1
|
Kämper L, Kuhl I, Vallbracht M, Hoenen T, Linne U, Weber A, Chlanda P, Kracht M, Biedenkopf N. To be or not to be phosphorylated: understanding the role of Ebola virus nucleoprotein in the dynamic interplay with the transcriptional activator VP30 and the host phosphatase PP2A-B56. Emerg Microbes Infect 2025; 14:2447612. [PMID: 39726359 PMCID: PMC11727051 DOI: 10.1080/22221751.2024.2447612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/22/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Ebola virus (EBOV) transcription is essentially regulated via dynamic dephosphorylation of its viral transcription activator VP30 by the host phosphatase PP2A. The nucleoprotein NP has emerged as a third key player in the regulation of this process by recruiting both the regulatory subunit B56 of PP2A and its substrate VP30 to initiate VP30 dephosphorylation and hence viral transcription. Both binding sites are located in close proximity to each other in NP's C-terminal-disordered region. This study investigates NP's role in VP30 dephosphorylation and transcription activation, focussing on the spatial requirements of NP's binding sites. Increasing the distance between PP2A-B56 and VP30 at the NP interface revealed that close spatial and orientational contact is necessary for efficient VP30 dephosphorylation and viral transcription. Longer distances were lethal for recombinant EBOV except when a compensatory mutation, NP-T603I, occurred. This mutation, located between the NP binding sites for PP2A-B56 and VP30, fully restored functionality. Mass spectrometry showed that T603 is phosphorylated in recEBOV-NPwt virions. Mutational analysis indicated that T603I facilitates VP30 dephosphorylation in otherwise lethal recEBOV and that dynamic phosphorylation of NP-T603 is important for efficient primary viral transcription in the WT context. These findings emphasize the critical and evolutionarily pressured interplay between VP30 and PP2A-B56 within the NP C-terminal-disordered region and highlight the important role of NP on the regulation of viral transcription during the EBOV life cycle.
Collapse
Affiliation(s)
- Lennart Kämper
- Institute of Virology, Philipps-Universität Marburg, Marburg, Germany
| | - Ida Kuhl
- Institute of Virology, Philipps-Universität Marburg, Marburg, Germany
| | - Melina Vallbracht
- Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany
- Research Center for Quantitative Analysis of Molecular and Cellular Systems – BioQuant, Heidelberg University, Heidelberg, Germany
| | - Thomas Hoenen
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Uwe Linne
- Mass Spectrometry Facility, Department of Chemistry, Philipps-Universität Marburg, Marburg, Germany
| | - Axel Weber
- Rudolf Buchheim Institute of Pharmacology, Justus-Liebig University Gießen, Gießen, Germany
| | - Petr Chlanda
- Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany
- Research Center for Quantitative Analysis of Molecular and Cellular Systems – BioQuant, Heidelberg University, Heidelberg, Germany
| | - Michael Kracht
- Rudolf Buchheim Institute of Pharmacology, Justus-Liebig University Gießen, Gießen, Germany
| | - Nadine Biedenkopf
- Institute of Virology, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
2
|
Bodmer BS, Wendt L, Dupré J, Groseth A, Hoenen T. Antiviral defense against filovirus infections: targets and evasion mechanisms. Future Microbiol 2025:1-15. [PMID: 40331244 DOI: 10.1080/17460913.2025.2501924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 05/01/2025] [Indexed: 05/08/2025] Open
Abstract
Filoviruses include a number of serious human pathogens, infections with which result in the development of hemorrhagic fevers with high case fatality rates. As for other RNA viruses, viral replication generates both protein and RNA species that can serve as danger signals, leading to the activation of antiviral defense pathways. However, in order to be able to efficiently infect humans these viruses have developed mechanisms that allow them to evade diverse host antiviral defense mechanisms. Consequently, in addition to their functions within the viral lifecycle many filovirus proteins have been shown to have accessory functions involved in the regulation of diverse host pathways. These include those of the type-I interferon response, other pathways involved in dsRNA-sensing, as well as the selective inhibition of interferon stimulated gene activities. Further, filoviruses have developed mechanisms to subvert recognition of infected cells and the generation of neutralizing antibodies. This review focuses on bringing together the evidence to date supporting the existence of diverse mechanisms aimed at regulating these pathways as well as providing details of the mechanisms involved.
Collapse
Affiliation(s)
- Bianca S Bodmer
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald, Insel Riems, Germany
| | - Lisa Wendt
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald, Insel Riems, Germany
- Institute of Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt (Main), Germany
| | - Juliette Dupré
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald, Insel Riems, Germany
| | - Allison Groseth
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald, Insel Riems, Germany
| | - Thomas Hoenen
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald, Insel Riems, Germany
| |
Collapse
|
3
|
Haase JA, Marzi A. Molecular virulence determinants of human-pathogenic filoviruses. Adv Virus Res 2025; 121:1-29. [PMID: 40379380 DOI: 10.1016/bs.aivir.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2025]
Abstract
The Filoviridae family encompasses Ebola virus (EBOV) and Marburg virus (MARV), some of the most lethal viruses known to cause sporadic, recurring outbreaks of severe hemorrhagic fever mainly throughout central Africa. However, other lesser-known viruses also belong to the filovirus family as they are closely related, such as Bundibugyo, Reston and Taï Forest virus. These viruses differ in their virulence in humans significantly: while EBOV and MARV show lethality in humans of up to 90 %, Reston virus appears to be avirulent in humans. Here, underlying molecular factors leading to differences in virulence via changes in filovirus entry, replication and immune evasion strategies are summarized and assessed. While the filovirus glycoprotein contributes towards virulence by facilitating entry into a wide variety of tissues, differences in virus-host interactions and replication efficacies lead to measurable variances of progeny virus production. Additionally, immune evasion strategies lead to alterations in replication efficacy thus changing who has the upper hand between the virus and the host. Understanding and unraveling the contributions of these molecular determinants on filovirus virulence provide insights into the processes causing the underlying pathogenesis. It will further help to assess the pathogenicity of newly discovered filoviruses. Finally, these molecular determinants and processes present attractive targets for therapeutic intervention and development of novel antiviral countermeasures.
Collapse
Affiliation(s)
- Jil A Haase
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States.
| |
Collapse
|
4
|
Gonzalez V, Word C, Guerra-Pilaquinga N, Mazinani M, Fawcett S, Portfors C, Falzarano D, Kell AM, Jangra RK, Banerjee A, Seifert SN, Letko M. Expanding the bat toolbox: Carollia perspicillata bat cell lines and reagents enable the characterization of viral susceptibility and innate immune responses. PLoS Biol 2025; 23:e3003098. [PMID: 40233033 PMCID: PMC11999112 DOI: 10.1371/journal.pbio.3003098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/04/2025] [Indexed: 04/17/2025] Open
Abstract
Multiple viruses that are highly pathogenic in humans are known to have evolved in bats. How bats tolerate infection with these viruses, however, is poorly understood. As viruses engage in a wide range of interactions with their hosts, it is essential to study bat viruses in a system that resembles their natural environment like bat-derived in vitro cellular models. However, stable and accessible bat cell lines are not widely available for the broader scientific community. Here, we generated in vitro reagents for the Seba's short-tailed bat (Carollia perspicillata), tested multiple methods of immortalization, and characterized their susceptibility to virus infection and response to immune stimulation. Using pseudotyped virus library and authentic virus infections, we show that these C. perspicillata cell lines derived from a diverse array of tissues are susceptible to viruses bearing the glycoprotein of numerous orthohantaviruses, including Andes and Hantaan virus and are also susceptible to live hantavirus infection. Furthermore, stimulation with synthetic double-stranded RNA prior to infection with vesicular stomatitis virus and Middle Eastern respiratory syndrome coronavirus induced a protective antiviral response, demonstrating the suitability of our cell lines to study the bat antiviral immune response. Taken together, the approaches outlined here will inform future efforts to develop in vitro tools for virology from non-model organisms and these C. perspicillata cell lines will enable studies on virus-host interactions in these bats.
Collapse
Affiliation(s)
- Victoria Gonzalez
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Canada
| | - Cierra Word
- Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America
| | - Nahomi Guerra-Pilaquinga
- Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America
| | - Mitra Mazinani
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, United States of America
| | - Stephen Fawcett
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, United States of America
| | - Christine Portfors
- Washington State University, Vancouver, Washington, United States of America
| | - Darryl Falzarano
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Canada
| | - Alison M. Kell
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Rohit K. Jangra
- Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America
| | - Arinjay Banerjee
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Canada
- Department of Biology, University of Waterloo, Waterloo, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Stephanie N. Seifert
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, United States of America
| | - Michael Letko
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
5
|
van Tol S, Port JR, Fischer RJ, Gallogly S, Bushmaker T, Griffin A, Schulz JE, Carmody A, Myers L, Crowley DE, Falvo CA, Riopelle JC, Wickenhagen A, Clancy C, Lovaglio J, Shaia C, Saturday G, Prado-Smith J, He Y, Lack J, Martens C, Anzick SL, Kendall LV, Schountz T, Plowright RK, Marzi A, Munster VJ. Jamaican fruit bats' competence for Ebola but not Marburg virus is driven by intrinsic differences. Nat Commun 2025; 16:2884. [PMID: 40133326 PMCID: PMC11937316 DOI: 10.1038/s41467-025-58305-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/18/2025] [Indexed: 03/27/2025] Open
Abstract
Ebola virus (EBOV) and Marburg virus (MARV) are zoonotic filoviruses that cause hemorrhagic fever in humans. Correlative data implicate bats as natural EBOV hosts, but neither a full-length genome nor an EBOV isolate has been found in any bats sampled. Here, we model filovirus infection in the Jamaican fruit bat (JFB), Artibeus jamaicensis, by inoculation with either EBOV or MARV through a combination of oral, intranasal, and subcutaneous routes. Infection with EBOV results in systemic virus replication and oral shedding of infectious virus. MARV replication is transient and does not shed. In vitro, JFB cells replicate EBOV more efficiently than MARV, and MARV infection induces innate antiviral responses that EBOV efficiently suppresses. Experiments using VSV pseudoparticles or replicating VSV expressing the EBOV or MARV glycoprotein demonstrate an advantage for EBOV entry and replication early, respectively, in JFB cells. Overall, this study describes filovirus species-specific phenotypes for both JFB and their cells.
Collapse
Affiliation(s)
- Sarah van Tol
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Julia R Port
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
- Laboratory of Transmission Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Robert J Fischer
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Shane Gallogly
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Trenton Bushmaker
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Amanda Griffin
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Jonathan E Schulz
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Aaron Carmody
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Lara Myers
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Daniel E Crowley
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Caylee A Falvo
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Jade C Riopelle
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Arthur Wickenhagen
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Chad Clancy
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Jamie Lovaglio
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Carl Shaia
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Greg Saturday
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Jessica Prado-Smith
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Yi He
- Fermentation Facility, Biochemistry and Biophysics Center, National Institutes of Health, Bethesda, MD, USA
| | - Justin Lack
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Craig Martens
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Sarah L Anzick
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Lon V Kendall
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Tony Schountz
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Raina K Plowright
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Andrea Marzi
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Vincent J Munster
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.
| |
Collapse
|
6
|
Yang X, Chiu S. Accelerating mammalian filovirus research with receptor binding blueprints. Cell Host Microbe 2025; 33:173-175. [PMID: 39947130 DOI: 10.1016/j.chom.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 05/09/2025]
Abstract
Receptor binding is the first step for virus infection. In this issue of Cell Host & Microbe, Gorka et al. conducted large-scale receptor binding assays with machine learning to predict susceptible host species and guide proactive filovirus surveillance. This study provides multidisciplinary blueprints for research and prevention of zoonotic disease.
Collapse
Affiliation(s)
- Xinglou Yang
- Key Laboratory of Genetic Evolution & Animal Models, Yunnan International Joint Laboratory of Zoonotic Viruses, Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Sandra Chiu
- Department of Laboratory Medicine, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China; Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, Anhui 230027, China.
| |
Collapse
|
7
|
Gonzalez V, Hurtado-Monzón AM, O'Krafka S, Mühlberger E, Letko M, Frank HK, Laing ED, Phelps KL, Becker DJ, Munster VJ, Falzarano D, Schountz T, Seifert SN, Banerjee A. Studying bats using a One Health lens: bridging the gap between bat virology and disease ecology. J Virol 2024; 98:e0145324. [PMID: 39499009 DOI: 10.1128/jvi.01453-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024] Open
Abstract
Accumulating data suggest that some bat species host emerging viruses that are highly pathogenic in humans and agricultural animals. Laboratory-based studies have highlighted important adaptations in bat immune systems that allow them to better tolerate viral infections compared to humans. Simultaneously, ecological studies have discovered critical extrinsic factors, such as nutritional stress, that correlate with virus shedding in wild-caught bats. Despite some progress in independently understanding the role of bats as reservoirs of emerging viruses, there remains a significant gap in the molecular understanding of factors that drive virus spillover from bats. Driven by a collective goal of bridging the gap between the fields of bat virology, immunology, and disease ecology, we hosted a satellite symposium at the 2024 American Society for Virology meeting. Bringing together virologists, immunologists, and disease ecologists, we discussed the intrinsic and extrinsic factors such as virus receptor engagement, adaptive immunity, and virus ecology that influence spillover from bat hosts. This article summarizes the topics discussed during the symposium and emphasizes the need for interdisciplinary collaborations and resource sharing.
Collapse
Affiliation(s)
- Victoria Gonzalez
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Arianna M Hurtado-Monzón
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Sabrina O'Krafka
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Elke Mühlberger
- Department of Virology, Immunology, and Microbiology, Boston University, Boston, Massachusetts, USA
- Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| | - Michael Letko
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA
| | - Hannah K Frank
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, Louisiana, USA
| | - Eric D Laing
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
| | | | - Daniel J Becker
- School of Biological Sciences, University of Oklahoma, Norman, Oklahoma, USA
| | - Vincent J Munster
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases (NIAID), Hamilton, Montana, USA
| | - Darryl Falzarano
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Tony Schountz
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
- Center for Vector-Borne Infectious Diseases, Colorado State University, Fort Collins, Colorado, USA
| | - Stephanie N Seifert
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA
| | - Arinjay Banerjee
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
8
|
Fletcher P, O'Donnell KL, Rhoderick JF, Henderson CW, Okumura A, Bushmaker T, Takada A, Clancy CS, Kemenesi G, Marzi A. Lack of Lloviu Virus Disease Development in Ferret Model. Emerg Infect Dis 2024; 30:2639-2642. [PMID: 39592411 PMCID: PMC11616650 DOI: 10.3201/eid3012.240818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024] Open
Abstract
The first isolate of the emerging filovirus Lloviu virus (LLOV) was obtained in 2022. No animal disease models have been established. We assessed the pathogenic potential of LLOV in ferrets after intranasal, intramuscular, or aerosol exposure. The lack of disease development shows ferrets are not a disease model for LLOV.
