dendritic cell subsets fail to dissect priming pathways for anti-vaccinia virus CD8⁺ T cells. J Virol 2013; 87:11978-86. [PMID: 23986587 DOI: 10.1128/jvi.01835-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
CD8⁺ T cell responses can be generated by direct or cross-priming mechanisms, and several mouse models have been used to reveal which of these is the most important pathway for various viruses. Among these models is systemic treatment of mice with a CpG-containing oligodeoxynucleotide (CpG) to mature all dendritic cells (DCs), rendering them incapable of cross-presentation. A second is the use of cytochrome c (cytc) as a selective poison of the subsets of DCs able to cross-present antigen. In this study, using two vaccinia virus (VACV) strains, namely, WR and MVA, we found that the CpG and cytc methods gave conflicting data. Moreover, we show for both strains of VACV that treatment of mice with CpG and cytc inhibited CD8⁺ T cell responses to antigens designed to prime exclusively by direct presentation. Further investigation of the CpG method found that the extent to which priming is inhibited depends on the antigen examined, immunization route, replication ability of the virus, and, crucially, immunization dose. We suggest that greater caution is required when interpreting data using these methods and that priming pathways for antiviral CD8⁺ T cells are not simply separated according to DC subsets or their maturation state.
Collapse
|
38
|
Abstract
Major histocompatibility complex class I-restricted T-cell immunity is essential to control infection with cytomegalovirus (CMV), a clinically important virus that causes significant disease in immunocompromised individuals. Cross-presentation is considered the primary mode of antigen presentation to generate protective antiviral CD8⁺ T-cell immunity. Herpesviruses, including CMV, encode numerous proteins that interfere with direct antigen presentation, leading to the paradigm that T-cell immunity to these pathogens necessitates cross-presentation. However, the antigen presentation requirements needed to generate a protective T-cell response to CMV remain unknown. Here, we show that a fully functional antiviral CD8⁺ T-cell response can be generated in a system where cross-presentation is shut down by pretreatment with CpG. Notably, in this setting, CD8⁺ T cells demonstrate accelerated control of infection, and organ pathology is limited. These data indicate that protective antiviral T-cell immunity to CMV is generated by direct presentation and can be enhanced by pretreatment with CpG.
Collapse
|
39
|
Lin LCW, Flesch IEA, Tscharke DC. Immunodomination during peripheral vaccinia virus infection. PLoS Pathog 2013; 9:e1003329. [PMID: 23633956 PMCID: PMC3635974 DOI: 10.1371/journal.ppat.1003329] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 03/14/2013] [Indexed: 11/20/2022] Open
Abstract
Immunodominance is a fundamental property of CD8(+) T cell responses to viruses and vaccines. It had been observed that route of administration alters immunodominance after vaccinia virus (VACV) infection, but only a few epitopes were examined and no mechanism was provided. We re-visited this issue, examining a panel of 15 VACV epitopes and four routes, namely intradermal (i.d.), subcutaneous (s.c.), intraperitoneal (i.p.) and intravenous (i.v.) injection. We found that immunodominance is sharpened following peripheral routes of infection (i.d. and s.c.) compared with those that allow systemic virus dissemination (i.p. and i.v.). This increased immunodominance was demonstrated with native epitopes of VACV and with herpes simplex virus glycoprotein B when expressed from VACV. Responses to some subdominant epitopes were altered by as much as fourfold. Tracking of virus, examination of priming sites, and experiments restricting virus spread showed that priming of CD8(+) T cells in the spleen was necessary, but not sufficient to broaden responses. Further, we directly demonstrated that immunodomination occurs more readily when priming is mainly in lymph nodes. Finally, we were able to reduce immunodominance after i.d., but not i.p. infection, using a VACV expressing the costimulators CD80 (B7-1) and CD86 (B7-2), which is notable because VACV-based vaccines incorporating these molecules are in clinical trials. Taken together, our data indicate that resources for CD8(+) T cell priming are limiting in local draining lymph nodes, leading to greater immunodomination. Further, we provide evidence that costimulation can be a limiting factor that contributes to immunodomination. These results shed light on a possible mechanism of immunodomination and highlight the need to consider multiple epitopes across the spectrum of immunogenicities in studies aimed at understanding CD8(+) T cell immunity to viruses.
