1
|
Becker SL, Vague M, Ortega-Loayza AG. Insights into the Pathogenesis of Pyoderma Gangrenosum. J Invest Dermatol 2025; 145:1305-1322. [PMID: 39718519 DOI: 10.1016/j.jid.2024.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/31/2024] [Accepted: 09/25/2024] [Indexed: 12/25/2024]
Abstract
Pyoderma gangrenosum (PG) is a neutrophilic dermatosis of unclear etiology. Numerous theories of its underlying pathogenesis have been proposed, including external triggers, neutrophilic dysfunction, complement activation, and autoimmunity, as well as a possible component of underlying genetic susceptibility. This review seeks to synthesize current understanding of the pathogenesis of PG and integrate interactions between the multitude of implicated host immune pathways to guide and inform future directions into the treatment of PG.
Collapse
Affiliation(s)
- Sarah L Becker
- Department of Dermatology, Oregon Health and Science University, Portland, Oregon, USA
| | - Morgan Vague
- Department of Dermatology, Oregon Health and Science University, Portland, Oregon, USA
| | - Alex G Ortega-Loayza
- Department of Dermatology, Oregon Health and Science University, Portland, Oregon, USA.
| |
Collapse
|
2
|
Jo Y, Greene TT, Chiale C, Zhang K, Fang Z, Dallari S, Marooki N, Wang W, Zuniga EI. Genomic analysis of progenitors in viral infection implicates glucocorticoids as suppressors of plasmacytoid dendritic cell generation. Proc Natl Acad Sci U S A 2025; 122:e2410092122. [PMID: 40294270 PMCID: PMC12067256 DOI: 10.1073/pnas.2410092122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 02/19/2025] [Indexed: 04/30/2025] Open
Abstract
Plasmacytoid Dendritic cells (pDCs) are the most potent producers of interferons, which are critical antiviral cytokines. pDC development is, however, compromised following a viral infection, and this phenomenon, as well as its relationship to conventional (c)DC development is still incompletely understood. By using lymphocytic choriomeningitis virus (LCMV) infection in mice as a model system, we observed that DC progenitors skewed away from pDC and toward cDC development during in vivo viral infection. Subsequent characterization of the transcriptional and epigenetic landscape of fms-like tyrosine kinase 3+ (Flt3+) DC progenitors and follow-up studies revealed increased apoptosis and reduced proliferation in different individual DC-progenitors as well as a profound type I interferon (IFN-I)-dependent ablation of pre-pDCs, but not pre-DC precursors, after both acute and chronic LCMV infections. In addition, integrated genomic analysis identified altered activity of 34 transcription factors in Flt3+ DC progenitors from infected mice, including two regulators of Glucocorticoid (GC) responses. Subsequent studies demonstrated that addition of GCs to DC progenitors led to downregulated pDC-primed-genes while upregulating cDC-primed-genes, and that endogenous GCs selectively decreased pDC, but not cDC, numbers upon in vivo LCMV infection. These findings demonstrate a significant ablation of pre-pDCs in infected mice and identify GCs as suppressors of pDC generation from early progenitors. This provides a potential explanation for the impaired pDC development following viral infection and links pDC numbers to the hypothalamic-pituitary-adrenal axis.
Collapse
Affiliation(s)
- Yeara Jo
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA92093
| | - Trever T. Greene
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA92093
| | - Carolina Chiale
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA92093
| | - Kai Zhang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA92093
| | - Ziyan Fang
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA92093
| | - Simone Dallari
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA92093
| | - Nuha Marooki
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA92093
| | - Wei Wang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA92093
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA92093
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA92093
| | - Elina I. Zuniga
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA92093
| |
Collapse
|
3
|
Fu W, Xie Q, Yu P, Liu S, Xu L, Ye X, Zhao W, Wang Q, Pan Y, Zhang Z, Wang Z. Pig jejunal single-cell RNA landscapes revealing breed-specific immunology differentiation at various domestication stages. Front Immunol 2025; 16:1530214. [PMID: 40151618 PMCID: PMC11947726 DOI: 10.3389/fimmu.2025.1530214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/11/2025] [Indexed: 03/29/2025] Open
Abstract
Background Domestication of wild boars into local and intensive pig breeds has driven adaptive genomic changes, resulting in significant phenotypic differences in intestinal immune function. The intestine relies on diverse immune cells, but their evolutionary changes during domestication remain poorly understood at single-cell resolution. Methods We performed single-cell RNA sequencing (scRNA-seq) and marker gene analysis on jejunal tissues from wild boars, a Chinese local breed (Jinhua), and an intensive breed (Duroc). Then, we developed an immune cell evaluation system that includes immune scoring, gene identification, and cell communication analysis. Additionally, we mapped domestication-related clustering relationships, highlighting changes in gene expression and immune function. Results We generated a single-cell atlas of jejunal tissues, analyzing 26,246 cells and identifying 11 distinct cell lineages, including epithelial and plasma cells, and discovered shared and unique patterns in intestinal nutrition and immunity across breeds. Immune cell evaluation analysis confirmed the conservation and heterogeneity of immune cells, manifested by highly conserved functions of immune cell subgroups, but wild boars possess stronger immune capabilities than domesticated breeds. We also discovered four patterns of domestication-related breed-specific genes related to metabolism, immune surveillance, and cytotoxic functions. Lastly, we identified a unique population of plasma cells with distinctive antibody production in Jinhua pig population. Conclusions Our findings provide valuable single-cell insights into the cellular heterogeneity and immune function evolution in the jejunum during pig at various domestication stages. The single-cell atlas also serves as a resource for comparative studies and supports breeding programs aimed at enhancing immune traits in pigs.
Collapse
Affiliation(s)
- Wenyu Fu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Qinqin Xie
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Pengfei Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Shuang Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Lingyao Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiaowei Ye
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Wei Zhao
- SciGene Biotechnology Co., Ltd, Hefei, China
| | - Qishan Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Building 11, Yongyou Industrial Park, Yazhou Bay Science and Technology City, Yazhou District, Sanya, China
- Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Yuchun Pan
- Hainan Institute of Zhejiang University, Building 11, Yongyou Industrial Park, Yazhou Bay Science and Technology City, Yazhou District, Sanya, China
- Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, China
- Hainan Yazhou Bay Seed Lab, Yongyou Industrial Park, Yazhou Bay Sci-Tech City, Sanya, China
| | - Zhe Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Zhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| |
Collapse
|
4
|
Gadilgereyeva B, Kunushpayeva Z, Abdrakhmanova M, Khassenova A, Minigulov N, Burster T, Filchakova O. Nucleocapsid Protein of SARS-CoV-2 Upregulates RANTES Expression in A172 Glioblastoma Cells. Molecules 2025; 30:1066. [PMID: 40076291 PMCID: PMC11902235 DOI: 10.3390/molecules30051066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/28/2024] [Accepted: 01/08/2025] [Indexed: 03/14/2025] Open
Abstract
SARS-CoV-2, the pathogenic virus that induces COVID-19 disease, contains four structural proteins in its virion. The nucleocapsid (N) protein is one of the four structural proteins that play a crucial role in the assembly of viral RNA into ribonucleoprotein. In addition, the N protein contributes to viral pathogenesis. One of the functions attributed to the N protein is the triggering of cytokine release by lung epithelial cells, macrophages, and monocytes. This study addresses the cellular effects of the N protein of SARS-CoV-2 on cells of glial origin. We report the upregulation of the RANTES chemokine in A172 glioblastoma cells at both the mRNA and protein levels in response to exposure to SARS-CoV-2 nucleocapsid protein. The N protein did not have an effect on cell viability and cell migration.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Olena Filchakova
- Biology Department, School of Sciences and Humanities, Nazarbayev University, Kabanbay Batyr ave., 53, Astana 010000, Kazakhstan (M.A.); (A.K.); (N.M.); (T.B.)
| |
Collapse
|
5
|
Romereim SM, Smykowski MR, Ball EK, Carey EG, Cuadra M, Williams A, Hickson K, Haim K, Sumith M, Yu Z, Jin G, Foureau D, Steuerwald N, Odum S, Fearing BV, Riboh JC. Immunophenotyping of Synovial Tissue in Adolescents Undergoing ACL Reconstruction: What Is the Role of Synovial Inflammation in Arthrofibrosis? Am J Sports Med 2025; 53:315-326. [PMID: 39772756 DOI: 10.1177/03635465241305411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
BACKGROUND Loss of motion and arthrofibrosis after anterior cruciate ligament (ACL) reconstruction (ACLR) can be devastating complications for athletes. The cellular and molecular pathogenesis of arthrofibrosis is poorly understood, limiting prevention and treatment options. Synovial inflammation may contribute to post-ACLR arthrofibrosis. HYPOTHESIS Higher synovial immune cell infiltration and inflammatory/catabolic gene expression patterns at the time of ACLR would correlate with poorer motion-related outcomes. STUDY DESIGN Case series; Level of evidence, 4. METHODS Patients aged 10 to 18 years undergoing primary ACLR were enrolled in a prospective pilot study, and synovial tissue biopsy specimens were obtained during ACLR. Flow cytometry and single-cell RNA sequencing explored synovial cell types/frequencies and gene expression. Principal component analysis was performed, followed by clustering which grouped patients into distinct immunophenotypes based on their synovial cell composition. Clinical follow-up data with knee range of motion (ROM), need for lysis of adhesions, and patient-reported outcome measures were collected and compared between immunophenotypes. RESULTS Enrolled patients (n = 17) underwent ACLR at a median of 37 days after injury. Analysis revealed 3 distinct immunophenotypes. Type 1 consisted of patients with the longest time between injury and surgery and the lowest hematopoietic and T-cell infiltration. Types 2 and 3 had similar times between injury and surgery; type 2 had intermediate while type 3 had the highest hematopoietic and T-cell percentages. Type 3 was associated with worse ROM at 2 and 6 weeks postoperatively; T-cell prevalence and ROM were inversely correlated at those time points. The only patient requiring lysis of adhesions for arthrofibrosis had a type 3 immunophenotype. CONCLUSION Synovial immune infiltration after ACL injury shows variability between patients that clusters into 3 immunophenotypes correlating with early ROM and the risk of arthrofibrosis. T-cell recruitment and infiltration were the strongest factors correlated with ROM outcomes and present an exciting venue for future research on post-ACLR arthrofibrosis.
Collapse
Affiliation(s)
- Sarah M Romereim
- Musculoskeletal Institute, Atrium Health Carolinas Medical Center, Charlotte, North Carolina, USA
- Investigation performed at Atrium Health Carolinas Medical Center, Charlotte, North Carolina, USA
| | - Matthew R Smykowski
- Musculoskeletal Institute, Atrium Health Carolinas Medical Center, Charlotte, North Carolina, USA
- Investigation performed at Atrium Health Carolinas Medical Center, Charlotte, North Carolina, USA
| | - Elaina K Ball
- Musculoskeletal Institute, Atrium Health Carolinas Medical Center, Charlotte, North Carolina, USA
- Investigation performed at Atrium Health Carolinas Medical Center, Charlotte, North Carolina, USA
| | - Edward Grant Carey
- OrthoCarolina, Charlotte, North Carolina, USA
- Investigation performed at Atrium Health Carolinas Medical Center, Charlotte, North Carolina, USA
| | - Mario Cuadra
- Musculoskeletal Institute, Atrium Health Carolinas Medical Center, Charlotte, North Carolina, USA
- Investigation performed at Atrium Health Carolinas Medical Center, Charlotte, North Carolina, USA
| | - Alicia Williams
- Musculoskeletal Institute, Atrium Health Carolinas Medical Center, Charlotte, North Carolina, USA
- Investigation performed at Atrium Health Carolinas Medical Center, Charlotte, North Carolina, USA
| | - Kate Hickson
- Musculoskeletal Institute, Atrium Health Carolinas Medical Center, Charlotte, North Carolina, USA
- Investigation performed at Atrium Health Carolinas Medical Center, Charlotte, North Carolina, USA
| | - Kara Haim
- Musculoskeletal Institute, Atrium Health Carolinas Medical Center, Charlotte, North Carolina, USA
- Investigation performed at Atrium Health Carolinas Medical Center, Charlotte, North Carolina, USA
| | - Meera Sumith
- Musculoskeletal Institute, Atrium Health Carolinas Medical Center, Charlotte, North Carolina, USA
- Investigation performed at Atrium Health Carolinas Medical Center, Charlotte, North Carolina, USA
| | - Ziqing Yu
- Musculoskeletal Institute, Atrium Health Carolinas Medical Center, Charlotte, North Carolina, USA
- Investigation performed at Atrium Health Carolinas Medical Center, Charlotte, North Carolina, USA
| | - Guangxu Jin
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, North Carolina, USA
- Investigation performed at Atrium Health Carolinas Medical Center, Charlotte, North Carolina, USA
| | - David Foureau
- Levine Cancer Institute, Atrium Health Carolinas Medical Center, Charlotte, North Carolina
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, North Carolina, USA
- Investigation performed at Atrium Health Carolinas Medical Center, Charlotte, North Carolina, USA
| | - Nury Steuerwald
- Levine Cancer Institute, Atrium Health Carolinas Medical Center, Charlotte, North Carolina
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, North Carolina, USA
- Investigation performed at Atrium Health Carolinas Medical Center, Charlotte, North Carolina, USA
| | - Susan Odum
- Musculoskeletal Institute, Atrium Health Carolinas Medical Center, and Orthopaedic Surgery, Wake Forest University School of Medicine, Charlotte, North Carolina, USA
- Investigation performed at Atrium Health Carolinas Medical Center, Charlotte, North Carolina, USA
| | - Bailey V Fearing
- Musculoskeletal Institute, Atrium Health Carolinas Medical Center, and Orthopaedic Surgery, Wake Forest University School of Medicine, Charlotte, North Carolina, USA
- Investigation performed at Atrium Health Carolinas Medical Center, Charlotte, North Carolina, USA
| | - Jonathan C Riboh
- Musculoskeletal Institute, Atrium Health Carolinas Medical Center; Orthopaedic Surgery, Wake Forest University School of Medicine; and OrthoCarolina, Charlotte, North Carolina, USA
- Investigation performed at Atrium Health Carolinas Medical Center, Charlotte, North Carolina, USA
| |
Collapse
|
6
|
Dollinger E, Hernandez-Davies J, Felgner J, Jain A, Hwang M, Strahsburger E, Nakajima R, Jasinskas A, Nie Q, Pone EJ, Othy S, Davies DH. Combination adjuvant improves influenza virus immunity by downregulation of immune homeostasis genes in lymphocytes. Immunohorizons 2025; 9:vlae007. [PMID: 39849993 PMCID: PMC11841980 DOI: 10.1093/immhor/vlae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 01/30/2025] Open
Abstract
Adjuvants play a central role in enhancing the immunogenicity of otherwise poorly immunogenic vaccine antigens. Combining adjuvants has the potential to enhance vaccine immunogenicity compared with single adjuvants, although the cellular and molecular mechanisms of combination adjuvants are not well understood. Using the influenza virus hemagglutinin H5 antigen, we define the immunological landscape of combining CpG and MPLA (TLR-9 and TLR-4 agonists, respectively) with a squalene nanoemulsion (AddaVax) using immunologic and transcriptomic profiling. Mice immunized and boosted with recombinant H5 in AddaVax, CpG+MPLA, or AddaVax plus CpG+MPLA (IVAX-1) produced comparable levels of neutralizing antibodies and were equally well protected against the H5N1 challenge. However, after challenge with H5N1 virus, H5/IVAX-1-immunized mice had 100- to 300-fold lower virus lung titers than mice receiving H5 in AddaVax or CpG+MPLA separately. Consistent with enhanced viral clearance, unsupervised expression analysis of draining lymph node cells revealed the combination adjuvant IVAX-1 significantly downregulated immune homeostasis genes, and induced higher numbers of antibody-producing plasmablasts than either AddaVax or CpG+MPLA. IVAX-1 was also more effective after single-dose administration than either AddaVax or CpG+MPLA. These data reveal a novel molecular framework for understanding the mechanisms of combination adjuvants, such as IVAX-1, and highlight their potential for the development of more effective vaccines against respiratory viruses.