Collapse
|
9
|
Gonzalez V, Word C, Guerra-Pilaquinga N, Mazinani M, Fawcett S, Portfors C, Falzarano D, Kell AM, Jangra RK, Banerjee A, Seifert SN, Letko M. Viral susceptibility and innate immune competency of Carollia perspicillata bat cells produced for virological studies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.19.624190. [PMID: 39605657 PMCID: PMC11601607 DOI: 10.1101/2024.11.19.624190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Multiple viruses that are highly pathogenic in humans are known to have evolved in bats. How bats tolerate infection with these viruses, however, is poorly understood. As viruses engage in a wide range of interactions with their hosts, it is essential to study bat viruses in a system that resembles their natural environment like bat-derived in vitro cellular models. However, stable and accessible bat cell lines are not widely available for the broader scientific community. Here, we generated in vitro reagents for the Seba's short-tailed bat (Carollia perspicillata), tested multiple methods of immortalization, and characterized their susceptibility to virus infection and response to immune stimulation. Using a pseudotyped virus library and authentic virus infections, we show that these C. perspicillata cell lines derived from a diverse array of tissues are susceptible to viruses bearing the glycoprotein of numerous orthohantaviruses, including Andes and Hantaan virus and are also susceptible to live hantavirus infection. Furthermore, stimulation with synthetic double-stranded RNA prior to infection with VSV and MERS-CoV induced a protective antiviral response, demonstrating the suitability of our cell lines to study the bat antiviral immune response. Taken together, the approaches outlined here will inform future efforts to develop in vitro tools for virology from non-model organisms and these C. perspicillata cell lines will enable studies on virus-host interactions in bats.
Collapse
Affiliation(s)
- Victoria Gonzalez
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3 Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Cierra Word
- Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana. 71103, USA
| | | | - Mitra Mazinani
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, 99163, USA
| | - Stephen Fawcett
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, 99163, USA
| | | | - Darryl Falzarano
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3 Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Alison M. Kell
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Rohit K. Jangra
- Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana. 71103, USA
| | - Arinjay Banerjee
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3 Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Stephanie N. Seifert
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, 99163, USA
| | - Michael Letko
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, 99163, USA
| |
Collapse
|
10
|
Ramassamy JL, Ayouba A, Thaurignac G, Bilounga Ndongo C, Nnuka P, Betsem E, Njouom R, Mpoudi Ngole E, Vanhomwegen J, Hoinard D, England P, Journeaux A, Picard C, Thomas D, Pannetier D, Baize S, Delaporte E, Peeters M, Gessain A. High Seroreactivities to Orthoebolaviruses in Rural Cameroon: A Case-Control Study on Nonhuman Primate Bites and a Cross-sectional Survey in Rural Populations. J Infect Dis 2024; 230:e1067-e1076. [PMID: 39126336 PMCID: PMC11565877 DOI: 10.1093/infdis/jiae399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Ebola (EBOV) and Sudan (SUDV) orthoebolaviruses are responsible for lethal hemorrhagic fever outbreaks in humans in Central and West Africa, and in apes that can be at the source of human outbreaks for EBOV. METHODS To assess the risk of exposure to orthoebolaviruses through contact with nonhuman primates (NHP), we tested the presence of antibodies against different viral proteins with a microsphere-based multiplex immunoassay in a case-control study on bites from NHPs in forest areas from Cameroon (n = 795) and in cross-sectional surveys from other rural populations (n = 622) of the same country. RESULTS Seroreactivities against at least 2 viral proteins were detected in 13% and 12% of the samples for EBOV and SUDV, respectively. Probability of seroreactivity was not associated with history of NHP bites, but was 3 times higher in Pygmies compared to Bantus. Although no neutralizing antibodies to EBOV and SUDV were detected in a selected series of highly reactive samples, avidity results indicate strong affinity to SUDV antigens. CONCLUSIONS The detection of high level of seroreactivities against orthoebolaviruses in rural Cameroon, where no outbreaks have been reported, raises the possibilities of silent circulation of orthoebolaviruses, or of other not yet documented filoviruses, in these forested regions. ARTICLE'S MAIN POINT Our study found high seroreactivities to Ebola and Sudan orthoebolavirus antigens in rural Cameroonian populations, especially among Pygmies, despite no reported outbreaks. This suggests potential silent circulation of orthoebolaviruses or unknown filoviruses, highlighting the need for further surveillance and research.
Collapse
Affiliation(s)
- Jill-Léa Ramassamy
- Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Université de Paris Cité, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3569, Paris
- Unité TransVIHMI, Université de Montpellier, Inserm, Institut de Recherche pour le Développement, Montpellier, France
| | - Ahidjo Ayouba
- Unité TransVIHMI, Université de Montpellier, Inserm, Institut de Recherche pour le Développement, Montpellier, France
| | - Guillaume Thaurignac
- Unité TransVIHMI, Université de Montpellier, Inserm, Institut de Recherche pour le Développement, Montpellier, France
| | - Chanceline Bilounga Ndongo
- Direction de la lutte contre les Maladies, les Epidémies et les Pandémies, Ministère de la Santé Publique, Yaoundé
- Faculté de Médecine et des Sciences Pharmaceutiques, Université de Douala, Douala
| | - Patrick Nnuka
- Direction de la lutte contre les Maladies, les Epidémies et les Pandémies, Ministère de la Santé Publique, Yaoundé
| | - Edouard Betsem
- Faculty of Medicine and Biomedical Sciences, University of Yaounde I, Yaounde, Cameroon
| | | | - Eitel Mpoudi Ngole
- Laboratoire de Virologie, Centre de Recherche sur les Maladies Emergentes et Re-Emergentes, Institut de Recherches Médicales et d'Etudes des Plantes Médicinales, Yaoundé, Cameroon
| | | | - Damien Hoinard
- Unité Environnement et Risques Infectieux, Institut Pasteur
| | - Patrick England
- Plateforme de Biophysique Moléculaire, C2RT, Institut Pasteur, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3528, Paris
| | - Alexandra Journeaux
- Unit of Biology of Emerging Viral Infections, Institut Pasteur
- National Reference Center for Viral Hemorrhagic Fevers
| | - Caroline Picard
- Unit of Biology of Emerging Viral Infections, Institut Pasteur
- National Reference Center for Viral Hemorrhagic Fevers
| | - Damien Thomas
- National Reference Center for Viral Hemorrhagic Fevers
- Laboratoire P4 Jean Mérieux, US003, Inserm, Lyon, France
| | - Delphine Pannetier
- National Reference Center for Viral Hemorrhagic Fevers
- Laboratoire P4 Jean Mérieux, US003, Inserm, Lyon, France
| | - Sylvain Baize
- Unit of Biology of Emerging Viral Infections, Institut Pasteur
- National Reference Center for Viral Hemorrhagic Fevers
| | - Eric Delaporte
- Unité TransVIHMI, Université de Montpellier, Inserm, Institut de Recherche pour le Développement, Montpellier, France
| | - Martine Peeters
- Unité TransVIHMI, Université de Montpellier, Inserm, Institut de Recherche pour le Développement, Montpellier, France
| | - Antoine Gessain
- Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Université de Paris Cité, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3569, Paris
| |
Collapse
|
11
|
Huang Y, Jiang S, Daminova N, Kumah E. Integrating animal welfare into the WHO pandemic treaty: a thematic analysis of civil society perspectives and comparison with treaty drafting. Front Vet Sci 2024; 11:1421158. [PMID: 39606645 PMCID: PMC11599984 DOI: 10.3389/fvets.2024.1421158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
The COVID-19 pandemic has exposed critical weaknesses in the global health system, highlighting the urgent need for a coordinated international approach to pandemic prevention and management. As negotiations for a new WHO pandemic treaty progress, the effective integration of animal welfare is crucial. This paper aims to investigate the perspectives of key civil society organizations on the integration of animal welfare provisions into the pandemic treaty. Through a thematic analysis of documents prepared by FOUR PAWS, Wildlife Conservation Society, and Action for Animal Health between 2020-2023, five major themes are identified: prevention of zoonotic spillover, One Health approach, animal health systems and infrastructure, sustainable and ethical animal management practices, and policy coherence and governance. A comparative analysis of these themes against the April 2024 draft of the pandemic treaty reveals areas of alignment and divergence. Due to the ongoing controversies and the need for further improvements, the WHO's intergovernmental negotiating body was unable to finalize the treaty text for the 77th World Health Assembly in May 2024, leading to an extended mandate until 2025. Based on the findings, the paper proposes recommendations to strengthen the integration of animal welfare into the treaty, arguing that incorporating these recommendations is critical for developing a transformative, equitable, and effective treaty that addresses the systemic drivers of pandemic risk.
Collapse
Affiliation(s)
- Ying Huang
- School of Marxism, Yangtze Normal University, Chongqing, China
| | - Shisong Jiang
- School of Law, Chongqing University, Chongqing, China
| | - Nasiya Daminova
- Faculty of Management and Business [Just Recovery From Covid-19? Fundamental Rights, Legitimate Governance and Lessons Learnt (JuRe) Project], Tampere University, Tampere, Finland
| | - Emmanuel Kumah
- Department of Health Administration and Education, Faculty of Science Education, University of Education, Winneba, Ghana
| |
Collapse
|
12
|
Wickenhagen A, van Tol S, Munster V. Molecular determinants of cross-species transmission in emerging viral infections. Microbiol Mol Biol Rev 2024; 88:e0000123. [PMID: 38912755 PMCID: PMC11426021 DOI: 10.1128/mmbr.00001-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024] Open
Abstract
SUMMARYSeveral examples of high-impact cross-species transmission of newly emerging or re-emerging bat-borne viruses, such as Sudan virus, Nipah virus, and severe acute respiratory syndrome coronavirus 2, have occurred in the past decades. Recent advancements in next-generation sequencing have strengthened ongoing efforts to catalog the global virome, in particular from the multitude of different bat species. However, functional characterization of these novel viruses and virus sequences is typically limited with regard to assessment of their cross-species potential. Our understanding of the intricate interplay between virus and host underlying successful cross-species transmission has focused on the basic mechanisms of entry and replication, as well as the importance of host innate immune responses. In this review, we discuss the various roles of the respective molecular mechanisms underlying cross-species transmission using different recent bat-borne viruses as examples. To delineate the crucial cellular and molecular steps underlying cross-species transmission, we propose a framework of overall characterization to improve our capacity to characterize viruses as benign, of interest, or of concern.
Collapse
Affiliation(s)
- Arthur Wickenhagen
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Sarah van Tol
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Vincent Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
13
|
Chen S, Sia WR, Tang LJW, Gamage AM, Chan WOY, Zhu F, Chia W, Kwek MSS, Kong PS, Lim BL, Foo R, Ng WL, Tan AHJ, He S, Loh AYT, Low DHW, Smith GJD, Hong LZ, Wang LF. Application of a bespoke monoclonal antibody panel to characterize immune cell populations in cave nectar bats. Cell Rep 2024; 43:114703. [PMID: 39213154 DOI: 10.1016/j.celrep.2024.114703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/21/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Among their many unique biological features, bats are increasingly recognized as a key reservoir of many emerging viruses that cause massive morbidity and mortality in humans. Bats are capable of harboring many of these deadly viruses without any apparent signs of pathology, in a mechanism known as viral disease tolerance. However, the immunological mechanisms behind viral tolerance remain poorly understood. As a non-model organism species, there are very limited research resources and tools available to study bat immunology. In the cave nectar bat Eonycteris spelaea, we have a panel of monoclonal antibodies (mAbs) against major immune markers. An immunophenotyping survey of major immune compartments and barrier sites using these mAbs reveals differences in the immunological landscape of bats.
Collapse
Affiliation(s)
- Shiwei Chen
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Wan Rong Sia
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Leon J W Tang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore; Integrative Sciences and Engineering Programme, National University of Singapore, Singapore, Singapore
| | - Akshamal M Gamage
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Wharton O Y Chan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Feng Zhu
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Wanni Chia
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Madeline S S Kwek
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Pui San Kong
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Beng Lee Lim
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Randy Foo
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Wei Lun Ng
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Adrian H J Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Shan He
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | | | - Dolyce H W Low
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Gavin J D Smith
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | | | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
14
|
Hood G, Carroll M. Host-pathogen interactions of emerging zoonotic viruses: bats, humans and filoviruses. Curr Opin Virol 2024; 68-69:101436. [PMID: 39537444 DOI: 10.1016/j.coviro.2024.101436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/15/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
This paper provides an overview of the phenomena of cross-species transmission of viruses (known as spillover), focusing on the highly pathogenic filovirus family and their natural reservoir: bats. It also describes the host-pathogen relationship of viruses and their reservoirs, in addition to humans, and discusses current theories of persistent infection.
Collapse
Affiliation(s)
- Grace Hood
- Pandemic Sciences Institute & Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK.
| | - Miles Carroll
- Pandemic Sciences Institute & Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK.
| |
Collapse
|
15
|
Taylor DJ, Barnhart MH. Genomic transfers help to decipher the ancient evolution of filoviruses and interactions with vertebrate hosts. PLoS Pathog 2024; 20:e1011864. [PMID: 39226335 PMCID: PMC11398700 DOI: 10.1371/journal.ppat.1011864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 09/13/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024] Open
Abstract
Although several filoviruses are dangerous human pathogens, there is conflicting evidence regarding their origins and interactions with animal hosts. Here we attempt to improve this understanding using the paleoviral record over a geological time scale, protein structure predictions, tests for evolutionary maintenance, and phylogenetic methods that alleviate sources of bias and error. We found evidence for long branch attraction bias in the L gene tree for filoviruses, and that using codon-specific models and protein structural comparisons of paleoviruses ameliorated conflict and bias. We found evidence for four ancient filoviral groups, each with extant viruses and paleoviruses with open reading frames. Furthermore, we found evidence of repeated transfers of filovirus-like elements to mouse-like rodents. A filovirus-like nucleoprotein ortholog with an open reading frame was detected in three subfamilies of spalacid rodents (present since the Miocene). We provide evidence that purifying selection is acting to maintain amino acids, protein structure and open reading frames in these elements. Our finding of extant viruses nested within phylogenetic clades of paleoviruses informs virus discovery methods and reveals the existence of Lazarus taxa among RNA viruses. Our results resolve a deep conflict in the evolutionary framework for filoviruses and reveal that genomic transfers to vertebrate hosts with potentially functional co-options have been more widespread than previously appreciated.
