1
|
Acharya A, Byrareddy SN. Immunological insights into the re-emergence of human metapneumovirus. Curr Opin Immunol 2025; 94:102562. [PMID: 40359650 DOI: 10.1016/j.coi.2025.102562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/19/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025]
Abstract
Human metapneumovirus (hMPV) is a seasonal respiratory virus that typically causes mild, flu-like symptoms. In some cases, it can lead to severe respiratory complications, such as pneumonia, bronchitis, and bronchiolitis, often requiring hospitalization. Recently, a surge in hMPV cases has been reported in China and other countries, raising concerns about a potential pandemic scenario reminiscent of COVID-19. This review explores the genomic structure, replication cycle, genetic diversity, and evolutionary trajectory of hMPV. It also discusses host immune responses and the available animal models to study pathogenesis and to screen for potential vaccines and antivirals. Additionally, we examine the shifting seasonal trends in hMPV circulation, evaluate the low pandemic risk posed by existing hMPV clades, and underscore the need for continued vaccine and antiviral development. Finally, we advocate for strengthened global surveillance, especially in low- and middle-income countries, as a critical strategy to mitigate the risks posed by emerging hMPV clades.
Collapse
Affiliation(s)
- Arpan Acharya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States.
| |
Collapse
|
2
|
Bodmer BS, Wendt L, Dupré J, Groseth A, Hoenen T. Antiviral defense against filovirus infections: targets and evasion mechanisms. Future Microbiol 2025; 20:573-587. [PMID: 40331244 DOI: 10.1080/17460913.2025.2501924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 05/01/2025] [Indexed: 05/08/2025] Open
Abstract
Filoviruses include a number of serious human pathogens, infections with which result in the development of hemorrhagic fevers with high case fatality rates. As for other RNA viruses, viral replication generates both protein and RNA species that can serve as danger signals, leading to the activation of antiviral defense pathways. However, in order to be able to efficiently infect humans these viruses have developed mechanisms that allow them to evade diverse host antiviral defense mechanisms. Consequently, in addition to their functions within the viral lifecycle many filovirus proteins have been shown to have accessory functions involved in the regulation of diverse host pathways. These include those of the type-I interferon response, other pathways involved in dsRNA-sensing, as well as the selective inhibition of interferon stimulated gene activities. Further, filoviruses have developed mechanisms to subvert recognition of infected cells and the generation of neutralizing antibodies. This review focuses on bringing together the evidence to date supporting the existence of diverse mechanisms aimed at regulating these pathways as well as providing details of the mechanisms involved.
Collapse
Affiliation(s)
- Bianca S Bodmer
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald, Insel Riems, Germany
| | - Lisa Wendt
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald, Insel Riems, Germany
- Institute of Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt (Main), Germany
| | - Juliette Dupré
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald, Insel Riems, Germany
| | - Allison Groseth
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald, Insel Riems, Germany
| | - Thomas Hoenen
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald, Insel Riems, Germany
| |
Collapse
|
3
|
Ntemafack A, Dzelamonyuy A, Nchinda G, Bopda Waffo A. Mapping Immunological, Host Receptor Binding Determinants, and Cathepsin Cleavage Site of EBOV Glycoprotein Utilizing the Qubevirus Platform. ACS OMEGA 2025; 10:14283-14295. [PMID: 40256529 PMCID: PMC12004191 DOI: 10.1021/acsomega.5c00408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/19/2025] [Accepted: 02/27/2025] [Indexed: 04/22/2025]
Abstract
Ebola virus (EBOV) remains a highly infectious human pathogen that causes a severe and lethal disease known as Ebola virus disease (EVD), despite recent progress in vaccine development based on its only surface glycoprotein (GP). In this study, we modeled and inserted four overlapping fragments (F1-4) of the EBOV GP at the C-terminus of the A1 protein of Qubevirus (Qβ) and used the platform to investigate the tropism and immunological functions of the GP by displaying the peptides with 30 overlapping amino acids. The resulting recombinant phages were used to determine their reactivity with GP-specific antibodies and their binding to the recombinant Niemann-Pick C1 (rNPC1) receptor in an immunoassay. In addition, modified, truncated, and C-terminus-tagged fragment F1 named F5 was utilized to map the cathepsin cleavage sites in an enzymatic assay. We demonstrated that a large GP peptide of 200 AA could be fused to A1 and exposed on the Qβ platform in an accessible manner without significantly affecting its viability and infectivity. Fragments F1 (GP1-200), F2 (GP170-370), and F3 (GP350-550) were shown to contain important immune epitopes through binding to anti-GP-specific antibodies. Further, F1 was found to bind rNPC1, thereby suggesting a receptor binding determinant of the GP that was further confirmed in a competitive assay where the recombinant phages bearing the F1 fragment reduced the infectivity of EBOV pseudovirus by 27%. In addition, the viral infectivity was shown to be reduced by 46.39% by a cyclic peptide selected from an RNA Qβ library. Finally, F5 showed the cleavage sites to be AA191-192 and AA194-195 for CatB and L, respectively, which were further validated using a recombinant EBOV glycoprotein. These results provide insights into the antigenicity and tropism characteristic of the glycoprotein, with implications for the development of subunit vaccines or other biologics against Ebola virus disease.
Collapse
Affiliation(s)
- Augustin Ntemafack
- Department
of Biochemistry and Molecular Biology, Indiana
University School of Medicine, 635 Barnhill, Indianapolis, Indiana46202-3082, United States
| | - Aristide Dzelamonyuy
- Department
of Biochemistry and Molecular Biology, Indiana
University School of Medicine, 635 Barnhill, Indianapolis, Indiana46202-3082, United States
| | - Godwin Nchinda
- Laboratory
of Vaccinology and Biobanking, CIRCB, BP 3077 Messa, Yaoundé 03077, Cameroon
| | - Alain Bopda Waffo
- Department
of Biochemistry and Molecular Biology, Indiana
University School of Medicine, 635 Barnhill, Indianapolis, Indiana46202-3082, United States
| |
Collapse
|
4
|
Haase JA, Marzi A. Molecular virulence determinants of human-pathogenic filoviruses. Adv Virus Res 2025; 121:1-29. [PMID: 40379380 DOI: 10.1016/bs.aivir.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2025]
Abstract
The Filoviridae family encompasses Ebola virus (EBOV) and Marburg virus (MARV), some of the most lethal viruses known to cause sporadic, recurring outbreaks of severe hemorrhagic fever mainly throughout central Africa. However, other lesser-known viruses also belong to the filovirus family as they are closely related, such as Bundibugyo, Reston and Taï Forest virus. These viruses differ in their virulence in humans significantly: while EBOV and MARV show lethality in humans of up to 90 %, Reston virus appears to be avirulent in humans. Here, underlying molecular factors leading to differences in virulence via changes in filovirus entry, replication and immune evasion strategies are summarized and assessed. While the filovirus glycoprotein contributes towards virulence by facilitating entry into a wide variety of tissues, differences in virus-host interactions and replication efficacies lead to measurable variances of progeny virus production. Additionally, immune evasion strategies lead to alterations in replication efficacy thus changing who has the upper hand between the virus and the host. Understanding and unraveling the contributions of these molecular determinants on filovirus virulence provide insights into the processes causing the underlying pathogenesis. It will further help to assess the pathogenicity of newly discovered filoviruses. Finally, these molecular determinants and processes present attractive targets for therapeutic intervention and development of novel antiviral countermeasures.
Collapse
Affiliation(s)
- Jil A Haase
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States.
| |
Collapse
|
5
|
Lee YZ, Zhang YN, Newby ML, Ward G, Gomes KB, Auclair S, DesRoberts C, Allen JD, Ward AB, Stanfield RL, He L, Crispin M, Wilson IA, Zhu J. Rational design of next-generation filovirus vaccines with glycoprotein stabilization, nanoparticle display, and glycan modification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.02.641072. [PMID: 40060701 PMCID: PMC11888476 DOI: 10.1101/2025.03.02.641072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Filoviruses pose a significant threat to human health with frequent outbreaks and high mortality. Although two vector-based vaccines are available for Ebola virus, a broadly protective filovirus vaccine remains elusive. In this study, we evaluate a general strategy for stabilizing glycoprotein (GP) structures of Ebola, Sudan, and Bundibugyo ebolaviruses and Ravn marburgvirus. A 3.2 Å-resolution crystal structure provides atomic details for the redesigned Ebola virus GP, and cryo-electron microscopy reveals how a pan-ebolavirus neutralizing antibody targets a conserved site on the Sudan virus GP (3.13 Å-resolution), in addition to a low-resolution model of antibody-bound Ravn virus GP. A self-assembling protein nanoparticle (SApNP), I3-01v9, is redesigned at the N-terminus to allow the optimal surface display of filovirus GP trimers. Following detailed in vitro characterization, the lymph node dynamics of Sudan virus GP and GP-presenting SApNPs are investigated in a mouse model. Compared with soluble GP trimer, SApNPs show ~112 times longer retention in lymph node follicles, up-to-28 times greater presentation on follicular dendritic cell dendrites, and up-to-3 times stronger germinal center reactions. Functional antibody responses induced by filovirus GP trimers and SApNPs bearing wildtype and modified glycans are assessed in mice. Our study provides a foundation for next-generation filovirus vaccine development.
Collapse
Affiliation(s)
- Yi-Zong Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yi-Nan Zhang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Maddy L. Newby
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, SO17 1BJ, UK
| | - Garrett Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Sarah Auclair
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Connor DesRoberts
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Joel D. Allen
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, SO17 1BJ, UK
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Robyn L. Stanfield
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Linling He
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Max Crispin
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, SO17 1BJ, UK
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jiang Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Uvax Bio, LLC, Newark, DE 19702, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
6
|
Pandey B, S S, Chatterjee A, Mangala Prasad V. Role of surface glycans in enveloped RNA virus infections: A structural perspective. Proteins 2025; 93:93-104. [PMID: 37994197 DOI: 10.1002/prot.26636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/16/2023] [Accepted: 10/30/2023] [Indexed: 11/24/2023]
Abstract
Enveloped RNA viruses have been causative agents of major pandemic outbreaks in the recent past. Glycans present on these virus surface proteins are critical for multiple processes during the viral infection cycle. Presence of glycans serves as a key determinant of immunogenicity, but intrinsic heterogeneity, dynamics, and evolutionary shifting of glycans in heavily glycosylated enveloped viruses confounds typical structure-function analysis. Glycosylation sites are also conserved across different viral families, which further emphasizes their functional significance. In this review, we summarize findings regarding structure-function correlation of glycans on enveloped RNA virus proteins.
Collapse
Affiliation(s)
- Bhawna Pandey
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Srividhya S
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Ananya Chatterjee
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Vidya Mangala Prasad
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, India
- Center for Infectious Disease Research, Indian Institute of Science, Bengaluru, Karnataka, India
| |
Collapse
|
7
|
Zhang Y, Zhang M, Wu H, Wu X, Zheng H, Feng J, Wang M, Wang J, Luo L, Xiao H, Qiao C, Li X, Zheng Y, Huang W, Wang Y, Wang Y, Feng J, Chen G. Afucosylated anti-EBOV antibody MIL77-3 engages sGP to elicit NK cytotoxicity. J Virol 2024; 98:e0068524. [PMID: 39162435 PMCID: PMC11406966 DOI: 10.1128/jvi.00685-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 06/24/2024] [Indexed: 08/21/2024] Open
Abstract
MIL77-3 is one component of antibody cocktail that is produced in our lab and represents an effective regimen for animals suffering from Zaire Ebolavirus (EBOV) infection. MIL77-3 is engineered to increase its affinity for the FcγRIIIa (CD16a) by deleting the fucose in the framework region. The potential effects of this modification on host immune responses, however, remain largely unknown. Herein, we demonstrated that MIL77-3 recognized secreted glycoproptein (sGP), produced by EBOV, and formed the immunocomplex to potently augment antibody-dependent cytotoxicity of human peripheral blood-derived natural killer cells (pNKs), including CD56dim and CD56bright subpopulations, in contrast to the counterparts (Mab114, rEBOV548, fucosylated MIL77-3). Intriguingly, this effect was not observed when NK92-CD16a cell line was utilized and restored by the addition of beads-coupled or membrane-anchored sGP in combination with MIL77-3. Furthermore, sGP bound to unrecognized receptors on T cells contaminated in pNKs rather than NK92-CD16a cells. Administration of beads-coupled sGP/MIL77-3 complex in mice elicited NK activation. Overall, this work reveals an immune-stimulating function of sGP/MIL77-3 complex by triggering cytotoxic activity of NK cells, highlighting the necessity to evaluate the potential impact of MIL77-3 on host immune reaction in clinical trials. IMPORTANCE Zaire Ebolavirus (EBOV) is highly lethal and causes sporadic outbreaks. The passive administration of monoclonal antibodies (mAbs) represents a promising treatment regimen against EBOV. Mounting evidence has shown that the efficacy of a subset of therapeutic mAbs in vivo is intimately associated with its capacity to trigger NK activity, supporting glycomodification of Fc region of anti-EBOV mAbs as a putative strategy to enhance Fc-mediated immune effector function as well as protection in vivo. Our work here uncovers the potential harmful influence of this modification on host immune responses, especially for mAbs with cross-reactivity to secreted glycoproptein (sGP) (e.g., MIL77-3), and highlights it is necessary to evaluate the NK-stimulating activity of a fucosylated mAb engaged with sGP when a new candidate is developed.