Collapse
Affiliation(s)
- Emmanuel Dollinger
- Department of Mathematics, University of California Irvine, Irvine, CA, United States
| | - Jenny Hernandez-Davies
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Jiin Felgner
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Aarti Jain
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Michael Hwang
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Erwin Strahsburger
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Rie Nakajima
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Algimantas Jasinskas
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Qing Nie
- Department of Mathematics, University of California Irvine, Irvine, CA, United States
| | - Egest James Pone
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Shivashankar Othy
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - David Huw Davies
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| |
Collapse
|
7
|
Wu L, Morel E, Simón R, Perdiguero P, Zhang YA, Ye J, Tafalla C. Teleost IgM+ plasma-like cells: beyond antibody secretion. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:40-54. [PMID: 40073260 DOI: 10.1093/jimmun/vkae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 10/18/2024] [Indexed: 03/14/2025]
Abstract
Upon antigen encounter, B cells start a differentiation process toward antibody-secreting cells (ASCs), initially plasmablasts, and eventually long-lived plasma cells. All these ASCs specialize in secreting important amounts of antibodies and usually lose other functionalities of naïve B cells. This differentiation process is scarcely characterized in teleost fish, in which B cells have been shown to share many functional and phenotypic characteristics of mammalian B1 innate subsets. In this context, we were prompted to investigate further the functionalities of ASCs in teleosts, using rainbow trout (Oncorhynchus mykiss) as a model. Our results demonstrate that IgM+ plasma-like cells in the rainbow trout head kidney exhibit a strong IgM secreting capacity along with phagocytic and antigen-presenting capacities, even higher than those of naïve B cells. These IgM+ plasma-like cells were capable of surviving in vitro for 2 wk secreting IgM. Interestingly, they retained a functional B cell receptor that responded to TNP conjugated to lipopolysaccharide, a thymus-independent model antigen, which also rendered these cells more reactive to B cell receptor crosslinking. These findings shed light on the differentiation process of teleost B cells, demonstrating that teleost plasma-like cells conserve other phenotypical attributes beyond immunoglobulin secretion, being capable of directly responding to antigens. These findings point to an exclusive differentiation process of teleost B cells, which might provide mechanistic insights on how mammalian innate subsets such as B1 cells or IgM-expressing plasma cells differentiate.
Collapse
Affiliation(s)
- Liting Wu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, South China Normal University, Guangzhou, China
| | - Esther Morel
- Biotechnology Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Rocío Simón
- Biotechnology Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Pedro Perdiguero
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain
| | - Yong-An Zhang
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Jianmin Ye
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, South China Normal University, Guangzhou, China
| | - Carolina Tafalla
- Biotechnology Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
8
|
Jo Y, Greene TT, Zhang K, Chiale C, Fang Z, Dallari S, Marooki N, Wang W, Zuniga EI. Genomic Analysis of Progenitors in Viral Infection Implicates Glucocorticoids as Suppressors of Plasmacytoid Dendritic Cell Generation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620771. [PMID: 39554106 PMCID: PMC11565824 DOI: 10.1101/2024.10.28.620771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Plasmacytoid Dendritic cells (pDCs) are the most potent producers of interferons, which are critical antiviral cytokines. pDC development is, however, compromised following a viral infection, and this phenomenon, as well as its relationship to conventional (c)DC development is still incompletely understood. By using lymphocytic choriomeningitis virus (LCMV) infection in mice as a model system, we observed that DC progenitors skewed away from pDC and towards cDC development during in vivo viral infection. Subsequent characterization of the transcriptional and epigenetic landscape of fms-like tyrosine kinase 3 + (Flt3 + ) DC progenitors and follow-up studies revealed increased apoptosis and reduced proliferation in different individual DC-progenitors as well as a profound IFN-I-dependent ablation of pre-pDCs, but not pre-DC precursor, after both acute and chronic LCMV infections. In addition, integrated genomic analysis identified altered activity of 34 transcription factors in Flt3 + DC progenitors from infected mice, including two regulators of Glucocorticoid (GC) responses. Subsequent studies demonstrated that addition of GCs to DC progenitors led to downregulated pDC-primed-genes while upregulating cDC-primed-genes, and that endogenous GCs selectively decreased pDC, but not cDC, numbers upon in-vivo LCMV infection. These findings demonstrate a significant ablation of pre-pDCs in infected mice and identify GCs as suppressors of pDC generation from early progenitors. This provides an explanation for the impaired pDC development following viral infection and links pDC generation to the hypothalamic-pituitary-adrenal axis. Significance Statement Plasmacytoid dendritic cells (pDCs) play critical roles in antiviral responses. However, adaptations of DC progenitors lead to compromised pDC generation after viral infection. Here, we characterized the transcriptional and epigenetic landscapes of DC progenitors after infection. We observed widespread changes in gene expression and chromatin accessibility, reflecting shifts in proliferation, apoptosis, and differentiation potential into various DC subsets. Notably, we identified alterations in the predicted activity of 34 transcription factors, including two regulators of glucocorticoid responses. Our data demonstrate that glucocorticoids inhibit pDC generation by reprogramming DC progenitors. These findings establish a molecular framework for understanding how DC progenitors adapt to infection and highlight the role of glucocorticoid signaling in this process.
Collapse
|
9
|
Mondell E, Nino G, Hong X, Wang X, Gutierrez MJ. Immune Biomarkers at Birth Predict Lower Respiratory Tract Infection Risk in a Large Birth Cohort. Pathogens 2024; 13:765. [PMID: 39338956 PMCID: PMC11435078 DOI: 10.3390/pathogens13090765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Lower respiratory tract infections (LRTIs) remain the leading cause of infant morbidity and mortality worldwide and affect long-term respiratory health. Identifying immunological determinants of LRTI susceptibility may help stratify disease risk and identify therapies. This study aimed to identify neonatal immunological factors predicting LRTI risk in infancy. Cord blood plasma from 191 neonates from the Boston Birth Cohort was analyzed for 28 soluble immune factors. LRTI was defined as bronchiolitis, bronchitis, or pneumonia during the first year of life. Welch's t-test demonstrated significantly higher log10 transformed concentrations of IL-17 and IFNγ in the LRTI group compared to neonates without LRTI in the first year of life (p < 0.05). Risk associations were determined using multivariate survival models. There were 29 infants with LRTIs. High cord blood levels of IFNγ (aHR = 2.35, 95% CI 1.07-5.17), TNF-β (aHR = 2.86, 95% CI 1.27-6.47), MIP-1α (aHR = 2.82, 95% CI 1.22-6.51), and MIP-1β (aHR = 2.34, 95% CI 1.05-5.20) were associated with a higher risk of LRTIs. RANTES was associated with a lower risk (aHR = 0.43, 95% CI 0.19-0.97). Soluble immune factors linked to antiviral immunity (IFNγ) and cytokines mediating inflammatory responses (TNF-β), and cell homing (MIP-1α/b), at birth were associated with an increased risk of LRTIs during infancy.
Collapse
Affiliation(s)
- Ethan Mondell
- School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA;
| | - Gustavo Nino
- Division of Pulmonary and Sleep Medicine, Children’s National Hospital, George Washington University, Washington, DC 20010, USA;
- Center for Genetic Medicine Research, Children’s Research Institute, Washington, DC 20010, USA
| | - Xiumei Hong
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (X.H.); (X.W.)
| | - Xiaobin Wang
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (X.H.); (X.W.)
- Division of General Pediatrics and Adolescent Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Maria J. Gutierrez
- Division of Pediatric Allergy, Immunology and Rheumatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
10
|
van der Mescht MA, de Beer Z, Steel HC, Anderson R, Masenge A, Moore PL, Bastard P, Casanova JL, Abdullah F, Ueckermann V, Rossouw TM. Aberrant innate immune profile associated with COVID-19 mortality in Pretoria, South Africa. Clin Immunol 2024; 266:110323. [PMID: 39029640 DOI: 10.1016/j.clim.2024.110323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
The African continent reported the least number of COVID-19 cases and deaths of all the continents, although the exact reasons for this are still unclear. In addition, little is known about the immunological profiles associated with COVID-19 mortality in Africa. The present study compared clinical and immunological parameters, as well as treatment outcomes in patients admitted with COVID-19 in Pretoria, South Africa, to determine if these parameters correlated with mortality in this population. The in-hospital mortality rate for the cohort was 15.79%. The mortality rate in people living with HIV (PLWH) was 10.81% and 17.16% in people without HIV (p = 0.395). No differences in age (p = 0.099), gender (p = 0.127) or comorbidities were found between deceased patients and those who survived. All four of the PLWH who died had a CD4+ T-cell count <200 cells/mm3, a significantly higher HIV viral load than those who survived (p = 0.009), and none were receiving antiretroviral therapy. Seven of 174 (4%) patients had evidence of auto-antibodies neutralizing Type 1 interferons (IFNs). Two of the them died, and their presence was significantly associated with mortality (p = 0.042). In the adjusted model, the only clinical parameters associated with mortality were: higher fraction of inspired oxygen (FiO2) (OR: 3.308, p = 0.011) indicating a greater need for oxygen, high creatinine (OR: 4.424, p = 0.001) and lower platelet counts (OR: 0.203, p = 0.009), possibly secondary to immunothrombosis. Overall, expression of the co-receptor CD86 (p = 0.021) on monocytes and percentages of CD8+ effector memory 2 T-cells (OR: 0.45, p = 0.027) was lower in deceased patients. Decreased CD86 expression impairs the development and survival of effector memory T-cells. Deceased patients had higher concentrations of RANTES (p = 0.003), eotaxin (p = 0.003) and interleukin (IL)-8 (p < 0.001), all involved in the activation and recruitment of innate immune cells. They also had lower concentrations of transforming growth factor (TGF)-β1 (p = 0.40), indicating an impaired anti-inflammatory response. The immunological profile associated with COVID-19 mortality in South Africa points to the role of aberrate innate immune responses.
Collapse
Affiliation(s)
- Mieke A van der Mescht
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Zelda de Beer
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa; Tshwane District Hospital, Pretoria, South Africa
| | - Helen C Steel
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Andries Masenge
- Department of Statistics, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Penny L Moore
- MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa; National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa; Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Paul Bastard
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistante Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistante Publique-Hôpitaux de Paris (AP-HP), Paris, France; Howard Hughes Medical Institute, New York, NY, USA
| | - Fareed Abdullah
- Division for Infectious Diseases, Department of Internal Medicine, Steve Biko Academic Hospital and University of Pretoria, Pretoria, South Africa; Office of AIDS and TB Research, South African Medical Research Council, Pretoria, South Africa; Department of Public Health Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Veronica Ueckermann
- Division for Infectious Diseases, Department of Internal Medicine, Steve Biko Academic Hospital and University of Pretoria, Pretoria, South Africa
| | - Theresa M Rossouw
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
11
|
Karim A, Garg R, Saikia B, Tiwari A, Sahu S, Malhotra M, Minz RW, Rawat A, Singh S, Suri D. Unraveling the unphosphorylated STAT3-unphosphorylated NF-κB pathway in loss of function STAT3 Hyper IgE syndrome. Front Immunol 2024; 15:1332817. [PMID: 39229272 PMCID: PMC11369709 DOI: 10.3389/fimmu.2024.1332817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/09/2024] [Indexed: 09/05/2024] Open
Abstract
Background Patients with loss of function signal transducer and activator of transcription 3-related Hyper IgE Syndrome (LOF STAT3 HIES) present with recurrent staphylococcal skin and pulmonary infections along with the elevated serum IgE levels, eczematous rashes, and skeletal and facial abnormalities. Defective STAT3 signaling results in reduced Th17 cells and an impaired IL-17/IL-22 response primarily due to a compromised canonical Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway that involves STAT3 phosphorylation, dimerization, nuclear translocation, and gene transcription. The non-canonical pathway involving unphosphorylated STAT3 and its role in disease pathogenesis, however, is unexplored in HIES. Objective This study aims to elucidate the role of unphosphorylated STAT3-unphosphorylated NF-κB (uSTAT3-uNF-κB) activation pathway in LOF STAT3 HIES patients. Methodology The mRNA expression of downstream molecules of unphosphorylated STAT3-unphosphorylated NF-κB pathway was studied in five LOF STAT3 HIES patients and transfected STAT3 mutants post-IL-6 stimulation. Immunoprecipitation assays were performed to assess the binding of STAT3 and NF-κB to RANTES promoter. Results A reduced expression of the downstream signaling molecules of the uSTAT3-uNF-κB complex pathway, viz., RANTES, STAT3, IL-6, IL-8, ICAM1, IL-8, ZFP36L2, CSF1, MRAS, and SOCS3, in LOF STAT3 HIES patients as well as the different STAT3 mutant plasmids was observed. Immunoprecipitation studies showed a reduced interaction of STAT3 and NF-κB to RANTES in HIES patients. Conclusion The reduced expression of downstream signaling molecules, specially RANTES and STAT3, confirmed the impaired uSTAT3-uNF-κB pathway in STAT3 LOF HIES. Decreased levels of RANTES and STAT3 could be a significant component in the disease pathogenesis of Hyper IgE Syndrome.
Collapse
Affiliation(s)
- Adil Karim
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rashi Garg
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Biman Saikia
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Abha Tiwari
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Smrity Sahu
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Mehak Malhotra
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ranjana W. Minz
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Amit Rawat
- Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Surjit Singh
- Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Deepti Suri
- Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
12
|
Zhu Q, Yang Y, Zeng Y, Chen K, Zhang Q, Wang L, Huang Y, Jian S. The significance of CD8 + tumor-infiltrating lymphocytes exhaustion heterogeneity and its underlying mechanism in diffuse large B-cell lymphoma. Int Immunopharmacol 2024; 137:112447. [PMID: 38909497 DOI: 10.1016/j.intimp.2024.112447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/25/2024]
Abstract
CD8+ tumor-infiltrating lymphocytes (TILs) exhaustion is a major barrier to effective tumor control in diffuse large B-cell lymphoma (DLBCL) and may consist of heterogeneous populations with different functional states. We profiled the CD8+TILs exhaustion heterogeneity and explored its clinical significance as well as the underlying mechanism through single-cell RNA sequencing (n = 7), bulk RNA sequencing (n = 3300), immunohistochemistry (n = 116), and reverse transcription-quantitative polymerase chain reaction (n = 95), and somatic mutation data (n = 48). Our results demonstrated that exhausted CD8+TILs in DLBCL were composed of progenitor and terminal states characterized by CCL5 and TUBA1B, respectively. High terminally exhausted CD8+TILs indicated an immunosuppressive tumor microenvironment, activated B-cell-like subtype, inferior prognosis, and poor response to immune checkpoint blockade therapy in DLBCL. Our study further demonstrated that the CD39/A2AR-related signaling may be the potential pathway that promoted the transition of progenitor toward terminally exhausted CD8+TILs in DLBCL. Furthermore, the CD39/A2AR-related pathway in DLBCL may be regulated by BATF and STAT3 in exhausted CD8+TILs, and MYD88 mutation in tumor cells. Our study highlights CD8+TILs exhaustion heterogeneity and its possible regulatory mechanism provides a novel prognostic indicator and can facilitate the optimization of individualized immunotherapy.
Collapse
Affiliation(s)
- Qiqi Zhu
- Department of Pathology, North Sichuan Medical College, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Department of Pathology, Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong 637000, China
| | - Yiming Yang
- Department of Pathology, North Sichuan Medical College, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Key Lab of Process Analysis and Control of Sichuan Universities, Yibin University, Yibin, Sichuan 644000, China
| | - Yi Zeng
- Department of Pathology, North Sichuan Medical College, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Kexin Chen
- Department of Pathology, North Sichuan Medical College, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Qiaoyu Zhang
- Department of Pathology, North Sichuan Medical College, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Li Wang
- Department of Pathology, North Sichuan Medical College, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Department of Pathology, Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong 637000, China
| | - Yifan Huang
- Department of Pathology, North Sichuan Medical College, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Department of Pathology, Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong 637000, China
| | - Shunhai Jian
- Department of Pathology, North Sichuan Medical College, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Department of Pathology, Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong 637000, China.
| |
Collapse
|
13
|
Andrews LP, Butler SC, Cui J, Cillo AR, Cardello C, Liu C, Brunazzi EA, Baessler A, Xie B, Kunning SR, Ngiow SF, Huang YJ, Manne S, Sharpe AH, Delgoffe GM, Wherry EJ, Kirkwood JM, Bruno TC, Workman CJ, Vignali DAA. LAG-3 and PD-1 synergize on CD8 + T cells to drive T cell exhaustion and hinder autocrine IFN-γ-dependent anti-tumor immunity. Cell 2024; 187:4355-4372.e22. [PMID: 39121848 PMCID: PMC11323044 DOI: 10.1016/j.cell.2024.07.016] [Citation(s) in RCA: 68] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/01/2023] [Accepted: 07/09/2024] [Indexed: 08/12/2024]
Abstract
Overcoming immune-mediated resistance to PD-1 blockade remains a major clinical challenge. Enhanced efficacy has been demonstrated in melanoma patients with combined nivolumab (anti-PD-1) and relatlimab (anti-LAG-3) treatment, the first in its class to be FDA approved. However, how these two inhibitory receptors synergize to hinder anti-tumor immunity remains unknown. Here, we show that CD8+ T cells deficient in both PD-1 and LAG-3, in contrast to CD8+ T cells lacking either receptor, mediate enhanced tumor clearance and long-term survival in mouse models of melanoma. PD-1- and LAG-3-deficient CD8+ T cells were transcriptionally distinct, with broad TCR clonality and enrichment of effector-like and interferon-responsive genes, resulting in enhanced IFN-γ release indicative of functionality. LAG-3 and PD-1 combined to drive T cell exhaustion, playing a dominant role in modulating TOX expression. Mechanistically, autocrine, cell-intrinsic IFN-γ signaling was required for PD-1- and LAG-3-deficient CD8+ T cells to enhance anti-tumor immunity, providing insight into how combinatorial targeting of LAG-3 and PD-1 enhances efficacy.