Collapse
Affiliation(s)
- Derek J Taylor
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Max H Barnhart
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, United States of America
| |
Collapse
|
16
|
Carrascosa-Sàez M, Buigues J, Viñals A, Andreu-Moreno I, Martínez-Recio R, Soriano-Tordera C, Monrós JS, Cuevas JM, Sanjuán R. Genetic diversity and cross-species transmissibility of bat-associated picornaviruses from Spain. Virol J 2024; 21:193. [PMID: 39175061 PMCID: PMC11342490 DOI: 10.1186/s12985-024-02456-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/31/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Emerging zoonotic diseases arise from cross-species transmission events between wild or domesticated animals and humans, with bats being one of the major reservoirs of zoonotic viruses. Viral metagenomics has led to the discovery of many viruses, but efforts have mainly been focused on some areas of the world and on certain viral families. METHODS We set out to describe full-length genomes of new picorna-like viruses by collecting feces from hundreds of bats captured in different regions of Spain. Viral sequences were obtained by high-throughput Illumina sequencing and analyzed phylogenetically to classify them in the context of known viruses. Linear discriminant analysis (LDA) was performed to infer likely hosts based on genome composition. RESULTS We found five complete or nearly complete genomes belonging to the family Picornaviridae, including a new species of the subfamily Ensavirinae. LDA suggested that these were true vertebrate viruses, rather than viruses from the bat diet. Some of these viruses were related to picornaviruses previously found in other bat species from distant geographical regions. We also found a calhevirus genome that most likely belongs to a proposed new family within the order Picornavirales, and for which genome composition analysis suggested a plant host. CONCLUSIONS Our findings describe new picorna-like viral species and variants circulating in the Iberian Peninsula, illustrate the wide geographical distribution and interspecies transmissibility of picornaviruses, and suggest new hosts for calheviruses.
Collapse
Affiliation(s)
- Marc Carrascosa-Sàez
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València - CSIC, València, Spain
| | - Jaime Buigues
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València - CSIC, València, Spain
| | - Adrià Viñals
- Institut Cavanilles de Biodiversitat I Biologia Evolutiva, Universitat de València, València, Spain
| | - Iván Andreu-Moreno
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València - CSIC, València, Spain
| | - Raquel Martínez-Recio
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València - CSIC, València, Spain
| | - Clàudia Soriano-Tordera
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València - CSIC, València, Spain
| | - Juan S Monrós
- Institut Cavanilles de Biodiversitat I Biologia Evolutiva, Universitat de València, València, Spain
| | - José M Cuevas
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València - CSIC, València, Spain.
- Department of Genetics, Universitat de València, València, Spain.
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València - CSIC, València, Spain.
- Department of Genetics, Universitat de València, València, Spain.
| |
Collapse
|
17
|
Groseth A, Hoenen T. Novel filoviruses: indication of a global threat or cause to reassess our risk perception? NPJ VIRUSES 2024; 2:38. [PMID: 40295872 PMCID: PMC11721365 DOI: 10.1038/s44298-024-00050-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/06/2024] [Indexed: 04/30/2025]
Abstract
Filoviruses such as Ebola virus are widely known as causative agents of severe human disease, although apathogenic filoviruses also exist. There is now increasing evidence that filoviruses circulate in almost all parts of the world, where they are being discovered in an expanding range of sometimes unexpected host species. Here we summarize the current knowledge regarding these novel filoviruses, and open questions that need answering to assess and prepare for the risk they pose.
Collapse
Affiliation(s)
- Allison Groseth
- Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Greifswald, Germany
| | - Thomas Hoenen
- Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Greifswald, Germany.
| |
Collapse
|
18
|
Jenkins F, Mapulanga T, Thapa G, da Costa KAS, Temperton NJ. Conference Report: LPMHealthcare Emerging Viruses 2023 (EVOX23): Pandemics-Learning from the Past and Present to Prepare for the Future. Pathogens 2024; 13:679. [PMID: 39204279 PMCID: PMC11357271 DOI: 10.3390/pathogens13080679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
The emergence of SARS-CoV-2 has meant that pandemic preparedness has become a major focus of the global scientific community. Gathered in the historic St Edmund Hall college in Oxford, the one-day LPMHealthcare conference on emerging viruses (6 September 2023) sought to review and learn from past pandemics-the current SARS-CoV-2 pandemic and the Mpox outbreak-and then look towards potential future pandemics. This includes an emphasis on monitoring the "traditional" reservoirs of viruses with zoonotic potential, as well as possible new sources of spillover events, e.g., bats, which we are coming into closer contact with due to climate change and the impacts of human activities on habitats. Continued vigilance and investment into creative scientific solutions is required for issues including the long-term physical and psychological effects of COVID-19, i.e., long COVID. The evaluation of current systems, including environmental monitoring, communication (with the public, regulatory authorities, and governments), and training; assessment of the effectiveness of the technologies/assays we have in place currently; and lobbying of the government and the public to work with scientists are all required in order to build trust moving forward. Overall, the SARS-CoV-2 pandemic has shown how many sectors can work together to achieve a global impact in times of crisis.
Collapse
Affiliation(s)
| | - Tobias Mapulanga
- Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Chatham ME4 4BF, UK; (T.M.); (G.T.)
| | - Gauri Thapa
- Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Chatham ME4 4BF, UK; (T.M.); (G.T.)
| | - Kelly A. S. da Costa
- Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Chatham ME4 4BF, UK; (T.M.); (G.T.)
| | - Nigel J. Temperton
- Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Chatham ME4 4BF, UK; (T.M.); (G.T.)
| |
Collapse
|
19
|
Buigues J, Viñals A, Martínez-Recio R, Monrós JS, Sanjuán R, Cuevas JM. Full-genome sequencing of dozens of new DNA viruses found in Spanish bat feces. Microbiol Spectr 2024; 12:e0067524. [PMID: 38990026 PMCID: PMC11323972 DOI: 10.1128/spectrum.00675-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/26/2024] [Indexed: 07/12/2024] Open
Abstract
Bats are natural hosts of multiple viruses, many of which have clear zoonotic potential. The search for emerging viruses has been aided by the implementation of metagenomic tools, which have also enabled the detection of unprecedented viral diversity. Currently, this search is mainly focused on RNA viruses, which are largely over-represented in databases. To compensate for this research bias, we analyzed fecal samples from 189 Spanish bats belonging to 22 different species using viral metagenomics. This allowed us to identify 52 complete or near-complete viral genomes belonging to the families Adenoviridae, Circoviridae, Genomoviridae, Papillomaviridae, Parvoviridae, Polyomaviridae and Smacoviridae. Of these, 30 could constitute new species, doubling the number of viruses currently described in Europe. These findings open the door to a more thorough analysis of bat DNA viruses and their zoonotic potential. IMPORTANCE Metagenomics has become a fundamental tool to characterize the global virosphere, allowing us not only to understand the existing viral diversity and its ecological implications but also to identify new and emerging viruses. RNA viruses have a higher zoonotic potential, but this risk is also present for some DNA virus families. In our study, we analyzed the DNA fraction of fecal samples from 22 Spanish bat species, identifying 52 complete or near-complete genomes of different viral families with zoonotic potential. This doubles the number of genomes currently described in Europe. Metagenomic data often produce partial genomes that can be difficult to analyze. Our work, however, has characterized a large number of complete genomes, thus facilitating their taxonomic classification and enabling different analyses to be carried out to evaluate their zoonotic potential. For example, recombination studies are relevant since this phenomenon could play a major role in cross-species transmission.
Collapse
Affiliation(s)
- Jaime Buigues
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València and Consejo Superior de Investigaciones Científicas, València, Spain
| | - Adrià Viñals
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, València, Spain
| | - Raquel Martínez-Recio
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València and Consejo Superior de Investigaciones Científicas, València, Spain
| | - Juan S. Monrós
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, València, Spain
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València and Consejo Superior de Investigaciones Científicas, València, Spain
- Department of Genetics, Universitat de València, València, Spain
| | - José M. Cuevas
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València and Consejo Superior de Investigaciones Científicas, València, Spain
- Department of Genetics, Universitat de València, València, Spain
| |
Collapse
|
20
|
Pawęska JT, Storm N, Jansen van Vuren P, Markotter W, Kemp A. Attempted Transmission of Marburg Virus by Bat-Associated Fleas Thaumapsylla breviceps breviceps (Ischnopsyllidae: Thaumapsyllinae) to the Egyptian Rousette Bat ( Rousettus aegyptiacus). Viruses 2024; 16:1197. [PMID: 39205171 PMCID: PMC11360628 DOI: 10.3390/v16081197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Egyptian rousette bats (ERBs) are implicated as reservoir hosts for Marburg virus (MARV), but natural mechanisms involved in maintenance of MARV in ERB populations remain undefined. A number of hematophagous ectoparasites, including fleas, parasitize bats. Subcutaneous (SC) inoculation of ERBs with MARV consistently results in viremia, suggesting that infectious MARV could be ingested by blood-sucking ectoparasites during feeding. In our study, MARV RNA was detected in fleas that took a blood meal during feeding on viremic bats on days 3, 7, and 11 after SC inoculation. Virus concentration in individual ectoparasites was consistent with detectable levels of viremia in the blood of infected host bats. There was neither seroconversion nor viremia in control bats kept in close contact with MARV-infected bats infested with fleas for up to 40 days post-exposure. In fleas inoculated intracoelomically, MARV was detected up to 14 days after intracoelomic (IC) inoculation, but the virus concentration was lower than that delivered in the inoculum. All bats that had been infested with inoculated, viremic fleas remained virologically and serologically negative up to 38 days after infestation. Of 493 fleas collected from a wild ERB colony in Matlapitsi Cave, South Africa, where the enzootic transmission of MARV occurs, all tested negative for MARV RNA. While our findings seem to demonstrate that bat fleas lack vectorial capacity to transmit MARV biologically, their role in mechanical transmission should not be discounted. Regular blood-feeds, intra- and interhost mobility, direct feeding on blood vessels resulting in venous damage, and roosting behaviour of ERBs provide a potential physical bridge for MARV dissemination in densely populated cave-dwelling bats by fleas. The virus transfer might take place through inoculation of skin, mucosal membranes, and wounds when contaminated fleas are squashed during auto- and allogrooming, eating, biting, or fighting.
Collapse
Affiliation(s)
- Janusz T. Pawęska
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham 2131, South Africa; (N.S.); (P.J.v.V.); (A.K.)
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa;
- Faculty of Health Sciences, University of Witwatersrand, Johannesburg 2050, South Africa
| | - Nadia Storm
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham 2131, South Africa; (N.S.); (P.J.v.V.); (A.K.)
- Department of Microbiology, School of Medicine, Boston University, Boston, MA 02118, USA
| | - Petrus Jansen van Vuren
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham 2131, South Africa; (N.S.); (P.J.v.V.); (A.K.)
- CSIRO Health & Biosecurity, Australian Centre for Disease Preparedness, Geelong, VIC 3220, Australia
| | - Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa;
| | - Alan Kemp
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham 2131, South Africa; (N.S.); (P.J.v.V.); (A.K.)
| |
Collapse
|
21
|
Munyeku-Bazitama Y, Edidi-Atani F, Takada A. Non-Ebola Filoviruses: Potential Threats to Global Health Security. Viruses 2024; 16:1179. [PMID: 39205153 PMCID: PMC11359311 DOI: 10.3390/v16081179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 09/04/2024] Open
Abstract
Filoviruses are negative-sense single-stranded RNA viruses often associated with severe and highly lethal hemorrhagic fever in humans and nonhuman primates, with case fatality rates as high as 90%. Of the known filoviruses, Ebola virus (EBOV), the prototype of the genus Orthoebolavirus, has been a major public health concern as it frequently causes outbreaks and was associated with an unprecedented outbreak in several Western African countries in 2013-2016, affecting 28,610 people, 11,308 of whom died. Thereafter, filovirus research mostly focused on EBOV, paying less attention to other equally deadly orthoebolaviruses (Sudan, Bundibugyo, and Taï Forest viruses) and orthomarburgviruses (Marburg and Ravn viruses). Some of these filoviruses have emerged in nonendemic areas, as exemplified by four Marburg disease outbreaks recorded in Guinea, Ghana, Tanzania, and Equatorial Guinea between 2021 and 2023. Similarly, the Sudan virus has reemerged in Uganda 10 years after the last recorded outbreak. Moreover, several novel bat-derived filoviruses have been discovered in the last 15 years (Lloviu virus, Bombali virus, Měnglà virus, and Dehong virus), most of which are poorly characterized but may display a wide host range. These novel viruses have the potential to cause outbreaks in humans. Several gaps are yet to be addressed regarding known and emerging filoviruses. These gaps include the virus ecology and pathogenicity, mechanisms of zoonotic transmission, host range and susceptibility, and the development of specific medical countermeasures. In this review, we summarize the current knowledge on non-Ebola filoviruses (Bombali virus, Bundibugyo virus, Reston virus, Sudan virus, Tai Forest virus, Marburg virus, Ravn virus, Lloviu virus, Měnglà virus, and Dehong virus) and suggest some strategies to accelerate specific countermeasure development.
Collapse
Affiliation(s)
- Yannick Munyeku-Bazitama
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (Y.M.-B.); (F.E.-A.)
- Institut National de Recherche Biomédicale, Kinshasa P.O. Box 1197, Democratic Republic of the Congo
- Département de Biologie Médicale, Faculté de Médecine, Université de Kinshasa, Kinshasa P.O. Box 123, Democratic Republic of the Congo
| | - Francois Edidi-Atani
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (Y.M.-B.); (F.E.-A.)
- Institut National de Recherche Biomédicale, Kinshasa P.O. Box 1197, Democratic Republic of the Congo
- Département de Biologie Médicale, Faculté de Médecine, Université de Kinshasa, Kinshasa P.O. Box 123, Democratic Republic of the Congo
| | - Ayato Takada
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (Y.M.-B.); (F.E.-A.)
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
- One Health Research Center, Hokkaido University, Sapporo 001-0020, Japan
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia
| |
Collapse
|
22
|
Sizikova TE, Lebedev VN, Borisevich SV. [Comparative analysis of the taxonomic classification criteria for a number of groups of pathogenic DNA and RNA viruses based on genomic data]. Vopr Virusol 2024; 69:203-218. [PMID: 38996370 DOI: 10.36233/0507-4088-238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Indexed: 07/14/2024]
Abstract
The basis for criteria of the taxonomic classification of DNA and RNA viruses based on data of the genomic sequencing are viewed in this review. The genomic sequences of viruses, which have genome represented by double-stranded DNA (orthopoxviruses as example), positive-sense single-stranded RNA (alphaviruses and flaviviruses as example), non-segmented negative-sense single-stranded RNA (filoviruses as example), segmented negative-sense single-stranded RNA (arenaviruses and phleboviruses as example) are analyzed. The levels of genetic variability that determine the assignment of compared viruses to taxa of various orders are established for each group of viruses.