Collapse
Affiliation(s)
- Yuting Zhang
- Institute of Pharmacology and Toxicology, Beijing, China
| | - Min Zhang
- Institute of Pharmacology and Toxicology, Beijing, China
| | - Haiyan Wu
- Institute of Pharmacology and Toxicology, Beijing, China
| | - Xiaonan Wu
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, China
| | - Hang Zheng
- Institute of Pharmacology and Toxicology, Beijing, China
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Junjuan Feng
- Institute of Pharmacology and Toxicology, Beijing, China
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Mianjing Wang
- Institute of Pharmacology and Toxicology, Beijing, China
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Jing Wang
- Institute of Pharmacology and Toxicology, Beijing, China
| | - Longlong Luo
- Institute of Pharmacology and Toxicology, Beijing, China
| | - He Xiao
- Institute of Pharmacology and Toxicology, Beijing, China
| | - Chunxia Qiao
- Institute of Pharmacology and Toxicology, Beijing, China
| | - Xinying Li
- Institute of Pharmacology and Toxicology, Beijing, China
| | - Yuanqiang Zheng
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Weijin Huang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Youchun Wang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Yi Wang
- Department of Hematology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jiannan Feng
- Institute of Pharmacology and Toxicology, Beijing, China
| | - Guojiang Chen
- Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
8
|
Arumugam P, Carey BC, Wikenheiser-Brokamp KA, Krischer J, Wessendarp M, Shima K, Chalk C, Stock J, Ma Y, Black D, Imbrogno M, Collins M, Kalenda Yombo DJ, Sakthivel H, Suzuki T, Lutzko C, Cancelas JA, Adams M, Hoskins E, Lowe-Daniels D, Reeves L, Kaiser A, Trapnell BC. A toxicology study of Csf2ra complementation and pulmonary macrophage transplantation therapy of hereditary PAP in mice. Mol Ther Methods Clin Dev 2024; 32:101213. [PMID: 38596536 PMCID: PMC11001781 DOI: 10.1016/j.omtm.2024.101213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 02/13/2024] [Indexed: 04/11/2024]
Abstract
Pulmonary macrophage transplantation (PMT) is a gene and cell transplantation approach in development as therapy for hereditary pulmonary alveolar proteinosis (hPAP), a surfactant accumulation disorder caused by mutations in CSF2RA/B (and murine homologs). We conducted a toxicology study of PMT of Csf2ra gene-corrected macrophages (mGM-Rα+Mϕs) or saline-control intervention in Csf2raKO or wild-type (WT) mice including single ascending dose and repeat ascending dose studies evaluating safety, tolerability, pharmacokinetics, and pharmacodynamics. Lentiviral-mediated Csf2ra cDNA transfer restored GM-CSF signaling in mGM-Rα+Mϕs. Following PMT, mGM-Rα+Mϕs engrafted, remained within the lungs, and did not undergo uncontrolled proliferation or result in bronchospasm, pulmonary function abnormalities, pulmonary or systemic inflammation, anti-transgene product antibodies, or pulmonary fibrosis. Aggressive male fighting caused a similarly low rate of serious adverse events in saline- and PMT-treated mice. Transient, minor pulmonary neutrophilia and exacerbation of pre-existing hPAP-related lymphocytosis were observed 14 days after PMT of the safety margin dose but not the target dose (5,000,000 or 500,000 mGM-Rα+Mϕs, respectively) and only in Csf2raKO mice but not in WT mice. PMT reduced lung disease severity in Csf2raKO mice. Results indicate PMT of mGM-Rα+Mϕs was safe, well tolerated, and therapeutically efficacious in Csf2raKO mice, and established a no adverse effect level and 10-fold safety margin.
Collapse
Affiliation(s)
- Paritha Arumugam
- Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA
- Division of Pulmonary Biology, Perinatal Institute, CCHMC, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Brenna C Carey
- Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA
- Division of Pulmonary Biology, Perinatal Institute, CCHMC, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Kathryn A Wikenheiser-Brokamp
- Division of Pulmonary Biology, Perinatal Institute, CCHMC, Cincinnati, OH, USA
- Division of Pathology & Laboratory Medicine, CCHMC, Cincinnati, OH, USA
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jeffrey Krischer
- Departments of Pediatrics and Internal Medicine, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - Matthew Wessendarp
- Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA
- Division of Pulmonary Biology, Perinatal Institute, CCHMC, Cincinnati, OH, USA
| | - Kenjiro Shima
- Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA
- Division of Pulmonary Biology, Perinatal Institute, CCHMC, Cincinnati, OH, USA
| | - Claudia Chalk
- Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA
- Division of Pulmonary Biology, Perinatal Institute, CCHMC, Cincinnati, OH, USA
| | - Jennifer Stock
- Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA
- Division of Pulmonary Biology, Perinatal Institute, CCHMC, Cincinnati, OH, USA
| | - Yan Ma
- Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA
- Division of Pulmonary Biology, Perinatal Institute, CCHMC, Cincinnati, OH, USA
| | - Diane Black
- Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA
- Division of Pulmonary Biology, Perinatal Institute, CCHMC, Cincinnati, OH, USA
| | - Michelle Imbrogno
- Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, UCMC, Cincinnati, OH, USA
| | - Margaret Collins
- Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, UCMC, Cincinnati, OH, USA
| | - Dan Justin Kalenda Yombo
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, UCMC, Cincinnati, OH, USA
| | - Haripriya Sakthivel
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Takuji Suzuki
- Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA
- Division of Pulmonary Biology, Perinatal Institute, CCHMC, Cincinnati, OH, USA
| | - Carolyn Lutzko
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
- Cell Manipulations Laboratory, CCHMC, Cincinnati, OH, USA
| | - Jose A Cancelas
- Division of Experimental Hematology, CCHMC, Cincinnati, OH, USA
| | - Michelle Adams
- Office for Clinical and Translational Research, CCHMC, Cincinnati, OH, USA
| | - Elizabeth Hoskins
- Office for Clinical and Translational Research, CCHMC, Cincinnati, OH, USA
| | | | - Lilith Reeves
- Translational Core Laboratory, CCHMC, Cincinnati, OH, USA
| | - Anne Kaiser
- Office of Research Compliance & Regulatory Affairs, CCHMC, Cincinnati, OH, USA
| | - Bruce C Trapnell
- Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA
- Division of Pulmonary Biology, Perinatal Institute, CCHMC, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, UCMC, Cincinnati, OH, USA
- Division of Pulmonary Medicine, CCHMC, Cincinnati, OH, USA
| |
Collapse
|
9
|
Hawman DW, Leventhal SS, Meade-White K, Khandhar A, Murray J, Lovaglio J, Shaia C, Saturday G, Hinkley T, Erasmus J, Feldmann H. A replicating RNA vaccine confers protection in a rhesus macaque model of Crimean-Congo hemorrhagic fever. NPJ Vaccines 2024; 9:86. [PMID: 38769294 PMCID: PMC11106275 DOI: 10.1038/s41541-024-00887-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024] Open
Abstract
Crimean-Congo hemorrhagic fever (CCHF) is a tick-borne febrile illness with a wide geographic distribution. In recent years the geographic range of Crimean-Congo hemorrhagic fever virus (CCHFV) and its tick vector have increased, placing an increasing number of people at risk of CCHFV infection. Currently, there are no widely available vaccines, and although the World Health Organization recommends ribavirin for treatment, its efficacy is unclear. Here we evaluate a promising replicating RNA vaccine in a rhesus macaque (Macaca mulatta) model of CCHF. This model provides an alternative to the established cynomolgus macaque model and recapitulates mild-to-moderate human disease. Rhesus macaques infected with CCHFV consistently exhibit viremia, detectable viral RNA in a multitude of tissues, and moderate pathology in the liver and spleen. We used this model to evaluate the immunogenicity and protective efficacy of a replicating RNA vaccine. Rhesus macaques vaccinated with RNAs expressing the CCHFV nucleoprotein and glycoprotein precursor developed robust non-neutralizing humoral immunity against the CCHFV nucleoprotein and had significant protection against the CCHFV challenge. Together, our data report a model of CCHF using rhesus macaques and demonstrate that our replicating RNA vaccine is immunogenic and protective in non-human primates after a prime-boost immunization.
Collapse
Affiliation(s)
- David W Hawman
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA.
| | - Shanna S Leventhal
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | - Kimberly Meade-White
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | | | - Justin Murray
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | - Jamie Lovaglio
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | - Carl Shaia
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | - Greg Saturday
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | | | | | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA.
| |
Collapse
|
10
|
Bi J, Wang H, Han Q, Pei H, Wang H, Jin H, Jin S, Chi H, Yang S, Zhao Y, Yan F, Ge L, Xia X. A rabies virus-vectored vaccine expressing two copies of the Marburg virus glycoprotein gene induced neutralizing antibodies against Marburg virus in humanized mice. Emerg Microbes Infect 2023; 12:2149351. [PMID: 36453198 PMCID: PMC9809360 DOI: 10.1080/22221751.2022.2149351] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Marburg virus disease (MVD) is a lethal viral haemorrhagic fever caused by Marburg virus (MARV) with a case fatality rate as high as 88%. There is currently no vaccine or antiviral therapy approved for MVD. Due to high variation among MARV isolates, vaccines developed against one strain fail to protect against other strains. Here we report that three recombinant rabies virus (RABV) vector vaccines encoding two copies of GPs covering both MARV lineages induced pseudovirus neutralizing antibodies in BALB/c mice. Furthermore, high-affinity human neutralizing antibodies were isolated from a humanized mouse model. The three vaccines produced a Th1-biased serological response similar to that of human patients. Adequate sequential immunization enhanced the production of neutralizing antibodies. Virtual docking suggested that neutralizing antibodies induced by the Angola strain seemed to be able to hydrogen bond to the receptor-binding site (RBS) in the GP of the Ravn strain through hypervariable regions 2 (CDR2) and CDR3 of the VH region. These findings demonstrate that three inactivated vaccines are promising candidates against different strains of MARV, and a novel fully humanized neutralizing antibody against MARV was isolated.
Collapse
Affiliation(s)
- Jinhao Bi
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, People’s Republic of China,Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Haojie Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Qiuxue Han
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China,Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, People’s Republic of China
| | - Hongyan Pei
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China,College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Hualei Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, People’s Republic of China
| | - Hongli Jin
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, People’s Republic of China
| | - Song Jin
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China,Ruminant Disease Research Center, College of Life Sciences, Shandong Normal University, Jinan, People’s Republic of China
| | - Hang Chi
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Songtao Yang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Yongkun Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Feihu Yan
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China, Feihu Yan ; Liangpeng Ge ; Xianzhu Xia
| | - Liangpeng Ge
- Chongqing Academy of Animal Sciences, Chongqing, People’s Republic of China, Feihu Yan ; Liangpeng Ge ; Xianzhu Xia
| | - Xianzhu Xia
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, People’s Republic of China,Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China,Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, People’s Republic of China, Feihu Yan ; Liangpeng Ge ; Xianzhu Xia
| |
Collapse
|
11
|
Halfmann PJ, Borisevich V, Levine CB, Mire CE, Fenton KA, Geisbert TW, Kawaoka Y, Cross RW. The Mucin-Like Domain of the Ebola Glycoprotein Does Not Impact Virulence or Pathogenicity in Ferrets. J Infect Dis 2023; 228:S587-S593. [PMID: 37379580 PMCID: PMC10651202 DOI: 10.1093/infdis/jiad240] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Ebola virus (EBOV) is considered among the most dangerous viruses with case fatality rates approaching 90% depending on the outbreak. While several viral proteins (VPs) including VP24, VP35, and the soluble glycoprotein are understood to contribute to virulence, less is known of the contribution of the highly variable mucin-like domain (MLD) of EBOV. Early studies have defined a potential role in immune evasion of the MLD by providing a glycan shield to critical glycoprotein residues tied to viral entry. Nonetheless, little is known as to what direct role the MLD plays in acute EBOV disease (EVD). METHODS We generated an infectious EBOV clone that lacks the MLD and assessed its virulence in ferrets compared with wild-type (WT) virus. RESULTS No differences in growth kinetics were observed in vitro, nor were there any differences in time to death, viremia, or clinical picture in ferrets infected with recombinant EBOV (rEBOV)-WT or rEBOV-Δmucin. CONCLUSIONS The EBOV MLD does not play a critical role in acute pathogenesis of EVD in ferrets.
Collapse
Affiliation(s)
- Peter J Halfmann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin–Madison
| | - Viktoriya Borisevich
- Department of Microbiology and Immunology
- Galveston National Laboratory, University of Texas Medical Branch, Galveston
| | - Corri B Levine
- Department of Microbiology and Immunology
- Galveston National Laboratory, University of Texas Medical Branch, Galveston
| | - Chad E Mire
- Department of Microbiology and Immunology
- Galveston National Laboratory, University of Texas Medical Branch, Galveston
| | - Karla A Fenton
- Department of Microbiology and Immunology
- Galveston National Laboratory, University of Texas Medical Branch, Galveston
| | - Thomas W Geisbert
- Department of Microbiology and Immunology
- Galveston National Laboratory, University of Texas Medical Branch, Galveston
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin–Madison
- Division of Virology, Institute of Medical Science, University of Tokyo
- Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo
- Pandemic Preparedness, Infection and Advanced Research Center, University of Tokyo, Japan
| | - Robert W Cross
- Department of Microbiology and Immunology
- Galveston National Laboratory, University of Texas Medical Branch, Galveston
| |
Collapse
|
12
|
Olofsson S, Bally M, Trybala E, Bergström T. Structure and Role of O-Linked Glycans in Viral Envelope Proteins. Annu Rev Virol 2023; 10:283-304. [PMID: 37285578 DOI: 10.1146/annurev-virology-111821-121007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
N- and O-glycans are both important constituents of viral envelope glycoproteins. O-linked glycosylation can be initiated by any of 20 different human polypeptide O-acetylgalactosaminyl transferases, resulting in an important functional O-glycan heterogeneity. O-glycans are organized as solitary glycans or in clusters of multiple glycans forming mucin-like domains. They are functional both in the viral life cycle and in viral colonization of their host. Negatively charged O-glycans are crucial for the interactions between glycosaminoglycan-binding viruses and their host. A novel mechanism, based on controlled electrostatic repulsion, explains how such viruses solve the conflict between optimized viral attachment to target cells and efficient egress of progeny virus. Conserved solitary O-glycans appear important for viral uptake in target cells by contributing to viral envelope fusion. Dual roles of viral O-glycans in the host B cell immune response, either epitope blocking or epitope promoting, may be exploitable for vaccine development. Finally, specific virus-induced O-glycans may be involved in viremic spread.