Collapse
Affiliation(s)
- Lawrence P Andrews
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Samuel C Butler
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Jian Cui
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Anthony R Cillo
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Carly Cardello
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Chang Liu
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Erin A Brunazzi
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Andrew Baessler
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Bingxian Xie
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Sheryl R Kunning
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Shin Foong Ngiow
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yinghui Jane Huang
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sasikanth Manne
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Greg M Delgoffe
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - E John Wherry
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John M Kirkwood
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tulia C Bruno
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
14
|
Liang C, Spoerl S, Xiao Y, Habenicht KM, Haeusl SS, Sandner I, Winkler J, Strieder N, Eder R, Stanewsky H, Alexiou C, Dudziak D, Rosenwald A, Edinger M, Rehli M, Hoffmann P, Winkler TH, Berberich-Siebelt F. Oligoclonal CD4 +CXCR5 + T cells with a cytotoxic phenotype appear in tonsils and blood. Commun Biol 2024; 7:879. [PMID: 39025930 PMCID: PMC11258247 DOI: 10.1038/s42003-024-06563-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 07/05/2024] [Indexed: 07/20/2024] Open
Abstract
In clinical situations, peripheral blood accessible CD3+CD4+CXCR5+ T-follicular helper (TFH) cells may have to serve as a surrogate indicator for dysregulated germinal center responses in tissues. To determine the heterogeneity of TFH cells in peripheral blood versus tonsils, CD3+CD4+CD45RA-CXCR5+ cells of both origins were sorted. Transcriptomes, TCR repertoires and cell-surface protein expression were analysed by single-cell RNA sequencing, flow cytometry and immunohistochemistry. Reassuringly, all blood-circulating CD3+CD4+CXCR5+ T-cell subpopulations also appear in tonsils, there with some supplementary TFH characteristics, while peripheral blood-derived TFH cells display markers of proliferation and migration. Three further subsets of TFH cells, however, with bona fide T-follicular gene expression patterns, are exclusively found in tonsils. One additional, distinct and oligoclonal CD4+CXCR5+ subpopulation presents pronounced cytotoxic properties. Those 'killer TFH (TFK) cells' can be discovered in peripheral blood as well as among tonsillar cells but are located predominantly outside of germinal centers. They appear terminally differentiated and can be distinguished from all other TFH subsets by expression of NKG7 (TIA-1), granzymes, perforin, CCL5, CCR5, EOMES, CRTAM and CX3CR1. All in all, this study provides data for detailed CD4+CXCR5+ T-cell assessment of clinically available blood samples and extrapolation possibilities to their tonsil counterparts.
Collapse
Affiliation(s)
- Chunguang Liang
- Functional Genomics and Systems Biology Group, Department of Bioinformatics, Biocenter, Julius-Maximilians-University Würzburg, Würzburg, Germany
- Institute of Immunology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany
| | - Silvia Spoerl
- Department of Internal Medicine 5, Hematology/Oncology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Yin Xiao
- Institute of Pathology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Katharina M Habenicht
- Division of Genetics, Department Biology, Nikolaus-Fiebiger-Center of Molecular Medicine, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Sigrun S Haeusl
- Institute of Pathology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Isabel Sandner
- Department of Internal Medicine 5, Hematology/Oncology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Julia Winkler
- Department of Internal Medicine 5, Hematology/Oncology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | | | - Rüdiger Eder
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | | | - Christoph Alexiou
- Department of Otorhinolaryngology, Head & Neck Surgery, Else Kröner-Fresenius-Foundation-Professorship, Section of Experimental Oncology & Nanomedicine (SEON), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
- Institute of Immunology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany
| | - Andreas Rosenwald
- Institute of Pathology, Julius-Maximilians-University Würzburg, Würzburg, Germany
- Comprehensive Cancer Centre Mainfranken, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Matthias Edinger
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Michael Rehli
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Petra Hoffmann
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Thomas H Winkler
- Division of Genetics, Department Biology, Nikolaus-Fiebiger-Center of Molecular Medicine, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | | |
Collapse
|
15
|
von Roemeling CA, Patel JA, Carpenter SL, Yegorov O, Yang C, Bhatia A, Doonan BP, Russell R, Trivedi VS, Klippel K, Ryu DH, Grippin A, Futch HS, Ran Y, Hoang-Minh LB, Weidert FL, Golde TE, Mitchell DA. Adeno-associated virus delivered CXCL9 sensitizes glioblastoma to anti-PD-1 immune checkpoint blockade. Nat Commun 2024; 15:5871. [PMID: 38997283 PMCID: PMC11245621 DOI: 10.1038/s41467-024-49989-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
There are numerous mechanisms by which glioblastoma cells evade immunological detection, underscoring the need for strategic combinatorial treatments to achieve appreciable therapeutic effects. However, developing combination therapies is difficult due to dose-limiting toxicities, blood-brain-barrier, and suppressive tumor microenvironment. Glioblastoma is notoriously devoid of lymphocytes driven in part by a paucity of lymphocyte trafficking factors necessary to prompt their recruitment and activation. Herein, we develop a recombinant adeno-associated virus (AAV) gene therapy that enables focal and stable reconstitution of the tumor microenvironment with C-X-C motif ligand 9 (CXCL9), a powerful call-and-receive chemokine for lymphocytes. By manipulating local chemokine directional guidance, AAV-CXCL9 increases tumor infiltration by cytotoxic lymphocytes, sensitizing glioblastoma to anti-PD-1 immune checkpoint blockade in female preclinical tumor models. These effects are accompanied by immunologic signatures evocative of an inflamed tumor microenvironment. These findings support AAV gene therapy as an adjuvant for reconditioning glioblastoma immunogenicity given its safety profile, tropism, modularity, and off-the-shelf capability.
Collapse
Affiliation(s)
- Christina A von Roemeling
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA.
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA.
| | - Jeet A Patel
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Savannah L Carpenter
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Oleg Yegorov
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Changlin Yang
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Alisha Bhatia
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Bently P Doonan
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
- Department of Medicine, Hematology and Oncology, University of Florida, Gainesville, FL, USA
| | - Rylynn Russell
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Vrunda S Trivedi
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Kelena Klippel
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Daniel H Ryu
- Goizueta Brain Health Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Adam Grippin
- Department of Radiation Oncology, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| | - Hunter S Futch
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Yong Ran
- Goizueta Brain Health Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Lan B Hoang-Minh
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Frances L Weidert
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Todd E Golde
- Goizueta Brain Health Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Duane A Mitchell
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA.
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
16
|
Riitho V, Connon R, Gwela A, Namusanje J, Nhema R, Siika A, Bwakura-Dangarembizi M, Musiime V, Berkley JA, Szubert AJ, Gibb DM, Walker AS, Klein N, Prendergast AJ. Biomarkers of mortality in adults and adolescents with advanced HIV in sub-Saharan Africa. Nat Commun 2024; 15:5492. [PMID: 38944653 PMCID: PMC11214617 DOI: 10.1038/s41467-024-49317-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 05/30/2024] [Indexed: 07/01/2024] Open
Abstract
One-third of people with HIV in sub-Saharan Africa start antiretroviral therapy (ART) with advanced disease. We investigated associations between immune biomarkers and mortality in participants with advanced HIV randomised to cotrimoxazole or enhanced antimicrobial prophylaxis in the Reduction of Early Mortality in HIV-Infected Adults and Children Starting Antiretroviral Therapy (REALITY) trial (ISRCTN43622374). Biomarkers were assayed using ELISA and Luminex. Associations between baseline values and all-cause 24-week mortality were analysed using Cox models, and for cause-specific mortality used Fine & Gray models, including prophylaxis randomisation, viral load, CD4, WHO stage, age, BMI, and site as covariates; and weighted according to inverse probability of selection into the substudy. Higher baseline CRP, IFN-γ, IL-6 and IP-10 were associated with higher all-cause mortality; and higher IL-23, IL-2 and RANTES with lower all-cause mortality. Associations varied by cause of death: tuberculosis-associated mortality was most strongly associated with higher CRP and sST2, and cryptococcosis-associated mortality with higher IL-4 and lower IL-8. Changes in I-FABP (p = 0.002), faecal alpha-1 antitrypsin (p = 0.01) and faecal myeloperoxidase (p = 0.005) between baseline and 4 weeks post-ART were greater in those receiving enhanced versus cotrimoxazole prophylaxis. Our findings highlight how the immune milieu shapes outcomes following ART initiation, and how adjunctive antimicrobials can modulate the gut environment in advanced HIV.
Collapse
Affiliation(s)
- Victor Riitho
- Blizard Institute, Queen Mary University of London, London, UK
- Center for Epidemiological Modelling and Analysis (CEMA), Institute of Tropical and Infectious Diseases (UNITID), University of Nairobi, Nairobi, Kenya
| | | | - Agnes Gwela
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Ruth Nhema
- University of Zimbabwe, Harare, Zimbabwe
| | | | | | - Victor Musiime
- Joint Clinical Research Centre, Kampala, Uganda
- Department of Paediatrics and Child Health, Makerere University, Kampala, Uganda
| | | | | | | | | | | | | |
Collapse
|
17
|
Orozco RC, Marquardt K, Pratumchai I, Shaikh AF, Mowen K, Domissy A, Teijaro JR, Sherman LA. Autoimmunity-associated allele of tyrosine phosphatase gene PTPN22 enhances anti-viral immunity. PLoS Pathog 2024; 20:e1012095. [PMID: 38512979 PMCID: PMC10987006 DOI: 10.1371/journal.ppat.1012095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 04/02/2024] [Accepted: 03/04/2024] [Indexed: 03/23/2024] Open
Abstract
The 1858C>T allele of the tyrosine phosphatase PTPN22 is present in 5-10% of the North American population and is strongly associated with numerous autoimmune diseases. Although research has been done to define how this allele potentiates autoimmunity, the influence PTPN22 and its pro-autoimmune allele has in anti-viral immunity remains poorly defined. Here, we use single cell RNA-sequencing and functional studies to interrogate the impact of this pro-autoimmune allele on anti-viral immunity during Lymphocytic Choriomeningitis Virus clone 13 (LCMV-cl13) infection. Mice homozygous for this allele (PEP-619WW) clear the LCMV-cl13 virus whereas wildtype (PEP-WT) mice cannot. This is associated with enhanced anti-viral CD4 T cell responses and a more immunostimulatory CD8α- cDC phenotype. Adoptive transfer studies demonstrated that PEP-619WW enhanced anti-viral CD4 T cell function through virus-specific CD4 T cell intrinsic and extrinsic mechanisms. Taken together, our data show that the pro-autoimmune allele of Ptpn22 drives a beneficial anti-viral immune response thereby preventing what is normally a chronic virus infection.
Collapse
Affiliation(s)
- Robin C. Orozco
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, United States of America
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Kristi Marquardt
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, United States of America
| | - Isaraphorn Pratumchai
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, United States of America
| | - Anam Fatima Shaikh
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Kerri Mowen
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, United States of America
| | - Alain Domissy
- Genomics Core, Scripps Research, La Jolla, California, United States of America
| | - John R. Teijaro
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, United States of America
| | - Linda A. Sherman
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, United States of America
| |
Collapse
|
18
|
Grabowska J, Léopold V, Olesek K, Nijen Twilhaar MK, Affandi AJ, Brouwer MC, Jongerius I, Verschoor A, van Kooten C, van Kooyk Y, Storm G, van ‘t Veer C, den Haan JMM. Platelets interact with CD169 + macrophages and cDC1 and enhance liposome-induced CD8 + T cell responses. Front Immunol 2023; 14:1290272. [PMID: 38054006 PMCID: PMC10694434 DOI: 10.3389/fimmu.2023.1290272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/03/2023] [Indexed: 12/07/2023] Open
Abstract
Historically platelets are mostly known for their crucial contribution to hemostasis, but there is growing understanding of their role in inflammation and immunity. The immunomodulatory role of platelets entails interaction with pathogens, but also with immune cells including macrophages and dendritic cells (DCs), to activate adaptive immune responses. In our previous work, we have demonstrated that splenic CD169+ macrophages scavenge liposomes and collaborate with conventional type 1 DCs (cDC1) to induce expansion of CD8+ T cells. Here, we show that platelets associate with liposomes and bind to DNGR-1/Clec9a and CD169/Siglec-1 receptors in vitro. In addition, platelets interacted with splenic CD169+ macrophages and cDC1 and further increased liposome internalization by cDC1. Most importantly, platelet depletion prior to liposomal immunization resulted in significantly diminished antigen-specific CD8+ T cell responses, but not germinal center B cell responses. Previously, complement C3 was shown to be essential for platelet-mediated CD8+ T cell activation during bacterial infection. However, after liposomal vaccination CD8+ T cell priming was not dependent on complement C3. While DCs from platelet-deficient mice exhibited unaltered maturation status, they did express lower levels of CCR7. In addition, in the absence of platelets, CCL5 plasma levels were significantly reduced. Overall, our findings demonstrate that platelets engage in a cross-talk with CD169+ macrophages and cDC1 and emphasize the importance of platelets in induction of CD8+ T cell responses in the context of liposomal vaccination.
Collapse
Affiliation(s)
- Joanna Grabowska
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Biology and Immunology Program, Cancer Center Amsterdam, Amsterdam, Netherlands
- Cancer Immunology Program, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Valentine Léopold
- Center of Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Anesthesiology and Critical Care, Paris University, Lariboisière Hospital, Paris, France
- Inserm UMR-S 942, Cardiovascular Markers in Stress Conditions (MASCOT), University of Paris, Paris, France
| | - Katarzyna Olesek
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Biology and Immunology Program, Cancer Center Amsterdam, Amsterdam, Netherlands
- Cancer Immunology Program, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Maarten K. Nijen Twilhaar
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Biology and Immunology Program, Cancer Center Amsterdam, Amsterdam, Netherlands
- Cancer Immunology Program, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Alsya J. Affandi
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Biology and Immunology Program, Cancer Center Amsterdam, Amsterdam, Netherlands
- Cancer Immunology Program, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Mieke C. Brouwer
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| | - Ilse Jongerius
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| | - Admar Verschoor
- Department of Dermatology, University of Lübeck, Lübeck, Germany
- Department of Otorhinolaryngology, Technische Universität München and Klinikum Rechts der Isar, Munich, Germany
| | - Cees van Kooten
- Department of Medicine, Division of Nephrology and Transplant Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Biology and Immunology Program, Cancer Center Amsterdam, Amsterdam, Netherlands
- Cancer Immunology Program, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Gert Storm
- Department of Pharmaceutics, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Department of Biomaterials, Science and Technology, Faculty of Science and Technology, University of Twente, Enschede, Netherlands
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Cornelis van ‘t Veer
- Center of Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Joke M. M. den Haan
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Biology and Immunology Program, Cancer Center Amsterdam, Amsterdam, Netherlands
- Cancer Immunology Program, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| |
Collapse
|
19
|
von Roemeling C, Yegorov O, Yang C, Klippel K, Russell R, Trivedi V, Bhatia A, Doonan B, Carpenter S, Ryu D, Grippen A, Futch H, Ran Y, Hoang-Minh L, Weidert F, Golde T, Mitchell D. CXCL9 recombinant adeno-associated virus (AAV) virotherapy sensitizes glioblastoma (GBM) to anti-PD-1 immune checkpoint blockade. RESEARCH SQUARE 2023:rs.3.rs-3463730. [PMID: 38014191 PMCID: PMC10680939 DOI: 10.21203/rs.3.rs-3463730/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The promise of immunotherapy to induce long-term durable responses in conventionally treatment resistant tumors like glioblastoma (GBM) has given hope for patients with a dismal prognosis. Yet, few patients have demonstrated a significant survival benefit despite multiple clinical trials designed to invigorate immune recognition and tumor eradication. Insights gathered over the last two decades have revealed numerous mechanisms by which glioma cells resist conventional therapy and evade immunological detection, underscoring the need for strategic combinatorial treatments as necessary to achieve appreciable therapeutic effects. However, new combination therapies are inherently difficult to develop as a result of dose-limiting toxicities, the constraints of the blood-brain barrier, and the suppressive nature of the GBM tumor microenvironment (TME). GBM is notoriously devoid of lymphocytes driven in part by a paucity of lymphocyte trafficking factors necessary to prompt their recruitment, infiltration, and activation. We have developed a novel recombinant adeno-associated virus (AAV) gene therapy strategy that enables focal and stable reconstitution of the GBM TME with C-X-C motif ligand 9 (CXCL9), a powerful call-and-receive chemokine for cytotoxic T lymphocytes (CTLs). By precisely manipulating local chemokine directional guidance, AAV-CXCL9 increases tumor infiltration by CD8-postive cytotoxic lymphocytes, sensitizing GBM to anti-PD-1 immune checkpoint blockade (ICB). These effects are accompanied by immunologic signatures evocative of an inflamed and responsive TME. These findings support targeted AAV gene therapy as a promising adjuvant strategy for reconditioning GBM immunogenicity given its excellent safety profile, TME-tropism, modularity, and off-the-shelf capability, where focal delivery bypasses the constrains of the blood-brain barrier, further mitigating risks observed with high-dose systemic therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Frances Weidert
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida
| | | | | |
Collapse
|
20
|
Russ BE, Barugahare A, Dakle P, Tsyganov K, Quon S, Yu B, Li J, Lee JKC, Olshansky M, He Z, Harrison PF, See M, Nussing S, Morey AE, Udupa VA, Bennett TJ, Kallies A, Murre C, Collas P, Powell D, Goldrath AW, Turner SJ. Active maintenance of CD8 + T cell naivety through regulation of global genome architecture. Cell Rep 2023; 42:113301. [PMID: 37858463 PMCID: PMC10679840 DOI: 10.1016/j.celrep.2023.113301] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/07/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023] Open
Abstract
The differentiation of naive CD8+ T lymphocytes into cytotoxic effector and memory CTL results in large-scale changes in transcriptional and phenotypic profiles. Little is known about how large-scale changes in genome organization underpin these transcriptional programs. We use Hi-C to map changes in the spatial organization of long-range genome contacts within naive, effector, and memory virus-specific CD8+ T cells. We observe that the architecture of the naive CD8+ T cell genome is distinct from effector and memory genome configurations, with extensive changes within discrete functional chromatin domains associated with effector/memory differentiation. Deletion of BACH2, or to a lesser extent, reducing SATB1 DNA binding, within naive CD8+ T cells results in a chromatin architecture more reminiscent of effector/memory states. This suggests that key transcription factors within naive CD8+ T cells act to restrain T cell differentiation by actively enforcing a unique naive chromatin state.