Collapse
Affiliation(s)
- Leon C. W. Lin
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Inge E. A. Flesch
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - David C. Tscharke
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
40
|
Abstract
High-sensitivity C-reactive protein (hs-CRP) has been shown to be linked with immune stimulation, but is not well studied over the lifetime in opiate addiction. hs-CRP was measured by standard laboratory methods in substance use disorder (SUD) patients and non-SUD (NSUD) aged 18-48 years. Data were log transformed to improve normality. 1231 SUD were compared with 326 NSUD patients of comparable ages. hs-CRP was 7.46 ± 14.24 versus 4.75 ± 13.40 mg/l (mean ± SD) significantly higher in the SUD group (P < 0.0001), a difference which persisted after exclusion of acutely elevated hs-CRP values (P < 0.0001). In multiple regression with age, addictive status was significant both by itself (P < 0.0001) and in interaction with age (P < 0.0001). At age 40 years, the SUD group had a mean hs-CRP of 3.68 which the NSUD group did not achieve till a modelled age of 157.09 years. In an interactive multivariate regression, interactions between age, addictive status, ALT and AST were significant. These data show that hs-CRP is elevated in opiate dependence both per se, and when controlled for age. Furthermore, they suggest that hs-CRP and immune stimulation seen in opiate addiction may underlie the acceleration of age-related multi-system chronic and coronary atherosclerotic disease well described in opiate dependence.
Collapse
Affiliation(s)
- Albert Stuart Reece
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, 39 Gladstone Rd., Highgate Hill, Brisbane, QLD, Australia.
| |
Collapse
|
41
|
Croft NP, Smith SA, Wong YC, Tan CT, Dudek NL, Flesch IEA, Lin LCW, Tscharke DC, Purcell AW. Kinetics of antigen expression and epitope presentation during virus infection. PLoS Pathog 2013; 9:e1003129. [PMID: 23382674 PMCID: PMC3561264 DOI: 10.1371/journal.ppat.1003129] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 11/26/2012] [Indexed: 01/20/2023] Open
Abstract
Current knowledge about the dynamics of antigen presentation to T cells during viral infection is very poor despite being of fundamental importance to our understanding of anti-viral immunity. Here we use an advanced mass spectrometry method to simultaneously quantify the presentation of eight vaccinia virus peptide-MHC complexes (epitopes) on infected cells and the amounts of their source antigens at multiple times after infection. The results show a startling 1000-fold range in abundance as well as strikingly different kinetics across the epitopes monitored. The tight correlation between onset of protein expression and epitope display for most antigens provides the strongest support to date that antigen presentation is largely linked to translation and not later degradation of antigens. Finally, we show a complete disconnect between the epitope abundance and immunodominance hierarchy of these eight epitopes. This study highlights the complexity of viral antigen presentation by the host and demonstrates the weakness of simple models that assume total protein levels are directly linked to epitope presentation and immunogenicity. A major mechanism for the detection of virus infection is the recognition by T cells of short peptide fragments (epitopes) derived from the degradation of intracellular proteins presented at the cell surface in a complex with class I MHC. Whilst the mechanics of antigen degradation and the loading of peptides onto MHC are now well understood, the kinetics of epitope presentation have only been studied for individual model antigens. We addressed this issue by studying vaccinia virus, best known as the smallpox vaccine, using advanced mass spectrometry. Precise and simultaneous quantification of multiple peptide-MHC complexes showed that the surface of infected cells provides a surprisingly dynamic landscape from the point of view of anti-viral T cells. Further, concurrent measurement of virus protein levels demonstrated that in most cases, peak presentation of epitopes occurs at the same time or precedes the time of maximum protein build up. Finally, we found a complete disconnect between the abundance of epitopes on infected cells and the size of the responding T cell populations. These data provide new insights into how virus infected cells are seen by T cells, which is crucial to our understanding of anti-viral immunity and development of vaccines.