Collapse
Affiliation(s)
- Sigvard Olofsson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden;
| | - Marta Bally
- Department of Clinical Microbiology, Wallenberg Centre for Molecular Medicine and Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Edward Trybala
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden;
| | - Tomas Bergström
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden;
| |
Collapse
|
13
|
Whittle L, Chapman R, Douglass N, Jaffer M, Margolin E, Rybicki E, Williamson AL. Development of a dual vaccine against East Coast fever and lumpy skin disease. Front Immunol 2023; 14:1143034. [PMID: 37063887 PMCID: PMC10098110 DOI: 10.3389/fimmu.2023.1143034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
East Coast fever is an acute bovine disease caused by the apicomplexan parasite Theileria parva and is regarded as one of the most important tick-vectored diseases in Africa. The current vaccination procedure has many drawbacks, as it involves the use of live T. parva sporozoites. As a novel vaccination strategy, we have constructed the recombinant lumpy skin disease virus (LSDV) named LSDV-SODis-p67HA-BLV-Gag, encoding a modified form of the T. parva p67 surface antigen (p67HA), as well as the bovine leukemia virus (BLV) gag gene for the formation of virus-like particles (VLPs) to potentially enhance p67 immunogenicity. In place of the native sequence, the chimeric p67HA antigen has the human tissue plasminogen activator signal sequence and the influenza hemagglutinin A2 transmembrane domain and cytoplasmic tail. p67HA was detected on the surface of infected cells, and VLPs comprising BLV Gag and p67HA were produced. We also show that higher multiple bands observed in western blot analysis are due to glycosylation of p67. The two vaccines, pMExT-p67HA (DNA) and LSDV-SODis-p67HA-BLV-Gag, were tested for immunogenicity in mice. p67-binding antibodies were produced by vaccinated animals, with higher titers detected in mice vaccinated with the recombinant LSDV. This candidate dual vaccine warrants further testing in cattle.
Collapse
Affiliation(s)
- Leah Whittle
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Ros Chapman
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- *Correspondence: Ros Chapman,
| | - Nicola Douglass
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Mohamed Jaffer
- Electron Microscope Unit, University of Cape Town, Cape Town, South Africa
| | - Emmanuel Margolin
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Biopharming Research Unit, Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
| | - Edward Rybicki
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Biopharming Research Unit, Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
| | - Anna-Lise Williamson
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
14
|
Roe MK, Perez MA, Hsiao HM, Lapp SA, Sun HY, Jadhao S, Young AR, Batista YS, Reed RC, Taz A, Piantadosi A, Chen X, Liang B, Koval M, Snider TA, Moore ML, Anderson EJ, Anderson LJ, Stobart CC, Rostad CA. An RSV Live-Attenuated Vaccine Candidate Lacking G Protein Mucin Domains Is Attenuated, Immunogenic, and Effective in Preventing RSV in BALB/c Mice. J Infect Dis 2022; 227:50-60. [PMID: 36281651 PMCID: PMC9796166 DOI: 10.1093/infdis/jiac382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/09/2022] [Accepted: 10/31/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Respiratory syncytial virus (RSV) is a leading viral respiratory pathogen in infants. The objective of this study was to generate RSV live-attenuated vaccine (LAV) candidates by removing the G-protein mucin domains to attenuate viral replication while retaining immunogenicity through deshielding of surface epitopes. METHODS Two LAV candidates were generated from recombinant RSV A2-line19F by deletion of the G-protein mucin domains (A2-line19F-G155) or deletion of the G-protein mucin and transmembrane domains (A2-line19F-G155S). Vaccine attenuation was measured in BALB/c mouse lungs by fluorescent focus unit (FFU) assays and real-time polymerase chain reaction (RT-PCR). Immunogenicity was determined by measuring serum binding and neutralizing antibodies in mice following prime/boost on days 28 and 59. Efficacy was determined by measuring RSV lung viral loads on day 4 postchallenge. RESULTS Both LAVs were undetectable in mouse lungs by FFU assay and elicited similar neutralizing antibody titers compared to A2-line19F on days 28 and 59. Following RSV challenge, vaccinated mice showed no detectable RSV in the lungs by FFU assay and a significant reduction in RSV RNA in the lungs by RT-PCR of 560-fold for A2-line19F-G155 and 604-fold for A2-line19F-G155S compared to RSV-challenged, unvaccinated mice. CONCLUSIONS Removal of the G-protein mucin domains produced RSV LAV candidates that were highly attenuated with retained immunogenicity.
Collapse
Affiliation(s)
- Molly K Roe
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, USA
| | - Maria A Perez
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA,Center for Childhood Infections and Vaccines, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia, USA
| | - Hui-Mien Hsiao
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA,Center for Childhood Infections and Vaccines, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia, USA
| | - Stacey A Lapp
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA,Center for Childhood Infections and Vaccines, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia, USA
| | - He-Ying Sun
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA,Center for Childhood Infections and Vaccines, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia, USA
| | - Samadhan Jadhao
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA,Center for Childhood Infections and Vaccines, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia, USA
| | - Audrey R Young
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, USA
| | - Yara S Batista
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, USA
| | - Ryan C Reed
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Azmain Taz
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Anne Piantadosi
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Xuemin Chen
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA,Center for Childhood Infections and Vaccines, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia, USA
| | - Bo Liang
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Michael Koval
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Timothy A Snider
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, Oklahoma, USA
| | | | - Evan J Anderson
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA,Center for Childhood Infections and Vaccines, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia, USA,Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Larry J Anderson
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA,Center for Childhood Infections and Vaccines, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Christina A Rostad
- Correspondence: Christina A. Rostad, MD, Emory Children's Center, 2015 Uppergate Drive NE, Atlanta, GA 30322 ()
| |
Collapse
|
15
|
RNF185 regulates proteostasis in Ebolavirus infection by crosstalk between the calnexin cycle, ERAD, and reticulophagy. Nat Commun 2022; 13:6007. [PMID: 36224200 PMCID: PMC9554868 DOI: 10.1038/s41467-022-33805-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/30/2022] [Indexed: 11/25/2022] Open
Abstract
Virus infection affects cellular proteostasis and provides an opportunity to study this cellular process under perturbation. The proteostasis network in the endoplasmic reticulum (ER) is composed of the calnexin cycle, and the two protein degradation pathways ER-associated protein degradation (ERAD) and ER-to-lysosome-associated degradation (ERLAD/ER-phagy/reticulophagy). Here we show that calnexin and calreticulin trigger Zaire Ebolavirus (EBOV) glycoprotein GP1,2 misfolding. Misfolded EBOV-GP1,2 is targeted by ERAD machinery, but this results in lysosomal instead of proteasomal degradation. Moreover, the ER Ub ligase RNF185, usually associated with ERAD, polyubiquitinates EBOV-GP1,2 on lysine 673 via ubiquitin K27-linkage. Polyubiquinated GP1,2 is subsequently recruited into autophagosomes by the soluble autophagy receptor sequestosome 1 (SQSTM1/p62), in an ATG3- and ATG5-dependent manner. We conclude that EBOV hijacks all three proteostasis mechanisms in the ER to downregulate GP1,2 via polyubiquitination and show that this increases viral fitness. This study identifies linkages among proteostasis network components previously thought to function independently. Little is known about how proteostasis is maintained during viral infection. Here, the authors identify unexpected crosstalk between the calnexin cycle, ERAD, and reticulophagy, resulting in suppression of ebolavirus glycoprotein expression.
Collapse
|
16
|
Gemler BT, Mukherjee C, Howland CA, Huk D, Shank Z, Harbo LJ, Tabbaa OP, Bartling CM. Function-based classification of hazardous biological sequences: Demonstration of a new paradigm for biohazard assessments. Front Bioeng Biotechnol 2022; 10:979497. [PMID: 36277394 PMCID: PMC9585941 DOI: 10.3389/fbioe.2022.979497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/31/2022] [Indexed: 12/04/2022] Open
Abstract
Bioengineering applies analytical and engineering principles to identify functional biological building blocks for biotechnology applications. While these building blocks are leveraged to improve the human condition, the lack of simplistic, machine-readable definition of biohazards at the function level is creating a gap for biosafety practices. More specifically, traditional safety practices focus on the biohazards of known pathogens at the organism-level and may not accurately consider novel biodesigns with engineered functionalities at the genetic component-level. This gap is motivating the need for a paradigm shift from organism-centric procedures to function-centric biohazard identification and classification practices. To address this challenge, we present a novel methodology for classifying biohazards at the individual sequence level, which we then compiled to distinguish the biohazardous property of pathogenicity at the whole genome level. Our methodology is rooted in compilation of hazardous functions, defined as a set of sequences and associated metadata that describe coarse-level functions associated with pathogens (e.g., adherence, immune subversion). We demonstrate that the resulting database can be used to develop hazardous “fingerprints” based on the functional metadata categories. We verified that these hazardous functions are found at higher levels in pathogens compared to non-pathogens, and hierarchical clustering of the fingerprints can distinguish between these two groups. The methodology presented here defines the hazardous functions associated with bioengineering functional building blocks at the sequence level, which provide a foundational framework for classifying biological hazards at the organism level, thus leading to the improvement and standardization of current biosecurity and biosafety practices.
Collapse
|
17
|
Wang B, Zhang J, Liu X, Chai Q, Lu X, Yao X, Yang Z, Sun L, Johnson SF, Schwartz RC, Zheng YH. Protein disulfide isomerases (PDIs) negatively regulate ebolavirus structural glycoprotein expression in the endoplasmic reticulum (ER) via the autophagy-lysosomal pathway. Autophagy 2022; 18:2350-2367. [PMID: 35130104 PMCID: PMC9542513 DOI: 10.1080/15548627.2022.2031381] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 02/09/2023] Open
Abstract
Zaire ebolavirus (EBOV) causes a severe hemorrhagic fever in humans and non-human primates with high morbidity and mortality. EBOV infection is dependent on its structural glycoprotein (GP), but high levels of GP expression also trigger cell rounding, detachment, and downregulation of many surface molecules that is thought to contribute to its high pathogenicity. Thus, EBOV has evolved an RNA editing mechanism to reduce its GP expression and increase its fitness. We now report that the GP expression is also suppressed at the protein level in cells by protein disulfide isomerases (PDIs). Although PDIs promote oxidative protein folding by catalyzing correct disulfide formation in the endoplasmic reticulum (ER), PDIA3/ERp57 adversely triggered the GP misfolding by targeting GP cysteine residues and activated the unfolded protein response (UPR). Abnormally folded GP was targeted by ER-associated protein degradation (ERAD) machinery and, unexpectedly, was degraded via the macroautophagy/autophagy-lysosomal pathway, but not the proteasomal pathway. PDIA3 also decreased the GP expression from other ebolavirus species but increased the GP expression from Marburg virus (MARV), which is consistent with the observation that MARV-GP does not cause cell rounding and detachment, and MARV does not regulate its GP expression via RNA editing during infection. Furthermore, five other PDIs also had a similar inhibitory activity to EBOV-GP. Thus, PDIs negatively regulate ebolavirus glycoprotein expression, which balances the viral life cycle by maximizing their infection but minimizing their cellular effect. We suggest that ebolaviruses hijack the host protein folding and ERAD machinery to increase their fitness via reticulophagy during infection.Abbreviations: 3-MA: 3-methyladenine; 4-PBA: 4-phenylbutyrate; ACTB: β-actin; ATF: activating transcription factor; ATG: autophagy-related; BafA1: bafilomycin A1; BDBV: Bundibugyo ebolavirus; CALR: calreticulin; CANX: calnexin; CHX: cycloheximide; CMA: chaperone-mediated autophagy; ConA: concanamycin A; CRISPR: clusters of regularly interspaced short palindromic repeats; Cas9: CRISPR-associated protein 9; dsRNA: double-stranded RNA; EBOV: Zaire ebolavirus; EDEM: ER degradation enhancing alpha-mannosidase like protein; EIF2AK3/PERK: eukaryotic translation initiation factor 2 alpha kinase 3; Env: envelope glycoprotein; ER: endoplasmic reticulum; ERAD: ER-associated protein degradation; ERN1/IRE1: endoplasmic reticulum to nucleus signaling 1; GP: glycoprotein; HA: hemagglutinin; HDAC6: histone deacetylase 6; HMM: high-molecular-mass; HIV-1: human immunodeficiency virus type 1; HSPA5/BiP: heat shock protein family A (Hsp70) member 5; IAV: influenza A virus; IP: immunoprecipitation; KIF: kifenesine; Lac: lactacystin; LAMP: lysosomal associated membrane protein; MAN1B1/ERManI: mannosidase alpha class 1B member 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MARV: Marburg virus; MLD: mucin-like domain; NHK/SERPINA1: alpha1-antitrypsin variant null (Hong Kong); NTZ: nitazoxanide; PDI: protein disulfide isomerase; RAVV: Ravn virus; RESTV: Reston ebolavirus; SARS-CoV: severe acute respiratory syndrome coronavirus; SBOV: Sudan ebolavirus; sGP: soluble GP; SQSTM1/p62: sequestosome 1; ssGP: small soluble GP; TAFV: Taï Forest ebolavirus; TIZ: tizoxanide; TGN: thapsigargin; TLD: TXN (thioredoxin)-like domain; Ub: ubiquitin; UPR: unfolded protein response; VLP: virus-like particle; VSV: vesicular stomatitis virus; WB: Western blotting; WT: wild-type; XBP1: X-box binding protein 1.