Collapse
Affiliation(s)
- T E Sizikova
- 48th Central Scientific Research Institute of the Ministry of Defense of the Russian Federation
| | - V N Lebedev
- 48th Central Scientific Research Institute of the Ministry of Defense of the Russian Federation
| | - S V Borisevich
- 48th Central Scientific Research Institute of the Ministry of Defense of the Russian Federation
| |
Collapse
|
23
|
Xie SZ, Yao K, Li B, Peng C, Yang XL, Shi ZL. Development of a Měnglà virus minigenome and comparison of its polymerase complexes with those of other filoviruses. Virol Sin 2024; 39:459-468. [PMID: 38782261 PMCID: PMC11279764 DOI: 10.1016/j.virs.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/25/2024] [Indexed: 05/25/2024] Open
Abstract
Ebola virus (EBOV) and Marburg virus (MARV), members of the Filoviridae family, are highly pathogenic and can cause hemorrhagic fevers, significantly impacting human society. Bats are considered reservoirs of these viruses because related filoviruses have been discovered in bats. However, due to the requirement for maximum containment laboratories when studying infectious viruses, the characterization of bat filoviruses often relies on pseudoviruses and minigenome systems. In this study, we used RACE technology to sequence the 3'-leader and 5'-trailer of Měnglà virus (MLAV) and constructed a minigenome. Similar to MARV, the transcription activities of the MLAV minigenome are independent of VP30. We further assessed the effects of polymorphisms at the 5' end on MLAV minigenome activity and identified certain mutations that decrease minigenome reporter efficiency, probably due to alterations in the RNA secondary structure. The reporter activity upon recombination of the 3'-leaders and 5'-trailers of MLAV, MARV, and EBOV with those of the homologous or heterologous minigenomes was compared and it was found that the polymerase complex and leader and trailer sequences exhibit intrinsic specificities. Additionally, we investigated whether the polymerase complex proteins from EBOV and MARV support MLAV minigenome RNA synthesis and found that the homologous system is more efficient than the heterologous system. Remdesivir efficiently inhibited MLAV as well as EBOV replication. In summary, this study provides new information on bat filoviruses and the minigenome will be a useful tool for high-throughput antiviral drug screening.
Collapse
Affiliation(s)
- Shi-Zhe Xie
- State Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ke Yao
- State Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bei Li
- State Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Cheng Peng
- State Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xing-Lou Yang
- Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China; Hubei Jiangxia Laboratory, Wuhan, 430200, China.
| | - Zheng-Li Shi
- State Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
24
|
Vodopija R, Lojkić I, Hamidović D, Boneta J, Primorac D. Bat Bites and Rabies PEP in the Croatian Reference Centre for Rabies 1995-2020. Viruses 2024; 16:876. [PMID: 38932168 PMCID: PMC11209127 DOI: 10.3390/v16060876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Seroprevalence of lyssaviruses in certain bat species has been proven in the Republic of Croatia, but there have been no confirmed positive bat brain isolates or human fatalities associated with bat injuries/bites. The study included a retrospective analysis of bat injuries/bites, post-exposure prophylaxis (PEP) and geographic distribution of bat injuries in persons examined at the Zagreb Antirabies Clinic, the Croatian Reference Centre for Rabies. In the period 1995-2020, we examined a total of 21,910 patients due to animal injuries, of which 71 cases were bat-related (0.32%). Of the above number of patients, 4574 received rabies PEP (20.87%). However, for bat injuries, the proportion of patients receiving PEP was significantly higher: 66 out of 71 patients (92.95%). Of these, 33 received only the rabies vaccine, while the other 33 patients received the vaccine with human rabies immunoglobulin (HRIG). In five cases, PEP was not administered, as there was no indication for treatment. Thirty-five of the injured patients were biologists or biology students (49.29%). The bat species was confirmed in only one of the exposure cases. This was a serotine bat (Eptesicus serotinus), a known carrier of Lyssavirus hamburg. The results showed that the bat bites were rather sporadic compared to other human injuries caused by animal bites. All bat injuries should be treated as if they were caused by a rabid animal, and according to WHO recommendations. People who come into contact with bats should be strongly advised to be vaccinated against rabies. Entering bat habitats should be done with caution and in accordance with current recommendations, and nationwide surveillance should be carried out by competent institutions and in close collaboration between bat experts, epidemiologists and rabies experts.
Collapse
Affiliation(s)
- Radovan Vodopija
- Department of Epidemiology, Andrija Štampar Teaching Institute of Public Health, 10000 Zagreb, Croatia; (R.V.); (D.P.)
| | - Ivana Lojkić
- Laboratory for Rabies and General Virology, Croatian Veterinary Institute, 10000 Zagreb, Croatia
| | - Daniela Hamidović
- Ministry of Environment and Green Transition, 10000 Zagreb, Croatia;
| | - Jelena Boneta
- Institute of Public Health of Zagreb County, 10290 Zaprešić, Croatia;
| | - Dora Primorac
- Department of Epidemiology, Andrija Štampar Teaching Institute of Public Health, 10000 Zagreb, Croatia; (R.V.); (D.P.)
| |
Collapse
|
25
|
Zhang Y, Zhang M, Wu H, Wang X, Zheng H, Feng J, Wang J, Luo L, Xiao H, Qiao C, Li X, Zheng Y, Huang W, Wang Y, Wang Y, Shi Y, Feng J, Chen G. A novel MARV glycoprotein-specific antibody with potentials of broad-spectrum neutralization to filovirus. eLife 2024; 12:RP91181. [PMID: 38526940 PMCID: PMC10963030 DOI: 10.7554/elife.91181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024] Open
Abstract
Marburg virus (MARV) is one of the filovirus species that cause deadly hemorrhagic fever in humans, with mortality rates up to 90%. Neutralizing antibodies represent ideal candidates to prevent or treat virus disease. However, no antibody has been approved for MARV treatment to date. In this study, we identified a novel human antibody named AF-03 that targeted MARV glycoprotein (GP). AF-03 possessed a high binding affinity to MARV GP and showed neutralizing and protective activities against the pseudotyped MARV in vitro and in vivo. Epitope identification, including molecular docking and experiment-based analysis of mutated species, revealed that AF-03 recognized the Niemann-Pick C1 (NPC1) binding domain within GP1. Interestingly, we found the neutralizing activity of AF-03 to pseudotyped Ebola viruses (EBOV, SUDV, and BDBV) harboring cleaved GP instead of full-length GP. Furthermore, NPC2-fused AF-03 exhibited neutralizing activity to several filovirus species and EBOV mutants via binding to CI-MPR. In conclusion, this work demonstrates that AF-03 represents a promising therapeutic cargo for filovirus-caused disease.
Collapse
Affiliation(s)
- Yuting Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and ToxicologyBeijingChina
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical UniversityHohhotChina
| | - Min Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and ToxicologyBeijingChina
| | - Haiyan Wu
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and ToxicologyBeijingChina
| | - Xinwei Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and ToxicologyBeijingChina
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical UniversityHohhotChina
| | - Hang Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and ToxicologyBeijingChina
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical UniversityHohhotChina
| | - Junjuan Feng
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and ToxicologyBeijingChina
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical UniversityHohhotChina
| | - Jing Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and ToxicologyBeijingChina
| | - Longlong Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and ToxicologyBeijingChina
| | - He Xiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and ToxicologyBeijingChina
| | - Chunxia Qiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and ToxicologyBeijingChina
| | - Xinying Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and ToxicologyBeijingChina
| | - Yuanqiang Zheng
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical UniversityHohhotChina
| | - Weijin Huang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug ControlBeijingChina
| | - Youchun Wang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug ControlBeijingChina
| | - Yi Wang
- Department of Hematology, Fifth Medical Center of Chinese PLA General HospitalBeijingChina
| | - Yanchun Shi
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical UniversityHohhotChina
| | - Jiannan Feng
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and ToxicologyBeijingChina
| | - Guojiang Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and ToxicologyBeijingChina
| |
Collapse
|
26
|
Vogel OA, Nafziger E, Sharma A, Pasolli HA, Davey RA, Basler CF. The Role of Ebola Virus VP24 Nuclear Trafficking Signals in Infectious Particle Production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.584761. [PMID: 38559040 PMCID: PMC10980025 DOI: 10.1101/2024.03.13.584761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Ebola virus (EBOV) protein VP24 carries out at least two critical functions. It promotes condensation of viral nucleocapsids, which is crucial for infectious virus production, and it suppresses interferon (IFN) signaling, which requires interaction with the NPI-1 subfamily of importin-α (IMPA) nuclear transport proteins. Interestingly, over-expressed IMPA leads to VP24 nuclear accumulation and a carboxy-terminus nuclear export signal (NES) has been reported, suggesting that VP24 may undergo nuclear trafficking. For the first time, we demonstrate that NPI-1 IMPA overexpression leads to the nuclear accumulation of VP24 during EBOV infection. To assess the functional impact of nuclear trafficking, we generated tetracistronic minigenomes encoding VP24 nuclear import and/or export signal mutants. The minigenomes, which also encode Renilla luciferase and viral proteins VP40 and GP, were used to generate transcription and replication competent virus-like particles (trVLPs) that can be used to assess EBOV RNA synthesis, gene expression, entry and viral particle production. With this system, we confirmed that NES or IMPA binding site mutations altered VP24 nuclear localization, demonstrating functional trafficking signals. While these mutations minimally affected transcription and replication, the trVLPs exhibited impaired infectivity and formation of shortened nucleocapsids for the IMPA binding mutant. For the NES mutants, infectivity was reduced approximately 1000-fold. The NES mutant could still suppress IFN signaling but failed to promote nucleocapsid formation. To determine whether VP24 nuclear export is required for infectivity, the residues surrounding the wildtype NES were mutated to alanine or the VP24 NES was replaced with the Protein Kinase A Inhibitor NES. While nuclear export remained intact for these mutants, infectivity was severely impaired. These data demonstrate that VP24 undergoes nuclear trafficking and illuminates a separate and critical role for the NES and surrounding sequences in infectivity and nucleocapsid assembly.
Collapse
Affiliation(s)
- Olivia A. Vogel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Elias Nafziger
- National Emerging Infectious Diseases Laboratories and Department of Virology, Immunology, and Microbiology, Boston University, Boston, MA 02118
| | - Anurag Sharma
- Electron Microscopy Resource Center, The Rockefeller University, New York ,NY 10065, USA
| | - H. Amalia Pasolli
- Electron Microscopy Resource Center, The Rockefeller University, New York ,NY 10065, USA
| | - Robert A. Davey
- National Emerging Infectious Diseases Laboratories and Department of Virology, Immunology, and Microbiology, Boston University, Boston, MA 02118
| | - Christopher F. Basler
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
27
|
He B, Hu T, Yan X, Pa Y, Liu Y, Liu Y, Li N, Yu J, Zhang H, Liu Y, Chai J, Sun Y, Mi S, Liu Y, Yi L, Tu Z, Wang Y, Sun S, Feng Y, Zhang W, Zhao H, Duan B, Gong W, Zhang F, Tu C. Isolation, characterization, and circulation sphere of a filovirus in fruit bats. Proc Natl Acad Sci U S A 2024; 121:e2313789121. [PMID: 38335257 PMCID: PMC10873641 DOI: 10.1073/pnas.2313789121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/11/2023] [Indexed: 02/12/2024] Open
Abstract
Bats are associated with the circulation of most mammalian filoviruses (FiVs), with pathogenic ones frequently causing deadly hemorrhagic fevers in Africa. Divergent FiVs have been uncovered in Chinese bats, raising concerns about their threat to public health. Here, we describe a long-term surveillance to track bat FiVs at orchards, eventually resulting in the identification and isolation of a FiV, Dehong virus (DEHV), from Rousettus leschenaultii bats. DEHV has a typical filovirus-like morphology with a wide spectrum of cell tropism. Its entry into cells depends on the engagement of Niemann-Pick C1, and its replication is inhibited by remdesivir. DEHV has the largest genome size of filoviruses, with phylogenetic analysis placing it between the genera Dianlovirus and Orthomarburgvirus, suggesting its classification as the prototype of a new genus within the family Filoviridae. The continuous detection of viral RNA in the serological survey, together with the wide host distribution, has revealed that the region covering southern Yunnan, China, and bordering areas is a natural circulation sphere for bat FiVs. These emphasize the need for a better understanding of the pathogenicity and potential risk of FiVs in the region.
Collapse
Affiliation(s)
- Biao He
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province130122, China
| | - Tingsong Hu
- Southern Center for Diseases Control and Prevention, Guangzhou, Guangdong Province510630, China
| | - Xiaomin Yan
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province130122, China
| | - Yanhui Pa
- Ruili Center for Diseases Control and Prevention, Ruili, Yunnan Province678600, China
| | - Yuhang Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province130122, China
| | - Yang Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province130122, China
| | - Nan Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province130122, China
| | - Jing Yu
- Southern Center for Diseases Control and Prevention, Guangzhou, Guangdong Province510630, China
| | - Hailin Zhang
- Yunnan Institute of Endemic Diseases Control and Prevention, Dali, Yunnan Province671000, China
| | - Yonghua Liu
- Ruili Center for Diseases Control and Prevention, Ruili, Yunnan Province678600, China
| | - Jun Chai
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan Province650201, China
| | - Yue Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province130122, China
| | - Shijiang Mi
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province130122, China
| | - Yan Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province130122, China
| | - Le Yi
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province130122, China
| | - Zhongzhong Tu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province130122, China
| | - Yiyin Wang
- Southern Center for Diseases Control and Prevention, Guangzhou, Guangdong Province510630, China
| | - Sheng Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province130122, China
| | - Ye Feng
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province130122, China
| | - Wendong Zhang
- Center for Animal Diseases Control and Prevention of Yunnan Province, Kunming, Yunnan Province650051, China
| | - Huanyun Zhao
- Center for Animal Diseases Control and Prevention of Yunnan Province, Kunming, Yunnan Province650051, China
| | - Bofang Duan
- Center for Animal Diseases Control and Prevention of Yunnan Province, Kunming, Yunnan Province650051, China
| | - Wenjie Gong
- Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province130062, China
| | - Fuqiang Zhang
- Southern Center for Diseases Control and Prevention, Guangzhou, Guangdong Province510630, China
| | - Changchun Tu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province130122, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu Province225009, China
| |
Collapse
|
28
|
Gupta A, Yadav K, Yadav A, Ahmad R, Srivastava A, Kumar D, Khan MA, Dwivedi UN. Mannose-specific plant and microbial lectins as antiviral agents: A review. Glycoconj J 2024; 41:1-33. [PMID: 38244136 DOI: 10.1007/s10719-023-10142-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/19/2023] [Accepted: 12/06/2023] [Indexed: 01/22/2024]
Abstract
Lectins are non-immunological carbohydrate-binding proteins classified on the basis of their structure, origin, and sugar specificity. The binding specificity of such proteins with the surface glycan moiety determines their activity and clinical applications. Thus, lectins hold great potential as diagnostic and drug discovery agents and as novel biopharmaceutical products. In recent years, significant advancements have been made in understanding plant and microbial lectins as therapeutic agents against various viral diseases. Among them, mannose-specific lectins have being proven as promising antiviral agents against a variety of viruses, such as HIV, Influenza, Herpes, Ebola, Hepatitis, Severe Acute Respiratory Syndrome Coronavirus-1 (SARS-CoV-1), Middle Eastern Respiratory Syndrome Coronavirus (MERS-CoV) and most recent Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). The binding of mannose-binding lectins (MBLs) from plants and microbes to high-mannose containing N-glycans (which may be simple or complex) of glycoproteins found on the surface of viruses has been found to be highly specific and mainly responsible for their antiviral activity. MBLs target various steps in the viral life cycle, including viral attachment, entry and replication. The present review discusses the brief classification and structure of lectins along with antiviral activity of various mannose-specific lectins from plants and microbial sources and their diagnostic and therapeutic applications against viral diseases.