Collapse
Affiliation(s)
- Nathan P. Croft
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Stewart A. Smith
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Yik Chun Wong
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Chor Teck Tan
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Nadine L. Dudek
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Inge E. A. Flesch
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Leon C. W. Lin
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - David C. Tscharke
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
- * E-mail: (DCT); (AWP)
| | - Anthony W. Purcell
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- * E-mail: (DCT); (AWP)
| |
Collapse
|
42
|
Li G, Smithey MJ, Rudd BD, Nikolich‐Žugich J. Age-associated alterations in CD8α+ dendritic cells impair CD8 T-cell expansion in response to an intracellular bacterium. Aging Cell 2012; 11:968-77. [PMID: 22862959 PMCID: PMC3533767 DOI: 10.1111/j.1474-9726.2012.00867.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Age-associated decline in immunity to infection has been documented across multiple pathogens, yet the relative contributions of the aged priming environment and of lymphocyte-intrinsic defects remain unclear. To address the impact of the aging environment on T-cell priming, adult naïve OT-I TCR transgenic CD8 T cells, specific for the H-2Kb-restricted immunodominant OVA257-264 epitope, were transferred into adult or old recipient mice infected with the recombinant intracellular bacterium Listeria monocytogenes carrying the chicken ovalbumin protein (Lm-OVA). We consistently found that adult OT-I CD8 expansion was reduced in aged recipient mice, and this correlated with numeric, phenotypic, and functional defects selectively affecting CD8α+ dendritic cells (DC). Following Lm-OVA infection, aged mice failed to accumulate CD8α+ DC in the spleen, and these cells expressed much lower levels of critical costimulatory molecules in the first three days following infection. Further, aged CD8α+ DC showed impaired uptake of the bacteria at very early time points following infection. Treatment of aged mice with Flt3 ligand (Flt3L) improved the number of DC present in the spleen prior to Lm-OVA infection, and improved, but did not reconstitute, OT-I expansion to Lm-OVA infection. These results suggest that age-associated changes in antigen uptake, pathogen sensing, and/or antigen presentation contribute to impaired adaptive immune responses to microbial pathogens with aging.
Collapse
Affiliation(s)
| | | | - Brian D. Rudd
- Department of Immunobiology and the Arizona Center on Aging, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | | |
Collapse
|
43
|
Viral MHC class I inhibition evades CD8+ T-cell effector responses in vivo but not CD8+ T-cell priming. Proc Natl Acad Sci U S A 2012; 109:E3260-7. [PMID: 23112205 DOI: 10.1073/pnas.1217111109] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although viral MHC class I inhibition is considered a classic immune-evasion strategy, its in vivo role is largely unclear. Mutant cowpox virus lacking its MHC class I inhibitors is markedly attenuated during acute infection because of CD8(+) T-cell-dependent control, but it was not known how CD8(+) T-cell responses are affected. Interestingly, we found no major effect of MHC class I down-regulation on priming of functional cowpox virus-specific CD8(+) T cells. Instead, we demonstrate that, during acute infection in vivo, MHC class I down-regulation prevents primed virus-specific CD8(+) T cells from recognizing infected cells and exerting effector responses to control the infection.
Collapse
|
44
|
Smyth LA, Hervouet C, Hayday T, Becker PD, Ellis R, Lechler RI, Lombardi G, Klavinskis LS. Acquisition of MHC:peptide complexes by dendritic cells contributes to the generation of antiviral CD8+ T cell immunity in vivo. THE JOURNAL OF IMMUNOLOGY 2012; 189:2274-82. [PMID: 22821960 DOI: 10.4049/jimmunol.1200664] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
There is an increasing body of evidence suggesting that the transfer of preformed MHC class I:peptide complexes between a virus-infected cell and an uninfected APC, termed cross-dressing, represents an important mechanism of Ag presentation to CD8+ T cells in host defense. However, although it has been shown that memory CD8+ T cells can be activated by uninfected dendritic cells (DCs) cross-dressed by Ag from virus-infected parenchymal cells, it is unknown whether conditions exist during virus infection in which naive CD8+ T cells are primed and differentiate to cytolytic effectors through cross-dressing, and indeed which DC subset would be responsible. In this study, we determine whether the transfer of MHC class I:peptide complexes between infected and uninfected murine DC plays a role in CD8+ T cell priming to viral Ags in vivo. We show that MHC class I:peptide complexes from peptide-pulsed or virus-infected DCs are indeed acquired by splenic CD8α⁻ DCs in vivo. Furthermore, the acquired MHC class I:peptide complexes are functional in that they induced Ag-specific CD8+ T cell effectors with cytolytic function. As CD8α⁻ DCs are poor cross-presenters, this may represent the main mechanism by which CD8α⁻ DCs present exogenously encountered Ag to CD8+ T cells. The sharing of Ag as preformed MHC class I:peptide complexes between infected and uninfected DCs without the restraints of Ag processing may have evolved to accurately amplify the response and also engage multiple DC subsets critical in the generation of strong antiviral immunity.