Collapse
Affiliation(s)
- Bin Wang
- CAAS-Michigan State University Joint Laboratory of Innate Immunity, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- MSD (Ningbo) Animal Health Technology Co., Ltd, Ningbo, China
| | - Jing Zhang
- CAAS-Michigan State University Joint Laboratory of Innate Immunity, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xin Liu
- CAAS-Michigan State University Joint Laboratory of Innate Immunity, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Qingqing Chai
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Xiaoran Lu
- CAAS-Michigan State University Joint Laboratory of Innate Immunity, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaoyu Yao
- CAAS-Michigan State University Joint Laboratory of Innate Immunity, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhichang Yang
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| | - Silas F. Johnson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Richard C Schwartz
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Yong-Hui Zheng
- CAAS-Michigan State University Joint Laboratory of Innate Immunity, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
18
|
Mallick Gupta A, Mandal S, Mandal S, Chakrabarti J. Immune escape facilitation by mutations of epitope residues in RdRp of SARS-CoV-2. J Biomol Struct Dyn 2022; 41:3542-3552. [PMID: 35293850 DOI: 10.1080/07391102.2022.2051746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Mutations drive viral evolution and genome variability that causes viruses to escape host immunity and to develop drug resistance. SARS-CoV-2 has considerably higher mutation rate. SARS-CoV-2 possesses a RNA dependent RNA polymerase (RdRp) which helps to replicate its genome. The mutation P323L in RdRp is associated with the loss of a particular epitope (321-327) from this protein. We consider the effects of mutations in some of the epitope region including the naturally occurring mutation P323L on the structure of the epitope and their interface with paratope using all-atom molecular dynamics (MD) simulation studies. We observe that the mutations cause conformational changes in the epitope region by opening up the region associated with increase in the radius of gyration and intramolecular hydrogen bonds, making the region less accessible. Moreover, we study the conformational stability of the epitope region and epitope:paratope interface under the mutation from the fluctuations in the dihedral angles. We observe that the mutation renders the epitope and the epitope:paratope interface unstable compared to the corresponding wild type ones. Thus, the mutations may help in escaping antibody mediated immunity of the hostCommunicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aayatti Mallick Gupta
- Department of Chemical, Biological & Macro-Molecular Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata
| | - SasthiCharan Mandal
- Department of Chemical, Biological & Macro-Molecular Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata
| | - Sukhendu Mandal
- Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, Kolkata, India
| | - Jaydeb Chakrabarti
- Department of Chemical, Biological & Macro-Molecular Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata
| |
Collapse
|
19
|
Gan SKE, Phua SX, Yeo JY. Sagacious epitope selection for vaccines, and both antibody-based therapeutics and diagnostics: tips from virology and oncology. Antib Ther 2022; 5:63-72. [PMID: 35372784 PMCID: PMC8972324 DOI: 10.1093/abt/tbac005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/24/2022] [Accepted: 02/12/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
The target of an antibody plays a significant role in the success of antibody-based therapeutics and diagnostics, and vaccine development. This importance is focused on the target binding site—epitope, where epitope selection as a part of design thinking beyond traditional antigen selection using whole cell or whole protein immunization can positively impact success. With purified recombinant protein production and peptide synthesis to display limited/selected epitopes, intrinsic factors that can affect the functioning of resulting antibodies can be more easily selected for. Many of these factors stem from the location of the epitope that can impact accessibility of the antibody to the epitope at a cellular or molecular level, direct inhibition of target antigen activity, conservation of function despite escape mutations, and even non-competitive inhibition sites. By incorporating novel computational methods for predicting antigen changes to model-informed drug discovery and development, superior vaccines and antibody-based therapeutics or diagnostics can be easily designed to mitigate failures. With detailed examples, this review highlights the new opportunities, factors and methods of predicting antigenic changes for consideration in sagacious epitope selection.
Collapse
Affiliation(s)
- Samuel Ken-En Gan
- Antibody & Product Development Lab, EDDC-BII, Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore
- APD SKEG Pte Ltd, Singapore 439444, Singapore
| | - Ser-Xian Phua
- Antibody & Product Development Lab, EDDC-BII, Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore
| | - Joshua Yi Yeo
- Antibody & Product Development Lab, EDDC-BII, Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore
| |
Collapse
|
20
|
Sahin M, Remy MM, Fallet B, Sommerstein R, Florova M, Langner A, Klausz K, Straub T, Kreutzfeldt M, Wagner I, Schmidt CT, Malinge P, Magistrelli G, Izui S, Pircher H, Verbeek JS, Merkler D, Peipp M, Pinschewer DD. Antibody bivalency improves antiviral efficacy by inhibiting virion release independently of Fc gamma receptors. Cell Rep 2022; 38:110303. [PMID: 35108544 PMCID: PMC8822495 DOI: 10.1016/j.celrep.2022.110303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/08/2021] [Accepted: 01/04/2022] [Indexed: 12/17/2022] Open
Abstract
Across the animal kingdom, multivalency discriminates antibodies from all other immunoglobulin superfamily members. The evolutionary forces conserving multivalency above other structural hallmarks of antibodies remain, however, incompletely defined. Here, we engineer monovalent either Fc-competent or -deficient antibody formats to investigate mechanisms of protection of neutralizing antibodies (nAbs) and non-neutralizing antibodies (nnAbs) in virus-infected mice. Antibody bivalency enables the tethering of virions to the infected cell surface, inhibits the release of virions in cell culture, and suppresses viral loads in vivo independently of Fc gamma receptor (FcγR) interactions. In return, monovalent antibody formats either do not inhibit virion release and fail to protect in vivo or their protective efficacy is largely FcγR dependent. Protection in mice correlates with virus-release-inhibiting activity of nAb and nnAb rather than with their neutralizing capacity. These observations provide mechanistic insights into the evolutionary conservation of antibody bivalency and help refining correlates of nnAb protection for vaccine development.
Collapse
Affiliation(s)
- Mehmet Sahin
- Department of Biomedicine - Haus Petersplatz, Division of Experimental Virology, University of Basel, 4009 Basel, Switzerland
| | - Melissa M Remy
- Department of Biomedicine - Haus Petersplatz, Division of Experimental Virology, University of Basel, 4009 Basel, Switzerland; Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Benedict Fallet
- Department of Biomedicine - Haus Petersplatz, Division of Experimental Virology, University of Basel, 4009 Basel, Switzerland; Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Rami Sommerstein
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Marianna Florova
- Department of Biomedicine - Haus Petersplatz, Division of Experimental Virology, University of Basel, 4009 Basel, Switzerland
| | - Anna Langner
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
| | - Katja Klausz
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
| | - Tobias Straub
- Institute for Immunology, Department for Medical Microbiology and Hygiene, University Medical Center Freiburg, 79104 Freiburg, Germany
| | - Mario Kreutzfeldt
- Department of Pathology and Immunology, Division of Clinical Pathology, University and University Hospital of Geneva, 1211 Geneva, Switzerland
| | - Ingrid Wagner
- Department of Pathology and Immunology, Division of Clinical Pathology, University and University Hospital of Geneva, 1211 Geneva, Switzerland
| | - Cinzia T Schmidt
- BioEM Lab, Center for Cellular Imaging & Nano Analytics, Biozentrum, University of Basel, Basel, Switzerland
| | - Pauline Malinge
- Light Chain Bioscience, Novimmune SA, Plan-les-Ouates, Switzerland
| | | | - Shozo Izui
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Hanspeter Pircher
- Institute for Immunology, Department for Medical Microbiology and Hygiene, University Medical Center Freiburg, 79104 Freiburg, Germany
| | - J Sjef Verbeek
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands; Department of Biomedical Engineering, Toin University of Yokohama, Yokohama, Japan
| | - Doron Merkler
- Department of Pathology and Immunology, Division of Clinical Pathology, University and University Hospital of Geneva, 1211 Geneva, Switzerland
| | - Matthias Peipp
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
| | - Daniel D Pinschewer
- Department of Biomedicine - Haus Petersplatz, Division of Experimental Virology, University of Basel, 4009 Basel, Switzerland; Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
21
|
Ostrycharz E, Hukowska-Szematowicz B. New Insights into the Role of the Complement System in Human Viral Diseases. Biomolecules 2022; 12:226. [PMID: 35204727 PMCID: PMC8961555 DOI: 10.3390/biom12020226] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/23/2022] [Accepted: 01/27/2022] [Indexed: 01/27/2023] Open
Abstract
The complement system (CS) is part of the human immune system, consisting of more than 30 proteins that play a vital role in the protection against various pathogens and diseases, including viral diseases. Activated via three pathways, the classical pathway (CP), the lectin pathway (LP), and the alternative pathway (AP), the complement system leads to the formation of a membrane attack complex (MAC) that disrupts the membrane of target cells, leading to cell lysis and death. Due to the increasing number of reports on its role in viral diseases, which may have implications for research on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), this review aims to highlight significant progress in understanding and defining the role of the complement system in four groups of diseases of viral etiology: (1) respiratory diseases; (2) acute liver failure (ALF); (3) disseminated intravascular coagulation (DIC); and (4) vector-borne diseases (VBDs). Some of these diseases already present a serious global health problem, while others are a matter of concern and require the collaboration of relevant national services and scientists with the World Health Organization (WHO) to avoid their spread.
Collapse
Affiliation(s)
- Ewa Ostrycharz
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland;
- Doctoral School of the University of Szczecin, University of Szczecin, 71-412 Szczecin, Poland
- Molecular Biology and Biotechnology Center, University of Szczecin, 71-412 Szczecin, Poland
| | - Beata Hukowska-Szematowicz
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland;
- Molecular Biology and Biotechnology Center, University of Szczecin, 71-412 Szczecin, Poland
| |
Collapse
|
22
|
Structural and Functional Aspects of Ebola Virus Proteins. Pathogens 2021; 10:pathogens10101330. [PMID: 34684279 PMCID: PMC8538763 DOI: 10.3390/pathogens10101330] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 01/14/2023] Open
Abstract
Ebola virus (EBOV), member of genus Ebolavirus, family Filoviridae, have a non-segmented, single-stranded RNA that contains seven genes: (a) nucleoprotein (NP), (b) viral protein 35 (VP35), (c) VP40, (d) glycoprotein (GP), (e) VP30, (f) VP24, and (g) RNA polymerase (L). All genes encode for one protein each except GP, producing three pre-proteins due to the transcriptional editing. These pre-proteins are translated into four products, namely: (a) soluble secreted glycoprotein (sGP), (b) Δ-peptide, (c) full-length transmembrane spike glycoprotein (GP), and (d) soluble small secreted glycoprotein (ssGP). Further, shed GP is released from infected cells due to cleavage of GP by tumor necrosis factor α-converting enzyme (TACE). This review presents a detailed discussion on various functional aspects of all EBOV proteins and their residues. An introduction to ebolaviruses and their life cycle is also provided for clarity of the available analysis. We believe that this review will help understand the roles played by different EBOV proteins in the pathogenesis of the disease. It will help in targeting significant protein residues for therapeutic and multi-protein/peptide vaccine development.
Collapse
|
23
|
Thornlow DN, Macintyre AN, Oguin TH, Karlsson AB, Stover EL, Lynch HE, Sempowski GD, Schmidt AG. Altering the Immunogenicity of Hemagglutinin Immunogens by Hyperglycosylation and Disulfide Stabilization. Front Immunol 2021; 12:737973. [PMID: 34691043 PMCID: PMC8528956 DOI: 10.3389/fimmu.2021.737973] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Influenza virus alters glycosylation patterns on its surface exposed glycoproteins to evade host adaptive immune responses. The viral hemagglutinin (HA), in particular the H3 subtype, has increased its overall surface glycosylation since its introduction in 1968. We previously showed that modulating predicted N-linked glycosylation sites on H3 A/Hong Kong/1/1968 HA identified a conserved epitope at the HA interface. This epitope is occluded on the native HA trimer but is likely exposed during HA "breathing" on the virion surface. Antibodies directed to this site are protective via an ADCC-mediated mechanism. This glycan engineering strategy made an otherwise subdominant epitope dominant in the murine model. Here, we asked whether cysteine stabilization of the hyperglycosylated HA trimer could reverse this immunodominance by preventing access to the interface epitope and focus responses to the HA receptor binding site (RBS). While analysis of serum responses from immunized mice did not show a redirection to the RBS, cysteine stabilization did result in an overall reduction in immunogenicity of the interface epitope. Thus, glycan engineering and cysteine stabilization are two strategies that can be used together to alter immunodominance patterns to HA. These results add to rational immunogen design approaches used to manipulate immune responses for the development of next-generation influenza vaccines.
Collapse
Affiliation(s)
- Dana N. Thornlow
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States
- Department of Microbiology, Harvard Medical School, Boston, MA, United States
| | - Andrew N. Macintyre
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Thomas H. Oguin
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Amelia B. Karlsson
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Erica L. Stover
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Heather E. Lynch
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Gregory D. Sempowski
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
- Departments of Medicine and Pathology, Duke University School of Medicine, Durham, NC, United States
| | - Aaron G. Schmidt
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States
- Department of Microbiology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
24
|
Kremsreiter SM, Kroell ASH, Weinberger K, Boehm H. Glycan-Lectin Interactions in Cancer and Viral Infections and How to Disrupt Them. Int J Mol Sci 2021; 22:10577. [PMID: 34638920 PMCID: PMC8508825 DOI: 10.3390/ijms221910577] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 02/07/2023] Open
Abstract
Glycan-lectin interactions play an essential role in different cellular processes. One of their main functions is involvement in the immune response to pathogens or inflammation. However, cancer cells and viruses have adapted to avail themselves of these interactions. By displaying specific glycosylation structures, they are able to bind to lectins, thus promoting pathogenesis. While glycan-lectin interactions promote tumor progression, metastasis, and/or chemoresistance in cancer, in viral infections they are important for viral entry, release, and/or immune escape. For several years now, a growing number of investigations have been devoted to clarifying the role of glycan-lectin interactions in cancer and viral infections. Various overviews have already summarized and highlighted their findings. In this review, we consider the interactions of the lectins MGL, DC-SIGN, selectins, and galectins in both cancer and viral infections together. A possible transfer of ways to target and disrupt them might lead to new therapeutic approaches in different pathological backgrounds.
Collapse
Affiliation(s)
- Stefanie Maria Kremsreiter
- Institute for Pharmacy and Molecular Biotechnology (IPMB), Ruprecht Karls University Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany; (S.M.K.); (A.-S.H.K.); (K.W.)
| | - Ann-Sophie Helene Kroell
- Institute for Pharmacy and Molecular Biotechnology (IPMB), Ruprecht Karls University Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany; (S.M.K.); (A.-S.H.K.); (K.W.)
| | - Katharina Weinberger
- Institute for Pharmacy and Molecular Biotechnology (IPMB), Ruprecht Karls University Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany; (S.M.K.); (A.-S.H.K.); (K.W.)
| | - Heike Boehm
- Max-Planck-Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany
| |
Collapse
|
25
|
Tshiani Mbaya O, Mukumbayi P, Mulangu S. Review: Insights on Current FDA-Approved Monoclonal Antibodies Against Ebola Virus Infection. Front Immunol 2021; 12:721328. [PMID: 34526994 PMCID: PMC8435780 DOI: 10.3389/fimmu.2021.721328] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/12/2021] [Indexed: 11/29/2022] Open
Abstract
The unprecedented 2013-2016 West Africa Ebola outbreak accelerated several medical countermeasures (MCMs) against Ebola virus disease (EVD). Several investigational products (IPs) were used throughout the outbreak but were not conclusive for efficacy results. Only the Randomized Controlled Trial (RCT) on ZMapp was promising but inconclusive. More recently, during the second-largest Ebola outbreak in North Kivu and Ituri provinces, Democratic Republic of the Congo (DRC), four IPs, including one small molecule (Remdesivir), two monoclonal antibody (mAb) cocktails (ZMapp and REGN-EB3) and a single mAb (mAb114), were evaluated in an RCT, the Pamoja Tulinde Maisha (PALM) study. Two products (REGN-EB3 and mAb114) demonstrated efficacy as compared to the control arm, ZMapp. There were remarkably few side effects recorded in the trial. The FDA approved both medications in this scientifically sound study, marking a watershed moment in the field of EVD therapy. These products can be produced relatively inexpensively and can be stockpiled. The administration of mAbs in EVD patients appears to be safe and effective, while several critical knowledge gaps remain; the impact of early administration of Ebola-specific mAbs on developing a robust immune response for future Ebola virus exposure is unknown. The viral mutation escape, leading to resistance, presents a potential limitation for single mAb therapy; further improvements need to be explored. Understanding the contribution of Fc-mediated antibody functions such as antibody-dependent cellular cytotoxicity (ADCC) of those approved mAbs is still critical. The potential merit of combination therapy and post-exposure prophylaxis (PEP) need to be demonstrated. Furthermore, the PALM trial has accounted for 30% of mortality despite the administration of specific treatments. The putative role of EBOV soluble Glycoprotein (sGP) as a decoy to the immune system, the virus persistence, and relapses might be investigated for treatment failure. The development of pan-filovirus or pan-species mAbs remains essential for protection. The interaction between FDA-approved mAbs and vaccines remains unclear and needs to be investigated. In this review, we summarize the efficacy and safety results of the PALM study and review current research questions for the further development of mAbs in pre-exposure or emergency post-exposure use.