Collapse
Affiliation(s)
- Ankita Gupta
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, India
| | - Kusum Yadav
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, India.
| | - Anurag Yadav
- Department of Microbiology, C.P. College of Agriculture, Sardarkrushinagar Dantiwada Agriculture University, District-Banaskantha, Gujarat, India
| | - Rumana Ahmad
- Department of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, India.
| | - Aditi Srivastava
- Department of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, India
| | - Dileep Kumar
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, India
- Department of Biotechnology, Khwaja Moinuddin Chishti Language University, Lucknow, Uttar Pradesh, India
| | - Mohammad Amir Khan
- Department of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, India
| | - U N Dwivedi
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, India
| |
Collapse
|
29
|
Bodmer BS, Hoenen T. Reverse Genetics Systems for Filoviruses. Methods Mol Biol 2024; 2733:1-14. [PMID: 38064023 DOI: 10.1007/978-1-0716-3533-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Filoviruses are causative agents of severe hemorrhagic fevers with high case fatality rates in humans. For studies of virus biology and the subsequent development of countermeasures, reverse genetic systems, and especially those facilitating the generation of recombinant filoviruses, are indispensable. Here, we describe the generation of recombinant filoviruses from cDNA.
Collapse
Affiliation(s)
- Bianca S Bodmer
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald, Insel Riems, Germany
| | - Thomas Hoenen
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald, Insel Riems, Germany.
| |
Collapse
|
30
|
Vogel OA, Forwood JK, Leung DW, Amarasinghe GK, Basler CF. Viral Targeting of Importin Alpha-Mediated Nuclear Import to Block Innate Immunity. Cells 2023; 13:71. [PMID: 38201275 PMCID: PMC10778312 DOI: 10.3390/cells13010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Cellular nucleocytoplasmic trafficking is mediated by the importin family of nuclear transport proteins. The well-characterized importin alpha (IMPA) and importin beta (IMPB) nuclear import pathway plays a crucial role in the innate immune response to viral infection by mediating the nuclear import of transcription factors such as IRF3, NFκB, and STAT1. The nuclear transport of these transcription factors ultimately leads to the upregulation of a wide range of antiviral genes, including IFN and IFN-stimulated genes (ISGs). To replicate efficiently in cells, viruses have developed mechanisms to block these signaling pathways. One strategy to evade host innate immune responses involves blocking the nuclear import of host antiviral transcription factors. By binding IMPA proteins, these viral proteins prevent the nuclear transport of key transcription factors and suppress the induction of antiviral gene expression. In this review, we describe examples of proteins encoded by viruses from several different families that utilize such a competitive inhibition strategy to suppress the induction of antiviral gene expression.
Collapse
Affiliation(s)
- Olivia A. Vogel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Jade K. Forwood
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia;
| | - Daisy W. Leung
- Department of Internal Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA;
| | - Gaya K. Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA;
| | - Christopher F. Basler
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| |
Collapse
|
31
|
Goletic S, Goletic T, Omeragic J, Supic J, Kapo N, Nicevic M, Skapur V, Rukavina D, Maksimovic Z, Softic A, Alic A. Metagenomic Sequencing of Lloviu Virus from Dead Schreiber's Bats in Bosnia and Herzegovina. Microorganisms 2023; 11:2892. [PMID: 38138036 PMCID: PMC10745292 DOI: 10.3390/microorganisms11122892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 12/24/2023] Open
Abstract
Bats are a natural host for a number of viruses, many of which are zoonotic and thus present a threat to human health. RNA viruses of the family Filoviridae, many of which cause disease in humans, have been associated with specific bat hosts. Lloviu virus is a Filovirus which has been connected to mass mortality events in Miniopterus schreibersii colonies in Spain and Hungary, and some studies have indicated its immense zoonotic potential. A die-off has been recorded among Miniopterus schreibersii in eastern Bosnia and Herzegovina for the first time, prompting the investigation to determine the causative agent. Bat carcasses were collected and subjected to pathological examination, after which the lung samples with notable histopathological changes, lung samples with no changes and guano were analyzed using metagenomic sequencing and RT-PCR. A partial Lloviu virus genome was sequenced from lung samples with histopathological changes and found to be closely related to Hungarian and Italian virus sequences. Further accumulation of mutations on the GP gene, coding the glycoprotein responsible for cell tropism and host preference, enhances the need for further characterization and monitoring of this virus to prevent spillover events and protect human health.
Collapse
Affiliation(s)
- Sejla Goletic
- University of Sarajevo—Veterinary Faculty, 71000 Sarajevo, Bosnia and Herzegovina; (S.G.); (J.O.); (J.S.); (N.K.); (M.N.); (D.R.); (Z.M.); (A.S.); (A.A.)
| | - Teufik Goletic
- University of Sarajevo—Veterinary Faculty, 71000 Sarajevo, Bosnia and Herzegovina; (S.G.); (J.O.); (J.S.); (N.K.); (M.N.); (D.R.); (Z.M.); (A.S.); (A.A.)
| | - Jasmin Omeragic
- University of Sarajevo—Veterinary Faculty, 71000 Sarajevo, Bosnia and Herzegovina; (S.G.); (J.O.); (J.S.); (N.K.); (M.N.); (D.R.); (Z.M.); (A.S.); (A.A.)
| | - Jovana Supic
- University of Sarajevo—Veterinary Faculty, 71000 Sarajevo, Bosnia and Herzegovina; (S.G.); (J.O.); (J.S.); (N.K.); (M.N.); (D.R.); (Z.M.); (A.S.); (A.A.)
| | - Naida Kapo
- University of Sarajevo—Veterinary Faculty, 71000 Sarajevo, Bosnia and Herzegovina; (S.G.); (J.O.); (J.S.); (N.K.); (M.N.); (D.R.); (Z.M.); (A.S.); (A.A.)
| | - Melisa Nicevic
- University of Sarajevo—Veterinary Faculty, 71000 Sarajevo, Bosnia and Herzegovina; (S.G.); (J.O.); (J.S.); (N.K.); (M.N.); (D.R.); (Z.M.); (A.S.); (A.A.)
| | - Vedad Skapur
- University of Sarajevo—Faculty of Agriculture and Food Sciences, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Dunja Rukavina
- University of Sarajevo—Veterinary Faculty, 71000 Sarajevo, Bosnia and Herzegovina; (S.G.); (J.O.); (J.S.); (N.K.); (M.N.); (D.R.); (Z.M.); (A.S.); (A.A.)
| | - Zinka Maksimovic
- University of Sarajevo—Veterinary Faculty, 71000 Sarajevo, Bosnia and Herzegovina; (S.G.); (J.O.); (J.S.); (N.K.); (M.N.); (D.R.); (Z.M.); (A.S.); (A.A.)
| | - Adis Softic
- University of Sarajevo—Veterinary Faculty, 71000 Sarajevo, Bosnia and Herzegovina; (S.G.); (J.O.); (J.S.); (N.K.); (M.N.); (D.R.); (Z.M.); (A.S.); (A.A.)
| | - Amer Alic
- University of Sarajevo—Veterinary Faculty, 71000 Sarajevo, Bosnia and Herzegovina; (S.G.); (J.O.); (J.S.); (N.K.); (M.N.); (D.R.); (Z.M.); (A.S.); (A.A.)
| |
Collapse
|
32
|
Igarashi M, Hirokawa T, Takada A. Structural and Energetic Basis for Differential Binding of Ebola and Marburg Virus Glycoproteins to a Bat-Derived Niemann-Pick C1 Protein. J Infect Dis 2023; 228:S479-S487. [PMID: 37119290 DOI: 10.1093/infdis/jiad120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/14/2023] [Accepted: 04/26/2023] [Indexed: 05/01/2023] Open
Abstract
BACKGROUND Our previous study demonstrated that the fruit bat (Yaeyama flying fox)-derived cell line FBKT1 showed preferential susceptibility to Ebola virus (EBOV), whereas the human cell line HEK293T was similarly susceptible to EBOV and Marburg virus (MARV). This was due to 3 amino acid differences of the endosomal receptor Niemann-Pick C1 (NPC1) between FBKT1 and HEK293T (ie, TET and SGA, respectively, at positions 425-427), as well as 2 amino acid differences at positions 87 and 142 of the viral glycoprotein (GP) between EBOV and MARV. METHODS/RESULTS To understand the contribution of these amino acid differences to interactions between NPC1 and GP, we performed molecular dynamics simulations and binding free energy calculations. The average binding free energies of human NPC1 (hNPC1) and its mutant having TET at positions 425-427 (hNPC1/TET) were similar for the interaction with EBOV GP. In contrast, hNPC1/TET had a weaker interaction with MARV GP than wild-type hNPC1. As expected, substitutions of amino acid residues at 87 or 142 in EBOV and MARV GPs converted the binding affinity to hNPC1/TET. CONCLUSIONS Our data provide structural and energetic insights for understanding potential differences in the GP-NPC1 interaction, which could influence the host tropism of EBOV and MARV.
Collapse
Affiliation(s)
- Manabu Igarashi
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takatsugu Hirokawa
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Division of Biomedical Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Ayato Takada
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
- One Health Research Center, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
33
|
Fletcher P, Feldmann F, Takada A, Crossland NA, Hume AJ, Albariño C, Kemenesi G, Feldmann H, Mühlberger E, Marzi A. Pathogenicity of Lloviu and Bombali Viruses in Type I Interferon Receptor Knockout Mice. J Infect Dis 2023; 228:S548-S553. [PMID: 37352146 PMCID: PMC10651197 DOI: 10.1093/infdis/jiad226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/06/2023] [Accepted: 06/22/2023] [Indexed: 06/25/2023] Open
Abstract
Type I interferon receptor knockout (IFNAR-/-) mice are not able to generate a complete innate immune response; therefore, these mice are often considered to assess the pathogenicity of emerging viruses. We infected IFNAR-/- mice with a low or high dose of Lloviu virus (LLOV) or Bombali virus (BOMV) by the intranasal (IN) or intraperitoneal (IP) route and compared virus loads at early and late time points after infection. No signs of disease and no viral RNA were detected after IN infection regardless of LLOV dose. In contrast, IP infections resulted in increased viral loads in the high-dose LLOV and BOMV groups at the early time point. The low-dose LLOV and BOMV groups achieved higher viral loads at the late time point. However, there was 100% survival in all groups and no signs of disease. In conclusion, our results indicate a limited value of the IFNAR-/- mouse model for investigation of the pathogenicity of LLOV and BOMV.
Collapse
Affiliation(s)
- Paige Fletcher
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Friederike Feldmann
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Ayato Takada
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Nicholas A Crossland
- National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Adam J Hume
- National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - César Albariño
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Gábor Kemenesi
- National Laboratory of Virology, Szentágothai Research Center, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Elke Mühlberger
- National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
34
|
Dupuy LC, Spiropoulou CF, Towner JS, Spengler JR, Sullivan NJ, Montgomery JM. Filoviruses: Scientific Gaps and Prototype Pathogen Recommendation. J Infect Dis 2023; 228:S446-S459. [PMID: 37849404 PMCID: PMC11009505 DOI: 10.1093/infdis/jiad362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023] Open
Abstract
Viruses in the family Filoviridae, including the commonly known Ebola (EBOV) and Marburg (MARV) viruses, can cause severe hemorrhagic fever in humans and nonhuman primates. Sporadic outbreaks of filovirus disease occur in sub-Saharan Africa with reported case fatality rates ranging from 25% to 90%. The high mortality and increasing frequency and magnitude of recent outbreaks along with the increased potential for spread from rural to urban areas highlight the importance of pandemic preparedness for these viruses. Despite their designation as high-priority pathogens, numerous scientific gaps exist in critical areas. In this review, these gaps and an assessment of potential prototype pathogen candidates are presented for this important virus family.
Collapse
Affiliation(s)
- Lesley C Dupuy
- Virology Branch, Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jonathan S Towner
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jessica R Spengler
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Nancy J Sullivan
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| | - Joel M Montgomery
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
35
|
Colombino E, Lelli D, Canziani S, Quaranta G, Guidetti C, Leopardi S, Robetto S, De Benedictis P, Orusa R, Mauthe von Degerfeld M, Capucchio MT. Main causes of death of free-ranging bats in Turin province (North-Western Italy): gross and histological findings and emergent virus surveillance. BMC Vet Res 2023; 19:200. [PMID: 37821925 PMCID: PMC10566203 DOI: 10.1186/s12917-023-03776-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 10/05/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Bats are recognized as reservoir species for multiple viruses. However, little is known on bats' health and mortality. Thus, this study aimed to investigate the main causes of death of bats from Turin province (North-western Italy) and to describe gross and histopathological lesions potentially associated with the presence of selected bat viruses. RESULTS A total of 71 bats belonging to 9 different species of the families Vespertilionidae and Molossidae were necropsied and samples of the main organs were submitted to histopathological examination. Also, aliquots of the small intestine, liver, spleen, lung, and brain were collected and submitted to biomolecular investigation for the identification of Coronaviridae, Poxviridae, Reoviridae (Mammalian orthoreovirus species), Rhabdoviridae (Vaprio ledantevirus and Lyssavirus species) and Kobuvirus. The majority of bats died from traumatic lesions due to unknown trauma or predation (n = 40/71, 56.3%), followed by emaciation (n = 13/71,18.3%). The main observed gross lesions were patagium and skin lesions (n = 23/71, 32.4%), forelimbs fractures (n = 15/71, 21.1%) and gastric distension (n = 10/71,14.1%). Histologically, the main lesions consisted of lymphoplasmacytic pneumonia (n = 24/71, 33.8%), skin/patagium dermatitis (n = 23/71, 32.4%), liver steatosis and hepatitis (n = 12, 16.9%), and white pulp depletion in the spleen (n = 7/71, 9.8%). Regarding emergent bat viruses, only poxvirus (n = 2, 2.8%) and orthoreovirus (n = 12/71, 16.9%) were detected in a low percentage of bats. CONCLUSIONS Trauma is the main lesion observed in bats collected in Turin province (North-western Italy) associated with forelimb fractures and the detected viral positivity rate seems to suggest that they did not represent a threat for human health.