Collapse
Affiliation(s)
- Brendan E Russ
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia.
| | - Adele Barugahare
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia; Bioinformatics Platform, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Pushkar Dakle
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Kirril Tsyganov
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia; Bioinformatics Platform, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Sara Quon
- Department of Biological Sciences, University of California, San Diego, San Diego, CA, USA
| | - Bingfei Yu
- Department of Biological Sciences, University of California, San Diego, San Diego, CA, USA
| | - Jasmine Li
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia; Department of Molecular Biology, University of California, San Diego, San Diego, CA, USA
| | - Jason K C Lee
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Moshe Olshansky
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Zhaohren He
- Department of Molecular Biology, University of California, San Diego, San Diego, CA, USA
| | - Paul F Harrison
- Bioinformatics Platform, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Michael See
- Bioinformatics Platform, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Simone Nussing
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Alison E Morey
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Vibha A Udupa
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Taylah J Bennett
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Axel Kallies
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Cornelis Murre
- Department of Molecular Biology, University of California, San Diego, San Diego, CA, USA
| | - Phillipe Collas
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway
| | - David Powell
- Bioinformatics Platform, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Ananda W Goldrath
- Department of Biological Sciences, University of California, San Diego, San Diego, CA, USA
| | - Stephen J Turner
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
21
|
Yadav PD, Sahay RR, Salwe S, Trimbake D, Babar P, Sapkal GN, Deshpande GR, Bhise K, Shete AM, Abraham P, Tripathy AS. Broadly Reactive SARS-CoV-2-Specific T-Cell Response and Participation of Memory B and T Cells in Patients with Omicron COVID-19 Infection. J Immunol Res 2023; 2023:8846953. [PMID: 37881339 PMCID: PMC10597734 DOI: 10.1155/2023/8846953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 10/27/2023] Open
Abstract
January 2022 onward, India witnessed a sudden increase in Omicron COVID-19 infections, having a mild course that prompted us to identify the key host factors/immune molecules modulating disease course/outcomes. The current study evaluated the percentages of lymphocyte subsets by flowcytometry, SARS-CoV-2 specific T-cell immune response by ELISPOT, estimation of plasma cytokine/chemokine levels on a Bio-plex Multiplex Immunoassay System and anti-SARS-CoV-2 IgG levels by enzyme-linked immunosorbent assay in 19 mild Omicron infected patients, 45 mild SARS-CoV-2 (2020) patients and 36 uninfected controls from India. Natural killer cells, B and memory B cells were high in vaccinated and total Omicron-infected patients groups compared to the mild SARS-CoV-2 (2020) patient group, while CD8+ T cells were high in total Omicron-infected patients group compared to the uninfected control group (p < 0.05 each). Omicron-infected patients had T-cell response against SARS-CoV-2 whole virus, S1 proteins (wild type and delta variant) in 10 out of 17 (59%), 10 out of 17 (59%), and 8 out of 17 (47%), respectively. The current study of Omicron-infected patients elucidates broadly reactive antibody, T-cell response, and participation of memory B and T cells induced by vaccination/natural infection. The limited effect of Omicron's mutations on T-cell response is suggestive of protection from severity. Pro-inflammatory IL-6, IFN-γ, chemokines CCL-2, CCL-3, CCL-4, CCL-5, and IL-8 as potential biomarkers of Omicron infection may have future diagnostic importance. The cellular immune response data in Omicron-infected patients with parental Omicron lineage could serve as a starting point to define the readouts of protective immunity against circulating Omicron subvariants.
Collapse
Affiliation(s)
- Pragya D. Yadav
- ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - Rima R. Sahay
- ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - Sukeshani Salwe
- ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - Diptee Trimbake
- ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - Prasad Babar
- ICMR-National Institute of Virology, Pune, Maharashtra, India
| | | | | | - Kiran Bhise
- COVID Hospital, Baner, Pune, Maharashtra, India
| | - Anita M. Shete
- ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - Priya Abraham
- ICMR-National Institute of Virology, Pune, Maharashtra, India
| | | |
Collapse
|
22
|
Lin YJ, Wang LC, Tsai HP, Chi CY, Chang CP, Chen SH, Wang SM. Antiviral and immunoregulatory effects of curcumin on coxsackievirus B3-infected hepatitis. Virus Res 2023; 336:199203. [PMID: 37625648 PMCID: PMC10485155 DOI: 10.1016/j.virusres.2023.199203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
Fulminant hepatitis is a life-threatening complication of coxsackievirus B (CVB) 3 infections. The condition may deteriorate to disseminated intravascular coagulopathy with markedly increased liver enzymes, inflammatory cytokines, and chemokines, which significantly induce local and systemic inflammation. Curcumin exhibits anti-inflammatory and antiviral characteristics in inflammatory and infectious diseases. Here we determined effects of curcumin on viral replications, cytokine and chemokine expressions, and liver damage in CVB3-infected Huh-7 cells. The mouse-adapted CVB3 strain was used to investigate the antiviral and anti-inflammatory effects of curcumin on CVB3-induced hepatitis in a mouse model. In vitro studies showed that curcumin reduced viral protein and titer levels and increased cell viability. Curcumin enhanced the heme oxygenase-1 (HO-1) protein level and decreased the levels of cleaved caspase-3 protein and mRNA of gene encoding C-X-C motif chemokine 10 in infected cells. In vivo studies showed that curcumin improved the survival rate and clinical scores in mice and reduced the viral titer in the liver during CVB3 infection. Moreover, the HO-1 levels were increased, and the cleaved caspase-3 levels were diminished in the CVB3-infected liver. Curcumin reduced the levels of interferon (IFN)-γ and monokine induced by IFN-γ in liver and levels of interleukin (IL)-8 in serum, but increased levels of regulated activation, normal T cell expression in liver and levels of IL-10 in serum of CVB3-infected mice. In summary, curcumin presents antiviral and anti-inflammation efficacies in CVB3 infection in vitro and in vivo; these results provide potential evidence on the feasibility of curcumin for clinical treatment.
Collapse
Affiliation(s)
- Yu-Jheng Lin
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Li-Chiu Wang
- School of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
| | - Huey-Pin Tsai
- Department of Pathology,College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 70401, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 70401, Taiwan
| | - Chia-Yu Chi
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - Chih-Peng Chang
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 70401, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70401, Taiwan
| | - Shun-Hua Chen
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 70401, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70401, Taiwan.
| | - Shih-Min Wang
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 70401, Taiwan; Center for Infection Control, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70401, Taiwan.
| |
Collapse
|
23
|
Agarwal S, Aznar MA, Rech AJ, Good CR, Kuramitsu S, Da T, Gohil M, Chen L, Hong SJA, Ravikumar P, Rennels AK, Salas-Mckee J, Kong W, Ruella M, Davis MM, Plesa G, Fraietta JA, Porter DL, Young RM, June CH. Deletion of the inhibitory co-receptor CTLA-4 enhances and invigorates chimeric antigen receptor T cells. Immunity 2023; 56:2388-2407.e9. [PMID: 37776850 PMCID: PMC10591801 DOI: 10.1016/j.immuni.2023.09.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 06/08/2023] [Accepted: 09/05/2023] [Indexed: 10/02/2023]
Abstract
Chimeric antigen receptor (CAR) T cell therapy targeting CD19 has achieved tremendous success treating B cell malignancies; however, some patients fail to respond due to poor autologous T cell fitness. To improve response rates, we investigated whether disruption of the co-inhibitory receptors CTLA4 or PD-1 could restore CART function. CRISPR-Cas9-mediated deletion of CTLA4 in preclinical models of leukemia and myeloma improved CAR T cell proliferation and anti-tumor efficacy. Importantly, this effect was specific to CTLA4 and not seen upon deletion of CTLA4 and/or PDCD1 in CAR T cells. Mechanistically, CTLA4 deficiency permitted unopposed CD28 signaling and maintenance of CAR expression on the T cell surface under conditions of high antigen load. In clinical studies, deletion of CTLA4 rescued the function of T cells from patients with leukemia that previously failed CAR T cell treatment. Thus, selective deletion of CTLA4 reinvigorates dysfunctional chronic lymphocytic leukemia (CLL) patient T cells, providing a strategy for increasing patient responses to CAR T cell therapy.
Collapse
Affiliation(s)
- Sangya Agarwal
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - M Angela Aznar
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Andrew J Rech
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Charly R Good
- Department Cell and Developmental Biology, Penn Institute of Epigenetics, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Shunichiro Kuramitsu
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Tong Da
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Mercy Gohil
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Linhui Chen
- Institute for Biomedical Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Seok-Jae Albert Hong
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Pranali Ravikumar
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Austin K Rennels
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - January Salas-Mckee
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Weimin Kong
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marco Ruella
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Parker Institute of Cancer immunotherapy at University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Hematology/Oncology, Department of Medicine and Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Megan M Davis
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gabriela Plesa
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Joseph A Fraietta
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Parker Institute of Cancer immunotherapy at University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David L Porter
- Division of Hematology/Oncology, Department of Medicine and Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Regina M Young
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Parker Institute of Cancer immunotherapy at University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Carl H June
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Parker Institute of Cancer immunotherapy at University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
24
|
Giles JR, Globig AM, Kaech SM, Wherry EJ. CD8 + T cells in the cancer-immunity cycle. Immunity 2023; 56:2231-2253. [PMID: 37820583 PMCID: PMC11237652 DOI: 10.1016/j.immuni.2023.09.005] [Citation(s) in RCA: 147] [Impact Index Per Article: 73.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023]
Abstract
CD8+ T cells are end effectors of cancer immunity. Most forms of effective cancer immunotherapy involve CD8+ T cell effector function. Here, we review the current understanding of T cell function in cancer, focusing on key CD8+ T cell subtypes and states. We discuss factors that influence CD8+ T cell differentiation and function in cancer through a framework that incorporates the classic three-signal model and a fourth signal-metabolism-and also consider the impact of the tumor microenvironment from a T cell perspective. We argue for the notion of immunotherapies as "pro-drugs" that act to augment or modulate T cells, which ultimately serve as the drug in vivo, and for the importance of overall immune health in cancer treatment and prevention. The progress in understanding T cell function in cancer has and will continue to improve harnessing of the immune system across broader tumor types to benefit more patients.
Collapse
Affiliation(s)
- Josephine R Giles
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anna-Maria Globig
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Susan M Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | - E John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
25
|
Nyariki JN, Kimani NM, Kibet PS, Kinuthia GK, Isaac AO. Coenzyme Q10 exhibits anti-inflammatory and immune-modulatory thereby decelerating the occurrence of experimental cerebral malaria. Mol Biochem Parasitol 2023; 255:111579. [PMID: 37385350 DOI: 10.1016/j.molbiopara.2023.111579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Cerebral Malaria (CM) is associated with the complex neurological syndrome, whose pathology is mediated by severe inflammatory processes following infection with Plasmodium falciparum. Coenzyme-Q10 (Co-Q10) is a potent anti-inflammatory, anti-oxidant, and anti-apoptotic agent with numerous clinical applications. The aim of this study was to elucidate the role of oral administration of Co-Q10 on the initiation or regulation of inflammatory immune response during experimental cerebral malaria (ECM). For this purpose, the pre-clinical effect of Co-Q10 was evaluated in C57BL/6 J mice infected with Plasmodium berghei ANKA (PbA). Treatment with Co-Q10 resulted in the reduction of infiltrating parasite load, greatly improved the survival rate of PbA-infected mice that occurred independent of parasitaemia and prevented PbA-induced disruption of the blood-brain barrier (BBB) integrity. Exposure to Co-Q10 resulted in the reduction of infiltration of effector CD8 + T cells in the brain and secretion of cytolytic Granzyme B molecules. Notably, Co-Q10-treated mice had reduced levels of CD8 +T cell chemokines CXCR3, CCR2, and CCR5 in the brain following PbA-infection. Brain tissue analysis showed a reduction in the levels of inflammatory mediators TNF- α, CCL3, and RANTES in Co-Q10 administered mice. In addition, Co-Q10 modulated the differentiation and maturation of both splenic and brain dendritic cells and cross-presentation (CD8α+DCs) during ECM. Remarkably, Co-Q10 was very effective in decreasing levels of CD86, MHC-II, and CD40 in macrophages associated with ECM pathology. Exposure to Co-Q10 resulted in increased expression levels of Arginase-1 and Ym1/chitinase 3-like 3, which is linked to ECM protection. Furthermore, Co-Q10 supplementation prevented PbA-induced depletion of Arginase and CD206 mannose receptor levels. Co-Q10 abrogated PbA-driven elevation in pro-inflammatory cytokines IL-1β, IL-18, and IL-6 levels. In conclusion, the oral supplementation with Co-Q10 decelerates the occurrence of ECM by preventing lethal inflammatory immune responses and dampening genes associated with inflammation and immune-pathology during ECM, and offers an inimitable opening for developing an anti-inflammatory agent against cerebral malaria.
Collapse
Affiliation(s)
- James Nyabuga Nyariki
- Department of Biochemistry and Biotechnology, Technical of University of Kenya, P.O Box 52428-00200 Nairobi, Kenya.
| | - Njogu M Kimani
- Department of Physical Sciences, University of Embu, P.O Box 6-60100 Embu, Kenya
| | - Peter Shikuku Kibet
- Department of Pathology, Hematology and Blood Transfusion thematic unit, University of Nairobi, PO Box 30197-00100, Nairobi, Kenya
| | - Geoffrey K Kinuthia
- Department of Science & Public Health, Daystar University, PO Box 44400-00100, Nairobi, Kenya
| | - Alfred Orina Isaac
- Department of Pharmaceutical Sciences and Technology, School Health Sciences and Biomedical Sciences, Technical University of Kenya, P.O Box 52428-00200 Nairobi, Kenya
| |
Collapse
|
26
|
Gerton TJ, Green A, Campisi M, Chen M, Gjeci I, Mahadevan N, Lee CAA, Mishra R, Vo HV, Haratani K, Li ZH, Hasselblatt KT, Testino B, Connor T, Lian CG, Elias KM, Lizotte P, Ivanova EV, Barbie DA, Dinulescu DM. Development of a Patient-Derived 3D Immuno-Oncology Platform to Potentiate Immunotherapy Responses in Ascites-Derived Circulating Tumor Cells. Cancers (Basel) 2023; 15:4128. [PMID: 37627156 PMCID: PMC10452550 DOI: 10.3390/cancers15164128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
High-grade serous ovarian cancer (HGSOC) is responsible for the majority of gynecology cancer-related deaths. Patients in remission often relapse with more aggressive forms of disease within 2 years post-treatment. Alternative immuno-oncology (IO) strategies, such as immune checkpoint blockade (ICB) targeting the PD-(L)1 signaling axis, have proven inefficient so far. Our aim is to utilize epigenetic modulators to maximize the benefit of personalized IO combinations in ex vivo 3D patient-derived platforms and in vivo syngeneic models. Using patient-derived tumor ascites, we optimized an ex vivo 3D screening platform (PDOTS), which employs autologous immune cells and circulating ascites-derived tumor cells, to rapidly test personalized IO combinations. Most importantly, patient responses to platinum chemotherapy and poly-ADP ribose polymerase inhibitors in 3D platforms recapitulate clinical responses. Furthermore, similar to clinical trial results, responses to ICB in PDOTS tend to be low and positively correlated with the frequency of CD3+ immune cells and EPCAM+/PD-L1+ tumor cells. Thus, the greatest response observed with anti-PD-1/anti-PD-L1 immunotherapy alone is seen in patient-derived HGSOC ascites, which present with high levels of systemic CD3+ and PD-L1+ expression in immune and tumor cells, respectively. In addition, priming with epigenetic adjuvants greatly potentiates ICB in ex vivo 3D testing platforms and in vivo tumor models. We further find that epigenetic priming induces increased tumor secretion of several key cytokines known to augment T and NK cell activation and cytotoxicity, including IL-6, IP-10 (CXCL10), KC (CXCL1), and RANTES (CCL5). Moreover, epigenetic priming alone and in combination with ICB immunotherapy in patient-derived PDOTS induces rapid upregulation of CD69, a reliable early activation of immune markers in both CD4+ and CD8+ T cells. Consequently, this functional precision medicine approach could rapidly identify personalized therapeutic combinations able to potentiate ICB, which is a great advantage, especially given the current clinical difficulty of testing a high number of potential combinations in patients.