Collapse
Affiliation(s)
- Olivier Tshiani Mbaya
- Clinical Monitoring Research Program Directorate, Leidos Biomedical Research, Frederick, MD, United States
| | - Philippe Mukumbayi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Sabue Mulangu
- Global Medical Affairs, Ridgeback Biotherapeutics, Miami, FL, United States
| |
Collapse
|
26
|
Ruhnau J, Grote V, Juarez-Osorio M, Bruder D, Mahour R, Rapp E, Rexer TFT, Reichl U. Cell-Free Glycoengineering of the Recombinant SARS-CoV-2 Spike Glycoprotein. Front Bioeng Biotechnol 2021; 9:699025. [PMID: 34485255 PMCID: PMC8415157 DOI: 10.3389/fbioe.2021.699025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/15/2021] [Indexed: 01/23/2023] Open
Abstract
The baculovirus-insect cell expression system is readily utilized to produce viral glycoproteins for research as well as for subunit vaccines and vaccine candidates, for instance against SARS-CoV-2 infections. However, the glycoforms of recombinant proteins derived from this expression system are inherently different from mammalian cell-derived glycoforms with mainly complex-type N-glycans attached, and the impact of these differences in protein glycosylation on the immunogenicity is severely under investigated. This applies also to the SARS-CoV-2 spike glycoprotein, which is the antigen target of all licensed vaccines and vaccine candidates including virus like particles and subunit vaccines that are variants of the spike protein. Here, we expressed the transmembrane-deleted human β-1,2 N-acetlyglucosamintransferases I and II (MGAT1ΔTM and MGAT2ΔTM) and the β-1,4-galactosyltransferase (GalTΔTM) in E. coli to in-vitro remodel the N-glycans of a recombinant SARS-CoV-2 spike glycoprotein derived from insect cells. In a cell-free sequential one-pot reaction, fucosylated and afucosylated paucimannose-type N-glycans were converted to complex-type galactosylated N-glycans. In the future, this in-vitro glycoengineering approach can be used to efficiently generate a wide range of N-glycans on antigens considered as vaccine candidates for animal trials and preclinical testing to better characterize the impact of N-glycosylation on immunity and to improve the efficacy of protein subunit vaccines.
Collapse
Affiliation(s)
- Johannes Ruhnau
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
| | - Valerian Grote
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
| | - Mariana Juarez-Osorio
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
| | - Dunja Bruder
- Infection Immunology, Institute of Medical Microbiology, Infection Prevention and Control, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Immune Regulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Reza Mahour
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
| | - Erdmann Rapp
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
- glyXera GmbH, Magdeburg, Germany
| | - Thomas F. T. Rexer
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
| | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
- Otto-von-Guericke University Magdeburg, Chair of Bioprocess Engineering, Magdeburg, Germany
| |
Collapse
|
27
|
Lis N, Hein Z, Ghanwat SS, Ramnarayan VR, Chambers BJ, Springer S. The murine cytomegalovirus immunoevasin gp40/m152 inhibits NKG2D receptor RAE-1γ by intracellular retention and cell surface masking. J Cell Sci 2021; 134:269012. [PMID: 34085696 DOI: 10.1242/jcs.257428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/14/2021] [Indexed: 12/21/2022] Open
Abstract
NKG2D (also known as KLRK1) is a crucial natural killer (NK) cell-activating receptor, and the murine cytomegalovirus (MCMV) employs multiple immunoevasins to avoid NKG2D-mediated activation. One of the MCMV immunoevasins, gp40 (m152), downregulates the cell surface NKG2D ligand RAE-1γ (also known as Raet1c) thus limiting NK cell activation. This study establishes the molecular mechanism by which gp40 retains RAE-1γ in the secretory pathway. Using flow cytometry and pulse-chase analysis, we demonstrate that gp40 retains RAE-1γ in the early secretory pathway, and that this effect depends on the binding of gp40 to a host protein, TMED10, a member of the p24 protein family. We also show that the TMED10-based retention mechanism can be saturated, and that gp40 has a backup mechanism as it masks RAE-1γ on the cell surface, blocking the interaction with the NKG2D receptor and thus NK cell activation.
Collapse
Affiliation(s)
- Natalia Lis
- Department of Life Sciences and Chemistry, Jacobs University, Bremen 28759, Germany
| | - Zeynep Hein
- Department of Life Sciences and Chemistry, Jacobs University, Bremen 28759, Germany
| | - Swapnil S Ghanwat
- Department of Life Sciences and Chemistry, Jacobs University, Bremen 28759, Germany
| | - Venkat R Ramnarayan
- Department of Life Sciences and Chemistry, Jacobs University, Bremen 28759, Germany
| | - Benedict J Chambers
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm 14152, Sweden
| | - Sebastian Springer
- Department of Life Sciences and Chemistry, Jacobs University, Bremen 28759, Germany
| |
Collapse
|
28
|
Hepatitis C virus modulates signal peptide peptidase to alter host protein processing. Proc Natl Acad Sci U S A 2021; 118:2026184118. [PMID: 34035171 PMCID: PMC8179148 DOI: 10.1073/pnas.2026184118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The mechanism by which hepatitis C virus (HCV) evades immune surveillance and causes chronic infection is unclear. We demonstrate here that HCV core protein interferes with the maturation of major histocompatibility complex (MHC) class I catalyzed by signal peptide peptidase (SPP) and induces degradation via HMG-CoA reductase degradation 1 homolog. In addition, we found that the core protein transmembrane domain is homologous to the human cytomegalovirus US2 protein, whose transmembrane region also targets SPP to impair MHC class I molecule expression in a similar manner. Therefore, our data suggest that SPP represents a potential target for the impairment of MHC class I molecules by DNA and RNA viruses. Immunoevasins are viral proteins that prevent antigen presentation on major histocompatibility complex (MHC) class I, thus evading host immune recognition. Hepatitis C virus (HCV) evades immune surveillance to induce chronic infection; however, how HCV-infected hepatocytes affect immune cells and evade immune recognition remains unclear. Herein, we demonstrate that HCV core protein functions as an immunoevasin. Its expression interfered with the maturation of MHC class I molecules catalyzed by the signal peptide peptidase (SPP) and induced their degradation via HMG-CoA reductase degradation 1 homolog, thereby impairing antigen presentation to CD8+ T cells. The expression of MHC class I in the livers of HCV core transgenic mice and chronic hepatitis C patients was impaired but was restored in patients achieving sustained virological response. Finally, we show that the human cytomegalovirus US2 protein, possessing a transmembrane region structurally similar to the HCV core protein, targets SPP to impair MHC class I molecule expression. Thus, SPP represents a potential target for the impairment of MHC class I molecules by DNA and RNA viruses.
Collapse
|
29
|
Fadl N, Ali E, Salem TZ. COVID-19: Risk Factors Associated with Infectivity and Severity. Scand J Immunol 2021; 93:e13039. [PMID: 33710663 PMCID: PMC8265317 DOI: 10.1111/sji.13039] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 02/06/2023]
Abstract
COVID‐19 is highly transmissible; however, its severity varies from one
individual to another. Variability among different isolates of the virus and among
its receptor (ACE2) may contribute to this severity, but comorbidity plays a major
role on disease prognosis. Many comorbidities have been reported to be associated
with severe COVID‐19 patients. We have collected data from retrospective studies
which include clinical and epidemiological features of patients and categorize them
into severe/mild, ICU/non‐ICU and survivors/dead patients. In this review, we give an
update about SARS‐CoV‐2 structure with emphasis on the possible reasons for the
severity of the virus in patients. We also collected information and patients’ data
to highlight the relation between COVID‐19 patients and comorbidities.
Collapse
Affiliation(s)
- Nahla Fadl
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Esraa Ali
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Tamer Z Salem
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt.,Department of Microbial Genetics, AGERI, ARC, Giza, Egypt.,National Biotechnology Network of Expertise (NBNE), Academy of Science Research and Technology (ASRT), Cairo, Egypt
| |
Collapse
|
30
|
Lee CCD, Watanabe Y, Wu NC, Han J, Kumar S, Pholcharee T, Seabright GE, Allen JD, Lin CW, Yang JR, Liu MT, Wu CY, Ward AB, Crispin M, Wilson IA. A cross-neutralizing antibody between HIV-1 and influenza virus. PLoS Pathog 2021; 17:e1009407. [PMID: 33750987 PMCID: PMC8016226 DOI: 10.1371/journal.ppat.1009407] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 04/01/2021] [Accepted: 02/17/2021] [Indexed: 11/19/2022] Open
Abstract
Incessant antigenic evolution enables the persistence and spread of influenza virus in the human population. As the principal target of the immune response, the hemagglutinin (HA) surface antigen on influenza viruses continuously acquires and replaces N-linked glycosylation sites to shield immunogenic protein epitopes using host-derived glycans. Anti-glycan antibodies, such as 2G12, target the HIV-1 envelope protein (Env), which is even more extensively glycosylated and contains under-processed oligomannose-type clusters on its dense glycan shield. Here, we illustrate that 2G12 can also neutralize human seasonal influenza A H3N2 viruses that have evolved to present similar oligomannose-type clusters on their HAs from around 20 years after the 1968 pandemic. Using structural biology and mass spectrometric approaches, we find that two N-glycosylation sites close to the receptor binding site (RBS) on influenza hemagglutinin represent the oligomannose cluster recognized by 2G12. One of these glycan sites is highly conserved in all human H3N2 strains and the other emerged during virus evolution. These two N-glycosylation sites have also become crucial for fitness of recent H3N2 strains. These findings shed light on the evolution of the glycan shield on influenza virus and suggest 2G12-like antibodies can potentially act as broad neutralizers to target human enveloped viruses.
Collapse
Affiliation(s)
- Chang-Chun D. Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Yasunori Watanabe
- School of Biological Sciences, University of Southampton, Southampton, England, United Kingdom
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, England, United Kingdom
- Division of Structural Biology, University of Oxford, Wellcome Centre for Human Genetics, Oxford, England, United Kingdom
| | - Nicholas C. Wu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Julianna Han
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Sonu Kumar
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Tossapol Pholcharee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Gemma E. Seabright
- School of Biological Sciences, University of Southampton, Southampton, England, United Kingdom
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, England, United Kingdom
| | - Joel D. Allen
- School of Biological Sciences, University of Southampton, Southampton, England, United Kingdom
| | - Chih-Wei Lin
- Department of Chemistry, The Scripps Research Institute, La Jolla, California, United States of America
| | - Ji-Rong Yang
- Centers for Disease Control, Taipei City, Taiwan
| | | | - Chung-Yi Wu
- Genomics Research Center, Academia Sinica, Taipei City, Taiwan
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, England, United Kingdom
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
| |
Collapse
|
31
|
Tipton TRW, Hall Y, Bore JA, White A, Sibley LS, Sarfas C, Yuki Y, Martin M, Longet S, Mellors J, Ewer K, Günther S, Carrington M, Kondé MK, Carroll MW. Characterisation of the T-cell response to Ebola virus glycoprotein amongst survivors of the 2013-16 West Africa epidemic. Nat Commun 2021; 12:1153. [PMID: 33608536 PMCID: PMC7895930 DOI: 10.1038/s41467-021-21411-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 01/26/2021] [Indexed: 11/09/2022] Open
Abstract
Zaire ebolavirus (EBOV) is a highly pathogenic filovirus which can result in Ebola virus disease (EVD); a serious medical condition that presents as flu like symptoms but then often leads to more serious or fatal outcomes. The 2013-16 West Africa epidemic saw an unparalleled number of cases. Here we show characterisation and identification of T cell epitopes in surviving patients from Guinea to the EBOV glycoprotein. We perform interferon gamma (IFNγ) ELISpot using a glycoprotein peptide library to identify T cell epitopes and determine the CD4+ or CD8+ T cell component response. Additionally, we generate data on the T cell phenotype and measure polyfunctional cytokine secretion by these antigen specific cells. We show candidate peptides able to elicit a T cell response in EBOV survivors and provide inferred human leukocyte antigen (HLA) allele restriction. This data informs on the long-term T cell response to Ebola virus disease and highlights potentially important immunodominant peptides.