Collapse
Affiliation(s)
- Elena Colombino
- Department of Veterinary Sciences, Centro Animali Non Convenzionali (C.A.N.C), University of Turin, Turin, Italy
| | - Davide Lelli
- Istituto Zooprofilattico Sperimentale della Lombardia e Dell'Emilia Romagna, Brescia, Italy
- Molecular Medicine PhD Program, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Sabrina Canziani
- Istituto Zooprofilattico Sperimentale della Lombardia e Dell'Emilia Romagna, Brescia, Italy
| | - Giuseppe Quaranta
- Department of Veterinary Sciences, Centro Animali Non Convenzionali (C.A.N.C), University of Turin, Turin, Italy
| | - Cristina Guidetti
- Liguria e Valle d'Aosta, Istituto Zooprofilattico Sperimentale del Piemonte, National Reference Centre for Wild Animal Diseases (CeRMAS), Aosta, Italy
| | - Stefania Leopardi
- Istituto Zooprofilattico Sperimentale delle Venezie, FAO and National Reference Centre for Rabies, Legnaro, PD, Italy
| | - Serena Robetto
- Liguria e Valle d'Aosta, Istituto Zooprofilattico Sperimentale del Piemonte, National Reference Centre for Wild Animal Diseases (CeRMAS), Aosta, Italy
| | - Paola De Benedictis
- Istituto Zooprofilattico Sperimentale delle Venezie, FAO and National Reference Centre for Rabies, Legnaro, PD, Italy
| | - Riccardo Orusa
- Liguria e Valle d'Aosta, Istituto Zooprofilattico Sperimentale del Piemonte, National Reference Centre for Wild Animal Diseases (CeRMAS), Aosta, Italy
| | - Mitzy Mauthe von Degerfeld
- Department of Veterinary Sciences, Centro Animali Non Convenzionali (C.A.N.C), University of Turin, Turin, Italy
| | - Maria Teresa Capucchio
- Department of Veterinary Sciences, Centro Animali Non Convenzionali (C.A.N.C), University of Turin, Turin, Italy.
| |
Collapse
|
36
|
Peeters M, Champagne M, Ndong Bass I, Goumou S, Ndimbo Kumugo SP, Lacroix A, Esteban A, Meta Djomsi D, Soumah AK, Mbala Kingebeni P, Mba Djonzo FA, Lempu G, Thaurignac G, Mpoudi Ngole E, Kouanfack C, Mukadi Bamuleka D, Likofata J, Muyembe Tamfum JJ, De Nys H, Capelle J, Toure A, Delaporte E, Keita AK, Ahuka Mundeke S, Ayouba A. Extensive Survey and Analysis of Factors Associated with Presence of Antibodies to Orthoebolaviruses in Bats from West and Central Africa. Viruses 2023; 15:1927. [PMID: 37766333 PMCID: PMC10536003 DOI: 10.3390/v15091927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The seroprevalence to orthoebolaviruses was studied in 9594 bats (5972 frugivorous and 3622 insectivorous) from Cameroon, the Democratic Republic of Congo (DRC) and Guinea, with a Luminex-based serological assay including recombinant antigens of four orthoebolavirus species. Seroprevalence is expressed as a range according to different cut-off calculations. Between 6.1% and 18.9% bat samples reacted with at least one orthoebolavirus antigen; the highest reactivity was seen with Glycoprotein (GP) antigens. Seroprevalence varied per species and was higher in frugivorous than insectivorous bats; 9.1-27.5% versus 1.3-4.6%, respectively. Seroprevalence in male (13.5%) and female (14.4%) bats was only slightly different and was higher in adults (14.9%) versus juveniles (9.4%) (p < 0.001). Moreover, seroprevalence was highest in subadults (45.4%) when compared to mature adults (19.2%), (p < 0.001). Our data suggest orthoebolavirus circulation is highest in young bats. More long-term studies are needed to identify birthing pulses for the different bat species in diverse geographic regions and to increase the chances of detecting viral RNA in order to document the genetic diversity of filoviruses in bats and their pathogenic potential for humans. Frugivorous bats seem more likely to be reservoirs of orthoebolaviruses, but the role of insectivorous bats has also to be further examined.
Collapse
Affiliation(s)
- Martine Peeters
- TransVIHMI, University of Montpellier, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Recherche pour le Développement (IRD), 34394 Montpellier, France; (M.C.); (A.L.); (A.E.); (G.T.); (E.D.)
| | - Maëliss Champagne
- TransVIHMI, University of Montpellier, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Recherche pour le Développement (IRD), 34394 Montpellier, France; (M.C.); (A.L.); (A.E.); (G.T.); (E.D.)
| | - Innocent Ndong Bass
- Centre de Recherche sur les Maladies Emergentes et Réémergentes (CREMER), Yaounde P.O. Box 1857, Cameroon; (I.N.B.); (D.M.D.); (F.A.M.D.); (C.K.)
| | - Souana Goumou
- Centre de Recherche et de Formation en Infectiologie de Guinée (CERFIG), Université Gamal Abdel Nasser de Conakry, Conakry BP6629, Guinea; (S.G.); (A.K.S.); (A.T.); (A.K.K.)
| | - Simon-Pierre Ndimbo Kumugo
- National Institute of Biomedical Research (INRB), Kinshasa P.O. Box 1197, Democratic Republic of the Congo; (S.-P.N.K.); (P.M.K.); (G.L.); (D.M.B.); (J.-J.M.T.); (S.A.M.)
| | - Audrey Lacroix
- TransVIHMI, University of Montpellier, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Recherche pour le Développement (IRD), 34394 Montpellier, France; (M.C.); (A.L.); (A.E.); (G.T.); (E.D.)
| | - Amandine Esteban
- TransVIHMI, University of Montpellier, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Recherche pour le Développement (IRD), 34394 Montpellier, France; (M.C.); (A.L.); (A.E.); (G.T.); (E.D.)
| | - Dowbiss Meta Djomsi
- Centre de Recherche sur les Maladies Emergentes et Réémergentes (CREMER), Yaounde P.O. Box 1857, Cameroon; (I.N.B.); (D.M.D.); (F.A.M.D.); (C.K.)
| | - Abdoul Karim Soumah
- Centre de Recherche et de Formation en Infectiologie de Guinée (CERFIG), Université Gamal Abdel Nasser de Conakry, Conakry BP6629, Guinea; (S.G.); (A.K.S.); (A.T.); (A.K.K.)
| | - Placide Mbala Kingebeni
- National Institute of Biomedical Research (INRB), Kinshasa P.O. Box 1197, Democratic Republic of the Congo; (S.-P.N.K.); (P.M.K.); (G.L.); (D.M.B.); (J.-J.M.T.); (S.A.M.)
- Service de Microbiologie, Cliniques Universitaires de Kinshasa, Kinshasa P.O. Box 1197, Democratic Republic of the Congo
| | - Flaubert Auguste Mba Djonzo
- Centre de Recherche sur les Maladies Emergentes et Réémergentes (CREMER), Yaounde P.O. Box 1857, Cameroon; (I.N.B.); (D.M.D.); (F.A.M.D.); (C.K.)
| | - Guy Lempu
- National Institute of Biomedical Research (INRB), Kinshasa P.O. Box 1197, Democratic Republic of the Congo; (S.-P.N.K.); (P.M.K.); (G.L.); (D.M.B.); (J.-J.M.T.); (S.A.M.)
| | - Guillaume Thaurignac
- TransVIHMI, University of Montpellier, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Recherche pour le Développement (IRD), 34394 Montpellier, France; (M.C.); (A.L.); (A.E.); (G.T.); (E.D.)
| | - Eitel Mpoudi Ngole
- Centre de Recherche sur les Maladies Emergentes et Réémergentes (CREMER), Yaounde P.O. Box 1857, Cameroon; (I.N.B.); (D.M.D.); (F.A.M.D.); (C.K.)
| | - Charles Kouanfack
- Centre de Recherche sur les Maladies Emergentes et Réémergentes (CREMER), Yaounde P.O. Box 1857, Cameroon; (I.N.B.); (D.M.D.); (F.A.M.D.); (C.K.)
| | - Daniel Mukadi Bamuleka
- National Institute of Biomedical Research (INRB), Kinshasa P.O. Box 1197, Democratic Republic of the Congo; (S.-P.N.K.); (P.M.K.); (G.L.); (D.M.B.); (J.-J.M.T.); (S.A.M.)
- Service de Microbiologie, Cliniques Universitaires de Kinshasa, Kinshasa P.O. Box 1197, Democratic Republic of the Congo
| | - Jacques Likofata
- Laboratoire Provincial de Mbandaka, Equateur, Democratic Republic of the Congo;
| | - Jean-Jacques Muyembe Tamfum
- National Institute of Biomedical Research (INRB), Kinshasa P.O. Box 1197, Democratic Republic of the Congo; (S.-P.N.K.); (P.M.K.); (G.L.); (D.M.B.); (J.-J.M.T.); (S.A.M.)
- Service de Microbiologie, Cliniques Universitaires de Kinshasa, Kinshasa P.O. Box 1197, Democratic Republic of the Congo
| | - Helene De Nys
- Astre, CIRAD, INRAE, University of Montpellier, 34398 Montpellier, France; (H.D.N.); (J.C.)
- Astre, CIRAD, 6 Lanark Road, Harare, Zimbabwe
| | - Julien Capelle
- Astre, CIRAD, INRAE, University of Montpellier, 34398 Montpellier, France; (H.D.N.); (J.C.)
| | - Abdoulaye Toure
- Centre de Recherche et de Formation en Infectiologie de Guinée (CERFIG), Université Gamal Abdel Nasser de Conakry, Conakry BP6629, Guinea; (S.G.); (A.K.S.); (A.T.); (A.K.K.)
| | - Eric Delaporte
- TransVIHMI, University of Montpellier, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Recherche pour le Développement (IRD), 34394 Montpellier, France; (M.C.); (A.L.); (A.E.); (G.T.); (E.D.)
| | - Alpha Kabinet Keita
- Centre de Recherche et de Formation en Infectiologie de Guinée (CERFIG), Université Gamal Abdel Nasser de Conakry, Conakry BP6629, Guinea; (S.G.); (A.K.S.); (A.T.); (A.K.K.)
| | - Steve Ahuka Mundeke
- National Institute of Biomedical Research (INRB), Kinshasa P.O. Box 1197, Democratic Republic of the Congo; (S.-P.N.K.); (P.M.K.); (G.L.); (D.M.B.); (J.-J.M.T.); (S.A.M.)
- Service de Microbiologie, Cliniques Universitaires de Kinshasa, Kinshasa P.O. Box 1197, Democratic Republic of the Congo
| | - Ahidjo Ayouba
- TransVIHMI, University of Montpellier, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Recherche pour le Développement (IRD), 34394 Montpellier, France; (M.C.); (A.L.); (A.E.); (G.T.); (E.D.)
| |
Collapse
|
37
|
Jones BD, Kaufman EJ, Peel AJ. Viral Co-Infection in Bats: A Systematic Review. Viruses 2023; 15:1860. [PMID: 37766267 PMCID: PMC10535902 DOI: 10.3390/v15091860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Co-infection is an underappreciated phenomenon in contemporary disease ecology despite its ubiquity and importance in nature. Viruses, and other co-infecting agents, can interact in ways that shape host and agent communities, influence infection dynamics, and drive evolutionary selective pressures. Bats are host to many viruses of zoonotic potential and have drawn increasing attention in their role as wildlife reservoirs for human spillover. However, the role of co-infection in driving viral transmission dynamics within bats is unknown. Here, we systematically review peer-reviewed literature reporting viral co-infections in bats. We show that viral co-infection is common in bats but is often only reported as an incidental finding. Biases identified in our study database related to virus and host species were pre-existing in virus studies of bats generally. Studies largely speculated on the role co-infection plays in viral recombination and few investigated potential drivers or impacts of co-infection. Our results demonstrate that current knowledge of co-infection in bats is an ad hoc by-product of viral discovery efforts, and that future targeted co-infection studies will improve our understanding of the role it plays. Adding to the broader context of co-infection studies in other wildlife species, we anticipate our review will inform future co-infection study design and reporting in bats. Consideration of detection strategy, including potential viral targets, and appropriate analysis methodology will provide more robust results and facilitate further investigation of the role of viral co-infection in bat reservoirs.
Collapse
Affiliation(s)
- Brent D. Jones
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD 4111, Australia
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
| | | | - Alison J. Peel
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD 4111, Australia
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
| |
Collapse
|
38
|
Sinnott JT, Kim K, Somboonwit C, Cosnett C, Segal D, Shapshak P. Emergent Risk Group-4 (RG-4) Filoviruses: A paradox in progress. Bioinformation 2023; 19:829-832. [PMID: 37908613 PMCID: PMC10613816 DOI: 10.6026/97320630019829] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 11/02/2023] Open
Abstract
Filoviruses, categorized as World Health Organization (WHO) Risk Group 4 (RG-4) pathogens, represent significant global health risks due to their extraordinary virulence. The Filoviridae family encompasses Ebola strains such as Sudan, Zaire, Bundibugyo, Tai Forest (formerly known as Ivory Coast), Reston, and Bombali, in addition to the closely related Marburg and Ravn virus strains. Filoviruses originated from a common ancestor about 10,000 years ago and displayed remarkable consistency in genetic heterogeneity until the 20th century. However, they overcame a genetic bottleneck by mid-century. Paradoxically, this resulted in the emergence of boosted virulent strains from the 1970's onward. Filovirus research is included in the NIAID Biodefense Program and utilizes the highest level specialized protective laboratories, Biosafety Laboratory (BSL)-4. The spread of Filoviruses as well as other RG-4 pathogens within Africa poses a significant health threat increasingly both in Africa and out of Africa.