Collapse
Affiliation(s)
- Thomas J. Gerton
- Division of Women’s and Perinatal Pathology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Allen Green
- Division of Women’s and Perinatal Pathology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Marco Campisi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Minyue Chen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Iliana Gjeci
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Navin Mahadevan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Catherine A. A. Lee
- Division of Dermatopathology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ranjan Mishra
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Ha V. Vo
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Koji Haratani
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Ze-Hua Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kathleen T. Hasselblatt
- Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Bryanna Testino
- Division of Women’s and Perinatal Pathology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Trevor Connor
- Division of Women’s and Perinatal Pathology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Christine G. Lian
- Division of Dermatopathology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kevin M. Elias
- Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Division of Gynecologic Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Patrick Lizotte
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Elena V. Ivanova
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - David A. Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Daniela M. Dinulescu
- Division of Women’s and Perinatal Pathology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
27
|
Micevic G, Daniels A, Flem-Karlsen K, Park K, Talty R, McGeary M, Mirza H, Blackburn HN, Sefik E, Cheung JF, Hornick NI, Aizenbud L, Joshi NS, Kluger H, Iwasaki A, Bosenberg MW, Flavell RA. IL-7R licenses a population of epigenetically poised memory CD8 + T cells with superior antitumor efficacy that are critical for melanoma memory. Proc Natl Acad Sci U S A 2023; 120:e2304319120. [PMID: 37459511 PMCID: PMC10372654 DOI: 10.1073/pnas.2304319120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/08/2023] [Indexed: 07/20/2023] Open
Abstract
Recurrence of advanced melanoma after therapy is a major risk factor for reduced survival, and treatment options are limited. Antitumor immune memory plays a critical role in preventing melanoma recurrence and memory T cells could be a potent cell-based therapy, but the identity, and functional properties of the required immune cells are incompletely understood. Here, we show that an IL-7Rhi tumor-specific CD8+ population is critical for antitumor memory and can be epigenetically augmented to drive powerful antitumor immune responses. Using a model of functional antimelanoma memory, we found that high IL-7R expression selectively marks a CD8+ population in lymphoid organs that plays critical roles in maintaining tumor remission after immunotherapy or surgical resection. This population has intrinsic cytotoxic activity, lacks markers of exhaustion and has superior antitumor efficacy. IL-7Rhi cells have a functionally poised epigenetic landscape regulated by DNA methylation, which can be augmented by hypomethylating agents to confer improved survival and complete melanoma clearance in naive mice. Importantly, greater than 95% of tumor-specific T cells in draining lymph nodes after therapy express high levels of IL-7R. This overlap between IL-7Rhi and antigen-specific T cells allows for enrichment of a potent functional CD8+ population without determining antigen-specificity, which we demonstrate in a melanoma model without a known antigen. We identify that IL-7R expression in human melanoma is an independent prognostic factor of improved survival. These findings advance our basic understanding of antitumor memory and suggest a cell-based therapy using high IL-7R expression to enrich for a lymph node population with superior antitumor activity that can be augmented by hypomethylating agents.
Collapse
Affiliation(s)
- Goran Micevic
- Department of Immunobiology, Yale School of Medicine, New Haven, CT06520
- Department of Dermatology, Yale School of Medicine, New Haven, CT06520
| | - Andrew Daniels
- Department of Immunobiology, Yale School of Medicine, New Haven, CT06520
- Department of Pathology, Yale School of Medicine, New Haven, CT06520
| | | | - Koonam Park
- Department of Dermatology, Yale School of Medicine, New Haven, CT06520
| | - Ronan Talty
- Department of Pathology, Yale School of Medicine, New Haven, CT06520
| | - Meaghan McGeary
- Department of Pathology, Yale School of Medicine, New Haven, CT06520
| | - Haris Mirza
- Department of Immunobiology, Yale School of Medicine, New Haven, CT06520
- Department of Pathology, Yale School of Medicine, New Haven, CT06520
| | - Holly N. Blackburn
- Department of Immunobiology, Yale School of Medicine, New Haven, CT06520
- Department of Surgery, Yale School of Medicine, New Haven, CT06520
| | - Esen Sefik
- Department of Immunobiology, Yale School of Medicine, New Haven, CT06520
| | - Julie F. Cheung
- Department of Immunobiology, Yale School of Medicine, New Haven, CT06520
| | - Noah I. Hornick
- Department of Immunobiology, Yale School of Medicine, New Haven, CT06520
| | - Lilach Aizenbud
- Yale Cancer Center, Yale School of Medicine, New Haven, CT06520
- Department of Medicine (Medical Oncology), Yale School of Medicine, New Haven, CT06520
| | - Nikhil S. Joshi
- Department of Immunobiology, Yale School of Medicine, New Haven, CT06520
| | - Harriet Kluger
- Yale Cancer Center, Yale School of Medicine, New Haven, CT06520
- Department of Medicine (Medical Oncology), Yale School of Medicine, New Haven, CT06520
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT06520
| | - Akiko Iwasaki
- Department of Immunobiology, Yale School of Medicine, New Haven, CT06520
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT06520
- HHMI, Chevy Chase, MD20815
| | - Marcus W. Bosenberg
- Department of Immunobiology, Yale School of Medicine, New Haven, CT06520
- Department of Dermatology, Yale School of Medicine, New Haven, CT06520
- Department of Pathology, Yale School of Medicine, New Haven, CT06520
- Yale Cancer Center, Yale School of Medicine, New Haven, CT06520
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT06520
- Yale Center for Immuno-Oncology, Yale School of Medicine, New Haven, CT06520
| | - Richard A. Flavell
- Department of Immunobiology, Yale School of Medicine, New Haven, CT06520
- Yale Cancer Center, Yale School of Medicine, New Haven, CT06520
- HHMI, Chevy Chase, MD20815
| |
Collapse
|
28
|
Kaplonek P, Cizmeci D, Kwatra G, Izu A, Lee JSL, Bertera HL, Fischinger S, Mann C, Amanat F, Wang W, Koen AL, Fairlie L, Cutland CL, Ahmed K, Dheda K, Barnabas SL, Bhorat QE, Briner C, Krammer F, Saphire EO, Gilbert SC, Lambe T, Pollard AJ, Nunes M, Wuhrer M, Lauffenburger DA, Madhi SA, Alter G. ChAdOx1 nCoV-19 (AZD1222) vaccine-induced Fc receptor binding tracks with differential susceptibility to COVID-19. Nat Immunol 2023; 24:1161-1172. [PMID: 37322179 PMCID: PMC10307634 DOI: 10.1038/s41590-023-01513-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 04/12/2023] [Indexed: 06/17/2023]
Abstract
Despite the success of COVID-19 vaccines, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern have emerged that can cause breakthrough infections. Although protection against severe disease has been largely preserved, the immunological mediators of protection in humans remain undefined. We performed a substudy on the ChAdOx1 nCoV-19 (AZD1222) vaccinees enrolled in a South African clinical trial. At peak immunogenicity, before infection, no differences were observed in immunoglobulin (Ig)G1-binding antibody titers; however, the vaccine induced different Fc-receptor-binding antibodies across groups. Vaccinees who resisted COVID-19 exclusively mounted FcγR3B-binding antibodies. In contrast, enhanced IgA and IgG3, linked to enriched FcγR2B binding, was observed in individuals who experienced breakthrough. Antibodies unable to bind to FcγR3B led to immune complex clearance and resulted in inflammatory cascades. Differential antibody binding to FcγR3B was linked to Fc-glycosylation differences in SARS-CoV-2-specific antibodies. These data potentially point to specific FcγR3B-mediated antibody functional profiles as critical markers of immunity against COVID-19.
Collapse
Affiliation(s)
| | - Deniz Cizmeci
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Gaurav Kwatra
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Science and Innovation/National Research Foundation South African Research Chair Initiative in Vaccine Preventable Diseases Unit, University of the Witwatersrand, Johannesburg, South Africa
- African Leadership in Vaccinology Expertise, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Alane Izu
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Science and Innovation/National Research Foundation South African Research Chair Initiative in Vaccine Preventable Diseases Unit, University of the Witwatersrand, Johannesburg, South Africa
- African Leadership in Vaccinology Expertise, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Harry L Bertera
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | | | - Colin Mann
- Center for Infectious Disease and Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Wenjun Wang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Anthonet L Koen
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Science and Innovation/National Research Foundation South African Research Chair Initiative in Vaccine Preventable Diseases Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Lee Fairlie
- African Leadership in Vaccinology Expertise, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Wits Reproductive Health and HIV Institute, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Clare L Cutland
- African Leadership in Vaccinology Expertise, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Keertan Dheda
- Division of Pulmonology, Groote Schuur Hospital and the University of Cape Town, Cape Town, South Africa
- Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Shaun L Barnabas
- Family Centre for Research With Ubuntu, Department of Paediatrics, University of Stellenbosch, Cape Town, South Africa
| | | | - Carmen Briner
- Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Erica Ollman Saphire
- Center for Infectious Disease and Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Sarah C Gilbert
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Teresa Lambe
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Marta Nunes
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Science and Innovation/National Research Foundation South African Research Chair Initiative in Vaccine Preventable Diseases Unit, University of the Witwatersrand, Johannesburg, South Africa
- African Leadership in Vaccinology Expertise, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Shabir A Madhi
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
- Department of Science and Innovation/National Research Foundation South African Research Chair Initiative in Vaccine Preventable Diseases Unit, University of the Witwatersrand, Johannesburg, South Africa.
- African Leadership in Vaccinology Expertise, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA.
| |
Collapse
|
29
|
Modur V, Muhammad B, Yang JQ, Zheng Y, Komurov K, Guo F. Mechanism of inert inflammation in an immune checkpoint blockade-resistant tumor subtype bearing transcription elongation defects. Cell Rep 2023; 42:112364. [PMID: 37043352 PMCID: PMC10562518 DOI: 10.1016/j.celrep.2023.112364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 08/22/2022] [Accepted: 03/21/2023] [Indexed: 04/13/2023] Open
Abstract
The clinical response to immune checkpoint blockade (ICB) correlates with tumor-infiltrating cytolytic T lymphocytes (CTLs) prior to treatment. However, many of these inflamed tumors resist ICB through unknown mechanisms. We show that tumors with transcription elongation deficiencies (TEdef+), which we previously reported as being resistant to ICB in mouse models and the clinic, have high baseline CTLs. We show that high baseline CTLs in TEdef+ tumors result from aberrant activation of the nucleic acid sensing-TBK1-CCL5/CXCL9 signaling cascade, which results in an immunosuppressive microenvironment with elevated regulatory T cells and exhausted CTLs. ICB therapy of TEdef+ tumors fail to increase CTL infiltration and suppress tumor growth in both experimental and clinical settings, suggesting that TEdef+, along with surrogate markers of tumor immunogenicity such as tumor mutational burden and CTLs, should be considered in the decision process for patient immunotherapy indication.
Collapse
Affiliation(s)
- Vishnu Modur
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Belal Muhammad
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jun-Qi Yang
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | | | - Fukun Guo
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
30
|
Islam M, Sevak JK, Sharma MK, Jindal A, Vyas AK, Bajpai M, Ramakrishna G, Sarin SK, Trehanpati N. Immune predictors of hepatitis B surface antigen seroconversion in patients with hepatitis B reactivation. Aliment Pharmacol Ther 2023; 57:689-708. [PMID: 36411952 DOI: 10.1111/apt.17306] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/16/2022] [Accepted: 11/03/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Hepatitis B surface antigen (HBsAg) seroconversion is sometimes observed in hepatitis B reactivation (rHBV), probably due to immune resetting and differentiation. AIMS To investigate sequential immune differentiation and abrogation of tolerance in patients with rHBV who achieved HBsAg seroconversion. METHODS We included 19 patients with chronic hepatitis B (CHBV; HBV DNA log103-8 ), 67 with rHBV (raised ALT [>5XULN], HBV DNAlog104-8 ) and 10 healthy controls. Immune differentiation, tolerance and functional status of CD4, CD8, T regulatory cells (Tregs), B cells and follicular T helper (Tfh) cells were assessed at baseline and 24 weeks. RESULTS At 24 weeks, 81% rHBV (n = 67) lost HBV DNA and HBeAg (41%), and 12 (19%) lost HBsAg and made anti-HBs titers >10 IU/ml. rHBV patients had higher Th1/17, TEM , Tfh, Tfh1/17, plasma and ATM B cells, and lower Tregs, Th2, Th17 and TEMRA expression. rHBV showed lower PD1, TIM3, LAG3, SLAM and TOX compared to CHBV. There was a significant increase in CD8, CD8EM, Tfh, Tfh1/17 and plasma B cells in seroconverters than non-seroconverters. At 24 weeks, we also observed increased plasma B cell frequency in seroconverters. While non-seroconverters showed higher expression of PD1, TIM3, LAG3, SLAM and TOX on CD4/CD8 T cells, blockade of PD1, TIM3, LAG3 and CTLA4 significantly enhanced IFN-γ, TNF-α, IL-4 and IL-21 expression on CD4/CD8 and Tfh cells in non-seroconverters. CONCLUSIONS Non-seroconverters have increased inhibitory markers on CD4/CD8 T cells. There is a critical play of CD8, Tfh and B cells and subsets in seroclearance, along with checkpoint molecules as a potential therapy for non-seroconverters in HBV infection.
Collapse
Affiliation(s)
- Mojahidul Islam
- Departments of Molecular and Cellular Medicine, Institute of Liver & Biliary Sciences, New Delhi, India
| | - Jayesh Kumar Sevak
- Departments of Molecular and Cellular Medicine, Institute of Liver & Biliary Sciences, New Delhi, India
| | - Manoj Kumar Sharma
- Department of Hepatology, Institute of Liver & Biliary Sciences, New Delhi, India
| | - Ankur Jindal
- Department of Hepatology, Institute of Liver & Biliary Sciences, New Delhi, India
| | - Ashish Kumar Vyas
- Departments of Molecular and Cellular Medicine, Institute of Liver & Biliary Sciences, New Delhi, India
| | - Meenu Bajpai
- Department of Transfusion Medicine, Institute of Liver & Biliary Sciences, New Delhi, India
| | - Gayatri Ramakrishna
- Departments of Molecular and Cellular Medicine, Institute of Liver & Biliary Sciences, New Delhi, India
| | - Shiv Kumar Sarin
- Department of Hepatology, Institute of Liver & Biliary Sciences, New Delhi, India
| | - Nirupma Trehanpati
- Departments of Molecular and Cellular Medicine, Institute of Liver & Biliary Sciences, New Delhi, India
| |
Collapse
|
31
|
Russ BE, Tsyganov K, Quon S, Yu B, Li J, Lee JKC, Olshansky M, He Z, Harrison PF, Barugahare A, See M, Nussing S, Morey AE, Udupa VA, Bennett T.J, Kallies A, Murre C, Collas P, Powell D, Goldrath AW, Turner SJ. Active maintenance of CD8 + T cell naïvety through regulation of global genome architecture. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.26.530139. [PMID: 36909629 PMCID: PMC10002700 DOI: 10.1101/2023.02.26.530139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
The differentiation of naïve CD8+ cytotoxic T lymphocytes (CTLs) into effector and memory states results in large scale changes in transcriptional and phenotypic profiles. Little is known about how large-scale changes in genome organisation reflect or underpin these transcriptional programs. We utilised Hi-C to map changes in the spatial organisation of long-range genome contacts within naïve, effector and memory virus-specific CD8+ T cells. We observed that the architecture of the naive CD8+ T cell genome was distinct from effector and memory genome configurations with extensive changes within discrete functional chromatin domains. However, deletion of the BACH2 or SATB1 transcription factors was sufficient to remodel the naïve chromatin architecture and engage transcriptional programs characteristic of differentiated cells. This suggests that the chromatin architecture within naïve CD8+ T cells is preconfigured to undergo autonomous remodelling upon activation, with key transcription factors restraining differentiation by actively enforcing the unique naïve chromatin state.