Collapse
Affiliation(s)
- Lesley A Smyth
- Medical Research Council Centre for Transplantation, King's College London, London SE1 9RT, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Iborra S, Izquierdo HM, Martínez-López M, Blanco-Menéndez N, Reis e Sousa C, Sancho D. The DC receptor DNGR-1 mediates cross-priming of CTLs during vaccinia virus infection in mice. J Clin Invest 2012; 122:1628-43. [PMID: 22505455 PMCID: PMC3336985 DOI: 10.1172/jci60660] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 02/29/2012] [Indexed: 12/14/2022] Open
Abstract
In order to prime T cells, DCs integrate signals emanating directly from pathogens and from their noxious action on the host. DNGR-1 (CLEC9A) is a DC-restricted receptor that detects dead cells. Therefore, we investigated the possibility that DNGR-1 affects immunity to cytopathic viruses. DNGR-1 was essential for cross-presentation of dying vaccinia virus-infected (VACV-infected) cells to CD8(+) T cells in vitro. Following injection of VACV or VACV-infected cells into mice, DNGR-1 detected the ligand in dying infected cells and mediated cross-priming of anti-VACV CD8(+) T cells. Loss of DNGR-1 impaired the CD8+ cytotoxic response to VACV, especially against those virus strains that are most dependent on cross-presentation. The decrease in total anti-VACV CTL activity was associated with a profound increase in viral load and delayed resolution of the primary lesion. In addition, lack of DNGR-1 markedly diminished protection from infection induced by vaccination with the modified vaccinia Ankara (MVA) strain. DNGR-1 thus contributes to anti-VACV immunity, following both primary infection and vaccination. The non-redundant ability of DNGR-1 to regulate cross-presentation of viral antigens suggests that this form of regulation of antiviral immunity could be exploited for vaccination.
Collapse
MESH Headings
- Adaptive Immunity
- Animals
- Antigen Presentation
- Antigens, Viral/immunology
- Antigens, Viral/metabolism
- Apoptosis
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cells, Cultured
- Cross-Priming
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Gene Knockout Techniques
- Interferon-gamma/metabolism
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Lectins, C-Type/physiology
- Lysosomes/metabolism
- Lysosomes/virology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Necrosis/virology
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/metabolism
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/physiology
- Syk Kinase
- Vaccinia/immunology
- Vaccinia/pathology
- Vaccinia virus/immunology
- Vaccinia virus/physiology
- Viral Load
Collapse
Affiliation(s)
- Salvador Iborra
- Immunobiology of Inflammation Laboratory, Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
Immunobiology Laboratory, Cancer Research UK, London Research Institute, Lincoln’s Inn Fields Laboratories, London, United Kingdom
| | - Helena M. Izquierdo
- Immunobiology of Inflammation Laboratory, Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
Immunobiology Laboratory, Cancer Research UK, London Research Institute, Lincoln’s Inn Fields Laboratories, London, United Kingdom
| | - María Martínez-López
- Immunobiology of Inflammation Laboratory, Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
Immunobiology Laboratory, Cancer Research UK, London Research Institute, Lincoln’s Inn Fields Laboratories, London, United Kingdom
| | - Noelia Blanco-Menéndez
- Immunobiology of Inflammation Laboratory, Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
Immunobiology Laboratory, Cancer Research UK, London Research Institute, Lincoln’s Inn Fields Laboratories, London, United Kingdom
| | - Caetano Reis e Sousa
- Immunobiology of Inflammation Laboratory, Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
Immunobiology Laboratory, Cancer Research UK, London Research Institute, Lincoln’s Inn Fields Laboratories, London, United Kingdom
| | - David Sancho
- Immunobiology of Inflammation Laboratory, Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
Immunobiology Laboratory, Cancer Research UK, London Research Institute, Lincoln’s Inn Fields Laboratories, London, United Kingdom
| |
Collapse
|
47
|
Smed-Sörensen A, Chalouni C, Chatterjee B, Cohn L, Blattmann P, Nakamura N, Delamarre L, Mellman I. Influenza A virus infection of human primary dendritic cells impairs their ability to cross-present antigen to CD8 T cells. PLoS Pathog 2012; 8:e1002572. [PMID: 22412374 PMCID: PMC3297599 DOI: 10.1371/journal.ppat.1002572] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Accepted: 01/24/2012] [Indexed: 11/18/2022] Open
Abstract
Influenza A virus (IAV) infection is normally controlled by adaptive immune responses initiated by dendritic cells (DCs). We investigated the consequences of IAV infection of human primary DCs on their ability to function as antigen-presenting cells. IAV was internalized by both myeloid DCs (mDCs) and plasmacytoid DCs but only mDCs supported viral replication. Although infected mDCs efficiently presented endogenous IAV antigens on MHC class II, this was not the case for presentation on MHC class I. Indeed, cross-presentation by uninfected cells of minute amounts of endocytosed, exogenous IAV was -300-fold more efficient than presentation of IAV antigens synthesized by infected cells and resulted in a statistically significant increase in expansion of IAV-specific CD8 T cells. Furthermore, IAV infection also impaired cross-presentation of other exogenous antigens, indicating that IAV infection broadly attenuates presentation on MHC class I molecules. Our results suggest that cross-presentation by uninfected mDCs is a preferred mechanism of antigen-presentation for the activation and expansion of CD8 T cells during IAV infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ira Mellman