Collapse
Affiliation(s)
- T R W Tipton
- National Infection Service, Public Health England, Porton Down, Salisbury, UK.
| | - Y Hall
- National Infection Service, Public Health England, Porton Down, Salisbury, UK
| | - J A Bore
- Center for Training and Research on Priority Diseases including Malaria in Guinea (CEFORPAG), Nongo, Conakry, Guinea
| | - A White
- National Infection Service, Public Health England, Porton Down, Salisbury, UK
| | - L S Sibley
- National Infection Service, Public Health England, Porton Down, Salisbury, UK
| | - C Sarfas
- National Infection Service, Public Health England, Porton Down, Salisbury, UK
| | - Y Yuki
- Basic Science Program, Frederick National Laboratory for Cancer Research in the Laboratory of Integrative Cancer Immunology, National Cancer Institute, Frederick, MD, USA
| | - M Martin
- Basic Science Program, Frederick National Laboratory for Cancer Research in the Laboratory of Integrative Cancer Immunology, National Cancer Institute, Frederick, MD, USA
| | - S Longet
- National Infection Service, Public Health England, Porton Down, Salisbury, UK
| | - J Mellors
- National Infection Service, Public Health England, Porton Down, Salisbury, UK
| | - K Ewer
- The Jenner Institute, Oxford, UK
| | - S Günther
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, DE, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Börstel-Riems, Hamburg, DE, Germany
| | - M Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research in the Laboratory of Integrative Cancer Immunology, National Cancer Institute, Frederick, MD, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - M K Kondé
- Center for Training and Research on Priority Diseases including Malaria in Guinea (CEFORPAG), Nongo, Conakry, Guinea
| | - M W Carroll
- National Infection Service, Public Health England, Porton Down, Salisbury, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
32
|
Abstract
Genetically engineered T cell immunotherapies have provided remarkable clinical success to treat B cell acute lymphoblastic leukaemia by harnessing a patient's own T cells to kill cancer, and these approaches have the potential to provide therapeutic benefit for numerous other cancers, infectious diseases and autoimmunity. By introduction of either a transgenic T cell receptor or a chimeric antigen receptor, T cells can be programmed to target cancer cells. However, initial studies have made it clear that the field will need to implement more complex levels of genetic regulation of engineered T cells to ensure both safety and efficacy. Here, we review the principles by which our knowledge of genetics and genome engineering will drive the next generation of adoptive T cell therapies.
Collapse
|
33
|
Agnolon V, Kiseljak D, Wurm MJ, Wurm FM, Foissard C, Gallais F, Wehrle S, Muñoz-Fontela C, Bellanger L, Correia BE, Corradin G, Spertini F. Designs and Characterization of Subunit Ebola GP Vaccine Candidates: Implications for Immunogenicity. Front Immunol 2020; 11:586595. [PMID: 33250896 PMCID: PMC7672190 DOI: 10.3389/fimmu.2020.586595] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/13/2020] [Indexed: 11/13/2022] Open
Abstract
The humoral responses of Ebola virus (EBOV) survivors mainly target the surface glycoprotein GP, and anti-GP neutralizing antibodies have been associated with protection against EBOV infection. In order to elicit protective neutralizing antibodies through vaccination a native-like conformation of the antigen is required. We therefore engineered and expressed in CHO cells several GP variants from EBOV (species Zaire ebolavirus, Mayinga variant), including a soluble GP ΔTM, a mucin-like domain-deleted GP ΔTM-ΔMUC, as well as two GP ΔTM-ΔMUC variants with C-terminal trimerization motifs in order to favor their native trimeric conformation. Inclusion of the trimerization motifs resulted in proteins mimicking GP metastable trimer and showing increased stability. The mucin-like domain appeared not to be critical for the retention of the native conformation of the GP protein, and its removal unmasked several neutralizing epitopes, especially in the trimers. The soluble GP variants inhibited mAbs neutralizing activity in a pseudotype transduction assay, further confirming the proteins' structural integrity. Interestingly, the trimeric GPs, a native-like GP complex, showed stronger affinity for antibodies raised by natural infection in EBOV disease survivors rather than for antibodies raised in volunteers that received the ChAd3-EBOZ vaccine. These results support our hypothesis that neutralizing antibodies are preferentially induced when using a native-like conformation of the GP antigen. The soluble trimeric recombinant GP proteins we developed represent a novel and promising strategy to develop prophylactic vaccines against EBOV and other filoviruses.
Collapse
Affiliation(s)
- Valentina Agnolon
- Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | | | | | - Florian M Wurm
- ExcellGene SA, Monthey, Switzerland.,Faculty of Life Sciences, École Polytechnique Fédérale De Lausanne (EPFL), Lausanne, Switzerland
| | - Charlotte Foissard
- Université Paris Saclay, Commissariat à l'Energie Atomique et aux énergies alternatives (CEA), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Département Médicaments et Technologies pour la Santé (DMTS), SPI, Bagnols-sur-Cèze, France
| | - Fabrice Gallais
- Université Paris Saclay, Commissariat à l'Energie Atomique et aux énergies alternatives (CEA), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Département Médicaments et Technologies pour la Santé (DMTS), SPI, Bagnols-sur-Cèze, France
| | - Sarah Wehrle
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale De Lausanne (EPFL), Lausanne, Switzerland
| | - César Muñoz-Fontela
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,German Center for Infection Research (DZIF), Partner site Hamburg, Hamburg, Germany
| | - Laurent Bellanger
- Université Paris Saclay, Commissariat à l'Energie Atomique et aux énergies alternatives (CEA), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Département Médicaments et Technologies pour la Santé (DMTS), SPI, Bagnols-sur-Cèze, France
| | - Bruno Emanuel Correia
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale De Lausanne (EPFL), Lausanne, Switzerland
| | - Giampietro Corradin
- Department of Biochemistry, Université de Lausanne (UNIL), Epalinges, Switzerland
| | - François Spertini
- Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| |
Collapse
|
34
|
Structure of human endo-α-1,2-mannosidase (MANEA), an antiviral host-glycosylation target. Proc Natl Acad Sci U S A 2020; 117:29595-29601. [PMID: 33154157 PMCID: PMC7703563 DOI: 10.1073/pnas.2013620117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mammalian protein N-linked glycosylation is critical for glycoprotein folding, quality control, trafficking, recognition, and function. N-linked glycans are synthesized from Glc3Man9GlcNAc2 precursors that are trimmed and modified in the endoplasmic reticulum (ER) and Golgi apparatus by glycoside hydrolases and glycosyltransferases. Endo-α-1,2-mannosidase (MANEA) is the sole endo-acting glycoside hydrolase involved in N-glycan trimming and is located within the Golgi, where it allows ER-escaped glycoproteins to bypass the classical N-glycosylation trimming pathway involving ER glucosidases I and II. There is considerable interest in the use of small molecules that disrupt N-linked glycosylation as therapeutic agents for diseases such as cancer and viral infection. Here we report the structure of the catalytic domain of human MANEA and complexes with substrate-derived inhibitors, which provide insight into dynamic loop movements that occur on substrate binding. We reveal structural features of the human enzyme that explain its substrate preference and the mechanistic basis for catalysis. These structures have inspired the development of new inhibitors that disrupt host protein N-glycan processing of viral glycans and reduce the infectivity of bovine viral diarrhea and dengue viruses in cellular models. These results may contribute to efforts aimed at developing broad-spectrum antiviral agents and help provide a more in-depth understanding of the biology of mammalian glycosylation.
Collapse
|
35
|
Gupta AM, Chakrabarti J, Mandal S. Non-synonymous mutations of SARS-CoV-2 leads epitope loss and segregates its variants. Microbes Infect 2020; 22:598-607. [PMID: 33049387 PMCID: PMC7547839 DOI: 10.1016/j.micinf.2020.10.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023]
Abstract
The non-synonymous mutations of SARS-CoV-2 isolated from across the world have been identified during the last few months. The surface glycoprotein spike of SARS-CoV-2 forms the most important hotspot for amino acid alterations followed by the ORF1a/ORF1ab poly-proteins. It is evident that the D614G mutation in spike glycoprotein and P4715L in RdRp is the important determinant of SARS-CoV-2 evolution since its emergence. P4715L in RdRp, G251V in ORF3a and S1498F of Nsp3 is associated with the epitope loss that may influence pathogenesis caused by antibody escape variants. The phylogenomics distinguished the ancestral viral samples from China and most part of Asia, isolated since the initial outbreak and the later evolved variants isolated from Europe and Americas. The evolved variants have been found to predominant globally with the loss of epitopes from its proteins. These have implications for SARS-CoV-2 transmission, pathogenesis and immune interventions.
Collapse
Affiliation(s)
- Aayatti Mallick Gupta
- Department of Chemical, Biological & Macro-Molecular Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata, 700 106, India
| | - Jaydeb Chakrabarti
- Department of Chemical, Biological & Macro-Molecular Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata, 700 106, India
| | - Sukhendu Mandal
- Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
36
|
Jain S, Khaiboullina SF, Baranwal M. Immunological Perspective for Ebola Virus Infection and Various Treatment Measures Taken to Fight the Disease. Pathogens 2020; 9:E850. [PMID: 33080902 PMCID: PMC7603231 DOI: 10.3390/pathogens9100850] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/07/2020] [Accepted: 10/16/2020] [Indexed: 12/19/2022] Open
Abstract
Ebolaviruses, discovered in 1976, belongs to the Filoviridae family, which also includes Marburg and Lloviu viruses. They are negative-stranded RNA viruses with six known species identified to date. Ebola virus (EBOV) is a member of Zaire ebolavirus species and can cause the Ebola virus disease (EVD), an emerging zoonotic disease that results in homeostatic imbalance and multi-organ failure. There are three EBOV outbreaks documented in the last six years resulting in significant morbidity (> 32,000 cases) and mortality (> 13,500 deaths). The potential factors contributing to the high infectivity of this virus include multiple entry mechanisms, susceptibility of the host cells, employment of multiple immune evasion mechanisms and rapid person-to-person transmission. EBOV infection leads to cytokine storm, disseminated intravascular coagulation, host T cell apoptosis as well as cell mediated and humoral immune response. In this review, a concise recap of cell types targeted by EBOV and EVD symptoms followed by detailed run-through of host innate and adaptive immune responses, virus-driven regulation and their combined effects contributing to the disease pathogenesis has been presented. At last, the vaccine and drug development initiatives as well as challenges related to the management of infection have been discussed.
Collapse
Affiliation(s)
- Sahil Jain
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala 147004, Punjab, India;
| | - Svetlana F. Khaiboullina
- Department of Microbiology and Immunology, University of Nevada, Reno, NV 89557, USA
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Tatarstan, Russia
| | - Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala 147004, Punjab, India;
| |
Collapse
|
37
|
Forna A, Nouvellet P, Dorigatti I, Donnelly CA. Case Fatality Ratio Estimates for the 2013-2016 West African Ebola Epidemic: Application of Boosted Regression Trees for Imputation. Clin Infect Dis 2020; 70:2476-2483. [PMID: 31328221 PMCID: PMC7286386 DOI: 10.1093/cid/ciz678] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/17/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The 2013-2016 West African Ebola epidemic has been the largest to date with >11 000 deaths in the affected countries. The data collected have provided more insight into the case fatality ratio (CFR) and how it varies with age and other characteristics. However, the accuracy and precision of the naive CFR remain limited because 44% of survival outcomes were unreported. METHODS Using a boosted regression tree model, we imputed survival outcomes (ie, survival or death) when unreported, corrected for model imperfection to estimate the CFR without imputation, with imputation, and adjusted with imputation. The method allowed us to further identify and explore relevant clinical and demographic predictors of the CFR. RESULTS The out-of-sample performance (95% confidence interval [CI]) of our model was good: sensitivity, 69.7% (52.5-75.6%); specificity, 69.8% (54.1-75.6%); percentage correctly classified, 69.9% (53.7-75.5%); and area under the receiver operating characteristic curve, 76.0% (56.8-82.1%). The adjusted CFR estimates (95% CI) for the 2013-2016 West African epidemic were 82.8% (45.6-85.6%) overall and 89.1% (40.8-91.6%), 65.6% (61.3-69.6%), and 79.2% (45.4-84.1%) for Sierra Leone, Guinea, and Liberia, respectively. We found that district, hospitalisation status, age, case classification, and quarter (date of case reporting aggregated at three-month intervals) explained 93.6% of the variance in the naive CFR. CONCLUSIONS The adjusted CFR estimates improved the naive CFR estimates obtained without imputation and were more representative. Used in conjunction with other resources, adjusted estimates will inform public health contingency planning for future Ebola epidemics, and help better allocate resources and evaluate the effectiveness of future inventions.
Collapse
Affiliation(s)
- Alpha Forna
- Medical Research Council Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Brighton, Brighton, United Kingdom, and Imperial College London, London, United Kingdom
| | - Pierre Nouvellet
- Medical Research Council Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Brighton, Brighton, United Kingdom, and Imperial College London, London, United Kingdom
- School of Life Sciences, University of Sussex, Brighton, Brighton, United Kingdom
| | - Ilaria Dorigatti
- Medical Research Council Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Brighton, Brighton, United Kingdom, and Imperial College London, London, United Kingdom
| | - Christl A Donnelly
- Medical Research Council Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Brighton, Brighton, United Kingdom, and Imperial College London, London, United Kingdom
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
38
|
Mucin-Like Domain of Ebola Virus Glycoprotein Enhances Selective Oncolytic Actions against Brain Tumors. J Virol 2020; 94:JVI.01967-19. [PMID: 32051271 DOI: 10.1128/jvi.01967-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/03/2020] [Indexed: 01/24/2023] Open
Abstract
Given that the Ebola virus (EBOV) infects a wide array of organs and cells yet displays a relative lack of neurotropism, we asked whether a chimeric vesicular stomatitis virus (VSV) expressing the EBOV glycoprotein (GP) might selectively target brain tumors. The mucin-like domain (MLD) of the EBOV GP may enhance virus immune system evasion. Here, we compared chimeric VSVs in which EBOV GP replaces the VSV glycoprotein, thereby reducing the neurotoxicity associated with wild-type VSV. A chimeric VSV expressing the full-length EBOV GP (VSV-EBOV) containing the MLD was substantially more effective and safer than a parallel construct with an EBOV GP lacking the MLD (VSV-EBOVΔMLD). One-step growth, reverse transcription-quantitative PCR, and Western blotting assessments showed that VSV-EBOVΔMLD produced substantially more progeny faster than VSV-EBOV. Using immunodeficient SCID mice, we focused on targeting human brain tumors with these VSV-EBOVs. Similar to the findings of our previous study in which we used an attenuated VSV-EBOV with no MLD that expressed green fluorescent protein (GFP) (VSV-EBOVΔMLD-GFP), VSV-EBOVΔMLD without GFP targeted glioma but yielded only a modest extension of survival. In contrast, VSV-EBOV containing the MLD showed substantially better targeting and elimination of brain tumors after intravenous delivery and increased the survival of brain tumor-bearing mice. Despite the apparent destruction of most tumor cells by VSV-EBOVΔMLD, the virus remained active within the SCID mouse brain and showed widespread infection of normal brain cells. In contrast, VSV-EBOV eliminated the tumors and showed relatively little infection of normal brain cells. Parallel experiments with direct intracranial virus infection generated similar results. Neither VSV-EBOV nor VSV-EBOVΔMLD showed substantive infection of the brains of normal immunocompetent mice.IMPORTANCE The Ebola virus glycoprotein contains a mucin-like domain which may play a role in immune evasion. Chimeric vesicular stomatitis viruses with the EBOV glycoprotein substituted for the VSV glycoprotein show greater safety and efficacy in targeting brain tumors in immunodeficient mice when the MLD was expressed within the EBOV glycoprotein than when EBOV lacked the mucin-like domain.