Collapse
Affiliation(s)
- Brendan E. Russ
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University
| | - Kirril Tsyganov
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University
- Bioinformatics platform, Biomedical Discovery Institute, Monash University, Australia
| | - Sara Quon
- Department of Biological Sciences, University of California, San Diego, USA
| | - Bingfei Yu
- Department of Biological Sciences, University of California, San Diego, USA
| | - Jasmine Li
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University
- Department of Molecular Biology, University of California, San Diego, USA
| | - Jason K. C. Lee
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University
| | - Moshe Olshansky
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University
| | - Zhaohren He
- Department of Molecular Biology, University of California, San Diego, USA
| | - Paul F. Harrison
- Bioinformatics platform, Biomedical Discovery Institute, Monash University, Australia
| | - Adele Barugahare
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University
- Bioinformatics platform, Biomedical Discovery Institute, Monash University, Australia
| | - Michael See
- Bioinformatics platform, Biomedical Discovery Institute, Monash University, Australia
| | | | - Alison E. Morey
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University
| | - Vibha A. Udupa
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University
| | - Taylah .J Bennett
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University
| | - Axel Kallies
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Cornelis Murre
- Department of Molecular Biology, University of California, San Diego, USA
| | - Phillipe Collas
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway
| | - David Powell
- Bioinformatics platform, Biomedical Discovery Institute, Monash University, Australia
| | - Ananda W. Goldrath
- Department of Biological Sciences, University of California, San Diego, USA
| | - Stephen J. Turner
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University
| |
Collapse
|
32
|
SARS-CoV-2 N protein mediates intercellular nucleic acid dispersion, a feature reduced in Omicron. iScience 2023; 26:105995. [PMID: 36687314 PMCID: PMC9841735 DOI: 10.1016/j.isci.2023.105995] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/21/2022] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
The coronavirus nucleocapsid (N) protein is known to bind to nucleic acids and facilitate viral genome encapsulation. Here we report that the N protein can mediate RNA or DNA entering neighboring cells through ACE2-independent, receptor (STEAP2)-mediated endocytosis, and achieve gene expression. The effect is more pronounced for the N protein of wild-type SARS-CoV-2 than that of the Omicron variant and other human coronaviruses. This effect is enhanced by RANTES (CCL5), a chemokine induced by N protein, and lactate, a metabolite produced in hypoxia, to cause more damage. These findings might explain the clinical observations in SARS-CoV-2-infected cases. Moreover, the N protein-mediated function can be inhibited by N protein-specific monoclonal antibodies or p38 mitogen-activated protein kinase inhibitors. Since the N-protein-mediated nucleic acid endocytosis involves a receptor commonly expressed in many types of cells, our findings suggest that N protein may have an additional role in SARS-CoV-2 pathogenesis.
Collapse
|
33
|
Lee CYP, Carissimo G, Teo TH, Tong SJM, Chang ZW, Rajarethinam R, Chua TK, Chen Z, Chee RSL, Tay A, Howland SW, Ang KS, Chen J, Renia L, Ng LFP. CD8+ T Cells Trigger Auricular Dermatitis and Blepharitis in Mice after Zika Virus Infection in the Absence of CD4+ T Cells. J Invest Dermatol 2022; 143:1031-1041.e8. [PMID: 36566875 DOI: 10.1016/j.jid.2022.11.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/07/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022]
Abstract
Zika virus (ZIKV) became a public health concern when it re-emerged in 2015 owing to its ability to cause congenital deformities in the fetus and neurological complications in adults. Despite extensive data on protection, the interplay of protective and pathogenic adaptive immune responses toward ZIKV infection remains poorly understood. In this study, using a T-cell‒deficient mouse model that retains persistent ZIKV viral titers in the blood and organs, we show that the adoptive transfer of CD8+ T cells led to a significant reduction in viral load. This mouse model reveals that ZIKV can induce grossly visible auricular dermatitis and blepharitis, mediated by ZIKV-specific CD8+ T cells. Single-cell RNA sequencing of these causative CD8+ T cells from the ears shows an overactivated and elevated cytotoxic signature in mice with severe symptoms. Our results strongly suggest a role for CD8+ T-cell‒associated pathologies after ZIKV infection in CD4+ T-cell‒immunodeficient patients.
Collapse
Affiliation(s)
- Cheryl Yi-Pin Lee
- A(∗)STAR Infectious Diseases Labs (ID Labs), Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore
| | - Guillaume Carissimo
- A(∗)STAR Infectious Diseases Labs (ID Labs), Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore; Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Teck-Hui Teo
- A(∗)STAR Infectious Diseases Labs (ID Labs), Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore
| | - Samuel Jia Ming Tong
- A(∗)STAR Infectious Diseases Labs (ID Labs), Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore
| | - Zi Wei Chang
- A(∗)STAR Infectious Diseases Labs (ID Labs), Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore
| | - Ravisankar Rajarethinam
- Advanced Molecular Pathology Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore
| | - Tze Kwang Chua
- Singapore Immunology Network, Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore
| | - Zheyuan Chen
- Singapore Immunology Network, Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore
| | - Rhonda Sin-Ling Chee
- A(∗)STAR Infectious Diseases Labs (ID Labs), Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore
| | - Alicia Tay
- Singapore Immunology Network, Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore
| | - Shanshan Wu Howland
- Singapore Immunology Network, Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore
| | - Kok Siong Ang
- Singapore Immunology Network, Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore
| | - Jinmiao Chen
- Singapore Immunology Network, Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore
| | - Laurent Renia
- A(∗)STAR Infectious Diseases Labs (ID Labs), Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Lisa F P Ng
- A(∗)STAR Infectious Diseases Labs (ID Labs), Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Health Protection Research Unit in Emerging and Zoonotic Infections, National Institute of Health Research, University of Liverpool, Liverpool, United Kingdom; Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom.
| |
Collapse
|
34
|
Regulatory Effects of Curcumin on Platelets: An Update and Future Directions. Biomedicines 2022; 10:biomedicines10123180. [PMID: 36551934 PMCID: PMC9775400 DOI: 10.3390/biomedicines10123180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
The rhizomatous plant turmeric, which is frequently used as a spice and coloring ingredient, yields curcumin, a bioactive compound. Curcumin inhibits platelet activation and aggregation and improves platelet count. Platelets dysfunction results in several disorders, including inflammation, atherothrombosis, and thromboembolism. Several studies have proved the beneficial role of curcumin on platelets and hence proved it is an important candidate for the treatment of the aforementioned diseases. Moreover, curcumin is also frequently employed as an anti-inflammatory agent in conventional medicine. In arthritic patients, it has been shown to reduce the generation of pro-inflammatory eicosanoids and to reduce edema, morning stiffness, and other symptoms. Curcumin taken orally also reduced rats' acute inflammation brought on by carrageenan. Curcumin has also been proven to prevent atherosclerosis and platelet aggregation, as well as to reduce angiogenesis in adipose tissue. In the cerebral microcirculation, curcumin significantly lowered platelet and leukocyte adhesion. It largely modulated the endothelium to reduce platelet adhesion. Additionally, P-selectin expression and mice survival after cecal ligation and puncture were improved by curcumin, which also altered platelet and leukocyte adhesion and blood-brain barrier dysfunction. Through regulating many processes involved in platelet aggregation, curcuminoids collectively demonstrated detectable antiplatelet activity. Curcuminoids may therefore be able to prevent disorders linked to platelet activation as possible therapeutic agents. This review article proposes to highlight and discuss the regulatory effects of curcumin on platelets.
Collapse
|
35
|
Paik B, Tong L. Topical Omega-3 Fatty Acids Eyedrops in the Treatment of Dry Eye and Ocular Surface Disease: A Systematic Review. Int J Mol Sci 2022; 23:13156. [PMID: 36361942 PMCID: PMC9654205 DOI: 10.3390/ijms232113156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/16/2022] [Accepted: 10/26/2022] [Indexed: 11/20/2023] Open
Abstract
Dry eye is a common inflammatory condition of the ocular surface. While oral omega-3 supplementation for its treatment has been extensively studied, recent large-scale studies have cast doubt on their efficacy. However, efficacy of topical omega-3 has yet to be reviewed. We performed a systematic search of PubMed, Embase, and Cochrane databases for all studies evaluating topical omega-3 in dry eye. Five human and five animal studies were included. Of the five human studies, two were on dry eye disease (DED), one was on contact lens discomfort, and two were on patients undergoing corneal collagen crosslinking. In humans, there is promising evidence for improved ocular surface staining and tear break-up time compared to controls, equivocal evidence for improvements to ocular surface symptoms and meibomian gland dysfunction, and no effect on increasing tear production. Data from animal models largely agree with these findings, and further reveal decreased inflammatory cytokines and monocyte infiltration. Our review suggests that topical omega-3 is a promising treatment for dry eye, but also points to the paucity of evidence in this field. Further trials in humans are required to characterize effects of topical omega-3 and optimize its dosage.
Collapse
Affiliation(s)
- Benjamin Paik
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Louis Tong
- Department of Cornea and External Eye Disease, Singapore National Eye Center, Singapore 168751, Singapore
- Ocular Surface Research Group, Singapore Eye Research Institute, Singapore 169856, Singapore
- Ophthalmlogy and Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
36
|
Busse M, Zenclussen AC. IL-10 Producing B Cells Protect against LPS-Induced Murine Preterm Birth by Promoting PD1- and ICOS-Expressing T Cells. Cells 2022; 11:cells11172690. [PMID: 36078100 PMCID: PMC9454497 DOI: 10.3390/cells11172690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
B cells and in particular IL-10-secreting B cells emerge as important players in immune balance during pregnancy. We have recently revealed that CD19-deficient (CD19−/−), B cell-specific IL-10-deficient (BIL-10−/−) and B cell-deficient µMT pregnant mice are highly susceptible to LPS-induced preterm birth (PTB). We aimed to analyze the ability of IL-10-secreting cells to protect from PTB and the underlying mechanisms. Wild type (WT), CD19−/−, BIL-10−/− and µMT mice were treated with LPS at gd16 and the cellular immune response was investigated 24 h later. LPS-treated BIL-10−/− dams showed a more pronounced PTB phenotype compared to WT, CD19−/− and µMT females, and increased inflammatory and reduced anti-inflammatory mediator concentrations in the peritoneal cavity and serum. CD19−/−, BIL-10−/− and µMT mice displayed altered immune cell population frequencies in the blood and uterus with lower numbers of IL-10-secreting B cells and T cells. BIL-10−/− mothers presented decreased frequencies of uterine CD4+CD25+Foxp3+ Treg cells. Co-stimulatory molecules are critical for feto-maternal tolerance and IL-10 secretion. We found dysregulated PD-1 expression in peripheral blood and ICOS expression in the uterus of CD19−/−, BIL-10−/− and µMT dams. Our data show that B cell-specific IL-10-signaling is essential for a balanced maternal immune response to an inflammatory stimulant that cannot be hampered without IL-10-secreting B cells.
Collapse
Affiliation(s)
- Mandy Busse
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, 39108 Magdeburg, Germany
| | - Ana Claudia Zenclussen
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
- Saxonian Incubator for Translation Research, Leipzig University, 04103 Leipzig, Germany
- Correspondence: ; Tel.: +49-341-2351265
| |
Collapse
|
37
|
Zhu H, Galdos FX, Lee D, Waliany S, Huang YV, Ryan J, Dang K, Neal JW, Wakelee HA, Reddy SA, Srinivas S, Lin LL, Witteles RM, Maecker HT, Davis MM, Nguyen PK, Wu SM. Identification of Pathogenic Immune Cell Subsets Associated With Checkpoint Inhibitor-Induced Myocarditis. Circulation 2022; 146:316-335. [PMID: 35762356 PMCID: PMC9397491 DOI: 10.1161/circulationaha.121.056730] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) are monoclonal antibodies used to activate the immune system against tumor cells. Despite therapeutic benefits, ICIs have the potential to cause immune-related adverse events such as myocarditis, a rare but serious side effect with up to 50% mortality in affected patients. Histologically, patients with ICI myocarditis have lymphocytic infiltrates in the heart, implicating T cell-mediated mechanisms. However, the precise pathological immune subsets and molecular changes in ICI myocarditis are unknown. METHODS To identify immune subset(s) associated with ICI myocarditis, we performed time-of-flight mass cytometry on peripheral blood mononuclear cells from 52 individuals: 29 patients with autoimmune adverse events (immune-related adverse events) on ICI, including 8 patients with ICI myocarditis, and 23 healthy control subjects. We also used multiomics single-cell technology to immunophenotype 30 patients/control subjects using single-cell RNA sequencing, single-cell T-cell receptor sequencing, and cellular indexing of transcriptomes and epitopes by sequencing with feature barcoding for surface marker expression confirmation. To correlate between the blood and the heart, we performed single-cell RNA sequencing/T-cell receptor sequencing/cellular indexing of transcriptomes and epitopes by sequencing on MRL/Pdcd1-/- (Murphy Roths large/programmed death-1-deficient) mice with spontaneous myocarditis. RESULTS Using these complementary approaches, we found an expansion of cytotoxic CD8+ T effector cells re-expressing CD45RA (Temra CD8+ cells) in patients with ICI myocarditis compared with control subjects. T-cell receptor sequencing demonstrated that these CD8+ Temra cells were clonally expanded in patients with myocarditis compared with control subjects. Transcriptomic analysis of these Temra CD8+ clones confirmed a highly activated and cytotoxic phenotype. Longitudinal study demonstrated progression of these Temra CD8+ cells into an exhausted phenotype 2 months after treatment with glucocorticoids. Differential expression analysis demonstrated elevated expression levels of proinflammatory chemokines (CCL5/CCL4/CCL4L2) in the clonally expanded Temra CD8+ cells, and ligand receptor analysis demonstrated their interactions with innate immune cells, including monocytes/macrophages, dendritic cells, and neutrophils, as well as the absence of key anti-inflammatory signals. To complement the human study, we performed single-cell RNA sequencing/T-cell receptor sequencing/cellular indexing of transcriptomes and epitopes by sequencing in Pdcd1-/- mice with spontaneous myocarditis and found analogous expansions of cytotoxic clonal effector CD8+ cells in both blood and hearts of such mice compared with controls. CONCLUSIONS Clonal cytotoxic Temra CD8+ cells are significantly increased in the blood of patients with ICI myocarditis, corresponding to an analogous increase in effector cytotoxic CD8+ cells in the blood/hearts of Pdcd1-/- mice with myocarditis. These expanded effector CD8+ cells have unique transcriptional changes, including upregulation of chemokines CCL5/CCL4/CCL4L2, which may serve as attractive diagnostic/therapeutic targets for reducing life-threatening cardiac immune-related adverse events in ICI-treated patients with cancer.
Collapse
Affiliation(s)
- Han Zhu
- Department of Medicine, Stanford University; Stanford, California 94305, USA;,Stanford Cardiovascular Institute, Stanford University; Stanford, California 94305, USA,Division of Cardiovascular Medicine, Stanford University School of Medicine; Stanford, California 94305, USA
| | - Francisco X. Galdos
- Stanford Cardiovascular Institute, Stanford University; Stanford, California 94305, USA,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine; Stanford, California 94305
| | - Daniel Lee
- Stanford Cardiovascular Institute, Stanford University; Stanford, California 94305, USA
| | - Sarah Waliany
- Department of Medicine, Stanford University; Stanford, California 94305, USA
| | | | - Julia Ryan
- Stanford Cardiovascular Institute, Stanford University; Stanford, California 94305, USA
| | - Katherine Dang
- University of California, Santa Barbara, California, 93106
| | - Joel W. Neal
- Department of Medicine, Stanford University; Stanford, California 94305, USA;,Division of Oncology, Stanford University School of Medicine; Stanford, California 94305, USA.,Stanford Cancer Institute, Stanford University; Stanford, California 94305, USA
| | - Heather A. Wakelee
- Department of Medicine, Stanford University; Stanford, California 94305, USA;,Division of Oncology, Stanford University School of Medicine; Stanford, California 94305, USA.,Stanford Cancer Institute, Stanford University; Stanford, California 94305, USA
| | - Sunil A. Reddy
- Department of Medicine, Stanford University; Stanford, California 94305, USA;,Division of Oncology, Stanford University School of Medicine; Stanford, California 94305, USA.,Stanford Cancer Institute, Stanford University; Stanford, California 94305, USA
| | - Sandy Srinivas
- Department of Medicine, Stanford University; Stanford, California 94305, USA;,Division of Oncology, Stanford University School of Medicine; Stanford, California 94305, USA.,Stanford Cancer Institute, Stanford University; Stanford, California 94305, USA
| | - Lih-Ling Lin
- Checkpoint Immunology Cluster, Immunology and Inflammation, Sanofi US, Cambridge, MA, USA
| | - Ronald M. Witteles
- Department of Medicine, Stanford University; Stanford, California 94305, USA;,Division of Cardiovascular Medicine, Stanford University School of Medicine; Stanford, California 94305, USA
| | - Holden T. Maecker
- Department of Microbiology & Immunology, Stanford University School of Medicine; Stanford, California 94305, USA.,Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine; Stanford, California 94305, USA
| | - Mark M. Davis
- Department of Microbiology & Immunology, Stanford University School of Medicine; Stanford, California 94305, USA.,Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine; Stanford, California 94305, USA.,Howard Hughes Medical Institute, Stanford University; Stanford, California 94035
| | - Patricia K. Nguyen
- Department of Medicine, Stanford University; Stanford, California 94305, USA;,Stanford Cardiovascular Institute, Stanford University; Stanford, California 94305, USA,Division of Cardiovascular Medicine, Stanford University School of Medicine; Stanford, California 94305, USA
| | - Sean M. Wu
- Department of Medicine, Stanford University; Stanford, California 94305, USA;,Stanford Cardiovascular Institute, Stanford University; Stanford, California 94305, USA,Division of Cardiovascular Medicine, Stanford University School of Medicine; Stanford, California 94305, USA
| |
Collapse
|
38
|
Cao L, Luo Y, Guo X, Liu S, Li S, Li J, Zhang Z, Zhao Y, Zhang Q, Gao F, Ji X, Gao X, Li Y, You F. SAFA facilitates chromatin opening of immune genes through interacting with anti-viral host RNAs. PLoS Pathog 2022; 18:e1010599. [PMID: 35658050 PMCID: PMC9200321 DOI: 10.1371/journal.ppat.1010599] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 06/15/2022] [Accepted: 05/17/2022] [Indexed: 12/19/2022] Open
Abstract
Regulation of chromatin structure and accessibility determines the transcription activities of genes, which endows the host with function-specific patterns of gene expression. Upon viral infection, the innate immune responses provide the first line of defense, allowing rapid production of variegated antiviral cytokines. Knowledge on how chromatin accessibility is regulated during host defense against viral infection remains limited. Our previous work found that the nuclear matrix protein SAFA surveilled viral RNA and regulated antiviral immune genes expression. However, how SAFA regulates the specific induction of antiviral immune genes remains unknown. Here, through integration of RNA-seq, ATAC-seq and ChIP-seq assays, we found that the depletion of SAFA specifically decreased the chromatin accessibility, activation and expression of virus induced genes. And mutation assays suggested that the RNA-binding ability of SAFA was essential for its function in regulating antiviral chromatin accessibility. RIP-seq results showed that SAFA exclusively bound with antiviral related RNAs following viral infection. Further, we combined the CRISPR-Cas13d mediated RNA knockdown system with ATAC-qPCR, and demonstrated that the binding between SAFA and according antiviral RNAs specifically mediated the openness of the corresponding chromatin and following robust transcription of antiviral genes. Moreover, knockdown of these associated RNAs dampened the accessibility of related genes in an extranuclear signaling pathway dependent manner. Interestingly, VSV infection cleaved SAFA protein at the C-terminus which deprived its RNA binding ability for immune evasion. Thus, our results demonstrated that SAFA and the interacting RNA products collaborated and remodeled chromatin accessibility to facilitate antiviral innate immune responses.