Collapse
Affiliation(s)
- John T Sinnott
- />Division of Infectious Diseases and International Health, Department of Internal Medicine, Morsani College of Medicine, Tampa, Florida 33606. USA
| | - Kami Kim
- />Division of Infectious Diseases and International Health, Department of Internal Medicine, Morsani College of Medicine, Tampa, Florida 33606. USA
| | - Charurut Somboonwit
- />Division of Infectious Diseases and International Health, Department of Internal Medicine, Morsani College of Medicine, Tampa, Florida 33606. USA
| | - Conor Cosnett
- />Wolfram Research Inc., Champaigne, Illinois 61820 USA
| | - David Segal
- />College of Health Sciences and Public Policy, Walden University, Minneapolis, Minnesota 55401 USA
| | - Paul Shapshak
- />Division of Infectious Diseases and International Health, Department of Internal Medicine, Morsani College of Medicine, Tampa, Florida 33606. USA
| |
Collapse
|
39
|
Makenov MT, Le LAT, Stukolova OA, Radyuk EV, Morozkin ES, Bui NTT, Zhurenkova OB, Dao MN, Nguyen CV, Luong MT, Nguyen DT, Fedorova MV, Valdokhina AV, Bulanenko VP, Akimkin VG, Karan LS. Detection of Filoviruses in Bats in Vietnam. Viruses 2023; 15:1785. [PMID: 37766193 PMCID: PMC10534609 DOI: 10.3390/v15091785] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
A new filovirus named Měnglà virus was found in bats in southern China in 2015. This species has been assigned to the new genus Dianlovirus and has only been detected in China. In this article, we report the detection of filoviruses in bats captured in Vietnam. We studied 248 bats of 15 species caught in the provinces of Lai Chau and Son La in northern Vietnam and in the province of Dong Thap in the southern part of the country. Filovirus RNA was found in four Rousettus leschenaultii and one Rousettus amplexicaudatus from Lai Chau Province. Phylogenetic analysis of the polymerase gene fragment showed that three positive samples belong to Dianlovirus, and two samples form a separate clade closer to Orthomarburgvirus. An enzyme-linked immunosorbent assay showed that 9% of Rousettus, 13% of Eonycteris, and 10% of Cynopterus bats had antibodies to the glycoprotein of marburgviruses.
Collapse
Affiliation(s)
- Marat T. Makenov
- Department of Molecular Diagnostics and Epidemiology, Central Research Institute of Epidemiology, 111123 Moscow, Russia; (M.T.M.); (O.A.S.); (E.V.R.); (O.B.Z.); (M.V.F.); (A.V.V.); (V.P.B.); (V.G.A.); (L.S.K.)
| | - Lan Anh T. Le
- Biomedicine Institute, Joint Vietnam-Russia Tropical Science and Technology Research Center, Hanoi 122000, Vietnam; (L.A.T.L.); (N.T.T.B.); (M.N.D.)
| | - Olga A. Stukolova
- Department of Molecular Diagnostics and Epidemiology, Central Research Institute of Epidemiology, 111123 Moscow, Russia; (M.T.M.); (O.A.S.); (E.V.R.); (O.B.Z.); (M.V.F.); (A.V.V.); (V.P.B.); (V.G.A.); (L.S.K.)
| | - Ekaterina V. Radyuk
- Department of Molecular Diagnostics and Epidemiology, Central Research Institute of Epidemiology, 111123 Moscow, Russia; (M.T.M.); (O.A.S.); (E.V.R.); (O.B.Z.); (M.V.F.); (A.V.V.); (V.P.B.); (V.G.A.); (L.S.K.)
| | - Evgeny S. Morozkin
- Department of Molecular Diagnostics and Epidemiology, Central Research Institute of Epidemiology, 111123 Moscow, Russia; (M.T.M.); (O.A.S.); (E.V.R.); (O.B.Z.); (M.V.F.); (A.V.V.); (V.P.B.); (V.G.A.); (L.S.K.)
| | - Nga T. T. Bui
- Biomedicine Institute, Joint Vietnam-Russia Tropical Science and Technology Research Center, Hanoi 122000, Vietnam; (L.A.T.L.); (N.T.T.B.); (M.N.D.)
| | - Olga B. Zhurenkova
- Department of Molecular Diagnostics and Epidemiology, Central Research Institute of Epidemiology, 111123 Moscow, Russia; (M.T.M.); (O.A.S.); (E.V.R.); (O.B.Z.); (M.V.F.); (A.V.V.); (V.P.B.); (V.G.A.); (L.S.K.)
| | - Manh N. Dao
- Biomedicine Institute, Joint Vietnam-Russia Tropical Science and Technology Research Center, Hanoi 122000, Vietnam; (L.A.T.L.); (N.T.T.B.); (M.N.D.)
| | - Chau V. Nguyen
- National Institute of Malariology, Parasitology and Entomology, Hanoi 110000, Vietnam;
| | - Mo T. Luong
- Southern Branch of Joint Vietnam-Russia Tropical Science and Technology Research Center, Ho Chi Minh City 740500, Vietnam; (M.T.L.); (D.T.N.)
| | - Dung T. Nguyen
- Southern Branch of Joint Vietnam-Russia Tropical Science and Technology Research Center, Ho Chi Minh City 740500, Vietnam; (M.T.L.); (D.T.N.)
| | - Marina V. Fedorova
- Department of Molecular Diagnostics and Epidemiology, Central Research Institute of Epidemiology, 111123 Moscow, Russia; (M.T.M.); (O.A.S.); (E.V.R.); (O.B.Z.); (M.V.F.); (A.V.V.); (V.P.B.); (V.G.A.); (L.S.K.)
| | - Anna V. Valdokhina
- Department of Molecular Diagnostics and Epidemiology, Central Research Institute of Epidemiology, 111123 Moscow, Russia; (M.T.M.); (O.A.S.); (E.V.R.); (O.B.Z.); (M.V.F.); (A.V.V.); (V.P.B.); (V.G.A.); (L.S.K.)
| | - Victoria P. Bulanenko
- Department of Molecular Diagnostics and Epidemiology, Central Research Institute of Epidemiology, 111123 Moscow, Russia; (M.T.M.); (O.A.S.); (E.V.R.); (O.B.Z.); (M.V.F.); (A.V.V.); (V.P.B.); (V.G.A.); (L.S.K.)
| | - Vasiliy G. Akimkin
- Department of Molecular Diagnostics and Epidemiology, Central Research Institute of Epidemiology, 111123 Moscow, Russia; (M.T.M.); (O.A.S.); (E.V.R.); (O.B.Z.); (M.V.F.); (A.V.V.); (V.P.B.); (V.G.A.); (L.S.K.)
| | - Lyudmila S. Karan
- Department of Molecular Diagnostics and Epidemiology, Central Research Institute of Epidemiology, 111123 Moscow, Russia; (M.T.M.); (O.A.S.); (E.V.R.); (O.B.Z.); (M.V.F.); (A.V.V.); (V.P.B.); (V.G.A.); (L.S.K.)
| |
Collapse
|
40
|
Khan H, Tripathi L, Kolehmainen P, Lundberg R, Altan E, Heroum J, Julkunen I, Kakkola L, Huttunen M. VP24 matrix proteins of eight filoviruses downregulate innate immune response by inhibiting the interferon-induced pathway. J Gen Virol 2023; 104. [PMID: 37647113 DOI: 10.1099/jgv.0.001888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Filoviruses encode viral protein 24 (VP24) which effectively inhibit the innate immune responses in infected cells. Here we systematically analysed the effects of nine mammalian filovirus VP24 proteins on interferon (IFN)-induced immune response. We transiently expressed Ebola, Bombali, Bundibugyo, Reston, Sudan and Taï Forest ebolavirus (EBOV, BOMV, BDBV, RESTV, SUDV, TAFV, respectively), Lloviu virus (LLOV), Mengla dianlovirus (MLAV) and Marburgvirus (MARV) VP24 proteins and analysed their ability to inhibit IFN-α-induced activation of myxovirus resistance protein 1 (MxA) and interferon-induced transmembrane protein 3 (IFITM3) promoters. In addition, we analysed the expression of endogenous MxA protein in filovirus VP24-expressing cells. Eight filovirus VP24 proteins, including the VP24s of the recently discovered MLAV, BOMV and LLOV, inhibited IFN-induced MxA and IFITM3 promoter activation. MARV VP24 was the only protein with no inhibitory effect on the activation of either promoter. Endogenous MxA protein expression was impaired in cells transiently expressing VP24s with the exception of MARV VP24. We mutated nuclear localization signal (NLS) of two highly pathogenic filoviruses (EBOV and SUDV) and two putatively non-pathogenic filoviruses (BOMV and RESTV), and showed that the inhibitory effect on IFN-induced expression of MxA was dependent on functional cluster 3 of VP24 nuclear localization signal. Our findings suggest that filovirus VP24 proteins are both genetically and functionally conserved, and that VP24 proteins of most filovirus species are capable of inhibiting IFN-induced antiviral gene expression thereby efficiently downregulating the host innate immune responses.
Collapse
Affiliation(s)
- Hira Khan
- Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland
| | - Lav Tripathi
- Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland
| | - Pekka Kolehmainen
- Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland
| | - Rickard Lundberg
- Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland
| | - Eda Altan
- Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland
| | - Jemna Heroum
- Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland
| | - Ilkka Julkunen
- Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland
- Clinical Microbiology, Turku University Hospital, Kiinamyllynkatu 10, 20520 Turku, Finland
| | - Laura Kakkola
- Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland
| | - Moona Huttunen
- Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland
| |
Collapse
|
41
|
Tóth GE, Hume AJ, Suder EL, Zeghbib S, Ábrahám Á, Lanszki Z, Varga Z, Tauber Z, Földes F, Zana B, Scaravelli D, Scicluna MT, Pereswiet-Soltan A, Görföl T, Terregino C, De Benedictis P, Garcia-Dorival I, Alonso C, Jakab F, Mühlberger E, Leopardi S, Kemenesi G. Isolation and genome characterization of Lloviu virus from Italian Schreibers's bats. Sci Rep 2023; 13:11310. [PMID: 37443182 PMCID: PMC10344946 DOI: 10.1038/s41598-023-38364-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023] Open
Abstract
Lloviu cuevavirus (LLOV) was the first identified member of Filoviridae family outside the Ebola and Marburgvirus genera. A massive die-off of Schreibers's bats (Miniopterus schreibersii) in the Iberian Peninsula in 2002 led to its initial discovery. Recent studies with recombinant and wild-type LLOV isolates confirmed the zoonotic nature of the virus in vitro. We examined bat samples from Italy for the presence of LLOV in an area outside of the currently known distribution range of the virus. We detected one positive sample from 2020, sequenced the complete coding region of the viral genome and established an infectious isolate of the virus. In addition, we performed the first comprehensive evolutionary analysis of the virus, using the Spanish, Hungarian and the Italian sequences. The most important achievement of this study is the establishment of an additional infectious LLOV isolate from a bat sample using the SuBK12-08 cells, demonstrating that this cell line is highly susceptible to LLOV infection and confirming the previous observation that these bats are effective hosts of the virus in nature. This result further strengthens the role of bats as the natural hosts for zoonotic filoviruses.
Collapse
Affiliation(s)
- Gábor E Tóth
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Faculty of Sciences, Institute of Biology, University of Pécs, Pécs, Hungary
| | - Adam J Hume
- Department of Virology, Immunology and Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
- Center for Emerging Infectious Diseases Policy and Research, Boston University, Boston, MA, USA
| | - Ellen L Suder
- Department of Virology, Immunology and Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Safia Zeghbib
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Ágota Ábrahám
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Faculty of Sciences, Institute of Biology, University of Pécs, Pécs, Hungary
| | - Zsófia Lanszki
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Faculty of Sciences, Institute of Biology, University of Pécs, Pécs, Hungary
| | - Zsaklin Varga
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Faculty of Sciences, Institute of Biology, University of Pécs, Pécs, Hungary
| | - Zsófia Tauber
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Fanni Földes
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Brigitta Zana
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Dino Scaravelli
- ST.E.R.N.A., Forlì, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Maria Teresa Scicluna
- UOC Virologia, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Roma, Italy
| | - Andrea Pereswiet-Soltan
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Kraków, Poland
| | - Tamás Görföl
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Calogero Terregino
- OIE Collaborating Centre and National Reference Centre for Infectious Diseases at the Animal-Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Paola De Benedictis
- OIE Collaborating Centre and National Reference Centre for Infectious Diseases at the Animal-Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Isabel Garcia-Dorival
- INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Covadonga Alonso
- INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Ferenc Jakab
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Faculty of Sciences, Institute of Biology, University of Pécs, Pécs, Hungary
| | - Elke Mühlberger
- Department of Virology, Immunology and Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Stefania Leopardi
- OIE Collaborating Centre and National Reference Centre for Infectious Diseases at the Animal-Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Gábor Kemenesi
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary.
- Faculty of Sciences, Institute of Biology, University of Pécs, Pécs, Hungary.
| |
Collapse
|
42
|
Coertse J, Mortlock M, Grobbelaar A, Moolla N, Markotter W, Weyer J. Development of a Pan- Filoviridae SYBR Green qPCR Assay for Biosurveillance Studies in Bats. Viruses 2023; 15:v15040987. [PMID: 37112966 PMCID: PMC10145118 DOI: 10.3390/v15040987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/13/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Recent studies have indicated that bats are hosts to diverse filoviruses. Currently, no pan-filovirus molecular assays are available that have been evaluated for the detection of all mammalian filoviruses. In this study, a two-step pan-filovirus SYBR Green real-time PCR assay targeting the nucleoprotein gene was developed for filovirus surveillance in bats. Synthetic constructs were designed as representatives of nine filovirus species and used to evaluate the assay. This assay detected all synthetic constructs included with an analytical sensitivity of 3-31.7 copies/reaction and was evaluated against the field collected samples. The assay's performance was similar to a previously published probe based assay for detecting Ebola- and Marburgvirus. The developed pan-filovirus SYBR Green assay will allow for more affordable and sensitive detection of mammalian filoviruses in bat samples.