Collapse
|
39
|
Iraqi M, Edri A, Greenshpan Y, Kundu K, Bolel P, Cahana A, Ottolenghi A, Gazit R, Lobel L, Braiman A, Porgador A. N-Glycans Mediate the Ebola Virus-GP1 Shielding of Ligands to Immune Receptors and Immune Evasion. Front Cell Infect Microbiol 2020; 10:48. [PMID: 32211339 PMCID: PMC7068452 DOI: 10.3389/fcimb.2020.00048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/24/2020] [Indexed: 12/14/2022] Open
Abstract
The Ebola Virus (EBOV) glycoprotein (GP) sterically shields cell-membrane ligands to immune receptors such as human leukocyte antigen class-1 (HLA-I) and MHC class I polypeptide-related sequence A (MICA), thus mediating immunity evasion. It was suggested that the abundant N-glycosylation of the EBOV-GP is involved in this steric shielding. We aimed to characterize (i) the GP N-glycosylation sites contributing to the shielding, and (ii) the effect of mutating these sites on immune subversion by the EBOV-GP. The two highly glycosylated domains of GP are the mucin-like domain (MLD) and the glycan cap domain (GCD) with three and six N-glycosylation sites, respectively. We mutated the N-glycosylation sites either in MLD or in GCD or in both domains. We showed that the glycosylation sites in both the MLD and GCD domains contribute to the steric shielding. This was shown for the steric shielding of either HLA-I or MICA. We then employed the fluorescence resonance energy transfer (FRET) method to measure the effect of N-glycosylation site removal on the distance in the cell membrane between the EBOV-GP and HLA-I (HLA.A*0201 allele). We recorded high FRET values for the interaction of CFP-fused HLA.A*0201 and YFP-fused EBOV-GP, demonstrating the very close distance (<10 nm) between these two proteins on the cell membrane of GP-expressing cells. The co-localization of HLA-I and Ebola GP was unaffected by the disruption of steric shielding, as the removal of N-glycosylation sites on Ebola GP revealed similar FRET values with HLA-I. However, these mutations directed to N-glycosylation sites had restored immune cell function otherwise impaired due to steric shielding over immune cell ligands by WT Ebola GP. Overall, we showed that the GP-mediated steric shielding aimed to impair immune function is facilitated by the N-glycans protruding from its MLD and GCD domains, but these N-glycans are not controlling the close distance between GP and its shielded proteins.
Collapse
Affiliation(s)
- Muhammed Iraqi
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Avishay Edri
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Yariv Greenshpan
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Kiran Kundu
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel.,National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Priyanka Bolel
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Avishag Cahana
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Aner Ottolenghi
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Roi Gazit
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Leslie Lobel
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Alex Braiman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Angel Porgador
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel.,National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| |
Collapse
|
40
|
Efficient Expression and Processing of Ebola Virus Glycoprotein Induces Morphological Changes in BmN Cells but Cannot Rescue Deficiency of Bombyx Mori Nucleopolyhedrovirus GP64. Viruses 2019; 11:v11111067. [PMID: 31731691 PMCID: PMC6893839 DOI: 10.3390/v11111067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 01/08/2023] Open
Abstract
Ebola virus (EBOV) disease outbreaks have resulted in many fatalities, yet no licensed vaccines are available to prevent infection. Recombinant glycoprotein (GP) production may contribute to finding a cure for Ebola virus disease, which is the key candidate protein for vaccine preparation. To explore GP1,2 expression in BmN cells, EBOV-GP1,2 with its native signal peptide or the GP64 signal peptide was cloned and transferred into a normal or gp64 null Bombyx mori nucleopolyhedrovirus (BmNPV) bacmid via transposition. The infectivity of the recombinant bacmids was investigated after transfection, expression and localization of EBOV-GP were investigated, and cell morphological changes were analyzed by TEM. The GP64 signal peptide, but not the GP1,2 native signal peptide, caused GP1,2 localization to the cell membrane, and the differentially localized GP1,2 proteins were cleaved into GP1 and GP2 fragments in BmN cells. GP1,2 expression resulted in dramatic morphological changes in BmN cells in the early stage of infection. However, GP1,2 expression did not rescue GP64 deficiency in BmNPV infection. This study provides a better understanding of GP expression and processing in BmN cells, which may lay a foundation for EBOV-GP expression using the BmNPV baculovirus expression system.
Collapse
|
41
|
Chan M, Holtsberg FW, Vu H, Howell KA, Leung A, Van der Hart E, Walz PH, Aman MJ, Kodihalli S, Kobasa D. Efficacy of Ebola Glycoprotein-Specific Equine Polyclonal Antibody Product Against Lethal Ebola Virus Infection in Guinea Pigs. J Infect Dis 2019; 218:S603-S611. [PMID: 29955852 DOI: 10.1093/infdis/jiy329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Indexed: 02/06/2023] Open
Abstract
Background Filoviruses including Ebola, Sudan, and other species are emerging zoonotic pathogens representing a significant public health concern with high outbreak potential, and they remain a potential bioterrorism-related threat. We have developed a despeciated equine Ebola polyclonal antibody (E-EIG) postexposure treatment against Ebola virus (EBOV) and evaluated its efficacy in the guinea pig model of EBOV infection. Methods Guinea pigs were infected with guinea pig-adapted EBOV (Mayinga strain) and treated with various dose levels of E-EIG (20-100 mg/kg) twice daily for 6 days starting at 24 h postinfection. The E-EIG was also assessed for neutralization activity against related filoviruses including EBOV strains Mayinga, Kikwit, and Makona and the Bundibugyo and Taï Forest ebolavirus species. Results Treatment with E-EIG conferred 83% to 100% protection in guinea pigs. The results demonstrated a comparable neutralization activity (range, 1:512-1:896) of E-EIG against all tested strains, suggesting the potential for cross-protection with the polyclonal antibody therapeutic. Conclusions This study showed that equine-derived polyclonal antibodies are efficacious against lethal EBOV disease in a relevant animal model. Furthermore, the studies support the utility of the equine antibody platform for the rapid production of a therapeutic product in the event of an outbreak by a filovirus or other zoonotic pathogen.
Collapse
Affiliation(s)
- Mable Chan
- Special Pathogens, Public Health Agency of Canada, Winnipeg, Manitoba.,Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | | | - Hong Vu
- Integrated BioTherapeutics, Rockville, Maryland
| | | | - Anders Leung
- Special Pathogens, Public Health Agency of Canada, Winnipeg, Manitoba
| | | | - Paul H Walz
- Department of Pathobiology, Auburn University, Alabama
| | | | - Shantha Kodihalli
- Research and Development, Emergent BioSolutions Canada, Winnipeg, Manitoba
| | - Darwyn Kobasa
- Special Pathogens, Public Health Agency of Canada, Winnipeg, Manitoba.,Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
42
|
Watanabe Y, Bowden TA, Wilson IA, Crispin M. Exploitation of glycosylation in enveloped virus pathobiology. Biochim Biophys Acta Gen Subj 2019; 1863:1480-1497. [PMID: 31121217 PMCID: PMC6686077 DOI: 10.1016/j.bbagen.2019.05.012] [Citation(s) in RCA: 346] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/13/2019] [Accepted: 05/17/2019] [Indexed: 12/12/2022]
Abstract
Glycosylation is a ubiquitous post-translational modification responsible for a multitude of crucial biological roles. As obligate parasites, viruses exploit host-cell machinery to glycosylate their own proteins during replication. Viral envelope proteins from a variety of human pathogens including HIV-1, influenza virus, Lassa virus, SARS, Zika virus, dengue virus, and Ebola virus have evolved to be extensively glycosylated. These host-cell derived glycans facilitate diverse structural and functional roles during the viral life-cycle, ranging from immune evasion by glycan shielding to enhancement of immune cell infection. In this review, we highlight the imperative and auxiliary roles glycans play, and how specific oligosaccharide structures facilitate these functions during viral pathogenesis. We discuss the growing efforts to exploit viral glycobiology in the development of anti-viral vaccines and therapies.
Collapse
Affiliation(s)
- Yasunori Watanabe
- School of Biological Sciences and Institute of Life Sciences, University of Southampton, Southampton SO17 1BJ, UK; Division of Structural Biology, University of Oxford, Wellcome Centre for Human Genetics, Oxford OX3 7BN, UK; Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Thomas A Bowden
- Division of Structural Biology, University of Oxford, Wellcome Centre for Human Genetics, Oxford OX3 7BN, UK
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Max Crispin
- School of Biological Sciences and Institute of Life Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
43
|
Olukitibi TA, Ao Z, Mahmoudi M, Kobinger GA, Yao X. Dendritic Cells/Macrophages-Targeting Feature of Ebola Glycoprotein and its Potential as Immunological Facilitator for Antiviral Vaccine Approach. Microorganisms 2019; 7:E402. [PMID: 31569539 PMCID: PMC6843631 DOI: 10.3390/microorganisms7100402] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/19/2019] [Accepted: 09/26/2019] [Indexed: 01/06/2023] Open
Abstract
In the prevention of epidemic and pandemic viral infection, the use of the antiviral vaccine has been the most successful biotechnological and biomedical approach. In recent times, vaccine development studies have focused on recruiting and targeting immunogens to dendritic cells (DCs) and macrophages to induce innate and adaptive immune responses. Interestingly, Ebola virus (EBOV) glycoprotein (GP) has a strong binding affinity with DCs and macrophages. Shreds of evidence have also shown that the interaction between EBOV GP with DCs and macrophages leads to massive recruitment of DCs and macrophages capable of regulating innate and adaptive immune responses. Therefore, studies for the development of vaccine can utilize the affinity between EBOV GP and DCs/macrophages as a novel immunological approach to induce both innate and acquired immune responses. In this review, we will discuss the unique features of EBOV GP to target the DC, and its potential to elicit strong immune responses while targeting DCs/macrophages. This review hopes to suggest and stimulate thoughts of developing a stronger and effective DC-targeting vaccine for diverse virus infection using EBOV GP.
Collapse
Affiliation(s)
- Titus Abiola Olukitibi
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Zhujun Ao
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Mona Mahmoudi
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Gary A Kobinger
- Centre de Recherche en Infectiologie de l' Université Laval/Centre Hospitalier de l' Université Laval (CHUL), Québec, QC G1V 4G2, Canada.
| | - Xiaojian Yao
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| |
Collapse
|
44
|
Covés-Datson EM, Dyall J, DeWald LE, King SR, Dube D, Legendre M, Nelson E, Drews KC, Gross R, Gerhardt DM, Torzewski L, Postnikova E, Liang JY, Ban B, Shetty J, Hensley LE, Jahrling PB, Olinger GG, White JM, Markovitz DM. Inhibition of Ebola Virus by a Molecularly Engineered Banana Lectin. PLoS Negl Trop Dis 2019; 13:e0007595. [PMID: 31356611 PMCID: PMC6687191 DOI: 10.1371/journal.pntd.0007595] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 08/08/2019] [Accepted: 07/02/2019] [Indexed: 12/14/2022] Open
Abstract
Ebolaviruses cause an often rapidly fatal syndrome known as Ebola virus disease (EVD), with average case fatality rates of ~50%. There is no licensed vaccine or treatment for EVD, underscoring the urgent need to develop new anti-ebolavirus agents, especially in the face of an ongoing outbreak in the Democratic Republic of the Congo and the largest ever outbreak in Western Africa in 2013-2016. Lectins have been investigated as potential antiviral agents as they bind glycans present on viral surface glycoproteins, but clinical use of them has been slowed by concerns regarding their mitogenicity, i.e. ability to cause immune cell proliferation. We previously engineered a banana lectin (BanLec), a carbohydrate-binding protein, such that it retained antiviral activity but lost mitogenicity by mutating a single amino acid, yielding H84T BanLec (H84T). H84T shows activity against viruses containing high-mannose N-glycans, including influenza A and B, HIV-1 and -2, and hepatitis C virus. Since ebolavirus surface glycoproteins also contain many high-mannose N-glycans, we assessed whether H84T could inhibit ebolavirus replication. H84T inhibited Ebola virus (EBOV) replication in cell cultures. In cells, H84T inhibited both virus-like particle (VLP) entry and transcription/replication of the EBOV mini-genome at high micromolar concentrations, while inhibiting infection by transcription- and replication-competent VLPs, which measures the full viral life cycle, in the low micromolar range. H84T did not inhibit assembly, budding, or release of VLPs. These findings suggest that H84T may exert its anti-ebolavirus effect(s) by blocking both entry and transcription/replication. In a mouse model, H84T partially (maximally, ~50-80%) protected mice from an otherwise lethal mouse-adapted EBOV infection. Interestingly, a single dose of H84T pre-exposure to EBOV protected ~80% of mice. Thus, H84T shows promise as a new anti-ebolavirus agent with potential to be used in combination with vaccination or other agents in a prophylactic or therapeutic regimen.
Collapse
Affiliation(s)
- Evelyn M. Covés-Datson
- Medical Scientist Training Program, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Julie Dyall
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, United States of America
| | - Lisa Evans DeWald
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, United States of America
| | - Steven R. King
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Derek Dube
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Maureen Legendre
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Elizabeth Nelson
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Kelly C. Drews
- Department of Pathology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Robin Gross
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, United States of America
| | - Dawn M. Gerhardt
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, United States of America
| | - Lisa Torzewski
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, United States of America
| | - Elena Postnikova
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, United States of America
| | - Janie Y. Liang
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, United States of America
| | - Bhupal Ban
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, United States of America
- Antibody Engineering and Technology Core, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jagathpala Shetty
- Antibody Engineering and Technology Core, University of Virginia, Charlottesville, Virginia, United States of America
| | - Lisa E. Hensley
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, United States of America
| | - Peter B. Jahrling
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, United States of America
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, United States of America
| | - Gene G. Olinger
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, United States of America
| | - Judith M. White
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Microbiology, University of Virginia, Charlottesville, Virginia, United States of America
| | - David M. Markovitz
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, United States of America
- Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
- Cancer Biology Program, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
45
|
Hargett AA, Renfrow MB. Glycosylation of viral surface proteins probed by mass spectrometry. Curr Opin Virol 2019; 36:56-66. [PMID: 31202133 PMCID: PMC7102858 DOI: 10.1016/j.coviro.2019.05.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 12/17/2022]
Abstract
Glycosylation is a common and biologically significant post-translational modification that is found on numerous virus surface proteins (VSPs). Many of these glycans affect virulence through modulating virus receptor binding, masking antigenic sites, or by stimulating the host immune response. Mass spectrometry (MS) has arisen as a pivotal technique for the characterization of VSP glycosylation. This review will cover how MS-based analyses, such as released glycan profiles, glycan site localization, site-occupancy, and site-specific heterogeneity, are being utilized to map VSP glycosylation. Furthermore, this review will provide information on how MS glycoprofiling data are being used in conjunction with molecular and structural experiments to provide a better understanding of the role of specific glycans in VSP function.