Collapse
Affiliation(s)
- Lili Cao
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, China
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Yujie Luo
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, China
| | - Xuefei Guo
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, China
| | - Shengde Liu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Siji Li
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, China
| | - Junhong Li
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Zeming Zhang
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, China
| | - Yingchi Zhao
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, China
| | - Qiao Zhang
- School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Feng Gao
- School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Xiong Ji
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xiang Gao
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, School of life science, Shandong University, Qingdao, China
| | - Yunfei Li
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, China
| | - Fuping You
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, China
| |
Collapse
|
39
|
Hu A, Zhu J, Zeng C, Lin CH, Yu J, Liu JQ, Lynch K, Talebian F, Pan X, Yan J, Dong Y, Li Z, Bai XF. IL-27 Induces CCL5 Production by T Lymphocytes, Which Contributes to Antitumor Activity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2239-2245. [PMID: 35418466 PMCID: PMC9050872 DOI: 10.4049/jimmunol.2100885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 02/25/2022] [Indexed: 04/15/2023]
Abstract
IL-27 is a pleiotropic cytokine that exhibits stimulatory/regulatory functions on multiple lineages of immune cells including T lymphocytes. In this study, we demonstrate that IL-27 directly induces CCL5 production by T lymphocytes, particularly CD8+ T cells in vitro and in vivo. IL-27-induced CCL5 production is IL-27R-dependent. In CD4+ T cells, IL-27-induced CCL5 production was primarily dependent on Stat1 activation, whereas in CD8+ T cells, Stat1 deficiency does not abrogate CCL5 induction. A chromatin immunoprecipitation assay revealed that in the CCL5 promoter region, both putative Stat3 binding sites exhibit significant binding to Stat3, whereas only one out of four Stat1 binding sites displays moderate binding to Stat1. In tumor-bearing mice, IL-27 induced dramatic production of CCL5 in tumor-infiltrating T cells. IL-27-induced CCL5 appears to contribute to an IL-27-mediated antitumor effect. This is signified by diminished tumor inhibition in anti-CCL5- and IL-27-treated mice. Additionally, intratumor delivery of CCL5 mRNA using lipid nanoparticles significantly inhibited tumor growth. Thus, IL-27 induces robust CCL5 production by T cells, which contributes to antitumor activity.
Collapse
Affiliation(s)
- Aiyan Hu
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH
| | - Jianmin Zhu
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH
| | - Chunxi Zeng
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH
| | - Cho-Hao Lin
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH
| | - Jianyu Yu
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH
| | - Jin-Qing Liu
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH
| | - Kimberly Lynch
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH
| | - Fatemeh Talebian
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH
| | - Xueliang Pan
- Center for Biostatistics, College of Medicine, The Ohio State University, Columbus, OH
| | - Jingyue Yan
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH; and
| | - Yizhou Dong
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH; and
| | - Zihai Li
- Institute for Immuno-Oncology, Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Xue-Feng Bai
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH;
- Institute for Immuno-Oncology, Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| |
Collapse
|
40
|
Raqib R, Akhtar E, Sultana T, Ahmed S, Chowdhury MAH, Shahriar MH, Kader SB, Eunus M, Haq MA, Sarwar G, Islam T, Alam DS, Parvez F, Begum BA, Ahsan H, Yunus M. Association of household air pollution with cellular and humoral immune responses among women in rural Bangladesh. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 299:118892. [PMID: 35077836 PMCID: PMC9850293 DOI: 10.1016/j.envpol.2022.118892] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/29/2021] [Accepted: 01/20/2022] [Indexed: 05/29/2023]
Abstract
Household air pollution (HAP) arising from combustion of biomass fuel (BMF) is a leading cause of morbidity and mortality in low-income countries. Air pollution may stimulate pro-inflammatory responses by activating diverse immune cells and cyto/chemokine expression, thereby contributing to diseases. We aimed to study cellular immune responses among women chronically exposed to HAP through use of BMF for domestic cooking. Among 200 healthy, non-smoking women in rural Bangladesh, we assessed exposure to HAP by measuring particulate matter 2.5 (PM2.5), black carbon (BC) and carbon monoxide (CO), through use of personal monitors RTI MicroPEM™ and Lascar CO logger respectively, for 48 h. Blood samples were collected following HAP exposure assessment and were analyzed for immunoprofiling by flow cytometry, plasma IgE by immunoassay analyzer and cyto/chemokine response from monocyte-derived-macrophages (MDM) and -dendritic cells (MDDC) by multiplex immunoassay. In multivariate linear regression model, a doubling of PM2.5 was associated with small increments in immature/early B cells (CD19+CD38+) and plasmablasts (CD19+CD38+CD27+). In contrast, a doubling of CO was associated with 1.20% reduction in CD19+ B lymphocytes (95% confidence interval (CI) = -2.36, -0.01). A doubling of PM2.5 and BC each was associated with 3.12% (95%CI = -5.85, -0.38) and 4.07% (95%CI = -7.96, -0.17) decrements in memory B cells (CD19+CD27+), respectively. Exposure to CO was associated with increased plasma IgE levels (beta(β) = 240.4, 95%CI = 3.06, 477.8). PM2.5 and CO exposure was associated with increased MDM production of CXCL10 (β = 12287, 95%CI = 1038, 23536) and CCL5 (β = 835.7, 95%CI = 95.5, 1576), respectively. Conversely, BC exposure was associated with reduction in MDDC-produced CCL5 (β = -3583, 95%CI = -6358, -807.8) and TNF-α (β = -15521, 95%CI = -28968, -2074). Our findings suggest that chronic HAP exposure through BMF use adversely affects proportions of B lymphocytes, particularly memory B cells, plasma IgE levels and functions of antigen presenting cells in rural women.
Collapse
Affiliation(s)
| | - Evana Akhtar
- Infectious Diseases Division, icddr,b, Bangladesh
| | | | - Shyfuddin Ahmed
- Health Systems and Population Studies Division, icddr,b, Dhaka, 1212, Bangladesh
| | | | | | - Shirmin Bintay Kader
- Health Systems and Population Studies Division, icddr,b, Dhaka, 1212, Bangladesh
| | - Mahbbul Eunus
- U-Chicago Research Bangladesh, Mohakhali, Dhaka, Bangladesh
| | | | - Golam Sarwar
- U-Chicago Research Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - Tariqul Islam
- U-Chicago Research Bangladesh, Mohakhali, Dhaka, Bangladesh
| | | | - Faruque Parvez
- Mailman School of Public Health, Columbia University, New York, USA
| | | | - Habibul Ahsan
- Department of Public Health Sciences, University of Chicago, Chicago, USA
| | | |
Collapse
|
41
|
Zhao N, Zhang C, Ding J, Wu H, Cheng W, Li M, Zhu R, Li H. Altered T lymphocyte subtypes and cytokine profiles in follicular fluid associated with diminished ovary reserve. Am J Reprod Immunol 2022; 87:e13522. [PMID: 35006631 DOI: 10.1111/aji.13522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/05/2021] [Accepted: 12/30/2021] [Indexed: 01/07/2023] Open
Abstract
PROBLEM Diminished ovarian reserve (DOR) is a daunting obstacle in in vitro fertilization (IVF) or intra cytoplasmic sperm injection (ICSI), leading to poor reproductive outcomes. We aim to characterize the T cell and cytokine profiles in follicular fluid (FF) and elucidate its contribution to the development of DOR. METHOD OF STUDY A total of 92 infertile women were enrolled in the study. We assessed the ultrastructure, proliferation, and apoptosis of granulosa cells (GCs). The levels of CCL5 and cytokines in FF was measured. Additionally, we classified the T cells and analyzed cytokines production in T cell. We further verified whether CCL5 can recruit specific T cell subcytes to the follicles. RESULTS Cytoplasmic vacuolization, nucleolar dissociation, partial shortening, swelling, and fusion of mitochondrial cristae were obvious in GCs with DOR. The proliferation of GCs decreased and the proportion of apoptosis increased in DOR. The down-regulation of Bcl-2 and up-regulation of caspase3 were seen in GCs with DOR. The number of CD8+ T cells and proportion of CD8+ /CD4+ T cells in DOR exceeded the control. Higher positive percentage of CD69, CCR5, and IFN-γ in CD8+ T cells, lower positive percentage of IL-10 in CD4+ T cells and PD-1 in CD8+ T cells were detected in DOR. CCL5 accumulated promoting the recruitment of CD8+ T cells to the follicles on interaction with CCR5. CONCLUSION The abnormal proportion of CD8+ T cells and elevated CCL5 and IFN-γ may change the immune balance in FF and impair the growth of GCs, which in turn fuel the progression of DOR.
Collapse
Affiliation(s)
- Nannan Zhao
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Ce Zhang
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Jie Ding
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Huihua Wu
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Wei Cheng
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Mingqing Li
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Rui Zhu
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Hong Li
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
42
|
Kong X, Wu S, Dai X, Yu W, Wang J, Sun Y, Ji Z, Ma L, Dai X, Chen H, Ma L, Jiang L. A comprehensive profile of chemokines in the peripheral blood and vascular tissue of patients with Takayasu arteritis. Arthritis Res Ther 2022; 24:49. [PMID: 35172901 PMCID: PMC8848964 DOI: 10.1186/s13075-022-02740-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/07/2022] [Indexed: 12/21/2022] Open
Abstract
Background Takayasu arteritis (TAK) is a chronic granulomatous large vessel vasculitis with multiple immune cells involved. Chemokines play critical roles in recruitment and activation of immune cells. This study aimed to investigate chemokine profile in the peripheral blood and vascular tissue of patients with TAK. Methods A total of 58 patients with TAK and 53 healthy controls were enrolled. Chemokine array assay was performed in five patients with TAK and three controls. Chemokines with higher levels were preliminarily validated in 20 patients and controls. The validated chemokines were further confirmed in another group of samples with 25 patients and 25 controls. Their expression and distribution were also examined in vascular tissue from 8 patients and 5 controls. Correlations between these chemokines and peripheral immune cells, cytokines, and disease activity parameters were analyzed. Their serum changes were also investigated in these 45 patients after glucocorticoids and immunosuppressive treatment. Results Patients and controls were age and sex-matched. Twelve higher chemokines and 4 lower chemokines were found based on the chemokine array. After validation, increase of 5 chemokines were confirmed in patients with TAK, including CCL22, RANTES, CXCL16, CXCL11, and IL-16. Their expressions were also increased in vascular tissue of patients with TAK. In addition, levels of RANTES and IL-16 were positively correlated with peripheral CD3+CD4+ T cell numbers. Close localization of CCL22, CXCL11, or IL-16 with inflammatory cells was also observed in TAK vascular tissue. No correlations were found between these chemokines and cytokines (IL-6, IL-17, IFN-γ) or inflammatory parameters (ESR, CRP). No differences were observed regarding with these chemokines between active and inactive patients. After treatment, increase of CCL22 and decrease of RANTES and CXCL16 were found, while no changes were showed in levels of CXCL11 and IL-16. Conclusions CCL22, RANTES, CXCL16, CXCL11, and IL-16 were identified as the major chemokines involved in the recruitment of immune cells in the vascular tissue of patients with TAK. Additionally, the persistently high levels of CCL22, CXCL11, and IL-16 observed after treatment indicate their role in vascular chronic inflammation or fibrosis and demonstrate the need for developing more efficacious treatment options. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-022-02740-x.
Collapse
Affiliation(s)
- Xiufang Kong
- Department of Rheumatology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Sifan Wu
- Department of Rheumatology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Xiaojuan Dai
- Department of Rheumatology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Wensu Yu
- Department of Rheumatology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Jinghua Wang
- Department of Rheumatology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Ying Sun
- Department of Rheumatology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Zongfei Ji
- Department of Rheumatology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Lingying Ma
- Department of Rheumatology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Xiaomin Dai
- Department of Rheumatology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Huiyong Chen
- Department of Rheumatology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Lili Ma
- Department of Rheumatology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Lindi Jiang
- Department of Rheumatology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China. .,Center of Clinical Epidemiology and Evidence-based Medicine, Fudan University, Shanghai, China.
| |
Collapse
|
43
|
Patil CD, Suryawanshi R, Ames J, Koganti R, Agelidis A, Kapoor D, Yadavalli T, Koujah L, Tseng HC, Shukla D. Intrinsic Antiviral Activity of Optineurin Prevents Hyperproliferation of a Primary Herpes Simplex Virus Type 2 Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:63-73. [PMID: 34880107 PMCID: PMC9015683 DOI: 10.4049/jimmunol.2100472] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/22/2021] [Indexed: 01/03/2023]
Abstract
Very little knowledge exists on virus-specific host cell intrinsic mechanisms that prevent hyperproliferation of primary HSV type 2 (HSV-2) genital infections. In this study, we provide evidence that the Nemo-related protein, optineurin (OPTN), plays a key role in restricting HSV-2 infection both in vitro and in vivo. Contrary to previous reports regarding the proviral role of OPTN during Sendai virus infection, we demonstrate that lack of OPTN in cells causes enhanced virus production. OPTN deficiency negatively affects the host autophagy response and results in a marked reduction of CCL5 induction. OPTN knockout (OPTN-/-) mice display exacerbated genital disease and dysregulated T cell frequencies in infected tissues and lymph nodes. A human transcriptomic profile dataset provides further credence that a strong positive correlation exists between CCL5 upregulation and OPTN expression during HSV-2 genital infection. Our findings underscore a previously unknown OPTN/CCL5 nexus that restricts hyperproliferative spread of primary HSV-2 infection, which may constitute an intrinsic host defense mechanism against herpesviruses in general.
Collapse
Affiliation(s)
- Chandrashekhar D Patil
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Rahul Suryawanshi
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Joshua Ames
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA.,Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Raghuram Koganti
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Alex Agelidis
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA.,Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Divya Kapoor
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA.,Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Tejabhiram Yadavalli
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Lulia Koujah
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Henry C Tseng
- Duke Eye Center, Department of Ophthalmology, Duke University Medical Center, Durham, NC, 27713, USA
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA.,Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA.,Corresponding author. Phone number: 312-355-0908, Fax: 312-996-7773,
| |
Collapse
|
44
|
Perez Gomez AA, Karmakar M, Carroll RJ, Lawley KS, Amstalden K, Young CR, Threadgill DW, Welsh CJ, Brinkmeyer-Langford C. Genetic and immunological contributors to virus-induced paralysis. Brain Behav Immun Health 2021; 18:100395. [PMID: 34917987 PMCID: PMC8645428 DOI: 10.1016/j.bbih.2021.100395] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/25/2021] [Accepted: 11/21/2021] [Indexed: 02/06/2023] Open
Abstract
Infection by a single virus can evoke diverse immune responses, resulting in different neurological outcomes, depending on the host's genetic background. To study heterogenous viral response, we use Theiler's Murine Encephalomyelitis Virus (TMEV) to model virally induced neurological phenotypes and immune responses in Collaborative Cross (CC) mice. The CC resource consists of genetically distinct and reproducible mouse lines, thus providing a population model with genetic heterogeneity similar to humans. We examined different CC strains for the effect of chronic stage TMEV-induced immune responses on neurological outcomes throughout 90 days post infection (dpi), with a particular focus on limb paralysis, by measuring serum levels of 23 different cytokines and chemokines. Each CC strain demonstrated a unique set of immune responses, regardless of presence or absence of TMEV RNA. Using stepwise regression, significant associations were identified between IL-1α, RANTES, and paralysis frequency scores. To better understand these interactions, we evaluated multiple aspects of the different CC genetic backgrounds, including haplotypes of genomic regions previously linked with TMEV pathogenesis and viral clearance or persistence, individual cytokine levels, and TMEV-relevant gene expression. These results demonstrate how loci previously associated with TMEV outcomes provide incomplete information regarding TMEV-induced paralysis in the CC strains. Overall, these findings provide insight into the complex roles of immune response in the pathogenesis of virus-associated neurological diseases influenced by host genetic background.