- Genentech, South San Francisco, California, United States of America
| |
Collapse
|
48
|
Relative and Age-dependent Stimulation of Soluble and Cellular Immunity in Opiate Dependence. J Addict Med 2012; 6:10-7. [DOI: 10.1097/adm.0b013e31822c3bf4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Silvin A, Manel N. Interactions between HIV-1 and innate immunity in dendritic cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 762:183-200. [PMID: 22975876 DOI: 10.1007/978-1-4614-4433-6_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Dendritic cells couple pathogen sensing with induction of innate and adaptive immune responses. Pathogen sensing in dendritic cells relies on interactions between molecular patterns of the pathogens and germline-encoded, also referred to as innate, receptors. In this chapter, we analyze some of the interactions between HIV-1 and the innate immune system in dendritic cells. The HIV-1 replication cycle is constituted by an extracellular and an intracellular phase. The two phases of the cycle provide distinct opportunities for interactions with cell-extrinsic and cell-intrinsic mechanisms in dendritic cells. According to the types of dendritic cells, the mechanisms of innate interactions between dendritic cells and HIV-1 lead to specific responses. These innate interactions may contribute to influencing and shaping the adaptive immune response against the virus.
Collapse
Affiliation(s)
- Aymeric Silvin
- Department of Immunity and Cancer, Institut Curie-INSERM U932, Paris, France
| | | |
Collapse
|
50
|
Mota BEF, Gallardo-Romero N, Trindade G, Keckler MS, Karem K, Carroll D, Campos MA, Vieira LQ, da Fonseca FG, Ferreira PCP, Bonjardim CA, Damon IK, Kroon EG. Adverse events post smallpox-vaccination: insights from tail scarification infection in mice with Vaccinia virus. PLoS One 2011; 6:e18924. [PMID: 21526210 PMCID: PMC3078145 DOI: 10.1371/journal.pone.0018924] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Accepted: 03/11/2011] [Indexed: 11/19/2022] Open
Abstract
Adverse events upon smallpox vaccination with fully-replicative strains of Vaccinia virus (VACV) comprise an array of clinical manifestations that occur primarily in immunocompromised patients leading to significant host morbidity/mortality. The expansion of immune-suppressed populations and the possible release of Variola virus as a bioterrorist act have given rise to concerns over vaccination complications should more widespread vaccination be reinitiated. Our goal was to evaluate the components of the host immune system that are sufficient to prevent morbidity/mortality in a murine model of tail scarification, which mimics immunological and clinical features of smallpox vaccination in humans. Infection of C57BL/6 wild-type mice led to a strictly localized infection, with complete viral clearance by day 28 p.i. On the other hand, infection of T and B-cell deficient mice (Rag1−/−) produced a severe disease, with uncontrolled viral replication at the inoculation site and dissemination to internal organs. Infection of B-cell deficient animals (µMT) produced no mortality. However, viral clearance in µMT animals was delayed compared to WT animals, with detectable viral titers in tail and internal organs late in infection. Treatment of Rag1−/− with rabbit hyperimmune anti-vaccinia serum had a subtle effect on the morbidity/mortality of this strain, but it was effective in reduce viral titers in ovaries. Finally, NUDE athymic mice showed a similar outcome of infection as Rag1−/−, and passive transfer of WT T cells to Rag1−/− animals proved fully effective in preventing morbidity/mortality. These results strongly suggest that both T and B cells are important in the immune response to primary VACV infection in mice, and that T-cells are required to control the infection at the inoculation site and providing help for B-cells to produce antibodies, which help to prevent viral dissemination. These insights might prove helpful to better identify individuals with higher risk of complications after infection with poxvirus.
Collapse
Affiliation(s)
- Bruno E. F. Mota
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Nadia Gallardo-Romero
- Poxvirus Program, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Giliane Trindade
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - M. Shannon Keckler
- Poxvirus Program, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Kevin Karem
- Poxvirus Program, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Darin Carroll
- Poxvirus Program, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Marco A. Campos
- Centro de Pesquisas René Rachou, FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | - Leda Q. Vieira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Flávio G. da Fonseca
- Laboratório de Virologia Comparada, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Paulo C. P. Ferreira
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Cláudio A. Bonjardim
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Inger K. Damon
- Poxvirus Program, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Erna G. Kroon
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|