Collapse
Affiliation(s)
- Audra A Hargett
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Matthew B Renfrow
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
46
|
Davis CW, Jackson KJL, McElroy AK, Halfmann P, Huang J, Chennareddy C, Piper AE, Leung Y, Albariño CG, Crozier I, Ellebedy AH, Sidney J, Sette A, Yu T, Nielsen SCA, Goff AJ, Spiropoulou CF, Saphire EO, Cavet G, Kawaoka Y, Mehta AK, Glass PJ, Boyd SD, Ahmed R. Longitudinal Analysis of the Human B Cell Response to Ebola Virus Infection. Cell 2019; 177:1566-1582.e17. [PMID: 31104840 PMCID: PMC6908968 DOI: 10.1016/j.cell.2019.04.036] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 02/11/2019] [Accepted: 04/16/2019] [Indexed: 01/12/2023]
Abstract
Ebola virus (EBOV) remains a public health threat. We performed a longitudinal study of B cell responses to EBOV in four survivors of the 2014 West African outbreak. Infection induced lasting EBOV-specific immunoglobulin G (IgG) antibodies, but their subclass composition changed over time, with IgG1 persisting, IgG3 rapidly declining, and IgG4 appearing late. Striking changes occurred in the immunoglobulin repertoire, with massive recruitment of naive B cells that subsequently underwent hypermutation. We characterized a large panel of EBOV glycoprotein-specific monoclonal antibodies (mAbs). Only a small subset of mAbs that bound glycoprotein by ELISA recognized cell-surface glycoprotein. However, this subset contained all neutralizing mAbs. Several mAbs protected against EBOV disease in animals, including one mAb that targeted an epitope under evolutionary selection during the 2014 outbreak. Convergent antibody evolution was seen across multiple donors, particularly among VH3-13 neutralizing antibodies specific for the GP1 core. Our study provides a benchmark for assessing EBOV vaccine-induced immunity. Ebola virus infection causes massive recruitment of naive B cells Virus-specific antibodies continue to class-switch and mutate for months after acute infection Protective antibodies can be neutralizing or non-neutralizing and can appear early Convergent, protective antibody rearrangements are seen in multiple donors
Collapse
Affiliation(s)
- Carl W Davis
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Katherine J L Jackson
- Department of Pathology, Stanford University, Stanford, CA, USA; Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Anita K McElroy
- Viral Special Pathogens Branch, US Centers for Disease Control and Prevention, Atlanta, GA, USA; Division of Pediatric Infectious Disease, Emory University, Atlanta, GA, USA; Division of Pediatric Infectious Disease, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter Halfmann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, WI, USA
| | - Jessica Huang
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Chakravarthy Chennareddy
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Ashley E Piper
- Virology Division, United States Army Medical Research Institute for Infectious Diseases, Fort Detrick, MD, USA
| | | | - César G Albariño
- Viral Special Pathogens Branch, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ian Crozier
- Integrated Research Facility at Fort Detrick, Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institutes, Frederick, MD, USA
| | - Ali H Ellebedy
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA; Division of Immunobiology, Department of Pathology and Immunology Washington University School of Medicine, St. Louis, MO, USA
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA; Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Tianwei Yu
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, USA
| | | | - Arthur J Goff
- Virology Division, United States Army Medical Research Institute for Infectious Diseases, Fort Detrick, MD, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Erica Ollman Saphire
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA; La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, WI, USA; Division of Virology, Department of Microbiology and Immunology, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Aneesh K Mehta
- Division of Infectious Diseases, School of Medicine, Emory University, Atlanta, GA, USA
| | - Pamela J Glass
- Virology Division, United States Army Medical Research Institute for Infectious Diseases, Fort Detrick, MD, USA
| | - Scott D Boyd
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Rafi Ahmed
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA.
| |
Collapse
|
47
|
Simon EJ, Linstedt AD. Site-specific glycosylation of Ebola virus glycoprotein by human polypeptide GalNAc-transferase 1 induces cell adhesion defects. J Biol Chem 2018; 293:19866-19873. [PMID: 30389789 PMCID: PMC6314128 DOI: 10.1074/jbc.ra118.005375] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/31/2018] [Indexed: 01/26/2023] Open
Abstract
The surface glycoprotein (GP) of Ebola virus causes many of the virus's pathogenic effects, including a dramatic loss of endothelial cell adhesion associated with widespread hemorrhaging during infection. Although the GP-mediated deadhesion depends on its extracellular mucin-like domain, it is unknown whether any, or all, of this domain's densely clustered O-glycosylation sites are required. It is also unknown whether any of the 20 distinct polypeptide GalNAc-transferases (ppGalNAc-Ts) that initiate mucin-type O-glycosylation in human cells are functionally required. Here, using HEK293 cell lines lacking specific glycosylation enzymes, we demonstrate that GP requires extended O-glycans to exert its deadhesion effect. We also identified ppGalNAc-T1 as largely required for the GP-mediated adhesion defects. Despite its profound effect on GP function, the absence of ppGalNAc-T1 only modestly reduced the O-glycan mass of GP, indicating that even small changes in the bulky glycodomain can cause loss of GP function. Indeed, protein-mapping studies identified a small segment of the mucin-like domain critical for function and revealed that mutation of five glycan acceptor sites within this segment are sufficient to abrogate GP function. Together, these results argue against a mechanism of Ebola GP-induced cell detachment that depends solely on ectodomain bulkiness and identify a single host-derived glycosylation enzyme, ppGalNAc-T1, as a potential target for therapeutic intervention against Ebola virus disease.
Collapse
Affiliation(s)
- Emily J Simon
- From the Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Adam D Linstedt
- From the Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
48
|
Leemans A, Boeren M, Van der Gucht W, Pintelon I, Roose K, Schepens B, Saelens X, Bailey D, Martinet W, Caljon G, Maes L, Cos P, Delputte P. Removal of the N-Glycosylation Sequon at Position N116 Located in p27 of the Respiratory Syncytial Virus Fusion Protein Elicits Enhanced Antibody Responses after DNA Immunization. Viruses 2018; 10:E426. [PMID: 30110893 PMCID: PMC6115940 DOI: 10.3390/v10080426] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/08/2018] [Accepted: 08/13/2018] [Indexed: 11/16/2022] Open
Abstract
Prevention of severe lower respiratory tract infections in infants caused by the human respiratory syncytial virus (hRSV) remains a major public health priority. Currently, the major focus of vaccine development relies on the RSV fusion (F) protein since it is the main target protein for neutralizing antibodies induced by natural infection. The protein conserves 5 N-glycosylation sites, two of which are located in the F2 subunit (N27 and N70), one in the F1 subunit (N500) and two in the p27 peptide (N116 and N126). To study the influence of the loss of one or more N-glycosylation sites on RSV F immunogenicity, BALB/c mice were immunized with plasmids encoding RSV F glycomutants. In comparison with F WT DNA immunized mice, higher neutralizing titres were observed following immunization with F N116Q. Moreover, RSV A2-K-line19F challenge of mice that had been immunized with mutant F N116Q DNA was associated with lower RSV RNA levels compared with those in challenged WT F DNA immunized animals. Since p27 is assumed to be post-translationally released after cleavage and thus not present on the mature RSV F protein, it remains to be elucidated how deletion of this glycan can contribute to enhanced antibody responses and protection upon challenge. These findings provide new insights to improve the immunogenicity of RSV F in potential vaccine candidates.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/biosynthesis
- Antibodies, Neutralizing/blood
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/blood
- Female
- Glycosylation
- Humans
- Hydrolysis
- Immunization
- Mice
- Mice, Inbred BALB C
- Models, Molecular
- Mutation
- Plasmids/administration & dosage
- Plasmids/genetics
- Plasmids/immunology
- Protein Engineering
- Protein Subunits/administration & dosage
- Protein Subunits/genetics
- Protein Subunits/immunology
- Respiratory Syncytial Virus Infections/immunology
- Respiratory Syncytial Virus Infections/prevention & control
- Respiratory Syncytial Virus Infections/virology
- Respiratory Syncytial Virus Vaccines/administration & dosage
- Respiratory Syncytial Virus Vaccines/genetics
- Respiratory Syncytial Virus Vaccines/immunology
- Respiratory Syncytial Virus, Human/drug effects
- Respiratory Syncytial Virus, Human/genetics
- Respiratory Syncytial Virus, Human/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Viral Fusion Proteins/administration & dosage
- Viral Fusion Proteins/genetics
- Viral Fusion Proteins/immunology
- Viral Load/drug effects
Collapse
Affiliation(s)
- Annelies Leemans
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, B-2610 Antwerp, Belgium.
| | - Marlies Boeren
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, B-2610 Antwerp, Belgium.
| | - Winke Van der Gucht
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, B-2610 Antwerp, Belgium.
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, University of Antwerp, B-2610 Antwerp, Belgium.
| | - Kenny Roose
- Medical Biotechnology Centre, VIB, B-9052 Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium.
| | - Bert Schepens
- Medical Biotechnology Centre, VIB, B-9052 Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium.
| | - Xavier Saelens
- Medical Biotechnology Centre, VIB, B-9052 Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium.
| | | | - Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, B-2610 Antwerp, Belgium.
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, B-2610 Antwerp, Belgium.
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, B-2610 Antwerp, Belgium.
| | - Paul Cos
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, B-2610 Antwerp, Belgium.
| | - Peter Delputte
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, B-2610 Antwerp, Belgium.
| |
Collapse
|
49
|
Bagdonaite I, Vakhrushev SY, Joshi HJ, Wandall HH. Viral glycoproteomes: technologies for characterization and outlook for vaccine design. FEBS Lett 2018; 592:3898-3920. [PMID: 29961944 DOI: 10.1002/1873-3468.13177] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/13/2018] [Accepted: 06/26/2018] [Indexed: 12/27/2022]
Abstract
It has long been known that surface proteins of most enveloped viruses are covered with glycans. It has furthermore been demonstrated that glycosylation is essential for propagation and immune evasion for many viruses. The recent development of high-resolution mass spectrometry techniques has enabled identification not only of the precise structures but also the positions of such post-translational modifications on viruses, revealing substantial differences in extent of glycosylation and glycan maturation for different classes of viruses. In-depth characterization of glycosylation and other post-translational modifications of viral envelope glycoproteins is essential for rational design of vaccines and antivirals. In this Review, we provide an overview of techniques used to address viral glycosylation and summarize information on glycosylation of enveloped viruses representing ongoing public health challenges. Furthermore, we discuss how knowledge on glycosylation can be translated to means to prevent and combat viral infections.
Collapse
Affiliation(s)
- Ieva Bagdonaite
- Department of Cellular and Molecular Medicine, Copenhagen Center for Glycomics, University of Copenhagen, Denmark
| | - Sergey Y Vakhrushev
- Department of Cellular and Molecular Medicine, Copenhagen Center for Glycomics, University of Copenhagen, Denmark
| | - Hiren J Joshi
- Department of Cellular and Molecular Medicine, Copenhagen Center for Glycomics, University of Copenhagen, Denmark
| | - Hans H Wandall
- Department of Cellular and Molecular Medicine, Copenhagen Center for Glycomics, University of Copenhagen, Denmark
| |
Collapse
|
50
|
Edri A, Shemesh A, Iraqi M, Matalon O, Brusilovsky M, Hadad U, Radinsky O, Gershoni-Yahalom O, Dye JM, Mandelboim O, Barda-Saad M, Lobel L, Porgador A. The Ebola-Glycoprotein Modulates the Function of Natural Killer Cells. Front Immunol 2018; 9:1428. [PMID: 30013549 PMCID: PMC6036185 DOI: 10.3389/fimmu.2018.01428] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/08/2018] [Indexed: 12/23/2022] Open
Abstract
The Ebola virus (EBOV) uses evasion mechanisms that directly interfere with host T-cell antiviral responses. By steric shielding of human leukocyte antigen class-1, the Ebola glycoprotein (GP) blocks interaction with T-cell receptors (TCRs), thus rendering T cells unable to attack virus-infected cells. It is likely that this mechanism could promote increased natural killer (NK) cell activity against GP-expressing cells by preventing the engagement of NK inhibitory receptors; however, we found that primary human NK cells were less reactive to GP-expressing HEK293T cells. This was manifested as reduced cytokine secretion, a reduction in NK degranulation, and decreased lysis of GP-expressing target cells. We also demonstrated reduced recognition of GP-expressing cells by recombinant NKG2D and NKp30 receptors. In accordance, we showed a reduced monoclonal antibody-based staining of NKG2D and NKp30 ligands on GP-expressing target cells. Trypsin digestion of the membrane-associated GP led to a recovery of the recognition of membrane-associated NKG2D and NKp30 ligands. We further showed that membrane-associated GP did not shield recognition by KIR2DL receptors; in accordance, GP expression by target cells significantly perturbed signal transduction through activating, but not through inhibitory, receptors. Our results suggest a novel evasion mechanism employed by the EBOV to specifically avoid the NK cell immune response.
Collapse
Affiliation(s)
- Avishay Edri
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Avishai Shemesh
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Muhammed Iraqi
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Omri Matalon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Michael Brusilovsky
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Uzi Hadad
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Olga Radinsky
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Orly Gershoni-Yahalom
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - John M Dye
- U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Ofer Mandelboim
- The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel Canada of the Faculty of Medicine (IMRIC), The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Mira Barda-Saad
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Leslie Lobel
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,Department of Emerging and Reemerging Diseases and Special Pathogens Uganda Virus Research Institute (UVRI), Entebbe, Uganda
| | - Angel Porgador
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|