Collapse
Key Words
- Amyotrophic Lateral Sclerosis, (ALS)
- Chromosome, (Chr)
- Chronic infection
- Collaborative Cross, (CC)
- Collaborative cross
- Cytokine
- Epstein-Barr Virus, (EBV)
- Host response
- IL-1 α
- Multiple Sclerosis, (MS)
- Paralysis
- Parkinson's disease, (PD)
- RANTES
- TMEV
- Theiler's murine encephalomyelitis virus, (TMEV)
- Viral infection
- blood brain barrier, (BBB)
- central nervous system, (CNS)
- days post infection, (dpi)
- experimental autoimmune encephalitis, (EAE)
- intraperitoneal, (IP)
- phosphate buffered saline, (PBS)
- plaque-forming units, (PFU)
- receptor for IL-1 α, (Il1r1)
Collapse
Affiliation(s)
- Aracely A. Perez Gomez
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
- Corresponding author. Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA.
| | - Moumita Karmakar
- Department of Statistics, College of Science, Texas A&M University, College Station, TX, USA
| | - Raymond J. Carroll
- Department of Statistics, College of Science, Texas A&M University, College Station, TX, USA
| | - Koedi S. Lawley
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Katia Amstalden
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Colin R. Young
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - David W. Threadgill
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, USA
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, Texas A&M University, College Station, TX, USA
| | - C. Jane Welsh
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
- Texas A&M Institute for Neuroscience (TAMIN), Texas A&M University, College Station, TX, USA
| | - Candice Brinkmeyer-Langford
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
- Texas A&M Institute for Neuroscience (TAMIN), Texas A&M University, College Station, TX, USA
| |
Collapse
|
45
|
Rico Montanari N, Anugwom CM, Boonstra A, Debes JD. The Role of Cytokines in the Different Stages of Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:cancers13194876. [PMID: 34638361 PMCID: PMC8508513 DOI: 10.3390/cancers13194876] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Non-homeostatic cytokine expression during hepatocellular carcinogenesis, together with simple and inexpensive cytokine detection techniques, has opened up its use as potential biomarkers, from cancer detection to prognosis. However, carcinogenic programs during cancer progression are not linear. Therefore, cytokines with prognostic potential in one stage may not be relevant in another. Here, we reviewed cytokines with clinical potential in different settings during hepatocellular carcinoma progression. Abstract Hepatocellular carcinoma (HCC) is the primary form of liver cancer and a leading cause of cancer-related death worldwide. Early detection remains the most effective strategy in HCC management. However, the spectrum of underlying liver diseases preceding HCC, its genetic complexity, and the lack of symptomatology in early stages challenge early detection. Regardless of underlying etiology, unresolved chronic inflammation is a common denominator in HCC. Hence, many inflammatory molecules, including cytokines, have been investigated as potential biomarkers to predict different stages of HCC. Soluble cytokines carry cell-signaling functions and are easy to detect in the bloodstream. However, its biomarkers’ role remains limited due to the dysregulation of immune parameters related to the primary liver process and their ability to differentiate carcinogenesis from the underlying disease. In this review, we discuss and provide insight on cytokines with clinical relevance for HCC differentiating those implicated in tumor formation, early detection, advanced disease, and response to therapy.
Collapse
Affiliation(s)
- Noe Rico Montanari
- Department of Medicine, Division of Gastroenterology & Division of Infectious Disease, University of Minnesota, Minneapolis, MN 55455, USA; (N.R.M.); (C.M.A.)
- Department of Gastroenterology and Hepatology, Erasmus MC, 3015 CE Rotterdam, The Netherlands;
| | - Chimaobi M. Anugwom
- Department of Medicine, Division of Gastroenterology & Division of Infectious Disease, University of Minnesota, Minneapolis, MN 55455, USA; (N.R.M.); (C.M.A.)
- Health Partners Digestive Care, Saint Paul, MN 55130, USA
| | - Andre Boonstra
- Department of Gastroenterology and Hepatology, Erasmus MC, 3015 CE Rotterdam, The Netherlands;
| | - Jose D. Debes
- Department of Medicine, Division of Gastroenterology & Division of Infectious Disease, University of Minnesota, Minneapolis, MN 55455, USA; (N.R.M.); (C.M.A.)
- Department of Gastroenterology and Hepatology, Erasmus MC, 3015 CE Rotterdam, The Netherlands;
- Correspondence:
| |
Collapse
|
46
|
Abstract
Sjögren's syndrome (SjS) is a systemic autoimmune disease marked by xerostomia (dry mouth), keratoconjunctivitis sicca (eye dryness), and other systematic disorders. Its pathogenesis involves an inflammatory process that is characterized by lymphocytic infiltration into exocrine glands and other tissues. Although the development of ectopic lymphoid tissue and overproduction of autoantibodies by hyperactive B cells suggest that they may promote SjS development, treatment directed towards them fails to induce significant laboratory or clinical improvement. T cells are overwhelming infiltrators in most phases of the disease, and the involvement of multiple T cell subsets of suggests the extraordinary complexity of SjS pathogenesis. The factors, including various cellular subtypes and molecules, regulate the activation and suppression of T cells. T cell activation induces inflammatory cell infiltration, B cell activation, tissue damage, and metabolic changes in SjS. Knowledge of the pathways that link these T cell subtypes and regulation of their activities are not completely understood. This review comprehensively summarizes the research progress and our understanding of T cells in SjS, including CD4+ T cells, CD8+ TRM cells, and innate T cells, to provide insights into for clinical treatment.
Collapse
|
47
|
Omer D, Pleniceanu O, Gnatek Y, Namestnikov M, Cohen-Zontag O, Goldberg S, Friedman YE, Friedman N, Mandelboim M, Vitner EB, Achdout H, Avraham R, Zahavy E, Israely T, Mayan H, Dekel B. Human Kidney Spheroids and Monolayers Provide Insights into SARS-CoV-2 Renal Interactions. J Am Soc Nephrol 2021; 32:2242-2254. [PMID: 34112705 PMCID: PMC8729846 DOI: 10.1681/asn.2020111546] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 04/22/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Although coronavirus disease 2019 (COVID-19) causes significan t morbidity, mainly from pulmonary involvement, extrapulmonary symptoms are also major componen ts of the disease. Kidney disease, usually presenting as AKI, is particularly severe among patients with COVID-19. It is unknown, however, whether such injury results from direct kidney infection with COVID-19's causative virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), or from indirect mechanisms. METHODS Using ex vivo cell models, we sought to analyze SARS-CoV-2 interactions with kidney tubular cells and assess direct tubular injury. These models comprised primary human kidney epithelial cells (derived from nephrectomies) and grown as either proliferating monolayers or quiescent three-dimensional kidney spheroids. RESULTS We demonstrated that viral entry molecules and high baseline levels of type 1 IFN-related molecules were present in monolayers and kidney spheroids. Although both models support viral infection and replication, they did not exhibit a cytopathic effect and cell death, outcomes that were strongly present in SARS-CoV-2-infected controls (African green monkey kidney clone E6 [Vero E6] cultures). A comparison of monolayer and spheroid cultures demonstrated higher infectivity and replication of SARS-CoV-2 in actively proliferating monolayers, although the spheroid cultures exhibited high er levels of ACE2. Monolayers exhibited elevation of some tubular injury molecules-including molecules related to fibrosis (COL1A1 and STAT6) and dedifferentiation (SNAI2)-and a loss of cell identity, evident by reduction in megalin (LRP2). The three-dimensional spheroids were less prone to such injury. CONCLUSIONS SARS-CoV-2 can infect kidney cells without a cytopathic effect. AKI-induced cellular proliferation may potentially intensify infectivity and tubular damage by SARS-CoV-2, suggesting that early intervention in AKI is warranted to help minimize kidney infection.
Collapse
Affiliation(s)
- Dorit Omer
- Pediatric Stem Cell Research Institute, Edmond and Lily Sara Children’s Hospital, Sheba Medical Center, Ramat-Gan, Israel
- Pediatric Research Center for Genetics, Development and Environment, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Oren Pleniceanu
- Pediatric Stem Cell Research Institute, Edmond and Lily Sara Children’s Hospital, Sheba Medical Center, Ramat-Gan, Israel
- Pediatric Research Center for Genetics, Development and Environment, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yehudit Gnatek
- Pediatric Stem Cell Research Institute, Edmond and Lily Sara Children’s Hospital, Sheba Medical Center, Ramat-Gan, Israel
- Pediatric Research Center for Genetics, Development and Environment, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michael Namestnikov
- Pediatric Stem Cell Research Institute, Edmond and Lily Sara Children’s Hospital, Sheba Medical Center, Ramat-Gan, Israel
- Pediatric Research Center for Genetics, Development and Environment, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Kidney Research Laboratory, The Institute of Nephrology and Hypertension, Sheba Medical Center, Ramat-Gan, Israel
| | - Osnat Cohen-Zontag
- Pediatric Stem Cell Research Institute, Edmond and Lily Sara Children’s Hospital, Sheba Medical Center, Ramat-Gan, Israel
- Pediatric Research Center for Genetics, Development and Environment, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sanja Goldberg
- Pediatric Stem Cell Research Institute, Edmond and Lily Sara Children’s Hospital, Sheba Medical Center, Ramat-Gan, Israel
- Pediatric Research Center for Genetics, Development and Environment, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Nehemya Friedman
- Central Virology Laboratory, Ministry of Health, Sheba Medical Center, Ramat-Gan, Israel
| | - Michal Mandelboim
- Central Virology Laboratory, Ministry of Health, Sheba Medical Center, Ramat-Gan, Israel
| | - Einat B. Vitner
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Hagit Achdout
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Roy Avraham
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Eran Zahavy
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Tomer Israely
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Haim Mayan
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Medicine E, Sheba Medical Center, Ramat-Gan, Israel
| | - Benjamin Dekel
- Pediatric Stem Cell Research Institute, Edmond and Lily Sara Children’s Hospital, Sheba Medical Center, Ramat-Gan, Israel
- Pediatric Research Center for Genetics, Development and Environment, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Division of Pediatric Nephrology, Safra Children’s Hospital, Sheba Medical Center, Ramat-Gan, Israel
| |
Collapse
|
48
|
Jeljeli M, Chêne C, Chouzenoux S, Thomas M, Segain B, Doridot L, Nicco C, Batteux F. LPS low-Macrophages Alleviate the Outcome of Graft- Versus-Host Disease Without Aggravating Lymphoma Growth in Mice. Front Immunol 2021; 12:670776. [PMID: 34413847 PMCID: PMC8369416 DOI: 10.3389/fimmu.2021.670776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023] Open
Abstract
Despite significant therapeutic advances, graft-versus-host disease (GvHD) remains the main life-threatening complication following allogeneic hematopoietic stem cell transplantation. The pathogenesis of GvHD is dominated by a dysregulated allogeneic immune response that drives fibrosis and autoimmunity in chronic forms. A multitude of cell therapy approaches, including infusion of myeloid cells, has been proposed to prevent GvHD through tolerance induction but yielded variable results. Myeloid cells like macrophages can be reprogrammed to develop adaptive-like features following antigenic challenge to reinforce or inhibit a subsequent immune response; a phenomenon termed ‘trained immunity’. Here we report that, whereas LPSlow-trained macrophages elicit a suppressor effect on allogeneic T cell proliferation and function in vitro in an IL-10-dependent manner, Bacille Calmette et Guérin (BCG)-trained macrophages exert an opposite effect. In a murine model of sclerodermatous chronic GvHD, LPSlow-trained macrophages attenuate clinical signs of GvHD with significant effects on T cell phenotype and function, autoantibodies production, and tissue fibrosis. Furthermore, infusion of LPSlow-macrophages significantly improves survival in mice with acute GvHD. Importantly, we also provide evidence that LPSlow-macrophages do not accelerate A20-lymphoma tumor growth, which is significantly reduced upon transfer of BCG-macrophages. Collectively, these data indicate that macrophages can be trained to significantly inhibit in vitro and in vivo allo-reactive T cell proliferation without exhibiting pro-tumoral effect, thereby opening the way to promising clinical applications.
Collapse
Affiliation(s)
- Mohamed Jeljeli
- Département 3I «Infection, Immunité et Inflammation», Institut Cochin, INSERM U1016, Université de Paris, Paris, France.,Université de Paris, Faculté de Médecine, AP-HP-Centre Université de Paris, Hôpital Cochin, Service d'immunologie biologique, Paris, France
| | - Charlotte Chêne
- Département 3I «Infection, Immunité et Inflammation», Institut Cochin, INSERM U1016, Université de Paris, Paris, France
| | - Sandrine Chouzenoux
- Département 3I «Infection, Immunité et Inflammation», Institut Cochin, INSERM U1016, Université de Paris, Paris, France
| | - Marine Thomas
- Département 3I «Infection, Immunité et Inflammation», Institut Cochin, INSERM U1016, Université de Paris, Paris, France
| | - Benjamin Segain
- Département 3I «Infection, Immunité et Inflammation», Institut Cochin, INSERM U1016, Université de Paris, Paris, France
| | - Ludivine Doridot
- Département 3I «Infection, Immunité et Inflammation», Institut Cochin, INSERM U1016, Université de Paris, Paris, France
| | - Carole Nicco
- Département 3I «Infection, Immunité et Inflammation», Institut Cochin, INSERM U1016, Université de Paris, Paris, France
| | - Frédéric Batteux
- Département 3I «Infection, Immunité et Inflammation», Institut Cochin, INSERM U1016, Université de Paris, Paris, France.,Université de Paris, Faculté de Médecine, AP-HP-Centre Université de Paris, Hôpital Cochin, Service d'immunologie biologique, Paris, France
| |
Collapse
|
49
|
Bone marrow dendritic cell aggregates associate with systemic immune dysregulation in chronic myelomonocytic leukemia. Blood Adv 2021; 4:5425-5430. [PMID: 33152058 DOI: 10.1182/bloodadvances.2020002415] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/28/2020] [Indexed: 11/20/2022] Open
Abstract
Key Points
Systemic immune microenvironment signatures in CMML indicate an altered T- and natural killer cell balance. CMML bone marrow dendritic cell aggregates associate with disease progression and systemic regulatory T-cell phenotypic switch.
Collapse
|
50
|
Walsh SM, Sheridan RM, Lucas ED, Doan TA, Ware BC, Schafer J, Fu R, Burchill MA, Hesselberth JR, Tamburini BAJ. Molecular tracking devices quantify antigen distribution and archiving in the murine lymph node. eLife 2021; 10:e62781. [PMID: 33843587 PMCID: PMC8116055 DOI: 10.7554/elife.62781] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 04/09/2021] [Indexed: 01/02/2023] Open
Abstract
The detection of foreign antigens in vivo has relied on fluorescent conjugation or indirect read-outs such as antigen presentation. In our studies, we found that these widely used techniques had several technical limitations that have precluded a complete picture of antigen trafficking or retention across lymph node cell types. To address these limitations, we developed a 'molecular tracking device' to follow the distribution, acquisition, and retention of antigen in the lymph node. Utilizing an antigen conjugated to a nuclease-resistant DNA tag, acting as a combined antigen-adjuvant conjugate, and single-cell mRNA sequencing, we quantified antigen abundance in the lymph node. Variable antigen levels enabled the identification of caveolar endocytosis as a mechanism of antigen acquisition or retention in lymphatic endothelial cells. Thus, these molecular tracking devices enable new approaches to study dynamic tissue dissemination of antigen-adjuvant conjugates and identify new mechanisms of antigen acquisition and retention at cellular resolution in vivo.
Collapse
Affiliation(s)
- Shannon M Walsh
- Department of Biochemistry and Molecular Genetics, University of Colorado School of MedicineAuroraUnited States
| | - Ryan M Sheridan
- RNA Bioscience Initiative, University of Colorado School of MedicineAuroraUnited States
| | - Erin D Lucas
- Immunology Graduate Program, University of Colorado School of MedicineAuroraUnited States
- Department of Immunology and Microbiology, University of Colorado School of MedicineAuroraUnited States
| | - Thu A Doan
- Immunology Graduate Program, University of Colorado School of MedicineAuroraUnited States
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of MedicineAuroraUnited States
| | - Brian C Ware
- Immunology Graduate Program, University of Colorado School of MedicineAuroraUnited States
- Department of Immunology and Microbiology, University of Colorado School of MedicineAuroraUnited States
| | - Johnathon Schafer
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of MedicineAuroraUnited States
| | - Rui Fu
- RNA Bioscience Initiative, University of Colorado School of MedicineAuroraUnited States
| | - Matthew A Burchill
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of MedicineAuroraUnited States
| | - Jay R Hesselberth
- Department of Biochemistry and Molecular Genetics, University of Colorado School of MedicineAuroraUnited States
- RNA Bioscience Initiative, University of Colorado School of MedicineAuroraUnited States
| | - Beth Ann Jiron Tamburini
- Immunology Graduate Program, University of Colorado School of MedicineAuroraUnited States
- Department of Immunology and Microbiology, University of Colorado School of MedicineAuroraUnited States
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of MedicineAuroraUnited States
| |
Collapse
|