Collapse
Affiliation(s)
- Jessica Coertse
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, A Division of the National Health Laboratory Service, Johannesburg 2131, South Africa
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Marinda Mortlock
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Antoinette Grobbelaar
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, A Division of the National Health Laboratory Service, Johannesburg 2131, South Africa
| | - Naazneen Moolla
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, A Division of the National Health Laboratory Service, Johannesburg 2131, South Africa
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Jacqueline Weyer
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, A Division of the National Health Laboratory Service, Johannesburg 2131, South Africa
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
- Department of Microbiology and Infectious Diseases, School of Pathology, University of Witwatersrand, Johannesburg 2131, South Africa
| |
Collapse
|
43
|
Hu S, Fujita-Fujiharu Y, Sugita Y, Wendt L, Muramoto Y, Nakano M, Hoenen T, Noda T. Cryoelectron microscopic structure of the nucleoprotein-RNA complex of the European filovirus, Lloviu virus. PNAS NEXUS 2023; 2:pgad120. [PMID: 37124400 PMCID: PMC10139700 DOI: 10.1093/pnasnexus/pgad120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/17/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023]
Abstract
Lloviu virus (LLOV) is a novel filovirus detected in Schreiber's bats in Europe. The isolation of the infectious LLOV from bats has raised public health concerns. However, the virological and molecular characteristics of LLOV remain largely unknown. The nucleoprotein (NP) of LLOV encapsidates the viral genomic RNA to form a helical NP-RNA complex, which acts as a scaffold for nucleocapsid formation and de novo viral RNA synthesis. In this study, using single-particle cryoelectron microscopy, we determined two structures of the LLOV NP-RNA helical complex, comprising a full-length and a C-terminally truncated NP. The two helical structures were identical, demonstrating that the N-terminal region determines the helical arrangement of the NP. The LLOV NP-RNA protomers displayed a structure similar to that in the Ebola and Marburg virus, but the spatial arrangements in the helix differed. Structure-based mutational analysis identified amino acids involved in the helical assembly and viral RNA synthesis. These structures advance our understanding of the filovirus nucleocapsid formation and provide a structural basis for the development of antifiloviral therapeutics.
Collapse
Affiliation(s)
- Shangfan Hu
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Yoko Fujita-Fujiharu
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Yukihiko Sugita
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
- Hakubi Center for Advanced Research, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Lisa Wendt
- Laboratory for Integrative Cell and Infection Biology, Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Insel Riems, Greifswald 17493, Germany
| | - Yukiko Muramoto
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Masahiro Nakano
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Thomas Hoenen
- Laboratory for Integrative Cell and Infection Biology, Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Insel Riems, Greifswald 17493, Germany
| | | |
Collapse
|
44
|
Szentivanyi T, McKee C, Jones G, Foster JT. Trends in Bacterial Pathogens of Bats: Global Distribution and Knowledge Gaps. Transbound Emerg Dis 2023; 2023:9285855. [PMID: 40303798 PMCID: PMC12017137 DOI: 10.1155/2023/9285855] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/14/2023] [Accepted: 03/01/2023] [Indexed: 05/02/2025]
Abstract
Bats have received considerable recent attention for infectious disease research because of their potential to host and transmit viruses, including Ebola, Hendra, Nipah, and multiple coronaviruses. These pathogens are occasionally transmitted from bats to wildlife, livestock, and to humans, directly or through other bridging (intermediate) hosts. Due to their public health relevance, zoonotic viruses are a primary focus of research attention. In contrast, other emerging pathogens of bats, such as bacteria, are vastly understudied despite their ubiquity and diversity. Here, we describe the currently known host ranges and geographic distributional patterns of potentially zoonotic bacterial genera in bats, using published presence-absence data of pathogen occurrence. We identify apparent gaps in our understanding of the distribution of these pathogens on a global scale. The most frequently detected bacterial genera in bats are Bartonella, Leptospira, and Mycoplasma. However, a wide variety of other potentially zoonotic bacterial genera are also occasionally found in bats, such as Anaplasma, Brucella, Borrelia, Coxiella, Ehrlichia, Francisella, Neorickettsia, and Rickettsia. The bat families Phyllostomidae, Vespertilionidae, and Pteropodidae are most frequently reported as hosts of bacterial pathogens; however, the presence of at least one bacterial genus was confirmed in all 15 bat families tested. On a spatial scale, molecular diagnostics of samples from 58 countries and four overseas departments and island states (French Guiana, Mayotte, New Caledonia, and Réunion Island) reported testing for at least one bacterial pathogen in bats. We also identified geographical areas that have been mostly neglected during bacterial pathogen research in bats, such as the Afrotropical region and Southern Asia. Current knowledge on the distribution of potentially zoonotic bacterial genera in bats is strongly biased by research effort towards certain taxonomic groups and geographic regions. Identifying these biases can guide future surveillance efforts, contributing to a better understanding of the ecoepidemiology of zoonotic pathogens in bats.
Collapse
Affiliation(s)
- Tamara Szentivanyi
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
- Centre for Ecological Research, Institute of Ecology and Botany, Vácrátót, Hungary
| | - Clifton McKee
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Gareth Jones
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Jeffrey T. Foster
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| |
Collapse
|
45
|
Dufresnes C, Dutoit L, Brelsford A, Goldstein-Witsenburg F, Clément L, López-Baucells A, Palmeirim J, Pavlinić I, Scaravelli D, Ševčík M, Christe P, Goudet J. Inferring genetic structure when there is little: population genetics versus genomics of the threatened bat Miniopterus schreibersii across Europe. Sci Rep 2023; 13:1523. [PMID: 36707640 PMCID: PMC9883447 DOI: 10.1038/s41598-023-27988-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 01/11/2023] [Indexed: 01/28/2023] Open
Abstract
Despite their paramount importance in molecular ecology and conservation, genetic diversity and structure remain challenging to quantify with traditional genotyping methods. Next-generation sequencing holds great promises, but this has not been properly tested in highly mobile species. In this article, we compared microsatellite and RAD-sequencing (RAD-seq) analyses to investigate population structure in the declining bent-winged bat (Miniopterus schreibersii) across Europe. Both markers retrieved general patterns of weak range-wide differentiation, little sex-biased dispersal, and strong isolation by distance that associated with significant genetic structure between the three Mediterranean Peninsulas, which could have acted as glacial refugia. Microsatellites proved uninformative in individual-based analyses, but the resolution offered by genomic SNPs illuminated on regional substructures within several countries, with colonies sharing migrators of distinct ancestry without admixture. This finding is consistent with a marked philopatry and spatial partitioning between mating and rearing grounds in the species, which was suspected from marked-recaptured data. Our study advocates that genomic data are necessary to properly unveil the genetic footprints left by biogeographic processes and social organization in long-distant flyers, which are otherwise rapidly blurred by their high levels of gene flow.
Collapse
Affiliation(s)
- Christophe Dufresnes
- Laboratory for Amphibian Systematic and Evolutionary Research, College of Biology and the Environment, Nanjing Forestry University, Nanjing, People's Republic of China.
| | - Ludovic Dutoit
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland.,Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Alan Brelsford
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, USA
| | | | - Laura Clément
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland
| | - Adria López-Baucells
- Bat Research Area, Granollers Museum of Natural Sciences, Carrer Palaudaries 102, 08402, Granollers, Spain
| | - Jorge Palmeirim
- Department of Animal Biology, Centre for Ecology, Evolution and Environmental Change - cE3c, University of Lisbon, 1749-016, Lisbon, Portugal
| | - Igor Pavlinić
- Department of Zoology, Croatian Natural History Museum, Demetrova 1, 10000, Zagreb, Croatia
| | - Dino Scaravelli
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Martin Ševčík
- Department of Zoology, Faculty of Science, Charles University in Prague, Viničná 7, 128 44, Prague 2, Czech Republic
| | - Philippe Christe
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland.
| | - Jérôme Goudet
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
46
|
Widerspick L, Steffen JF, Tappe D, Muñoz-Fontela C. Animal Model Alternatives in Filovirus and Bornavirus Research. Viruses 2023; 15:158. [PMID: 36680198 PMCID: PMC9863967 DOI: 10.3390/v15010158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
The order Mononegavirales contains a variety of highly pathogenic viruses that may infect humans, including the families Filoviridae, Bornaviridae, Paramyxoviridae, and Rhabodoviridae. Animal models have historically been important to study virus pathogenicity and to develop medical countermeasures. As these have inherent shortcomings, the rise of microphysiological systems and organoids able to recapitulate hallmarks of the diseases caused by these viruses may have enormous potential to add to or partially replace animal modeling in the future. Indeed, microphysiological systems and organoids are already used in the pharmaceutical R&D pipeline because they are prefigured to overcome the translational gap between model systems and clinical studies. Moreover, they may serve to alleviate ethical concerns related to animal research. In this review, we discuss the value of animal model alternatives in human pathogenic filovirus and bornavirus research. The current animal models and their limitations are presented followed by an overview of existing alternatives, such as organoids and microphysiological systems, which might help answering open research questions.
Collapse
Affiliation(s)
- Lina Widerspick
- Bernhard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Riems, 38124 Braunschweig, Germany
| | | | - Dennis Tappe
- Bernhard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany
- National Reference Center for Tropical Pathogens, Bernhard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - César Muñoz-Fontela
- Bernhard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Riems, 38124 Braunschweig, Germany
| |
Collapse
|
47
|
Yang Z, Yuan H, Zhang XX, Zhai J, Xue M, Zheng C, Yuan ZG. The outbreak of the Ebola virus: Concerns for the animal-to-human spillover. J Med Virol 2023; 95:e28398. [PMID: 36511118 DOI: 10.1002/jmv.28398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/18/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Zipeng Yang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Hao Yuan
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xiu-Xiang Zhang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jingbo Zhai
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Medical College, Inner Mongolia Minzu University, Tongliao, China
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chunfu Zheng
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Institute of Animal Health, Guangdong Academy of Agriculture Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Zi-Guo Yuan
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
48
|
Pseudotyped Viruses for Marburgvirus and Ebolavirus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1407:105-132. [PMID: 36920694 DOI: 10.1007/978-981-99-0113-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Marburg virus (MARV) and Ebola virus (EBOV) of the Filoviridae family are the most lethal viruses in terms of mortality rate. However, the development of antiviral treatment is hampered by the requirement for biosafety level-4 (BSL-4) containment. The establishment of BSL-2 pseudotyped viruses can provide important tools for the study of filoviruses. This chapter summarizes general information on the filoviruses and then focuses on the construction of replication-deficient pseudotyped MARV and EBOV (e.g., lentivirus system and vesicular stomatitis virus system). It also details the potential applications of the pseudotyped viruses, including neutralization antibody detection, the study of infection mechanisms, the evaluation of antibody-dependent enhancement, virus entry inhibitor screening, and glycoprotein mutation analysis.
Collapse
|
49
|
Yuan B, Peng Q, Cheng J, Wang M, Zhong J, Qi J, Gao GF, Shi Y. Structure of the Ebola virus polymerase complex. Nature 2022; 610:394-401. [PMID: 36171293 PMCID: PMC9517992 DOI: 10.1038/s41586-022-05271-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022]
Abstract
Filoviruses, including Ebola virus, pose an increasing threat to the public health. Although two therapeutic monoclonal antibodies have been approved to treat the Ebola virus disease1,2, there are no approved broadly reactive drugs to control diverse filovirus infection. Filovirus has a large polymerase (L) protein and the cofactor viral protein 35 (VP35), which constitute the basic functional unit responsible for virus genome RNA synthesis3. Owing to its conservation, the L-VP35 polymerase complex is a promising target for broadly reactive antiviral drugs. Here we determined the structure of Ebola virus L protein in complex with tetrameric VP35 using cryo-electron microscopy (state 1). Structural analysis revealed that Ebola virus L possesses a filovirus-specific insertion element that is essential for RNA synthesis, and that VP35 interacts extensively with the N-terminal region of L by three protomers of the VP35 tetramer. Notably, we captured the complex structure in a second conformation with the unambiguous priming loop and supporting helix away from polymerase active site (state 2). Moreover, we demonstrated that the century-old drug suramin could inhibit the activity of the Ebola virus polymerase in an enzymatic assay. The structure of the L-VP35-suramin complex reveals that suramin can bind at the highly conserved NTP entry channel to prevent substrates from entering the active site. These findings reveal the mechanism of Ebola virus replication and may guide the development of more powerful anti-filovirus drugs.
Collapse
Affiliation(s)
- Bin Yuan
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Qi Peng
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jinlong Cheng
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Min Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jin Zhong
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - George F Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.
- Center for Influenza Research and Early-Warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Disease (CEEID), Chinese Academy of Sciences, Beijing, China.
- Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, Beijing, China.
| | - Yi Shi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.
- Center for Influenza Research and Early-Warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Disease (CEEID), Chinese Academy of Sciences, Beijing, China.
- Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
50
|
Evidence for Viral mRNA Export from Ebola Virus Inclusion Bodies by the Nuclear RNA Export Factor NXF1. J Virol 2022; 96:e0090022. [PMID: 36040180 PMCID: PMC9517727 DOI: 10.1128/jvi.00900-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many negative-sense RNA viruses, including the highly pathogenic Ebola virus (EBOV), use cytoplasmic inclusion bodies (IBs) for viral RNA synthesis. However, it remains unclear how viral mRNAs are exported from these IBs for subsequent translation. We recently demonstrated that the nuclear RNA export factor 1 (NXF1) is involved in a late step in viral protein expression, i.e., downstream of viral mRNA transcription, and proposed it to be involved in this mRNA export process. We now provide further evidence for this function by showing that NXF1 is not required for translation of viral mRNAs, thus pinpointing its function to a step between mRNA transcription and translation. We further show that RNA binding of both NXF1 and EBOV NP is necessary for export of NXF1 from IBs, supporting a model in which NP hands viral mRNA over to NXF1 for export. Mapping of NP-NXF1 interactions allowed refinement of this model, revealing two separate interaction sites, one of them directly involving the RNA binding cleft of NP, even though these interactions are RNA-independent. Immunofluorescence analyses demonstrated that individual NXF1 domains are sufficient for its recruitment into IBs, and complementation assays helped to define NXF1 domains important for its function in the EBOV life cycle. Finally, we show that NXF1 is also required for protein expression of other viruses that replicate in cytoplasmic IBs, including Lloviu and Junín virus. These data suggest a role for NXF1 in viral mRNA export from IBs for various viruses, making it a potential target for broadly active antivirals. IMPORTANCE Filoviruses such as the Ebola virus (EBOV) cause severe hemorrhagic fevers with high case fatality rates and limited treatment options. The identification of virus-host cell interactions shared among several viruses would represent promising targets for the development of broadly active antivirals. In this study, we reveal the mechanistic details of how EBOV usurps the nuclear RNA export factor 1 (NXF1) to export viral mRNAs from viral inclusion bodies (IBs). We further show that NXF1 is not only required for the EBOV life cycle but also necessary for other viruses known to replicate in cytoplasmic IBs, including the filovirus Lloviu virus and the highly pathogenic arenavirus Junín virus. This suggests NXF1 as a promising target for the development of broadly active antivirals.
Collapse
|